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Abstract

Subject of this thesis is the theoretical investigation of molecular systems, whose structure is
governed by weak noncovalent interactions. Two studies are performed, where compounds of
the element fluorine play a central role.

The first study regards the H2-X2 (X = F,Cl,Br) van der Waals dimers. In it, the question
about the influence of quantum effects on the noncovalent bond between H2 and X2 molecules
is pursued, where both molecules are approximated as rigid rotors. The four dimensional pair
potential is calculated by quantum chemical methods and selectively characterized in terms of
fundamental interaction components. The adiabatization of the potentials with respect to the
rotational motion of H2 allows the resolution of the differences in the interaction with respect to
the nuclar spin isomers of dihydrogen, namely para- (pH2) and orthohydrogen (oH2). The two-
dimensional rotationally adiabatic p/oH2-X2 pair potentials are compared the potentials of the
Rg-X2 (Rg = He, Ne, Ar) dimers. Finally, bound states of the pH2-X2 dimers are calculated, in
order to determine the zero point energy. Quantum effects due to the nuclear motion dominate
the binding energies of the pH2-X2 dimers. For pH2-F2 their relative contribution is with 85%
largest. In the ground state, linear structures are predicted for pH2-Cl2 and pH2-Br2. In
the case of pH2-F2 the calculations also yield a linear structure. However, due to the small
difference between the binding energies of the linear and the T-shaped structure, no clear
prediction can be made in view of the applied approximations.

The second study follows the question, whether folded (hairpin) conformers of n-octane
molecules are more strongly stabilized by chain elongation on both ends with either alkyl
groups (-CmH2m+1), perfluoroalkyl groups (-CmF2m+1) or one alkyl group and one perfluo-
roalkyl group. For that purpose the energy of the hairpin conformer is determined in relation
to the energy of the respective linear conformer. The chain length (n), from which onwards the
hairpin conformer is lower in energy than the linear conformer, is directly related to weak at-
tractive intramolecular interactions. And thus to the question how intramolecular alkyl-alkyl,
perfluoroalkyl-perfluoroalkyl and perfluoroalkyl-alkyl interactions compare in strength. To an-
swer these questions, accurate quantum chemical calculations are performed. The method of
increments at the local Møller-Plesset second order perturbation theory level and the local cou-
pled cluster level is applied for the calculation of the large systems. Using the data from this
method, maps of the intramolecular correlation interactions are analysed. Thermodynamic cor-
rections are calculated, in order to make predictions at finite temperatures. The present results
support the following ordering of interactions in terms of hairpin stabilization for groups of the
same length: alkyl-alkyl > perfluoroalkyl-alkyl & perfluoroalkyl-perfluoroalkyl, where it has to
be noted, that the differences are very small. At a temperature of 100 K hairpin formation of
n-alkanes is predicted for n ≥ 18. Hairpin formation of the investigated perfluoroalkylalkanes
and 1,8-diperfluoroalkyloctanes is predicted for n ≥ 20 and n ≥ 22.



Kurzzusammenfassung

Gegenstand dieser Arbeit ist die theoretische Untersuchung molekularer Systeme, deren Struk-
tur maßgeblich durch schwache nichtkovalente Wechselwirkungen bedingt ist. Dies geschieht
anhand von zwei Studien, bei denen Verbindungen des Elements Fluor eine zentrale Rolle
spielen.

In der ersten Studie werden die van-der-Waals Dimere des Typs H2-X2 (X = F,Cl,Br) be-
trachtet. Dabei wird der Fragestellung nachgegangen, wie sich unterschiedliche Quantenef-
fekte auf die nichtkovalente Bindung zwischen, als starren Rotatoren betrachteten, H2 und X2

Molekülen auswirken. Die vierdimensionalen Paarpotenziale werden quantenchemisch berech-
net und punktuell über fundamentale Wechselwirkungen charakterisiert. Die Potentizale wer-
den bezüglich der Rotationsbewegung des H2 Moleküls adiabatisiert, was die Auflösung der in-
termolekularen Wechselwirkung nach Para- (pH2) und Orthowasserstoff (oH2) ermöglicht. Die
zweidimensionalen rotationsadiabatisierten p/oH2-X2 Paarpotenziale werden mit den Poten-
zialen der Rg-X2 (Rg = He, Ne, Ar) Dimere verglichen. Abschließend werden die gebundenen
Zustände der pH2-X2 Dimere berechnet, um den Beitrag der Nullpunktsenergie zu bestim-
men. Quanteneffekte der Kernbewegung dominieren die nichtkovalente Bindung der pH2-X2

Dimere. Ihr relativer Beitrag ist mit 85% für pH2-F2 besonders groß. Für die Grundzustände
von pH2-Cl2 und pH2-Br2 können mit relativer Sicherheit lineare Strukturen vorhergesagt wer-
den. Im Falle des pH2-F2 Dimers ergeben die Rechnungen zwar ebenfalls eine lineare Struktur,
der geringe Unterschied zur Bindungsenergie der T-förmigen Struktur lässt in Anbetracht der
verwendeten Näherungen aber keine eindeutige Vorhersage zu.

Die zweite Studie geht der Frage nach, ob sich gefaltete (hairpin) n-Octan Moleküle besser
über eine beidseitige Kettenverlängerung mit Alkylgruppen (-CmH2m+1), Perfluoroalkylgrup-
pen (-CmF2m+1), oder jeweils einer Alkylgruppe und einer Perfluoroalkylgruppe stabilisieren
lassen. Dazu wird die Energie des jeweiligen hairpin Konformers relativ zu der Energie des lin-
earen Konformers bestimmt. Die Kettenlänge (n), ab der das hairpin Konformer eine niedrigere
Energie aufweist als das lineare Konformer, steht in direktem Zusammenhang mit stabilisieren-
den intramolekularen van-der-Waals-Wechselwirkungen. Und damit auch mit der Frage wie
intramolekulare Alkyl-Alkyl, Perfluoroalkyl-Perfluoroalkyl und Alkyl-Perfluoroalkyl Wechsel-
wirkungen der Stärke nach geordnet sind. Zur Beantwortung dieser Fragen werden genaue
quantenchemische Rechnungen durchgeführt. Hierbei wird unter anderem die Inkrementen-
methode auf Niveau der lokalen Møller-Plesset Störungstheorie zweiter Ordnung und der
lokalen Coupled-Cluster-Theorie angewendet, um die genaue Berechnung der großen Systeme
zu ermöglichen. Diese erlaubt es auch, die das hairpin Konformer stabilisierenden Wechsel-
wirkungen innerhalb seiner Struktur zu kartieren. Um Vorhersagen bei endlicher Temperatur
zu treffen, werden thermodynamische Korrekturen berechnet. Für die betrachteten Ketten-
moleküle findet sich folgende Ordnung der intramolekularen Wechselwirkungen bei gleicher
Gruppenlänge: Alkyl-Alkyl > Alkyl-Perfluoroalkyl & Perfluoroalkyl-Perfluoroalkyl, wobei die
Unterschiede sehr klein sind. Bei einer Temperatur von 100 K ergeben sich folgende Ket-
tenlängen ab der die Faltung bevorzugt ist: n ≥ 18 für n-Alkane, n ≥ 20 für Perfluoroalkyl-
alkane und n ≥ 22 für 1,8-Diperfluoroalkyloctane.
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1 Introduction

The forces between any two or more molecules arise due to intermolecular interactions, also
known as noncovalent interactions or sometimes called van der Waals interactions. These
microscopic interactions also give rise to some of the macroscopic properties of molecular solids,
liquids and gases. Intermolecular interactions can be partitioned into the following fundamental
parts: exchange repulsion-, electrostatic-, induction- and dispersion interactions [1–3]. Another
powerful concept is the identification of certain strong and directional interaction patterns, such
as hydrogen bonds [4] or halogen bonds (σ-hole bonds) [5]. Closely related to the intermolecular
interactions are the weak intramolecular interactions, which are important for the stability of
conformations of macro molecules such as proteins and DNA. While intermolecular interactions
are sometimes viewed separately from chemical bonds (strong intramolecular interactions),
both concepts arise ultimately from the correlated quantum mechanical motion of electrons
and nuclei. This also explains, why they cannot be clearly separated sometimes - the borders
between both concepts are blurred.

The detailed study of intermolecular interactions is carried out the by the isolated examina-
tion of small van der Waals dimers, timers and larger clusters. Experimentally, this is possible
by the combination of molecular beam and high-resolution spectroscopy methods [3, 6]. In
this way empirical intermolecular interaction potentials are constructed which reproduce the
observed spectra. Highly accurate ab inito studies of van der Waals complexes are possible, but
restricted to small systems [7]. Limiting factors are the computationally demanding quantum
chemical treatment of electron correlation and the fact that numerically accurate quantum me-
chanical treatments of the nuclear motion are limited to a few degrees of freedom. It is indeed
the combination of experiment and theory that has led to the present level of understanding
of intermolecular interactions. For example: it is now widely accepted, that is vital to account
for dispersion interactions in computational modelling [8, 9].

Fluorine (F) is the most reactive of the elements, as it forms compounds with all other
elements besides He, Ne and Ar [10]. Many elements reach their highest oxidation number
in their fluorine compounds. Examples for such fluorine compounds are CF4, SF6 and UF6.
SF6 has an important application as a dielectric medium in high-voltage circuit breakers.
UF6 is used to enrich uranium for the production of nuclear fuels and nuclear weapons. All
three compounds have in common that they are gases at room temperature (CF4 and SF6)
or slightly above (UF6), see also figure 1.1a, despite their large molar masses. This property
can be directly related to their particularly weak intermolecular interactions. Since all three
compounds are apolar, dispersion interactions dominate the attractive part of their interaction
potentials. Dispersion interactions can be derived from the molecular polarizabilities. The
atomic polarizability of F is similar to that of H and clearly lower compared to those of the
heavier halogen atoms Cl, Br and I, which qualitatively explains the weak intermolecular
attraction of perfluorinated compounds, see figure 1.1b. The same reasoning helps to explain
that F2 and Cl2 are gases at room temperature while Br2 is a liquid and I2 is a solid.

1
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CF4 SF6 UF6

Tb = −129 ◦C Tsubl = −64 ◦C Tsubl = 57 ◦C

(a) Low boiling or sublimation points of perfluorinated compounds indicate weak intermolecular interac-

tions [10].

UABdisp ∼ −
αAαB

R6
AB

X H F Cl Br I
αX (Å3) 0.67 0.56 2.2 3.1 4.7

(b) Average dipole polarizabilities for ground state

atoms [11, 12].
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Figure 1.1: The low polarizability of fluorine atoms (b) qualitatively explains the presence of weak dis-

persion interactions of perfluorinated compounds (a,c).

A particularly interesting question regards the origin of the low miscibility of liquid alkanes
and perfluoroalkanes, despite their similar average molecular interactions, as estimated from
their similar boiling points [12, 14–16], see figure 1.1c. The thermodynamic properties of liquids
and their mixtures are studied by statistical methods such as Monte Carlo and molecular dy-
namics simulations, which ultimately rely on a potential for the intermolecular interaction [17,
18]. Accurate quantum chemical studies of small alkane and perfluoroalkane dimers are thus
performed to provide a benchmark for more efficient methods such as force fields and dispersion
corrected density functional theory [18–21]. These can then be used for the latter techniques,
but also for other applications such as computational modelling of supramolecular complexes,
which contain perfluoroalkyl groups. The tendency of compounds with large perfluoroalkyl-
groups to rather mix with perfluoroalkane solvents than with water or lipophilic solvents, is
exploited in the recovery of fluorophilic catalysts in liquid-liquid biphasic synthesis, which is an
important part of ”Green Chemistry” [12, 22]. Molecules with perfluoroalkyl groups aggregate
in water, forming layers, micelles and other supramolecular architectures such as micro bub-
bles [16, 23, 24]. The unique properites of perfluoroalkanes and fluorinated polymers such as
chemical inertness, high hydrophobicity, low friction, high small gas molecule carrying capacity,
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(a) The interaction potential of H2 with F2 (black

curve) changes due to the nuclear spin quan-

tum effect (blue curve). The binding energy (red

line) of the pH2-F2 dimer is dominated by nu-

clear quantum effects.

(b) Differences between weak intramolecular alkyl-

alkyl, perfluoroalkyl-alkyl and perfluoroalkyl-

perfluoroalkyl interactions may influence the sta-

bility of n-alkane, perfluoroalkylalkane and 1,8-

diperfluoroalkyloctane hairpin conformers with

the same number of carbon atoms, with respect

to their linear conformers.

Figure 1.2: Sketches for the two studies in this thesis.

lead to a wide range of further applications such as lubricants, medical fluids, liquid breathing,
oil and water repellent fabrics, insulation materials, solvents and fire fighting foams [12, 16,
25].

This thesis contains two ab initio investigations, which are linked by the role of fluorine with
respect to weak intermolecular interactions. Here only a brief introduction to the two studies
is given, as each begins with a more detailed individual introduction.

Subject of the first investigation, see chapter 3, are the H2-X2 (X = F, Cl, Br) van der
Waals dimers. Here, it is not only interesting to compare their intermolecular interaction
potentials, but also to determine the individual interaction components, in order to explain
the influence of electronic quantum effects on the shape of the potentials. However, the main
motivation to study these van der Waals dimers is the importance of nuclear quantum effects,
which are anticipated to be large due to the low mass of the H2 molecule. The method
of rotational adiabatization allows the determination of separate interaction potentials for
the nuclear spin isomers ortho- (oH2) and para-hydrogen (pH2) [26, 27]. Thus, one of the
goals of this study is to determine the changes in the interaction due to the nuclear-spin
quantum effect, which is schematically shown in figure 1.2a. The rotationally adiabatic p/oH2-
X2 potentials are then be compared to the Rg-X2 (Rg = He, Ne, Ar) potentials, which are
known for their low anisotropy [28]. Lastly, the bound states of the pH2-X2 potentials are
calculated to determine the zero point energy with respect to the internal motions of the pH2-
X2 dimers, which is indicated in figure 1.2a. The development of pH2-X2 pair potentials is
further of importance, because they can be used in the construction of approximate many
body potentials for X2 impurities in pH2 matrices [27]. The latter systems are used to study
the fundamental dihydrogen dihalogen ”detonating gas” reaction at cryogenic temperatures [29,
30]. The respective many-body potentials allow the study of interesting matrix quantum effects
and allow to determine the initial state of the reaction [27].

3
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In the second investigation, see chapter 4, weak intramolecular interactions between n-alkyl
(-CmH2m+1) and perfluoro-n-alkyl groups (-CmF2m+1) are studied systematically in terms of
their potential to stabilize folded (hairpin) conformers. The alkyl and perfluoroalkyl groups are
thereby linked to a central octane unit (-C8H16-), which provides the necessary flexibility for
folding. The stability of hairpin conformers depends on a fine balance between the introduc-
tion of four energetically unfavourable gauche carbon backbone dihedral angles and attractive
intramolecular interactions, which depend on the overall chain length n, see also the scheme
in figure 1.2b. The number of carbon atoms, i.e. the chain length, where the energy of the
hairpin conformer is lower than the energy of the linear conformer is thus directly linked to the
strength of the intramolecular interactions [31]. The present study is motivated by the recent
experimental and theoretical investigation of n-alkane hairpin formation in via supersonic jet
Raman spectroscopy by Lüttschwager et al. [32, 33] and related highly accurate theoretical
investigations [34, 35]. This technique may allow to experimentally investigate the folding of
the herein theoretically investigated partially fluorinated n-alkanes. Can we learn something
about fluorophillic effects at the single molecule level? How do alkyl-alkyl, perfluoroalkyl-
perfluoroalkyl and perfluoroalkyl-alkyl interactions compare in terms of hairpin stabilization?
What are the hairpin critical chain lengths at low temperatures (100 K)? To answer these
questions, we apply a combination of quantum chemical methods ranging from dispersion cor-
rected density functional theory [9, 36–39] to explicitly correlated local electron correlation
methods [40, 41] in conjunction with the method of increments [42–46]. The results of this
investgation might aid the evaluation of force fields or density functional theory methods.

This thesis is organized as follows, the applied quantum chemistry methods are presented
in chapter 2, including a brief recapitulation of the types of intermolecular interactions and
their ab initio determination in section 2.3. Chapter 3 contains the investigation on the H2-X2

van der Waals dimers. The stability of hairpin conformers of partially fluorinated n-alkanes is
investigated in chapter 4. Each study is closed by its own summary & conclusions and outlook
sections.

4



2 Theory

2.1 The Born-Oppenheimer approximation

Many properties of molecules can be described by their state |Φ〉, which is a solution of the
non-relativistic time-independent Schrödinger equation

Ĥmol|Φ〉 = Emol|Φ〉 (2.1)

where Ĥmol is the molecular Hamilton operator and Emol is the total energy of the molecule
in state |Φ〉. The M nuclei and N electrons of the molecule are described as point charges, at
position vectors RA and ri, respectively. The molecular Hamilton operator is set up by writing
out the kinetic energy operators, T̂A, T̂i, for each particle and the operators for the Coulomb
interactions V̂AB , V̂Ai, V̂ij of each pair of particles. The Hamiltonian written in atomic units
thus reads

Ĥmol =
N∑
i=1
−1

2∇
2
i︸ ︷︷ ︸

T̂i

+
M∑
A=1
− 1
MA
∇2
A︸ ︷︷ ︸

T̂A

+
N∑
i=1

M∑
A=1
−ZA
riA︸ ︷︷ ︸
V̂Ai

+
N∑
i=1

N∑
j>i

1
rij︸︷︷︸
V̂ij

+
M∑
A=1

M∑
B=1

ZAZB
RAB︸ ︷︷ ︸
V̂AB

(2.2)

where the charge of nucleus A is given by its atomic number ZA, the Coulomb interactions
further depend on the distances between electrons rij , nuclei and electrons riA and nuclei
RAB .[47]

The solution of equation 2.1, except for the smallest molecules like H2
+ [48], is usually

only possible by invoking the Born-Oppenheimer Approximation (BOA), where the motion of
electrons is treated as instantaneous from the perspective of the nuclei and electrons move in
the static potential of clamped nuclei. Adiabatisation of equation 2.1 according to the BOA
gives rise to the electronic Schrödinger equation

Ĥel|Ψ〉 = E|Ψ〉 (2.3)

where the electronic wave function is denoted |Ψ〉 and the total energy of the electrons in state
|Ψ〉 in the field of the clamped nuclei is given by E. The electronic Hamilton operator Ĥel is
Ĥmol (equation 2.2) for clamped nuclei, thus with T̂A = 0 and V̂AB = const.. The electronic
wave function |Ψ〉 depends fully on the electronic coordinates ri and parametrically on the
nuclear coordinates RA. Approximate solutions of equation 2.3 that have been used in this
thesis are discussed in section 2.2.

As a consequence of the BOA, nuclei move on adiabatic potential energy surfaces (PES)
E(RA) found by solving equation 2.3 in the space spanned by the nuclear position vectors RA.
The stationary nuclear states |Ω〉 are solutions to the time-independent nuclear Schrödinger

5



2 Theory

equation
Ĥnuc|Ω〉 = EBOA

mol |Ω〉 (2.4)

where the molecular energy in the BOA is given by EBOA
mol , an approximation to Emol from

equation 2.1, and Ĥnuc denotes the nuclear Hamilton operator, which is given by

Ĥnuc = +
M∑
A=1
− 1
MA
∇2
A︸ ︷︷ ︸

T̂A

+E(RA). (2.5)

The nuclear Schrödinger equation itself can be adiabatised by splitting the nuclear motion
into translation, vibration and rotational degrees of freedom (DOF). Equation 2.4 is important
for the development of rotationally adiabatic pair potentials as in chapter 3 and the calculation
of thermodynamic corrections.

2.1.1 Limits of Born-Oppenheimer approximations

Whether the BOA or adiabatic separation breaks down or holds, depends on the size of non-
adiabatic coupling terms (NACTs), which arise due to the adiabatic separation. In the follow-
ing, we briefly show, where the NACTs appear and how their importance can be determined.
Since, we will apply the BOA not only to electrons and nuclei but also to nuclear degrees of
freedom, we consider a general case for light and heavy particles [27, 49].

A total Hamiltonian of a system of total mass m with light particles with mass scaled
coordinates l and heavy particles with mass scaled coordinates h written in the adiabatic
representation is,

Ĥ(l,h) = T̂h(h) + Ĥl(l; h), (2.6)

where T̂h(h) denotes the kinetic energy operator of the heavy particles and Ĥh(l; h) denotes the
light particle Hamiltonian. The latter Hamiltonian depends parametrically on the coordinates
of the heavy particles and also contains their interactions. The Schrödinger Equation for the
system is given by, (

Ĥ − E
)
|Ψ(l,h)〉 = 0, (2.7)

where E is the total energy and |Ψ(l,h)〉 is the total wave function. In a Hilbert space of
dimension N , the total wave-function can be expressed in terms of the Born-Oppenheimer
expansion [50, 51],

|Ψ(l,h)〉 =
N∑
j=1

ψj(h)|φ(l; h)〉, (2.8)

where the N heavy particle wave functions ψj(h) take the role of expansion coefficients for the
N light particle wave functions |φj(l; h)〉. The light particle wave functions are the adiabatic
eigenfunctions of the light particle Hamiltonian,

(Ĥl(l; h)− Lj)|φj(l; h)〉 = 0, (2.9)

where Lj are the adiabatic energies of the light particles. By substitution of eq. 2.8 in eq. 2.7
and multiplication from the left by 〈φj(l; h)|, differentiating with respect to the heavy particle
kinetic energy operator T̂ = − ~2

2m∇
2 and integration over the coordinates of the light particles
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2.1 The Born-Oppenheimer approximation

leads to as set N of coupled equations [49],

− ~2

2m∇
2ψk + (Lj − E)ψk −

~2

2m

N∑
j=1

(
2τjk · ∇+ τ

(2)
jk

)
ψj = 0. (2.10)

The terms τjk and τ (2)
jk are the so called non-adiabatic coupling terms (NACT). NACTs couple

the motions of the light and heavy particles. They depend explicitly on the adiabatic light
particle wave functions,

τjk = 〈φj(l; h)|∇φk(l; h)〉 (2.11)

τ
(2)
jk = 〈φj(l; h)|∇2φk(l; h)〉. (2.12)

The second order NACTs τ (2)
jk can be derived from the first order term τjk [49]. Use of the

Hellmann-Feynman theorem allows to express the first order NACTs via the following equa-
tion [49],

τjk = 〈φj(l; h)|∇Ĥl|φk(l; h)〉
Lk − Lj

. (2.13)

The BO approximation is the neglect of the coupling terms between the motions of the light
and heavy particles, i.e. the right hand side of eq. 2.10. From eq. 2.11 follows, that the
BOA holds, if light particle wave functions couple only weakly due to changes in the heavy
particle coordinates. Additionally, NACTs are small when the heavy particles are slow with
respect to the motions of the light particles. The herein often applied criterion, that the energy
difference of two light particle states has to be large to for the application of the BOA originates
from eq. 2.13. Whenever these criteria fail, the BOA breaks down and NACTs have to be in
considered in some form, if the adiabatic light particle energies and wave functions should be
employed [49].

Let us discuss some examples that are of importance to this work. In general, we only
consider the nuclear motion (heavy particles) on the PES given by the adiabatic ground state
energies of the electrons (light particles) and neglect the NACTs for the electronic-nuclear
motion. This BOA is justified by the energetic separation of the closed shell electronic ground
state and the first excited electronic state (in the relevant space of nuclear coordinates). The
separation of rotational (heavy) and vibrational (light) degrees of freedom is justified for some
cases, but not for others. For example the vibration of Cl2 proceeds on a similar time scale
as the rotation of H2 [27]. Treating the dihalogen molecules as rigid, thus introduces a small
error [27] into the RA potentials in chapter 3. For the same systems, the adiabatic separation
of the rotational DOF of H2 (light particle) from the rotational DOF of dihalogens (heavy
particle) is justified by the large differences in their rotational constants. The bound states of
the lowest RA PESs for the pH2-X2 dimers are calculated on the basis that the next highest
pH2-X2 is energetically well separated from the latter. On the other hand, NACTs are assumed
to be important for the first three RA PESs of oH2-X2, due to their small energetic differences.
Because this complicates the bound state calculations for oH2-X2 considerably, they are not
part of this work.

7



2 Theory

2.2 The electronic problem

One of the main goals of quantum chemistry is to find approximate solutions to the elec-
tronic Schrödinger equation, i.e. equation 2.3. Since we are dealing only with molecules in
the electronic ground state, we will not cover excited electronic states. Two main theories
exist to solve the electronic problem, wave function based methods and density functional the-
ory (DFT). The wave function based methods are Hartree-Fock, described in section 2.2.1 and
post-Hartree Fock methods, also called electron correlation methods, described in section 2.2.2.
The latter section focuses on the single reference methods Møller-Plesset perturbation theory
and coupled cluster theory, their local variants, the method of increments, and the inclusion of
explicit correlation. Density functional theory and dispersion corrections in the frame work of
DFT are discussed in section 2.2.3. The presentation of the theories mainly follows the text-
books on quantum chemistry by Szabo and Ostlund [47], Jensen [52] and Helgaker, Jørgensen
and Olsen [53].

2.2.1 Hartree-Fock theory

Wave function electronic structure methods express many electron wave functions in terms of
an orthonormal basis of spin orbitals χ, i.e. one electron wave functions. Spin orbitals

χ = ψ(r)σ(ω) (2.14)

are products of a spatial orbital ψ(r) and a spin function σ(ω) which depends on the spin
coordinate ω. The spin functions σ for fermions, are either α (spin up) or β (spin down)
functions. Adding the spin functions becomes necessary in non-relativistic theory in order
to correctly describe the antisymmetry of fermionic wave functions with respect to particle
exchange, namely

|Ψ(xi,xj)〉 = −|Ψ(xj ,xi)〉 (2.15)

where xi = {ri, ωi}.

The simplest anti-symmetrized product ansatz for |Ψ〉 in terms of orbitals is the Slater
determinant

|ΨSD〉 = |χiχj . . . χN 〉 = (N !)−1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣

χi(x1) χj(x1) . . . χk(x1)

χi(x2) χj(x2) . . . χk(x2)
...

...
...

χi(xN ) χj(xN ) . . . χk(xN )

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.16)

In the Hartree-Fock (HF) approximation |ΨSD〉 is used as an ansatz for |Ψ〉 to solve equation 2.3
for the electronic ground state |Ψ0〉 and energy E0 by application of the variational principle.
It can be shown [47], that minimizing E for a Slater determinant by variation of the spin
orbitals leads to a set of effective one electron equations

f̂(i)χ(xi) = εχ(xi) (2.17)
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2.2 The electronic problem

called Hartree-Fock equations, where f̂(i) denotes the Fock operator and ε denotes the orbital
energy. The Fock operator has the form

f̂(i) = −1
2∇̂

2
i −

M∑
A=1

ZA
riA

+ v̂HF(i) (2.18)

where the Hartree-Fock potential v̂HF(i) describes the interaction of electron i with the average
field present due to all other electrons. Its form is

v̂HF(i) =
∑
b

Ĵb(1)− K̂b(1) (2.19)

where Ĵb(1) is the Coulomb operator,

Ĵb(1) =
∫
dx2|χb(2)|2r−1

12 (2.20)

and K̂b(1) is the exchange operator,

K̂b(1) =
∫
dx2χ

∗
b(2)r−1

12 P̂12χb(2) (2.21)

where the operator P̂12 exchanges the coordinates of two electrons. Here and in the subsequent
text the short form for the coordinate of electrons, i.e. χb(x1) = χb(1) is used. The Coulomb
operator gives a local potential, i.e. at the position of one electron x1, due to the average field
of a second electron in χb(2). The exchange operator reflects the Pauli principle and depends
explicitly on the orbital it operates on, i.e. it is a nonlocal operator. The orbital dependence
of both two electron operators implicates that f̂(i) depends on its own eigenfunctions. The
therefore non-linear HF equations 2.17 are solved in an iterative procedure, namely the self
consistent field (SCF) method. In practise one considers the dependence on the spin functions
before hand and works in a finite basis of spatial orbitals. Here, only restricted HF theory
(RHF) for closed shell molecules is considered, in which it is sufficient to work with spatial
orbitals.

The molecular orbitals ψi (MO) are expressed as a linear combination,

ψi =
K∑
k=1

Cikφk, (2.22)

of K atom centred basis functions φk (LCAO), that resemble atomic orbitals, where the MO
coefficients are denoted by Cik. This allows to rewrite the intergro-differential equations 2.17
as matrix equations, which are solved by finding the optimal MO coefficients via the SCF pro-
cedure. The Hartree-Fock equations in the finite spatial basis are the Roothaan-Hall equations

FC = SCε (2.23)

where the Fock matrix is denoted by F, the expansion coefficient matrix is C, the overlap matrix
is S and the diagonal orbital energy matrix is ε. The overlap matrix S becomes necessary as
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the basis functions φk are normalized but in general not orthogonal. It’s elements are given by

Skj =
∫
dr1φ

∗
k(1)φj(1), (2.24)

thus their value and sign depends on the type, orientation and distance of the two basis
functions. The matrix S is Hermitian and has only positive eigenvalues. Linear dependencies
in the basis functions lead to eigenvalues in S approaching zero. The Fock matrix depends on
the (closed shell) density matrix P, with elements

Pkj = 2
N/2∑
a

CkaC
∗
ja, (2.25)

which is directly related to the charge density by

ρ(r) = 2
N/2∑
i

ψiψi

=
∑
kj

Pkjφk(r)φ∗j (r). (2.26)

The matrix elements of the Fock matrix are given by

Fkj =
∫
dr1φ

∗
k(1)f̂(1)φj(1) (2.27)

=
∫
dr1φ

∗
k(1)ĥ(1)φj(1) +

N/2∑
a

∫
dr1φ

∗
k(1)

[
2Ĵa(1)− K̂a(1)

]
φj(1) (2.28)

= Hone
kj +Gkj , (2.29)

where the elements Hone
kj of the one electron Hamiltonian matrix involve one electron integrals

and the elements Gkj involve two-electron integrals, the resulting matrix G depends on P.
The one electron integrals in Hcore

kj = Tkj + V nucl
kj describe the kinetic energy

Tkj =
∫
dr1φ

∗
k(1)1

2

[
−∇̂2

]
φj(1) (2.30)

and the attraction by nuclei,

V nucl
kj =

M∑
A=1

∫
dr1φ

∗
k(1)ZA

r1A
φj(1). (2.31)

The two-electron part is
Gkj =

∑
lo

Plo

[
(kj|ol)− 1

2 (kl|oj)
]

(2.32)

where the dependence on P is shown, the expressions with the round brackets are the two-
electron integrals

(kj|ol) =
∫
dr1dr2φ

∗
k(1)φj(1)r−1

12 φ
∗
o(2)φl(2). (2.33)
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2.2 The electronic problem

To solve the Roothaan equations, equation 2.23, they have to be unitary transformed so that

X†SX = 1. (2.34)

This is done by a unitary transformation of the Fock matrix F represented in the non-orthogonal
basis {φu},

F′ = X†FX (2.35)

which gives the Fock matrix F′. Subsequent matrix diagonalization of F′ gives the coeffi-
cients matrix C′ the orthogonal basis {φ′k}. Hence, we have solved the transformed Roothaan
equations

F′C′ = C′ε, (2.36)

where the coefficient matrix in the non-orthogonal basis is recovered by

C = XC′. (2.37)

In this way, the equations are solved in the orthogonal basis but the one and two-electron
integrals have to be evaluated only once in the non-orthogonal basis.

The SCF procedure involves the following steps:

1. Provide a set of nuclei {RA, ZA}, basis functions {φu} and a number of electrons N .

2. Calculate the one and two-electron integrals.

3. Obtain X by diagonalization of S.

4. Guess a density matrix P.

5. Construct the Fock matrices F(P) and then F′.

6. Diagonalize F′ to obtain C′ and ε.

7. Generate the coefficients in the original basis C = XC′.

8. From C, generate the new density matrix P.

9. Calculate the total energy.

10. Check for convergence: a) the elements of P have not changed beyond a threshold and/or
b) the change in total energy is below a threshold.

11. If the calculation is not converged return with P to step 5 to construct a new Fock matrix.

12. If the calculation is converged, |ΨSD〉 is constructed with the obtained molecular orbitals.
Then expectation values can be obtained, and the HF wave function can be used as a
starting point for post-Hartree Fock calculations.

Given the electronic wave function of the molecule is well described by a single configuration
and a balanced basis set is used, the HF method can be used to predict reasonable equilibrium
structures, i.e. bond lengths and angles, charge densities and dipole moments. However, all
these properties can be described more accurately by calculation of the correlation energy with
post-Hartree-Fock methods. [47] For this purpose the HF method is vital, as all of the latter
methods need the HF wave function as input.
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2.2.2 Electron correlation methods

The Hartree-Fock energy in the complete basis set limit EHF
0 is an upper bound to the exact

non-relativistic electronic groeund state energy E0 in equation 2.3. The difference between the
two energies

Ecorr = E0 − EHF
0 < 0 (2.38)

defines the correlation energy Ecorr. The methods described in this chapter approximate Ecorr

and the exact electronic wave function by improving upon the HF approximation.

Formally, the exact electronic wave function in a given finite basis can be described with
the configuration interaction (CI) method. From the solution of Roothaan’s equations a closed
shell restricted HF determinant |ΨHF

0 〉 and a set of 2K spin orbitals {χi} are obtained, where
|ΨHF

0 〉 is described by occupation of the N spin orbitals that are lowest in energy. From the spin
orbitals, it is possible to construct

(2K
N

)
different Slater determinants, i.e. configurations, that

can be described by the changes, called virtual excitations of electrons, with respect to |ΨHF
0 〉.

For example, the replacement of the occupied spin orbital χa in |ΨHF
0 〉 by the unoccupied spin

orbital χr leads to the singly excited determinant |Ψr
a〉. The ansatz in CI is to expand the

electronic wave function |Ψ0〉 in the basis of Slater determinants build from the spin orbitals
{χi} as

|Ψ0〉 = c0|ΨHF
0 〉+

(
1
1!

)2∑
ar

cra|Ψr
a〉+

(
1
2!

)2 ∑
abrs

crsab|Ψrs
ab〉+

(
1
3!

)2 ∑
abcrst

crstabc|Ψrst
abc〉+ · · · (2.39)

where the factors in front of the sums prevent multiple counting of excitations leading to the
same determinants. The method of linear variation can be applied to solve the electronic
SE using this trial function. Thus, one sets up the matrix representation of the electronic
Hamiltonian in the basis of Slater-determinants. The lowest eigenvalue of this full CI matrix
is an upper bound to the ground state energy and other eigenvalues are approximations to
the energies of excited electronic states of the system. Albeit formally exact, the sheer size of
the full CI matrix prohibits the application of the method for most many electron systems of
interest. Therefore, a huge effort is devoted to the development of methods that approximate
the correlation energy, for ever larger molecular systems, but bypass the problem of solving the
full CI equations. One obvious choice of approximation to full CI, is to truncate the expansion in
equation 2.39 at some level of excited configurations, say up to doubly excited configurations.
The corresponding method is then called configuration interaction singles doubles (CISD).
Indeed, this approach greatly reduces the scaling, while still giving a reasonable approximation
to the correlation energy, but in terms of molecular interactions an error is introduced, because
truncated CI expansions are not size extensive. In size extensive methods the energy of a super
molecule consisting of a number of non interacting molecules, far away from each other, is
exactly the sum of the energies of the individual monomers. HF for example is such a method,
but CISD is not. In fact, the absolute correlation energy of CISD of the super molecule
is always smaller than the sum of the absolute monomer correlation energies. This problem
worsens with the systems size, such that in the limit of an infinitely large system, i.e. a crystal,
the correlation energy per monomer is zero. The size extensivity error can be reduced by the
inclusion of selected quadruple excitations, but is still present. [47]
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2.2 The electronic problem

In the following, the most important size extensive electron correlation methods, especially
in terms of the calculation of weak non covalent interactions are presented, namely Møller-
Plesset perturbation theory and coupled cluster theory. Then, explicit correlation schemes are
discussed, that greatly improve the convergence to the complete basis set limit. Finally, the
local correlation methods, including the method of increments are described, which all serve
the purpose to treat large molecular systems.

2.2.2.1 Møller-Plesset perturbation theory

The Møller-Plesset perturbation theory (MPPT) is the application of the Rayleigh-Schrödinger
perturbation theory (RSPT) variant of the general many-body perturbation theory (MBPT) to
the electron correlation problem of N -electron systems, by using the Hartree-Fock Hamiltonian
as the zero-order Hamiltonian. In MBPT one uses a set of known eigenfunctions and eigenvalues
of a zero-order Hamiltonain Ĥ0,

Ĥ0|Ψ(0)
i 〉 = E

(0)
i |Ψ

(0)
i 〉 (2.40)

to approximate the unknown eigenfunctions and eigenvalues of a Hamiltonian Ĥ

Ĥ|Φi〉 = Ei|Φi〉 (2.41)

that can be written by adding the perturbation Û to Ĥ0 as

Ĥ = Ĥ0 + λÛ (2.42)

where λ controls the strength of the perturbation. This allows to expand Ei and |Φi〉 as a
power-series in λ,

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i + · · · (2.43)

|Φi〉 = |Ψ(0)
i 〉+ λ|Ψ(1)

i 〉+ λ2|Ψ(2)
i 〉+ · · · (2.44)

where E(n)
i and |Ψ(n)

i 〉 are the energies and wave function corrections of the nth order. Per-
turbation theory assumes that the perturbation Û is small compared to Ĥ0, and that the
power-series expansion of the energy and wave function, equations 2.43 and 2.44, converge.
We consider the zero-order wave functions |Ψ(0)

i 〉 to be normalized and choose |Φi〉 as inter-
mediate normalized, i.e. 〈Ψ(0)

i |Φi〉 = 1. The zero-order wave function is orthogonal to the
functions of higher orders,

〈Ψ(0)
i |Ψ

(n)
i 〉 = 0 n = 1, 2, 3, · · · . (2.45)

The ansatz from equations 2.42, 2.43 and 2.44 is inserted into equation 2.41,(
Ĥ0 + λÛ

) (
|Ψ(0)

i 〉+ λ|Ψ(1)
i 〉+ λ2|Ψ(2)

i 〉+ · · ·
)

=
(
E

(0)
i + λE

(1)
i + λ2E

(2)
i + · · ·

)
(2.46)(

|Ψ(0)
i 〉+ λ|Ψ(1)

i 〉+ λ2|Ψ(2)
i 〉+ · · ·

)
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which can be separated into one equation per order

Ĥ0|Ψ(0)
i 〉 = E

(0)
i |Ψ

(0)
i 〉 n = 0 (2.47)

Ĥ0|Ψ(1)
i 〉+ Û |Ψ(0)

i 〉 = E
(0)
i |Ψ

(1)
i 〉+ E

(1)
i |Ψ

(0)
i 〉 n = 1 (2.48)

Ĥ0|Ψ(2)
i 〉+ Û |Ψ(1)

i 〉 = E
(0)
i |Ψ

(2)
i 〉+ E

(1)
i |Ψ

(1)
i 〉+ E

(2)
i |Ψ

(0)
i 〉 n = 2 (2.49)

... .

Multiplication of each equation from the left with 〈Ψ(0)
i | gives expressions for the energies of

nth order,

E
(0)
i = 〈Ψ(0)

i |Ĥ0|Ψ(0)
i 〉 (2.50)

E
(1)
i = 〈Ψ(0)

i |Û |Ψ
(0)
i 〉 (2.51)

E
(2)
i = 〈Ψ(0)

i |Û |Ψ
(1)
i 〉 (2.52)

E
(3)
i = 〈Ψ(0)

i |Û |Ψ
(2)
i 〉 (2.53)

... .

To solve the first order equations one applies RSPT in that, the first order wave function
correction is expressed in the basis of eigenstates of Ĥ0,

|Ψ(1)
i 〉 =

∑
n

c(1)
n |Ψ(0)

n 〉, (2.54)

where the coefficients can be projected out by multiplication with 〈Ψ(0)
n |,

〈Ψ(0)
n |Ψ

(1)
i 〉 = c(1)

n . (2.55)

Thus,
|Ψ(1)
i 〉 =

∑
n,n6=i

|Ψ(0)
n 〉〈Ψ(0)

n |Ψ
(1)
i 〉, (2.56)

where the sum runs not over n = i since c
(1)
i = 0. Equation 2.48 is rearranged and E

(1)
i

substituted according to equation 2.51(
E

(0)
i − Ĥ0

)
|Ψ(1)
i 〉 =

(
Û − 〈Ψ(0)

i |Û |Ψ
(0)
i 〉
)
|Ψ(0)
i 〉. (2.57)

This equation is multiplied by 〈Ψ(0)
n | yielding,(

E
(0)
i − E

(0)
n

)
〈Ψ(0)

n |Ψ
(1)
i 〉 = 〈Ψ(0)

n |Û |Ψ
(0)
i 〉 (2.58)

〈Ψ(0)
n |Ψ

(1)
i 〉 = 〈Ψ

(0)
n |Û |Ψ(0)

i 〉
E

(0)
i − E

(0)
n

. (2.59)

Thus, the expansion coefficients for |Ψ(1)
i 〉 are expressed in terms of the matrix elements of

the perturbation in terms of zero-order wave functions and their energy differences. This
allows to evaluate the second order energy correction after inserting the expansion 2.56 into
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equation 2.52,

E
(2)
i = 〈Ψ(0)

i |Û
∑
n,n6=i

|Ψ(0)
n 〉〈Ψ(0)

n |Ψ
(1)
i 〉 (2.60)

=
∑
n,n6=i

〈Ψ(0)
i |Û |Ψ

(0)
n 〉〈Ψ(0)

n |Û |Ψ(0)
i 〉

E
(0)
i − E

(0)
n

=
∑
n,n6=i

|〈Ψ(0)
i |Û |Ψ

(0)
n 〉|2

E
(0)
i − E

(0)
n

. (2.61)

Also the energies of third and higher orders can be expressed in terms of the zero-order solu-
tions. For the third order energy the second order wave function correction is expanded,

|Ψ(2)
i 〉 =

∑
n,n6=i

|Ψ(0)
n 〉〈Ψ(0)

n |Ψ
(2)
i 〉, (2.62)

and the above procedure is repeated using the second order and lower order equations. [47]

In MPPT the zero-order Hamilton operator is the HF Hamiltonian, which is the sum of the
Fock operators for each electron,

Ĥ0 =
N∑
i=1

f̂(i) (2.63)

=
N∑
i=1

(
ĥ(i) +

N∑
b=1
Ĵb(i)− K̂b(i)

)
(2.64)

=
N∑
i=1

ĥ(i) + 2
〈
V̂ee

〉
, (2.65)

where
〈
V̂ee

〉
is the total mean field electron-electron interaction, which is counted twice in the

sum of Fock operators. The perturbation is defined by the difference of the HF to the exact
electronic Hamiltonian,

Û = Ĥel − Ĥ0 = V̂ee − 2
〈
V̂ee

〉
. (2.66)

This perturbation is termed fluctuation potential, as it induces fluctuations to a mean field
HF description of the electronic motions. As we know from the exact CI wave function, the
fluctuations will be represented by excited determinants. The zero-order wave function is the
HF ground state Slater-determinant

〈Ψ(0)| = 〈Ψ(0)
0 | = 〈ΨHF

0 | (2.67)

and the sum of occupied spin orbital energies is the zero-order energy

MP0 = E(0) = E
(0)
1 =

N∑
i=1

εi. (2.68)

The first order correction E(1) is then

E(1) = 〈ΨHF
0 |Û |ΨHF

0 〉 = −
〈
V̂ee

〉
, (2.69)
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which corrects the double counting of the electron repulsion and gives the MP1 energy as

MP1 = MP0 + E(1) = EHF
0 , (2.70)

which is just the HF energy. Hence, the correlation energy is given by the sum over all orders
starting from second order,

Ecorr = E(2) + E(3) + · · · (2.71)

The MP2 electron correlation method approximates

Ecorr ≈ E(2) = EMP2
corr (2.72)

and thus the MP2 energy is defined as

MP2 = MP0 + E(1) + E(2) = EHF
0 + E(2) = EHF

0 + EMP2
corr . (2.73)

To evaluate the second order energy correction, the second order wave function correction is
expanded in eigenfunctions of the HF Hamiltonian, as in the CI expansion, see equation 2.39.
Then, according to equation 2.61 from RSPT, matrix elements of the perturbation operator
with the HF determinant and singly, doubly, and higher excited determinants have to be
evaluated. However, it can be shown, that E(2) depends only on matrix elements involving the
HF determinant and doubly excited determinants. Higher than doubly excited determinants
give zero, when operated on by a two electron operator as V̂ee. Furthermore the matrix elements
with single excited determinants, are zero as

〈ΨHF
0 |Û |Ψr

a〉 = 〈ΨHF
0 |Ĥel|Ψr

a〉 − εr〈ΨHF
0 |Ψr

a〉, (2.74)

where 〈ΨHF
0 |Ĥel|Ψr

a〉 = 0, due to Brillouins theorem, which is a consequence of the orthogo-
nality of the MO’s, and 〈ΨHF

0 |Ψr
a〉 = 0 due to the orthogonality of the Slater determinants.

Hence, in terms of MPPT equation 2.61 is

E(2)(MP2) = EMP2
corr = −

occ∑
ab

virt∑
rs

〈ΨHF
0 |Û |Ψrs

ab〉〈Ψrs
ab|Û |ΨHF

0 〉
EHF

0 − Ersab
(2.75)

= −
occ∑
ab

virt∑
rs

[(ar|bs)− (as|br)]2

εa + εb − εr − εs
, (2.76)

where the MP2 correlation energy is calculated from two electron integrals and orbital ener-
gies. The equations of higher-order, MP3, MP4 etc. become increasingly complex. From the
MP4 level on, singly, doubly, triply and quadruply excited determinants enter the respective
equations. MP2 recovers about 80-90%, while MP3 and MP4 give about 90-95% to 95-98% of
the correlation energy. The MPPT shows, that most of the ground state correlation energy is
recovered by accounting for doubly excited determinants, while the single, double and triple
excitations are of similar but lesser importance. As MPPT is not variational, the MPn energy
is not an upper bound to the exact energy. Often, an oscillation of the energies of the different
orders around the exact value is observed. Of great importance for energy differences, is the
size extensivity of the MPn methods, as this does not introduce additional errors when the
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2.2 The electronic problem

system size is changed. And one can hope, that the errors in the correlation energy effectively
cancel out when energy differences are calculated.[52]

In this work, we apply MP2 in chapter 3 to economically calculate pair potentials for H2-F2

and H2-Br2. The local variant of MP2, LMP2 is used in chapter 4 to calculate the major part of
the correlation contribution to the intramolecular interactions between perfluoroalkyl groups in
hairpin conformers. In all cases the MP2 results can be trusted, as only closed shell molecules
are involved which are reliably described by single reference methods. However, when greater
accuracy is desired the coupled cluster methods, described in the next section, are used.

2.2.2.2 Coupled cluster theory

Coupled cluster theory introduces electron correlation in a size extensive manner by expand-
ing the electronic wave function as a product series of excitation operators working on the
HF ground state. Excitation operators correlate electrons by excitation from occupied spin
orbitals into unoccupied, i.e. virtual, spin orbitals. As a first example, we consider the double-
excitation operator that works on the HF reference state, i.e. the uncorrelated state with spin
orbital I and J already occupied,

τ̂ABIJ = a†AaIa
†
BaJ , (2.77)

where aJ and aI annihilate electrons in the spin-orbitals J and I, whereas a†A and a†B create
electrons in the unoccupied spin-orbitals A and B. Successive application of double-excitation
operators correlating the same pair of electrons gives zero, as there is zero possibility to anni-
hilate an electron in spin orbital J twice, i.e.

τ̂ABIJ τ̂CDIJ = 0. (2.78)

Taking into account all possible double-excitation operators for a HF reference state |HF〉 =
|ΨHF

0 〉 the cluster expansion becomes,

|CCD〉 =

 ∏
A>B,I>J

(
1 + tABIJ τ̂

AB
IJ

) |HF〉, (2.79)

the coupled cluster doubles (CCD) wave function, where tABIJ denotes the amplitude of the
respective double-excitation process. In general, also single, triple and higher excitation op-
erators should be accounted for. An unspecified excitation operator be τ̂µ with the related
amplitude tµ, then the CC wave function is

|CC〉 =
[∏
µ

(1 + tµτ̂µ)
]
|HF〉, (2.80)

with it’s product ansatz fundamentally different from an CI wave function

|CI〉 =
[

1 +
∑
µ

Cµτ̂µ

]
|HF〉. (2.81)
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It is obvious, that amplitudes are different from the CI coefficients, as they are related to an
excitation process involved in creation of several determinants. Still, an excited determinant
|µ〉 is generated by the action of τ̂µ on |HF〉,

|µ〉 = τ̂µ|HF〉. (2.82)

Using this expression we can expand the CC wave function

|CC〉 =
(

1 +
∑
µ

tµτ̂µ +
∑
µ>ν

tµtν τ̂µτ̂ν + · · ·
)
|HF〉 (2.83)

= |HF〉+
∑
µ

tµ|µ〉+
∑
µ>ν

tµtν |µν〉+ · · · , (2.84)

where it becomes clear, that due to the product ansatz cluster excitations not only generate
|µ〉 but also other higher excited determinates. In general, one distinguishes connected clusters
and their amplitudes,

tµν τ̂µν |HF〉 = tµν |µν〉 (2.85)

where one excitation operator generates a certain determinant |µν〉, and disconnected clusters,

tµtν τ̂µτ̂ν |HF〉 = tµtν |µν〉, (2.86)

where the same determinant |µν〉 is now generated by an other process represented by a product
of excitation operators. The total amplitude to generate a certain determinant is then the sum
of one connected and all possible disconnected cluster amplitudes. The solution to the coupled
cluster equations is obtained by determining the amplitudes. Here, due to the non-linearity of
the ansatz the variational principle leads to a set of equations that are more complicated than
the FCI equations. Thus, in CC theory a set of equations for the amplitudes is obtained by
projection of the Schrödinger equation against determinants,

〈µ| = 〈HF|τ̂ †µ (2.87)

generated by connected clusters. These equations are the projected coupled cluster equations,

〈µ|Ĥ|CC〉 = E〈µ|CC〉, (2.88)

where the energy E is given by projection against the HF wave function,

E = 〈HF|Ĥ|CC〉. (2.89)

The projected CC equations are non variational, however the difference to the exact CC energy
is usually negligibly small [53]. The projected equations are solvable, as Ĥ couples only those
determinants, that differ by more than two-fold excitations, thereby effectively truncating the
CC expansion in the equations.

Instead of the product ansatz used so far, the commutation relations of the excitation oper-
ators and the fact that τ̂2

µ = 0, allow to write the CC wave function in terms of an exponential
ansatz,

|CC〉 = exp(T̂ )|HF〉, (2.90)
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2.2 The electronic problem

where T̂ is the cluster operator given by the sum over all excitation operators and their am-
plitudes,

T̂ =
∑
µ

tµτ̂µ. (2.91)

Cluster operators of different hierarchies collect all single, double, triple, and higher excitation
operators

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂N . (2.92)

In this way, it becomes possible to restrict the theory to a certain order of connected excitation
processes. It is also interesting to determine which cluster operators are involved in creating a
certain determinant,

exp(T̂ )|HF〉 =
N∑
i=0

Ĉi|HF〉 (2.93)

represented by an operator Ĉi. By expanding exp(T̂ ) and equating with each Ĉi one finds the
following relations,

Ĉ0 = 1 (2.94)

Ĉ1 = T̂1 (2.95)

Ĉ2 = T̂2 + 1
2 T̂

2
1 (2.96)

Ĉ3 = T̂3 + T̂2T̂1 + 1
6 T̂

3
1 (2.97)

Ĉ4 = T̂4 + T̂3T̂1 + 1
2 T̂

2
2 + 1

2 T̂2T̂
2
1 + 1

24 T̂
4
1 . (2.98)

Doubly excited determinants are reached via two processes, the connected excitation of two
electrons and two disconnected simultaneous single excitations. For triply excited determinants
one finds three excitation processes, the connected three electron excitation, the disconnected
combination of a two electron and a single electron excitation and the three disconnected single
excitations. A quadruply exited determinant is created by five distinct processes. We imme-
diately see, that with the inclusion of only single and double excitation processes (CCSD) all
single and doubly excited determinants are generated, as in CISD. Furthermore, also higher
exited determinants, described by products of excitations, enter the amplitude equations. In
truncated CC approximations not all processes are described, however higher connected excita-
tion may only have small amplitudes. Solving the projected cluster equations and determining
an amplitude then means finding the probability of the excitation process leading to all de-
terminants that involve this type of excitation. In CCSD, the most important correlation
processes are included, that is pair correlation via T̂2, and pair-pair interactions via T̂ 2

2 . The
single excitations have only a small effect, if canonical orbitals are used. Selected quadruplets
are described in CCSD mostly via the process T̂ 2

2 . The truncation leads to a neglect of the
less probable processes T̂4 and T̂3T̂1. The main error in CCSD arises due to the neglect of the
connected triple cluster operators T̂3, because T̂ 3

1 and T̂2T̂1 have a low weight for triples as T̂1

is less important. For the energy, the triples contribution can be approximated using MPPT,
which is known as the CCSD(T) method. [52, 53]
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The connection between CC and MPPT methods can be investigated by using the exponen-
tial cluster ansatz

|Ψ(n)〉 = [exp (T̂ )](n)|HF〉, (2.99)

instead of the linear ansatz in equation 2.54 to expand the nth order correction to the the wave
function. The resulting theory is the coupled cluster perturbation theory (CCPT). Accord-
ingly, the cluster operator and the cluster amplitudes are expanded in terms of orders in the
perturbation,

T̂ = T̂ (0) + T̂ (1) + T̂ (2) + · · ·+ T̂ (n) (2.100)

tµ = t(0)
µ + t(1)

µ + t(2)
µ + · · ·+ t(n)

µ (2.101)

where T̂ (n) and t(n)
µ are the cluster operator and cluster amplitude corrections at the nth order

of perturbation theory. Up to second order the wave functions are,

|Ψ(0)〉 = |HF〉 (2.102)

|Ψ(1)〉 = T̂ (1)|HF〉 (2.103)

|Ψ(2)〉 =
(
T̂ (2) + 1

2 T̂
(1)T̂ (1)

)
|HF〉. (2.104)

The expressions can be further expanded in terms of excitations as

|Ψ(1)〉 = |MP1〉 = T̂
(1)
2 |HF〉 (2.105)

|Ψ(2)〉 = |MP2〉 =
(
T̂

(2)
1 + T̂

(2)
2 + T̂

(2)
3 + 1

2 T̂
(1)
2 T̂

(1)
2

)
|HF〉. (2.106)

The first order correction to the cluster operator is just the connected double cluster operator.
At second order, connected single, triple and disconnected quadruple cluster excitations enter
the description. The energy corrections are,

E(0) = E0 (2.107)

E(1)(MP1) = 〈HF|Û |HF〉 (2.108)

E(2)(MP2) = 〈HF|[Û , T̂ (1)
2 ]|HF〉 (2.109)

E(3)(MP3) = 〈HF|[Û , T̂ (2)
2 ]|HF〉 (2.110)

E(4) = 〈HF|[Û , T̂ (3)
2 ]|HF〉, (2.111)

where up to fourth order, only connected doubles amplitudes contribute directly. Thus, the
energy expression for the MP2 energy correction, presented earlier in equation 2.75, can be
written in terms of connected doubles amplitudes. The cluster operator appearing in the
E(2)(MP2) term is,

T̂
(1)
2 =

occ∑
ab

virt∑
rs

trsabτ̂
rs
ab , (2.112)
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This is inserted into the equation for the MP2 energy correction,

E(2)(MP2) = 〈HF|[Û , T̂ (1)
2 ]|HF〉 (2.113)

= 〈HF|Û T̂ (1)
2 |HF〉 (2.114)

= 〈HF|Û
occ∑
ab

virt∑
rs

trs
(1)

ab τ̂ rsab |HF〉 (2.115)

=
occ∑
ab

virt∑
rs

trs
(1)

ab 〈HF|Û |ψrsab〉, (2.116)

Upon comparison with the expression in equations 2.75 and 2.76 the connected doubles ampli-
tudes are,

trs
(1)

ab = −〈ψ
rs
ab|Û |HF〉

EHF
0 − Ersab

(2.117)

= −〈ψ
rs
ab|Ĥ|HF〉

EHF
0 − Ersab

(2.118)

= − (ar|bs)− (as|br)
εa + εb − εr − εs

. (2.119)

Calculation of an MP2 energy thus involves in principle the calculation of the connected double
amplitudes from CC theory to first order in the perturbation, i.e. the fluctuation potential. It is
further possible to show, that the doubles amplitudes obtained in the CCSD approximation are
correct up to second order in perturbation theory [53]. The energy corrections are described
exactly up to the third order within CCSD. Thus, performing a CCSD calculation leads to
amplitudes that can be used to also express the MP2 and MP3 energies.

In hybrid CC methods, CC and MPPT theories are combined, in that contributions for the
highest excitations are approximated to a lower order in the fluctuation potential. Iterative
methods are termed CCN , where for example CC2 is derived from CCSD by including the
doubles cluster operators to first order only, CC3 is an approximation to CCSDT, in that triples
cluster operators are included just to second order. The CCN methods generate improved wave
functions at a reduced cost compared to the respective non hybrid CC method, which makes
CC3 ideal to calculate highly accurate properties like polarizabilities. When only the energy
has to be calculated accurately, non iterative hybrid CC methods like CCSD(T) are more
economical than CC3. In CCSD(T) a correction ∆ECCSD(T) is added to the CCSD energy,

ECCSD(T) = ECCSD + ∆ECCSD(T). (2.120)

The CCSD(T) correction is given by

∆ECCSD(T) = 〈t̄|[Û ,∗ T̂ (2)
3 ]|HF〉 (2.121)

and includes connected triples terms arising in the fourth and fifth order CCPT energy correc-
tions. In the evaluation of this expression the amplitudes from the prior CCSD calculation are
used. CCSD(T) describes the energy at least as accurate as MP4, at the same computational
costs. Therefore, CCSD and CCSD(T) are used rather than MP3 and MP4, when a higher
than MP2 accuracy is desired.
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The order of the methods in terms of accuracy in the correlation energy is

MP2 ≈ CC2 < CISD < CCSD < MP4 < CCSD(T) ≈ CC3 < CCSDT(Q),

where substantial improvements upon MP2 come from the cluster model with CCSD, which in
turn is substantially improved by the (T) correction in CCSD(T) [52, 53]. For weak intermolec-
ular interactions of closed shell systems, CCSD(T) is a very accurate method. Hence, in this
work CCSD(T) is used to benchmark the MP2 results for the hydrogen-halogen van der Waals
interactions in chapter 3. The local variant LCCSD(T0) is used to calculate a correction term
to the LMP2 correlation energy for the relative energy of alkanes and perfluoroalkylalkanes
hairpin conformers in chapter 4.

2.2.2.3 Explicitly correlated methods

One speaks of explicitly correlated methods, when terms that explicitly depend linearly on the
inter-electronic distance r12 are considered in the ansatz for the wave function. These methods
greatly improve the convergence behaviour of the correlation energy of standard correlation
methods with respect to basis set size. The reason for this improvement, is the inherent failure
of standard correlation methods, here we assume finite basis sets, to describe the correct
behaviour of spatially close electrons. The true electronic wave function has a Coulomb cusp,
a discontinuous derivative, at r12 = 0, where the electron-electron repulsion operator has a
singularity. At the Coulomb cusp, the derivative of the wave function has a constant value(

∂Ψ
∂r12

)
r12=0

= 1
2Ψ (r12 = 0) . (2.122)

To describe the Coulomb cusp of two electron systems accurately, Hylleraas type wave functions
include orbital products and an expansion in all powers of r12,

Ψ(r1, r2) = exp(−α1r1) exp(−α2r2)
∑
klm

Cklm(r1 + r2)k(r1 − r2)lrm12. (2.123)

This ansatz yields highly accurate results, but can only be applied to systems with few electrons.
Conventional CI wave functions using Gaussian type basis sets depend only on even powers of
the inter-electronic distance. Therefore, the derivatives of the CI wave function with respect
to r12 at r12 = 0 yield zero, which leads to an inherently poor description of the the Coulomb
cusp region of the electronic wave function [53]. In turn, to converge the correlation energy,
very large basis sets are needed. In explicitly correlated methods, terms linear in r12 are added
to the wave function. For the resulting R12 wave function the Coulomb cusp condition is then
satisfied by construction, which improves the convergence behaviour of the correlation energy
to the basis set limit. A simplified R12 wave function ansatz is,

ΨR12 = ΨHF +
∑
ijab

aijabΨab
ij +

∑
ij

bijrijΨHF, (2.124)

where a sum of products over the HF wave function and the inter-electronic distance are
included. The R12 ansatz in conjunction with CI, CC and MPPT methods, gives rise to matrix
elements over the two electron operators, which involve three and four electron integrals such
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as,

〈ψi(1)ψj(2)ψk(3)|r12
r13
|ψi(1)ψj(2)ψk(3)〉 (2.125)

〈ψi(1)ψj(2)ψk(3)|r12r23
r13

|ψi(1)ψj(2)ψk(3)〉 (2.126)

〈ψi(1)ψj(2)ψk(3)ψl(4)|r12r13
r23

|ψi(1)ψj(2)ψk(3)ψl(4)〉. (2.127)

The sheer numbers in the order of K6 and K8 of such three and four electron integrals in
the AO basis, make the R12 treatment very expensive. Introduced by Kutzelnigg et al. [54],
the ”resolution of the identity” (RI), or the equivalent density fitting (DF) techniques are key
to evaluate the latter integrals, which makes R12 applicable to larger systems. Using the RI,
four and three-electron integrals are approximated by products of two-electron integrals. In a
complete basis the identity can be expressed by

1 =
∞∑
p

|ψp〉〈ψp| =
∞∑
pqr

|ψpψqψr〉〈ψpψqψr|. (2.128)

Then, using the ”second” identity, a three electron integral of a product of inter-electronic
distances can be written as a product of two two electron integrals over two-electron operators,

〈ψi(1)ψj(2)ψk(3)|r121
1
r13
|ψi(1)ψj(2)ψk(3)〉 = (2.129)

∞∑
pqr

〈ψiψjψk|r12|ψpψqψr〉〈ψpψqψr|
1
r13
|ψiψjψk〉.

Each integral reduces to a two-electron integral, because the two-electron operator acts only
on the functions of two electrons, thus

〈ψiψjψk|
r12
r13
|ψiψjψk〉 =

∞∑
pqr

δkr〈ψiψj |r12|ψqψp〉
(
δqj〈ψqψr|

1
r13
|ψiψk〉

)
. (2.130)

Since the MOs are orthonormal, we can evaluate the δ-functions and find, that the sum runs
over p only,

〈ψiψjψk|
r12
r13
|ψiψjψk〉 =

∞∑
p

〈ψiψj |r12|ψqψp〉
(
〈ψqψr|

1
r13
|ψiψk〉

)
. (2.131)

While exact in a complete basis, in a finite basis the RI gives only an approximation of the
desired integral. This error can be controlled by the size of the RI basis. The RI and DF
schemes are general and can be applied also to approximate integrals that occur in standard
methods, thereby further decreasing the cost of HF, MPn and CCSD(T) methods. Very large
basis sets may be avoided using R12 methods, but still large auxiliary basis set are needed to
give accurate R12 results. [52]

Modern variants of R12 theory, are often termed F12 methods, for expample MP2-F12 and
CCSD-F12. The name emphasizes the use of a general explicit correlation factor F̂12. If F̂12 =
r12, the correlation factor is that of the original R12 method. In the implementations used in
this work an exponential correlation function F12(r12) = exp(−βr12) is employed instead. To
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increase the accuracy of the RI approximation with regular basis sets, complementary auxiliary
basis functions (CABS) are used. The CABS are linear combinations of functions of the AO
basis and of an additional auxiliary basis (ABS), which are orthogonalized upon the MOs. This
gives additional flexibility in the RI, without the need to employ large basis sets in the non
explicitly correlated terms or the initial HF calculation. Given the basis set incompleteness
error ∆Ecorr

BSIE for the correlation energy has been effectively reduced by the F12 treatment,
the major part of the basis set incompleteness error for the total electronic energy is then due
to the HF energy, which was evaluated in a smaller basis, i.e. without the CABS. The error
∆EHF

BSIE can be reduced without the need for an new HF calculation in a larger basis, by the
CABS singles correction. For this, the relaxation of the occupied MOs due to the presence of
the CABS is calculated using RSPT in terms of single excitations.

Lastly, we take a look at how explicitly correlated terms are included in the wave function
of the MP2-F12 and CCSD(T)-F12 methods [55, 56]. The MP2-F12 wave function is given by,

|MP2-F12〉 =
∑

i<j,a<b

tijab|ψ
ab
ij 〉︸ ︷︷ ︸

|MP2〉

+
∑

i<j,x<y

tijxy|ψ
xy
ij 〉, (2.132)

where the first sum runs over conventional doubly excited configurations and the second sum
runs over explicitly correlated doubly excited configurations. The latter terms are given by

|ψxyij 〉 = |ψabij 〉F
xy
αβ , (2.133)

with
Fxyαβ = 〈xy|F̂12Q̂12|αβ〉, (2.134)

where |ψabij 〉 is the full space of doubly exited configurations, F̂12 is the correlation factor and
Q̂12 is a projector that ensures strong orthogonality of the explicitly correlated functions to the
reference function. The CABS approximation enters the equations via the strong orthogonality
projector Q̂12. The CCSD-F12 ansatz includes the conventional single cluster operator and
singles amplitudes. The doubles cluster operator however, includes not only the usual dou-
ble excitations with corresponding amplitudes but also additional explicitly correlated double
excitations with amplitudes T ijαβ ,

T̂2 =
∑

i<j,a<b

T ijabτ̂
ab
ji +

∑
i<j,α<β

T ijαβ τ̂
αβ
ji . (2.135)

The explicitly correlated doubles amplitudes

T ijαβ = FxyαβT
ij
xy = 〈xy|F̂12Q̂12|αβ〉T ijxy, (2.136)

depend via Fxyαβ on F̂12 and on Q̂12.
In this work, we have used the local MP2-F12 [57] and local CCSD(T0)-F12 [58] methods

using the ansätze 3*A(LOC) and 3*A(LOC,FIX), see chapter 4. This means, that ansatz
3 is used for local, domain specific (’LOC’) projectors Q̂12, and explicitly correlated ampli-
tudes are completely specified by the cusp condition (’FIX’). Further, the ’diagonal’ ansatz
for the excited configurations is used and all matrix elements involving exchange operators are
neglected (A), which anyway are very small, due to the local basis. Last, the equations for
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the conventional and the explicitly correlated amplitudes are decoupled (*), this is known as
the extended Brillouin condition, thus they can be solved independently. This combination of
F12-RI approximations is well suited for calculations of weak intermolecular interactions using
local correlation methods, because it is free of geminal basis set superposition errors [59].

2.2.2.4 Local correlation methods

Inclusion of electron correlation in the description of the electronic energy, is a necessity for the
accurate description of molecular interactions, and for molecular properties in general. One
bottleneck of the canonical correlation methods like MP2 and CCSD(T) is their scaling be-
haviour with the system size. CCSD(T) and MP4 scale formally with K7, CCSD with K6, and
MP2 scales with K5, where K denotes the basis set size. This scaling limits the applicability
of these methods, in conjunction with the large basis sets needed for accurate results, to small
molecules. One approach to achieve lower order scaling variants of correlation methods is the
local correlation method by Pulay and Saebø [60, 61], which was further developed by Werner,
Hampel and Schütz [40]. The idea behind all local methods is to exploit the fact, that spa-
tially close electrons are stronger correlated than electrons that are far away from each other.
To achieve this, the correlation energy is evaluated in a basis of occupied localized molecular
orbitals (LMO) to which non-orthogonal virtual correlation subspaces, termed domains, are
generated from projected atomic orbitals (PAO). Compared to the canonical methods, where
MOs are delocalized over the whole system, LMO domains considerably reduce the size of
the virtual excitation space. Further, local methods allow to approximate or even neglect
correlation between electron pairs based on distance criteria.

Domain based local correlation treatments involve the following procedure. In the fist step,
m occupied local orbitals ψLMO

i are generated for a closed shell reference determinant |HF〉,

|ψLMO
i 〉 =

K∑
k=1

Rik|φk〉, (2.137)

where φk are atom centred basis functions and Rik are coefficients. Usually, the localization
method of Pipek and Mezey [62] is used. In the case of saturated molecules, as treated in this
work in chapter 4, the Foster-Boys localization method [63] gives similar LMOs and results in
an equivalent treatment. Next, a virtual space is constructed by projecting the atomic orbitals
onto the occupied local orbitals

|φ̃k〉 =
(

1−
m∑
i=1
|ψLMO
i 〉〈ψLMO

i |

)
|φk〉 =

K∑
ρ=1

R̃ρk|φρ〉. (2.138)

The PAOs φ̃k are by construction orthogonal to the occupied orbitals, but are non-orthogonal
amongst themselves.

In the third step, orbital domains are constructed by selecting a subset of PAOs for each
occupied LMO. The procedure to assign an orbital domain [i] to an LMO φLMO

i goes as follows.
For a given LMO φLMO

i , the atoms that dominate its charge density are found by ranking the
atoms according to their Mulliken charges up to a cut-off value of 1.8. No more atoms are
added to the list, if the Boughton and Pulay (BP) completeness criterion [64] is fulfilled. This
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check for completeness works in the following way. The functional

f(R′) = min
[∫ (

ψLMO
i − ψ

′

i

)2
dτ

]
, (2.139)

computes how well the approximate orbital

ψ
′

i =
∑
ρ∈[i]

|φρ〉R
′

ρi, (2.140)

built only from AOs at the atoms in orbital domain [i], can describe the original orbital ψLMO
i .

A typical BP threshold for completeness is f(R′) < 0.02. The value of the threshold depends
on the basis set. For example, using basis sets with more diffuse functions can make lower
thresholds (f(R′) < 0.01) necessary.

Once the domains are defined, excitations from the LMOs to the PAOs can be considered. For
local CCSD single and double excitations are needed. Singly excited local configurations Φµ̃ are
defined by the action of one spin-coupled excitation operator onto the reference determinant,

Φµ̃i = Êµ̃i|0〉. (2.141)

The excitation operators are defined as,

Êµ̃i = |φ̃αµ〉〈ψαi |+ |φ̃βµ〉〈ψ
β
i |. (2.142)

The usage of non-orthogonal PAOs lead to non-orthogonal configurations,

〈Φµ̃i |Φν̃j 〉 = 2δijS̃µν . (2.143)

All possible single excitations from a given LMO are collected in the function

Ψi =
∑
µ

t̃iµΦµ̃i , (2.144)

with amplitudes t̃iµ. Local double excitations are given by

Φµ̃ν̃ij = Êµ̃iÊν̃j |0〉. (2.145)

The double excitations are restricted to a joint virtual space [ij], thus double excitations from
ψLMO
i are possible into [i] and [j], which also holds for ψLMO

j . This joint virtual space [ij]
is called a pair domain. The pair functions that collect all pair excitations within one pair
domain are given by

Ψij =
∑
µ∈[ij]

∑
ν∈[ij]

T̃ ijµνΦµ̃ν̃ij (i ≥ j), (2.146)

where T̃ ijµν are the local CCSD amplitudes. Some functions within the pair domain [ij] might be
redundant and they or their contribution at some stage in the determination of the amplitudes
have to be discarded. [40]

The pair domain correlation energy εij decreases with 1
r6 , where r is the distance between

the charge centers of the LMOs ψLMO
i and ψLMO

j . This allows to define distance criteria for
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each pair domain, for which different levels of approximations are used to calculate the pair
correlation energy or even neglect pair correlation all together. The implementation of Werner
et al. [41] distinguishes up to five levels of approximations for pair correlation energies. Pairs
are classified as either strong, close, weak, distant or very distant. Strong pairs, are treated at
the full level of theory, say LCCSD, and LMP2 doubles amplitudes from close pairs are also
included in the CC equations of the strong pairs. Close pairs are treated at the LMP2 level of
theory and affect the strong pair amplitudes as described. Weak and distant pairs are treated
at the LMP2 level of theory. Distant pairs differ from weak pairs, in that two electron integrals
can be treated by multi-pole approximations. Last, very distant pairs are neglected. Either
distance criteria, rs, rc, rw, rd and rvd, or connectivity criteria, i.e. the number of bonds
between atoms of the two LMOs, are used to invoke the pair approximations.

The exponential ansatz for the LCCSD wave function is

|LCCSD〉 = exp (T̂loc)|HF〉, (2.147)

where the cluster operator T̂loc includes domain and pair domain restricted single and double
excitations, respectively. The cluster operator is given by

T̂loc =
∑
i

∑
µ∈[i]

t̃iµÊµ̃i + 1
2
∑
ij

∑
µ∈[ij]

∑
ν∈[ij]

T̃ ijµνÊµ̃iÊν̃j ; T̃ ijµν = T̃ jiνµ. (2.148)

The projected Schrödinger equations are

E = 〈HF|Ĥ|LCCSD〉, (2.149)

ṽiµ = 〈Φµ̃i |Ĥ − E|LCCSD〉 = 0, (2.150)

Ṽ ijµ = 〈Φ̃µ̃ν̃ij |Ĥ − E|LCCSD〉 = 0 (i ≥ j). (2.151)

These non-linear equations are solved iteratively for the amplitudes t̃iµ and T̃ ijµν . [40]
The perturbative treatment of local triples involves the following main approximations. Con-

nected triples excitations are restricted to triples domains [ijk], build by uniting three strong
pair domains [ij], [jk] and [ik]. The (T0) approximation further neglects certain couplings
between triples and is non iterative. It is used the as a first guess of full iterative schemes
(T), and recovers 97% of the full local triples energy [65, 66]. In this work, the local (T0)
approximation is used exclusively.

Local methods can be used with explicitly correlated terms as described in the section 2.2.2.3.
Other techniques to construct virtual excitation spaces for local correlation methods are the
pair natural orbital (PNO) method [67] and the orbital specific virtuals (OSV) [68]. In the
PNO method, a set of optimal virtual orbitals are found for each pair [ij], that describe the
pair correlation energy with the least number of orbitals. In other words, optimally compact
pair domains are found. This has the advantage, that potential energy surfaces have no discon-
tinuities due to inconsistent pair domains, and the number of orbitals within pair domains are
much lower compared to PAOs. However, one drawback is that the total number of distinct
virtual orbitals in systems with many pairs, is much larger. In the OSV approach, orbital spe-
cific virtuals are generated, that are optimal for pair correlation, and pair domains are formed
as the union of orbital spaces. OSV thereby can be seen as an intermediate between the PAO
and PNO methods. A big benefit of OSVs over PAOs is that only one parameter controls the
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accuracy of the local approximation, and that continuous potential energy surfaces are easier
to obtain. [69] For the calculation of the relative energy of alkanes and perfluoroalkylalkanes
hairpin conformers in chapter 4, we carefully applied PAO based local correlation methods.

2.2.2.5 Method of increments

In the method of increments (MoI), the correlation energy of a N electron system is system-
atically approximated by a number of correlation energy contributions obtained from smaller
sub-sets of electrons [44, 70–72]. Similar earlier approaches have been made by Faddeev for
scattering theory [73], Nesbet [74], who used Bethe-Goldstone equations of nth order and
Stollhoff and Fulde [42, 43] with their Local Ansatz.

For an MoI treatment, the molecular orbitals are first localized. Then, the resulting LMOs
are grouped together into bodies. Each body holds at minimum one LMO or a number of
spatially close LMOs. However, then the procedure is a general one. The correlation energy is
approximated by a MoI many body expansion,

Ecorr. =
∑
i

εi +
∑
i<j
i,j

∆εij +
∑
i<j<k
i,j,k

∆εijk + · · · , (2.152)

as the sum over unique one-body εi, two-body ∆εij , three-body ∆εijk and higher order in-
crements. The one-body increment εi represents the energy due to correlation of only the
electrons within the LMOs that make up the ith body. The two-body increment

∆εij = εij − (εi + εj) (2.153)

describes the part of the correlation energy εij of only the electrons in two bodies i and j,
which is not already described by εi and εj . The three-body increment ∆εijk accounts only for
pure three-body effects and is given by

∆εijk = εijk − (εi + εj + εk)− (∆εij + ∆εik + ∆εjk). (2.154)

Higher order increments are described accordingly. The correlation energies of individual bod-
ies, εi, εij , · · · can be calculated using the local correlation methods, for example LMP2 or
LCCSD, described in the previous subsection. After re-canonization of the LMOs within a
given body, also canonical correlation methods, (MP2, CCSD(T)) can be applied.

Because in extended systems the number of increments increases rapidly, truncation of the
expansion at some point becomes mandatory. The MoI expansion of the correlation energy
for saturated systems usually converges at the three-body level. Additionally distance criteria
may be used to discard bodies with local orbitals that are well separated. Developments of
the MoI go into the following directions. Application of the MoI for non-metallic solids and
molecular crystals has become feasible, by clever embedding schemes that mimic the crystal
environment around the small correlated clusters cut out from the crystal [45, 75, 76]. The
description of metals with the MoI still poses a challenge, because of the high degree of static
correlation present. To tackle this problem multi-reference incremental schemes are actively
developed. In multi-reference approaches, the bodies are augmented with localized virtual
orbitals, and subjected to an complete active space calculation to recover the static correlation
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energy [77, 78]. For molecules powerful automatic body generation and truncation schemes
have been developed, that result in a basically black box variant of the MoI [46]. In this work
the MoI was applied in conjunction with LMP2 and LCCSD(T0) for the determination of the
correlation energy of alkane chain molecules in chapter 4.

2.2.3 Density functional theory

Wave function based electronic structure methods employ exact Hamiltonians and invoke ap-
proximations in the description of the wave function. The wave function can be systematically
improved, in principle up to the known exact FCI form. The improvements come at ever in-
creasing costs, as with every correction additional complicated terms arise, as demonstrated in
the preceding sections on electron correlation methods. Hohenberg and Kohn [79] showed that
the exact ground-state electronic energy is a functional E[ρ] of the exact one electron density
ρ(r). Hence, the energy is directly connected to the density, which is a function of just three
coordinates. In density functional theory (DFT) approximations are made to the unknown
exact energy functional E[ρ], which is equivalent to saying that approximate Hamiltonians are
used. This is the inherent difference between DFT and wave function (WF) theory. The energy
functional,

E[ρ] = T [ρ] + Ene[ρ] + Eee[ρ], (2.155)

can be separated into functionals for the kinetic energy T [ρ], the electron-nuclei attraction
Ene[ρ] and the electron-electron repulsion Eee[ρ], as motivated by the form of the electronic
Hamilton operator. The only term in the equation above that’s known explicitly without
further assumptions is the electron-nuclei attraction

Ene[ρ] = −
∑
a

Zaρ(r)
|Ra − r| . (2.156)

The Eee[ρ] functional may be separated into a Coulomb J [ρ] and an exchange-correlation term
K[ρ]. The Coulomb term is also known as a functional of the density:

J [ρ] = 1
2

∫ ∫
ρ(r)ρ(r′)
|r− r′| drdr

′. (2.157)

The exact kinetic energy functional is known, if the density is expressed in terms of natural
orbitals ψNO

i and occupation numbers ni as

T [ρexact] =
∞∑
i=1

ni〈ψNO
i | −

1
2∇

2|ψNO
i 〉, (2.158)

where
ρexact =

∞∑
i=1

ni|ψNO
i |2. (2.159)

The natural orbitals are the eigenvectors of the exact density matrix. However, since the exact
density matrix is unknown, a simpler representation of the density in terms of a non-interacting
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system with orbitals ψi forming a Slater-determinant is given by

ρ =
N∑
i=1
|ψi|2. (2.160)

The kinetic energy functional for a density of a Slater-determinant is also known

TS [ρ] =
N∑
i=1
〈ψi| −

1
2∇

2|ψi〉. (2.161)

Hence, in Kohn-Sham (KS) theory [80] orbitals are introduced into DFT, in order to calculate
TS [ρ], which is assumed to cover a large part of the true kinetic energy. Then, the DFT energy
functional in the KS formulation is written as

EDFT[ρ] = TS [ρ] + Ene[ρ] + J [ρ] + Exc[ρ], (2.162)

where the first three terms are known exactly for non-interacting electrons. Thus, all ap-
proximations with the goal to describe the electron-electron interaction are collected in the
exchange-correlation functional Exc[ρ]. Although its name indicates otherwise, Exc[ρ] not only
describes exchange and correlation, but also the correlation correction ∆T to the kinetic en-
ergy. Analogous to HF theory, a set of orthogonal canonical Kohn-Sham orbitals that minimize
EDFT[ρ] are determined by a set of one-electron equations, called the Kohn-Sham equations,

ĥKSψi = εiψi, (2.163)

where Kohn-Sham operator
ĥKS = −1

2∇
2 + Veff (2.164)

is written in terms of a kinetic energy operator and an effective potential

Veff(r) = Vne(r) +
∫

ρ(r′)
|r− r′|dr

′ + Vxc(r). (2.165)

For molecular systems, the Kohn-Sham orbitals are expanded in a basis of AOs, which
coefficients are determined variationally by solving the resulting Kohn-Sham matrix equations
in a SCF procedure. The cost of KS-DFT calculations is at least similar and often lower
compared to that of a HF calculation. This depends on the complexity of the integrals over
the effective potential, and hence on the terms that enter the exchange correlation functional.

The explicit form of the exchange correlation functional determines the type of DFT method.
To describe the functional in terms of quantities familiar from wave function theory, it is
commonly separated into

Exc[ρ] = Ex[ρ] + Ec[ρ], (2.166)

a pure exchange part Ex[ρ] and a pure correlation part Ec[ρ]. Here, it is important to note,
that the exchange functional and the correlation functional do not represent exchange and
correlation energies as defined in wave function theory. Both functionals can be expressed in
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terms of energy densities εx and εc as

Ex[ρ] =
∫
ρ(r)εx[ρ(r)]dr, (2.167)

Ec[ρ] =
∫
ρ(r)εc[ρ(r)]dr, (2.168)

εxc = εx + εc. (2.169)

Energy densities are used in the definition of the exchange correlation potential as

Vxc = ∂Exc
∂ρ(r) = εxc[ρ(r)] + ρ(r) ∂εxc

∂ρ(r) . (2.170)

The exchange and correlation between electrons of different spin is handled by the dependence
of Exc on spin-densities ρα and ρβ or alternatively on the spin-polarization ζ given by

ζ = ρα − ρβ

ρα + ρβ
(2.171)

and the radius of the effective volume containing one electron

rS = 3

√
3

4πρ. (2.172)

The different approximations to Exc[ρ] fall into the following groups, local density approx-
imations (LDA), generalized gradient approximation (GGA), meta-GGA, hybrid functionals
and double hybrid functionals. [52]

2.2.3.1 LDA functionals

The LDA builds on the description of the density as a uniform electron gas. The exchange
energy of a uniform electron gas is given by the Dirac formula in terms of local spin densities
as

εLSDA
x [ρ] = − 3√2Cx[ 3

√
ρα + 3

√
ρα] = −1

2Cx 3
√
ρ[(1 + ζ)4/3 + (1− ζ)4/3]. (2.173)

The functional for the correlation energy density of a uniform electron gas is given by the
analytical formula found by Vosko, Wilk and Nusair (VWN) [81] as

εVWN
c (rS, ζ) = εc(rS, 0) + εa(rS)

[
f(ζ)
f ′′(0)

]
[1− ζ4] + [εc(rS, 1)− εc(rS, 0)]f(ζ)ζ4, (2.174)

with
f(ζ) = (1− ζ)4/3 + (1− ζ)4/3 − 2

2(21/3 − 1) (2.175)

and

εc/a(x) = A

 ln
(

x2

X(x)

)
+ 2b

Q tan−1
(

Q
2x+b

)
− bx0
X(x0)

[
ln
(

(x−x0)2

X(x)

)
+ 2(b+2x0)

Q tan−1
(

Q
2x+b

)]
 (2.176)
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x = √rS (2.177)

X(x) = x2 + bx+ c (2.178)

Q =
√

4c− b2. (2.179)

The unpolarized εc(rS, 0) and the polarized εc(rS, 1) correlation energy densities and εa(rS)
differ in the fitting parameters A, x0, b and c.

LDA underestimates the exchange energy and overestimates the correlation energy, which
leads to a general overestimation of bond strengths. [52]

2.2.3.2 GGA functionals

The LDA functionals depend only on the local density, one way to improve on this, is to
also take into account local gradients of the density ∇ρ, which is known as the generalized
gradient approximation (GGA) [52]. Several gradient corrected exchange functionals have
been proposed. The exchange functional PW86 introduced by Perdew and Wang [82] is given
by,

εPW86
x = εLDA

x (1 + ax2 + bx4 + cx6)1/15, (2.180)

where x depends on the gradient,
x = |∇ρ|

ρ4/3 , (2.181)

and a, b and c are constants. Beckes functional B88 is a correction to the LDA exchange,

εB88
x = εLDA

x + δεB88
x (2.182)

δεB88
x = −βρ1/3 x2

1 + 6βx sinh−1(x)
, (2.183)

where β is a constant and x is the same gradient variable as in PW86. Another GGA exchange
functional is PW91 by Perdew and Wang [83] given by,

εPW91
x = εLDA

x

(
1 + xa1 sinh−1(xa2) + (a3 + a4e

−bx2)x2

1 + xa1 sinh−1(xa2) + a5x2

)
, (2.184)

where ai and b are constants, and x is defined as in PW86. Together with this exchange
functional, the Perdew and Wang PW91 correlation functional is used.

Lee, Yang and Paar proposed the GGA correlation functional LYP [84] as,

εLYP
c = −a γ

(1 + dρ−1/3) − ab
γe−cρ

−1/3

9
(
1 + dρ−1/3ρ8/3

) (2.185)

×

 18(22/3)CF (ρ8/3
α + ρ

8/3
β )− 18ρtW

+ρα
(
2tαW +∇2ρα

)
+ ρβ

(
2tβW +∇2ρβ

)
 ,

γ = 2
[

1−
ρ2
α + ρ2

β

ρ2

]
, (2.186)
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tσW = 1
8

(
|∇ρσ|2

ρσ
−∇2ρσ

)
. (2.187)

The parameters a, b, c and d are fitted to exact data from the helium atom and tσW denotes
the local Weizäcker kinetic energy density. [52]

The functional by Perdew, Burke and Enzerhof (PBE) is a correction to LSDA, in which all
parameters are fundamental constants [85]. PBE is designed as a simplification of the PW91
functional. Both are analytical functions that describe the numerical GGA for the exchange
correlation hole around an electron in an uniform electron gas. Both functionals essentially
give the same results. The PBE correlation functional has the following form,

εPBE
c = εLSDA

c (rS, ζ) +H(rS, ζ, x) (2.188)

where the dimensionless density gradient x is given by,

x = |∇ρ|
2φζksρ

, (2.189)

φζ(ζ) = (1 + ζ)2/3 + (1− ζ)2/3

2 , (2.190)

ks =
√

4kF /π, (2.191)

which depends on a spin-scaling factor φζ and the Thomas-Fermi screening wave number ks,
with the Fermi wave number given by ρ = k3

F /3π2. The form of the gradient correction H is,

H = γφ3
ζ × ln

(
1 + β

γ
x2
[

1 +Ax2

1 +Ax2 +A2x4

])
, (2.192)

A = β

γ

[
exp

(
−ε

LSDA
c

(γφ3
ζ)

)
− 1
]−1

. (2.193)

The correlation functional and the parameters β and γ are determined from the behaviour of
the numerical GGA in certain limits. The PBE exchange functional is given by,

εPBE
x = εLSDA

x Fx(s), (2.194)

Fx(s) = 1 + κ− κ

1 + µs2/κ
, (2.195)

s = |∇ρ|
2kF ρ

, (2.196)

µ = β(π2/3), (2.197)

κ = 0.804. (2.198)

GGA approaches are considered as the second rung of the ”Jacobs ladder” of DFT, while LDA
constitutes the first rung. The third rung are the so called meta-GGA functionals, which are
described in the next part.
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2.2.3.3 Meta-GGA functionals

The family of meta-GGA functionals depend like GGAs on the density ρ, the local gradient
of the density ∇ρ, and additionally on the kinetic energy density τ [86]. The kinetic energy
density is given by,

τσ(r) =
occ∑
i

1
2 |∇ψiσ(r)|2, (2.199)

and depends on the occupied Kohn-Sham orbitals ψiσ. The meta-GGA functional by Tao,
Perdew, Saroverov and Scuseria (TPSS) contains no empirical parameters and is an improve-
ment upon the Perdew-Kurth-Zupan-Blaha (PKZB) meta-GGA functional [86]. TPSS im-
proves upon the PBE functional, by additionally considering the kinetic energy density. The
TPSS exchange scaling Fx(p, z) is given by,

εTPSS
x = εLSDA

x · Fx(p, z), (2.200)

Fx(p, z) = 1 + κ− κ

1 + x(p, z)/κ, (2.201)

p = s2 = |∇ρ|2

4(2π2)2/3ρ8/3 , (2.202)

z = τW

τ
, (2.203)

τW =
∑
σ

τσ, (2.204)

x(p, z) =
{[

10
81 + c

z2

(1 + z2)2

]
p+ 146

2025 q̃
2
b (2.205)

− 73
405 q̃b

√
1
2

(
3
5z
)2

+ 1
2p

2 + 1
κ

(
10
81

)2
p2 (2.206)

+2
√
e

10
81

(
3
5z
)2

+ eµp3

}
/(1 +

√
dp)2,

q̃b = (9/20)(α− 1)/[1 + bα(α− 1)]1/2 + 2p/3, (2.207)

α = τ − τW

τunif = (5p/3)(z−1 − 1), (2.208)

τunif = 3
10(2π2)2/3ρ5/3. (2.209)

The functional form of Fx(p, z) ensures, that the exchange potential has finite values at the
nuclei, for ground-state one and two-electron densities. The constants c and e are thus chosen
such, that for the exact value of s for an exponential two-electron density (z = 1, α = 0) at a
nucleus dFx(s2, 1)/ds|s=0.376 = 0 holds. The TPSS correlation functional is very similar to the
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respective PKZB functional,

εTPSS
c = εrevPKZB

c
[
1 + dεrevPKZB

c (τW /τ)3] , (2.210)

εrevPKZB
c = εPBE

c
[
1 + C(ζ, ξ)(τW /τ)2] (2.211)

− [1 + C(ζ, ξ)]
∑
σ

ρσ
ρ
ε̃c. (2.212)

The term ε̃c is given by ε̃c = max
[
εPBE
c (ρσ, 0,∇ρσ, 0), εPBE

c (ρα, ρβ ,∇ρα,∇ρβ)
]

to ensure Ec ≤
0 for any ρ. The function C has the form,

C(ζ, ξ) = C(ζ, 0)(
1 + ξ2

[
(1 + ζ)−4/3 + (1− ζ)−4/3

]
/2
)4 , (2.213)

C(ζ, 0) = 0.53 + 0.87ζ2 + 0.50ζ4 + 2.26ζ6, (2.214)

ξ = |∇ζ|
2(3π2ρ)1/3 . (2.215)

The TPSS correlation functional eliminates a self-correlation error for spin-unpolarized densi-
ties, which is present in LSDA and GGA. Thereby, correlation energies for respective atomic
densities are improved considerably over the LDA, and GGA methods. By construction all
correct features of LSDA and PBE GGA are retained in TPSS. Thus, the functionals, PBE and
TPSS can be seen as systematic non-empirical improvements over the LSDA description [86].

2.2.3.4 Hybrid functionals

Hybrid functionals include the exact exchange of a Slater-determinant formed by Kohn-Sham
orbitals. This approach is justified by the Adiabatic Connection Formula (ACF), which couples
the exchange correlation energy of the non-interacting reference system to the interacting many
electron system [52]. The electron-electron interaction is scaled by the parameter λ and the
exchange correlation energy can be expressed by an integral over λ,

Exc =
∫ 1

0
〈Ψλ|Vxc(λ)|Ψλ〉dλ, (2.216)

that connects the limits of non-interacting (λ = 0) and fully interacting (λ = 1) electrons. A
simple approximation to this integral is a linear interpolation between the two limits,

Exc ≈
1
2 〈Ψ0|Vxc(0)|Ψ0〉+ 1

2 〈Ψ1|Vxc(λ)|Ψ1〉. (2.217)

The first term for non-interacting electrons is correctly described by the exchange energy of a
Slater-determinant with KS orbitals, which is the exact wave function for λ = 0. The second
term, for fully interacting electrons, is unknown and has to be approximated, for example by
LSDA. Which gives the half-and-half (H+H) method [87],

EH+H
xc = 1

2E
exact
x + 1

2E
LSDA
x + ELSDA

c . (2.218)

35



2 Theory

This method can of course be extended, by the introduction of GGA correction terms as in
Beckes three parameter functional (B3) [88],

EB3
xc = (1− a)ELSDA

x + aEexact
x + b∆EB88

x + ELSDA
c + c∆EGGA

c (2.219)

where the parameters a = 0.2, b = 0.72 and c = 0.81 are determined by fitting to empirical
(experimental) and ab inito data, and can vary depending on the actual GGA correlation
correction. The GGA correlation correction is given in the name of the B3 methods, prominent
examples are B3LYP and B3PW91 [88]. The formula for the meta-GGA hybrid functional
TPSSh [89] is straightforward,

ETPSSh
xc = (1− a)ETPSS

x + aEexact
x + ETPSS

c , (2.220)

where the empirical parameter a = 0.10 is determined by minimizing the mean absolute devi-
ations of enthalpies of formations of a test set of molecules.

In double hybrid functionals [90, 91], in addition to the hybrid description of Ex by the exact
exchange, a correlation energy EPT2

c obtained from second order perturbation theory is mixed
to the GGA correlation energy,

EDH
xc = (1− ax)EGGA

x + axE
exact
x + (1− ac)EGGA

c + acE
PT2
x . (2.221)

EPT2
c is calculated using the formula for MP2 with KS orbitals.

2.2.3.5 Dispersion correction methods

Standard DFT methods like LDA, GGA, meta-GGA and hybrids, as well as the HF WF
method, fail to describe London dispersion interactions. The reason for this is, that dispersion
is a non-local dynamic correlation effect, which is impossible to describe in form of a local
correlation functional, or with an uncorrelated wave function (HF). Dispersion is accounted for
in MP2 and CC theory. Hence, double hybrids underestimate dispersion interactions, which
are mixed in only by the fraction of EPT2

c present in the correlation functional. To extend
the application of DFT methods and increase their accuracy, dispersion corrections are added
to standard DFT results. In the following, three distinct schemes for dispersion corrections
are introduced. All three schemes follow different approaches. The D3 method [9] is based
on pre-calculated reference dispersion coefficients and uses only the nuclear geometry of the
systems as input. The vdW-QHO-WF method [92] on the other hand, describes the dispersion
interactions of localized KS orbitals using a coupled system of quantum harmonic oscillators.
At last VV10 [38] is a non-local functional of the density, that is able to describe dispersion
interactions.

DFT-D3

One of the most widely used dispersion corrections is the DFT-D3 method by Grimme [9]. D3
is an ”on top” dispersion correction Edisp, that is subtracted from the uncorrected KS-DFT
energy EKS-DFT to yield the total DFT-D3 energy

EDFT-D3 = EKS-DFT − Edisp. (2.222)
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2.2 The electronic problem

The dispersion energy is given by the sum of two and three body terms,

Edisp = E(2) + E(3), (2.223)

where the two body dispersion, between pairs of atoms, typically accounts for at least 90% of
the total dispersion energy. This term is given by the following sum over all atom pairs AB by,

E(2) =
∑
AB

∑
n=6,8,10,···

sn
CAB
n

rnAB
fd,n(rAB), (2.224)

where the second sum runs over even orders of n, beginning with n = 6, the isotropic nth-order
dispersion coefficient, specific for the atomic pair AB, is denoted CAB

n , the internuclear distance
is given by rAB. The global scaling factors sn for n > 6 adjust the dispersion correction to
a given DFT functional. The range of the dispersion correction is controlled by a damping
function fd,n(rAB). [9]

The 6th-order dispersion coefficients are given by the Casimir-Polder formula,

CAB
6 = 3

π

∫ ∞
0

αA(iω)αB(iω)dω (2.225)

where αA(iω) is the averaged dipole polarizability of atom A at imaginary frequency iω. The
polarizabilities are calculated from ab initio using time dependent DFT (TD-DFT). Atoms in
molecules have lower polarizabilities due to bond formation, when compared to free atoms.
Therefore, polarizabilities are calculated for hydride reference molecules AmHn and BkHl. The
polarizability for A bound in the hydride is then calculated by subtraction of half the polariz-
ability for H2 per hydrogen in the hydride and division by m. The formula for the dispersion
coefficients then becomes,

CAB
6 = 3

π

∫ ∞
0

1
m

[
αAmHn(iω)− n

2α
H2(iω)

]
× 1

k

[
αBkHl(iω)− l

2α
H2(iω)

]
dω. (2.226)

This approach yields dispersion coefficients that depend on the coordination number CN.
Hence, a to each atom in the actual structure a coordination number CNA has to be assigned.
In D3, this is accomplished by computing a fractional coordination number for each atom,
based on the sum of tabulated covalent radii and the internuclear distance via the ”counting”
function

CNA =
Nat∑

B6=A

1
1 + e−k1(k2(RA,cov+RB,cov)/rAB−1) . (2.227)

The covalent radii RA,cov are scaled by the factor k2 = 4/3. The parameter k1 = 16 ensures
that distant atoms do not artificially increase the CN in large molecules and that coordination
number contributions for stretched C-C single bonds approach 0 within the bond breaking
range of 1.5-3 Å. For organic molecules the fractional coordination numbers are close to the
expected values. For metallic systems the CN are too high, to balance this the radii of metal
atoms are decreased by 10%. [9]

For each element polarizabilities are calculated, for the bare atom and reference hydride sys-
tems with different CN. Then a data base of reference dispersion coefficients CAB

6,ref(CNA,CNB)
for the atom pairs in a given coordination is created using eq. 2.226. The actual dispersion
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coefficient is determined by interpolating between reference coefficients using the following
formula,

CAB
6 (CNA,CNB) = Z

W
, (2.228)

Z =
NA∑
i

NB∑
j

CAB
6,ref(CNA,CNB)Lij , (2.229)

W =
NA∑
i

NB∑
j

Lij , (2.230)

Lij = e−k3[(CNA−CNA
i )2+(CNB−CNB

j )2], (2.231)

where the number of reference coordinations per atom is given by NA and NB. The reference
C6 are weighted by the Gaussian distance L between actual and reference CNs. L is dependent
on parameter k3 = 4. The value for k3 was chosen such, that the interpolation is smooth. [9]

Higher order dispersion coefficients than C6 are calculated recursively. In practice only C8

is included,

CAB
8 = 3CAB

6
√
QAQB , (2.232)

QA = s42
√
ZA 〈r

4〉A

〈r2〉A
, (2.233)

where 〈r2〉 and 〈r4〉 are derived from averaged atomic densities. [9]

The three-body term takes into account the Axilrod-Teller-Muto dispersion,

EABC = CABC
9 3 cos θa cos θb cos θc

(rABrBCrCA)3 , (2.234)

where θa, θb, θc and rAB, rBC, rCA define the triangle of three atoms A, B, C, with triple-dipole
constant CABC

9 . The triple-dipole constant is approximated by,

CABC
9 ≈ −

√
CAB

6 CAC
6 CBC

6 . (2.235)

The total three body contribution is given by a sum over all EABC, where each is damped by
the function fd,(3) [9],

E(3) =
∑
ABC

fd,(3)(r̄ABC)EABC. (2.236)

Gimme et al. investigated the effect of the damping function and compared the effect of
different damping schemes [36]. Damping of the dispersion correction at rAB = 0 to zero, so
called zero damping is achieved by the following damping function,

fdamp(rAB) = 1
1 + 6(rAB/(sr,nrAB

0 ))−γ
, (2.237)

where rAB
0 is a cut-off radius, determined from averaged vdW-radii, and sr,n is a scaling factor.

A complementary damping scheme, where the dispersion correction at rAB = 0 is damped up
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to a constant value is the Becke-Johnson (BJ) damping given by,

E
D3(BJ)
disp = −1

2
∑
A6=B

s6
CAB

6
R6

AB + [f(R0
AB)]6 + s8

CAB
8

R8
AB + [f(R0

AB)]8 , (2.238)

with
f(R0

AB) = a1R
0
AB + a2. (2.239)

BJ-damping introduces the fit parameters a1 and a2, where R0
AB is different from the cut-off

radius used in zero damping,

R
0,(BJ)
AB =

√
CAB

8
CAB

6
. (2.240)

The comparison between zero and BJ damping showed, that the overall effect of the damping
scheme is small, but that BJ damping improves on non-covalent equilibrium distances. It is
recommended to use the BJ damping scheme as the default in DFT-D3. [36]

The advantages of the DFT-D3 method are low empiricism, as most parameters are cal-
culated from first principles, it has the correct asymptotic r−6 behaviour for molecules, it
describes many relevant elements of the periodic table (Z = 1 − 94), CN dependent disper-
sion coefficients are determined from the nuclear structure of the molecules, it provides good
accuracy, it is very fast and can be used with many standard density functional methods. [9]

Quantum harmonic oscillator with maximally localized Wannier functions method

In the Quantum Harmonic Oscillator (QHO) model, dispersion is described by a coupled system
of QHOs [39, 92, 93]. The Hamiltonian of N isotropic coupled 3-dimensional QHOs is given
by,

Ĥ = −1
2

N∑
i=1
∇2
χi + 1

2

N∑
i=1

ω2
i χ

2
i +

N∑
i>j=1

ωiωj
√
αiαjχiTijχj , (2.241)

where χi = √miζi denote mass weighted displacement coordinates, for mass mi and displace-
ment from equilibrium ζi. The characteristic frequency of the QHO i is given by ωi, the
polarizability is denoted αi and the dipole-dipole interaction tensor is given by Tij . The sums
in the QHO Hamiltonian describe, from the left to the right, the kinetic energy, the potential
energy and the interaction energy between the QHOs. The interaction tensor is given by,

T abij = −
3raijrbij − r2

ijδab

r5
ij

erf
(
rij
σij

)
− 2√

π

rij
σij

e
−
(
rij
σij

)2+ 4√
π

1
σ3
ij

raijr
b
ij

r2
ij

e
−
(
rij
σij

)2

, (2.242)

where the distance between two QHOs i and j is denoted rij , and their effective width is given
by σij . The Gauß-error function is part of a damping function Vij = erf

(
rij
σij

)
/rij . The energy

of the interacting QHOs is obtained by diagonalization of the 3N × 3N matrix CQHO, with
N2 3× 3 blocks CQHO

ij for each QHO pair,

CQHO
ij = ω2

i 1 (2.243)

CQHO
i6=j = ωiωj

√
αiαjTij . (2.244)

(2.245)
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Silvestrelli proposed to parametrize the QHO model dependent on the localized orbitals of
a molecule, i.e. localized Wannier functions in periodic systems [92]. This model is termed
DFT/vdW-QHO-WF. Maximally localized Wannier functions are obtained by unitary trans-
formation of the KS orbitals under the constraint to minimize the spread Si. To each local
orbital center one QHO is assigned, which properties are derived from the spread of the local
orbital. The effective width is then derived from the spreads,

σij = β
√
S2
i + S2

j , (2.246)

as is the polarizability
αi = γS3

i , (2.247)

and the characteristic frequency
ωi =

√
ζni/αi. (2.248)

Beside the spread also the number of electrons in the LMO ni = 2 and global parameters β, γ
and ζ are considered. The global parameters are determined by minimizing the mean absolute
relative error of PBE/vdW-QHO-WF with respect to the CCSD(T) reference data of the S22
test set. The dispersion correction is given by the correlation energy of the QHO system,

Ec,QHO = 1
2

3N∑
p=1

√
λp −

3
2

N∑
i=1

ωi, (2.249)

where the first sum goes over the eigenvalues of the coupled QHO system and the second
sum over the uncoupled, i.e. uncorrelated, eigenvalues of the QHOs. In the most recent
parametrization the following parameters have been obtained: β = 1.65, γ = 0.88 and ζ =
1.30 [39].

The advantage of the vdW-QHO-WF method is that the dispersion model is obtained directly
from the electronic structure, i.e. the spreads of the Wannier functions. Thus, no atom specific
reference calculations have to be performed. It was noticed, that the spread functional can be
very sensitive to simulation box sizes. In periodic calculations one should therefore converge
the dispersion correction with respect to the box sizes [39].

The nonlocal VV10 density functional method

Vydrov and Van Voorhis developed a nonlocal correlation functional (VV10) that is able to
describe dispersion interactions using only the electronic density as an input [38]. The nonlocal
VV10 functional is used in combination with standard semi-local exchange and correlation
functionals. The nonlocal part of the correlation energy is given by,

Enl
c = ~

2

∫ ∫
drdr′ρ(r)ε(r, r′)ρ(r′) (2.250)

where the kernel is,

ε(r, r′) = − 3e4

2m2gg′(g + g′) , (2.251)
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with

g = ω0(r)R2 + κ(r) (2.252)

g′ = ω0(r′)R2 + κ(r′) (2.253)

R = |r− r′| (2.254)

ω0 =
√
ω2
g +

ω2
p

3 , (2.255)

where the quantity ωp is called the local plasma frequency which depends on the density, ωg
denotes the local band gap, which depends also on the gradient of the density, the equations
for both are,

ω2
p = 4πρe2/m, (2.256)

ω2
g = C

~2

m2

∣∣∣∣∇ρρ
∣∣∣∣4 . (2.257)

The term κ is given by,

κ = b
ν2

F
ωp

(2.258)

where νF = (2πρ)1/3~/m is the local Fermi velocity, and b is a damping parameter. The VV10
functional is defined as

EVV10
c = Enl

c + βN, (2.259)

where β is the constant absolute value of the nonlocal correlation energy density of the uniform
electron gas and N is the number of electrons. It can be shown, that β depends only on
fundamental constants and on b. Thus only two adjustable parameters C and b have to be
determined. C was optimized to reduce the average error of C6 coefficients and the damping
parameter b was fitted using the S22 set of binding energies. The final complete exchange
correlation functional is given by,

EDFT-VV10
xc = EDFT

xc + EVV10
c , (2.260)

where EDFT
xc is a semi-local DFT functional, for example TPSS. For each functional the damping

parameter b has to be adjusted individually. The advantage of VV10 is, that no atoms have
to be identified, as in D3, nor local orbitals have to be constructed, as in the vDW-QHO-WF.
Comparisons between D3 and VV10 show, that both methods are similar in accuracy in terms
of interaction energies and bond lenghts [94, 95].

41



2 Theory

Re

R

0

−ǫ

U

Re

F

Figure 2.1: Potential (black) and the resulting force (green) between two molecules.

2.3 Intermolecular interactions

The different phases of matter, i.e. the solid, liquid and gas phase, and the transitions between
them can be described on the basis of the forces acting between the molecules. Attractive forces
between molecules describe the transition from the gas to the condensed phases, i.e. liquid or
solid. This force has to cease for molecules that are distant from each other, in order to explain
the occurrence of the gas phase, where the molecules move freely. The low compressibility of
condensed phases, is evidence for a strongly repulsive force acting between molecules at short
ranges. For a pair of molecules A and B with intermolecular distance R, the force F at any
distance is given by

F = − ∂

∂R
U, (2.261)

where U denotes the interaction energy. A typical potential and the resulting force for the
interaction of two molecules or atoms, that has the described properties is shown in figure 2.1.
For small values of R, the forces are strongly repulsive. At Re at the potential has a minimum,
which is called the well depth ε, where the intermolecular force is zero. In direction of larger
distances the potential approaches zero, which results in decreasing attractive forces. To sep-
arate the two molecules, which are in equilibrium at Re, classically an energy corresponding
to ε will be necessary. The interactions of many molecules, can be expressed in a many body
expansion,

U =
∑
i>j

Uij +
∑
i>j>k

∆Uijk +
∑

i>j>k>l

∆Uijkl + · · · , (2.262)

where Uij denote pair interactions, ∆Uijk are three-body corrections to the pair interactions
and ∆Uijkl are four-body corrections to three-body interactions. In general, pair interactions
are assumed to be the most important and that successive higher many body corrections
are of decreasing importance. Van der Waals developed a law for real gases on the basis of
intermolecular interactions. Due to the repulsive part of U , a real gas occupies a volume b,
which reduces the volume available for free movement. The attractive potential well exerts
attractive forces between the molecules in the gas, which reduces the pressure on the container
walls by a/V 2, in comparison to the pressure of an ideal gas. The Van der Waals real gas law
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Figure 2.2: Magnitude of van der Waals interactions of small molecules. Well depths ε of pair potentials,

denoted by lines, are estimated from boiling points Tb and the number of neighbouring

molecules n using equation 2.265. Experimental results for small molecules are denoted by

coloured circles. The CF4 dimer well depth from ab inito CCSD(T) calculation. Data for

He, Xe, CH4 and H2O taken from reference [3]. Spectroscopic well depths for HCl and HF

dimers taken from [96], and [97] respectively.

is given by,

(P + a/V 2)(V − b) = RT, (2.263)

P = RT
V − b

− a

V 2 , (2.264)

where P and V are the measured pressure and volume andR is the universal gas constant. This
modification of the ideal gas law was very successful, and established the term ’van der Waals’
forces as a synonym for general intermolecular forces and interactions. The order of magnitude
of intermolecular interactions, i.e. the well depths ε of pair potentials, can be estimated form
the enthalpy of vaporization at ambient pressure, which is related the boiling point Tb, by
∆Hvap ≈ 10RTb. The total energy of NA molecules in the liquid phase is 1/2NAnε, where
only pair interactions between the n nearest neighbours of each molecule are considered. This
results in the following approximative relation

1/2NAnε ≈ 10RT. (2.265)

Using this relation, we find that the van der Waals interactions of small molecules, in terms
of well depths of pair potentials, are in the range of 1-25 kJ/mol. Figure 2.2 shows that this
approximation works surprisingly well, and that measured well depths fall into this range. Rare
gas atoms and molecules like CH4, CF4 show very weak interactions below 5 kJ/mol. Stronger
interactions, > 10 kJ/mol, are found for molecules with permanent dipole moments like HCl,
HF and H2O. However, the van der Waals interactions are weak in comparison with chemical
bonds, which are typically > 200 kJ/mol.[3]
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2.3.1 Perturbation theory for intermolecular interactions

The main physics behind intermolecular interactions can be described using perturbation the-
ory [3]. In a first approximation one considers only the interactions at long range, that can
be obtained by neglecting the correct antisymmetry of the total wavefunction of the pair of
molecules due to electron exchange. The zero-order Hamiltonian is that for a pair of non-
interacting molecules A and B. It is given by

Ĥ0 = ĤA + ĤB , (2.266)

where ĤA is the Hamiltonian of A, where only its electrons and nuclei interact, and likewise
ĤB for B. The unperturbed wave functions for A and B are ΨA

m and ΨB
n , with energies EAm

and EBn , respectively. For the total system, the unperturbed solutions are given by,

ΨA
mΨB

n = |mn〉 (2.267)

Ĥ0〈mn| = (ĤA + ĤB)|mn〉 (2.268)

= (EAm + EBn )|mn〉 (2.269)

= E(0)
mn|mn〉. (2.270)

The perturbation is given by the Coulomb interactions between the electrons and nuclei, of A
with those of B,

Ĥ ′ =
∑
a∈A

∑
b∈A

zazb
rab

, (2.271)

where each sums runs over all particles with charges zi, i.e electrons and nuclei, of one molecule.
Up to second order the energy in non-degenerate RSPT of the electronic ground state of a closed
shell system, where m = n = 0 is given by,

E00 = E
(0)
00 + E

(1)
00 + E

(2)
00 , (2.272)

where

E
(0)
00 = EA0 + EB0 , (2.273)

E
(1)
00 = 〈00|Ĥ ′|00〉, (2.274)

E
(2)
00 = −

∑
mn

′ 〈00|Ĥ ′|mn〉〈mn|Ĥ ′|00〉
E

(0)
mn − E(0)

00
. (2.275)

The term where both molecules are simultaneously in their ground states, i.e. n = 0 and
m = 0, is excluded from the double sum in the expression for the second-order energy. The
first-order energy is the electrostatic interaction energy,

E
(1)
00 = Ues =

∫
ρA(r)ρB(r′)
|r− r′| d3rd3r′, (2.276)

of the individual charge densities ρA and ρB . The second-order energy can be separated in
parts, where the sum runs over excited electronic states of only one molecule, say A, while B
is in the ground state, and vice versa for B and parts where both molecules are excited. The
first type is the induction interaction and the second type is the dispersion interaction. The
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second order energy is then,

E
(2)
00 = UAind + UBind + Udisp (2.277)

UAind = −
∑
m 6=0

〈00|Ĥ ′|m0〉〈m0|Ĥ ′|00〉
EAm − EA0

, (2.278)

UBind = −
∑
n 6=0

〈00|Ĥ ′|0n〉〈0n|Ĥ ′|00〉
EBn − EB0

, (2.279)

Udisp = −
∑
m 6=0

∑
n 6=0

〈00|Ĥ ′|mn〉〈mn|Ĥ ′|00〉
E

(0)
mn − E(0)

00
. (2.280)

In total, the result from the perturbation theory is, that the van der Waals interaction in the
long range limit is given by

U = Ues + UAind + UBind + Udisp, (2.281)

an electrostatic interaction between the unperturbed charge densities of A and B, the induction
energy of A, the induction energy of B and the dispersion energy. The second order terms,
induction and dispersion, depend on the excited electronic states of A and B. Here, we have
for simplicity assumed a separation of the electronic and nuclear states, and only performed
the RSPT for the electronic states, and assumed static nuclei. In principle, the molecular
Hamiltonians have to be used, which then involves averaging of the electronic interactions
over the nuclear distributions of the present vibrational and rotational states of A and B.
Further, the summations for the second order energies then involve molecular states, i.e. for
example contributions from excited rotational states. The application of RSPT to the problem
of intermolecular interaction was pioneered by Fritz London [1].1 He showed, that besides
the electrostatic and induction interactions, which were already known from classical theory,
a third type of interaction exists, namely the dispersion interaction, which can be described
only by quantum mechanics [1]. Hence, the dispersion forces are also called London forces.

2.3.1.1 Electrostatic interactions

From equation 2.276 we know that the electrostatic interaction energy between two molecules,
is exactly defined by the individual charge distributions. The electrostatic interaction can be
further analysed, if the charge distributions are described in terms of multipole moments. For
two neutral molecules one can show [3] that this leads to the following expression,

Ues = −TαβµAαµBβ −
1
3Tαβγ

(
µAαΘB

βγ −ΘA
βγµ

B
γ

)
(2.282)

−Tαβγδ
(

1
15µ

A
αΩBβγδ −

1
9ΘA

αβΘB
γδ + 1

15ΩAαβγµBδ
)

+ · · · ,

1London was Privatdozent at the University of Berlin when he (together with Eisenschitz) published work on
the quantum mechanical description of intermolecular forces in 1930. Prior to that he worked with Heitler
on the theory of the chemical bond and on chemical reactions. Being of Jewish origin, he lost his position
in 1933 due to the racial laws implemented by the Nazis. He was able to leave Germany and to work (with
Heinz London) on superconductivity and superfluidity as macroscopic quantum phenomena in England,
France and in the USA.[98–100]
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where summations are implied over repeated indices. Here, µAα are the components α = {x, y, z}
of the Cartesian dipole moment tensor of molecule A, likewise ΘA

αβ denote the components of
its quadrupole moment tensor and ΩAαβγ those of the octopole moment tensor. The tensors
T give the orientation and distance dependence of the products of multipole moment tensor
elements. In general,

Tαβ···ν = ∇α∇β · · · ∇ν
1
R
. (2.283)

Thus, the electrostatic interaction can be described in terms of dipole-dipole, dipole-quadrupole,
quadrupole-quadrupole, and interactions involving higher multipole moments. The explicit
form for the dipole-dipole interaction can be written in a convenient form, by setting the origin
at the center of molecule A at A and R = B−A along the z axis. The direction of the dipole
moments µA and µB are defined by the polar angels θA, φA and θB , φB . The dipole-dipole
interaction is then,

Uµµ = −µ
AµB

R3 (2 cos θA cos θB − sin θA sin θB cos(φB − φA)) . (2.284)

Thus, the dipole-dipole interaction is proportional to R−3 and the orientation dependence is
simple, see table 2.1. The most attractive interaction occurs for a head to tail orientation,
where both dipole moments point into the same direction, θA = θB = 0. If one dipole moment
is then turned around, θA = π, θB = 0 the interaction becomes most repulsive. [3]

µA ↑ ↓ → ← ↗
µB ↑ ↑ → → ↗

Uµµ(µ
AµB

R3 ) −2 +2 +1 −1 0

Table 2.1: Orientation dependence of the dipole-dipole interaction. Adapted from [3].

The quadrupole-quadrupole interaction becomes the first non-zero term in equation 2.282, if
none of the molecules has a dipole moment and both have quadrupole moments, for example two
linear homonuclear diatomic molecules. For two linear molecules only one non-zero independent
component of the quadrupole tensor exists. If the molecular axis is oriented along the z-axis
the components are Θzz = Θ, Θxx = Θyy = − 1

2Θ and all other components are zero. If
both molecules lie on the z-axis and the orientation of their molecular axis are described by
polar angles as previously defined for the dipole-dipole interaction, the explicit quadrupole-
quadrupole interaction is given by,

UΘΘ = ΘAΘB

R5
3
4
[
1− 5 cos2 θA − 5 cos2 θB − 15 cos2 θA cos2 θB

+2(4 cos θA cos θB − sin θA sin θB cos(φB − φA))2] . (2.285)

Hence, the quadrupole-quadrupole interaction is proportional to R−5 and thus decays faster
than the dipole-dipole interaction with the intermolecular distance. In general, the interaction
between two multipole moments of rank l and l′ is proportional to R−l−l

′−1. For exam-
ple, the dipole-quadrupole interaction is proportional to R−4. Because of their faster decay,
interactions between higher moments generally become more important at shorter intermolec-
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ular distances compared to those those of lower ranks. The orientation dependence of the
quadrupole-quadrupole interaction between two linear molecules gives repulsive interactions
for linear and parallel orientations, attractive interactions are found for T shaped structures
and slipped parallel orientations, see table 2.2. Since, the orientation factors are quite similar
for the latter most attractive orientations, the shape of the molecules, and thus how close
they are in these structures determines which is favoured. For spherical molecules the T-shape
and for long molecules the slipped parallel orientation leads to more attractive quadrupole-
quadrupole interactions [3].

ΘA
zz l ↔ ↔ ◦ l

ΘB
zz l l ↔ ↔ l

UΘΘ(ΘAΘB
R5 ) +6 −3 +2 1

4 + 3
4 −2 7

16

Table 2.2: Orientation dependence of the quadrupole-quadrupole interaction for Θ > 0. Adapted

from [3].

2.3.1.2 Induction interactions

The terms describing the induction energy, appear in the second order energy of the pertur-
bation treatment for the intermolecular interaction. To understand the physical origin of the
induction energy, the perturbation operator Ĥ ′ is written in terms of the multipole expansion,

Ĥ ′ = TqAqB + Tα(qAµ̂Bα − µ̂AαqB)− Tαβµ̂Aα µ̂Bβ + · · · . (2.286)

After substitution of Ĥ ′ in equation 2.279, one integrates over the coordinates of molecule A,
which gives

UBind = −
∑
n 6=0

〈0|TαqAµ̂Bα − TαβµAα µ̂Bβ + · · · |n〉〈n|Tα′qAµ̂Bα′ − Tα′β′µAα′ µ̂Bβ′ + · · · |0〉
EBn − EB0

(2.287)

= −(qATα − µAβ Tαβ)
∑
n 6=0

〈0|µ̂Bα |n〉〈n|µ̂Bα′ |0〉
EBn − EB0

(qATα′ − µAβ′Tα′β′) (2.288)

= −1
2F

A
α (B)αBαα′FAα′(B), (2.289)

where, for simplicity, only dipoles have been considered. The sum over the states of B involving
the dipole operator give the dipole-dipole polarizability of B, denoted by αBαα′ , and the constant
terms in the round brackets involving the multipoles of A are the negative of the electric field
due to A at B. The electric field due to the dipole moment of molecule A interacts with
the induced dipole δµ = αF at B, which size depends on the dipole-dipole polarizability
of B. The induction energy also depends on dipole-quadrupole and quadrupole-quadrupole,
and higher multipole polarizabilities. Because the induced field is always the negative of the
inducing field, the induction energy is always negative, i.e. the resulting force is attractive.
Another important property of the induction energy is its non-additivity. Since the induced
field depends on the total electric field acting on the molecule B, it is non-additive as the field
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can totally change due to the presence of a second neighbour molecule C. Two identical dipolar
neighbours can for example cancel each others fields or double the total dipole field, depending
on their mutual orientation. [3]

2.3.1.3 Dispersion interactions

To investigate the dispersion energy, we first approximate the perturbation by dipole-dipole
interactions only, i.e. Ĥ ′ = µ̂AαTαβµ̂

B
β [3]. We substitute this simplified interaction in the

equation 2.280 for the dispersion energy, obtained from perturbation theory and get,

U
(6)
disp = −

∑
m6=0

∑
n 6=0

〈00|µ̂AαTαβµ̂Bβ |mn〉〈mn|µ̂Aγ Tγδµ̂Bδ |00〉
EAm − EA0 + EBn − EB0

. (2.290)

This equation is not easily factorizable into terms depending only on A and only on B because
of the denominator. Rearranging the terms gives,

U
(6)
disp = −TαβTγδ

∑
m6=0

∑
n 6=0

EAm0E
B
n0

EAm0 + EBn0

×
〈0A|µ̂Aα |mA〉〈mA|µ̂Aγ |0A〉

EAm0

〈0B |µ̂Bβ |nB〉〈nB |µ̂Aδ |0A〉
EBn0

, (2.291)

where EAm0 = EAm − EA0 . From the product of the two T tensors of rank n = 2, and T
(n)
αβ··· ∝

Rn−1, we find that the dipole-dipole dispersion interaction is proportional to R−6. It decays
faster with R than the respective electrostatic and induction interactions. From the matrix
elements in equation 2.291, we may explain this part of the dispersion energy as arising due to
the interaction of dipole moments on A and B, which are induced by the correlated motions
of the electrons in A and B. Expressions for the frequency dependence of polarizabilities
and therefore the dielectric function, involving transition dipole moments as in equation 2.291,
where already known from dispersion theory. Hence, London coined the term ’dispersion forces’
for U (6)

disp. The transition dipole moments, in the form of oscillator strengths (f -values), and
excitation energies both known from the electronic spectrum of the atoms, can be used to
calculate U (6)

disp from experimental data. The double sum, could be replaced with the product
of the polarizabilities of both molecules, if the term with mixed energies would be constant.
Indeed, London [101] used the average energy approximation of Unsöld to arrive at the following
expression for the dispersion energy,

U
(6)
disp ≈ −

UAUB
4(UA + UB)TαβTγδα

A
αγα

B
βδ, (2.292)

where UA and UB are average excitation energies for both molecules. For atoms the polariz-
abilities are spherically symmetric, which leads to

U
(6)
disp ≈ −

UAUB
4(UA + UB)

ᾱAᾱB

R6 = −C6
R6 . (2.293)
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This shows, that we can expect stronger dispersion interactions for molecules and atoms with
larger polarizabilities. An exact expression for U (6)

disp was given by Casimir and Polder [102],

U
(6)
disp = − 1

2πTαβTγδ
∫ ∞

0
αAαγ(iν)αBβδ(iν)dν, (2.294)

involving the polarizability at the imaginary frequency ω = iν,

αAαγ(iν) =
∑
m′

ωm(〈0|µ̂α|m〉〈m|µ̂γ |0〉+ 〈0|µ̂β |m〉〈m|µ̂α|0〉)
ω2
m − (iν)2 . (2.295)

Frequency dependent polarizabilites occur in the determination of dipole moments induced by
oscillating electric fields, µα(t) = αAαγ(ω)Fβe−iωt. Polarizabilites with imaginary frequencies
formally describe the response to exponentially increasing electric fields (Fβeνt). However,
the dependence of αAαγ(iν) on ν facilitates its ab inito calculation via equation 2.295: αAαγ(iν)
decreases monotonically from the value of the static polarizability at ν = 0 to zero as ν →∞.
In practise, one evaluates αAαγ(iν) and αBβδ(iν) for a number of frequencies and determines
the integral in equation 2.294, via numerical quadrature. The next non-zero contribution to
the dispersion energy for atoms and centrosymmetric molecules as well as spherically averaged
molecules involves the dipole-dipole polarizability on A and the quadrupole-quadrupole polar-
izability on B, and is proportional to R−8. In general the dispersion energy can be expanded
as,

Udisp = −C6
R6 −

C8
R8 −

C10
R10 + · · · , (2.296)

where we used the convention Cn > 0. [3]

Drude model

Dispersion interactions are a quantum effect. To highlight this, and to gain a better under-
standing of the effect, London [2, 101] investigated it for a model system of two interacting
Drude particles. A Drude particle consists of two equal charges of opposing signs, where the
negative charge oscillates around the the static positive charge.

In the simplified version [6], presented here, each particle is represented by a 1D harmonic
oscillator, where a negative charge -Q oscillates with a frequency ω0 in z direction around
a stationary positive charge +Q. The distance between the particles is R, and the internal
coordinates of both particles are zA and zB . A sketch of the model is provided in figure 2.3.
The mass of the negative charge is M and the force constant of the oscillators is k. Both
particles are neutral and have no permanent dipole moment. Thus, there are no electrostatic
and induction interactions present between the particles. However, both particles represent
oscillating dipoles µa = QzA(t) and µb = QzB(t). The energy of the two harmonic oscillators
in their ground states at infinite separation is given by

E(∞) = EA + EB = ω0. (2.297)

If the particles are brought closer together, their motion is correlated via the interaction of
their oscillating dipole moments. The Hamiltonian for the two interacting Drude particles is
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+Q −Q

zB

+Q −Q

zA

R

Figure 2.3: A simple model for dispersion: two 1D Drude particles.

given by,

Ĥ = − 1
2M

(
∂2

∂z2
A

+ ∂2

∂z2
B

)
+ 1

2kz
2
A + 1

2kz
2
B −

2zAzBQ2

R3 , (2.298)

where the last term describes the dipole-dipole interaction between the two particles. Using
the normal modes,

Z1 = zA + zB√
2

(2.299)

Z2 = zA − zB√
2

(2.300)

(2.301)

the Hamiltonian is transformed to the uncoupled form

Ĥ = − 1
2M

(
∂2

∂Z2
1

+ ∂2

∂Z2
2

)
+ 1

2k(1− 2Q2

R3 )Z2
1 + 1

2k(1 + 2Q2

R3 )Z2
2 . (2.302)

The normal mode frequencies are

ω1 = ω0

(
1− 2Q2

R3k

)1/2

, (2.303)

ω2 = ω0

(
1 + 2Q2

R3k

)1/2

. (2.304)

(2.305)

The energy of the interacting particles in the ground state is given by

E(R) = 1
2(ω1 + ω2)

= 1
2ω0

(√
1 + 2Q2

R3k
+
√

1− 2Q2

R3k

)

= 1
2ω0

(
2− 1

4
4Q4

R6k2 + · · ·
)

= ω0 −
1
2
Q4ω0
R6k2 + · · · , (2.306)
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where we have used the Taylor expansion of
√

1 + x at x = 0, which is valid in the long-range
limit, where we assume the perturbation to be small. Keeping only the leading term, the
interaction energy becomes,

Udisp = E(R)− E(∞) ≈ −1
2
Q4ω0
R6k2 . (2.307)

The polarizabiliy of a Drude particle is given by α = Q2/k, which, when substituted into the
equation above, gives an expression for the dispersion energy familiar to equation 2.293 namely,

U
(6)
disp = −1

2
ω0αα

R6 . (2.308)

For classical harmonic oscillators the ground state energies are always zero, hence there would
be no interaction between the Drude particles in the ground state. The dispersion interaction,
thus arises because of the zero point motions of the quantum harmonic oscillators and the low-
ering of the ground state energy due to the correlation of their motions. Hence, the dispersion
force is a true quantum effect, without a classical analogue. [3, 6]

2.3.2 Calculation of intermolecular interactions

Accurate ab initio potential energy surfaces for intermolecular interactions can be obtained
by two methods. Namely, the supermolecular approach and symmetry adapted perturbation
theory (SAPT).

2.3.2.1 Supermolecular approach

In the supermolecular approach one calculates the interaction energy U = ∆E as

∆E(R) = EAB(R)− EA − EB, (2.309)

where EAB(R) denotes the energy of the complex AB at the intermolecular distance R and
EA and EB are the energies of the free monomers. Here we assume that the structures of
the molecules A and B are unchanged in the dimer, thus we neglect deformation energies.
This is called the rigid monomer approximation, which is usually valid for weak non-covalent
interactions. The individual energies are calculated using size extensive methods like, MPn or
CCSD(T), as described in sections 2.2.2.1 and 2.2.2.2.

Basis set superposition error

For the energy calculations finite atom centred basis sets are used, which leads to an inherent
error present in supermolecular calculations using equation 2.309. This error is the basis set
superposition error (BSSE) and can be explained in the following manner. If A and B are far
apart, only the basis functions on A contribute to the description of the electronic structure of
A, while the same holds for B. If A and B are brought closer together, the basis functions on A
can also be used for B and vice versa. Thus, decreasing the distance R between the molecules,
leads to an increase in the flexibility of the basis from the point of view of the monomers and
thus an inconsistent lowering of the interaction energy. The size of the BSSE is large for small
basis sets and small for larger basis sets near the complete basis set limit.
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Figure 2.4: Interaction energy of the Ar2 dimer at the CCSD(T) level of theory with the AVDZ basis set,

with and without counterpoise correction (CP) to remove the BSSE and at the complete

basis set (CBS) limit. The BSSE results in an overestimation of the binding interaction for

the AVDZ basis set. For R > 4.4 Å the BSSE results even in an overbinding compared to

the curve obtained in the basis set limit.

In order to eliminate the BSSE, the counterpoise method (CP) by Boys and Bernardi [103]
is routinely used for the calculation of intermolecular interactions. In this method, three
calculations are performed for each point of the interaction energy at R. One is for the
complex giving EAB(R,RA,RB), where RA and RB denote the positions of the nuclei of
the monomers in the complex (although redundant, R is still given). One for each monomer,
giving EA(R,RA,RB) and EB(R,RA,RB), where additionally all basis functions of the other
monomer are included at RB or RA, respectively. These extra basis functions in the monomer
calculations are called ghost functions. Thus, the same basis is used for the complex as well
as the monomers at each R, which leads to a consistent description of the interaction energy
along the whole potential, given by

∆ECP(R) = EAB(R,RA,RB)− EA(R,RA,RB)− EB(R,RA,RB). (2.310)

A detailed description of the BSSE problem and the CP method can be found in reference [104].

As an example for the BSSE, figure 2.4 shows the interaction energy of the Argon dimer at
the CCSD(T) level of theory. Using a small basis set (AVDZ) without counterpoise correction
leads to a curve that shows some over binding for R > 4.4 Å with respect to the curve in
the complete basis set limit (CBS). The counterpoise corrected, and thus BSSE free, curve
(AVDZ CP) is significantly less binding compared to the curve with BSSE, revealing the large
magnitude of the error for this basis set. Furthermore, the CP corrected AVDZ curve lies
at all R above the CBS curve. Counterpoise corrected interaction energies converge to the
CBS interaction energy from above at all intermolecular distances with increasing basis set
sizes, which is certainly not true for non-corrected interaction energies. The BSSE can be
further separated into parts for the SCF energy and for the correlation energy. Generally,
the BSSE is smaller for the SCF part than for the correlation part, which is due to the faster
convergence to the CBS limit of the SCF energy. For the case of the Ar2 dimer, the BSSE in the
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correlation energy is almost twice as high as for the SCF energy at R = 4.0 Å. Using the larger
AVQZ basis set for Ar2 eliminates the BSSE at the SCF level (SCF-BSSE ≈ −0.02 kJ/mol),
leaving the remaining BSSE of −0.15 kJ/mol at R = 3.8 Å attributed to the correlation
energy. An alternative approach to reduce the correlation BSSE significantly, is to employ
local correlation methods, as described in section 2.2.2.4. Local correlation methods reduce
the inconsistent flexibility in the dimer basis, by restricting pair excitations to virtual orbitals,
which are spatially close to the two localized MOs. Hence, tails of functions at distant atoms
contribute less to the correlation energy, which is a major source for the BSSE [105].

2.3.2.2 Symmetry adapted perturbation theory

The RSPT treatment of intermolecular interactions is only valid in the long range, due to the
neglect of the antisymmtery properties of the perturbed wavefunction in the zero order wave-
function. Hence, it cannot be used to calculate the correct intermolecular interactions over the
whole range of intermolecular separations. Symmetry adapted perturbation theories (SAPT)
overcome this problem by introducing the antisymmetrization operator Â that ensures, that
the Pauli principle is obeyed at all orders in the perturbation expansion [7]. In SAPT the
interaction energy is calculated directly, hence it is free of BSSE. Another advantage is, that
SAPT interaction energies can be interpreted in terms of different physical contributions, like
the electrostatic, induction and dispersion interactions, which arise directly from the theory.
A disadvantage of SAPT is, that it is usually restricted to interactions of dimers. Since the
antisymmetrized zero-order wavefunction ÂΨ0 = ÂΨAΨB is not an eigenfunction of the unper-
turbed Hamiltonian Ĥ0 it cannot be directly used in RSPT. This is because the Hamiltonian of
the whole system is of higher symmetry, with respect to permutations of the electron indices,
than the zero-order Hamiltonian. In the simplest SAPT formulation the symmetrized Rayleigh
Schrödinger (SRS) theory [106] the wavefunction corrections are those of the RSPT, i.e. the
polarization expansion, and the correct antisymmetry is only imposed in the expressions for
the energy correction.

Double-perturbation theory

Since Ψ0 is not known exactly, it has to be approximated by using HF determinants for the
monomers and electron correlation at the monomer level is treated perturbatively using MPPT
or CCPT for example. The interaction between the monomers is then the second perturbation,
in this double perturbation theory approach [7]. The Hamilton operator is then given by,

Ĥ = F̂A + F̂B + V̂ + ŴA + ŴB , (2.311)

where F̂A and F̂B denote the Fock operators of the molecules A and B, ŴA and ŴB account for
intramonomer correlation and V̂ is the intermolecular interaction operator. Using F̂ = F̂A+F̂B
and Ŵ = ŴA + ŴB the perturbed SE becomes,(

F̂ + λV̂ + µŴ
)

Ψ0(λ, µ) = E(λ, µ)Ψ0(λ, µ), (2.312)

where the energy and the wave function are approximated by power series expansions around
λ = 0 and µ = 0. The energy corrections of the double SRS theory, are obtained by the power

53



2 Theory

series expansion of the function,

ESRS(λ, µ) = 〈Ψ(0, µ)|λV̂ |ÂΨ(λ, µ)〉
〈Ψ(0, µ)|ÂΨ(λ, µ)〉

. (2.313)

The total double SAPT interaction energy is given by a double sum,

Eint =
∞∑
n=1

∞∑
l=0

(E(nl)
pol + E

(nl)
exch), (2.314)

over the standard RSPT polarization terms Enlpol and their corrections due to electron exchange
Enlexch, where n and l denote the orders with respect to V and W . [7]

A great advantage of SAPT is that the occurring terms, at all orders, can be interpreted by
physically meaningful quantities. In general, the main types of interactions can be listed [107]
as:

Eelectrostatic = E
(10)
elst + E

(12)
elst,resp + E

(13)
elst,resp’, (2.315)

Eexchange = E
(10)
exch + E

(11)
exch + E

(12)
exch. (2.316)

Einduction = E
(20)
ind,resp + E

(20)
exch-ind,resp

+E(30)
ind + E

(30)
exch-ind

+tE
(22)
ind + tE

(22)
exch-ind + δE

(3)
HF, (2.317)

Edipersion = E
(20)
disp + E

(30)
disp + E

(21)
disp

E
(22)
disp + E

(20)
exch-disp + E

(30)
exch-disp, (2.318)

where tE(22)
ind denotes the true induction correlation contributions obtained by eliminating terms

from E
(22)
ind , which are also present in E(20)

ind,resp and likewise for tE(22)
exch-ind [7], the subscript ’resp’

denotes orbital response, and δE(3)
HF describes higher order induction components present in the

HF iteration energy, but not in the truncated SAPT expansion. As can be seen in the above
equations, SAPT introduces exchange as a main component to the interaction energy. The
leading exchange contribution E(10)

exch describes the ’closed shell repulsion’ between the monomers
at the HF level, which allows for the repulsive part of the interaction potential at small R.
Further, the interactions are comprised of terms with l = 0 that describe the interactions
of the unperturbed HF charge distributions and contributions l > 0, due to intramonomer
correlation. As an example, the SAPT/AVQZ energies for the Ar2 dimer are shown in figure 2.5.
The binding interaction comes from the dispersion interaction, which is damped for R < 4
Å by the dispersion-exchange contribution. The failure of the RSPT for the electrostatic
and induction interactions, which are zero in the long range (R > 4.5 Å), is manifested by
binding induction and electrostatic interactions in the short range. The induction-exchange
part, exactly cancels the binding induction interactions. The repulsive exchange interaction
also completely corrects for the binding electrostatic interaction, leaving a repulsive interaction.
The resulting interaction potential is in close agreement to that obtained using CCSD(T)/CBS
given in figure 2.4. The SAPT analysis shows, that the van-der-Waals minimum of Ar2 occurs
due to underlying repulsive exchange on one hand and attractive dispersion interactions on the
other.
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Figure 2.5: SAPT interaction energy of the Ar2 dimer using the AVQZ basis set, with monomers treated

at the HF level.

As SAPT uses the HF wavefunctions for the zero order description, it is possible to deduce
which type of interactions are covered by the supermolecular approach at different levels of
theory [108]. The HF interaction energy incorporates the following types of interactions,

∆EHF ≈ E(10)
elst + E

(10)
exch + E

(20)
ind,resp + E

(20)
exch-ind,resp + E

(30)
ind,resp + E

(30)
exch-ind,resp + · · · . (2.319)

The MP2 correlation interaction energy covers,

∆EcorrMP2 ≈ E
(20)
disp + E

(20)
exch-disp + E

(12)
elst,resp + E

(11)
exch + E

(12)
exch + · · · . (2.320)

Hence, supermolecular HF interaction energies describe the main electrostatic, induction and
exchange interactions. Dispersion is only described by the correlation energy contribution. The
MP2 theory describes the dispersion interactions of two monomers with HF electron densities,
i.e. E(20)

disp , and the respective exchange correction E(20)
exch-disp. The corrections to the dispersion

interaction due to intramonomer correlation, as well as higher order terms n > 2, appear in
higher order MPn and CC theories [108].

In the many body (MB)-SAPT approach presented so far, intramonomer correlation is han-
dled by a double perturbation expansion starting from uncorrelated HF monomer wavefunc-
tions. Another very popular approach is to combine DFT and SAPT in the so called DFT-
SAPT theories. In DFT-SAPT, intramonomer correlation is handled by DFT, i.e. KS Slater
determinants of the monomers are used for the zero-order wavefunctions. Furthermore, SAPT
dispersion interactions, i.e. electron correlation between the DFT monomers, are described
via response properties obtained from time dependent DFT. The formal scaling of DFT-SAPT
is N6 and can be further reduced to N5 by density fitting, which is a significant reduction
compared to MP-SAPT, which scales as N7. A great advantage of DFT-SAPT is therefore,
that it allows to treat larger systems than possible with MB-SAPT [109].

The following lessons, for the supermolecular approach, have been learned by comparison
to SAPT. The supermolecular approach suffers from BSSE, which can be removed by the
counterpoise scheme within a given basis set. Dispersion is described only by the correlation
energy. The major part for the dispersion energy is obtained at the MP2 level of theory. In
order to describe the total intermolecular interactions in a highly accurate manner, one has to
use at least CCSD(T) theory.

55





3 Rotationally adiabatic pair interactions

of H2 with the dihalogen molecules F2,

Cl2 and Br2

3.1 Introduction

The strongly exothermic reaction of dihydrogen and dihalogen molecules often results in an
explosion. Everyone knows the oxyhydrogen detonating gas reaction, and similar reactions also
exist for the halogens as

H2 + X2
h·ν−−→ 2HX · (3.1)

All these light induced radical chain reactions are highly exothermic due to the formation
of the HX (X = F, Cl, Br, I) molecules. However, at liquid helium temperatures, the boiling
point of 4He is Tb = 4.2 K, molecular dihydrogen (Tmelting = 14.01 K) can be solidified and
used for matrix isolation spectroscopy of dihalogen molecules. At these low temperatures,
the above reaction is suppressed, but can be initiated in a controlled manner and studied
spectroscopically [29, 30, 110].

Matrix-isolation spectroscopy allows the study of transient species, which decompose rapidly
under normal conditions. Trapped in a matrix of rare gas atoms, transient molecular ions,
radicals and complexes that define early stages of chemical reactions can be studied [111]. In
comparison to the rare gas (Rg) matrices of Ar, Kr, Xe, the matrices of less polarizable species
like He, Ne, and H2 exhibit less interactions with the guest-molecules. In consequence, the
respective spectra resemble those of the free molecules more closely [112]. The advantage of
H2 matrices is that the cage-effect is minimal in comparison to rare-gas matrices, which allows
for the in situ generation of photo-dissociation fragments from molecular precursors [113].

Molecular hydrogen systems are of great interest, because quantum phenomena can be ob-
served more easily, as it is the molecule with the lowest mass [112, 114]. For example, small
clusters of hydrogen show superfluid behaviour, i.e. a fluid with zero viscosity, at temperatures
below 1 K[115–118]. Solid hydrogen is an example for a translational quantum solid, where
the zero point energy determines the crystal packing [119–121].

For the theoretical modelling of molecules trapped in matrices, knowledge of the interac-
tions of the guest and host molecules is of key importance. The many-body interaction of
the halogen molecule and the surrounding hydrogen molecules can be approximated with the
pairwise sum of the H2-H2[122, 123] and H2-X2 pair potentials. The latter of which are the
subject of this investigation. Specifically, we develop ab initio pair potentials, describing the
van der Waals interactions of the hydrogen molecule, H2, and the three halogen molecules
F2, Cl2 and Br2. Besides describing halogen molecules trapped in solid molecular hydrogen
matrices, the potentials can be also used to describe single halogen molecules within clusters
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of hydrogen molecules. From the many-body potentials rovibrational and librational spectra
of halogen impurities in hydrogen clusters and solid hydrogen, respectively, can be calculated,
and compared to experimental data. However, results from models that only take pairwise
interactions into account should be taken with a grain of salt, as tree-body interactions are
also important [112].

Another use for the pair-potentials is the description of the rovibrational states and spectra
of H2-X2 van der Waals dimers. Van der Waals dimers of the type Rg-X2 have been studied
extensively and it will be interesting to compare the interactions of H2 and Rg with the
dihalogen molecules. H2-I2 is the only van der Waals dimer of the type H2-X2 for which
binding energies have been measured and compared to calculated potentials [124, 125]. The
results highlight the importance of quantum effects, i.e. large zero point energy, on the binding
energy of the H2-I2 van der Waals dimer. It will be instructive to investigate the influence of
quantum effects on the binding energy of dimers of H2 with F2, Cl2 and Br2. Simultaneously,
we make predictions for the binding energies of the three dimers which have, to our knowledge,
never been measured, or calculated.

Dihydrogen has two nuclear spin isomers, for which different manifolds of rotational quan-
tum states are allowed, namely parahydrogen (pH2) and orthohydrogen (oH2). This affects
their thermodynamic properties and their interactions with other molecules. Here, we use a
technique called rotational adiabatization [27, 122] to capture the van der Waals interactions
of both nuclear spin isomers with the halogen molecules. We then compare these rotationally
adiabatic interactions not only among themselves, but also to interactions of rare gas atoms
with the halogens. Further, the rotational adiabatic potentials are fitted to analytic model
potentials, that facilitate their future use in modelling of cryogenic hydrogen halogen systems.
Lastly, we calculate the bound states of the pH2-X2 van der Waals dimers.

3.1.1 Nuclear spin isomers of the dihydrogen molecule

Hydrogen nuclei (1H) are fermions with a nuclear spin of I = 1/2. Hence, the molecular wave
function of the hydrogen molecule is antisymmetric with respect to the interchange of the
nuclei,

Ψmol(R1,Σ1,R2,Σ2) = −Ψmol(R2,Σ2,R1,Σ1), (3.2)

where the R1 and R2 denote the spatial and Σ1 and Σ2 denote the nuclear spin coordinates.
To a first approximation the total molecular wave function of H2 can be written as a product,

Ψmol = ΨtransΨrotΨvibΨelΨn, (3.3)

of the translational, rotational, vibrational, electronic and nuclear-spin wave functions. The
translational and vibrational wave functions are symmetric under exchange of nuclei, as is the
electronic wave function, if the hydrogen molecule is in its electronic ground state 1Σ+

g . Hence,
the product ΨrotΨn has to be antisymmetric under exchange of the nuclei. What are the
possibilities for Ψn? From I1 = I2 = 1/2 total nuclear spin functions with Imol = I ∈ {0, 1}
can be obtained. The function with I = 0 is singly degenerate,

Ψn = Ψn
I,mI = Ψn

0,0 = 1/
√

2 (α(Σ1)β(Σ2)− β(Σ1)α(Σ2)) , (3.4)
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[126].

and describes the anti parallel configuration (↑↓ − ↓↑) of the nuclear spins with I = 0,mI = 0.
This function is clearly antisymmetric with respect to exchange of the two spin coordinates.
Nuclear spin isomers with this function are called parahydrogen (pH2). The nuclear spin state
I = 1 is threefold degenerate, and is described by the following functions

Ψn
1,1 = α(Σ1)α(Σ2) (3.5)

Ψn
1,0 = 1/

√
2 (α(Σ1)β(Σ2) + β(Σ1)α(Σ2)) (3.6)

Ψn
1,−1 = β(Σ1)β(Σ2), (3.7)

for parallel nuclear spins (�,�) and for the positive linear combination of antiparallel spins
(↑↓ + ↓↑). All of which are symmetric with respect to to exchange of the two spin coordinates.
The nuclear spins isomers with I = 1 are called orthohydrogen (oH2). The symmetry of the
rotational wave function with respect to exchange of nuclei depends on the rotational quantum
number J ,

Ψrot
J,mJ (R1,R2) = (−1)JΨrot

J,mJ (R2,R1). (3.8)

Depending on whether J is even or odd the rotational wave function is either symmetric or
antisymmetric, respectively. Hence, the parahydrogen molecules with antisymmetric Ψn are
restricted to symmetric Ψrot with J = 0, 2, 4 · · · , in order to fulfil the antisymmetry re-
quirements of Ψmol. Likewise, orthohydrogen molecules with symmetric Ψn are restricted to
rotational states with J = 1, 3, 5, · · · , which are antisymmetric. The resulting rotational
energy levels for parahydrogen and orthohydrogen are depicted in figure 3.1a. This leads to
different rotational partition functions for both isomers and hence different contributions to
the heat capacity, as is shown in figure 3.1b. The ratio 1:3 of para- to orthohydrogen at high
temperatures is directly related to the degeneracy of the nuclear spin states. Pure parahydro-
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3 Rotationally adiabatic pair interactions of H2 with the dihalogen molecules F2, Cl2 and Br2

gen can be obtained by cooling a para/orthohydrogen mixture in presence of a catalyst [126].
The nuclear spin isomers of hydrogen also show different electrostatic interactions with other
molecules. Parahydrogen in the rotational ground state with J = 0 is spherically symmetric,
and thus the quadruple moment of H2 vanishes. The rotational ground state of orthohydrogen
with J = 1 is only axially symmetric, thus a quadrupole moment is present and allows elec-
trostatic interactions with other molecules. The aim of this work is to describe the different
interactions of para- and orthohydrogen ab inito with dihalogen molecules, hence within the
rotationally adiabatic model we have to account for their different rotational states.

3.1.2 Small molecules trapped in dihydrogen matrices

Since the 1980’s solid molecular parahydrogen is used as a host matrix for matrix isolation high
resolution IR spectroscopy [127]. Due to the weak interactions with the parahydrogen molecules
the spectra of small guest molecules exhibit sharp lines, indicating that J and ν remain good
quantum numbers [127]. Also the cage effect is greatly reduced in pH2 matrices, therefore
photo reactions can be observed in situ. Dopant molecules induce IR activity in neighbouring
pH2 molecules, which leads to additional adsorption bands in the spectrum directly related
to the intermolecular interactions [128, 129]. Low concentrations of orthohydrogen present
in the matrix interact via long-range quadrupole-quadrupole electrostatic interactions often
stronger with the guest molecules compared to the parahydrogen molecules [112]. This can
lead to the accumulation of oH2 near the dopant molecules [127]. The ’quantum diffusion’ of
oH2 through the pH2 matrix is dominated by a nuclear spin and rotational angular momentum
exchange between neighbouring molecules. If the dopant molecule has a non-zero total nuclear
spin its magnetic field can also induce an o-p conversion of the neighbouring molecules, which
competes with the ’quantum diffusion’ effect [127, 129]. A remarkable feature of pH2 matrices is
the possibility to study photo reactions. By the solvation of traces of Cl2 in solid parahydrogen
at 2 K and subsequent photo dissociation of the Cl2 molecules the reaction

Cl(2P3/2) + H2(ν−−1 ) −−→ HCl + H (3.9)

could be observed [29, 30, 110]. It was found, that a vibrational excitation of the H2 molecules
to ν = 1 is necessary for the reaction to proceed. The produced Cl(2P3/2) atoms and the
reaction products carry an excess of heat that is dissipated efficiently due to the high thermal
conductivity of the pH2 matrix, which is another major advantage for the study of reactions
at low temperatures. For the detailed quantum dynamical study of this and similar reactions,
starting from X2 in solid pH2, knowledge of the librational states [130, 131] of the X2 guest and
the response of the host molecules is necessary to predict an initial state of the system [27].
The quantum dynamics of similar hindered rotations of dopant molecules in rare gas matrices
have been extensively studied in experiment and theory [132–137]. For this purpose, the pair
interactions calculated in this work are one major ingredient to construct many-body potentials,
as has been demonstrated for Cl2 in solid pH2 in reference [27].

3.2 Pair potentials

In this work we closely follow the methodology of Accardi developed for H2-Cl2 [27], to de-
scribe also the dimers H2-F2 and H2-Br2. This will enable us to compare the interactions of
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Figure 3.2: Internal Jacobi coordinates describing the structure and orientation of H2-X2 dimers. H2 is

depicted in blue and X2 in yellow. This figure was published in reference [139].

the halogens to hydrogen and other small molecules. So far only few other works on the inter-
actions of halogen molecules and hydrogen exist. The van der Waals interactions of H2-I2 have
been studied experimentally [124, 125] and theoretically for selected high symmetry structures
[124]. The pair potential of H2-F2 has been studied earlier by Pham Van at the CCSD(T)
level of theory, for the calculation of second virial coefficients and simulation of vapor-liquid
equilibria [138].

3.2.1 Methodology

The interaction energy ∆E of a halogen molecule X2 with a hydrogen molecule H2, where both
are in their respective 1Σ+

g electronic ground states, is a function of six internal coordinates
that describe the relative position of the molecules to each other. In order to describe the
rotation of H2 within the dimer efficiently, we have chosen a combination of spherical and
Jacobi coordinates as depicted in figure 3.2. The monomers are characterized by their bond
lengths rX2 and rH2 . The distance between the molecules, measured as the distance between
their centers of mass (COM), is denoted by R. Their mutual orientation is given by their polar
angles θH2 and θX2 and the difference between the azimuthal angles (φH2 − φX2). The polar
angle θ is measured as the angle between the molecular axis and the z-axis of the internal
reference frame. Whereas the azimuthal angle φ is defined as the angle between the y-axis
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3 Rotationally adiabatic pair interactions of H2 with the dihalogen molecules F2, Cl2 and Br2

and the projection of the molecular axis onto the xy-plane1. We can safely assume, that the
interaction of the dimers is only weakly changed by the small deviations in the monomer bond
lengths due to zero point motions. At the low temperatures considered here, all H2 and X2

molecules are in their vibrational ground states. Thus, to reduce the dimensionality of the
problem we invoke the rigid monomer approximation by setting the monomer bond lengths
to constant values close to their averages with respect to their vibrational ground states.
Throughout the following values are applied rH2 = 75.7 pm, rF2 = 141.2 pm, rCl2 = 203.3 pm
and rBr2 = 228.1 pm. Within this approximation the interaction energy is a four-dimensional
function ∆E(R, θX2 , θH2 , φH2 − φX2) which we calculate using the supermolecule approach as,

∆E = E(H2X2)− (E(X2) + E(H2)) , (3.10)

where E(H2X2), E(X2) and E(H2) denote the total electronic energy of the dimer and the
monomers. We also apply the counterpoise scheme [103] to correct for the BSSE, as discussed
in section 2.3.2. The binding interactions of linear non-dipolar molecules are dominated by elec-
trostatic quadrupole-quadrupole interactions and dispersion interactions. As already discussed
in the analysis of SAPT interaction terms, the major part of the electrostatic interactions are
described at the HF level, while the leading dispersion terms are effects of electron correla-
tion at the MP2 level of theory. For a highly accurate description of the interaction energy
CCSD(T) theory has to be applied. We have therefore calculated the interaction energy at the
MP2, CCSD(T) and HF-SAPT levels of theory using the MOLPRO code [140–142]. For H, F
and Cl, the all-electron augmented correlation consistent aug-cc-pVnZ basis sets (AVnZ) with
cardinal numbers up to n = 6 (H, F) and n = 5 (Cl) [143], while for Br the scalar relativistic
effective core potential ECP10MDF and the adapted aug-cc-pVnZ basis sets up to n = 5 have
been used [144]. All quantum chemistry data for the H2-Cl2 dimer was provided by Accardi,
as described in [27].

3.2.2 CCSD(T) results

We aim for a detailed description of the four-dimensional interaction energy hyper surface,
on which we can perform the adiabatization with respect to the rotations of H2. In practise
this involves a large number of single point calculations at the MP2 level of theory, as using
CCSD(T) for the whole surface is prohibited by our computational resources. To asses the
errors introduced by using MP2 instead of CCSD(T), we have performed highly accurate
calculations of the CCSD(T) interaction energy at the complete basis set (CBS) limit for six
highly symmetrical H2-X2 structures, depicted in figure 3.3a. The selected structures fall into
three groups. The first group collects the linear (L) and the second T-shaped (T2) structure,
where in both cases θX2 = 0◦ holds, see also table 3.3b. In both cases the COM of the hydrogen
molecule and the halogen atoms are arranged linearly. Hence, the hydrogen molecule sits on
one end of the halogen molecule. The second group contains only the slipped parallel structure
(S), which is an intermediate structure connecting the first and third groups of structures.
The third group contains the parallel (H), first T-shaped (T1) and cross (X) type structures.
Common for these structures is that θX2 = 90◦. In this group the COM of the hydrogen

1The usual convention is to define φ with respect to the x-axis of the reference frame. The different definition
used here, however does not influence the results, as they are only dependent on the difference (φH2 −φX2 )
between both angles.
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3.2 Pair potentials

(a) Six high symmetry structures of the H2-X2
dimers. The combination of angles for each

structure is given in table 3.3b. The short

names of the structures are denoted by let-

ters of similar form, H for parallel, X for cross

and T for T-shaped structures, and abbreviat-

ing letters L and S for linear and slipped par-

allel structures, respectively. This figure was

published in reference [139].

structure θX2 φX2 θH2 φH2

T2 0◦ 0◦ 90◦ 0◦

L 0◦ 0◦ 0◦ 0◦

S 45◦ 0◦ 45◦ 0◦

H 90◦ 0◦ 90◦ 0◦

T1 90◦ 0◦ 0◦ 0◦

X 90◦ 0◦ 90◦ 90◦

(b) Polar angles for the six structures of the H2-

X2 dimers. For the definition of the angles

with respect to the frame of reference see fig-

ure 3.2.

Figure 3.3: High symmetry structures of H2-X2 dimers.

molecule is positioned perpendicular to the halogen bond axis, directly above the COM of the
halogen molecule.

3.2.2.1 The H2-F2 pair potential

The CCSD(T)/AV(56)Z potential energy curves for the H2-F2 dimer are shown in figure 3.4a.
The overall strongest interaction in terms of absolute values of ∆E(Re) is found for the T2
structure with a well depth of 1.283 kJ/mol at 0.347 nm. The weakest interaction with
−0.303 kJ/mol and the largest Re, with 0.392 nm is present for the L structure. Figures
3.4 b-e depict the convergence of the interaction energies for the T2 and L structures with
respect to basis set size. For T2, the well depth increases from AVTZ to AV(56)Z by about
0.18 kJ/mol, which is 14% of the CBS value. For L, the respective change is 0.08 kJ/mol, or
25%. Using an AVQZ basis set significantly improves the description of the well depths, as the
relative errors decrease to below 10%. Further small improvements are then obtained by the
AV5Z and AV6Z basis sets. Well depth positions shift very slightly (< 0.05 nm) to smaller
R upon increasing the basis set from AVTZ to AV(56)Z. Similar convergence behaviours were
also found for the remaining structures. With a well depth of 0.673 kJ/mol at 0.363 nm, the
minimum of structure S lies in between those of the T2 and L structures. Very similar well
depths characterise the potentials of the third group, with 0.697, 0.835 and 0.658 kJ mol for
H, T1 and X, respectively. Also the Re values of 0.314 nm, 0.325 nm and 0.318 nm for H, T1
and X are very similar. The ordering in terms of well depths, characterised from strongest to
weakest interaction, for H2-F2 is therefore T2 � T1 > H & S ∼ X � L.

3.2.2.2 The H2-Br2 pair potential

Figure 3.5a shows the CCSD(T)/AV(Q5)Z pair potentials for the H2-Br2 dimer. Again, the
T2 structure has the overall deepest well depth, with 3.182 kJ/mol at 0.4115 nm. The weakest
interaction is also found for the L structure, where the well depth is 0.572 kJ/mol at 0.467 nm.
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Figure 3.4: CCSD(T) interaction energy of the H2-F2 dimer for the six high symmetry structures shown

in figure 3.3a. Panel a) shows the interaction energies of all structures obtained by extrapo-

lation to the CBS limit as CCSD(T)/AV(56)Z. In b) and d) the CCSD(T) results obtained

using the AVTZ basis for T2 and L show the long range behaviour of the interactions.

Additionally, AV(56)Z results are superimposed around the minima. Panels c) and e) depict

the convergence to the CBS limit near the minima for T2 and L. The area of the plots c)

and e) is denoted by gray boxes in b) and d), respectively.
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Figure 3.5: CCSD(T) interaction energy of the H2-Br2 dimer for the six high symmetry structures

shown in figure 3.3a. Panel a) shows the interaction energies of all structures obtained

by extrapolation to the CBS limit as CCSD(T)/AV(Q5)Z. In b) and d) the CCSD(T)

results obtained using the AVTZ basis for T2 and L show the long range behaviour of the

interactions. Additionally, AV(Q5)Z results are superimposed around the minima. Panels c)

and e) depict the convergence to the CBS limit near the minima for T2 and L. The area of

the plots c) and e) is denoted by gray boxes in b) and d), respectively.
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Here, the AVQZ basis set also significantly improves the description of the pair potentials,
compared to the AVTZ basis. The well depth of the S structure is with 1.038 kJ/mol close to
that of the L structure and lies above those of the third group. Concerning the third group,
the well depths are 1.704, 1.825 and 1.434 kJ/mol at 0.342, 0.356 and 0.351 nm for H, T1 and
X. Hence, they are energetically more separated than those of the H2-F2 dimer. The larger
size of the Br2 molecule is evident from Re values which are 0.03-0.07 nm larger compared to
H2-F2. The ordering of the interactions for the different structures is T2 � T1 & H > X � S
> L, where compared to H2-F2 the positions of the S and X structures are interchanged.

3.2.2.3 Analysis in terms of interaction contributions and comparison to the H2-Cl2 pair

potential

The H2-Cl2 pair potentials for the orientations in 3.3a, were obtained by Accardi [27] at the
CCSD(T)/AV(Q5)Z level of theory. The H2-Cl2 well depths follow the same pattern, as
discussed for the two other halogens. Energetically they are intermediate between the two,
while overall closer to those of H2-Br2. In order to better understand on the one hand, the
interaction of H2 with F2, Cl2 and Br2, and on the other hand, the differences found for
different structures for a given H2-X2 dimer, we have calculated individual interaction com-
ponents at the HF-SAPT/AVQZ level of theory. The HF-SAPT calculations were performed
only at the CCSD(T)/CBS minima Re, for all structures including the H2-Cl2 dimer. The
HF-SAPT/AVQZ results are presented in table 3.1. Focussing on the T2 structures of differ-
ent halogens, we see that the most important binding contribution is the dispersion energy
(E2disp+E2disp-exch), followed by electrostatic interactions (E1pol). Induction interactions
(E2ind+E2ind-exch) are increasingly important only for Cl2 and Br2. However, the largest
contribution for T2 structures is the repulsive exchange energy (E1exch). Size-wise the values
of E1exch for T2 are comparable to the absolute values of the uncorrected dispersion interac-
tions E2disp, i.e. without the dispersion exchange correction. The observed increase in the
interaction of H2 with F2, Cl2 and Br2 can be attributed to the simultaneous increase of all
types of interactions. Comparing the T2 dimers for F2 and Br2, we find that the electrostatic,
exchange and dispersion interactions increase by more than a factor of two.

Next, we compare the different structures in terms of the individual interaction contribu-
tions. For the electrostatic interactions, we have also calculated the quadrupole-quadrupole
(QQ) interactions, because the quadrupole moments are the lowest non-vanishing multipole-
moments for linear neutral homonuclear molecules. We therefore expected these contributions
to give an overall good approximation to the electrostatic energy. The quadrupole-quadrupole
interactions are given by,

UQX2QH2
(R) = QX2QH2

4πε0R5 ×G(θX2 , θH2 , φH2 − φX2), (3.11)

see also equation 2.285. The components of the traceless quadrupole tensors along the bond
axis are QH2 = 0.4252 ea2

0 [27], QF2 = 0.7635 ea2
0, QCl2 = 2.5427 ea2

0[27], QBr2 = 3.4936 ea2
0,

calculated at the CCSD(T)/AV6Z, MP2/AV6Z, MP2/AV6Z[27] and MP2/AV5Z levels of the-
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3.2 Pair potentials

ory, respectively. The geometrical factor G is given by

G(θX2 , θH2 , φH2 − φX2) = 3
4{1− 5 cos2 θX2 − 5 cos2 θH2 − 15 cos2 θX2 cos2 θH2 +

+ 2[4 cos θX2 cos θH2 − sin θX2 sin θH2 cos(φH2 − φX2)]2}, (3.12)

where the respective G values for the six structures are shown in figure 3.3a. For plots of
the QQ potentials UQX2QH2

(R), see figure 3.6a, we define the minimal contact distance in
terms of a hard sphere model. In this model atoms are represented by hard spheres with
van der Waals radii of 110 pm, 147 pm, 175 pm and 185 pm for the H, F, Cl and Br atoms,
respectively [145]. The values of UQX2QH2

(Re) at the minima of the CCSD(T)/CBS curves
are given in table 3.1. HF-SAPT gives binding electrostatic interactions for all structures,
with the exception of the L structure. The QQ interactions are binding for T2, S, T1 and
repulsive for L, H and X, due to the signs of the G factor. The best agreement between E1pol
and QQ at the minima is found for the T1 structure and the L structure of the dimer with
F2. For all other structures the differences between both models suggest, that interactions
between multipole moments of higher than quadrupolar order become important near the
minima. The electrostatic interactions are significantly higher for the T2 structure, than for
the other structures. For S, T1 and X the values of E1pol are similar, while for H the second
highest electrostatic interactions are present in the case of the dimers with Cl2 and Br2. The
exchange interaction E1exch is highest for T2, followed by H, it is similar for T1 and X, and
also for L and S. The induction interactions (E2ind+E2ind-exch) are weak in comparison to
the other interactions. They are basically absent in the interaction of H2 with F2, but increase
for the interaction with Cl2 and Br2. The induction interaction is more important for T2
and L structures, while less important for the other structures. Higher than second order
induction terms do have a sizeable contribution for the T2 structure, as can bee seen from
the δHF contribution. Dispersion interactions (E2disp+E2disp-exch) are the overall largest
binding interactions. None of the structures would be bound without dispersion interactions,
as the binding electrostatic interactions are too weak in comparison to the exchange repulsion
interactions. The ordering in terms of dispersion interactions is T2 >> H > T1 >≈ X > L
> S. Concerning the total HF-SAPT/AVQZ energy we find some differences with respect to
the CCSD(T)/CBS values. Especially the absolute well depth of the T2 (not for H2-F2) and S
structures is overestimated by HF-SAPT. For H2-F2 the ordering of the SAPT well depths is the
same as with CCSD(T). For H2-Cl2 and H2-Br2 the order of HF-SAPT the well depths for the
third group of structures is changed, in that the well depth of H is predicted to be larger than
that of T1. These discrepancies, can be explained by the HF description of the monomers in
HF-SAPT and by the fact, that we compare finite AVQZ basis to extrapolated CBS results. A
better agreement between the SAPT and CCSD(T) results could be obtained with MP2-SAPT
or DFT-SAPT. However, it is clear that the SAPT analysis provides a much better picture of
the interactions, compared to the simple QQ model. In conclusion, the T2 structure shows the
largest interaction energy of all structures, because the largest repulsive exchange interactions
are counter balanced by the largest dispersion, electrostatic and induction interactions, where
for the latter two, higher order terms, estimated by δHF, are contributing significantly to
the interaction energy. The L and S structures have the smallest interaction energy, because,
although the repulsive exchange interactions are smallest, the dispersion interactions are also
small, plus the electrostatic interaction of the L structure is repulsive. The third group of
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structures, H, T1 and X, has interaction energies, intermediate between those of T2 and S.
The reason for this is a fine balance of similar electrostatic but larger exchange and dispersion
interactions, in comparison to those of the S structure.

3.2.2.4 MP2/AVQZ pair potentials

In order to describe the rotation of H2 in the presence of X2, the potential energy hyper
surface ∆E(R, θX2 , θH2 , φH2 − φX2) has to be calculated for a large number of orientations
and intermolecular distances. Hence, we will use the computationally less demanding MP2
method to describe the full surface and use the expensive CCSD(T) method only for the parts
where symmetry can be exploited. Therefore, we need to access the accuracy of MP2 for
the pair potentials. MP2 only describes dispersion interactions of second order, thus it is
less exact than CCSD(T). For dispersion bound systems using MP2 often results in an over
estimation of well depths, which opens the opportunity to exploit error cancellation effects of
the overestimation of dispersion interactions by the method on one hand and underestimation
of dispersion interactions due to the basis set incompleteness error on the other hand. The
MP2/AVQZ pair potentials are shown in figure 3.6a, where the results for H2-Cl2 and H2-
H2 where taken from reference [27]. The relative errors of MP2 well depths for AVnZ basis
sets of increasing size are shown in figure 3.6b. Using the AVTZ basis, results in a severe
underestimation of the well depths, as shown for H2-F2 and H2-Br2. For MP2/AVQZ the well
depths are much improved, with mean absolute relative deviations of 15%, 6%, and 7% for the
dimers with F2, Cl2 and Br2. Using the AVQZ basis, the MP2 well depths of the T2, T1 and S
structures of H2-Cl2 and H2-Br2 and those of T2 and L for H2-F2 are in excellent agreement to
the CCSD(T) reference values. Absolute errors for these structures range from 0.002 kJ/mol
(T1, H2-Cl2) to 0.01 kJ/mol (S, H2-F2). The respective remaining well depths, H, X, (T1),
are underestimated by 0.13 kJ/mol-0.22 kJ/mol, but the energetic ordering remains the same
as with CCSD(T)/CBS. The only change in the ordering occurs for the H, X, and S structures
of H2-F2, where the CCSD(T)/CBS well depths lie in a range of just 0.04 kJ/mol. Here the
CCSD(T)/CBS ordering H > S > X, is changed to S > H > X with MP2/AVQZ. The absolute
errors for H2-F2 are similar to those of the other dimers, but the overall lower magnitude of
the interaction energy results in larger relative errors and larger errors for the anisotropy of the
potential. The AV5Z basis set does not lead to an improvement over the AVQZ results, as it
gives on one hand slightly lower errors for S, H and X, while on the other hand the errors for L
ans T2 increase. Overall, MP2/AVQZ results in a very good description of the pair potentials
at significantly reduced cost, in comparison to CCSD(T)/CBS.
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3.2 Pair potentials

H2-F2 T2 L S H T1 X

∆E (kJ/mol)
Re (nm)

0.347 0.392 0.363 0.314 0.325 0.318

E1pol −1.256 0.240 −0.364 −0.352 −0.323 −0.272
E1exch 2.787 0.714 0.790 1.122 1.089 0.968
E2ind+E2ind-exch −0.023 −0.029 −0.003 0.008 −0.008 0.008
E2disp+E2disp-exch −2.233 −1.207 −1.062 −1.487 −1.464 −1.334
δHF −0.442 −0.115 −0.069 −0.053 −0.061 −0.043
SAPT/AVQZ −1.167 −0.397 −0.708 −0.762 −0.767 −0.673
CCSD(T)/CBS −1.283 −0.303 −0.673 −0.697 −0.835 −0.658
MP2/AVQZ −1.310 −0.299 −0.585 −0.498 −0.675 −0.465
QQ −0.212 0.229 −0.137 0.259 −0.294 0.082

H2-Cl2 T2 L S H T1 X

∆E (kJ/mol)
Re (nm)

0.40 0.45 0.42 0.33 0.35 0.34

E1pol −2.690 0.866 −0.692 −1.024 −0.569 −0.568
E1exch 5.072 1.170 1.171 3.050 2.047 2.113
E2ind+E2ind-exch −0.413 −0.174 −0.051 −0.062 −0.084 −0.031
E2disp+E2disp-exch −4.072 −2.061 −1.659 −3.474 −2.878 −2.784
δHF −0.725 −0.177 −0.104 −0.195 −0.161 −0.108
SAPT/AVQZ −2.828 −0.377 −1.335 −1.704 −1.645 −1.378
CCSD(T)/CBS∗[27] −2.376 −0.486 −0.996 −1.543 −1.595 −1.321
MP2/AVQZ∗[27] −2.428 −0.518 −0.934 −1.413 −1.593 −1.197
QQ∗[27] −0.345 0.383 −0.220 0.677 −0.673 0.194

H2-Br2 T2 L S H T1 X

∆E (kJ/mol)
Re (nm)

0.415 0.467 0.445 0.342 0.356 0.351

E1pol −3.737 1.062 −0.704 −1.092 −0.725 −0.634
E1exch 6.177 1.364 1.043 3.108 2.551 2.281
E2ind+E2ind-exch −1.206 −0.362 −0.085 −0.158 −0.183 −0.094
E2disp+E2disp-exch −5.194 −2.530 −1.683 −3.777 −3.464 −3.108
δHF 0.292 0.005 −0.017 −0.022 −0.068 0.013
SAPT/AVQZ −3.668 −0.461 −1.446 −1.940 −1.890 −1.543
CCSD(T)/CBS −3.182 −0.572 −1.038 −1.704 −1.825 −1.434
MP2/AVQZ −3.203 −0.619 −1.043 −1.533 −1.815 −1.280
QQ −0.396 0.436 −0.226 0.781 −0.853 0.230

Table 3.1: Interaction energies of the H2-X2 dimers at the minima Re of the CCSD(T)/CBS pair

potentials for the six structures given in table 3.3a. To understand the nature of the interac-

tions, the table further shows SAPT/AVQZ energy components and electrostatic quadrupole

quadrupole (QQ) interactions. ∗CCSD(T) results for H2-Cl2 are taken from Accardi [27].
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3.3 Rotationally adiabatic potential energy surfaces

3.3 Rotationally adiabatic potential energy surfaces

So far, we have described the interaction of H2 with F2, Cl2 and Br2 for static structures,
i.e. regardless of the nuclear spin states of the H2 molecule. In order to describe the same
interactions in terms of the nuclear spin isomers pH2 and oH2, we have to adiabatize the H2-X2

potentials with respect to the rotational degrees of freedom of H2. The rotational adiabatization
(RA) is justified by the fact that the rotational constant of H2 (B0 = 0.6812 kJ/mol) is 62,
244, and 724 times larger than the rotational constants of 19F2 (B0 = 0.0106 kJ/mol), 35Cl2
(B0 = 0.0028 kJ/mol) and 79Br2 (B0 = 9.82 · 10−4 kJ/mol), respectively. This implies, that
the lighter H2 molecule rotates much faster in comparison to the heavier halogen molecules.
In the isotropic averaging technique, the influence of the intermolecular interactions on the
rotational states is neglected and free rotor states are used to obtain respective averages over
the interaction potential. Comparing the rotational constant of H2 in the vibrational ground
state B0 = 0.6812 kJ/mol with the pair potentials ∆E in figure 3.6a, we see, however, that the
well depths are up to 2, 3.5, and 4.7 times larger than B0. Hence, especially near the minima
of the potentials, we expect the rotation of H2 to be notably perturbed. In this case, it is more
accurate to consider the perturbation of rotational states explicitly by using the ’adiabatic
hindered rotor’ approximation [26]. For this we solve the rotational Schrödinger equation,

Ĥrot(θH2 , φH2 ;R, θX2 , φX2)Ψn(θH2 , φH2 ;R, θX2 , φX2) = (3.13)

Wn(R, θX2 , φX2)Ψn(θH2 , φH2 ;R, θX2 , φX2),

in the variables θH2 and φH2 , which are separated from the parameters, indicated by the
semicolon, R, θX2 and φX2 by the different time and energy scales. The Hamiltonian

Ĥrot(θH2 , φH2 ;R, θX2 , φX2) = B0 Ĵ
2
H2 + ∆E(R, θX2 , θH2 , φH2 − φX2), (3.14)

describes the rotation of rigid H2, with a rotational constant B0 = 0.6812 kJ/mol and angular
momentum operator ĴH2 , perturbed by the potential ∆E due to the interaction with X2.
The solutions to equation 3.13 are rotational wave functions Ψn and the rotational energies
Wn(R, θX2 , φX2).

To solve equation 3.13, we expand the wave function in the basis of the free rigid-rotor
eigenfunctions, i.e. the spherical harmonics YJM (θH2 , φH2). The eigenvalues Wn(R, θX2 , φX2)
and the respective eigenvectors with the expansion coefficients for Ψn, are obtained by diag-
onalization of the matrix representation of the Hamiltonian, i.e. eq. 3.13, in the truncated
basis of free pH2 states YJ,M with J={0, 2, 4} and separately in the truncated basis of the free
oH2 states YJ,M with J={1, 3, 5}. Because the interaction potential ∆E vanishes for large
R, the state with n = 0 is asymptotically correlated with the free rotor state YJ,M = Y0,0,
i.e. the pH2 ground state. Likewise, the states with n equal to 1, 2 and 3 are asymptotically
correlated to the free rotor states Y1,−1, Y1,0 and Y1,−1, which represent the triply degenerate
rotational ground state of oH2 with the energy 2B0. The difficult part in the set up of the
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3 Rotationally adiabatic pair interactions of H2 with the dihalogen molecules F2, Cl2 and Br2

matrix representation is the evaluation of the potential energy matrix elements given by

∆E(J′M ′JM)(R, θX2 , φX2) = 1
4π

∫ −1

1
d cos θH2

∫ 2π

0
dφH2 (3.15)

∆E(R, θX2 , θH2 , φH2 − φX2)×

Y ∗J′M ′(θH2 , φH2)YJM (θH2 , φH2)

≈ 1
4π

8∑
k=1

wk

16∑
j=1

wj × (3.16)

∆E(R, θX2 , θH2,k, φH2,j − φX2,const.)×

Y ∗J′M ′(θH2,k, φH2,j)YJM (θH2,k, φH2,j).

Here we have employed the Gaussian quadrature (GQ) technique to numerically compute the
double integral over the product of the pair potential and two spherical harmonics. This
involves the weights wk and wj and discrete values of ∆E at 8×16 Gauss-Legendre grid-points
(θH2,k, φH2,j), with φX2 held constant. The size of the GQ grid was tested by Accardi for
H2-Cl2, using basis functions up to Jmax = 5, who found that it is more than sufficient to
obtain well converged solutions to the first eight eigenstates [27]. The interaction potential of
the H2-Br2 dimer is not much stronger, compared to the H2-Cl2 interaction, while the H2-F2

interaction is weaker. Thus, we can use the same 8 × 16 GQ grid for these systems as well.
Hence, each point of the rotational adiabatic potential is based on 128 MP2/AVQZ values
for ∆E(R, θX2 , θH2,k, φH2,j − φX2), or 384 single point calculations due to the CP correction.
We performed linear scans over θX2 , ranging from 0◦ to 90◦, with an increment of 5◦. For
each value of θX2 , a varying number of monomer separations R were evaluated. The smallest
increment used in the R direction was 10 pm. Collectively the ∆E contain interaction energies
for 50176, 87552 and 41600 individual structures for H2-F2, H2-Cl2 and H2-Br2, respectively.
For θX2 = 0◦, ∆E is of cylindrical symmetry, thus independent of φH2 , which reduces the
number of non-equivalent Gauss–Legendre points from 128 to 8. For θX2 = 90◦ the potential
has C2v symmetry, hence it is sufficient to evaluate one quarter of the sphere, which means 32
points in our case. Exploiting these symmetries, we also performed CCSD(T)/AVQZ level of
theory scans along R for θX2 = 0◦ and θX2 = 90◦.

At large separations R, W0(R, θX2) converges to zero for free pH2, while W1−3(R, θX2)
converge to the rotational energy 2B0 of free oH2. The interaction energies ∆W for the
complexes are thus given by ∆W0(R, θX2) = W0(R, θX2) for pH2 and ∆W1−3(R, θX2) =
W1−3(R, θX2)− 2B0 for oH2.
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Figure 3.7: Change in the absolute squares of the expansion coefficients for Y0,0, Y2,0 and Y4,0 of the

pH2 ground state Ψ0 of pH2-Br2 with R for θ = 0◦ and θ = 90◦. Additionally for pH2-F2
and pH2-Cl2 the absolute squared expansion coefficients for Y0,0 are given for θ = 0◦, to

showcase the decrease in the perturbation for the lighter halogens.

3.3.1 Nuclear spin effect

At this point, we can discuss the RA interaction potentials ∆W0(R, θX2) for the nuclear spin
isomers pH2 and oH2, and investigate the effect of the potential ∆E on the rotational wave
function of pH2, and on the probability densities |Ψn|2. Since, the perturbation due to the
intermolecular interaction is most pronounced for H2-Br2 we will focus our analysis on this
system. To highlight this, theR dependence of the absolute squares of the expansion coefficients
for the pH2 ground state Ψ0 for θ = 0◦ and θ = 90◦ are given in figure 3.7. Only the functions
Y0,0, Y2,0 and Y4,0 contribute to Ψ0 for θ = 0◦, as shown for pH2-Br2. Even at the minimum
of T2, Ψ0 is almost equivalent to the free pH2 ground state Y0,0, as is evident by the value of
|C0,0|2(0.415 nm) = 0.95. The very small contribution of Y4,0 vanishes for R > 0.45 nm. For
R > 0.55 nm also the contribution of Y2,0 vanishes, so that Ψ0 is equivalent to Y0,0. Since the
interactions of Cl2 and F2 are weaker and of shorter range, the |C0,0|2 values for Ψ0 at θ = 0◦

are consequently smaller at the Re for T2 and are effectively 1 for R > 0.4 nm, and R > 0.5 nm.
In contrast to θ = 0◦, for θ = 90◦ in the pH2-Br2 system, Ψ0 is effectively equivalent to Y0,0 at
the Re for T1.

Let us now begin to examine the nuclear spin effect for the pH2-Br2 system, for two points
(R, θBr2) close to the global and local minima of the RA potentials ∆Wn. The specific point
L near the global RA minima is given by R = 420 pm and θBr2 = 0◦, hence it represents a
collinear orientation of the Br2 bond axis and the COM of H2. Hence, the 4D pair potential
∆E(L) = ∆E(420 pm, 0◦, θH2 , φH2 − 45◦), that perturbs the rotation of pH2 and oH2, only
depends on θH2 , see figure 3.8. The minimum of the potential is given by the static T2
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structure, θH2 = 90◦, and the maximum is given by L, θH2 = 0◦ and θH2 = 180◦, with
intermediate energies in between. The rotational density |Ψ0|2 of the pH2 ground state (n = 0)
is given in figure 3.8.

From the analysis of the expansion coefficients we know, that the functions Y2,0 and Y4,0

are coupled to Y0,0. Due to the interaction, the density is not exactly spherical, but slightly
disturbed along θH2 . Probability density is added in the T2 region and lost in the L region.
In other words, pH2 is more aligned to the energetically favourable T2 structure and less
to the L structure. The resulting RA interaction energy for pH2 with Br2 at L is ∆W0 =
−2.3 kJ/mol. Hence, it is much lower in magnitude compared to the global minimum of ∆E
with −3.2 kJ/mol. This can be explained by the quantum mechanical averaging of the energies
of static structures, between the extremes of the strongly binding (T2) and weakly binding (L)
structure due to the zero point rotations of the pH2 molecule. Further, it can be shown that
the quadrupole-quadrupole interactions vanish for Y0,0 [27].

Next, we turn to the interactions of oH2 with Br2 for the same point, by inspecting the
solutions for n = 1, 2, 3, given in figure 3.8. The interaction energies for n = 1, 2 are
degenerate with ∆W1,2 = −2.64 kJ/mol. Thus the ground state of oH2 interacts stronger
with Br2 than does oH2 in the first excited state (∆W3 = −1.34 kJ/mol). Inspection of the
respective densities shows, that |Ψ1|2 and |Ψ2|2 are degenerate in θH2 but not in φH2 , since
∆E(L) is independent of φH2 both solutions are degenerate in energy. Moreover, both oH2

densities are aligned to the T2 structure, thereby avoiding the unfavourable L structure, which
leads to a stronger interaction with Br2. Likewise, |Ψ3|2 is aligned to the L structure, resulting
in a weaker RA interaction energy.

The second point, denoted by T , for which we repeat this analysis, is close to the local
minima of the RA potentials. This point is given by R = 354 pm and θBr2 = 90◦, and includes
the structures, where the Br2 bond axis and the COM of H2 form a T-shape. Figure 3.8
shows the potential ∆E(T ) = ∆E(354 pm, 90◦, θH2 , φH2 − 45◦), and rotational probability
distributions and RA interaction energies for n = 0, 1, 2, 3. At this point ∆E is weaker
and more isotropic, as it is described by the energetically similar T1, H and X structures.
The probability distribution of the pH2 ground state |Ψ0|2 is effectively spherical, since its
alignment to the T1 structure would imply a node in the wave function, only possible by a
mixing of higher angular momentum states, that would require kinetic energies in the order of
6B0. The rotational states of oH2 lose their degeneracy for the T-shaped orientations near Br2,
as ∆E(T ) depends on both θH2 and φH2 . Again, the ordering of the oH2 interaction energies
can be explained by the alignment of |Ψn|2 to more interacting structures, i.e. |Ψ1|2 aligns
to T1, |Ψ2|2 to H and |Ψ3|2 to X. In summary, part of the rotational wave functions of oH2

show alignment to structures with larger binding energies, while for the effectively spherical
pH2 distribution less binding structures enter the rotational averaging of the interaction energy
with an increased weight. This leads to a stronger interaction for the rotational ground state
of oH2 with X2, compared to the rotational ground state of pH2.
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Figure 3.8: Potentials for H2–Br2 at the MP2/AVQZ level of theory (1st row, in kJ/mol) and the

rotational densities for pH2 (2nd row) and oH2 (3rd-5th row), in the linear minimum (left

panel, θBr2 = 0◦, R = 420 pm) and the T-shape minimum (right panel, θBr2 = 90◦, R = 354

pm) of the RA potential of H2-Br2. The position of high symmetry structures is indicated

by T1, T2, ... see Fig. 3.3a. The central figure was published in reference [139]. Sketches

of the rotational densities are given to the left and right of the respective density plots, to

highlight the mutual orientation of the pH2 and Br2 molecules. Note that the size of the

hydrogen molecule has been greatly exaggerated in these sketches.
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3.3.2 Potential energy surfaces for the interaction of p/oH2 with X2

In this part, we compare the two-dimensional potential energy surfaces ∆Wn(R, θX2) for the
interaction with X2 of pH2 and oH2 in the rotational ground states with n = 0 and n = 1,
respectively. Remember, that ∆Wn were obtained by rotational adiabatization of the four-
dimensional MP2/AVQZ pair potentials. In general, the RA potentials, given figure 3.9, share
similar features. Each potential has two minima, the global minimum at θX2 = 0◦ and the
local minimum at θX2 = 90◦. As discussed previously, the global minimum corresponds to the
linear pH2-X2 structure, involving an averaging over the static T2 and L structures. Whereas
the local minimum corresponds to a T-shaped pH2-X2 structure, where the averaging involves
the static T1, H and X structures. Both, minima are connected via a saddle point near
θX2 = 45◦. The respective De and Re values are given in table 3.2. The global minima range
from −0.93 kJ/mol for pH2-F2 to −2.64 kJ/mol for oH2-Br2. The local minima range from
−0.55 kJ/mol for pH2-F2 to −1.68 kJ/mol for oH2-Br2. The ranges for the saddle points go
from −0.41 kJ/mol to −0.95 kJ/mol. For a given halogen molecule the interaction with oH2

(n = 1) is always stronger than for pH2 (n = 0). The para-ortho splittings at the global
minima are 0.15, 0.26 and 0.31 kJ/mol for F2, Cl2 and Br2, respectively. At the local minima
the para-ortho splittings are smaller in comparison, with 0.06, 0.10 and 0.11 kJ/mol, due
to the lower anisotropy of the underlying pair potentials. At the saddle points the para-ortho
splittings are with 0.08, 0.10 and 0.17 kJ/mol sightly larger in comparison to the values at local
minima, but still lower when compared to the splittings at the global minima. Inspection of
the minimum energy paths along θX2 , given in figure 3.10, shows that the para-ortho splittings
along these paths have a maximum at θX2 = 0◦ and are basically constant from θX2 = 5◦

onwards. Figure 3.10 also highlights the fact, that the RA potentials for Cl2 and Br2 are
more similar to each other and have a much higher anisotropy, in comparison to the respective
potential for F2.

For θX2 = 0◦ and θX2 = 90◦ CCSD(T)/AVQZ RA potentials have been obtained to counter
check the MP2/AVQZ results. The respective De and Re values are given in table 3.2. Com-
paring the CCSD(T) to the MP2 values for De shows that RA interactions at θX2 = 0◦ are
overestimated by MP2 by 0.1 to 0.2 kJ/mol. For θX2 = 90◦, MP2 underestimates De by
0.1 kJ/mol for the p/oH2-F2 complex and overestimates De by about 0.05 kJ/mol for p/oH2-
Cl2 and p/oH2-Br2. The biggest relative error in the MP2 results is the overestimation of the
already low energetic anisotropy of the p/oH2-F2 potentials. In view that CCSD(T)/AVQZ
underestimates the interaction energy compared to CCSD(T)/CBS, the MP2 results can be
considered to be reliable.
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3 Rotationally adiabatic pair interactions of H2 with the dihalogen molecules F2, Cl2 and Br2

3.3.3 Fit to analytic function

Analytic expressions of potentials facilitate the future use in simulations. The rotationally
adiabatic MP2 pair potentials ∆Wn were fitted to the Hartree–Fock–dispersion (HFD) func-
tion [146].

∆WHFD(R, θX2) = a(θX2) exp[−(b(θX2)R+ c(θX2)R2] (3.17)

−S(R)
(
C6(θX2)
R6 + C8(θX2)

R8 + C10(θX2)
R10

)
,

where the first term represents the, in total repulsive, sum of the Pauli-repulsion, electro-
static and induction interactions, whereas the second term models the attractive dispersion
interaction. The dispersion terms decay algebraically, hence a switching function

S(R) =

 exp[−(1.28Re(0◦)/R− 1)2], if R < 1.28Re(0◦)

1, if R ≥ 1.28Re(0◦),
(3.18)

which truncates the dispersion energy toward short internuclear distances, becomes necessary.
The shape of the switching function and the parameter 1.28 originates from a fit to the potential
of the 3Σ+

u state of H2, for witch both terms in equation 3.17 without S(R) are known [146].
In order to decrease the number of parameters of the original HFD function, equation 3.17,
we performed fits of 1D cuts for for fixed θX2 using different parameter sets. We found, that
we could omit the R2 dependence in the repulsion exponent and the R−10 dependence of the
original dispersion term. Neglect of the R−8 dependence also resulted in good 1D fits. However,
for the 2D fits, the R−8 dependence was necessary in order to increase the flexibility of the
HFD term. Thus, the R−8 terms was kept. To further reduce the number of parameters,
we decided to neglect the angular dependence of the switching function S, by making it only
dependent on the position Re(0◦) of the global minimum of the pH2-X2 potential. This leaves
four angular dependent parameters a, b, C6 and C8. The modified HFD function used in this
work thus reads,

∆WmodHFD
n (R, θX2) = a(θX2) exp[−b(θX2)R]− S(R)

(
C6(θX2)
R6 + C8(θX2)

R8

)
. (3.19)

The angular dependence of these parameters is represented by linear expansions in the first six
even Legendre polynomials (LP) P2k given by,

X(θX2) =
5∑
k=0

X2kP2k(cos θX2), (3.20)

where X0 to X10 are the six corresponding expansion coefficients. Hence, each modified HFD
potential depends on 25 parameters, of which one (Re(0◦)) is constant and determined prior
to the fitting procedure. The use of the HFD function and the expansion in even-ordered
Legendre polynomials is motivated by the fit of the pH2-Cl2 potential by Accardi [27]. Ad-
ditionally, the HFD function has been designed explicitly to describe the similar weak rage
gas interactions [146]. Here, we employ a HFD function, which in comparison to the one in
reference [27] has less physically motivated parameters, but adds angular flexibility in the re-
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3.3 Rotationally adiabatic potential energy surfaces

maining parameters due to larger LP expansions. An flexibility that is clearly necessary in
view of the angular anisotropy of the RA potentials, see figures 3.10 and 3.9.

In order to simultaneously optimize the remaining 24 parameters, we used to following
strategy, which was adapted from [27]. First, we obtained a, b, C6 and C8 values for 1D cuts
along θX2 , by minimizing the root mean square deviation (RMSD) of the fitfunction ∆WmodHDF

n

with respect to the tabulated ab inito RA potential ∆Wn for a fixed θX2 . For each parameter,
the values for θX2 = 0◦, 15◦, 45◦, 60◦, 75◦ and 90◦, were used individually to generate an initial
guess for each of the six expansion coefficients. The resulting initial angular dependence for
each parameter is given in figures 3.11-3.13, by dotted lines. Then, fits of the 2D RA potentials
were performed by nonlinear optimization of the expansion coefficients, under the constraint
of positive a, b, C6 and C8 values, by minimization of the RMSD of ∆WmodHDF

n with respect
to ∆Wn. For the nonlinear optimization the ’fminsearch’ routine of Matlab (version R2011a
) was used. The resulting angular dependence of the parameters a, b, C6 and C8 is shown in
figures 3.11-3.13. The repulsion scaling parameter a behaves similar to a step function, being
maximal for small θX2 angles and small at larger angles. Parameter b has nearly constant
values around 2 1/a0. The angular dependence of C6 shows a greater variety and is often
coupled to that of C8. For small θX2 where C8 becomes more important, C6 has lower values
in many cases.

The functions ∆WmodHDF
n give smooth and accurate representations of the RA potentials

as shown in the contour plots for ∆WmodHDF
n also given in the figures 3.11-3.13. The contour

plots also show all RA potentials that are asymptotically connected to the free rotor ground
state of oH2.

Additionally, 1D cuts of the final ∆WmodHDF
n potential and the original data points are given

for θX2 = 0◦, 45◦ and 90◦. This highlights the overall excellent quality of the obtained fits.
Indeed, the global minima are reproduced with maximal deviations of 2%. The fit parameters
for ∆WmodHDF

n=0,1,2,4 were made available in the supplementary material of reference [139].
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Figure 3.11: H2-F2: The figure shows initial and final fit parameters, contour plots and cuts of the RA

potentials ∆WmodHDF
n=0,1,2,4 overlaid with original data points of ∆Wn=0,1,2,4. Contour lines

and color scale as in figure 3.9.
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Figure 3.12: H2-Cl2: The figure shows initial and final fit parameters, contour plots and cuts of the RA

potentials ∆WmodHDF
n=0,1,2,4 overlaid with original data points of ∆Wn=0,1,2,4. Contour lines

and color scale as in figure 3.9.
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Figure 3.13: H2-Br2: The figure shows initial and final fit parameters, contour plots and cuts of the RA

potentials ∆WmodHDF
n=0,1,2,4 overlaid with original data points of ∆Wn=0,1,2,4. Contour lines

and color scale as in figure 3.9.
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3.3 Rotationally adiabatic potential energy surfaces

3.3.4 Comparison of interactions

Now, that we have determined the lowest RA pair interactions of p/oH2-X2 (n = 0, n = 1),
we can compare them to the interactions present in similar systems. First, we want to take
into account the interaction of rage gas (Rg) atoms (He, Ne and Ar) with dihalogens, i.e. the
Rg-X2 pair potentials for X2 = {F2,Cl2,Br2}. Chan et al. calculated the well depths of the
Rg-F2 potentials at the CCSD(T)/(aug-cc-pVQZ+bf) level of theory, where the atom centred
basis set was augmented by bond functions (bf), i.e. functions located in-between the rare
gas atom and the F2 molecule [147]. The minima of the respective pair potentials are found
for linear and T-shaped structures and are of similar depth, with the global minima assigned
to the linear structures. In terms of De and Re the p/oH2-F2 potential is most similar to
that of Ne-F2. Comparing the well depths of the linear structures, we find that p/oH2 fits
in-between Ne and Ar. The full ordering of the De values for the linear structures is therefore:
He < pH2 < oH2 < Ne < Ar. For the T-shaped structures, the well depth for p/oH2 is again
similar to Ne but effectively smaller, which may be related to the fact that Ne can approach
F2 closer Re(Ne) = 308 pm vs. Re(pH2) = 322 pm. The following ordering of T-shape well
depths results: He < Ne < pH2 < oH2 < Ar, for the interaction with F2, see also figure 3.14.
In summary, the interaction of F2 with pH2 is twice as large in comparison to He, it is very
similar to Ne and weaker than that with Ar.

Changing to the next halogen Cl2, we compare our results to the He-Cl2 and Ne-Cl2 MP4
and Ar-Cl2 CCSD(T) well depths of Williams et al. [148], who used large well tempered basis
sets by Huzinaga and Klobukowski augmented by polarization and bond functions [148]. For
Cl2 the interaction with pH2 is stronger than with He and Ne, for both linear and T-Shaped
structures. The ordering of absolute De values is thus, He < Ne < pH2 < oH2 < Ar, see also
figure 3.14. Interestingly, the Re values of pH2-Cl2 are slightly smaller than for He-Cl2. Again,
the well depths of the interactions with rare gas atoms are almost identical for both structures,
while for pH2 the highest interaction is clearly present for the linear structure. The potentials
for the Rg-Br2 complexes have been investigated by Prosmiti et al. [149] at the CCSD(T)
level of theory. For Br they used the ECP from the Stuttgart group and the related SDD
basis set, augmented with (sp) diffusion and (3df) polarization functions. For He the aug-cc-
pV5Z and for Ne and Ar the respective aug-cc-pVQZ basis set where employed. Additionally,
(3s3p2d2f1g) bond functions were placed in the center of the van der Waals bond. When we
compare the well depths for the linear and T-shape complexes of p/oH2-Br2 to those of Rg-Br2,
we find the same ordering as previously for Cl2, see also figure 3.14. For the linear structure,
the CCSD(T) values for Re are also considerably smaller in the case of pH2-Br2 (428 pm) in
comparison to He-Br2 (442 pm).

Next, we compare the interaction of pH2 with dihalogens to that of pH2 with other small
molecules, pH2 [26, 150], CO [26, 151], CO2[26, 152], N2O [153], HCN [154, 155], OCS [156,
157] and H2O [158, 159]. The minima of the respective potential energy surfaces given in
the literature are compiled in table 3.2. For the linear heteronuclear diatomic or triatomic
molecules without a center of inversion, three minima for the interaction with pH2 are present.
Two linear minima and one distorted T-shape minimum. Only for the pH2-HCN complex a
linear structure corresponds to the global minimum. The global minima of all other complexes
corresponds to a T-shaped (CO2) or distorted T-shaped structure. Concerning the linear
minima, pH2 interacts stronger with the atom of higher atomic number, i.e. for pH2-CO and
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Figure 3.14: Comparison of well depths for the interaction of halogens with para- and orthohydrogen

(CCSD(T)/AVQZ) from this work, and with rare gas atoms, from references [147–149].

The values are also given in table 3.2. Details on the levels of theory (CCSD(T) except

for He-Cl2, Ne-Cl2 MP4) are given in subsection 3.3.4.

pH2-N2O the linear well near O is deeper compared to that near C and N. For HCN and OCS
the linear well near N and S is deeper, compared to the well near H and O. The interaction
between two pH2 molecules is just −0.295 kJ/mol, whereas the highest interaction energy in
this set is present for pH2-OCS with −1.729 kJ/mol. Comparing the interactions with pH2

including also our RA MP2/AVQZ results for the halogens, the ordering from weak to strong
reads: pH2 < CO < F2 < HCN < H2O < CO2 < N2O < OCS < Cl2 < Br2. This ordering
follows the well known trend that the attractive interactions with closed shell systems with
more electrons are stronger due to an increase in the dipole polarizabilites and in turn the
attractive dispersion interactions.
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3.3 Rotationally adiabatic potential energy surfaces

Linear (θX2 = 0◦) T–shape (θX2 = 90◦)
Complex Ref. Method De Re De Re

pH2-F2 CCSD(T) 0.845 361 0.678 322
MP2 0.932 357 0.552 328

oH2-F2 CCSD(T) 0.986 356 0.725 325
MP2 1.081 353 0.606 330

He-F2 [147] CCSD(T) 0.429 347 0.382 300
Ne-F2 [147] CCSD(T) 0.736 359 0.735 308
Ar-F2 [147] CCSD(T) 1.469 388 1.316 344
pH2-Cl2 CCSD(T) 1.686 412 1.390 343

MP2 1.882 408 1.419 342
oH2-Cl2 CCSD(T) 1.938 409 1.459 345

MP2 2.144 404 1.518 343
He-Cl2 [148] MP4 0.481 420 0.449 345
Ne-Cl2 [148] MP4 0.973 427 0.925 350
Ar-Cl2 [148] CCSD(T) 2.572 448 2.524 374
pH2-Br2 CCSD(T) 2.111 428 1.539 353

MP2 2.330 424 1.567 352
oH2-Br2 CCSD(T) 2.410 425 1.623 356

MP2 2.638 421 1.682 354
He-Br2 [149] CCSD(T) 0.584 442 0.482 358
Ne-Br2 [149] CCSD(T) 1.120 449 0.805 360
Ar-Br2 [149] CCSD(T) 3.143 463 2.708 380

Linear T–shape
Complex Ref. Method De Re De Re De Re

pH2-pH2 [26, 150] CCSD(T) 0.295 346

pH2-CO [26, 151] CCSD(T) θ1 = 0◦(C) θ1 = 180◦(O) θ1 = 85.8◦

0.443 440 0.514 400 0.610 360
pH2-CO2 [26, 152] CCSD(T) θ1 = 180◦ θ1 = 90.0◦

0.667 444 1.340 319
pH2-N2O [153] CCSD(T) θ1 = 0◦ (N) θ1 = 180◦ (O) θ1 = 92.58◦

0.60 460 0.821 429 1.691 308
oH2-N2O [153] θ1 = 0◦ (N) θ1 = 180◦ θ1 = 92.88◦

0.86 460 1.02 430 2.09 302
pH2-HCN [154, 155] CCSD(T)-F12a θ = 0◦ (H) θ = 180◦(N) θ ≈ 60◦

spherical average ≈ 0.66 410 0.948 430 0.750 407
pH2-OCS [156, 157] MP4 θ = 0◦ (S) θ = 180◦ (O) θ = 105◦

spherical average 1.093 452 0.828 492 1.729 335
pH2-H2O [158, 159] CCSD(T), θ = 110.00◦, χ = 0◦

CCSD(T)-R12 1.167 336

Table 3.2: Ab initio well depths De in kJ/mol and equilibrium distances Re in pm, for the p/oH2-X2
and Rg-X2 complexes with X = F,Cl,Br; Rg = He,Ne,Ar as well as small molecules from

the literature. This table was published in reference [139].
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3 Rotationally adiabatic pair interactions of H2 with the dihalogen molecules F2, Cl2 and Br2

3.4 Bound state calculations for pH2-X2 van der Waals dimers

For the comparison with spectroscopic data, the well depths De are of limited use, as only the
dissociation energy D0 of the vibrational ground state can be measured. Since H2 is a very
light molecule, we expect the zero point energy (ZPE), i.e. the difference between D0 and De

to be significant.

While no experimental data on H2-F2, H2-Cl2 and H2-Br2 is (to our knowledge) available,
Darr et al. and Kenny et al. reported measurements on H2-I2 [124, 125]. The MP2/AVTZ+bf
well depths for the T2, L, and T1 structures are 3.11 kJ/mol, 1.71 kJ/mol and 1.95 kJ/mol [124].
The ZPE contribution can be estimated by comparison of the calculated well depths to the
measured ground state binding energy D0, which is 1.23 kJ/mol for the linear pH2(J=0)-I2

complex [124]. The linear oH2(J=1)-I2 dimer has a binding energy of 1.42 kJ/mol [124]. It is
stronger bound than the pH2(J=0)-I2 dimer. The binding energy of the T-shaped oH2(J=1)-
I2 dimer has been measured to lie between 1.09 and 1.12 kJ/mol [125]. The estimated ZPE
contribution to the binidng energy of the linear pH2(J=0)-I2 dimer relative to the T2 well
depth is thus 60%. For the present three dimers we expect at least similar ZPEs.

In this chapter, we determine binding energies D0 and whole bound state energy spectra
for the pH2 species of the three van der Waals dimers in their rotational ground states. For
this, we solve the time independent Schrödinger equation for the nuclear motion on the RA
MP2/AVQZ potentials numerically, as described in the following paragraph.

Before we proceed, we briefly discuss why the Born-Oppenheimer approximation is justified
for the RA pH2-X2 potentials, but beaks down for those of oH2-X2. The lowest RA potential
for pH2-X2 is separated by about 6B0(H2) = 4.1 kJ/mol from the potential of the next higher
pH2(J=2) states, as indicated exemplary for the pH2-Br2 complex in figure 3.15a. Therefore,
we expect that the NACT between the bound states of the relevant pH2-X2 RA potentials
∆W0 and the five RA potentials of the pH2(J=2)-X2 species are small. Thus, we assume
that the BOA holds for the pH2(n=0)-X2 RA potential. The three RA potentials that are
asymptotically correlated with the J=1 ground state of oH2, i.e. ∆W1, ∆W2 and ∆W3, are
very close in energy, as is exemplary shown in figure 3.15b for oH2-Br2. Hence, we expect
that the bound states of these three potentials are highly coupled. This coupling complicates
the bound state calculations for oH2-X2 significantly. It would be necessary to calculate the
NACTs and then solve the coupled equations on the three RA surfaces simultaneously. In
this case, it is probably easier to avoid the RA and calculate the lowest bound states of the
oH2-X2 dimers directly from the 4D potentials. This has been achieved for example for H2-CO
in ref. [151].

The bound states of the pH2-X2 van der Waals complexes can be calculated by solving the
rovibrational Schrödinger equation with the Hamiltonian,

Ĥν=ν′=0 = − ~2

2µ
∂2

∂R
+ l̂2

2µR2 +
ĵ2
X2

2µX2r
2
X2,ν=0

(3.21)

+
ĵ2
H2

2µH2r
2
H2,ν′=0

+ ∆E(R, θX2 , θH2 , φH2 − φX2) (3.22)

+Evib,X2,ν=0 + Evib,H2,ν′=0, (3.23)
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(a) pH2-Br2: The ground state RA potential

∆W0 is separated by about 6B0(H2) =
4.1 kJ/mol from the RA potentials associ-

ated with the next higher pH2(J=2) state.

Of these only ∆W4 is depicted schemati-

cally by shifting of ∆W0. NACTs are esti-

mated to be small.

(b) oH2-Br2: The first three RA potentials

∆W1, ∆W2 and ∆W3 are close in energy.

NACTs are estimated to be large.

Figure 3.15: RA pair potentials for o/pH2-Br2: estimation of NACTs.

where µ = mH2mX2
mH2+mX2

is the reduced mass of the complex, µX2 = mX
2 and µH2 = mH

2 denote
the reduced mass of the dihalogen and dihydrogen, rX2,ν=0 and rH2,ν=0 are the average bond
lengths of the dihalogen and dihydrogen in their respective vibrational ground states with
energies Evib,X2,ν=0 and Evib,H2,ν′=0, respectively. The first term describes the kinetic energy
of the motion along R, the second term describes the rotation of the complex, whereas the
third and and the fourth terms describe the rotations of the dihalogen and the dihydrogen
molecule. All motions are subject to the interaction potential given by ∆E. The total angular
momentum operator is Ĵtot = l̂+ ĵX2 + ĵH2 . After the rotational adiabatization with respect to
the fast rotation of dihydrogen, the Hamiltonian becomes dependent on the quantum number
n for the rotational state of dihydrogen, where n = 0 is asymptotically related to jH2 = 0
(pH2). The rotationally adiabatized Hamiltonian then reads,

Ĥn=0,ν=ν′=0 = − ~2

2µ
∂2

∂R
+ l̂2

2µR2 +
ĵ2
X2

2µX2r
2
X2,ν=0

+W0,ν=0,ν′=0(R, θX2) (3.24)

+Evib,X2,ν=0 + Evib,H2,ν′=0. (3.25)

Since we are interested only in energies relative to the individual dissociation limits, we omit
Evib and use ∆W0 = W0. The Hamiltonian then only contains terms for the rotation and
vibration of the complex as a whole and the rotation of the dihalogen,

Ĥn=0,ν=0,ν′=0 = − ~2

2µ
∂2

∂R
+ l̂2

2µR2 +
ĵ2
X2

2µX2r
2
X2,ν=0

+ ∆W0,ν=ν′=0(R, θX2). (3.26)

For the calculation of the bound states, we fix the total angular momentum to Jtot = 0. In
this case, we can neglect the rotation of the complex and only consider the vibration along R
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X µ = µH2X2 µX2 rX2,ν=0
19F 3489.5886 17315.9881 2.6777
35Cl 3571.7725 31872.1647 3.8418
79Br 3628.3836 71929.6758 4.3105

Table 3.3: Reduced masses and constant dihalogen bond lengths in a.u. as used in the calculation of

the bound state eigenvalue spectra.

and the rotation of the dihalogen simultaneously, further simplifying the Hamiltonian to

ĤJtot=0,n,ν=ν′=0 = − ~2

2µ
∂2

∂R
+

ĵ2
X2

2µX2r
2
X2,ν=0

+ ∆W0,ν=ν′=0(R, θX2). (3.27)

The respective Schrödinger equation was solved numerically on a two-dimensional discrete
variable representation (DVR) grid in R and θ using the Wavepacket code [160, 161]. For the
R dependence we used 64 evenly spaced DVR points between 2.5 and 14 Å and plane waves
for the basis expansion. The basis functions for the angular degree of freedom are the even
and odd spherical harmonics with m = 0 up to l = 64 evaluated at 65 discrete Gauss-Legendre
grid points. Due to time constrains, we did not evaluate the basis expansions individually
for even and odd functions, as this feature was not yet implemented in the Wavepacket code.
Consequently, some states which are localized in the linear well are two fold degenerate and
we could not resolve the respective tunnelling splitting. The reduced masses and the dihalogen
equilibrium bond lengths used in the bound state calculations are given in table 3.3.

Modes The shape of the RA potentials with two minima for the linear and T-shaped complex
separated by an isomerization barrier restricts the internal motions of the pH2-X2 van der Waals
dimers. From the perspective of a fixed X2 the relative motions of the pH2 molecule may be
described by stretching in R and two bending modes associated with the linear and T-shape
wells, as depicted in figure 3.16. The nodal structure of the bound state wave functions may
be translated into respective auxiliary quantum numbers νR, ωL and ωT , with nodal surfaces
perpendicular to the mode vectors. For bound states with energies below the isomerization
barrier and those which are clearly localized within one of the two wells, this scheme my
apply. For bound states, where L-bending and T-bending modes are simultaneously excited,
the assignment in terms of (νR, ωL, ωT ) may be ambiguous and thus difficult.

Figure 3.16: Schematic depiction of the L and T-shape forms of the pH2-Cl2 dimer super imposed on

the RA-potential in Cartesian coordinates. Arrows denote the R-stretching mode (red),

the L-bending mode (green) and the T-bending bode (yellow).
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3.4 Bound state calculations for pH2-X2 van der Waals dimers

3.4.1 Bound states of the pH2-F2 van der Waals dimer.

The resulting bound states of the pH2(n = 0, ν′ = 0)-F2, (ν = 0) dimer based on the respective
RA potential are given in figure 3.17, which shows density plots superimposed on the RA
potential. Further, table 5.1 (appendix) gives the bound state energies and the quanta of
bending and stretching modes. In order to compare the progression of the bound state energy
levels of all three investigated pH2 dimers on the same scale, we refer to figure 3.20.

The present RA potential gives rise to five bound states, which all lie above the isomerization
barrier of −0.41 kJ/mol. The ground state has an energy of −0.209 kJ/mol and is nearly
degenerate with the second state at −0.207 kJ/mol. Both states are mainly localized in the
linear well, with considerable density tails over the isomerization barrier. The third bound state
has an energy of −0.169 kJ/mol and is mainly localized in the T-shape well. Some density of
this state is also present in the linear well. The fourth and fifth state are even more delocalized
and can be characterised by one and two additional quanta in the T-bending mode. Thus, the
pH2-F2 dimer is weakly bound and dissociates upon excitation of the stretching mode along
R. The relative ZPE contribution to the pH2-F2 van der Waals bond amounts to 85%, with
respect to the well depth of the 4D MP2/AVQZ PES (T2 minimum: 1.31 kJ/mol).

The RA potential obtained from the 4D MP2/AVQZ PES predicts pH2-F2 to be linear.
The energetic difference to the T-shaped dimer is just 0.04 kJ/mol, which raises the question
whether the prediction of a linear structure is reliable. Concerning the T-shape, MP2/AVQZ
underestimates the well depth by 0.13 kJ/mol with respect to CCSD(T)/AVQZ, see table 3.2.
Likewise, the depth of the linear well is overestimated by MP2/AVQZ in comparison to
CCSD(T)/AVQZ. It seems possible, that the RA potential at the CCSD(T) level may give
rise to a T-shaped ground state for the pH2-F2 dimer. We can therefore make no reliable
prediction with respect to the shape of the pH2-F2 dimer, other than that it is highly flexible.
Quantum effects due to nuclear motion clearly dominate the structure and the binding energy
of the pH2-F2 van der Waals dimer.
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Figure 3.17: Bound states densities for the pH2(n = 0, ν′ = 0)-F2, (ν = 0) with Jtot = 0 van der Waals

dimer, overlaid on the RA potential. The contour plots of the densities show that the

ground state is mainly localized in the linear well. However, some density is also present

in the T-shaped well.
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3 Rotationally adiabatic pair interactions of H2 with the dihalogen molecules F2, Cl2 and Br2

3.4.2 Bound states of the pH2-Cl2 van der Waals dimer.

The RA potential of the pH2(n = 0, ν′ = 0)-Cl2, (ν = 0) van der Waals dimer with Jtot = 0
gives rise to 21 bound states, given in table 5.2 (appendix), of which the lowest two form a nearly
degenerate pair. This twofold degenerate ground state has an energy of −0.893 kJ/mol and is
localized in the linear well of the potential, see figures 3.18 and 3.20, resulting in a respective
ZPE contribution of 63%, with respect to the well depth of the 4D MP2 PES, see table 3.4.
The ground state and the first exited state lie below the isomerization barrier of −0.73 kJ/mol,
where the latter is localized in the T-shape well and has an energy of −0.798 kJ/mol. The
next higher states (3, 4, 7), which are also localized in the T-shape well, show a progression in
the T bending quantum number. With up to two quanta in this bending mode, the densities
of the respective states, are completely localized in the T-shape well. Beginning with state
number 7, with three T-bending quanta, functions localized in the linear well mix in as well.
The mixing becomes more pronounced for state 8 and higher, for which no clear localization
could be assigned, these states are labelled in table 5.2 (see appendix) with (L,T). State 5
and 6 from a nearly degenerate pair, with one quantum in the linear bending mode, see also
figure 3.18. The potential also supports one quantum in the R-stretching mode, giving rise to
six states, of which two (13, 17) are localized in the T-shape well, three in the linear well (14,
15, 20) and one delocalized over both wells (19). Besides the singly excited R-stretching mode
only one additional bending quantum in either the L or T-bending gives rise to the bound
states 17 and 20. Interesting is, that the first bound state excited in the R-stretching mode
is localized in the T-shape well, and not the deeper linear well. The bound state structure of
the pH2-Cl2 dimer shows clearly, that motion along the T-bending mode is less hindered than
the motion along the L-bending mode. For example, the energy, that is needed to excite the
L-bending mode by one quantum, exceeds the energy of threefold excitation of the T-bending
mode, see also figure 3.20.

The energetic difference between the linear ground state and the lowest T-shape bound
state is 0.09 kJ/mol. Since the difference between the linear and T-shape well depths at the
MP2/AVQZ level is with 0.46 kJ/mol, in good agreement to the CCSD(T)/AVQZ value of
0.30 kJ/mol, see table 3.4, it is likely that pH2-Cl2 is indeed linear.

3.4.3 Bound states of the pH2-Br2 van der Waals dimer.

The bound state spectrum of the pH2(n = 0, ν′ = 0)-Br2, (ν = 0), Jtot = 0 dimer consists of
43 bound states of which 10 from degenerate or nearly degenerate pairs. The large number of
bound states is not surprising, considering that pH2-Br2 interacts more strongly than pH2-Cl2
and pH2-F2 and that the rotational constant of Br2 is smaller than that of the lighter halogens.
The energies and locations and associated quanta in the bending and stretching modes of the
bound states are given in table 5.3 (appendix). Density plots of selected bound states are
provided in figure 3.19. The ground state is located in the linear well and has an energy of
−1.3402 kJ/mol, the respective relative ZPE contribution is thus 57%, with respect to the well
depth of the 4D MP2 PES. The first excited bound state has an energy of −0.961 kJ/mol
and is localized in the T-shape well, see figure 3.19. In total four energy levels, of which
two are twofold degenerate, lie below the isomerization barrier of −0.78 kJ/mol, with up to
one quantum in the L and T-bending modes. Beginning with the sixfold excitation of the
T-bending, and three fold excitation of the L-bending mode the bound states with νR = 0

90



3.4 Bound state calculations for pH2-X2 van der Waals dimers
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dimer with Jtot = 0 , overlaid on the RA potential.

E0 = −1.340 kJ/mol

E15 = −0.417 kJ/mol

E35 = −0.053 kJ/mol

E41 = −0.007 kJ/mol

-5 0 5

x (Å)
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become highly mixed over both wells, representing almost free rotation of pH2 from the point
of view of a static Br2. Accordingly, the determination of the exact number of quanta for the
bending modes becomes increasingly difficult. The R-stretching mode can be excited by up
to two quanta, see also the selected bound state densities in figure 3.19. Due to the deeper
well depths in comparison to pH2-Cl2, the first bound state with an excited R-stretching mode
is localized in the linear well, see also figure 3.20. With respect to pH2-Cl2 this situation is
reversed in pH2-Br2. Note also the increased energetic separation between the first states with
νR = 1, in comparison to H2-Cl2. States with one quantum in the R-stretching mode support
also more than 2 and 4 additional quanta in the L and T-bending modes. The states with a
twofold excited R-stretching mode lie so close to the dissociation barrier, that excitation of the
bending modes would lead to a dissociation of the complex. If these bound states could be
found also for RA potentials at the CCSD(T) level of theory is questionable.

The predicted linear structure of pH2-Br2 is assumed to be reasonable, based on the energetic
difference of 0.38 kJ/mol between the lowest linear and T-shape bound states, see also table 3.4.
And because MP2/AVQZ overestimates the difference between the linear and T-shape wells of
the RA PES by only 0.2 kJ/mol, with respect to CCSD(T)/AVQZ.
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3.5 Summary and conclusions

Dimer Structure De,el De,RA D0 1− De,RA
De,el

1− D0
De,el

pH2-F2 linear 1.31 0.93 0.21 0.30 0.85
T-shape 0.68 0.55 0.17

MP2/AVQZ ∆(L− T ) 0.64 0.38 0.04
CCSD(T)/AVQZ 0.17

pH2-Cl2 linear 2.43 1.88 0.89 0.23 0.63
T-shape 1.59 1.42 0.80

MP2/AVQZ ∆(L− T ) 0.84 0.46 0.09
CCSD(T)/AVQZ 0.30

pH2-Br2 linear 3.20 2.33 1.34 0.29 0.57
T-shape 1.82 1.57 0.96

MP2/AVQZ ∆(L− T ) 1.39 0.76 0.38
CCSD(T)/AVQZ 0.57

Table 3.4: Comparison of well depths (kJ/mol): De,el (linear = T2, T-shape =T1) 4D MP2/AVQZ

PES and De,RA for 2D RA PES, dissociation energies D0 (kJ/mol) of the lowest linear and

T-shape bound states of the RA potentials, the energy difference ∆(L − T ) between linear

and T-shaped dimers and the relative ZPE contribution with respect to De,el, for the rotation

of H2 and the vibration of the van der Waals dimer.

3.5 Summary and conclusions

In most conditions, dihydrogen and dihalogen molecules react violently. However, the reaction
is suppressed at ultra low temperatures. Van der Waals interactions then give rise to the
formation of dimers H2-X2 with interesting bound state spectra, which depend explicitly on
the nuclear spin isomer of the dihydrogen molecule present in the dimer. In this chapter, we
described the development of rotationally adiabatic pair potentials for the p/oH2-X2 dimers
with X2 = F2,Cl2,Br2.

We also investigated the underlying intermolecular interactions. The comparison of the
SAPT analysis with the quadrupole-quadrupole interactions shows, that the latter interactions
are not the reason for the much stronger binding interaction of the T2 structures. According
to the SAPT results, higher-order electrostatic, induction and dispersion interactions are more
dominant for the T2 structures, making them the static global minimum structures of the H2-X2

dimers. A more sophisticated electrostatic model, for example with distributed multipoles [3],
would allow a more realistic description of the electrostatic interactions near the van der Waals
minimum of the T2 structure, compared to the quadrupole-quadrupole interaction model.
Such a model would then also predict the global minimum for the T2 structure, solely based
on electrostatics. The electrostatic preference for the collinear structures is well known in the
concept of the σ-hole halogen bond [5]. In this regard, the investigated H2-X2 interactions for
the T2 structures can be classified as weak, dispersion-dominated σ-hole bond [5].

The rotational adiabatization of the four-dimensional pair potentials, yielded effective two
dimensional potential energy surfaces for p/oH2-X2. We restricted our analysis to the pH2-X2

ground state surfaces and the three surfaces (per X2) which are asymptotically correlated with
the three fold degenerate rotational ground state of oH2. Two oH2-X2 surfaces show stronger
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binding interactions than pH2-X2, while one shows less binding. This can be explained by
the alignment of the rotational states to static structures of different energy, and the loss of
quadrupole-quadrupole interactions for pH2-X2.

The global minimum of the pH2-X2 and of two lowest oH2-X2 surfaces belong to linear
p/oH2-X2 dimers, while the only other local minimum corresponds to a T-shaped dimer. For
these surfaces, the global minimum is significantly lower in comparison to the second minimum,
hence the lowest bound state for the pH2-X2 dimers in the rotational ground state Jtot = 0
is localized in the linear well. However, for pH2-F2 it seems possible, that a T-shape ground
state could be favoured at the CCSD(T) level of theory. The prediction of linear structures for
pH2-Cl2 and pH2-Br2 on the other hand is more reliable.

Because H2 is very light, a large ZPE gives rise to dissociation energies (D0) that are con-
siderably lower than the well depths (De). In other words, consideration of nuclear quantum
effects is absolutely necessary in order to determine binding energies of van der Waals dimers
involving H2. For example, the T2 global minimum well depth of the static MP2/AVQZ 4D
pair potential of H2-F2 is 1.310 kJ/mol (1.283 kJ/mol) at the MP2/AVQZ (CCSD(T/CBS)
level of theory. The rotational adiabatization decreases the MP2 well depth by 30% to 0.931
kJ/mol for the linear pH2-F2 isomer. The dissociation energy D0 with respect to the vibra-
tional ground state of the pH2-F2 dimer with Jtot = 0 is 0.209 kJ/mol. Thus, the vibrational
ZPE (after the rotational adiabatization) is 0.722 kJ/mol, or 78% of the well depth of the
RA potential or 55% of that of the 4D pair potential. In total, quantum effects dominate the
dissociation energy of the pH2-F2 van der Waals dimer, which is 85% lower than the electronic
interaction energy at the global minimum. As explained for pH2-F2, the differences between
the binding energy and the well depths relative to De,el are in %: 85; 30; 55 ((De,el − D0);
(De,el−De,RA); (De,RA−D0), see also figure 3.21), while for H2-Cl2 they are 63; 23; 40, and
for H2-Br2 we find 57; 28; 29, always with respect to pH2(n = 0, ν′ = 0)-X2, (ν = 0), Jtot = 0
system. A comparison of the RA well depth and binding energy relative to the well depth of
the global minimum of the 4D potential is shown in figure 3.21.
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3.5 Summary and conclusions

Dimer Structure Re,RA R0 ∆(R0 −Re,RA)
pH2-F2 L 3.57 4.11 0.54

T 3.30 3.92 0.62
pH2-Cl2 L 4.08 4.37 0.30

T 3.41 3.71 0.30
pH2-Br2 L 4.25 4.48 0.23

T 3.51 3.78 0.27

Table 3.5: Position of the linear and T-shape minima Re,RA (Å) of the RA potentials and the expectation

values R0 (Å) for the lowest bound state localized in the respective well are given for the pH2-

X2 van der Waals dimers. ∆(R0 − Re,RA) denotes the difference between the expectation

value of the van der Waals bond length and the RA value.

Due to the weaker interactions the low-lying bound states of the pH2-F2 complex are less
localized in comparison to those of pH2-Cl2 and pH2-Br2. In consequence, the expectation
values 〈R〉 for the lowest state in both wells are shifted with respect to the positions of the
potential minima Re by 0.54 and 0.62 Å in the case of H2-F2, compared to 0.30 and 0.30 Å
and 0.23 and 0.27 Å for H2-Cl2 and H2-Br2, see table 3.5. Relative to Re, the pH2-F2 bond
(R0) is stretched by 15%, in comparison to 5% for pH2-Br2, by the zero point motion.

The bound states calculation of the dimers with pH2 can be performed on a single RA
PES, due to the energetic separation between pH2(J=0) and pH2(J=2). The respective bound
state energy levels are shown in figure 3.20. A bound states calculation for dimers with oH2

on the three RA PES would demand their non-adiabatic coupling. Therefore, they were not
considered here. It is however clear, that the rotational energy spectrum of the oH2-X2 dimers
must be much richer in comparison to the ones with pH2, as the three fold degeneracy of oH2

is lifted upon interaction with the dihalogen.

The calculated binidng energies of the pH2-Br2 dimers are similar to the measured values
for pH2-I2. For the linear complexes of pH2 the RA MP2/AVQZ values are 1.34 kJ/mol with
Br2, compared to the measured value of 1.23 kJ/mol with I2 [124]. As our model is based on
MP2 theory and on many adiabatic separations, either measurements of the binding energy
of pH2-Br2, or calculations of CCSD(T)/CBS quality for both systems, could truly resolve
whether pH2-Br2 is stronger bound than pH2-I2 as indicated by our results. The measured
binding energies of the linear (T-shape) He-Br2 complex, 0.203 kJ/mol (0.199 kJ/mol) [162]
and He-I2 complex 0.195 kJ/mol (0.199 kJ/mol) [163] also confirm the similarity of the van
der Waals interactions of both heavy dihalogens with weakly polarizable species.

Most of the results regarding the development of the RA pair potentials, have been published
by us in ref. [139]. All data points of the 4D MP2/AVQZ pair potentials and of the RA
potentials, as well as the parameters of the analytic expressions of the RA potentials are
available in the supplementary material of ref. [139]. Additionally this thesis also contains
results, which were obtained after publication of ref. [139]. These results include the SAPT
analysis, details on the obtained fits of the RA PES and the calculation of the bound states of
the van der Waals dimers.
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3.6 Outlook

The present results might stimulate future research in many directions. Firstly, it remains
an open question, whether the bound state energies, and the RA PES calculated with our
model, can be experimentally confirmed. For this purpose, experiments similar to those already
performed for p/oH2-I2 [124, 125] should be extended to the lighter halogens.

On the theory side, the ab initio RA potentials for p/oH2-I2 need to be calculated. Secondly,
the rovibronic spectra for the p/oH2-X2 dimers for Jtot ≥ 0, should be calculated and compared
to future experimental results. Thirdly, the presented pair potentials can be used to build model
potentials for F2, Cl2 and Br2 surrounded by two or more p/oH2 molecules. These clusters are
highly interesting model systems for multidimensional quantum dynamics studies [164–168].
Fourthly, the librations of dihalogens in solid pH2 can be studied, see for example [27]. The
obtained states give information of the orientation of the dihalogen in the pH2 matrix and can
be used as initial states for time-resolved simulations of photochemical reactions [29, 30, 110].
Starting from the 4D potentials, available in the supplementary materials of ref. [139], the RA
can be repeated for D2, under the approximation r0,D2 = r0,H2 , see also [27]. Yielding RA
potentials for o/pD2-X2, for which the present analysis can be repeated and for which the same
future research outlook applies.

The present potentials also leave room for future improvements in accuracy. In that regard
possible routes are, reduction of the total number of points to necessary regions, exploitation of
explicitly correlated MP2/CBS+∆CCSD(T)/[small basis] schemes in combination with bond
functions and core electron correlation. Concerning the intermolecular interactions, one may
also calculate the whole 4D SAPT PES and then obtain the RA interaction energy components
for p/oH2-X2 dimers. Another route for future investigations is the extension of the H2-X2 po-
tentials beyond the fixed monomer approximation and the inclusion of excited electronic states.
This would enable interesting studies of vibrational pre-dissociation [28] and full ab initio sim-
ulation of the experimental spectra in ref. [124]. Moreover, highly accurate 6D CCSD(T)/CBS
potentials for the H2-F2 dimer and respective bound state calculations, including coupling to
the rotation of the whole dimer, should give a definitive prediction of the shape of the pH2-F2

dimer. Another question for future investigations of the H2-F2 van der Waals dimer regards
the nuclear spin effect with respect to p/oF2.
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4 Stability of perfluoroalkylalkane hairpin

conformers

4.1 Introduction

n-Alkanes (CnH2n+2) are the most fundamental class of hydrocarbon compounds. Their struc-
tural motive, the alkyl chain, occurs in fatty acids which are one building block of lipids. The
latter fulfil multiple important biological roles, such as: energy storage, major component of
cell membranes and precursors for hormones [169]. Alkanes are the major constituents of nat-
ural gas and fossil fuels, which are important chemical energy materials and are further used to
produce polymers [170]. Alkanes can also be synthesized from carbonmonoxide and dihydrogen
in the presence of a catalyst (Co, Ni) by the Fisher-Tropsch process [171]. Polyethylene is the
most common plastic and consist of long interconnected alkyl chains. The physical properties
of n-alkanes are directly related to their chain length n. At standard ambient temperature
(25 ◦C) and pressure (100 kPa), n-alkanes with n < 5 are gaseous, liquid for 5 ≤ n < 18
and solid for n > 18 [172]. Alkanes are commonly used as non-polar solvents. They can form
arbitrary mixtures among themselves but are insoluble in water, i.e. they are lipophilic and
hydrophobic. In general, alkyl groups are not very reactive, the most common reactions in-
volving alkanes as a reactant are the reaction with O2 (combustion), radical halogenation and
catalitic dehydrogenation [173].

Perfluoro-n-alkanes (CnF2n+2) are the perfluorinated analogues of the n-alkanes, i.e. all
hydrogen atoms are substituted with fluorine atoms. Perfluoroalkanes are obtained by flu-
orination of alkanes, either by F2 directly, more common are fluorinating agents (CoF3) or
electrochemical fluorination in HF [12]. In contrast to alkyl chains, perfluoroalkyl chains do
not occur naturally and have no biological role, as most fluorine is bound in fluorspar (CaF2),
which has a very low solubility in water [12]. Perfluorinated and partially fluorinated alkanes
find use in a diverse range of applications, for example as solvents, polymers (Polytetrafluo-
roethylene), lubricants, refrigerants, fire extinguishing agents, liquid crystals, contrast agents,
inhalation anesthetics, blood substitutes and respiratory fluids [12].

These applications are directly related to their unique properties. The C-F bond has a bind-
ing energy of 484 kJ/mol, which is considerably higher than that of the C-H bond (410 kJ/mol),
the C-C bond (347 kJ/mol) and other C-halogen bonds (C-Cl: 323 kJ/mol), it is in fact the
strongest single bond to carbon [12]. Moreover the van der Waals radius of F is with 147 pm,
larger than the one of H (120 pm), which effectively protects the carbon atoms from nucleophilic
attacks. Therfore, perfluoroalkanes are highly inert and non toxic, which makes them ideal
for applications, where these properties are desired as for example in lubricants and clinical
use. [12]

The inertness also causes problems due to the accumulation of fluorocarbons in the biosphere,
mainly due to them being green house gases. Because chlorofluorocarbons (CF3Cl), manly used
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as refrigerants, deplete the ozone layer, which is important to filter out harsh UV radiation,
hydrofluorocarbons, for example (CF3CFH2), are used as substitutes due to their lower ozone
depleting potential. They still have a higher global warming potential (GWP), compared to
CO2 but are released in considerably lower quantities into the atmosphere. However, they are
replaced also by hydrofluoroolefins, which are in comparison less stable and thus have lower
lifetimes in the atmosphere. The GWP is a measure of the heat trapped by a compound in
the atmosphere, it is given in relative units to CO2, which has a GWP of 1. The GWP of
CF4 is 5700, and the atmospheric lifetime is 50 000 years. In comparison CF3CFH2 has a
GWP of 1600, and an atmospheric lifetime of only 13.6 years. The compound HFO-1234yf
(2,3,3,3-tetrafluoro-1-propene) has an atmospheric lifetime of less than a year and a GWP of
4, i.e. just four times higher than that of CO2. Thus, partially fluorinated compounds, play
an important role as environmentally friendly alternatives to traditional chlorofluorocarbon
refrigerants, and blowing agents. [12]

Perfluorocarbon liquids, for example perfluoro-n-octyl bromide, can dissolve high amounts
of O2 and CO2, which is attributed to the formation of ”cavities” within in the liquid. This
property makes them useful as oxygen carrying components in blood substitutes, which can
be used during surgeries, and for liquid ventilation/breathing applications. The inert perflu-
orocarbons seldom interfere with biological mechanisms and leave the body unaltered via the
lungs. [12]

Another striking property of perfluoroalkanes is their solvation behaviour with alkanes. Alka-
nes and perfluoroalkane molecules are bound by similarly weak van der Waals interactions.
Evidence for the similar intermolecular interactions of n-alkanes and perfluoro-n-alkanes is
given by the similar experimental molar heats of vaporization for pure liquids of molecules of
equal chain length for n > 1, see figure 4.1. The additional fact that perfluoroalkanes occupy
significantly larger molar volumes, also given in figure 4.1, leads to the observed lower heat of
vaporization per volume of perfluoroalkanes, compared to alkanes, see figure 4.1. The only ex-
ception from this behaviour is perfluoromethane, due to stronger average binding interactions
in comparison to methane [19]. Because of the similar magnitude and nature of the interac-
tions, one would expect that liquid alkanes and perfluoroalkanes should readily mix. However,
they actually form separate phases below a certain critical temperature [14, 16]. Alkanes are
therefore classified as hydrophobic, lipophilic and fluorophobic and perfluoroalkanes are hy-
drophobic, lipophobic and fluorophilic. As perfluoroalkanes have a higher density than alkanes
and water, the perfluoroalkane phase is located below the water phase, on top of which is the
alkane phase, in a triphasic mixture. This effect is exploited in liquid-liquid biphasic synthesis,
where for example a fluorophilic catalyst, is initially separated from the non-fluoros organic
phase, in which the reactants are solvated. Upon heating, both phases mix and the reaction
can proceed. After reaction the mixture is cooled, the products and the catalyst can be re-
covered from the separated phases [12, 22]. Therefore perfluoroalkane solvents, and the design
of fluorophilic catalysts by introduction of perfluoroalkyl groups, play an important role in
”Green Chemistry”, where reactions and techniques are developed that reduce the consump-
tion of resources, and minimize the use and generation of hazardous substances [15]. Moreover,
perfluoroalkyl-perfluoroalkyl interactions in water, are exploited for the design of self assem-
bled supermolecular architectures of perfluoroalkyl-tagged polyglycerol dendrimers, dendrons
and perfluoroalkylated linear polyglycerols [23, 24]. The structures of the resulting assemblies
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Figure 4.1: From left to right: Experimental heats of vaporization per mol indicate similar average

intermolecular interactions for n-alkanes and perfluoro-n-alkanes with n > 1. Molar volumes

of perfluoroalkanes are considerably larger compared to those of alkanes. The difference in

molar volumes and the similar interactions give rise to much smaller heats of vaporization

per volume for perfluoroalkanes in comparison to alkanes [19]. Adapted from a table given

in ref. [19], see also references in [17] and [174].

CH4/CH4 CH4/CF4 CF4/CF4

Method Ref. Re (Å) De (kJ/mol) Re De Re De

MP2/aug(df)-6-311G* [19] 4.0 2.89
MP2/aug(df,pd)-6-311G* [19] 3.8 1.84
MP2/CBS [19] 4.0 2.72
CCSD(T)/aug(df)-6-311G* [19] 4.0 3.26
MP2/CBS (Helgaker) [175] 3.67 2.05 3.77 2.93 4.01 2.76
CCSD(T)/aug(df,pd)-6-311G(d,p) [175] 2.13 2.89 3.26
CCSD(T)/aug-cc-pVTZ [175] 3.10
CCSD(T)/CBS [176] 3.63 2.13
CCSD(T)/CBS est. (D3, C3) [18] 2.1 3.8 3.8

(C2H6)2 (C2F6)2

MP2/aug(df)-6-311G* [19] 4.8 4.27
MP2/aug(df,pg)-6-311G** [19] 4.0 3.77

(C3H8)2 (C3F8)2

MP2/aug(df,pg)-6-311G** [20] 3.8 7.74 4.8 6.07

Table 4.1: Intermolecular separation Re (Å) and well depths De (kJ/mol) of the global minima of alkane

and perfluoroalkane dimers from the literature. Note that the values of ref. [18] are obtained

for dimers with D3 (C3) symmetry, whereas the other results are reported for dimers with

D3d (C3v) symmetry.

such as microbubbles and microspheres can be tuned and are potential candidates as oxygen
and drug carriers [23, 24].

4.1.1 Ab initio studies on small alkane and perfluoroalkane dimers

From a theoretical perspective, the special role of interactions involving perfluoroalkyl groups
and alkyl groups in water and other complex media, including the unusual mixing behaviour
of alkanes and perfluoroalkanes has not yet been fully understood. One problem is the large
complexity of such systems, which can only be handled by a multiscale approach [18]. It is
clear, that the first step to an understanding of such interactions requires to study the homo
and hetero dimers of perfluoromethane and methane, i.e. (CH4)2, (CF4)2 and CH4-CF4.

Comprehensive MP2 and CCSD(T) studies on the intermolecular interactions of CF4, C2F6

and C3F8 dimers were conducted by Tsuzuki et al. [19, 20]. Comparing the interaction energies
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4 Stability of perfluoroalkylalkane hairpin conformers

of eight orientations, they found the CF4 dimer with face to face orientation and D3d symmetry
to be the global minimum structure, which is the same as for the CH4 dimer. For (C2F6)2, seven
orientation were considered and the deepest minimum was found for the structure with C2h

symmetry and parallel C-C bonds. They conducted an analysis of interaction components using
distributed multipoles and concluded that dispersion is the main attractive interaction. Twelve
orientations were studied for (C3F8)2 at the MP2 level of theory, here the global minimum
structure was found to be of C2h symmetry with parallel chains, which is the same as for
the C3H8 dimer. Tsuzuki et al. also compared the interaction energies of the perfluoroalkane
and alkane dimers at the respective global minima. While the CF4 and C2F6 dimers interact
stronger than the respective alkanes, C3F8 dimers interact less in comparison to the C3H8

dimer, see also table 4.1. This is explained with the increasing intermolecular separation of the
larger perfluoroalkanes compared to the alkanes, and thus smaller dispersion interactions. The
orientation dependence of the interaction energy of (C3F8)2 is considerably lower than that of
(C3H8)2, and orientationally averaged interaction energies are very similar [20].

Biller and Mecozzi studied the CH4-CF4 dimer and found the largest interaction for a struc-
ture with face to face orientation, similar to those of the CF4 and CH4 dimers [175]. At
the CCSD(T)/aug(df,pd)-6-311G(d,p) level of theory, the global minimum of the interaction
energy of the mixed dimer is intermediate between CF4 and CH4, see table 4.1.

Mahlanen et al. used the basis set developed by Tsuzuki and the MP2 method to compare
CX4 dimers, with X = H,F,Cl,Br [21]. A number of authors, for example Tsusuki et al. [177],
Takatani et al. [178] and Li et al. [176], have reported CCSD(T)/CBS interaction energies for
the CH4 dimer. The best estimate for the CCSD(T)/CBS global minimum of the CH4 dimer
is −2.13 kJ/mol at Re = 3.64 Å [176]. Li et al. also note, that the CCSD(T)/CBS value can
be estimated using a small basis set correction to the MP2/CBS value by

ECBSCCSD(T) ≈ E
CBS
MP2 +

(
Esmall basis

CCSD(T) − E
small basis
MP2

)
, (4.1)

to a very good accuracy (± 0.04 kJ/mol) using the aug-pVDZ basis for the CCSD(T) correc-
tion [176].

The most recent study on CH4/CH4, CF4/CH4 and CF4/CF4 was performed by Chattoraj et
al. [18]. They used the approximation formula stated above to obtain CCSD(T)/CBS results
for all three dimers. From this reference data they developed the B3LYP-D3(CF4)/TZVP
model with an adjusted D3 correction. The authors performed Monte Carlo (MC) simulations
of pure liquid methane, using an interpolated potential based on the DFT-D3 model for the
CH4/CH4 dimer. They remark that similar MC simulations for CF4/CH4 and CF4/CF4 are
challenging due to the much rougher energy landscape of mixtures involving CF4, which calls for
a significantly higher number of discretization points. They could however obtain temperature
dependent effective 1D potentials, and deduce, that the entropy near the minima of CF4/CF4

is very small, making CF4/CF4 interactions unfavourable at high temperatures. They reason
that demixing, and thus increased CF4/CF4 interactions, is favoured at low temperatures,
because entropy then plays a less important role [18].

In table 4.1 we have collected the well depths and intermolecular separations for alkane and
perfluoroalkane dimers from the references discussed above. The interactions of similar alka-
nes and perfluoroalkanes are of similar magnitude. While the CH4/CH4 MP2/CBS interaction
energy differs from the CCSD(T)/CBS result by only 0.1 kJ/mol, the interaction energy of
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Figure 4.2: Selected conformers of long alkane chain molecules. n-C18H38: a) linear: all-trans C-

backbone dihedrals, b) V-shape: one gauche dihedral, c) L-shape: two adjacent gauche

dihedrals, d) V-shape: two adjacent gauche dihedrals with opposite sign (g−g+), e) hairpin:

ggtgg sequence in center, f) double hairpin: two ggtgg sequences, g) double hairpin bundle.

n-C36H74: h) asymmetric hairpin, i) double hairpin, j) broken paperclip: two ggtgg and one

ggttttg−g− sequence.

dimers involving CF4 changes by up to 1 kJ/mol when electron correlation beyond MP2/CBS
is considered. Thus, inclusion of higher order correlation effects through CCSD(T) theory is
a requirement for the accurate description of perfluoroalkyl interactions. Furthermore, perflu-
oroalkyl interactions are also more demanding in terms of the basis set size in comparison to
alkyl interactions. The increased number of valence electrons in perfluoroalkanes in compar-
ison to respective alkanes, i.e. 7 per F-atom vs. 1 per H-atom, increases the computational
effort additionally. In conclusion, perfluoroalkyl interactions, of even small molecules, pose a
substantial challenge for accurate ab intio wave function based calculations. Today, the best
strategy is to evaluate the MP2/CBS energy and to use small basis corrections to estimate the
effect of CCSD(T) electron correlation contributions beyond MP2 [18, 176].

4.1.2 n-Alkane folding

The conformational space of n-alkane molecules increases drastically as a function of the chain
length. Preferred C-backbone dihedral angels are the well known trans t = 180◦, gauche
g± = ±60◦ and cross x± = ±95◦ [179]. Beginning with n-butane gauche minima are present
and cross minima appear for n-pentane and longer chains. The gauche conformer of n-butane is
2.5 kJ/mol higher in energy than the trans conformer. The trans-gauche barrier is 13.8 kJ/mol
and the cis barrier connecting the two gauche minima is 18.7 kJ/mol [179]. Therefore, small
n-alkanes (n = 4− 8) do prefer linear all-trans conformations in the gas phase. However, long
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4 Stability of perfluoroalkylalkane hairpin conformers

n-alkanes must have folded conformers, that are lower in energy than the linear all trans con-
former, because they are stabilized by intramolecular van der Waals dispersion interactions [31].
Depending on the temperature, a fraction of molecules will be in the all trans conformation,
see figure 4.2 a). Another large fraction will have one gauche angle, see figure 4.2 b), or or
more two gauche angles distributed along the C-backbone. Two adjacent gauche angles (gg,
g−g+) give rise to L and V-shaped conformers, figure 4.2 c) and d), which do not benefit from
increased intramolecular interactions. A four twist turn corresponding to a sequence of ggtgg
in the central eight carbons gives rise to the hairpin conformer [31], shown in figure 4.2 e). In
the hairpin conformer, the two all-trans ends of the n-alkane chain are parallel and close to
each other, which maximizes the stabilizing effect of the intermolecular van der Waals interac-
tions [31]. Hairpins do not have to be symmetric, see 4.2 f), however corresponding symmetric
hairpins will be lower in energy. With two four twist turns, even more folded conformers are
possible, for example a S-shaped double hairpin, figure 4.2 f) and i), or a broken paperclip,
figure 4.2 g) and j), these might become increasingly important for very long n > 30 n-alkanes.
It is clear, that numerous more folded conformers are possible.

The question, from which chain length n onwards hairpins and other folded conformers
are energetically more favourable compared to the linear all-trans conformation, has been
studied by a number of authors. The more general form of this question is: what is the last
globally stable linear n-alkane? In 1997 Goodman [31] was the first to raise this question
and to investigate hairpin and other folded conformers of n-alkanes. He found, that the chain
length of the shortest n-alkane with a non all-trans minimum conformation depends strongly
on the force field or semi-empirical method. For the isolated molecules he found shortest
stable hairpins with 18, 25 and 26 carbons for the MM2, MM3 and AMBER force fields and
12 and 60 carbons for the PM3 and AM1 methods, [31]. Goodman also investigated solvent
effects using continuum models and found that in water a smaller hairpin was preferred, i.e. 22
(AMBER/water) vs. 25. In the less polar solvent chloroform the predicted chain length for the
first stable hairpin raised to 142. He noted, that in hexane and other apolar solvents, hairpins
are thus possibly highly unfavoured, due to the competing intermolecular interactions [31].

In 2006 Thomas et al. reported the first stable hairpin as C22H46 with the OPLS-AA force
field. They also noted, that gauche energies are overestimated by OPLS-AA and thus estimated
the more likely range for the change from all-trans to the hairpin conformer to occur between
n = 16-18. They also investigated doubly folded conformers such as the double hairpin bundle
and broken paperclip, which are similar to the conformers g) and j) in figure 4.2, and found
them to be more stable than the linear conformer for n = 30 but less stable than than the
corresponding hairpin [180].

It took 16 years until the question posed by Goodman could be answered experimentally.
In 2013 Lüttschwager et al. reported on the Raman spectroscopy of supersonic jet expansions
of linear alkanes with n = 13-20, and on theoretical results based on a combination of local
correlation methods LMP2-F12, LCCSD(T) and DFT in the form of B3LYP-D3 [32]. From
their experimental and theoretical results follows, that the smallest stable hairpin at (100-
150 K) is possibly octadecane (n = 18) but definitively nonadecane (n = 19) [32]. They also
note, that further experiments at even lower conformational temperatures could settle the
matter experimentally, since the resolution of their experiments is about 2 kJ/mol [32]. In a
following paper, Lüttschwager et al. extended their analysis [33].
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Figure 4.3: Linear (extended) and hairpin (folded) conformers of alkanes, perfluoroalkylalkanes of

the type CmF2m+1 − C8H16-CmH2m+1, and diperfluoroalkyloctanes CmF2m+1 − C8H16-

CmF2m+1 chain molecules. Examples given for the total chain length of n = 16. Note

the flexible central octane unit, which enables the folding. The different hairpins are stabi-

lized by either alkyl-alkyl, perfluoroalkyl-alkyl or perfluoroalkyl-perfluoroalkyl interactions.

The experimental evidence for n-alkane folding, renewed the interest in theoretical investi-
gations on alkane hairpins, with a focus on electron correlation methods. Byrd et al. reported
CCSD(T)/CBS energies for hairpins up to n = 14 [34]. Longer chains, up to n = 18, were
evaluated using the lower scaling frozen natural orbital (FNO) method. In this method, the
number of virtual orbitals necessary for an accurate description of the perturbative triples (T)
correlation contribution is greatly reduced, by using natural orbitals constructed from the MP2
density matrix up to a certain occupation threshold. Additionally, ZPE and temperature ef-
fects were derived from MP2/cc-pVTZ harmonic vibrational frequencies. From the calculated
enthalpy difference between the linear and the hairpin conformer, they predict the hairpin to
be more stable for n ≥ 16, in agreement with the experiment.

Liakos and Neese, reported highly accurate results on all n-alkanes from n = 6 up to n =
19, using an CCSD(T)/CBS extrapolation sheme based on the domain based pair natural
orbital coupled cluster method DLPNO-CCSD(T) [35]. They calculated also the free enthalpy
difference and accessed the errors of their method, and give with n = 18 at 100 K, the latest
prediction for the first stable hairpin, in accordance with the results by Byrd et al. and
Lüttschwager et al.. Pastorczak et al. performed intramolecular SAPT calculations on the
alkane hairpins [181]. Their results highlight the balance between repulsive electrostatic and
exchange interactions and binding London dispersion interactions, the latter of which become
increasingly important for the hairpins of longer chains.

4.1.3 Perfluoroalkylalkane hairpins

In this work, we extend the question of the chain length dependence on the stability of linear
vs. hairpin conformers of chain molecules to partially fluorinated n-alkanes. Additionally to
n-alkanes (CnH2n+2) we study perfluoroalkylalkane (CmF2m+1-C8H16-CmH2m+1) and diperflu-
oroalkyloctane (CmF2m+1-C8H16-CmF2m+1) chain molecules. Concerning the window of chain
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4 Stability of perfluoroalkylalkane hairpin conformers

a) b) c)

Figure 4.4: (a) and b)) The two twist turn (ggtgg) sequence of C-backbone dihedral angles leads

to alkane hairpin conformers which are stabilized by intramolecular dispersion interactions

between parallel running ends of the chain molecule. Perfluoroalkanes are stiffer than alkanes

and do not form similar hairpins. Imposing the two twist turn, results in strong repulsive

forces in the fold of the molecule. The relaxed structure is the V-shaped conformer in

c). Clearly, the dispersion interactions per added pair of CF2 groups decrease due to the

unfavourable orientation of the chain ends.

lengths, we choose to focus on chains of even lengths from n = 8 (n-octane) and n = 10 (1-
perfluormethylnonane and 1,8-diperfluormethyloctane), up to n = 22. As examples, the linear
and hairpin structures of the systems are given for a total chain length of 16 carbon atoms in
figure 4.3. These foldamers enable the study of self solvation, i.e. hairpin formation, driven by
either alkyl-alkyl, perfluoroalkyl-alkyl and perfluoroalkyl-perfluoroalkyl interactions in a single
molecule. The folding of the partially fluorinated chain molecules should in principle be ob-
servable by experiments similar to those performed by Lüttschwager et al. for the alkanes [32,
33] and by Drawe et al. for perfluoroalkanes [182]. The critical chain length for the hairpin
formation is very sensitive to the magnitude of the interaction between the adjacent chains,
as was shown for alkanes, and should provide experimental evidence on the magnitude of the
perfluoroalkyl-alkyl and perfluoroalkyl-perfluoroalkyl interactions. Here, we want to predict
the critical chain lengths for these systems using dispersion corrected densitiy functional theory
and wave function based local correlation methods.

The important structural motive, which enables the hairpin formation of the partially flu-
orinated n-alkanes, is the central octyl (-C8H16-) sequence. This part provides the neces-
sary flexibility and comparability between the different hairpins. Perfluorinated n-alkanes are
known to be much more rigid than alkanes, and do not fold in the same way as alkanes [182].
For perfluoro-n-butane, the gauche minimum is 6.2 kJ/mol above the twist-anti global min-
imum, with a barrier of 10.1 kJ/mol, according to MP2/DZ+P cacluations by Dixon [183].
Thus, the introduction of gauche dihedral angles in perfluoroalkanes comes at an twofold in-
creased energy cost in comarison to n-alkanes. To explore the hairpin motive with respect
to perfluoro-n-alkanes, we performed DFT calculations using the TPSS functional and the
D3(BJ) disperison correction with Becke-Johnson damping and the def2-TZVP basis set with
Turbomole. Forcing the hairpin structure on the linear-helical perfluoro-n-alkanes resulted in
an unfavourable repulsion between fluorine atoms within the bend. Upon optimization, the
structure relaxed to an V-shaped open hairpin, which does not benefit from stabilizing dis-
persion interactions upon chain elongation. Irrespective of the chain length the open hairpin
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was about 17 kJ/mol higher in energy than the linear perfluoroalkane, as shown in figure 4.4
c). Which is in accordance with the experiments of Drawe et al. who only observed linear
perfluoro-n-alkanes in a supersonic jet expansion [182]. Hence, perfluorinated n-alkanes do not
exhibit the observed folding behaviour as the alkanes. This does not rule out the possibility
for folding of extremely long perfluoro-n-alkanes.

Perfluoroalkylalkanes are fluorophilic/lipophilic amphiphiles, which exhibit polar character
due to the CH2-CF2 dipole. Addition to of perfluoroalkylalkanes to perfluoroalkane solvents
increases the miscibility with hydrocarbons [16]. Their synthesis is straightforward. For ex-
ample, the 1,8-diperfluoroalkyloctanes are synthesized by radical addition of perfluoroalkyl
iodides to 1,7-octadiene followed by reductive deiodination [184]. Perfluoroalkylalkanes and
diperfluoroalkylalkanes are used as additives for paraffines based ski-waxes. They reduce the
water adhesion and thereby improve the sliding capabilities [184].

4.2 Methodology

In order to compare the energy of the hairpin to the linear conformer, we calculate the relative
hairpin energy,

∆E(n) = Ehairpin(n)− Elinear(n), (4.2)

as a function of the total chain length n. ∆E(n) is a measure of the electronic hairpin stabiliza-
tion by dispersion interactions and the electronic part of the enthalpy for hairpin formation.
The smallest n = nhp,el for which ∆E(n) < 0 gives the critical chain length of the last elec-
tronically stable linear alkane or perfluoroalkylalkane as nc,el = nhp,el−1. Here, we will mostly
change the chain length in increments of 2. In this case, the last globally stable linear con-
former with an even chain length is nc,el = nhp,el − 2. In our discussions, we will concentrate
on nhp, i.e. the chain lenght of the smallest stable hairpin.

To make predictions for the outcome of experiments, it is necessary to also include the ef-
fects of ZPE, and finite temperature on the vibrational, rotational and translational degrees
of freedom, i.e. compute thermodynamic corrections. For each conformer, we compute vibra-
tional frequencies for the normal modes and calculate the enthalpy at finite temperatures T
and constant pressure of P = 100 kPa,

H(T ) = E + ZPE + δHvib(T ) + δHrot(T ) + δHtrans(T ). (4.3)

From this, the enthalpy difference at a finite temperature can be compared,

∆H(T, n) = Hhairpin(T, n)−Hlinear(T, n). (4.4)

Or in terms of a correction to ∆E(n),

∆H(T, n) = ∆E(n) + ∆δH(T, n) (4.5)

where ∆δH(T, n) holds information about the ZPE and temperature effect on the relative
hairpin stability.

Entropic effects can also play a role, and will certainly be very important at elevated tempera-
tures. We estimate the entropy S(T ) at a finite temperature from the normal mode frequencies.
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Here, we also apply an approximation suggested by Grimme [37] and use the entropy of rigid
rotors for vibrations below 100 cm−1. Further details on this approximation are given below.
With S(T ) we calculate the free energy of each conformer,

G(T ) = H(T )− TS(T ), (4.6)

and the relative hairpin free energy by,

∆G(T, n) = ∆E(n) + ∆δH(T, n)− T∆S(T, n), (4.7)

as a function of the chain length and the temperature. Of course, to resolve the whole ex-
periment, one would have to also treat the statistics of individual conformers and the related
problem of the conformational entropy, which is beyond the scope of this work. As for ∆E(n),
also the critical chain lengths will be found for ∆H(T, n) and ∆G(T, n), which we will de-
note nhp,H(T) and nhp,G(T) for the first stable hairpin and nc,H(T), nc,G(T) for the last globally
stable linear conformer with even chain length, respectively. nhp,el is a measure for the per-
formance of electronic structure methods, while nhp,H(T) and nhp,G(T) additionally depend on
the approximations made for the thermodynamic corrections and can be directly compared to
experimental results.

4.2.1 Procedure

Due to the size of the systems, we use a combination of DFT and wave function based local
correlation methods to study the hairpin stability. An overview of the overall strategy is
provided in figure 4.5.

Initial structure generation: Initial structures are generated by a script that builds Z-matrices
from a provided list of carbon back-bone dihedral angles, tetrahedral angles, bond lengths
and a string that determines the fluorination pattern. Initial back-bone dihedral angles are
trans (t = 180◦), gauche (g = 60◦) and helical (h± = ±162◦), for either left or right-handed
perfluoroalkyl helices. The initial bond lengths are for C-H: dCH = 1.09 Å, C-F: dCF = 1.36 Å
and C-C: dCHCH = 1.53 Å, dCFCF = 1.57 Å, dCHCF = 1.52 Å. As an example we give
the sequence of carbon back-bone dihedral angles for n-octane, which is ’ttttt’ for the linear
conformer and ’ggtgg’ for the hairpin conformer. For the diperfluoroalkylalkane C1F3-C8H16-
C1F3 the fluorination pattern is given by the string ’FHHHHHHHHF’.

Structure optimization: For structure optimization, we employ DFT-D3 in form of the semi-
local meta-GGA exchange and correlation functional TPSS [86] and the D3(BJ) Dispersion
correction by Grimme [9], with Becke-Johnson damping [36] and the def2-TZVP basis set [185].
We choose to use the TPSS-D3/def2-TZVP level of theory, as it is well tested and provides
accurate structures at low computational costs [37]. To speed up the calculations we further
employ the multi-pole accelerated resolution of the identity (MARI) approximation for the
evaluation of Coulomb integrals. For all MARI-DFT-D3 calculations we use the TURBO-
MOLE package of programs [186]. Initial structure optimizations were performed with the M4

integration grid, and the standard SCF energy convergence criterion of 10−6 EH. Then, in all
cases, a second structure optimization with a tighter convergence criterion for the SCF energy
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MARI-DFT:
TPSS-D3(BJ)/def2-TZVP
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Figure 4.5: Overview of the computational methods applied for the calculation of the hairpin stabil-

ity of n-alkanes and perfluoroalkylakanes. Left column: DFT-D3 is applied for structure

optimization and normal mode analysis, yielding IR/Ramman spectra and thermodynamic

corrections. Right column: Single point local correlation methods with the large basis MP2-

F12, small basis CCSD(T) correction scheme are applied to calculate wave function based

reference results for ∆E. We further use the Method of Increments to approximate the

correlation energy.

(10−8 EH) was perfromed using the M4 grid and the weight derivatives option, which en-
sures correct energy gradients by considering the derivatives of the quadrature weights, see the
TURBOMOLE manual [186]. Structure optimizations of linear alkanes were performed under
the constraint of CS point group symmetry. All other structure optimizations were performed
in point group C1.

Vibrational frequencies: For the optimized structures we evaluated the vibrational frequen-
cies and the force constants by numerical differentiation of the gradients using the NUMFORCE

program from TURBOMOLE. For the NUMFORCE calculation the same tight convergence cri-
teria and the option weight derivatives as in the second structure optimization step were
used.

Free energy: The molecular partition functions, for the evaluation of the enthalpy and the
free energy, were calculated from the unscaled normal mode frequencies and the rotational
constants of the molecules using the FREEH script of TURBOMOLE.
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4 Stability of perfluoroalkylalkane hairpin conformers

Entropy of low frequency vibrational modes: The harmonic oscillator approximation often
results in large amount of noise in the vibrational entropy, due to the poor representation of
low frequency modes. A black box method, suggested by Grimme [37] for the determination
of accurate and noise free thermodynamic functions for supra-molecular complexes, is to treat
low frequency modes as rigid-rotors instead of harmonic oscillators. A switching function is
applied to continuously interpolate between both approximations [37].

The entropy of a harmonic oscillator i with frequency ωi is given by,

SHO,i = R

 hω

kT
(
e
hωi
kT − 1

) − ln
(

1− e− hωkT
) , (4.8)

where R is the universal gas constant, h is the Planck constant, k is the Bolzmann constant
and T is the temperature. For ωi → 0 the first term on the right hand side approaches infinity,
which results in too large entropy contributions for low frequency modes. Treating these modes
within the rigid-rotor instead can circumvent this behaviour. The rotational moment of inertia
of a rotor with the same frequency as the oscillator is given by,

µi = h

8π2ωi
. (4.9)

For small ω, µ becomes large, thus effective moments of inertia µ′ are introduced, which are
limited to reasonable values. The effective moments

µ′i = µiBav
µi +Bav

, (4.10)

are limited to the average moment of inertia Bav = µ̄i, i.e. the average over the moments of
inertia of all respective normal modes of the molecule. The corresponding rigid-rotor entropy
for one mode is then calculated by,

SRR,i = R

(
1
2 + ln

(√
8π3kT

h2 µ′i

))
. (4.11)

For each entropy contribution a switching function w(ωi) is used to interpolate smoothly be-
tween both models,

SRRHO,i = w(ωi)SHO,i + [1− w(ωi)]SRR,i (4.12)

w(ωi) = 1
1 + (ω0/ω)a , (4.13)

where ω0 = 100 cm−1 denotes the threshold up to which the rigid-rotor model is applied, and
a = 4 determines the behaviour of the interpolation. Using an individual script, we calculated
the entropy contribution of low frequency (ω < 100 cm−1) vibrational modes using once the
rigid-rotor model and once the harmonic oscillator (HO) model, according to the equations and
parameters above, as suggested by Grimme [37]. From this data, we determined the correction
to the total entropy from FREEH, i.e. without the quasi rotational modes, due to this model,

∆SRRHO =
∑
i

SRRHO,i −
∑
i

SHO,i, (4.14)
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4.2 Methodology

where the sums run over all normal modes of the molecule. This method was also applied to
alkane folding by Liakos and Neese [35].

Alternative DFT dispersion corrections: In order to study the performance of DFT dis-
persion corrections other than D3, we performed single point calculations on the optimized
MARI-TPSS-D3(BJ)/def2-TZVP structures using two other approaches. Namely, the non-
local correlation functional by Vydrov and Van Voorhis (VV10) [38] and the quantum har-
monic oscillator model (QHO) by Silvestrelli [92, 93] in a recent parametrization by Partovi et
al. [39]. All three dispersion correction methods are described in sub-section 2.2.3.5. For VV10
we performed single point calculations at the MARI-TPSS-VV10/def2-TZVP using TURBO-
MOLE. QHO results were obtained by Pouya Partovi-Azar at the PBE-QHO plane-wave basis
level of theory using the program CP2K/Quickstep [187, 188] and provided to the author. Ad-
ditionally, PBE-D3 plane wave basis results were obtained by Pouya Partovi-Azar using CP2K
and provided to the author. The size of the unit cells in the periodic calculations were care-
fully evaluated and chosen large enough in order to avoid any interaction between molecular
images. Both approaches are fundamentally different from the D3 correction and have, to our
knowledge, not been tested for perfluoroalkyl interactions or alkane folding.

Wavefunction-based local correlation methods: An accurate description of ∆E, which to a
large extent is governed by dispersion interactions, calls for the application of wavefunction-
based electron correlation methods, ideally on the level of the ’gold standard’ CCSD(T). The
size of the systems only allows the use of low scaling coupled cluster methods. Hence, the
relative alkane hairpin energies have been previously calculated by local correlation methods,
i.e. a combination of PAO based LMP2-F12 and LCCSD(T) by Lüttschwager et al. [32]
and DLPNO-CCSD(T) by Liakos et al. [35], or natural orbital methods with a truncated
virtual space, i.e. CCSD FNO(T) by Byrd et al. [34]. In this work, we adopt the strategy of
Lüttschwager et al. [32] and perform LMP2-F12 [57] calculations with a medium sized basis set
(aVTZ, described below), and calculate a coupled cluster correction using LCCSD(T0) [40, 41,
65, 66] and a small basis set (aVDZ or VDZ). For the aVTZ basis we use Dunnings aug-cc-pVTZ
basis functions [143] on C and F and cc-pVTZ basis functions on H centers. Likewise we use the
abbreviation aVDZ, i.e. aug-cc-pVDZ basis functions on C and F and cc-pVDZ basis functions
on H. If we use only the cc-pVXZ basis functions, we use the common abbreviation VDZ or
VTZ. The LMP2-F12/aVTZ method should give correlation energies close to the MP2/CBS
limit. Combined with the small basis CC correction and the CABS singles correction to HF,
the approximation to the CCSD(T)/CBS limit used here is thus given by

ECBSCCSD(T) ≈ ELCC = EaVTZ
HF + EaVTZ

CABS︸ ︷︷ ︸
≈ECBSHF

+EaVTZ
corr, LMP2-F12 +

(
EaVDZ

corr, LCCSD(T) − E
aVDZ
corr, LMP2

)
︸ ︷︷ ︸

δCC/aV DZ︸ ︷︷ ︸
≈ECBScorr,CCSD(T)

.

(4.15)
Results according to this approximation will be denoted by LCC. We will test this approx-
imation on the interaction energy of the CH4/CH4, CH4/CF4 and CF4/CF4 dimers. In all
cases, we refer to results obtained within the frozen core approximation. All RHF and electron
correlation (LMP2-F12, LCCSD(T0)) calculations have been performed using the MOLPRO
package of programs [140]. For all steps, we used the density fitting (DF) approximations, i.e.
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4 Stability of perfluoroalkylalkane hairpin conformers

we performed DF-RHF, DF-LMP2, DF-LCCSD(T0) calculations. In all cases the default pro-
gram choice for the DF basis sets, i.e. same cardinal number, was applied. We assume the
errors introduced by the density fitting to be negligible. Local orbital [62] domains were gen-
erated using Boughton and Pulay domain completeness parameters [64] of 0.980 for aVDZ and
VDZ basis sets and 0.985 for aVTZ basis sets. For the purpose of orbital localization, basis
functions with the highest angular momentum were excluded (PDEL=1). For LMP2-F12, the
standard domains were extended by local orbitals on neighbouring atoms by the connectivity
criterion IEXT=1, which decreases the domain error. Explicit correlation (F12) is treated by
the 3*A(LOC) or 3*A(LOC,FIX) ansatz. In LMP2-F12 all pair domains were treated at the
LMP2-F12 level. For LCCSD(T) we choose distance criteria for close pairs according to the
distance of the parallel chains in the hairpin structures, the individual ranges will be given in
the results section. We have not attempted to correct the relative hairpin energies obtained
by LCC for the basis set superposition error, because we assume it to be negligible, due to
the local approach in combination with the explicit correlation treatment. To show this, we
have also carried out counter-poise corrected LCC calculations for the CH4/CH4, CH4/CF4

and CF4/CF4 dimers.

Method of increments: Accurate calculations on partially fluorinated n-alkanes with chain
lengths n > 12 still pose a challenge, even for LCC like approaches. One main problem that
we encountered, was a limitation in the maximal number of orbital domains. The method of
increments (MoI) [44–46, 70–72, 189] allows to break the correlation calculation of a molecule
into many smaller individual calculations, and thus allows to treat much larger systems than
possible with the local correlation method alone, see also subsection 2.2.2.5. We thus applied
the method of increments (MoI) to approximate the correlation part of the relative LMP2-F12
and LCCSD(T0) energies of the hairpins. The analysis of individual increments can provide
insight into the spatial distribution of changes in intramolecular correlation energies, which is
dominated by dispersion. The local molecular orbitals σCH, σCC, σCF and pF resulting from
Foster-Boys localization [63], have been grouped into bodies. Here, we have chosen bodies
as depicted in figure 4.6, namely CH3, CH2, H2CCH2, CF3, CF2 and FLP. The CH3 body
represents 8 valence electrons in the 3 σCH orbitals of the methyl group and the adjacent σCC

orbital. Similarly, the CH2 body holds 6 electrons in 2 σCH methylene orbitals and one σCC

orbital. The same scheme is applied group σCF and σCC orbitals in perfluoroalkyl segments
to CF3 and CF2 bodies. The 3 pF lone pairs (LP) on each F atom, are grouped to one FLP

body representing 6 electrons. The central C2H4 body describes in total 10 electrons, which
are distributed over the central σCC orbital and the in the four neighbouring σCH orbitals. It
should be noted, that this scheme only applies to even numbered chain lengths, but can be
easily adapted also to the uneven cases, by omission of the C2H2 body. For even chain lengths,
the total number of one body increments is

N1 = nC − 1 + nF ,

with nC the number of carbon atoms and nF the number of fluorine atoms in the system.
The number of higher order m body increments, where m = 2, 3, 4, ... is given by the binomial
coefficient

Nm =
(
N1
m

)
.
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4.2 Methodology

CH3 CF3

CH2 C2H4

CF2

 FLP

Figure 4.6: Types of one bodies for method of increments calculations, exemplified for the hairpin

conformer of perfluoroalkylalkane C2F5-C8H16-C2H5. Local orbitals are represented by

color coded isosurfaces (± 0.15 a.u.). Groups of local orbitals that form one bodies for the

MoI calculations are denoted by color and labelling.

For example for octane, the smallest system considered in this work, we have 7, 21, 35 and 35,
one, two, three and four body increments respectively. Considering one of the larger systems
(1,8-diperfluorobutyloctane) the number of increments get quite large with 33, 528, 5456 and
40920. Thus, without additional approximations, incremental calculations up to the four-body
level are limited to very fast methods and/or smaller systems. We will judge the accuracy of
the MoI approximations by comparison to smaller systems, and on that basis omit higher-order
terms for larger systems.
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4 Stability of perfluoroalkylalkane hairpin conformers

4.3 Results

4.3.1 Interaction energy of CH4/CH4, CH4/CF4 and CF4/CF4 dimers.

The CH4/CH4, CH4/CF4 and CF4/CF4 dimers are ideal systems to test the performance of
the LCC approximation for the interaction energy against higher level of theories. They further
enable us to investigate the amount of BSSE present in LCC interaction energies, because the
counter poise scheme by Boys and Bernardi [103] can be applied with ease. A study of the
dependence of mutual orientations on the interaction energy is beyond the scope of this work.
Instead we choose to evaluate only the dimers in the staggered face to face orientation, i.e. point
group D3d for homo dimers and C3v for CH4/CF4 respectively, see also figure 4.7a, which gives
the global minimum of the PES according to previous studies [18, 19, 175, 176]. We further
apply the fixed monomer approximation with a CH bond-length of dCH = 1.087 Å and a CF
bond-length of dCF = 1.321 Å. Li et al. give dCH = 1.085 Å from CCSD(T)/AVTZ structure
optimization of methane. The CF bond-length was obtained by structure optimization of CF4

at the CCSD(T)/AVTZ level of theory1. Chattoraj et al. use similar values of 1.088 Å and
1.326 Å for the CH and CF bond-lengths, respectively [18].

Initially, we calculated the interaction energies at several points close to the van der Waals
minima using the LCC methodology. The respective curves are shown in figure 4.7b. For se-
lected points near the minima, we then performed high level, i.e. LCCSD(T0)-F12/AVQZ [58]
and CCSD(T)-F12/AVQZ [56], counter-poise corrected reference calculations. The results of
these calculations are given in table 4.2.

1Work of Nils Niggemann during an internship in 2013.

(a) Dimer structures in the

staggered face to face

orientation.
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CH4CH4

CH4CF4
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(b) Interaction energy near the van der Waals minima.

Figure 4.7: Interaction energies (4.7b) near the van der Waals minima, of the CH4/CH4, CH4/CF4 and

CF4/CF4 dimers depicted in (4.7a). Full curves denote the LCC results, whereas counter

poise corrected LCC results are denoted by dashed lines. Bars denote results from reference

counter poise corrected single point calculations annotated by the respective levels of theory.

Using AVTZ for the δCC correction (light green triangles) closes the gap to the reference,

as exemplified for CF4/CF4.
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4.3 Results

High level reference calculations We first discuss the reference results. For the interaction
energy of the methane dimer, the LCCSD(T0)-F12/AVQZ method, which gives −2.10 kJ/mol
at RCC = 3.70 Å, is in excellent agreement with the CCSD(T)/CBS limit determined by Li et
al. [176], the respective error is −0.03 kJ/mol (1.5%). The canonical equivalent CCSD(T)-
F12/AVQZ gives the same value of −2.18 kJ/mol at RCC = 3.70 Å and RCC = 3.60 Å, and
is thus also in excellent agreement (+0.05 kJ/mol) with the CCSD(T)/CBS limit. Note, that
we compare the energies for slightly different intermolecular distances, as the value of Li et al.
refers to RCC = 3.63 Å. We expect the resulting error in our comparison to be small, since the
interaction energies obtained with LCC, see next paragraph and figure 4.7b, between 3.60 Å
and 3.80 Å agree within 0.1 kJ/mol.

Our best estimate for the interaction energy of the CH4/CF4 dimer is −3.31 kJ/mol at the
CCSD(T)-F12/AVQZ level of theory. The estimated CCSD(T)/CBS value −3.8 kJ/mol in
ref. [18] was obtained for a slightly different orientation of the monomers, resulting in a dimer
with D3 symmetry. For the CF4/CF4 dimer CCSD(T)-F12/AVQZ gives an interaction energy
of −3.40 Å. An indication, that the reference results for the CH4/CF4 and CF4/CF4 dimers
are close to the CBS limit is given by the similarity to the results obtained with the AVTZ
basis, which differ by just 0.05 kJ/mol and 0.02 kJ/mol, respectively. Again, the estimated
CCSD(T)/CBS value in ref. [18] seems to be too low. We suspect, these differences to be
due to the omission of the counter-poise correction in ref. [18]. Biller et al. reported large
BSSE present for the dimers with CF4 [175]. Our results for CF4/CF4 show, that even for
the CCSD(T)-F12/AVQZ method a sizeable BSSE of 7% (15% AVTZ), with respect to the
uncorrected energy, is present.

LCC interaction energy The LCC approximation gives results that are in good agreement
with the high level references, see table 4.2. For the CH4/CH4 dimer LCC gives −2.03 kJ/mol
at R = 3.68 Å. Thus, LCC underestimates the binding energy given by Li et al. by only
0.1 kJ/mol (5%). For CH4/CF4 the LCC interaction energy is −3.09 kJ/mol at R = 3.70
Å, hence strength of the Van der Waals bond is underestimated by 0.22 kJ/mol (7%) in
comparison to CCSD(T)-F12/AVQZ. LCC gives a similar error (0.23 kJ/mol (7%)) for the
CF4/CF4 interaction energy, which is −3.16 kJ/mol at R = 3.90 Å. These errors apply for the
A*(LOC) F12 ansatz. If the fixed amplitude ansatz A*(LOC,FIX) is used for F12, the relative
errors increase to 8%, 9% and 9% for CH4/CH4, CH4/CF4 and CF4/CF4 respectively. For
the CH4/CH4 dimer, the coupled cluster correction δCC/aVDZ has almost no contribution.
However, for CH4/CF4 and CF4/CF4 this correction becomes increasingly important, as noted
also in ref. [18]. The small aVDZ basis set used in the correction δCC is the major source
of error in the LCC approximation. Using δCC/aVTZ instead of δCC/aVDZ for CF4/CF4

results in an LCC(δCC/aVTZ) interaction energy of −3.40 kJ/mol, in perfect agreement with
the CCSD(T)-F12/AVQZ reference. The influence of the domain extension beyond bounded
neighbours (IEXT=1) is small, as shown by LCCSD(T0)-F12/AVTZ calculations with IEXT=2

for CF4/CF4. We conclude, that the LCC approximation indeed gives interaction energies
close to the CCSD(T)/CBS limit for CH4/CH4 with δCC/aVDZ, and for CF4/CF4, with
δCC/aVTZ. The agreement of LCC for CH4/CF4 and CF4/CF4 with δCC/aVDZ to the
reference values is still good, and most probably in the region of a CCSD(T)/AVTZ treatment.
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4 Stability of perfluoroalkylalkane hairpin conformers

CH4/CH4 R = 3.68 Å
Eint (kJ/mol) Error (kJ/mol)

DF-HF/aVTZ 1.70 −3.83
DF-LMP2/aVTZ −1.77 −0.36
DF-LMP2-F12/aVTZ
A*(LOC) −2.06 −0.07
A*(LOC,FIX) −1.99 −0.14
δCC/aVDZ 0.03
LCC −2.03 −0.10

R = 3.70 Å
LCCD(T0)-F12/AVQZ (CP) −2.10 −0.03
CCSD(T)-F12/AVQZ (CP) −2.18 0.05
R = 3.60 Å
CCSD(T)-F12/AVQZ (CP) −2.18 0.05
R = 3.63 Å
CCSD(T)/CBS (CP)[176] −2.13 0.00

CH4/CF4 R =3.70 Å
Eint (kJ/mol) Error (kJ/mol)

DF-HF/aVTZ 2.09 −5.41
DF-LMP2/aVTZ −2.92 −0.39
DF-LMP2-F12/aVTZ
A*(LOC) −2.98 −0.34
A*(LOC,FIX) −2.90 −0.42
δCC/aVDZ −0.12
LCC −3.09 −0.22

DF-LCCSD(T0)-F12/aVTZ (CP) −3.19 −0.12
CCSD(T)-F12/AVTZ (CP) −3.36 0.05
DF-LCCSD(T0)-F12/aVQZ (CP) −3.19 −0.12
CCSD(T)-F12/AVQZ (CP) −3.31 0.00
R = 3.77 Å
CCSD(T)/AVTZ (CP) [175] −3.10
CCSD(T)/CBS est. (D3) [18] −3.80

CF4/CF4 R = 3.90 Å
Eint (kJ/mol) Error (kJ/mol)

DF-HF/aVTZ 2.65 −6.04
DF-LMP2/aVTZ −3.41 0.02
DF-LMP2-F12/aVTZ
A*(LOC) −2.88 −0.52
A*(LOC,FIX) −2.81 −0.59
δCC/aVDZ −0.29
LCC −3.16 −0.23

LCC (δCC/AVTZ) −3.40 0.00
LCCSD(T0)-F12/AVTZ (CP)
iext=1 −3.38 −0.02
iext=2 −3.41 0.01
CCSD(T)-F12/AVTZ+BSSE −4.02 0.62
CCSD(T)-F12/AVQZ+BSSE −3.65 0.25
CCSD(T)-F12/AVTZ (CP) −3.42 0.02
CCSD(T)-F12/AVQZ (CP) −3.40 0.00
R = 4.0 Å
CCSD(T)/aug(df,pd)-6-311G(d,p) (CP) [175] −3.26
CCSD(T)/CBS est. (D3) [18] −3.80

Table 4.2: Interaction energies for the methane and perfluoromethane dimers near the global minima.

Energies subject to the counter-poise correction by Boys and Bernardi are marked by (CP).

The local correlation plus explicit correlation (F12) methods are effectively BSSE free, for

this see table 4.3.
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4.3 Results

CH4/CH4 CH4/CF4 CF4/CF4

R = 3.68 Å R = 3.70 Å R = 3.90 Å
Eint (kJ/mol) CP BSSE CP BSSE CP BSSE
Eref DF-HF/aVTZ 1.70 1.75 −0.05 2.09 2.51 −0.42 2.65 3.63 −0.98

CABS 0.03 0.00 0.03 0.32 −0.01 0.33 0.85 0.03 0.82

Ecorr DF-LMP2/aVTZ −3.48 −3.48 0.01 −5.01 −4.91 −0.10 −6.06 −5.84 −0.22
F12 A*(LOC) −0.31 −0.31 0.00 −0.38 −0.59 0.21 −0.31 −0.79 0.48

DF-CCSD/aVDZ 0.32 0.29 0.03 0.37 0.39 −0.02 0.34 0.46 −0.12
T0/aVDZ −0.29 −0.30 0.01 −0.49 −0.50 0.01 −0.62 −0.63 0.00
δCC 0.03 −0.01 0.04 −0.12 −0.11 −0.01 −0.29 −0.17 −0.12

Etot DF-LMP2/aVTZ −1.77 −1.73 −0.04 −2.92 −2.40 −0.52 −3.41 −2.21 −1.20
DF-LMP2-F12/aVTZ −2.06 −2.04 −0.02 −2.98 −3.00 0.03 −2.88 −2.97 0.10
LCC −2.03 −2.05 0.02 −3.09 −3.11 0.02 −3.16 −3.14 −0.02

Table 4.3: Basis set superposition errors (BSSE) for the components of the LCC interaction energy for

the methane and perfluoromethane dimers near the global minima. Relative BSSEs of the

uncorrected LCC energies are below 1%, hence LCC is effectively BSSE free.

LCC and BSSE Local correlation methods in conjunction with explicit correlation are known
to be effectively BSSE free or to have very small BSSEs, in comparison to canonical meth-
ods [105]; see also the sections 2.3.2, 2.2.2.3 and 2.2.2.4. To test this for the three dimers, we
calculated the counter poise corrected LCC curves, shown by dashed lines in figure 4.7b. The
counter poise corrected and uncorrected LCC interaction energy curves of all three dimers are
virtually identical, due to relative BSSEs below 1%. Table 4.3 gives the BSSEs for individual
components of the composite LCC energy. For CH4/CH4 all components show only small
BSSEs. However, for CH4/CF4 and CF4/CF4 larger BSSEs are present in the components.
Sizeable BSSEs arise for the HF energy, which are removed to a large extend by the BSSE
of the CABS correction. The LMP2/aVTZ correlation energy contribution shows a sizeable
BSSE of 3% for CF4/CF4. The explicit correlation energy components show the largest rela-
tive BSSEs, which partly cancels out with the BSSE of the LMP2/aVTZ correlation energy.
Likewise, BSSEs of alternate signs for δCC and LMP2-F12 cancel each other out, which keeps
the total BSSE small. Due to this cancellation of errors, the BSSE of LCC is lower than
that of LMP2-F12, for the difficult CF4/CF4 system. The CP corrected DF-LMP2-F12/aVTZ
interaction energies agree with the extrapolated MP2/CBS results of Biller et al. [175], see
also table 4.1, for CH4/CH4, CH4/CF4, while a small deviation of 0.2 kJ/mol is present for
CF4/CF4. The BSSE for the DF-LMP2-F12/aVTZ interaction energy of CF4/CF4 is positive
(0.1 kJ/mol), due to the large positive BSSE contribution of the F12 energy, which effectively
brings the uncorrected interaction energy closer to the MP2/CBS limit.

SAPT analysis To show the importance of individual interaction components, we performed
HF-SAPT/AVTZ calculations for the three dimers using MOLPRO [140]. The resulting curves
for the R dependence of the total interaction energy and its electrostatic, exchange, induction
and dispersion components are given in figure 4.8. The interpolated values at the minimum
of the curves are given in table 4.4. In terms of the well depths of CH4/CH4 and CH4/CF4,
HF-SAPT/AVTZ gives results close to the ones obtained by CCSD(T)-F12/AVQZ theory. For
CF4/CF4 this is different, as HF-SAPT/AVTZ underestimates the binding energy by about
0.8 kJ/mol. Hence, SAPT predicts the CH4/CF4 interaction to be stronger than the CF4/CF4
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−5

−4

−3

−2

−1

0

1

E
in

t
(k

J/
m

ol
)

(b) CH4/CF4

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

R (Å)
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Figure 4.8: HF-SAPT/AVTZ components of the interaction energy of the (a) CH4/CH4, (b) CH4/CF4
and (c) CF4/CF4 dimers depicted in (4.7a).

CH4/CH4 CH4/CF4 CF4/CF4

Re (Å) 3.60 3.70 3.90
E1pol (kJ/mol) −0.86 −1.53 0.49
E1exch 3.31 4.14 3.26
E2ind+E2ind-exch −0.02 −0.04 −0.06
E2disp+E2disp-exch −4.52 −5.70 −6.45
δ HF −0.15 −0.13 −0.05
HF-SAPT/AVTZ −2.37 −3.18 −2.58

Table 4.4: HF-SAPT/AVTZ components and interaction energy of CH4/CH4, CH4/CF4 and CF4/CF4
dimers.

interaction. The most notable differences between the interactions of the latter dimers, is the
electrostatic interaction which is binding for CH4/CF4 but anti-binding for CF4/CF4.

The relative magnitudes of the SAPT interaction components show the pattern expected
for apolar molecules. In terms of magnitudes at the minima, the dispersion interaction is the
most important, followed by the exchange interaction, electrostatic interactions are small and
induction interactions are absent. The δHF component plays no important role either. Taking
into account only the dispersion interactions at the minima, we see that they increase by about
1 kJ/mol from CH4/CH4 over CH4/CF4 to CF4/CF4. The actual reason for the discrepancy of
the CCSD(T) and HF-SAPT results for CF4/CF4 are most probably correlation contributions
to the electrostatic interaction energy and dispersion contributions of higher order, which are
not covered by HF-SAPT. In the regions with R > 4.5 Å (CF4/CF4: R > 5 Å) the exchange
and electrostatic interactions cease and dispersion dominates the interaction energy. Since
similar large C-C distances are present between parallel chains of the hairpin conformers, we
can assume that dispersion is the main diving force for hairpin stabilization.

Conclusion The LCC approximation, which can be also applied to larger systems, gives ac-
curate and effectively BSSE-free interaction energies for CH4/CH4, CH4/CF4 and CF4/CF4

dimers near their respective global minima, underestimating the van der Waals interacion en-
ergy by less than 10%. The ordering of the magnitude of interactions, CH4/CH4 < CH4/CF4 <

CF4/CF4, is also reproduced. However, the small difference between CH4/CF4 and CF4/CF4

is slightly underestimated. Although there is no trivial way to transfer the errors for the
interaction energy of the three dimers to the hairpin systems, due to the obvious structural
differences, we are confident that the LCC approximation gives reasonable results within about
1 kJ/mol of the actual relative CCSD(T)/CBS hairpin energies.
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4.3.2 n-Alkane folding

In this section, we present the results on the relative hairpin energy of the n-alkanes. We focus
on hairpins with even chain lengths n from n = 8 to n = 22. The section is organized in
the following way. First, we discuss the TPSS-D3/def2-TZVP hairpin structures and compare
them to those obtained by others using different levels of theory. Second, we present the
relative hairpin energy ∆E obtained with the LCC approximation and discuss the effect of
the individual components within LCC. Third, we compare the LCC results to wave-function-
based reference results obtained by others. Fourth, we compare DFT results for ∆E using the
D3, VV10 and QHO dispersion corrections, to the LCC results. Fifth, we add thermodynamic
corrections obtained at the TPSS-D3/def2-TZVP level of theory to the LCC results and predict
the first stable hairpin at experimental conditions (T = 100 K). Last, we asses the convergence
of the method of increments in the framework of the LCC for ∆E.

n-Alkane hairpin structures The n-alkane hairpin structures with even n up to n = 18
obtained at the TPSS-D3/def2-TZVP level of theory are shown in figure 4.9. The structures
of short hairpins (n = 8-12) are more open compared to those with n ≥ 14. Additionally,
the ’arms’ of the hairpins become gradually more oriented towards each other upon chain
elongation. The distance between facing carbon atoms on both ’arms’ alternates between
long (≈ 4.5 Å) and short (≈ 4.1 Å), due to the ’zig-zag’ structure of the alkyl chains. This is
exemplified for the hairpin conformer of C16H34 in table 4.5. As a measure of the mean distance
between the parallel alkyl chains we introduce the mean distance between facing carbon atoms
on the parallel chains. For C16H34 for example, this distance is calculated by adding up the
values a to f , given in table 4.5, and dividing by six. The mean C-C distances calculated in
this manner are given figure 4.10a. This measure is in accordance with the visual inspection of
the individual structures in figure 4.9. The C10H22 hairpin is the most open structure, with a
mean C-C distance of 5.2 Å. The mean C-C distance between the ’arms’ decreases significantly
for n = 12, and are almost constant for hairpins with n = 14 to n = 22 with ≈ 4.3 Å.

Ref. Method a (Å) b (Å) c (Å) d (Å) e (Å) f (Å)
this work TPSS-D3/def2-TZVP 4.64 4.09 4.54 4.13 4.34 4.11
Lüttschwager et al. [32] LMP2/VTZ 4.67 4.09 4.62 4.13 4.41 4.06
Byrd et al. [34] MP2/VTZ 4.55 3.90 4.34 3.85 4.09 3.83
Liakos et al. [35] B2PLYP-D3/def2-pVQZ 4.59 3.98 4.42 3.94 4.16 3.88

Table 4.5: C-C distances between carbons on parallel chains of the C16 alkane hairpin, as indicated by

the above figure.

117



4 Stability of perfluoroalkylalkane hairpin conformers

n side view front view
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Figure 4.9: Alkane hairpin TPSS-D3/def2-TZVP structures for even n from n = 8 to n = 18.

In previous works other levels of theory have been applied for the structure optimization of
the n-alkane hairpins. Before we compare the relative hairpin energies from previous works with
respect to those obtained for the TPSS-D3/def2-TZVP structures, we have to first compare the
structures. For this purpose, we have calculated the mean C-C distances between the arms of
hairpins with even n for the LMP2/VTZ structures of Lüttschwager et al. [32], the MP2/VTZ
structures of Byrd et al. [34] and the DFT double hybrid B2PLYP-D3/def2-QVZP structures
of Liakos et al. [35]. The n dependence of the mean C-C distances are given in figure 4.10a.
For hairpins with n = 8 and n = 10 the mean C-C distances are very similar, indicating a
good match between the TPSS-D3, MP2 and B2PLYP-D3, structures. The TPSS-D3 hairpin
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Figure 4.10: Comparison of alkane hairpin structures for even n. Ref. a [35], ref. b [34], ref. c [32]

with n = 12 is less open in comparison to the MP2 and B2PLYP-D3 structures, which can
be also seen by comparison of the aligned TPSS-D3 and B2PLYP-D3 n = 12 hairpins in inset
a) of figure 4.10b. The mean C-C distances of the LMP2 structures with n = 14 to n = 22
are in very good agreement to those of the TPSS-D3 structures. The B2PLYP and the MP2
hairpin structures for n = 14 to n = 18 show slightly lower mean C-C distances than the
respective TPSS-D3 and LMP2 structures. Inset b) of figure 4.10b shows the aligned hairpin
structures for n = 16. Despite the slight difference in the mean distances, the structures
obtained by the different methods align well. For the example of n = 16, we also give the
individual C-C distances between facing carbons on the two ’arms’ with respect to the TPSS-
D3 values in table 4.5. The C-C distances (a to f) of the LMP2 structure deviate from the
TPSS-D3 results by 0.08 Å to −0.05 Å. The least agreement is found for the MP2 structure
with deviations ranging from −0.09 Å to 0.29 Å. The respective B2LYP hairpin shows on
average better agreement (−0.05 Å to −0.23Å) to the TPSS-D3 structure, in comparison to
the MP2 structure, but also results in a hairpin with ’arms’, that are slightly closer to each
other. Thus when using the same method for relative hairpin energies, we can expect slightly
lower energies, i.e. more stable hairpins, in the range n = 14 to n = 18, for the B2PLYP-
D3/def2-QVZP structures of Liakos et al. [35] and the MP2/VTZ structures of Byrd et al. [34]
in comparison to our TPSS-D3/def2-TZVP structures. In the same range, we expect the effect
of structural differences to be negligible when comparing results based on the TPSS-D3/def2-
TZVP structures to those based on the LMP2/VTZ structures of Lüttschwager et al. [32].
The largest deviation between hairpin structures is found for n = 20, where the ’arms’ of
the B2LYP-D3 structure are in significantly closer contact than in our TPSS-D3 structure,
as depicted in inset c) in figure 4.10b. Considering the discussed differences, we have to be
particularly careful when comparing results for n = 12 and n = 20. The relative hairpin
energies obtained by TPSS-D3 will be discussed and compared to the LCC results at a later
point in the text. They are given in figure 4.14 and table 4.7.
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Figure 4.11: Energy of the n-alkane hairpin conformers relative to the linear conformers. Results for

LCC and the TPSS-D3/def2-TZVP structrues.

Relative n-alkane hairpin energies (∆E) obtained by LCC: Here we present the results for
the relative hairpin energy (∆E) obtained for the TPSS-D3/def2-TVZP optimized structures
with the LCC approximation for n-alkane chains with even n. As shown in equation 4.15,
LCC consist of an LMP2-F12/aVTZ part and a δCC/aVDZ correction. Concerning the
LCCSD(T0)/aVDZ energy for the δCC/aVDZ correction, we choose to treat pairs of orbital
domains within a distance of 4.23 Å as strong, thus at the local coupled cluster level of theory
(Rclose = 8 a0). Pairs between 4.23 Å and 7.94 Å were treated as close pairs (Rweak = 15 a0),
i.e. the MP2 amplitudes influence the coupled cluster triples amplitudes of the strong pairs.
All other pair-domains were treated at the LMP2 level of theory. The same cut-off for strong
pairs was also employed by Lüettschwager et al. [32] and ensures that the most of the facing
C-H and C-C domains in the hairpin are treated at LCCSD(T0) level of theory. We also de-
termined the pair-list for the hairpin conformer and used domain merging to ensure that the
same respective pairs of the linear conformer are treated at the same level of theory. We found
however, that omitting the above step does not introduce a notable error in the δCC/aVDZ
part of ∆E. For the LMP2-F12/aVTZ part, we use extended domains (IEXT=1) and treat all
pair-domains at the LMP2-F12 level of theory.

Figure 4.11a shows the dependence of the relative hairpin energy (∆E) on the chain length
n, obtained by LMP2-F12/aVTZ for standard domains (IEXT=0), extended domains (IEXT=1)
and by LCC. The use of extended domains in the LMP2-F12/aVTZ lowers ∆E considerably,
that is by on average −0.27 kJ/mol per added pair (∆n = 2) of methylene (-CH2-) groups. For
n = 16 the domain extension results in an additional hairpin stabilization of−1.52 kJ/mol, with
respect to the standard domains. Thus, it is of similar importance as the explicit correlation
treatment, which for n = 16 leads to a stabilization by −1.18 kJ/mol with respect to the
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LMP2/aVTZ (IEXT=1) energy, see also 4.11b. The CABS-singles correction to the HF part
of ∆E gives a negligible contribution to ∆E, figure 4.11b. Thus in the case of n-alkanes,
HF/aVTZ already gives results for ∆E close to the HF/CBS limit. From here on, we will
omit the (IEXT=1) label and refer to LMP2-F12/aVTZ (IEXT=1) as just LMP2-F12/aVTZ. In
comparison to LCC, LMP2-F12/aVTZ alone underestimates ∆E, i.e. overestimates dispersion
interactions. The coupled cluster correction to ∆E in the form of δCC/aVDZ thus raises ∆E
by 1.2 kJ/mol for n = 8 to 2.7 kJ/mol for n = 18, which is about 0.3 kJ/mol per chain
elongation by ∆n = 2, see figure 4.11b. To investigate the error introduced by δCC/aVDZ,
we have calculated the δCC/aVTZ contribution to ∆E for n = 8 to n = 12, figure 4.11b. The
δCC/aVTZ and δCC/aVDZ corrections give similar values. For n = 12 the difference between
δCC/aVTZ and δCC/aVDZ is 0.24 kJ/mol. Assuming a linear increase in this error with even
n, the extrapolated error for n = 18 is 0.60 kJ/mol. On this basis, a conservative global error
estimate of ±1 kJ/mol for ∆E at the LCC level of theory seems reasonable up to n = 20.

Due to the overestimation of the hairpin stability, LMP2-F12/aVTZ predicts nhp,el = 14 as
the shortest n-alkane of even chain length where the hairpin has a lower electronic energy than
the linear all-trans conformer. Respectively, the last globally stable linear n-alkane with even
n at the LMP2-F12/aVTZ level of theory is nc,el = 12. Addition of the δCC/aVDZ correction
to the LMP2-F12/aVTZ energies gives the LCC result, with nhp,el = 16 and nc,el = 14.
The dependence of LCC results for ∆E on even n shows two approximately linear gradients.
Starting at n = 8 with ∆E(8) = 6.57 kJ/mol, ∆E changes by about −1 kJ/mol per ∆n = 2
until n = 12. From n = 12 to n = 18 the average change in ∆E is −3.5 kJ/mol per ∆n = 2.
The occurrence of the two slopes can be explained by the ’closing’ of the hairpin structures
and the increased orientation of their arms for increasing n, as shown in figures 4.9 and 4.10a.

Comparison of ∆ELCC to reference results obtained by others: We are now in the position
to compare the LCC results for ∆E, to wave-function-based reference results obtained by
Lüttschwager et al. [32], Byrd et al. [34] and Liakos et al. [35]. Note, that the herein compared
results differ in the underlying structures and methods. Lüttschwager et al. [32] used an
approach similar to LCC. They determined the LMP2-F12/VTZ-F12 energy to which they
added a short range coupled cluster correction δCCsr/AVTZ and a long range coupled cluster
correction δCClr/VTZ = LCCSD(T0)lr/VTZ − LCCSD(T0)sr/VTZ. Explicit correlation at
the LMP2-F12 level was restricted to orbital pairs with atom distances of up to 4.23 Å. For the
short range LCCSD(T) energy the standard pair approximation was applied (Rclose = 1 a0,
Rweak = 3 a0), while for the long range correction orbital pairs with atom distances up to
4.23 Å (Rclose = 8 a0) were treated at the coupled cluster level of theory. The main difference
of this method to LCC is the use of standard domains instead of extended domains in the
LMP2-F12 calculation and the separation of short range and long range local coupled cluster
contributions. Upon comparison of the present LCC results to the results by Lüttschwager et
al. [32] for ∆E for n ≥ 14, as shown in figure 4.12, we notice that method used by Lüttschwager
et al. [32] gives relative hairpin energies that are about 2 kJ/mol higher than our LCC results.
Since the comparison of the LMP2/VTZ hairpin structures used by Lüttschwager et al. [32]
and our TPSS-D3/def2-TZVP structures showed that they are very similar, the difference
in the results, are most probably based on the difference in the composite local correlation
methods. Unfortunately, we know only the hairpin structures from reference [32] and not the
linear structures, thus we cannot repeat the LCC calculation for these structures. Omission of
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Figure 4.12: Comparison of relative n-alkane hairpin energies obtained by LCC with and without domain

extension to the wave-function-based results from references a) [35], b) [32] and c) [34].

Note that in each case different methods for structure optimization have been applied, see

also figure 4.10.

the domain extension in the LMP-F12/aVTZ part of the LCC calculation increases ∆E, the
respective LCC (IEXT=0) relative hairpin energies agree with the values of Lüttschwager et al.
within 1 kJ/mol, see figure 4.12. We therefore argue, that the main discrepancy between the
results of Lüttschwager et al. [32] and the present LCC results originate from a domain error,
which is reduced in LCC by the use of extended LMP2-F12 domains. The remaining difference
of about 0.6 kJ/mol might be attributed to the different approaches used to obtain the coupled
cluster corrections, which we will not analyse further.

Byrd et al. calculated ∆E for n-alkanes with even n ranging from n = 8 to n = 18
using the CCSD FNO(T)/VTZ level of theory [34]. They compared estimated CCSD(T)/CBS
results for n = 8 to n = 14, with CCSD FNO(T)/VTZ and assign a global error estimate
of ±1 kJ/mol. The present LCC results for ∆E are in excellent agreement with the CCSD
FNO(T)/VTZ results of Byrd et al. [34], see figure 4.12. The mean absolute deviation of
LCC with respect to CCSD FNO(T)/VTZ is 0.26 kJ/mol, where this value also contains
deviation due to the structural differences. We have therefore calculated the LCC ∆E using
the MP2/VTZ structures of Byrd et al. [34]. Comparing results for the same structures reduces
the mean absolute deviation of LCC and CCSD FNO(T)/VTZ to 0.12 kJ/mol, see figure
4.13 and table 4.6. The mean absolute deviation between the LCC energies obtained for the
MP2/VTZ and TPSS-D3/def2-TZVP structures is 0.28 kJ/mol. Here the maximal deviations
of about 0.5 kJ/mol arise for n = 12 and n = 18, whereas the absolute differences for the
other chain lengths are 0.2 kJ/mol. Thus, the structural differences in the linear and hairpin
conformers of n-alkanes resulting from optimization with either MP2 or TPSS-D3, do not lead
to errors outside of the estimated global error bounds of LCC. Consequently, both methods, i.e.
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Figure 4.13: Comparison of relative n-alkane hairpin energies obtained for the same structures.

CCSD FNO(T)/VTZ and LCC, give the same result for the critical chain lengths: nhp,el = 16
and nc,el = 14.

Liakos et al. gave the most recent estimate for ∆E using the advanced DLPNO-CCSD(T)
theory extrapolated to the CBS limit using VTZ and VQZ basis sets and adding a CCSD(T)
correction to DLPNO-CCSD(T)/CBS using the AVDZ basis set [35]. From an extensive
error analysis for small n-alkanes, they estimate the error with respect of their method to
CCSD(T)/CBS to be 0.5 kJ/mol for n = 17, on the side of overestimating the hairpin stabil-
ity [35]. Their results for all n between n = 14 to n = 18 are compared to our LCC results
in figure 4.12. We find that LCC is in good agreement with the DLPNO-CCSD(T) results of
Liakos et al. [35], as the mean deviation is 0.21 kJ/mol, which includes deviations due to struc-
tural differences. Comparing both methods for the B2PLYP-D3/def2-QZVP structures [35]
gives a slightly higher mean absolute deviation of 0.47 kJ/mol, where LCC predicts lower
relative hairpin energies than DLPNO-CCSD(T), see figure 4.13 and table 4.6. The mean
absolute deviation between LCC results calculated for the B2PLYP-D3/def2-QZVP optimized
structures with even n for n = 8 to n = 18 of Liakos et al. [35] and our TPSS-D3/def2-TZVP
structures is 0.33 kJ/mol. Irrespective of the two choices for structure optimization, the relative
hairpin energies for n-alkanes from LCC and DLPNO-CCSD(T) agree within their accuracy
estimates. Thus, both methods predict the same even critical chain lengths.

The good agreement of LCC with the accurate non-local CCSD FNO(T)/VTZ and the local
DLPNO-CCSD(T) theory for ∆E confirms the accuracy of the method and our choices for
the local approximations in the LCC method for n-alkanes. We could also confirm that the
TPSS-D3/def2-TZVP structures are of good quality. On this basis, we estimate the error of
our approach to be ±1.5 kJ/mol. Nevertheless, we have confirmed the reference character of
the LCC results which we will compare to more approximate but more economic methods, in
the form of dispersion corrected DFT theory.
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4 Stability of perfluoroalkylalkane hairpin conformers

structure TPSS-D3 MP2 [34] B2PLYP-D3 [35]

n

∆E
LCC CCSD FNO(T) [34] LCC ∆ DLPNO-CCSD(T) [35] LCC ∆

8 6.57 6.32 6.50 0.18 6.54
10 5.51 5.23 5.48 0.25 5.53
12 4.35 3.72 3.80 0.08 3.91
14 1.14 0.75 0.92 0.17 1.27 0.82 −0.45
16 −2.42 −2.64 −2.62 0.01 −2.29 −2.84 −0.55
18 −6.24 −6.69 −6.75 −0.06 −6.63 −7.03 −0.40

Table 4.6: Relative n-alkane hairpin energies (in kJ/mol) obtained at the LCC level for the present

TPSS-D3/def2-TZVP structures, the MP2/VTZ structures of Byrd et al. [34] and the

B2PLYP-D3/def2-QZVP structures of Liakos et al. [35]. Additionally the CCSD FNO(T)

results obtained by Byrd et al. [34] and those obtained by Liakos et al. [35] with DLPNO-

CCSD(T) are given for n =14, 16 and 18. Differences of LCC with respect to the results

from the literature are denoted by ∆.

Performance of three dispersion corrections with TPSS and PBE DFT functionals for the

relative hairpin energy of n-alkanes: Density functional theories with (m)GGA functionals
fail at describing long range dispersion interactions, due to the non-local correlation nature of
these interactions. A remedy for this shortcoming are dispersion corrections (D3, QHO) and
non-local correlation functionals (VV10). Because dispersion corrected (m)GGA DFT scales
much lower than typical wave-function-based correlation methods, it can be applied to larger
systems and used for computationally demanding tasks such as structure optimizations and
frequency analysis of large molecules. Here, we compare the performance of the TPSS-D3(BJ),
TPSS-VV10 and PBE-QHO methods for the relative hairpin energy of n-alkanes, with respect
to our accurate LCC results. This comparison is carried out for the TPSS-D3/def2-TZVP
optimized structures. Figure 4.14 and table 4.7 show the dependence of ∆E on n as obtained
by the three DFT methods, LCC and LMP2-F12/aVTZ, for even n in the range n = 8 to
n = 18.

The relative hairpin energies obtained by TPSS-D3(BJ) and TPSS-VV10 in this range differ
by only 1 kJ/mol, where the use of VV10 results in slightly more stable hairpins compared
to D3. In comparison to LCC, both methods overestimate the hairpin stability. In the range
n = 8 to n = 18 TPSS-D3 underestimates ∆E on average by 1.5 kJ/mol with respect to
LCC, whereas the average error for TPSS-VV10 is 2.4 kJ/mol. Since both methods perform
slightly better for the shorter alkanes with n = 8 and n = 10, we also calculated the mean
deviation for the range n = 12 to n = 18. In this range TPSS-D3 and TPSS-VV10 consistently
underestimate ∆E by 2 kJ/mol and 3 kJ/mol, respectively. Thus, both methods give results
similar to LMP2-F12/aVTZ.

The PBE-QHO results for short n-alkane hairpins with n = 8 and n = 10 are similar to the
LCC results. For n = 12 and n = 14 PBE-QHO gives results similar to TPSS-D3 and TPSS-
VV10. However for n ≥ 16 ∆E is significantly underestimated by PBE-QHO. The average
error of PBE-QHO with respect to LCC in the range n = 12 to n = 18 is −4.4 kJ/mol. At
n = 18 PBE-QHO underestimates the relative hairpin energy by 6.3 kJ/mol.

All three dispersion corrected DFT methods overestimate the relative hairpin stability, PBE-
QHO predicts a higher stabilization per chain elongation by two carbons, compared to TPSS-D3
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Figure 4.14: Comparison of relative n-alkane hairpin energies (a) for the TPSS-D3 structures obtained

by the wave-function-based LCC and LMP2-F12/aVTZ methods and the DFT results ob-

tained with TPSS-D3/def2-TZVP, TPSS-VV10/def2-TZVP and PBE-QHO with a plane

wave basis set. (b) Differences with respect to LCC.

n

∆E
LCC TPSS-D3 TPSS-VV10 PBE-QHO

8 6.57 6.09 5.43 7.23
10 5.51 4.85 3.93 5.21
12 4.35 2.18 1.42 1.62
14 1.14 −1.07 −1.97 −2.45
16 −2.42 −4.42 −5.39 −7.60
18 −6.24 −7.98 −9.03 −12.50
20 (−10) −11.19 −12.28 −17.32
22 (−14) −14.68 −15.84 −22.22

Table 4.7: Relative n-alkane hairpin energies (kJ/mol) obtained by LCC, TPSS-D3(BJ)/def2-TZVP,

TPSS-VV10/def2-TZVP and PBE-QHO with plane wave basis functions. Estimates for

the LCC values for n = 20 and n = 22, given in brackets, have been obtained by linear

extrapolation from the n = 16 and n = 18 data-points.

and TPSS-VV10, where the latter two methods give gradients for ∆E very similar to the LCC
results. Concerning the critical chain length for hairpin formation, the three DFT methods
give the result nhp,el = 14 and nc,el = 12. We can recommend TPSS-D3 and TPSS-VV10
for the calculation of interaction energies of molecules involving short and long alkyl chains.
Both theories are good candidates for studies on the folded conformers of very long n-alkanes,
for example double hairpins and paper-clips. For PBE-QHO dispersion interactions between
short alkyl chains ≤ 5 are predicted reliably, while interactions between longer chains are
overestimated. It should be noted, that double hybrid DFT with the D3 dispersion correction
gives ∆E in good agreement to the CCSD(T) FNO(T) and DLPNO-CCSD(T) results [34, 35].

Relative n-alkane hairpin enthalpy and Gibbs free energy: In order to predict the criti-
cal chain length for n-alkane hairpin formation at the experimental conditions described by
Lüttschwager et al. [32, 33], we have calculated thermodynamic corrections to ∆E for the
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Figure 4.15: Thermodynamic corrections to ∆E for n-alkanes.

entropy and the Gibbs free energy at T = 100 K based on structures and unscaled normal
mode frequencies obtained at the TPSS-D3/def2-TZVP level of theory. Additionally, we also
calculated the corrections at 0 K and 300 K. The resulting thermodynamic corrections are
shown in figure 4.15. Qualitatively, we obtain a similar trend for the temperature dependence
of the enthalpy correction ∆δH as Byrd et al. [34]. In the considered window of temperatures
∆δH is positive, hence hairpins are destabilized with respect to ∆E. With raising tempera-
ture ∆δH decreases. For shorter n-alkanes (n ≤ 10) our corrections are similar to those of
Byrd et al., but they increase for longer n-alkanes, while those of Byrd et al. stay constant in
comparison. At n = 18 our value for ∆δH(100 K) is 3.3 kJ/mol while the value of Byrd et
al. is 2.1 kJ/mol. Including also an estimation for the entropic contributions to the hairpin
stability, we obtain a Gibbs free energy correction to ∆E termed ∆δG(T ), see figure 4.15. As
for the enthalpy, the entropy difference between the linear and the hairpin conformer results
in a destabilization of the hairpin conformer. For low temperatures (T = 100 K) the entropic
destabilization ranges from 0.5 kJ/mol to 2 kJ/mol, depending on the chain length, thus it
is smaller than the enthalpic destabilization. At 300 K, the entropic destabilization clearly
dominates ∆δG(T ). We therefore expect that the critical chain length for n-alkane hairpin
formation will shift to higher n for increased temperatures. Because the entropic destabiliza-
tion also increases with n, any hairpin formation will be disfavoured for temperatures above a
certain critical temperature. Lüttschwager et al. predicted ∆δG(100 K) in the range of n = 14
to n = 22 to be about 3.5 kJ/mol, based on LMP2/VTZ data [32], see figure 4.15. Liakos et
al. give values for ∆δG(100K) in the range of n = 8 to n = 19, ranging from about 2.3 kJ/mol
to about 3.4 kJ/mol, using PW6B95-D3/def2-QZVP results [35]. Our results agrees with the
correction obtained by Liakos et al. in the range n = 8 to n = 12. For longer n-alkanes
our results overestimate ∆δG(100 K) in comparison to the results by Lüttschwager et al. and
Liakos et al., for example by about 2 kJ/mol at n = 18. These differences arise due to many
factors, and is difficult to decide, which methodology is suited best. PW6B95-D is an excellent
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approach for the thermochemistry of alkanes and outperforms TPSS-D in terms of atomization
energies, linear to branched isomerization reaction enthalpies [190]. For isodesmic reactions
(formal bond breaking reaction of an alkane with methane to give ethane) TPSS-D performs
better than PW6B95-D [190].

In order to give an error estimate for the thermodynamic correction ∆δG(T ) obtained with
TPSS-D3 we turn to the free energy of association of a crown ether - alkyl ammonium ion supra-
molecular complex. For this complex, Achazi et al. [191] determined ∆G(635 K) using TPSS-
D3/def2-TZVP with the same methodology as applied here, and reported LCCSD(T)/CBS
reference values for ∆E. The calculated free energies were also compared to experimental gas-
phase values obtained in a mass-spectroscopy experiment [192]. Form ∆ELCCSD(T) − ∆GTexp

an accurate value for ∆δGref can therefore be compared to the ∆δGDFT-D3 value. For the
complex in ref. [191, 192] ∆δGDFT-D3 based on TPSS-D3 has an estimated relative error of
7%. On this basis, we estimate the relative error of ∆δG(T ) in the case of the hairpins as 10%.
The estimated errorbars of ∆G(T ) are therefore ±(1.5 + 0.1∆δG(T )). The first term includes
the error of LCC and the variability due to structural differences, while the last term denotes
the uncertainty in the thermodynamic correction.

Our composite estimate for the enthalpy and Gibbs free energy for the n-alkane hairpin
stability relative to the linear conformers at T = 100 K is shown in figure 4.16. For comparison
the figure also shows the results for ∆H of Byrd et al. [34] and ∆G by Lüttschwager et al. [32].
The DLPNO-CCSD(T) results obtained by Liakoset al. [35] are not shown, they however lie
in-between the curves of Lüttschwager et al. and Byrd et al. [34] and are similar to our results
for ∆H. The ∆G curves obtained by Liakos et al. [35] and Lüttschwager el al. [32] lie within
the error bounds of our results. The results for ∆G(100 K) obtained by TPSS-D3/def2-TZVP
closely follow the results obtained by the wave-function-based methods. The reason for this
is that the underestimation of ∆E is cancelled by the overestimation of ∆G(100 K), hence
the uncertainty of the TPSS-D3/def2-TZVP results is larger ±3.5 kJ/mol in comparison to
LCC results. Within the estimated errors, our results predict nhp,G(100 K) = 18 as the chain
length of the first stable n-alkane hairpin and nc,G(100 K) = 16 as the last globally stable linear
n-alkane with even n. This prediction is in accordance with the theoretical results by Liakos
et al. [35] and the theoretical and experimental results of Lüttschwager el al. [32]. The results
by Byrd et al. [34] for ∆H suggest, that the hairpin could be favoured already at n = 16.
However, within their error bounds (±1.3 kJ/mol) also nhp,H(100K) = 18 is more likely [34].
Liakos et al. [35] who calculated ∆G also for odd n, found that hairpin formation might start
at nhp,G(100 K) = 17 based on their DLPNO-CCSD(T) results.

Finally, the theoretical predictions for the n-alkane hairpin stability ∆G(100 K) lead to the
following conclusions. Linear conformers with n ≤ 15 are with certainty more stable than the
respective hairpin conformers. The turning point, where the hairpin becomes more stable than
the linear conformer lies between n = 16-18. With n = 18 being the most likely, based on the
most accurate results obtained by Liakos et al. [35]. To give a definite answer, ∆G(100 K) in
this range has to be predicted with a certainty of ±0.5 kJ/mol, which would foremost require
an more exact treatment of thermodynamic corrections. All four studies agree, that for n ≥ 18
the hairpin conformers are more stable than the linear conformers at T = 100 K.
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n

∆E
LMP2-F12 LCC ∆H(100 K) ∆G(100 K)

8 5.34 6.57 8.33 8.82
10 4.05 5.51 7.17 7.66
12 2.51 4.35 6.87 7.48
14 −1.10 1.14 4.45 5.59
16 −4.76 −2.42 0.83 2.25
18 −8.95 −6.24 −2.88 −1.21
20 - (−10) (−6.26) (−4.24)
22 - (−14) (−10.11) (−7.87)

Table 4.8: Relative n-alkane hairpin energies (kJ/mol) obtained by LMP2-F12/aVTZ, LCC, and by

adding thermodynamic TPSS-D3/def2-TZVP corrections to LCC ∆E giving ∆H(100 K)
and ∆G(100 K) Estimates for the LCC values for n = 20 and n = 22, given in brackets,

have been obtained by linear extrapolation from the n = 16 and n = 18 data-points.
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4.3.2.1 Method of increments approach to LCC ∆E

We have demonstrated that the relative hairpin energy of n-alkanes can be accurately de-
scribed with the composite local correlation LCC method. Next, we investigate the correlation
energy part of LCC ∆E as obtained by the method of increments. For this, we will determine
which n-body level is necessary to accurately describe the two parts, i.e. LMP2-F12/aVTZ and
δCC/aVDZ, of the LCC correlation energy difference between the two conformers. Exemplary
for C16H34 figure 4.17 shows the backbone superimposed by the charge centres of the local
orbital groups that define the 1-body increments in our partitioning scheme. For both the
hairpin and the linear conformer the internal numbering of the 1-body increments along the
backbone is the same. As the 2-body, 3-body and n-body increments are generated by pairing,
tripling and so forth of 1-bodies, we obtain the same lists of n-body increments for both con-

(a) C16H34 hairpin conformer backbone (gray) su-

perimposed by coloured circles representing the

charge centres of the one-body increments. Ar-

bitrary 2-body, 3-body and 4-body increments

are visualized by coloured lines connecting 1-

body increments.
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(b) Like (a) but for the linear conformer of C16H34.
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Figure 4.18: Bar plots of individual LMP2-F12/aVTZ [IEXT=1] correlation energy increments for

C16H34. Columns: hairpin (left), linear (middle) and ∆Ecorr (right). Rows: 1-body

(top), 2-body (middle) and 3-body (bottom). Also given are the sums over the respective

n-body increments in (kJ/mol).

formers. Thus, ∆Ecorr is separated into incremental contributions and thier importance can
be determined. One challenge in incremental calculations is that the number of 3-body and
higher order body increments for even medium sized molecules is rather large, see figure 4.17.
For C16H34 the number of 1-body, 2-body, 3-body and 4-body increments is 15, 105, 455 and
1365, respectively. Thus, to obtain the correlation energy at the 4-body level 1940 single point
calculations have to be performed for each conformer. Additionally, higher-order increments
correlate more electrons than those of lower orders, which makes them computationally more
expensive. Moreover, with raising chain length the numbers of increments increase approx-
imately exponentially. The actual number of increments to be evaluated, can be reduced
by symmetry considerations, distance criteria, embedding schemes and extrapolation meth-
ods. Which of these methods applies, depends on the systems. The structures of the linear
conformers of the n-alkanes can be set-up as to provide symmetry equivalent increments. How-
ever, as we intend to apply the method to mainly non-symmetric hairpin molecules, namely
perfluoroalkylalkanes and diperfluoroalkyloctanes as shown in figure 4.3, we omit symmetry
considerations in this work. First, we focus on the MoI-LMP2-F12/aVTZ [IEXT=1] description
of the hairpin and linear conformer of C16H34. The respective increments up to the 3-body
level are given in figure 4.18. The major part of the correlation energy of the individual con-
formers is described at the 1-body level, where each 1-body increment gives a contribution
approximately proportional to the number of correlated electrons, ranging from about −350
kJ/mol to about −650 kJ/mol. The part of the correlation energy represented by the sum
over 2-body increments amounts to about one third of the sum over the 1-body increments.
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The 2-body increments differ considerably in size, ranging from about −140 kJ/mol to about 0
kJ/mol. Many of the 2-body increments give a negligible contribution at the single conformer
level, due to weak correlation between distant 1-bodies. The sum of 3-body increments is two
orders of magnitude smaller than the sum over 2-body increments, which indicates convergence
of the MoI expansion for the LMP2-F12 correlation energy at the 3-body level. This is the ex-
pected behaviour for LMP2, a method which describes mainly pair correlation. Which leads to
the question: What is the origin of the 3-body incremental contributions in MoI-LMP2? The
answer lies in the different environments present in which pair excitations are treated in LMP2
and MoI-LMP2 [76, 193]. In LMP2, i.e. for the whole molecule, the amplitude for a given
pair excitation is evaluated in the environment of all other pair excitations in the molecule.
In MoI-LMP2, the same pair excitation within a 2-body depends on the other pair-excitations
within that 2-body, while the rest of the electrons within the molecule are treated at the HF
level. Expanding the 2-body to a 3-body, more correlated electrons are added to the envi-
ronment of the same pair-excitation compared to the situation in the 2-body, the respective
3-body increment then captures this change in the environment. Thus, 3-body increments will
give sizeable contributions, if the respective 2-body increments to be corrected contribute to
the correlation energy. Hence, one strategy to reduce the amount of 3-body calculations in
MoI-LMP2, is to screen 2-body increments by size and omit 3-bodies that correct negligible
2-body increments.

Since, we are interested in the difference between the correlation energies of the hairpin and
linear conformers, we now turn to the analysis of the respective increments for the relative
hairpin correlation energy, given in the right column of figure 4.18. Despite being very large
for the individual conformers, the 1-body increments give almost no contribution to the relative
hairpin correlation energy. Size-wise they range between −0.2 kJ/mol and 0.25 kJ/mol, where
the 1-body increments with the largest contributions are 6, 8, 12, 14 and 15, which are located
where the n-alkane bends. The 3-body increments give a similar small contribution to ∆Ecorr,
with a majority of the increments being negligibly small. Interestingly, the sum of 1-body and 3-
body increments effectively cancel each other resulting in a net contribution of only 0.1 kJ/mol
to ∆Ecorr. The LMP2-F12 ∆Ecorr is thus effectively given by 2-body increments, which sum up
to −38.7 kJ/mol for C16H34. The 2-body increments for ∆Ecorr show an interesting structure,
with two large increments (−5 kJ/mol), many increments with energies around −1 kJ/mol,
four increments with sizable positive energies and many increments which are close to 0 kJ/mol.

To analyse the 2-body increments for ∆Ecorr in more detail, they are presented in figure 4.19
sorted by their magnitude (a) and superimposed onto the hairpin structure (b-f) for color
coded energy ranges. The 2-body increments shown in (b-d) describe the main binding intra-
molecular dispersion interactions between the two ’arms’ of the hairpin. The two largest
increments, shown in (b), are 12 15 and 6 15 and can be attributed to dispersion interactions
between the central H2CCH2 body and the CH2 bodies which are three carbons further along
the chain. These two increments alone contribute 26% of the total 2-body MoI-LMP2-F12
correlation energy difference. In total 18 increments, given in (c), fall into the energy range
between −2.5 kJ/mol and −0.5 kJ/mol. Most of these increments can be attributed to intra-
molecular dispersion interactions between neighbouring and second nearest neighbouring pairs
of 1-bodies located on each of the two ’arms’ of the hairpin. Additionally, four pairs involving
the one body increment 15 also fall into this range. These interactions amount to 63% and
thus the largest part of the total 2-body sum. A number of 31 increments has energies ranging
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Figure 4.19: Importance of individual 2-body increments for the relative LMP2-F12 correlation energy

of the C16H34 hairpin. (a) Overview of the increments ordered by magnitude. (b-f) The

depiction of the location of 2-body increments within given energy ranges (kJ/mol) provides

a map of the mainly dispersive interactions within the hairpin conformer. Also given are

the number of increments (N), their sum (kJ/mol) and their fraction (%) relative to the

sum over all 2-body increments.
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from −0.5 kJ/mol to −0.1 kJ/mol, of which most can be described as third and fourth nearest
neighbour interactions of one-bodies located on both ’arms’. These ’weak’ interactions amount
to 20% of the total 2-body relative hairpin correlation energy. The last sizable contribution of
−10% is given by 6 increments with positive energies > 0.1 kJ/mol, which are located along the
bend of the hairpin, all involving 1-bodies 8 and 14. The positive contribution can be explained
by considering that in the hairpin conformer the C-H bonds at the ’corners’ are facing away
from the C-H bonds of their next neighbours. This reduces intra-molecular C-H dispersion
interactions compared to their more or less parallel arrangement in the linear conformer.

Hence, intra-molecular dispersion interactions stabilize the hairpin conformer, when present
in the ’inside’ of the bend and destabilize the hairpin, when present on the ’outside’ near the
’corners’. However, the destabilization is by far out-weight by stabilizing interactions. Almost
half of the 2-body increments, in total 48, fall into the range of very small energies, given in (f),
and in sum contribute only 1% to the total 2-body sum. Increments with almost zero effect on
the hairpin stability are those correlating the 1-bodies located on the same ’arm’, fifth nearest
neighbours and more distant pairs between different ’arms’.

To conclude, for the example of the MoI-LMP2-F12 calculation of C16H34 we obtain similar
results for ∆Ecorr, i.e. differing by less than 1 kJ/mol from the conventional LMP2-F12 relative
hairpin correlation energy −38.36 kJ/mol, by: a) Summing up all 1-body, 2-body and 3-body
increments, which is based on 2× 575 = 1150 incremental single point calculations. At the 3-
body level, ∆Ecorr = −38.60 kJ/mol is obtained, which is the most accurate result within this
comparison. b) Only considering the sum over 2-body increments, which reduces the number
of incremental calculations to 2 × 120 = 210. At this level which we denote 2-body-only
∆Ecorr = −38.73 kJ/mol is obtained. c) Evaluation of only those 2-body increments which
contribute significantly to conformational correlation energy changes, which further reduces
the number of calculations to 2× 72 = 144, i.e. 2× 15 1-body and 2× 57 2-body correlation
energy calculations. This approach gives ∆Ecorr = −38.28 kJ/mol. d) At the 2-body level, i.e.
summing over all 1-body, 2-body increments, ∆Ecorr = −37.64 kJ/mol is obtained, which also
gives sub-kJ/mol accuracy. The deviation at the 2-body level with respect to the reference
value is larger, compared to the 2-body-only approximation, which benefits from cancellation
of 1-body and 3-body correlation contributions.

The interaction maps shown in figure 4.19 would provide more detail if each 1-body would
represent a single local orbital. In this case, the analysis would show also σCC and σCH

interactions. On the basis of detailed interaction maps, one could develop a local correlation
method for conformational correlation energy changes. Such a method would introduce pair
approximations based on the distance, orientation and spread changes of local orbitals with
respect to both conformers. Orbital pairs that do not contribute to the correlation energy
change could be discarded, if their distance, orientation and spread is not changing within
some thresholds, from one conformer to the other. For conformational energy differences in
large molecules, where large parts of the structure do not change, such a scheme may provide
significant computational savings. The development of the method as described above is beyond
the scope of this work, which merely focusses on the brute force incremental approach, and
was thus not undertaken.

Next, we discuss the MoI-LMP2-F12 results for ∆E for n-alkanes with even n in the range
n = 8 to n = 18. Figure 4.20 provides respective plots for ∆E in (a) and (b). At the 1-body
level, the MoI-LMP2-F12 and HF curves coincide, see figure 4.20a, as the sum over the 1-body
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Figure 4.20: Convergence of the relative hairpin energy of n-alkanes for the MoI-LMP2-F12/aVTZ

[iext=1] level of theory with increasing incremental orders.

increments gives a negligible correlation contribution to ∆E. At the 2-body level, summing
over all 1-body and 2-body increments, ∆E is overestimated by about 0.8 kJ/mol in the range
n = 12 to n = 18, see also figures 4.20a-c. At the 3-body level ∆E obtained by MoI-LMP2-
F12 agrees with the LMP2-F12 results within ±0.3 kJ/mol. Summation of only the 2-body
increments, provides a result similar to the 3-body level MoI-LMP2-F12. Figure 4.20d shows
the percentage of the LMP2-F12 correlation energy part of ∆E as obtained by summing over
1-body, 2-body and 3-body increments. For n = 10 to n = 16 the 1-body sum and the 3-body
sum effectively cancel each other, which explains the good performance of the 2-body-only
MoI-LMP2-F12. Thus, the analysis performed for n = 16 also holds for other chain lengths.

The second component for LCC is the local coupled cluster correction δCC/aVDZ, i.e.
the post-LMP2 correction. Here we investigate at which level the MoI-δCC converges to the
exact result obtained by the standard local correlation treatment. Figure 4.21 shows the
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Figure 4.21: Convergence of the MoI-δCC/aVDZ correction for different incremental sums up to the

4-body level.

dependence of MoI-δCC on the chain length and on increasing n-body levels up to the 4-body
level. Additionally individual n-body sums for MoI-δCC are given for each chain length. The
sum of 1-body increments has an almost zero contribution to MoI-δCC. At the 2-body level,
MoI-δCC has the wrong sign with respect to the reference. The absolute values of the 2-
body contribution increase with the chain length. At the 3-body level, MoI-δCC shows the
correct chain length dependence, but the magnitude of the δCC correction is overestimated by
about 1 kJ/mol. It is obvious, that the 3-body sum provides the main part of the MoI-δCC
correction. One reason for this is that LCCSD(T0) describes Axilrod-Teller-Muto dispersion,
a 3-body body effect, which is not covered by LMP2 [194, 195]. At the 4-body level, the
MoI-δCC is converged to the non-MoI reference result. In contrast to sums over the 2-body
and 3-body increments the 4-body sum is much less dependent on the chain length. It gives a
negative contribution ranging from −0.5 kJ/mol at n = 8 to −1 kJ/mol at n = 16.

The correct description of the δCC correction within the framework of the MoI thus affords
a huge number of incremental calculations. The necessity of up to 4-body increments makes
brute force MoI calculations for δCC for large chain molecules therefore impractical. In the
present case one could calculate the MoI-δCC at the 3-body level and add the 4-body sum
obtained for a smaller molecule, without introducing a large error. Of course, a future analysis
of the importance of individual increments for δCC will lead to further insights and a more
efficient evaluation of the term. Although this data is available from the present work, at this
point we do not undertake this elaborate analysis. Instead of using brute force MoI, we will
employ the standard local methods and smaller basis sets to calculate δCC for the systems
with perfluoroalkylgroups, additionally we will extrapolate δCC when necessary.
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4 Stability of perfluoroalkylalkane hairpin conformers

4.3.3 Perfluoroalkylalkane folding

In the preceding section we have demonstrated that the LCC approach gives accurate relative
hairpin energies for the alkanes. In this section we apply the method to perfluoroalkylalkane
hairpins of the type CmF2m+1-C8H16-CmH2m+1, up to even chain lengths of n = 22. First, we
begin with a discussion of the structural features obtained at the TPSS-D3/def2-TZVP level
of theory. Second, we give the results on the electronic part of the relative hairpin energy,
for wave function based methods, i.e. the LMP2-F12 and LCC methods. Third, we compare
results obtained by dispersion corrected DFT with the LCC results. Fourth, we present results
on thermodynamic corrections and on the stability of perfluoroalkylalkane hairpins at finite
temperature. Fifth, we analyse the convergence of the MoI-LMP2-F12 results and present
a map of the 2-body increments for the intramolecular correlation interaction energy on the
hairpin structure of C4F9-C8H16-C4H9 (n = 16).

Perfluoroalkylalkane hairpin structures Structure-optimizations of the linear and hairpin
conformers of the perfluoroalkylalkanes CmF2m+1-C8H16-CmH2m+1 have been performed at
the TPSS-D3/def2-TZVP level of theory. We choose to limit the investigation to even chain
lengths n in the range n = 10 to n = 22. In the case of n = 10, one -CF3 and one -CH3 group
is added to each end of the central -C8H16- unit. For n = 22, one -C7F15 group and one -C7H15

is added to each end of the central -C8H16- unit. The chain length m of the perfluoroalkyl
group is related to the overall chain length n by,

m = n− 8
2 . (4.16)

Although other folded hairpin structures are possible, we limit our investigation to hairpins,
which are folded through the central -C8H16- group. The structures of the investigated per-
fluoroalkylalkane hairpins are shown up to n = 20 in figure 4.22. It should be noted, that an
extension of the investigation to odd n would present two new possible hairpins cases for each
odd n. Namely, the case where the perfluoroalkyl group is one CF2 unit longer than the alkyl
group and vice versa. Thus, two distinct even-odd effects can be expected for the proposed
perfluoroalkylalkane hairpins. Again the main question of this work is: For which even n are
hairpin conformers lower in energy compared to linear conformers?

First, we shall discuss the structural changes in the perfluoroalkylgroup with m. From the
crystal-structure of polytetrafluoroelthylene (-CF2-)n it is known, that the trans-like structure
of long perfluoroalkyl groups occurs not for carbon backbone dihedral angles of 180◦ as in
alkanes, but is shifted by about 17◦ to 163◦. This implies a helical structure, where the
helix repeats after 13 carbon atoms [196]. The origin of the helicity of perfluoroalkanes is
attributed to electrostatic interactions2, which stabilize the helical conformation over the all-
trans structure [197]. Therefore, we have biased our structure optimization towards helical
structures, by using initial dihedral angles of ±162◦ for all perfluoroalkyl groups.

In the case of the perfluoroalkylalkanes we only discuss the results for −162◦ and note,
that the DFT results for the other handedness (with +162◦) obtained are similar. For short
perfluoroalkyl groups, m = 1–m = 3, figure 4.22 shows that the structure optimization resulted
in a relaxation to non-helical structures. The onset of helicity begins with the perfluorobutyl
group (m = 4) and is kept for all longer groups. This behaviour was also found in other

2Note, that this explanation is based on a force field model.
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Figure 4.22: Perfluoroalkylalkane (CmF2m+1-C8H16-CmH2m+1) hairpin TPSS-D3/def2-TZVP struc-

tures for even n from n = 10 to n = 20. The length of the perfluoroalkyl group is

m = (n− 8)/2.

ab initio studies on the structures of perfluoroalkanes [183, 197–199]. The optimized helical
dihedral angles range from −161◦ to −166◦, with most angles being close to −163◦. Backbone
dihedral angles become closer to −180◦ for every involved CH2 carbon, when measured where
the perfluoroalkyl group connects to the alkyl chain. Dihedral angles for n = 16 are given
table 4.9.

The next question is: How close are the arms of the perfluoroalkylalkane hairpins? To
answer this question, we measure interarm C-C distances for each hairpin conformer as shown
in figure 4.9. Form this data, we calculate mean interarm C-C distances for each chain length n.
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4 Stability of perfluoroalkylalkane hairpin conformers

Method a (Å) b (Å) c (Å) d (Å) e (Å) f (Å) ∅ (Å)
TPSS-D3/def2-TZVP 4.86 4.34 5.03 4.62 4.88 4.85 4.76

dihedral angles dabcd dbcde dcdef

perfluoroalkyl -178.2 -168.7 -165.8
alkyl -179.6 -174.9 -180.0

Table 4.9: The upper table gives C-C distances between carbons on parallel chains of the n = 16
perfluoroalkylalkane hairpin, as indicated by the above figure. The mean of the C-C distances

is denoted by ∅. The lower table gives carbon dihedral angles for both arms. Carbon atoms

are labelled as their distance lines (a,· · · ,f) in the figure above.
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Figure 4.23: Mean interarm C-C distances of facing carbons on adjacent chains in the perfluoroalky-

lalkane hairpin conformers. For an example with mean and individual C-C distances see

table 4.9.

From table 4.9 and figure 4.23 we see, that the mean interarm C-C distances range from 5.1
Å (n = 10) to 4.6 Å (n = 14). Mean interarm C-C distances, decrease from 5.1 Å at n = 10
to 4.6 Å at n = 14 and increase from there to 4.9 Å at n = 22. Hence, for n ≥ 12 mean
interarm C-C distances of perfluoroalkylalkane hairpins are about 0.5 Å larger than those of
the respective alkane hairpins. For n = 16 the inter arm C-C distances lie between 4.8 and 5.0
Å, while for the respective alkane the distances range from 4.6 to 4.1 Å. This has two reasons.
Firstly, the C-F bond is longer (1.34-1.37 Å) than the C-H bond (1.1 Å), while the CF2-CF2

distance of 1.57 Å is comparable the CH2-CH2 distance of 1.53 Å. Secondly, the helicity of
the perfluroalkylgroups also increases mean interarm C-C distances, compare figure 4.23 and
structures in figure 4.22.
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Figure 4.24: Energy of the perfluoroalkyalkane hairpin conformers relative to the linear comformers.

Relative perfluoroalkylalkane hairpin energy: LCC results In order to obtain the relative
hairpin energy ∆E for the perfluoroalkylalkanes up to n = 22, as shown in figure 4.24a, we
use local correlation methods and introduce further approximations, relative to the n-alkane
case. LMP2-F12/aVTZ results where all pair domains are included have been obtained up to
n = 16. For perfluoroalkylalkanes with n > 16 we use the 2-body only MoI-LMP2-F12/aVTZ
approximation for the correlation energy, i.e. we neglect the 1-body sum. This approximation
gives results in excellent agreement to the true LMP2-F12/aVTZ values. A detailed comparison
for n ≤ 16 is given at the end of this chapter. For MoI and normal LMP2-F12/aVTZ results
extended domains (IEXT=1) where used in combination with the F12/3*A(LOC,FIX) explicit
correlation treatment. The F12 contribution to the relative hairpin correlation energy leads
to a small (-0.5 kJ/mol) stabilization of the hairpin conformer and is relatively independent
from the chain length, see figure 4.24b. Concerning the MoI results, the F12 correction is
nicely recovered at the 2-body level, while its magnitude is overestimated at the 2-body only
level. The latter finding partly explains the good agreement of the 2-body only MoI-LMP2-F12
results to the converged 3-body level MoI-LMP2-F12/aVTZ. This is discussed at the end of this
section, together with the convergence of the MoI results. The CABS-singles correction to the
HF/aVTZ relative hairpin energies is destabilizing. It begins with 0.07 kJ/mol (n = 10) and
reaches 1.15 kJ/mol at n = 22. Due to the similar magnitude of the CABS-singles correction
and the F12 correction both cancel out. Therefore, LMP2/aVTZ alone should already be within
1 kJ/mol of the LMP2/CBS limit for ∆E. At the LMP2-F12/aVTZ level, perfluoroalkylalkane
hairpins are lower in energy than their respective linear conformer for chainlenghts n ≥ 14, see
figure 4.24a.

The post-MP2 correction δCC was obtained with the aVDZ basis set up to n = 14, where
pair domains with distances of 5.3 Å were treated at the LCCSD(T0) level (Rclose = 10 a0) and
all other pairs were treated at the LMP2 level (Rweak = 0 a0). For chain lengths up to n = 20,
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4 Stability of perfluoroalkylalkane hairpin conformers

δCC was calculated using the VDZ basis, where the distance criterion for the LCCSD(T0)
pairs was raised to 6.4 Å (Rclose = 12 a0). The δCC value for n = 22 was linearly extrapolated
from the δCC/VDZ values at n = 18 and n = 20. Both methodologies for δCC give very
similar results, as evident by the agreement of their values up to n = 14, see figure 4.24b.
δCC is the overall most important correction with a destabilizing contribution of 1.9 kJ/mol
(n = 10) to 3.4 kJ/mol (n = 22). The respective linear gradient for δCC is 0.25 kJ/mol per
∆n = 2. LMP2-F12 therefore overstabilizes perfluoroalkylalkane hairpins by the respective
amounts given by δCC.

The relative hairpin energy of the perfluoroalkylalkanes obtained via the LCC method, see
figure 4.24a, begins at 6.10 kJ/mol for n = 10 and decreases approximately linearly by 2 kJ/mol
per added pair of a methlyene (CH2) and a perfluoromethylene (CF2) group (∆n = 2). For
n ≥ 16 the perfluoroalkylalkane hairpin conformers are lower in energy relative to the linear
conformers. However, the stabilization at n = 16 is less pronounced compared to the respective
alkane, which is true also at the LMP2-F12 level. Concerning the error estimation for ∆E as
obtained by the LCC method for the perfluoroalkanes, we stick to the same error bounds as
estimated for the alkanes, i.e. ±1.5 kJ/mol.

Relative perfluoroalkylalkane hairpin energy: DFT results With the accurate wave-function
based LCC results at hand, we now turn to the evaluation of the DFT results obtained with
TPSS-D3/def2-TZVP, TPSS-VV10/def2-TZVP and PBE-QHO with plane waves. Figure 4.25a
shows the relative hairpin energy ∆E as obtained by DFT and LMP2 and LCC. Differences
of the DFT results with respect to LCC are given in figure 4.25b. As found for the alkanes,
TPSS/def2-TZVP with the D3(BJ) correction gives results similar to LMP2, in that the relative
hairpin stability is overestimated by 1.8 to 4.8 kJ/mol with respect to LCC. The slope of ∆E
with TPSS-D3/def2-TZVP is with -2.5 kJ/mol per ∆n = 2 also similar to the wave function
based results. In consequence, TPSS-D3/def2-TZVP predicts nhp,el = 14.

Switching to the non-local dispersion correction functional VV10 with TPSS-VV10/def2-
TZVP results in a strong over-stabilization of the perfluoroalkylalkane hairpin conformers with
increasing n. The gain in stabilization per ∆n = 2 with TPSS-VV10/def2-TZVP is 3.4 kJ/mol.
The first stable hairpin in terms of the electronic energy is predicted for nhp,el = 12. At a chain
length of n = 22 the deviation of TPSS-VV10 with respect to LCC amounts to −11 kJ/mol.

An even more extreme over-stabilization of perfluoroalkylalkane hairpins is found for PBE-
QHO. In this case, the linear slope is −5.2 kJ/mol per ∆n = 2, which leads to nhp,el = 12, as
all three DFT methods give comparable results for n = 10. At n = 22 a deviation with respect
to LCC of −21 kJ/mol is reached.

All three dispersion corrections overestimate the intermolecular interactions which stabilize
the perfluoroalkylalkane hairpin conformers. Out of the tested methods, only TPSS-D3/def2-
TZVP gives results for ∆E within chemical accuracy (±4.18 kJ/mol) over the whole range
of chain lengths. The non-local correlation functional VV10 and the orbital depended QHO
correction in conjunction with the TPSS and PBE functionals result in a very pronounced
overestimation of perfluoroalkyl-alkyl interactions, where PBE-QHO shows the largest error
with respect to LCC. The reason for this behaviour remains an open question. One may
speculate, that their parametrization is less ideal with respect to perfluoroalkyl interactions.
Another reason could be, that the densities and Wannier orbitals of the perfluoroalkylgroups
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Figure 4.25: Comparison of relative perfluoroalkylalkane hairpin energies (a) for the TPSS-D3 structures

obtained by the wave-function-based LCC and LMP2-F12/aVTZ methods and the DFT re-

sults obtained with TPSS-D3/def2-TZVP, TPSS-VV10/def2-TZVP and PBE-QHO with

a plane wave basis set. (b) Differences with respect to LCC.

obtained from TPSS or PBE are not well suited for the non-local correlation functional or the
QHO model, i.e. a different functional may give better results.

Relative perfluoroalkylalkane hairpin energy: thermodynamic corrections As for the alka-
nes, thermodynamic corrections ∆δH(T ) and ∆δG(T ) have been obtained at temperatures
of 0 K, 100 K and 300 K, using the TPSS-D3/def2-TZVP level of theory, without scaling
of normal mode frequencies and with the rigid-rotor approximation for low frequency modes.
The chain length and temperature dependence of both corrections are given in figure 4.26.
The enthalpic correction ∆δH(T ) is relatively insensitive to the chain length. With increas-
ing temperature the destabilization due to ∆δH(T ) drops from 2-4 kJ/mol (T = 0 K), over
2-3.5 kJ/mol (T = 100 K) to 1-2 kJ/mol (T = 300 K). At T = 100 K, entropic effects are
comparable to the enthalpic effects, leading to a further destabilization of the perfluoroalky-
lalkane hairpin conformers by 0.5-2.5 kJ/mol. At T = 300 K, entropic effects dominate the
∆δG(T ) correction and give rise to a total destabilization by 4-9 kJ/mol, depending on the
chain-lengh. Interestingly, the entropy and, to a lesser extend, also the enthalpy correction
show an even-odd behaviour. Corrections for perfluoroalkylalkanes with odd m are larger in
comparison to those than of neighbouring even m. Compare for example ∆δG(T ) for n = 16,
18 and 20. The reason for this effect is unclear. Finding it would certainly require a deeper
analysis of the corrections for the individual conformers in terms of contribution of different
modes. Again, we estimate the relative error of the thermodynamic corrections to be 10%.

Relative perfluoroalkylalkane hairpin free energy Our estimate for the relative perfluoroalky-
lalkane hairpin free energy ∆G(T ) at T = 0 K, T = 100 K and T = 300 K is shown in fig-
ure 4.27. The temperature T = 100 K is close to the estimated temperature in the experiments
on alkanes by Lüttschwager [32]. Table 4.10 provides relative hairpin energy values for ∆E,
∆G and ∆H at T = 100 K. Adding ∆E from LCC and ∆δG(100 K) from TPSS-D3, gives
the chain length of the last stable investigated linear perfluoroalkylalkane hairpin with even n
as nc,∆G(100 K) = 18. The shortest chain length for a hairpin conformer that is more stable
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Figure 4.26: Thermodynamic corrections to the relative hairpin energy (∆E) for perfluoroalkylalkanes.

than the linear conformer at T = 100 K is nhp,G(100 K) = 20. The same prediction is made for
T = 0 K, as the hairpins are only about 1 kJ/mol more stable in comparsion to T = 100 K.
It should be mentioned, that the calculated relative hairpin free energy at T = 100 for n = 20
is very small in magnitude, with ∆G(100 K) = −0.8 kJ/mol. This is also the case for n = 22,
with ∆G(100 K) = −1.1 kJ/mol. In view of our estimated errorbars for ∆G(100 K) at n = 20
and n = 22 of about ±2 kJ/mol, our results allow for the possibility, that perfluoroalkylalkane
hairpin formation may start at even higher n. On the other hand the prediction, that for
n = 18 the linear conformer is preferred at T = 100 K is more certain. Hence, our results
clearly show that perfluoroalkylalkane hairpin formation starts at longer chainlenghts in com-
parison to n-alkanes. At T > 100 K, the critical chain length shifts to larger values, as at
T = 300 K none of the investigates perfluoroalkane hairpins are stable.

For comparison, we also show the results for ∆G(100 K) obtained by using TPSS-D3, given
by the red triangles in figure 4.27. These results lead to the prediction of shorter critical
chain lengths nc,G(100 K) = 14 and shorter hairpin critical chain lengths nhp,G(100 K) = 16.
These changes arise due to the discussed overestimation of the perfluoroalkylalkane hairpin
stabilization by about 4 kJ/mol.
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Figure 4.27: Chain length dependence of the the relative Gibbs free energy for perfluoroalkylalkane

hairpins at 100 K. Additionally we show also the respective enthalpy and results for 0 K

and 300 K.

n

∆E
(MoI)-LMP2-F12 LCC ∆H(100 K) ∆G(100 K)

10 4.22 6.10 8.02 8.67
12 2.05 4.27 6.51 7.64
14 −0.65 1.88 4.39 5.91
16 −3.48 −0.66 1.51 3.19
18 −5.78 −2.75 −0.22 1.94
20 −7.45 −4.23 −2.14 −0.79
22 −9.76 −6.34 −3.52 −1.09

Table 4.10: Relative perfluoroalkylalkane hairpin energies (kJ/mol) obtained by (MoI)-LMP2-

F12/aVTZ, LCC, and by adding TPSS-D3/def2-TZVP thermodynamic corrections to LCC

∆E giving ∆H(100 K) and ∆G(100 K).
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4 Stability of perfluoroalkylalkane hairpin conformers

Relative perfluoroalkylalkane hairpin electronic energy: method of increments Here, we
analyse the MoI-LMP2-F12/aVTZ results for the perfluoroalkylalkanes, of which the 2-body
only results for n ≥ 18 were used to approximate the LMP2 part of the LCC energy. Figure 4.28
shows the one-bodies of C4F9C12H25 (n = 16) represented by circles, which are superimposed
on the carbon backbone. The internal numbering of the 1-bodies is the same for both con-
formers. With respect to the n = 16 alkane, the total number of 1-bodies for the n = 16
perfluoroalkylalkane is increased by 9, i.e. 15 vs. 24 1-bodies, due to the additional fluorine
lone-pair 1-bodies (FLP). The n-alkane with the same number of 1-bodies has a chain length of
n = 25. The largest perfluoroalkylalkane system investigated in this work has n = 22. In terms
of numbers of increments this is equivalent to the n-alkane with n = 36. As for the alkanes, we
find that the 2-body increments give a good representation of the intra-molecular correlation
energy at the LMP2 level of theory. We turn again to the example of the perfluoroalkylalkane
with n = 16 and the magnitude of individual 2-body increments for the relative hairpin en-
ergy in figure 4.29. Let us begin with increments that can be attributed to hairpin stabilizing
intramolecular dispersion interactions. Out of 276 2-body increments, two increments located
in the fold of the hairpin contribute 32% of the total 2-body only relative hairpin correlation
energy of −31.82 kJ/mol, see figure 4.29b. Twelve increments, shown figure 4.29c, fall into the
range of −2 to −0.5 kJ/mol and contribute 39% to the overall 2-body sum. In the case of
the respective alkane, similar sized increments have a contribution of 63%. The 12 increments
describe 7 interactions located within the bend of the hairpin and 5 interactions involving the
two FLP bodies 17 and 18 to close CH2 increments on the other arm. A similar sized part
(36%) of the 2-body sum can be attributed to 47 increments with energies between −0.5 to
−0.1 kJ/mol. As shown in figure 4.29d, these increments include interactions between FLP-
CH2 as well as CF2-CH2 interactions. Destabilizing interactions, shown in figure 4.29e, amount
to −13% of the 2-body sum, where the largest destabilizing increments (1 to 0.5 kJ/mol) are
located in the fold. Small increments in the range −0.1 to −0.05 kJ/mol give a contribution
of 5%, see figure 4.29f. The number of very small increments, shown in figure 4.29f, is 181.
In sum, these increments give 2% of the total 2-body sum. They include increments between
bodies located on the same arm and increments between bodies that are far away from each
other. The analysis of the 2-bodies shows that two thirds of the 2-body increments could be
neglected, without a significant loss of accuracy.
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Figure 4.28: (a,b): Schematic depiction of one-body increments for C4F9C12H25.
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Figure 4.29: Importance of individual 2-body increments for the relative LMP2-F12 correlation energy

of the C4F9C12H25 hairpin. (a) Overview of the increments ordered by magnitude. (b-f)

The depiction of the location of 2-body increments within given energy ranges (kJ/mol)

provides a map of the mainly dispersive interactions within the hairpin conformer. Also

given are the number of increments (N), their sum (kJ/mol) and their fraction (%) relative

to the sum over all 2-body increments.
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4 Stability of perfluoroalkylalkane hairpin conformers

Next, we briefly discuss the convergence of the chain length dependence of the relative hairpin
energy of the perfluoroalkylalkanes with respect to the order of the incremental expansion of
the LMP2-F12/AVTZ correlation energy. Up to n = 16 we calculated ∆Ecorr with MoI-
LMP2-F12/AVTZ at the 3-body level and up to n = 22 at the 2-body level. For n ≤ 16
we obtained the errors due to the truncated incremental expansions with respect to the full
LMP2-F12/AVTZ calculations.

Truncation at the 1-body level results in a small hairpin destabilization with respect to the
HF+[CABS singels] energy, see figure 4.30a. The sum over the 1-body correlation energies gives
−2% (n = 10) to −4% (n = 16) of the normal LMP2-F12 correlation energy contribution to
∆E, see figure 4.30d. If the MoI is truncated at the 2-body level, 96% to 98% of the stabilizing
LMP2-F12 correlation is described, see figure 4.30d. Hence, at the 2-body level, the LMP2-F12
part of ∆E is overestimated by 1.2 kJ/mol at n = 16, see figures 4.30b and c. A converged
LMP2-F12 ∆E curve is obtained at the 3-body level, see figures 4.30a and b, where the absolute
error in correlation energy at the 3-body level is −0.1 kJ/mol for n ≤ 16, see figure 4.30c. As for
the alkane folding, the 1-body sum and the 3-body sum are of similar magnitude but of opposite
sign, see figure 4.30d. Due to this cancellation effect, the sum over the 2-body increments gives
a good approximation to the correlation energy. The correlation energy contribution from the
2-body-only approach deviates by −0.2 kJ/mol (n = 10) to 0.1 kJ/mol (n = 16) from the
actual LMP2-F12 value, see figure 4.30c. The good performance of the sum over the 2-body
increments is partly related to the F12 part of the LMP2-F12 energy. The F12 contribution to
∆Ecorr converges at the 2-body level, but its magnitude is overestimated by about 0.4 kJ/mol
for n = 16, by only accounting for the sum over 2-body increments, i.e. neglect of the 1-body
sum. The error in the 2-body-only LMP2 energy, given in figure 4.30c, is effectively counter
balanced by the error in the 2-body-only F12 part. Using linear extrapolation of the errors, we
estimate that the 2-body-only approach underestimates the hairpin stability by 0.6 kJ/mol at
n = 22, while the full 2-body level results in an underestimation of 2.1 kJ/mol at n = 22. For
n = 22 the number of increments on both conformers is 1332 at the 2-body level and 15612 at
the 3-body level. We have therefore employed the sum over the 2-body increments approach
for the MoI-LMP2-F12 part of LCC used for perfluoroalkylalkanes with n > 16.
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4 Stability of perfluoroalkylalkane hairpin conformers

4.3.4 1,8-Diperfluoroalkyloctane folding

Here, we present the results on the folding of 1,8-diperfluoroalkyloctanes with the formula
CmF2m+1-C8H16-CmF2m+1. First, we discuss the TPSS-D3 structures and relative hairpin
energies for two combinations of differently handed perfluoralkylhelices. Second, LCC relative
hairpin energies for the more stabilized diperfluoroalkyloctanes hairpins are discussed. Third,
dispersion corrected DFT results and their deviations with respect to LCC are compared.
Fourth, we present TPSS-D3/def2-TZVP thermodynamic corrections. Fifth, we combine LCC
and the thermodynamic corrections to predict the critical chain length for hairpin formation.
Sixth, we analyse the MoI-LMP2-F12 results in terms of a 2-body map and the convergence
of ∆E at the n-body level.

1,8-Diperfluoroalkyloctanes hairpin structures The TPSS-D3/def2-TZVP structures of the
1, 8-diperfluoroalkyloctane hairpin conformers (CmF2m+1-C8H16-CmF2m+1) are shown in fig-
ure 4.32. The overall structures of the perfluoroalkylgroups are as already discussed for the
perfluoroalkylalkane hairpins, i.e. helix formation begins at m = 4. We optimized structures
with initial helical dihedral angles of −162◦ (case A) and +162◦ (case B). Hence, in both cases
the handedness of the perfluoroalkyl helices is interchanged. It should be noted, that a third
case, where one perfluoroalkylgroup has helical dihedral angles of −162◦ and one has helical
dihedral angles of +162◦ is not considered in this investigation. Both structure optimizations
lead to considerably different structures for n ≥ 16. In this range, case A gave rise to less open
hairpins, where the mean C-C distances are about 0.25 to 0.5 Å shorter compared to case B, see
figure 4.31a. The hairpin conformers of case A are stabilized by 4-5 kJ/mol over the ones of case
B, as can be seen in the relative hairpin energies at the TPSS-D3/def2-TZVP in figure 4.31b.
The different interaction behaviour of perfluoroalkylhelices within hairpin conformers is very
interesting. However, we are unsure if this is a genuine effect or merely an artefact of our
structure generation process. Because we are mainly interested in the comparison of CH-CH,
CH-CF and CF-CF interactions, we focus on the more stable hairpins of case A, i.e. with helix
dihedrals of −163◦. The mean interarm C-C distances of the hairpins (A) range from 4.9 Å
(n = 10) to 5.5 Å (n = 22).
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Figure 4.32: Diperfluoroalkyloctane (CmF2m+1-C8H16-CmF2m+1) hairpin TPSS-D3/def2-TZVP struc-

tures for even n from n = 10 to n = 20. The length of the perfluoroalkyl groups is

m = (n− 8)/2.
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4 Stability of perfluoroalkylalkane hairpin conformers

Method a (Å) b (Å) c (Å) d (Å) e (Å) f (Å) ∅ (Å)
TPSS-D3/def2-TZVP 4.95 4.55 5.23 5.08 5.23 5.79 5.14

Table 4.11: C-C distances between carbons on parallel chains of the n = 16 1,8-diperfluoroalkyloctane

hairpin, as indicated by the above figure. The mean interarm C-C distance is denoted by

∅.

The C-C distances between the arms are not only larger than for comparable n-alkane
hairpins, but also increase with n. Individual C-C distances are given for n = 16 in table 4.11.
The TPSS-D3 relative hairpin energy of case A shows a similar dependence on n as found
for the perfluoroalkylalkanes and alkanes. TPSS-D3/def2-TZVP predicts nhp,el = 14 as the
critical chain length for hairpin stability in terms of the electronic energy.

Relative 1,8-diperfluoroalkyloctane hairpin energy: LCC results The calculation of the LCC
∆E energy for the 1,8-diperfluoroalkyloctanes is more demanding compared to the alkanes and
perfluoroalkylalkanes. It was therefore necessary, to introduce further approximations in the
determination of ∆E up to chain lengths of n = 22. The LMP2-F12/aVTZ energy was obtained
for extended domains and all pair domains for even chain lengths n ≤ 14 using the standard
local correlation method. For chain lengths n ≥ 16, the LMP2-F12 energy was obtained
using the MoI 2-body-only approximation. For a description of the convergence behaviour of
the MoI results we refer to the end of this section. The resulting composite LMP2-F12 ∆E
curve is shown in figure 4.33a. The CABS singles correction to the HF/aVTZ part of ∆E is
considerably larger than the F12 part, see figure 4.33b. The CABS singles correction increases
with n from 0.25 kJ/mol (n = 10) to 2.25 kJ/mol (n = 22). This indicates that the HF/aVTZ
description of interacting perfluoroalkylgroups is not converged with respect to the complete
basis set limit, which is also the case for the perfluoromethane dimer. The contribution of
explicit correlation (F12/3*A(LOC,FIX)) to ∆E ranges between −0.3 kJ/mol (n = 12) to
0.2 kJ/mol (n = 22). It has to be noted, that the 2-body-only approach overestimates the F12
contribution considerably, while the F12 contribution at the 2-body level agrees with the values
obtained without the MoI. The δCC/aVDZ correction, where pair domains with distances
smaller than 6.4 Å were treated at the LCCSD(T0) level (Rclose = 12 a0), was obtained only
for n = 10. Up to n = 14 we obtained values from δCC/VDZ using the same distance criteria
as for δCC/aVDZ. Reducing the distance criterion for strong pairs to 5.4 Å (Rclose = 10 a0)
and neglect of pairs with distances larger than 7.9 Å (Rvdist = 15 a0) allowed us to obtain
δCC/VDZ up to n = 18. Up to n = 16 we also employed another pair approximation where
LCCSD(T0) was used for pair domains with distances below 2.1 Å (Rclose = 4 a0) and close
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Figure 4.33: Energy of the 1,8-diperfluoroalkyloctane hairpin conformers relative to the linear conform-

ers.

pairs, with distances up to 6.4 Å (Rweak = 12 a0), were treated with LCCSD[S]R−6, which
is a full local CCD with perturbative singles and neglect of all diagrams that decay quicker
than R−6 [200]. All methods yield similar results for δCC, which destabilizes hairpins by about
2 kJ/mol, without a strong chain length dependence. For the final LCC relative hairpin energy,
we employ the corrections δCC/aVDZ at n = 10, δCC/VDZ (Rclose = 12 a0) for 12 ≥ n ≤ 14,
δCC/VDZ (Rclose = 10 a0) for 16 ≥ n ≤ 18 and extrapolate the δCC/VDZ correction at
n = 20 and n = 22. This is indicated by small grey circles in figure 4.33b. The corresponding
LCC ∆E curve, see figure 4.33a, begins at 7.7 kJ/mol (n = 10) and decreases approximately
linearly to −4.4 kJ/mol (n = 22). The mean stabilization that is gained by adding an extra
pair of CF2 groups (∆n = 2) is 2.3 kJ/mol between n = 10 and n = 18 and decreases to
1.3 kJ/mol between n = 18 and n = 22. Averaging over the range n = 10 to n = 22 gives a
mean stabilization of 2 kJ/mol per ∆n = 2. The resulting hairpin critical chain length at the
LCC level of theory based on the electronic energy is nhp,el = 18. Again, we estimate the error
of the LCC relative hairpin energy for the 1,8-diperfluoroalkyloctanes to be ±1.5 kJ/mol. The
main part of this error is attributed to the approximations in the δCC correction, and to the
uncertainty due to the TPSS-D3 structures.
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Figure 4.34: Comparison of relative diperfluoroalkyloctane hairpin energies (a) for the TPSS-D3 struc-

tures obtained by the wave-function-based LCC and LMP2-F12/aVTZ methods and the

DFT results obtained with TPSS-D3/def2-TZVP, TPSS-VV10/def2-TZVP and PBE-

QHO with a plane wave basis set. (b) Differences with respect to LCC.

Relative 1,8-diperfluoroalkyloctane hairpin energy: DFT results Comparing the dispersion
corrected DFT relative hairpin energies of the 1,8-diperfluoroalkyloctanes with respect to the
LCC results, gives a similar picture as in the case of the perfluoroalkylalkanes, see figure 4.34.

TPSS-D3/def2-TZVP overestimates the relative hairpin stability by 2 kJ/mol compared to
LMP2-F12 and by 3.7 kJ/mol in comparison to LCC. The TPSS-D3 stabilization gain per
added pair of CF2 units agrees with the wave function based results. The critical chain length
for hairpin formation obtained by TPSS-D3 is nhp,el = 14. This shows again, that the measure
nhp,el for the 1,8-diperfluoroalkyloctane hairpins is extremely sensitive on small deviations in
∆E.

The TPSS-VV10/def2-TZVP method overestimates the hairpin stability by 5 kJ/mol to
12 kJ/mol, relative to LCC. Other than D3, VV10 not only shifts ∆E, but also overestimates
the stability gain per pair of CF2 units, yielding 3.2 kJ/mol. The critical chain length for
hairpin formation obtained by TPSS-V10 is nhp,el = 12.

PBE-QHO shows an even stronger hairpin stabilizing tendency than TPSS-VV10. The
method over-binds 1,8-diperfluoroalkyloctane hairpins by 6 (n = 10) to 31 kJ/mol (n = 22),
which results in an average stabilization gain of 6.1 kJ/mol per pair of CF2 units. However,
the ∆E curve drops more drastically between n = 14 to n = 16, while almost no change occurs
from n = 20 to n = 22. The critical chain length for hairpin formation obtained by PBE-QHO
is nhp,el = 12. But it should also be noted, that ∆E at n = 10 is just 1.4 kJ/mol.
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Figure 4.35: Thermodynamic corrections to the relative hairpin energy (∆E) for 1,8-

diperfluoroalkyloctanes.

Relative 1,8-diperfluoroalkyloctane hairpin energy: Thermodynamic corrections The ther-
modynamic corrections ∆δH(T ) and ∆δG(T ) obtained at the TPSS-D3 level of theory are
similar to those obtained for the perfluoroalkylalkanes. The enthalpic correction ∆δH(T )
is small and shows an almost constant behaviour with respect to n and T , see figure 4.36.
At T = 100 K, the correction ∆δH(T ) for 1,8-diperfluoroalkyloctane hairpins amounts to
2 kJ/mol. The Gibbs free energy correction naturally shows a stronger dependence on T due
to the added entropic correction. At T = 100 K, ∆δG(T ) destabilizes hairpins by 2.3 kJ/mol
(n = 10) to 4.0 kJ/mol (n = 18). At T = 300 K, entropic effects dominate ∆δG(300 K). Here,
the destabilization raises to 4 kJ/mol (n = 10) to 8 kJ/mol (n = 18). We estimate the relative
error of the ∆δG(T ) correction to be 10%.
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4 Stability of perfluoroalkylalkane hairpin conformers

Relative 1,8-diperfluoroalkyloctane hairpin free energy Addition of the thermodynamic cor-
rections to ∆E increases the critical chain length for hairpin formation, see also table 4.12.
Taking into account the enthalpy correction at T = 0 K raises nhp,el = 18 to nhp,∆G(0 K) = 20,
see figure 4.36. The value of ∆G(0 K) = −0.5 kJ/mol at n = 20 implies nearly equal energies
for hairpin and linear conformers, as does the value at n = 22 (∆G(0 K) = −1.5 kJ/mol). At
T = 100 K, i.e. at a temperature as estimated for experiments on alkanes [32, 33], the hairpin
critical chain length is formally reached at nhp,∆G(100 K) = 22, with ∆G(100 K) = −0.6 kJ/mol.
The change in ∆G(100 K) between n = 16 and n = 22 is 1.5 kJ/mol. Using this gradient,
the extrapolated value at n = 24 is ∆G(100 K) = −2.1 kJ/mol and thus within our esti-
mated error bound of ±2 kJ/mol. At n = 20 the relative hairpin free energy ∆G(100 K) is
0.3 kJ/mol. Thus, the 1,8-diperfluoroalkyloctane with n = 20 can not be excluded with total
certainty as a candidate for a stable hairpin at T = 100 K. Nevertheless, the prediction for
the most likely range for nhp,∆G(100 K) of 1,8-diperfluoroalkyloctane at T = 100 K is n = 22
to n = 24. According to our results, the 1,8-diperfluoroalkyloctanes with n ≤ 18 are predicted
to be linear. At a temperature of 300 K, no hairpin conformer up to n = 22 is lower in free
energy than the respective linear conformers. The introduction of perfluoroalkyl-perfluoroalkyl
interactions results in less stabilized hairpins in comparison to the n-alkane case. Therefore
1,8-diperfluoroalkyloctane hairpin formation begins at longer chainlenghts than for n-alkanes.
The predicted ranges for hairpin critical chainlenghts of 1,8-diperfluoroalkyloctanes and per-
fluoroalkylalkanes are similar.
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4.3 Results
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Figure 4.36: Chain length dependence of the the relative Gibbs free energy for 1,8-diperfluoroalkyloctane

hairpins at 100 K. Additionally we also show the respective enthalpy and results for 0 K

and 300 K.

n

∆E
(MoI)-LMP2-F12 LCC ∆H(100 K) ∆G(100 K)

10 5.90 7.67 9.46 10.03
12 3.23 5.23 7.45 8.85
14 0.75 2.93 4.94 6.79
16 −1.51 0.54 2.15 3.97
18 −3.74 −1.68 0.28 2.35
20 −4.61 −2.52 −1.01 0.33
22 −6.48 −4.37 −2.32 −0.56

Table 4.12: Relative 1,8-diperfluoroalkyloctane hairpin energies (kJ/mol) obtained by (MoI)-LMP2-

F12/aVTZ, LCC, and by adding TPSS-D3/def2-TZVP thermodynamic corrections to LCC

∆E giving ∆H(100 K) and ∆G(100 K).
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4 Stability of perfluoroalkylalkane hairpin conformers

Relative 1,8-diperfluoroalkyloctane hairpin electronic energy: method of increments As
in the case of the perfluoroalkyalkanes, we rely on the MoI to calculate the LMP2-F12 energy
for 1,8-perfluoroalkyloctanes with n > 14 without the neglect of any pairs. The 33 one-bodies
of 1,8-diperfluorobutyloctane (n = 16) are given in figure 4.37 for both conformers. The
higher number of one-body increments, compared to the respective alkane (15) and perfluo-
roalkylalkane (24), results in a even larger number of two-body (528) and three-body (5456)
increments, that in principle have to be evaluated for each conformer. In terms of the num-
ber of increments, the 1,8-diperfluoroalkyloctane with n = 22 is comparable to the n-alkane
with n = 52. Due to limited resources, the full MoI-LMP2-F12/aVTZ [IEXT=1] 3-body level
is only explored for 1,8-diperfluoromethyloctane (n = 10). Two-body level MoI calculations
are performed up to n = 22 and are compared to the normal LMP2-F12 results for n ≤ 14.
Prior to the accuracy check, we investigate the spatial distribution of the pair interactions
that stabilize the 1,8-diperfluorobutyloctane hairpin. Figure 4.38a shows the 528 2-body in-
crements that sum up to the 2-body only LMP2-F12 part of the relative hairpin correlation
energy. About 400 of the 2-body increments do not contribute to ∆E at all. Most of these
increments, involve pairs of 1-bodies that are distant and/or are located on the same arm,
as depicted in figure 4.38g. Fluorine lone pair 1-bodies on the outside of the hairpin do not
contribute to the correlation energy in a significant manner. The 9 largest 2-body increments
are all associated with the octane unit, see figures 4.38b, c and e. This pattern is similar
to the previous alkane and perfluoroalkylalkane examples. The stabilizing correlation energy
between pairs of fluorine lone pair 1-bodies is larger than between σCF2 pairs, on different arms
respectively. The majority of stabilizing (mostly dispersion) pair interactions is found in the
range −0.5 < ∆εij < −0.1 kJ/mol (figure 4.38d). The total 2-body only sum results in a stabi-
lizing relative hairpin correlation energy of −28.3 kJ/mol. Therefore, we expect the stabilizing
dispersion interactions to be lower in comparison to the n-alkane (−38.7 kJ/mol) and also
the perfluoroalkylalkane (−31.8 kJ/mol) with n = 16. The number of important 2-body incre-
ments for the conformational correlation energy change for 1,8-diperfluorobutyloctane (n = 16)
is 150, which is just about three times more than for the respective n-alkane, with 57 2-body
increments. Hence, there is a huge optimization potential with respect to the brute force MoI
approach used herein.
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Figure 4.37: (a,b): Schematic depiction of one-bodies for 1,8-diperfluorobutyloctane.
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Figure 4.38: Importance of individual 2-body increments for the relative LMP2-F12 correlation energy of

the 1,8-diperfluorobutyloctane hairpin. (a) Overview of the increments ordered by magni-

tude. (b-f) The depiction of the location of 2-body increments within given energy ranges

(kJ/mol) provides a map of the mainly dispersive interactions within the hairpin conformer.

Also given are the number of increments (N), their sum (kJ/mol) and their fraction (%)

relative to the sum over all 2-body increments.
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4 Stability of perfluoroalkylalkane hairpin conformers

Next, we compare the chain length dependence of MoI-LMP2-F12 relative hairpin energy and
determine the accuracy of the approximation for n ≤ 14. Figure 4.39 provides an overview of
∆E obtained with the MoI. At the HF+[CABS singles] level 1,8-diperfluoroalkyloctane hairpins
are about 25 kJ/mol less stable than linear conformers. This confirms again, that dispersion
interactions are the main driving force of hairpin-stability. The correlation contribution to ∆E
from 1-body increments is weakly destabilizing and ranges from 0.6 kJ/mol to 1.7 kJ/mol.
At the 2-body level, the main part of the LMP2-F12 correlation energy contribution to ∆E is
recovered in the MoI approximation. The 2-body LMP2-F12 relative hairpin correlation energy
is stabilizing and ranges from −19 kJ/mol to −31 kJ/mol. This amounts to 96% of the LMP2-
F12 relative hairpin correlation energy for n = 14, see figure 4.39d. At the 3-body level, the
difference to the non-MoI result for n = 10 is −0.1 kJ/mol, while it is 0.4 kJ/mol at the 2-body
level. Fortuitous cancellation of 1-body destabilizing and 3-body stabilizing correlation results
in a good agreement of the 2-body only correlation energy approximation. The difference of the
2-body-only results to the non-MoI results for n ≤ 14 ranges from −0.2 kJ/mol to −0.1 kJ/mol,
see figure 4.39c. Hairpin stabilization due to the F12 part is overestimated at the 2-body level,
as shown in figure 4.33b. Hence, the 2-body only correlation energy is closer to the converged
full 3-body energy than the 2-body energy without F12. For 1,8-diperfluoroalkyloctane hairpins
with n > 14, the 2-body-only approximation probably underestimates the hairpin stability
given by the LMP2-F12 part slightly (≈ 0.2 kJ/mol). The errors due to the 2-body only MoI-
treatment of the LMP2-F12 energy are included in our total error estimation (±1.5 kJ/mol)
of the LCC approach. Most importantly, they are certainly smaller than those introduced by
other approximations that enter the LCC relative hairpin energy.
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4 Stability of perfluoroalkylalkane hairpin conformers

4.4 Influence of perfluoroalkyl groups on the stability of

alkane hairpin conformers

In the preceding section the relative hairpin energies of alkane, perfluoroalkylalkane and 1,8-
diperfluoroalkyloctane chain molecules were analysed in detail, with a focus on the specific
systems and the local correlation methodology. Here a detailed comparison of the accurate
(±1.5 kJ/mol) LCC results for the three systems is made. The question is, how do alkyl-alkyl,
perfluoroalkyl-alkyl and perfluoroalkyl-perfluoroalkyl interactions compare in terms of hairpin
stability? We begin to answer this question by comparing the relative hairpin energies ob-
tained with the LCC method. As can be seen in figure 4.40, the relative hairpin energies for
n ≤ 14 are very similar, meaning they lie in a window of about 2 kJ/mol. Perfluoroalkyl-
perfluoroalkyl interactions lead to generally higher relative hairpin energies, i.e. less stable
hairpins, compared to the perfluoroalkyl-alkyl and alkyl-alkyl interactions. For longer chains
(n ≥ 16) the alkane hairpins are clearly more stabilized than perfluoroalkylalkane and 1,8-
diperfluoroalkyloctane hairpins. At a total chain length of n = 22 the relative hairpin energy
of the n-alkane is about 8 kJ/mol lower than that of the respective perfluoroalkylalkane and
10 kJ/mol lower than that of the 1,8-diperfluoroalkyloctane. Throughout, the relative hair-
pin energies of 1,8-diperfluoroalkyloctanes are 1 to 2 kJ/mol higher than the energies of the
respective perfluoroalkylalkanes. The stabilization per added pair of CH2 units amounts to
3.5 kJ/mol, beginning from n = 12, while only about 2 kJ/mol is gained by adding two CF2

units or one CH2 and one CF2 unit. In terms of n-octane hairpin stabilization perfluoroalkyl-
perfluoroalkyl interactions and perfluoroalkyl-alkyl interactions are similar with respect to each
other, but weaker in comparison to alkyl-alkyl interactions.

Why are the hairpins less stabilized by perfluoroalkyl-perfluoroalkyl and perfluoroalkyl-alkyl
interactions compared to alkyl-alkyl interactions? To answer this question, we take a closer look
at the HF and correlation energy components of the relative hairpin energies. The HF energy
roughly represents electrostatic, induction and exchange repulsion interaction contributions,
while the correlation energy mainly represents dispersion interactions.

Of course, these interactions depend on the mean C-C distance between the parallel groups
within the hairpin. Beginning form n = 12, the mean C-C distances given in figure 4.40c show
that alkyl groups can approach each other more closely than perfluoroalkyl groups, within the
hairpin. The favourable alignment of alkyl groups has two origins. On one hand C-H bonds
are shorter than C-F bonds and van der Waals radii of alkyl groups are smaller than for perflu-
oroalkylgroups. On the other hand, the all-trans structure of the alkyl groups facilitates their
mutual alignment within the hairpin, while the helical structure of perfluoroalkyl groups (begin-
ning from perfluorobutyl) hinders ideal alignment within the hairpin. This is clearly reflected
in the n-dependence of the mean interarm C-C distance. For the alkane hairpins it is constant
or even decreases [35]. For perfluoroalkylalkane hairpins and the 1,8-diperfluoroalkyloctane
hairpins it increases with n.

The HF part of ∆E for the longer alkane hairpins is more destabilizing compared to those of
the respective perfluoroalkylalkanes and 1,8-diperfluoroalkyloctanes, see figure 4.40d. Possibly,
this behaviour reflects increased exchange repulsion interactions in alkanes, due to the smaller
distance between the alkyl groups. Another factor, to which we can only hint at this point,
are differences in intra-molecular electrostatic and induction interactions. Figure 4.41 shows
the molecular electrostatic potential for the n = 18 hairpins at the TPSS-D3/def2-TZVP level
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4.4 Influence of perfluoroalkyl groups on the stability of alkane hairpin conformers
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Figure 4.40: Comparison of the chain length dependence of the LCC relative hairpin energies of n-

alkanes (label: CHCH), perfluoroalkylalkanes (CHCF) and 1,8-diperfluoroalkanes (CFCF).

of theory. The values of the electrostatic potential are depicted at the 0.001 a.u. and 0.005
a.u. isosurfaces of the electron density. The introduction of perfluoroalkyl groups changes the
electrostatic potential of the hairpin significantly. The opposite bond polarity of C-H and C-F
bonds creates a molecular dipole moment at the boundary between alkyl and perfluoroalkyl
groups. In the electrostatic potential map this is visible in form of a slightly more positive
electrostatic potential at the bend of hairpins with perfluoroalkyl groups compared to the
alkane hairpin. Likewise, the internal dipole is reflected by a slightly more negative potential
at the fluorine atoms near the alkyl-perfluroalkyl boundary within the chain. Furthermore,
σ-holes at each fluorine atom are visible, which hints to a complicated network of electrostatic
intermolecular interactions. The electrostatic potential maps also nicely show the less optimal
alignment of the perfluoroalkyl groups in comparison to the alkyl groups. It is therefore likely,
that perfluoroalkylalkane and 1,8-diperfluoroalkylalkane hairpins benefit more from stabilizing
electrostatic and induction interactions than alkane hairpins. The determination of these
components is possible by state of the art intermolecular SAPT [181]. The weak n-dependence
of the HF energy in figure 4.40d for n ≥ 14 suggest, that the added exchange and electrostatic
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4 Stability of perfluoroalkylalkane hairpin conformers

(a) n-Octadecane hairpin (b) Perfluroro-n-pentyl-n-

tridecane hairpin

(c) 1,8-Diperfluoro-n-

pentyl-n-octane hairpin

Figure 4.41: Projection of the molecular electro static potential (ESP) in a.u. on the electron density

isosurfaces at 0.001 e/a3
0 (top row) and at 0.005 e/a3

0 (bottom row), for the n = 18
n-alkane, perfluoroalkylalkane and 1,8-diperfluoroalkyloctane hairpin conformers.

interactions between the arms of the hairpin are rather weak, and are most likely of greater
importance within the bend of the hairpin. This is also supported by our previous HF-SAPT
analyis of the methane and perfluoromethane dimers.

The main part of the intra-molecular interactions that leads to hairpin stabilization is the
dispersion interaction. The correlation part of ∆E, mainly represents dispersion interactions
and it increases in magnitude with chain elongation, see figure 4.40d. This increase in stabilizing
correlation energy is distinctly stronger for the alkane hairpins than for the perfluoroalkylalkane
and 1,8-diperfluoroalkyloctane hairpins. This points to the following ordering of dispersion
interactions in hairpins: alkyl-alkyl > perfluoroalkyl-alkyl ≥ perfluoroalkyl-perfluoroalkyl.

To visualize the hairpin stabilizing correlation energy differences within the differently sub-
stituted hairpins, we compare their two-body ∆Ecorr increment maps for the n = 16 hair-
pins, see figures 4.42a–g. For this we caclulate the difference increments for the respective
perfluoroalkylalkane and 1,8-diperfluoroalkyloctane with respect to the increments of the n-
alkane as shown in figure 4.42a. Figures 4.42b-g show these individual difference increments
for the respective perfluoroalkylalkane (b-f) and 1,8-diperfluoroalkyloctane (c-g). The largest
two-body increments which arise due to correlation of one-bodies without an equivalent in
the alkane, i.e. fluorine lone pairs, are depicted in figures 4.42f and g. In both cases, the
105 alkane 2-body increments outweigh their counterparts in the perfluoroalkane and 1,8-
diperfluoroalkyloctane considerably. The largest differences can be attributed to the two-bodies
between the perfluoroalkyl-alkyl and perfluoroalkyl-perfluoroalkyl groups. In total the differ-
ence in correlation energy at the 2-body-only MoI-LMP2-F12 level with respect to the 105
two-body n-alkane increments with n = 16, amounts to 15.9 kJ/mol and 21.23 kJ/mol for the
n = 16 perfluoroalkane and 1,8-diperfluoroalkyloctane respectively, which also correlates with
the mean C-C distances in the hairpins. The additional two-body increments present in the
partially fluorinated hairpins give rise to similar contributions to ∆Ecorr, namely −9.0 kJ/mol
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4.4 Influence of perfluoroalkyl groups on the stability of alkane hairpin conformers

-=
∆εCHCF

12 (∆Ec − ∆Ec(CHCH)) = ∆εCHCF
12 (∆Ec) − ∆εCHCH

ij (∆Ec)

∆εCHCF
12 (∆Ec) = ∆εCHCF

12 (HP) − ∆εCHCF
12 (L)

∆εCHCH
12 (∆Ec) = ∆εCHCH

12 (HP) − ∆εCHCH
12 (L)

(a) Example for the definition of the backbone difference two-body incre-

ments with respect to n-alkane two-body increments for the relative

hairpin correlation energy.

0 10 20 30 40 50
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

∆
ε i
j 
(k

J/
m

o
l)

N= 276 2-body ∆Ec−∆Ec(CHCH) increments 
∑
ij

∆εij=6.91 kJ/mol

(b)

0 10 20 30 40 50
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

∆
ε i
j 
(k

J/
m

o
l)

N= 528 2-body ∆Ec−∆Ec(CHCH) increments 
∑
ij

∆εij=10.44 kJ/mol

(c)

(d) (e)

(f) (g)
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4 Stability of perfluoroalkylalkane hairpin conformers
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and −10.8 kJ/mol. Since these cannot compensate the differences with respect to the alkane,
the total relative hairpin correlation energy is less stabilizing in the case of perfluorobutyl-
perfluorobutyl and butyl-perfluorobutyl interactions compared to butyl-butyl interactions.

The three tested dispersion corrected DFT methods differ strongly in their description of
∆E with respect to the partially fluorinated hairpins. As shown in figure 4.43a, the TPSS-D3
results are more similar to the LCC results, in contrast to the TPSS-VV10 and PBE-QHO
results. In accordance to LCC, TPSS-D3 predicts similar hairpin stabilization for all three sys-
tems in the range n = 10 to n = 16. In this range, there is a tendency to slightly overstabilize
partially fluorinated hairpins with respect to the n-alkane hairpins. The correct separation
of perfluoroalkyl-perfluoroalkyl and alkyl-alkyl interactions is predicted in the range n ≥ 18.
Perfluoroalkyl-alkyl interactions in the TPSS-D3 model are however predicted to be less similar
to perfluoroalkyl-perfluoroalkyl interactions than with LCC. For n ≥ 18, TPSS-D3 gives the
same overall order in hairpin stability for the three systems as LCC. TPSS-D3 also agrees with
LCC on the gradients of the relative hairpin energies. TPSS-VV10 gives similar relative hair-
pin energies for perfluoroalkylalkanes and 1,8-diperfluoroalkyloctanes, which are both lower in
comparison to the ones of the alkanes, see figure 4.43b. PBE-QHO extremely overestimates
the stability of both perfluoroalkylalkane hairpins and 1,8-diperfluoroalkyloctane hairpins with
respect to the n-alkane hairpins, see figure 4.43b. This shows, that interactions involving per-
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4.4 Influence of perfluoroalkyl groups on the stability of alkane hairpin conformers
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fluoroalkyl groups pose a challenge for some dispersion corrected DFT methods and that in-
teractions energies of perfluoroalkane dimers should be included in future re-parametrizations.

The relative hairpin free energy ∆G for all three hairpin systems is given in figure 4.44. At
T = 0 K the relative hairpin free energy in the range n = 12 to n = 16 is virtually identical
for all three systems. For chains with n > 16 the alkane hairpins are clearly more stabilized
compared to the perfluoroalkylalkane and 1,8-diperfluoroalkyloctane hairpins. The last glob-
ally stable linear (extended) conformers, with even chain length, at T = 0 K are predicted for
n = 16 (alkanes) and n = 18 (perfluoroalkylalkanes and 1,8-diperfluoroalkylalkanes). Hairpin
formation at T = 0 K is predicted by our results for n = 18 (alkanes) and n = 20 (perfluo-
roalkylalkanes and 1,8-diperfluoroalkylalkanes). The changes form T = 0 K to T = 100 K are
subtle and result in a shift of the hairpin critical chain-lenght of the 1,8-diperfluoroalkylalkanes
to n = 22, see figure 4.44c. However, considering the accuracy of the results (±2 kJ/mol) and
the similarity of the relative hairpin free energies, we can effectively only speak of a range
n = 20 to n = 24 in which we expect the the turning point for the perfluoroalkylalkane and
1,8-diperfluoroalkylalkane hairpins at T = 100 K. We clearly expect perfluoroalkylalkane and
1,8-diperfluoroalkylalkane hairpin formation to occur for slightly (∆n = 2 to ∆n = 6) longer
chain lengths than in the case of n-alkanes. Thermodynamic corrections for the three systems
are similar. Thus, the main reason for the lower hairpin stability is the lower amount of disper-
sion interactions present for the less well aligned helical perfluoroalkylgroups in comparison to
all-trans alkyl groups. The calculated relative free energy energies of the stable perfluoroalky-
lalkane and 1,8-diperfluoroalkylalkane hairpins are very similar. Our T = 100 K predictions
for the n-alkane hairpins are in agreement with the experiment [32] and other high level ab
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4 Stability of perfluoroalkylalkane hairpin conformers

initio studies [32–35]. Concerning the differences in relative hairpin free energy for n ≥ 18,
it should be possible to experimentally resolve the hairpin stability differences between the
n-alkanes and the proposed partially fluorinated alkanes using the technique of Lüttschwager
et al. [32, 33, 182]. At T = 300 K hairpin stability decreases further and only n-alkanes with
n ≥ 20 are predicted to form stable hairpins, see figure 4.44c. However at high temperatures
additional gauche angles will be introduced along the chain and formed hairpins may open.
Thus, the rigid hairpin model with straight arms looses its validity.

4.4.1 Hairpin conformers as solvation models

It is interesting, to find out what the low temperature gas phase hairpin model is predicting
about the miscibility of alkanes and perfluoroalkanes. The miscibility model based on the
hairpins is simple. We compare for each n the sum of the relative hairpin energies of the
alkane and the 1,8-diperfluoroalkyloctane hairpin, which represent the separated phases, to
the relative hairpin energies of two perfluoroalkylalkane hairpins, which represent the mixed
phase. The mixing energy is given by

∆Emix(n) = 2∆ECHCF(n)−∆ECHCH(n)−∆ECFCF(n), (4.17)

where the labels CHCF, CHCH and CFCF denote n-alkanes, perfluoroalkylalkanes and 1,8-
diperfluoroalkyloctanes, respectively. In the same manner we can also compare the respective
relative hairpin enthalpies. The free energy of mixing is given by

∆Gmix = ∆Hmix − T∆Smix, (4.18)

where the entropy of mixing is assumed to be always positive, since for an ideal mixture one
can assume

∆Smix = −R(x1 ln(x1) + x2 ln(x2)) > 0, (4.19)

where x1 and x2 are the mole fractions of a binary mixture [201]. Simply spoken, mixing
is favoured entropically, due to the increased disorder in the mixed state. Hence, in our
case, mixing will occur for ∆Hmix ≤ 0 or ∆Emix ≤ 0, if we use ∆Emix ≈ ∆Hmix. If it is
energetically more effective to fold two perfluoroalkylalkanes instead of folding one alkane and
one 1,8-diperfluoroalkyloctane of the same length, then ∆Emix(n) < 0 and the model would
predict mixing. In the opposite case (∆Emix(n) > 0) it is energetically more favourable to fold
the alkane and the 1,8-diperfluoroalkyloctane and demixing is predicted, under the assumption
that the magnitude of −T∆Smix is smaller than ∆Emix. The hairpin model is very crude and
no attempt is made to transfer its energies and enthalpies to an actual solvent model.

Figure 4.45a shows the predicted mixing or demixing behaviour predicted by the relative
hairpin energies by the LCC and TPSS-D3 methodologies. LCC predicts mixing for n = 10 to
n = 14 and demixing for n ≥ 16. The reason for the demixing is given by the similar stability
of both perfluoroalkylalkane and 1,8-diperfluoroalkyloctane hairpins, which are less stable in
comparison to the respective alkane hairpins. TPSS-D3 predicts mostly mixing, with slight
evidence for demixing for n ≥ 20. Here the predicted behaviour occurs mainly due to the slight
overestimation of perfluoroalkyl-alkyl interactions. The predictions based on the enthalpy are
given in figure 4.45b and they follow the same trend as the LCC predictions. For comparison,
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are given in panel (c).

the measured enthalpies of mixing for 1:1 CmH2m+2/CmF2m+2 mixtures [202, 203] are also
given in figure 4.45.

It should be emphasized again, that our predictions are based on gas phase rigid hairpin
formation low temperature enthalpies, and thus on a model that lacks many properties of
actual liquids. First, the approach of the groups is constrained by the hairpin geometry. Sec-
ondly, interface effects like intramolecular dipole moments are absent in the pure alkane and
perfluoroalkane solutions. Thirdly, in hairpins only a pair of groups interacts, while in solu-
tion many-body interactions are important. Fourthly, rigid hairpins are a low temperature
phenomenon, while in solutions the flexibility of the molecules, i.e. their conformational dis-
tributions, at high temperatures should be taken into account. Nevertheless, the self solvating
behaviour of cold chain molecules is by itself an interesting topic. It will be instructive to learn
in the future, whether the findings on the hairpin systems can be confirmed experimentally
and how they relate to the reasons for the observed fluorophilicity in solution.

4.5 Summary and conclusions

Herein the question of n-alkane hairpin stability [31] was extended to partially fluorinated
n-alkanes, in order to compare intramolecular alkyl-alkyl, perfluoroalkyl-perfluoroalkyl and
perfluoroalkyl-alkyl van der Waals interactions. Accurate relative hairpin energies were calcu-
lated using local correlation methods and in conjunction with resolution of the identity/density
fitting approximations and the method of increments. The main part of the correlation energy
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was calculated using explicitly correlated local MP2 methods with aVTZ basis sets. For the
LMP2-F12 part extended domains were employed and all pair domains were included in the
calculation. The method of increments was applied to obtain energies for the larger systems and
to provide 2-body maps of the mainly dispersive intramolecular correlation interactions. Elec-
tron correlation effects beyond MP2 were treated via a small (aVDZ,VDZ) basis LCCSD(T0)
correction. For larger fluorinated systems, we had to extrapolate this correction based on
the values obtained for smaller systems. Calculations on CH4/CH4, CH4/CF4 and CF4/CF4

dimers confirmed the excellent performance of the method, which is effectively BSSE free and
provides accurate interaction energies. The structures of the chain molecules were optimized
using DFT in form of MARI-TPSS-D3/def2-TZVP, which was also used to calculate thermo-
dynamic corrections in the rigid rotator, unscaled harmonic oscillator approximations. In the
vibrational entropy term, low frequency vibrations where approximated by rigid rotors accord-
ing to the scheme by Grimme. The composite local correlation method applied in this work
agrees well on the relative hairpin energies of n-alkanes, obtained by others using high level
results of CCSD(T)/CBS quality [34, 35]. DFT calculations with similar functionals (TPSS,
PBE) and three different approaches to dispersion corrections show, that the results obtained
with the D3 method agree best with our reference results, while the VV10 and the QHO
methods overestimate hairpin stabilization due to perfluoroalkylgroups. Overall, we find that
alkyl-alkyl interactions lead to more stable hairpin conformers in comparison to the weaker
perfluoroalkyl-alkyl and perfluoroalkyl-perfluoroalkyl interactions. For groups with m ≥ 4
(i.e. butyl) connected the central -(CH2)8- unit, the ordering of the interactions in terms of
hairpin stabilization is alkyl-alkyl > perfluoroalkyl-alkyl & perfluoroalkyl-perfluoroalkyl. At
T = 100 K, the calculated free energies predict hairpin conformers to be more stable than the
linear conformers beginning from chain lengths of n = 18 for the n-alkanes, n = 20 for the
perfluoroalkylalkanes and n = 22 for the 1,8-diperfluoroalkyloctanes.

4.6 Outlook

This study of partially fluorinated n-alkane folding is mainly motivated by the possibility
of experimental studies similar to those on n-alkanes [32, 33] and perfluoro-n-alkanes [182].
We therefore hope that this theoretical investigation will motivate future experiments on the
proposed partially fluorinated n-alkanes. For this the vibrational spectra, especially their
Raman intensities for conformational ensembles, see ref. [33], need to be evaluated.

Furthermore, it would be very interesting to apply the highly efficient domain-based local pair
natural orbital coupled cluster methodology [35, 204] to the problem of the hairpin stability of
partially fluorinated n-alkanes. This would provide a reference to the LCC methodology used
in this work. Double hybrid DFT-D3 appoaches should be tested for the partially fluorinated
hairpins. Additional insight into the nature of the weak intramolecular interactions could be
gained by the application of intramolecular SAPT [181] and a recent visualisation method for
dispersion interactions [205].

In this work the method of increments was applied using a brute force approach. However,
only a fraction of the increments is actually necessary to approximate the correlation energy
of the investigated conformational change. An analysis of pairs of local orbitals in terms of
changes of their mutual orientation and distance could provide a basis for methods which are
extremely efficient for the calculation of conformational energies, where a large part of the
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molecular structure remains similar. Future analysis of the data produced in this work may
also help to develop an efficient treatment of post-MP2 corrections for conformational energies.

We found evidence, that pairs of helical perfluoroalkyl groups show less dispersion inter-
actions than a pair of alkyl groups when confined to the hairpin structure. This raises the
question: Which orientation supports the most favourable binding interaction of two helical
perfluoro-n-alkanes? Another question that is related to the latter is: Do respective hypo-
thetical non-helical perfluoro-n-alkanes interact more strongly compared to the actual helical
conformers? For such a study, efficient local correlation methods and DFT-SAPT [109] should
be applied. This would also help to improve dispersion corrected DFT methods with respect
to their description of perfluoroalkyl interactions. It would also be interesting to apply recent
force fields [206] for fluorinated n-alkanes, which can predict the observed demixing, to the
herein investigated systems.

In case of the investigated hairpins, molecular dynamics and Monte Carlo simulations could
be employed to investigate thier folding dynamics and statistics. In this regard, an interesting
question is: how do the rigid perfluoroalkyl groups influence the folding pathways compared
to the flexible alkyl groups?

In supramolecular chemistry ordering effects of perfluoroalkyl groups are often used in so-
lution. Hence, solvent effects become very important. For studies of perfluoroalkyl and alkyl
interactions in solution, molecular torsional balances are potentially better suited than hairpins.
Molecular torsional balance are specially designed molecules, where a relatively unhindered ro-
tation around a singe C-C bond can bring two groups in close contact. An impressive study
in this regard was performed by Adam et al., who measured the cohesive interaction energies
between alkyl chains and between perfluoroalkyl chains in solution using molecular torsional
balances [207]. It would certainly be interesting to determine, if it is possible to reproduce
their findings with DFT-D3 calculations in conjunction with a continuum solvation model as
in ref. [191].

The experimental and theoretical study of molecular interactions with respect to perfluo-
roalkyl groups is a fascinating subject with many challenging open questions that demand
creative solutions.
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5 Appendix

5.1 Bound state energy tables for pH2-X2 dimers.

The tables 5.1, 5.2 and 5.3 contain the bound state energies of the pH2-F22, pH2-Cl2 and
pH2-Br2 dimers, based on the calculation described in section 3.4.

pH2-F2, n = 0
Nr. E (kJ/mol) location L bending T bending stretching
0 −0.2094 L 0 - 0
1 −0.2070 L 0 - 0
2 −0.1691 T,(L) (0) 0 0
3 −0.0797 T,L 0 1 0
4 −0.0124 T,L 0 2 0

Table 5.1: Bound state energies and assignment of localization and quantum numbers for the bending

(θ) and stretching (R) modes of vibrational states of the Jtot = 0 pH2-F2 van der Waals

dimer.
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pH2-Cl2, n = 0
Nr. E (kJ/mol) location L bending T bending stretching
0 −0.8932 L 0 - 0
1 −0.8932 L 0 - 0
2 −0.7981 T - 0 0
3 −0.6372 T - 1 0
4 −0.5083 T - 2 0
5 −0.4714 L 1 - 0
6 −0.4712 L 1 - 0
7 −0.4175 T - 3 0
8 −0.3603 T,L 1 4 0
9 −0.3245 T,L 1 5 0
10 −0.2857 T,L 1 6 0
11 −0.2327 T,L 0
12 −0.1742 T,L 0
13 −0.1593 T - 0 1
14 −0.1462 L 0 - 1
15 −0.1423 L 0 - 1
16 −0.1041 T,L 0
17 −0.0644 T - 1 1
18 −0.0363 T,L 0
19 −0.0291 T,L 1
20 −0.0159 L 1 1

Table 5.2: Bound state energies and assignment of localization and quantum numbers for the bending

(θ) and stretching (R) modes of vibrational states of the Jtot = 0 pH2-Cl2 van der Waals

dimer.
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5.1 Bound state energy tables for pH2-X2 dimers.

pH2-Br2, n = 0
Nr. E (kJ/mol) location L bending T bending stretching
0 −1.3402 L 0 - 0
1 −1.3402 L 0 - 0
2 −0.9608 T - 0 0
3 −0.9213 L 1 - 0
4 −0.9213 L 1 - 0
5 −0.8527 T - 1 0
6 −0.7490 T - 2 0
7 −0.6574 T - 3 0
8 −0.6277 L 2 - 0
9 −0.6277 L 2 - 0
10 −0.5806 T - 4 0
11 −0.5160 T - 5 0
12 −0.4613 T,L 3 6 0
13 −0.4544 L 3 - 0
14 −0.4532 L,T 3 6 0
15 −0.4173 L 0 - 1
16 −0.4172 L 0 - 1
17 −0.4166 T,L 0
18 −0.3911 L,T 0
19 −0.3705 L,T 0
20 −0.3427 L,T 0
21 −0.3113 L,T 0
22 −0.2777 L,T 0
23 −0.2745 T - 0 1
24 −0.2411 L,T 0
25 −0.2021 L,T 0
26 −0.1967 T - 1 1
27 −0.1608 L,T 0
28 −0.1573 L 1 - 1
29 −0.1572 L 1 - 1
30 −0.1334 T - 2 1
31 −0.1171 L,T 0
32 −0.0886 T - 3 1
33 −0.0712 L,T 0
34 −0.0602 T,L 1 4 1
35 −0.0533 L 2 - 1
36 −0.0472 L,T 2 4 1
37 −0.0288 L.T 1
38 −0.0233 L,T 0
39 −0.0131 T - 0 2
40 −0.0109 L,T 0
41 −0.0071 L 0 - 2
42 −0.0071 L 0 - 2

Table 5.3: Bound state energies and assignment of localization and quantum numbers for the bending

(θ) and stretching (R) modes of vibrational states of the Jtot = 0 pH2-Br2 van der Waals

dimer.
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41H.-J. Werner and M. Schütz, “An efficient local coupled cluster method for accurate ther-
mochemistry of large systems”, J. Chem. Phys. 135, 144116 (2011).

42G. Stollhoff and P. Fulde, “A local approach to the computation of correlation energies of
molecules”, Z. Phys. B 26, 257–262 (1977).

43G. Stollhoff and P. Fulde, “Description of intraatomic correlations by the Local Approach”,
Z. Phys. B 29, 231–237 (1978).

44B. Paulus, “The method of increments a wavefunction-based ab initio correlation method
for solids”, Phys. Rep 428, 1–52 (2006).

45C. Müller and B. Paulus, “Wavefunction-based electron correlation methods for solids”,
Phys. Chem. Chem. Phys. 14, 7605–7614 (2012).

46J. Friedrich and J. Hänchen, “Incremental CCSD(T)(F12)—MP2: A Black Box Method
To Obtain Highly Accurate Reaction Energies”, J. Chem. Theory Comput. 9, 5381–5394
(2013).

47A. Szabo and N. S. Ostlund, Modern Quantum Chemistry (Dover Publications Inc., Mineola,
N.Y., 1996).

48S. Chelkowski, T. Zuo, O. Atabek, and A. D. Bandrauk, “Dissociation, ionization, and
Coulomb explosion of H+

2 in an intense laser field by numerical integration of the time-
dependent Schrödinger equation”, Phys. Rev. A 52, 2977–2983 (1995).

49M. Baer, Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical
Intersections (John Wiley & sons, Inc. Hoboken, New Jersey, 2006).

50M. Born and R. Oppenheimer, “Zur Quantentheorie der Molekeln”, Ann. Phys. 389, 457–
484 (1927).

51M. Born and K. Huang, Dynamical Theory of Crystal Lattices, International series of mono-
graphs on physics (Clarendon Press, Oxford, 1998).

177

http://dx.doi.org/10.1021/jp4121854
http://dx.doi.org/10.1021/acs.jctc.5b00265
http://dx.doi.org/10.1002/jcc.21759
http://dx.doi.org/10.1002/chem.201200497
http://dx.doi.org/10.1063/1.3521275
http://dx.doi.org/10.1002/qua.25150
http://dx.doi.org/10.1002/qua.25150
http://dx.doi.org/10.1063/1.471289
http://dx.doi.org/10.1063/1.3641642
http://dx.doi.org/10.1007/BF01312932
http://dx.doi.org/10.1007/BF01321187
http://dx.doi.org/10.1016/j.physrep.2006.01.003
http://dx.doi.org/10.1039/C2CP24020C
http://dx.doi.org/10.1021/ct4008074
http://dx.doi.org/10.1021/ct4008074
http://dx.doi.org/10.1103/PhysRevA.52.2977
http://dx.doi.org/10.1002/andp.19273892002
http://dx.doi.org/10.1002/andp.19273892002


Bibliography

52F. Jensen, Introduction to Computational Chemistry (John Wiley & Sons Ltd, Chichester,
England, 1999).

53T. Helgaker, P. Jørgensen, and O. Jeppe, Molecular Electronic-Structure Theory (John Wiley
& Sons Ltd, Chichester, England, 2000).

54W. Kutzelnigg and W. Klopper, “Wave functions with terms linear in the interelectronic
coordinates to take care of the correlation cusp. I. General theory”, J. Chem. Phys. 94,
1985–2001 (1991).

55H.-J. Werner, T. B. Adler, and F. R. Manby, “General orbital invariant MP2-F12 theory”,
The Journal of Chemical Physics 126, 164102 (2007).

56T. B. Adler, G. Knizia, and H.-J. Werner, “A simple and efficient CCSD(T)-F12 approxi-
mation”, The Journal of Chemical Physics 127, 221106 (2007).

57T. B. Adler, H.-J. Werner, and F. R. Manby, “Local explicitly correlated second-order
perturbation theory for the accurate treatment of large molecules”, J. Chem. Phys. 130,
054106 (2009).

58T. B. Adler and H.-J. Werner, “Local explicitly correlated coupled-cluster methods: Efficient
removal of the basis set incompleteness and domain errors”, The Journal of Chemical Physics
130, 241101 (2009).

59D. P. Tew and W. Klopper, “A comparison of linear and nonlinear correlation factors for
basis set limit Møller-Plesset second order binding energies and structures of He2, Be2, and
Ne2”, J. Chem. Phys. 125, 094302 (2006).

60P. Pulay, “Localizability of dynamic electron correlation”, Chem. Phys. Lett. 100, 151–154
(1983).

61S. Saebo and P. Pulay, “Local Treatment of Electron Correlation”, Annu. Rev. Phys. Chem.
44, 213–236 (1993).

62J. Pipek and P. G. Mezey, “A fast intrinsic localization procedure applicable for ab initio
and semiempirical linear combination of atomic orbital wave functions”, J. Chem. Phys. 90,
4916–4926 (1989).

63J. M. Foster and S. F. Boys, “Canonical Configurational Interaction Procedure”, Rev. Mod.
Phys. 32, 300–302 (1960).

64J. W. Boughton and P. Pulay, “Comparison of the Boys and Pipek-Mezey localizations in
the local correlation approach and automatic virtual basis selection”, J. Comput. Chem. 14,
736–740 (1993).
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