Appendix C

DEA to isolated ketone molecules

Here, we will present spectra obtained from electron attachment experiments to 1,1,1-trifluoroacetone and hexafluoroacetone that can be compared with the cluster results. As *Oster* [69] already discussed these processes in detail the obtained ion yields will be shown without further discussion.

C.1 1,1,1-Trifluoroacetone

Reaction mechanisms leading to product formation:

$$CF_3COCH_3 \longrightarrow CF_3COCH_3^{-\#} \longrightarrow CF_3COCH_2^{-} + H$$
 (C.1)

$$\longrightarrow CF_2COCH_3^- + F$$
 (C.2)

$$\longrightarrow \text{CF}_2\text{COCH}_2^- + \text{HF}$$
 (C.3)

$$\longrightarrow$$
 CFCOCH₃⁻ + F₂ (C.4)

$$or \ \longrightarrow \ C_3F_2^- + HF + H_2O$$

$$\longrightarrow$$
 HF₂⁻ + CFCOCH₂ (C.5)

$$\longrightarrow$$
 C₂H⁻ + CF₃H₂O (C.6)

$$\longrightarrow HC_2O^- + CF_3H_2$$
 (C.7)

$$\longrightarrow$$
 F⁻ + CF₂COCH₃ (C.8)

$$\longrightarrow CF_2^- + FCOCH_3$$
 (C.9)

$$\longrightarrow$$
 CF₃⁻ + COCH₃ (C.10)

$$\longrightarrow$$
 O⁻ + C₃F₃H₃ (C.11)

$$\longrightarrow OH^- + C_3F_3H_2$$
 (C.12)

Figure C.1: Ion yield curves showing various fragments arising from electron attachment to gas phase trifluoroacetone (p= $2\cdot10^{-6}$ mbar, $\Delta E\approx200$ meV; for (M-F₂)⁻ / (M-HF-H₂O)⁻: p= $1\cdot10^{-5}$ mbar, $\Delta E\approx240$ meV)

Figure C.2: Ion yield curves showing various fragments arising from electron attachment to gas phase trifluoroacetone (p= $2\cdot10^{-6}\,\mathrm{mbar},\,\Delta\mathrm{E}\approx200\,\mathrm{meV})$

Figure C.3: Ion yield curves showing various fragments arising from electron attachment to gas phase trifluoroacetone (p= $2\cdot10^{-6}\,\mathrm{mbar},\,\Delta\mathrm{E}\approx200\,\mathrm{meV})$

Figure C.4: Ion yield curves showing various fragments arising from electron attachment to gas phase trifluoroacetone (p=1·10⁻⁵ mbar, $\Delta E\approx240\,\mathrm{meV}$)

C.2 Hexafluoroacetone

Reaction mechanisms leading to product formation:

$$CF_3COCF_3 \longrightarrow CF_3COCF_3^{-\#} \longrightarrow CF_3^- + CF_3CO$$
 (C.13)

$$\longrightarrow$$
 CF₃CO⁻ + CF₃ (C.14)

$$\longrightarrow$$
 CF₃COCF₃⁻ (C.15)

$$\longrightarrow$$
 CF₃COCF₂⁻ + F (C.16)

$$\longrightarrow$$
 F⁻ + CF₃COCF₂ (C.17)

$$\longrightarrow$$
 $C_3F_4^- + F_2O$ (C.18)

Figure C.5: Ion yield curves showing various fragments arising from electron attachment to gas phase hexafluoroacetone (p= $5\cdot10^{-6}$ mbar, Δ E \approx 210 meV)

Figure C.6: Ion yield curves showing various fragments arising from electron attachment to gas phase hexafluoroacetone (p=5·10⁻⁶ mbar, $\Delta E\approx210\,\mathrm{meV}$; the spectrum for (M-F₂O)⁻: p=2.4·10⁻⁶ mbar, $\Delta E=180\,\mathrm{meV}$)