Chapter 11

Outlook

So far we presented in this work a MOBIIR scheme for reconstructing optical
parameters in tissue. The forward model predicted the detector readings based on the time-
independent ERT given a source and the optical parameters. The inverse model determined
the distribution of optical parameters within the tissue by using gradient-based optimization
techniques given the detector predictions on the tissue boundary. Both, the forward and
inverse model, can be extended in such a way that, for example, other data types can be
used as detector readings [Schweiger97]. Time-resolved measurements of the fluence ¢(r,t)
in conjunction with a time-dependent forward model to calculate the predictions p(t) lead,
in turn, to a different objective function ®. It has been shown that this objective function

might be better suited for gradient-based optimization techniques [Schweiger99].

Additionally, the inverse model can be extended in such a way, that the gradient
V. ® of the objective function is not used for determining a search direction. This is very
important in those cases where, for example, the search direction does not point to the
minimum (see Subsection 5.2.5) or the gradient is very small resulting in an extraordinary

slow convergence towards the solution [Schweiger97]. Stochastic optimization techniques,
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such as evolution strategies, promise to address these problems.

In this last chapter we give a brief outlook to future works. We extend the forward
model so that it is now based on the time-dependent ERT. Furthermore, we introduce

evolution strategies as a means of solving the inverse problem in OT.

11.1 Time-Dependent Forward Model

OT can also be carried out in the time-domain by using a time-dependent light
source. A light pulse propagates through the scattering tissue and a detector measures the
time-dependent fluence on the tissue boundary. A time-dependent forward model predicts
the detector readings on the tissue boundary. It has the advantage over time-independent
forward models that additional information, such as the mean time of flight of photons or the
shape of the measured light pulse, is available. Subsequently, time-dependent predictions
p(t) and measurements m(t) lead to a different objective function ®, which in turn might
be more suitable for gradient-based optimization schemes. We discuss in this section a

time-dependent forward model based on the ERT.

The two-dimensional time-dependent ERT is given as

19y(r, @, 1)
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Leg.

The quantity c is the speed of light in the scattering medium with units of cm ns™
co ~ 30 cm ns™!, and ¢ ~ 20 cm ns~! for refractive index n = 1.5). We discretize the

spatial and angular variables of Equation 11.1 as previously shown in Chapter 2.3. We get
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for example for the ordinates & > 0, g > 0:
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In addition, we have to discretize the temporal derivative. The time discretization is per-

formed by using forward Euler differencing [Press92]:
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Considering an explicit upwind scheme [Sewell88], we get for the ordinates & > 0 , n > 0:
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and solve for zpkij :

Y — Vi
/) S e—

¢1Z<1J31 = Y5 + cAtSyy; — CAt&kad_lj — cAt Ay (11.5)
—cAt([psly + [Hali) ¥y + [s)is D w0 Prac i
I
The explicit upwind scheme is conditionally stable for [Sewell88]
At < Az /2ec. (11.6)

The time-dependent fluence ¢(zAt) at one grid point (i,j) on the tissue boundary after the
time zAt has elapsed is given by

$ij(zA8) = Y arly. (11.7)

keAP

We sum over all ordinates with indices k that enter the detector aperture AP. The coefficients
ax are weighting factors, which are determined by the quadrature formula, such as the

extended trapezoidal rule [Press92].
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11.1.1 Numerical Example

We demonstrate on an example the calculation of the predicted detector readings of
a scattering medium with known optical parameters. The numerical model of the scattering
medium had dimensions of 3 cm x 3 cm. The optical parameters were pug = 11.6 cm !,
pa = 0.001 cm™!, g = 0, and n = 1.5. We considered non-reentry boundary conditions.
The source was placed at the center of one side of the phantom. The time-dependent source
S(t) generated a light pulse over a time intervall of 0.01 ns. The detectors were positioned

on the side opposite the source at positions A, B, and C, and on the side adjacent to the

source at positions D, E, and F (see Figure 11.1).
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Figure 11.1: Schematic and source-detector configuration of the test medium.

Subsequently, the time-dependent ERT was solved on a 361x 361 grid with a spatial
step size of Az = Ay = 0.00833 cm for 32 discrete ordinates. 26000 time points were used
with a temporal step size At = 0.000163 ns covering a total time interval of 4.238 ns.

The temporal step size had to be relatively small because of the stability criterion (see
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Equation 11.6). The calculation time was approximately 107 hours using a PENTIUM III
XEON @ processor. The normalized time-dependent fluence along the z-axis is presented in
Figure 11.2(a) and along the y-axis in Figure 11.2(b). For better comparison we normalized

the calculated data to its largest value of all 3 profiles in each figure.
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Figure 11.2: Calculated fluence profiles based on the time-dependent ERT. The medium
had dimensions of 3 cm x 3 cm and optical parameters pus = 11.6 cm ™!, p, = 0.001 cm™!,
g=20,and n=1.5.

We see that the overall trend of the calculated data is correct. The fluence pro-
file for detector A is largest because of its smallest distance to the source position when

compared to detectors B and C (Figure 11.2(a)). The same holds for detector D that was

closest to the source when compared to detectors E and F (Figure 11.2(b)).

11.1.2 Conclusion

Time-dependent measurement data in conjunction with a time-dependent forward
model for light transport might lead to a different objective function, which in turn facilitates

the numerical optimization to find the minimum. Therefore, we developed a forward model
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for light propagation in scattering media based on the time-dependent ERT. We employed
an explicit upwind scheme for calculating iteratively the time-dependent fluence. We found
that the calculation time is relatively long (107 hours) compared to the processing time
that was required by the time-independent forward model (15 minutes on a 361 x 361 grid).
Consequently, the main focus of future applications of a time-dependent forward model
based on the ERT is to utilize other numerical solution methods than the explicit upwind
scheme to reduce the computational cost. Furthermore, an experimental evaluation of the
predicted detector readings will be necessary as well as the development of the adjoint

differentiation scheme.

11.2 Stochastic Optimization Methods

Numerical optimization techniques can be divided into deterministic and stochas-
tic methods. The gradient-based techniques used throughout this work are deterministic
methods, because the update of the optical parameters (see Equation 5.4) is based on de-
terministic rules (e.g. Equations 5.3 and 5.20). However, gradient-based techniques have

certain drawbacks that will be briefly discussed.

First, they find local minima of the objective function ®. A local minimum p*
is considered if there is a neighborhood L of p* such that ®(u*) < ®(u) for p € L.
The vector p* is a global minimum if ®(p*) < ®(u) for all pu [Luenberger84] [Nash96).
The global minimum is difficult to find, because our knowledge of ® is only local. In
turn, the reconstruction result strongly depends on its initial guess po that was closest
to one of the local minima. Second, gradient-based optimization methods use the first
derivative V,® for calculating a search direction w in the vicinity of a minimum (see

Chapter 5.2). However, if the gradient is close to zero (||V,®| = 0), we are not able
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to compute a search direction. We observed this type of behavior, when, for example,
the minimum of the objective function was inside a long narrow valley (see Figure 11.4).
Gradient techniques had difficulties descending inside the long narrow valley of the objective
function and the optimization process led to a premature convergence. This result was
also observed by Schweiger et al [Schweiger97] in diffusion-theory-based OT when using
gradient-based optimization techniques. Third, the determination of the scaling factor y,
which was empirically chosen to re-scale the gradient V,® (see Section 6.5), may also lead
to a premature convergence when x, which depends on the initial guess, was not chosen
appropriately.

Stochastic optimization methods do not rely on the gradient V ,® of the objective
function for finding the minimum. These methods vary the function variables according to
stochastic instead of deterministic rules, and sample the entire search space in order to find
the global minimum. Therefore, stochastic optimization methods may provide a way to
overcome problems related to deterministic optimization techniques. However, a disadvan-
tage of random strategies is that they are computationally more costly than deterministic
methods, especially when large number of unknowns are used.

Commonly used stochastic optimization methods are, for example, simulated an-
nealing (SA) [Kirkpatrick+83], evolutionary programming (EP) [Fogel94], genetic algo-
rithms (GA) [Michalewicz99], and evolution strategies (ES) [Biack93] [Winter96]. In this
outlook we give an introduction to ES as an example for stochastic optimization techniques

in OT.

11.2.1 Evolution Strategy

ESs were first introduced by Rechenberg and are algorithms, which imitate the

principles of evolution seen in nature [Rechenberg73]. In natural evolution, the mechanism
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of variation is the occurrence of random exchanges in the transfer of genetic information to
the next generation of individuals. The selection criterion favors individuals best adapted to
their environment, which is also known as the survival of the fittest. This natural strategy
has been adapted to solving numerical optimization problems. Therefore, we exploit a
multi-membered ES for reconstructing optical parameters in OT.

A multi-membered population consists of ¥ > 1 individuals v!. Each individual of
a population is composed of a pair of real-valued vectors v' = (u', o'). Here, p represents
the unknown scattering coefficient pu; and the unknown absorption coefficient u,, which
is called the object variable. The second vector o is a vector of standard deviations oy,
and o0,,, which is called the strategy parameter. Furthermore, each generation consists of
a parent population with v members and an offspring population with A members. Some
individuals of the offspring population in the current generation t become part of a new
parent population in the next generation t 4+ 1. The ES repeatedly applies three different
operations to the individuals of the parent or offspring population at each successive gen-
eration. These operations are called recombination, mutation, and selection [Schwefel95]
[Back96] [Michalewicz99].

The recombination is applied to the object variables and the strategy parameters
of the parent population. Besides discrete recombination we applied an intermediate recom-

bination. Each new individual vl results from taking the average of the corresponding

new
strategy parameters and object variables of two randomly chosen parents v? and v® with
a,b € [1,v]:

. vi4aP
new 2

(11.8)

The recombination process also changes the population size from v to A individuals, where

the recombination process is applied A times to the parent population. This results in A
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new individuals v}, with i € [1, ]

Subsequently, the mutation is applied to all new members viww producing the
offspring population. First, normally distributed random numbers with expectation zero
i

and standard deviations o, are added to the object variables ul.,, indicated by the

expression N(0, o7,..,)

B = Hew + N (0, 07c)- (11.9)
Second, the strategy parameters ol,,,, are changed by applying the 1/5 success rule to opti-
mize the convergence rate [Michalewicz99]. This rule is only applied to every | generations:
ol .., ify(1) <1/5
o' =4 fol if (1) > 1/5

new’

Onews i ¥(1) =1/5
The term (1) is the ratio of the number of successful mutations to the number of total
mutations during the last 1 generations. The parameters o and S regulate the increase
and decrease rates for the standard deviations. We used following values: o = 0.82 and
B = 1/0.82 = 1.22 [Michalewicz99]. The updated individuals v}, now become the new
offspring population.

The selection process determines v individuals out of the A members of the off-
spring population. Only those members are chosen, who have the smallest objective function
®(pl) for the given object variables u!. The selected individuals become members of the
parent population of the next generation t+1. An ES that uses this particular selection
process is also called a (v,A)-ES. Other selection processes can be found, for example, in
[Schwefel95].

The iterative process is terminated after the relative change of the objective func-

tion in two successive generations |(®(u;)® — ®(p;)t*!) /@ ()t is smaller than a defined ¢

for an individual member v; of the parent population.
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11.2.2 Numerical Example

As an easily tractable example, which illustrates the performance of the ES, we
chose to reconstruct a homogeneous medium represented by only two optical parameters
(us and pg). We generated synthetic measurement data by using the time-independent
forward model based on the ERT with Fresnel boundary conditions. The homogeneous
test medium with a size of 4 cm x 4 cm was isotropically scattering and had the optical

parameters pg = 10 cm™! and ba = 0.6 cm™ L.

The refractive index was n = 1.54. The
calculations were performed for 16 ordinates on a finite-difference mesh of 40 x 40 grid
points and Az = Ay = 0.10256 cm. We used two different source positions on one side
and placed 54 detectors on the other three sides with a separation of 0.2 cm yielding 108
source-detector pairs. The measured data were normalized as given by Equation 3.1.

The reconstruction of the optical parameters us and u, was performed by using the
synthetic measurements and a (v, A)-ES. The anisotropy factor was not reconstructed and
was constant (g = 0) throughout the reconstruction process. We started with a population
of v = 3 parents having the initial optical parameters pu' = (us, = 4 cm ™1, pay = 0.2 cm™ 1),
u? = (psy = 7 em™t pg, = 0.8 em™1), and pu? = (us, = 16 cm™%, pg, = 0.4 cm™1). The
initial standard deviations were set to o' = (0, = 4,0,, = 0.4), 0% = (0,, = 4,0,, = 0.4),
and o® = (0, = 4,0,, =0.4).

Using the recombination and mutation rules described above throughout the op-
timization process, the parents produced A = 20 offspring at each generation. The recom-
bination process calculated the average value of the optical parameters of two randomly
chosen members of the parent generation. These new optical parameters were mutated by
applying the mutation rule, which subsequently resulted in a new offspring. After each
generation with 1 = 1 the maximum rate of progress (1) was calculated. Three offspring

with the smallest objective function ® became parents of the next generation. The ES
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located the minimum after 48 generations (960 forward calculations) where the stopping
criterion with € = 10™° was satisfied. The minimum was found at the optical parameters
ps = 9.74 cm™! and p, = 0.61 cm™! with logio(¢) = —4.43. We show values ¢ of the
objective function for 100 generations in Figure 11.3. The surface of the objective function

is displayed in Figure 11.4.
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Figure 11.3: Objective function log;,(®) for 100 generations of the (v, A)-ES. Each gener-
ation t is represented by its smallest value @ of the objective function. The minimum was
found after 48 generations (stopping criterion e = 107?).

11.2.3 Conclusion

We applied a (v, A)-ES within a MOBIIR scheme to the reconstruction problem
of two optical parameters of a homogeneous medium. An ES is a stochastic optimization
technique that mimics the evolutionary process found in nature. A population of v parents,
each parent is represented by the optical parameters y; and p, and strategy parameters o,
and o0,,, produces X offspring by a recombination and mutation process. After selection of
offspring with smallest values ¢ of the objective function, a new parent generation is created.

This process is repeated for many generations until the stopping criterion is satisfied. In our
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Figure 11.4: Objective function log;y(®) of the optical parameters pg = 0.5..20 cm™!
pa = 0.04..1.6 cm !, and ¢ = 0. The minimum is at ys = 10 cm ! and p, = 0.6 cm ™ !. The
search space was sampled by the (v, \)-ES, which is displayed by 200 dots. The minimum
log1o(¢) = —4.43 was found at ps = 9.74 cm ! and p, = 0.61 cm L.

numerical example we found the minimum after 48 generations (960 forward calculations).
The reconstructed optical parameters (us = 9.74 cm ™! and p, = 0.61 cm 1) deviate by 2.6%
from the original scattering coefficient and by 1.7% from the original absorption coefficient.

The numerical example shows that the ES can be employed for reconstructing
homogeneous scattering media. The ES might be a promising technique for determining an
initial guess of optical parameters i , and p4,. These optical parameters could subsequently
be used in gradient-based MOBIIR schemes to reconstruct heterogeneous media. This novel
stochastic optimization technique we have introduced in OT still needs to be experimentally

verified in future studies and has to be applied to practical problems.
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