Appendix C ## DEA to isolated ketone molecules Here, we will present spectra obtained from electron attachment experiments to 1,1,1-trifluoroacetone and hexafluoroacetone that can be compared with the cluster results. As *Oster* [69] already discussed these processes in detail the obtained ion yields will be shown without further discussion. ## C.1 1,1,1-Trifluoroacetone Reaction mechanisms leading to product formation: $$CF_3COCH_3 \longrightarrow CF_3COCH_3^{-\#} \longrightarrow CF_3COCH_2^{-} + H$$ (C.1) $$\longrightarrow CF_2COCH_3^- + F$$ (C.2) $$\longrightarrow \text{CF}_2\text{COCH}_2^- + \text{HF}$$ (C.3) $$\longrightarrow$$ CFCOCH₃⁻ + F₂ (C.4) $$or \ \longrightarrow \ C_3F_2^- + HF + H_2O$$ $$\longrightarrow$$ HF₂⁻ + CFCOCH₂ (C.5) $$\longrightarrow$$ C₂H⁻ + CF₃H₂O (C.6) $$\longrightarrow HC_2O^- + CF_3H_2$$ (C.7) $$\longrightarrow$$ F⁻ + CF₂COCH₃ (C.8) $$\longrightarrow CF_2^- + FCOCH_3$$ (C.9) $$\longrightarrow$$ CF₃⁻ + COCH₃ (C.10) $$\longrightarrow$$ O⁻ + C₃F₃H₃ (C.11) $$\longrightarrow OH^- + C_3F_3H_2$$ (C.12) Figure C.1: Ion yield curves showing various fragments arising from electron attachment to gas phase trifluoroacetone (p= $2\cdot10^{-6}$ mbar, $\Delta E\approx200$ meV; for (M-F₂)⁻ / (M-HF-H₂O)⁻: p= $1\cdot10^{-5}$ mbar, $\Delta E\approx240$ meV) Figure C.2: Ion yield curves showing various fragments arising from electron attachment to gas phase trifluoroacetone (p= $2\cdot10^{-6}\,\mathrm{mbar},\,\Delta\mathrm{E}\approx200\,\mathrm{meV})$ Figure C.3: Ion yield curves showing various fragments arising from electron attachment to gas phase trifluoroacetone (p= $2\cdot10^{-6}\,\mathrm{mbar},\,\Delta\mathrm{E}\approx200\,\mathrm{meV})$ Figure C.4: Ion yield curves showing various fragments arising from electron attachment to gas phase trifluoroacetone (p=1·10⁻⁵ mbar, $\Delta E\approx240\,\mathrm{meV}$) ## C.2 Hexafluoroacetone Reaction mechanisms leading to product formation: $$CF_3COCF_3 \longrightarrow CF_3COCF_3^{-\#} \longrightarrow CF_3^- + CF_3CO$$ (C.13) $$\longrightarrow$$ CF₃CO⁻ + CF₃ (C.14) $$\longrightarrow$$ CF₃COCF₃⁻ (C.15) $$\longrightarrow$$ CF₃COCF₂⁻ + F (C.16) $$\longrightarrow$$ F⁻ + CF₃COCF₂ (C.17) $$\longrightarrow$$ $C_3F_4^- + F_2O$ (C.18) Figure C.5: Ion yield curves showing various fragments arising from electron attachment to gas phase hexafluoroacetone (p= $5\cdot10^{-6}$ mbar, Δ E \approx 210 meV) Figure C.6: Ion yield curves showing various fragments arising from electron attachment to gas phase hexafluoroacetone (p=5·10⁻⁶ mbar, $\Delta E\approx210\,\mathrm{meV}$; the spectrum for (M-F₂O)⁻: p=2.4·10⁻⁶ mbar, $\Delta E=180\,\mathrm{meV}$)