Part 11

Inverse Model
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The MOBIIR scheme reconstructs the optical parameters given the measured and
predicted detector readings on the tissue boundary. It utilizes a forward model for light
propagation in tissue and an inverse model for recovering the optical parameters. In Part I
we discussed the forward model. The fluence was calculated based on the ERT for a given
distribution of optical parameters and source positions. We found good agreement between
the model prediction and the experiment. What is still missing is the formulation of the
inverse problem, which is presented in this second part of the thesis.

In the following chapters, we first define an objective function, which is a function
of the optical parameters. Then, we employ gradient-based optimization techniques to
find the minimum of the objective function. We compare the well-established nonlinear
conjugate gradient technique used extensively in OT with quasi-Newton methods, which
were implemented in this work.

Gradient-based optimization methods employ the derivative of the objective func-
tion with respect to the optical parameters. A major obstacle in using these techniques is
the computationally efficient calculation of the gradient. In Chapter 6, we apply an adjoint
differentiation technique to obtain the gradient in a computationally efficient way.

Finally, the MOBIIR scheme is utilized for imaging of finger joints as a means of
monitoring the progress of rheumatoid arthritis, as discussed in Chapter 9. We perform
a numerical study on a finger joint model to show the ability of differentiating between

healthy and early rheumatoid conditions.






Chapter 5

Image Reconstruction as Nonlinear

Optimization Problem

Using MOBIIR schemes, the inverse problem in OT can be formulated as a nonlin-
ear optimization problem, where optimization techniques minimize an objective function.
The objective function is a measure of difference between the predicted and experimental
data. The predicted data are determined by the forward model. The experimental data are
obtained by measuring the fluence on the tissue boundary. Once the minimum of the objec-
tive function is found, the cross-sectional distribution of the unknown optical parameters is
displayed as an image. The quality of these reconstructed images depends on the accuracy

of the predicted fluence of the forward model, as well as on the optimization scheme.

5.1 Objective Function

The disparity between the actual fixed measurements m and the current predic-
tions p for D source-detector pairs is mapped onto a scalar ¢ by the objective function

&J(p) One of the most commonly used objective functions is the least-square error norm:
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The predictions p are evaluated for all D source-detector pairs, using the forward model F

and given the N-dimensional vector p of optical parameters:

F:RY 5 RP

p = p(p), (5.2)

where N = 2 x I x J. T and J denote the number of grid points of a finite-difference grid
along the z-axis and y-axis, respectively. The vector p contains the optical parameters,
specifically the scattering (us) and absorption (u4) coefficients. The parameter k is used
for normalizing the predictions and measurements. We usually set kg = mgq.

Using Definitions 5.1 and 5.2, we get the composite function ®(u) = ®(p(u)).
Clearly, the objective function @ is nonlinear because the predictions depend nonlinearly
on the optical parameters. In turn, the goal of a optimization technique is to determine a
vector p that minimizes the objective function ®(u). This vector will be a solution to the

minimization problem and is displayed as a two-dimensional image.

5.2 Optimization Methods

In general, optimization methods find a minimum of the defined objective function
®(p). At the minimum, the predictions p(u) will most closely match the measurements

m, and pu represents the distribution of the unknown optical parameters we set out to find.
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Before we explain how to minimize the objective function, we give a brief overview of how
a minimum is defined and what are the requirements that lead to a minimum.

A condition for a minimum g* of the nonlinear and differentiable function ®(u) is
the first-order necessary condition V®(u*) = 0. In addition, a second-order sufficient con-
dition is imposed by the second derivative V2®(u*) that guarantees that p* is a minimum.
Specifically, if V2®(u*) is positive definite then p* is a minimum of ®. Therefore, by using
the first-order necessary condition, the task of finding the minimum of ®(u) is obtained by

solving the equation
V() = 0. (5.3)

In general, optimization methods begin with an initial guess po and generate a sequence
{px} of estimates until a solution p* is reached. These iterative algorithms are classified
by their robustness, efficiency and accuracy. One of the most commonly applied techniques
are the gradient-based optimization methods.

Gradient-based optimization techniques have been proven to be computationally
efficient for large-scale problems [Luenberger84] [Nash96] [Nocedal99] such as in OT, where
between 10% and 10° unknown optical parameters are common. These optimization tech-
niques use the gradient V®(u) of the objective function for calculating a search direction

ur(V®) and a step length ax. An updating scheme determines a new estimate of the

sequence {pg }:
Myl = Pk + ou. (5.4)
Calculating the new estimate py;; is broken up into two tasks:
e finding a proper step length oy (see Subsection 5.2.1),

e calculating the search direction uy (see Subsections 5.2.2 and 5.2.4).
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Therefore, gradient-based optimization algorithms share the following general form:
1. Start with an initial guess g of the solution u*
2. If the objective function ® at gy is minimal, then stop.
3. Determine an improved estimate py1 = px + oxux
4. go to 2.

Gradient techniques differ mainly in the way the step length oy and the search
direction uy are calculated. In OT the most common method to determine the search di-
rection has been the nonlinear conjugate gradient (CG) technique [Arridge98] [Hielscher99].
After a brief introduction of the nonlinear CG method (see Subsection 5.2.2) we give an
overview of the more complex quasi-Newton (QN) methods that were adapted as part of
this thesis to provide better reconstruction results (see Subsection 5.2.4). All gradient-
based optimization techniques make use of a line search for determining the step length oy

as discussed below.

5.2.1 Line Search

A line search is employed by the CG and QN methods to find a new update
Pk+1 = Bk + axuy along the search direction uy. It chooses a sequence of step lengths «
and accepts the one that fulfills certain conditions. A simple condition is that the line search
provides a new value of the objective function with ®(uy + auy) < ®(ux). However, this
condition does not always lead to a sufficient reduction in &.

A sufficient decrease in the objective function ® is given by the inequality

O (i + o) < B(p) + 1V () T (5.5)
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for some constant ¢; € (0,1), which is also called the Armijo condition or sufficient decrease
condition. Yet, this condition alone does not ensure that the algorithm progresses rea-
sonably. Therefore, a second condition is employed, called the curvature condition, which

requires « to satisfy

V(g + auy)Tuy > oV (g ) T uye (5.6)

for some constant ¢y € (c1,1). Both conditions, Equations 5.5 and 5.6, are known as the
Wolfe conditions. Typical values of ¢y are 0.9 when the search direction is chosen by a QN
method, and 0.1 when uy is chosen by the nonlinear CG technique.

Furthermore, line searches are distinguished between exact and inexact searches
depending on the method employed for calculating the search direction uy;. An exact
line search performs an one-dimensional line-minimization ®(a) = ®(pux + auy) along the
direction wuy, finding the appropriate step length a. This method is mostly used by the
CG method. Here, the line search is accomplished in two steps. The first step is called
bracketing [Press92]. It brackets the minimum by finding three points p, < pp < p. along
the search direction wuy such that ®(u,) > ®(up) and @(p) > ®(pp). Thus, the minimum is
somewhere within the interval [p,, prc]. This bracketing can be accomplished by an efficient
algorithm such as the golden section rule [Press92]. The second step locates the minimum
itself, in the interval [pq, ptc]. In this work we typically perform a parabolic interpolation,
which entails fitting a quadratic polynomial to the objective function at the three points
Mo, My, and .. The minimum of this parabola is found. This process is repeated by fitting
a new parabola at the new point and the previous two points with the smallest objective
function. A commonly used method for performing this task is Brent’s algorithm [Press92].
At the minimum we obtain the step length ay.

An inexact line search along wuy does not require that ®(a) = ®(px + auy) is
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minimal. In this case the second condition, Equation 5.6, is not applied and we employ a
backtracking approach [Press92]. This technique is used by the QN methods, which do not
require exact line searches. The backtracking algorithm chooses its candidate step length
oy only until the sufficient decrease condition, Equation 5.5, is satisfied. We find the best

results for a ¢; = 1078,

5.2.2 Nonlinear Conjugate Gradient Method

The nonlinear CG method generates a sequence {uy} converging to the solution
p* of Equation 5.3. This method is derived from the linear CG method for minimizing

convex quadratic functions h(z) with a symmetric and positive definite matrix A:

1
h(x) = §a:TAa: —blx. (5.7)

Using the first-order necessary condition (Vh = 0, see Equation 5.3), the linear CG method

can also be considered as a technique for solving a linear system of equations:
Vh(z) = Az —b=0. (5.8)

The two problems, minimizing a convex quadratic function and solving a linear system of
equations, are equivalent.

The linear CG method solves Equation 5.8 by using a set of search directions {ay}
and the one-dimensional minimizer oy of h(x) along ay for determining xy; from the

previous xy. The updating scheme (see Equation 5.4) becomes:
Tyx41 = Tx + axak. (5.9)
The directions ay are conjugate with respect to the matrix A by using the definition

al Aay =0 for k #¥ (5.10)
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for conjugate directions [Nash96] [Nocedal99]. Consequently, we find a new conjugate di-

rection

ay = —7x + frax 1 (5.11)
that uses the residual 7
r = Azx — b (5.12)
and the scalar Gy
B = TT{¢ (5.13)
Tk—1Tk—1

The one-dimensional minimizer ay of the quadratic function h(x) along ay is determined

by

T
'r'k Tk

o — (5.14)

a{Aak'

However, we cannot use the linear CG method in OT, because this method only
minimizes quadratic functions h(x) well. For general nonlinear functions, such as the ob-
jective function, we have to use a nonlinear CG method. The nonlinear CG method differs
in the way how the step length oy and the residual r are determined.

Instead of calculating «y explicitly by using Equation 5.14, we replace its compu-
tation by an exact line search that minimizes ®(pyx + auy). An appropriate line search,
such as line-minimization, was explained in Subsection 5.2.1. Furthermore, the residual r
for the determination of the scalar 8 in Equation 5.13 is replaced by the gradient V®(uy)
of the objective function:

VO ()" V(i)

A= T8l )TV (1)

(5.15)

Finally, the new conjugate direction is computed by modifying Equation 5.11

ux = —VO(uy) + Sruk_1- (5.16)
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There are several versions of the nonlinear CG method that differ in the way
one can calculate §; (see Equation 5.15). In addition to the Fletcher Reeves formula as
presented in Equation 5.15, the best known formulas with yx_1 = V®(uy) — V®(ur_1) are

the Polak-Ribiere formula

Yp_ V(i)

VO (pi-1)TVP(py—1)’ (5.17)

P =

and the Hestenes-Stiefel formula

_ Y1 V()
ylzllukfl

B : (5.18)

When applied to a mere quadratic function these versions are equivalent, but they behave
differently on general nonlinear functions, such as the objective function in OT. We use the
Polak-Ribiere formula for our work.

The algorithm for the nonlinear CG scheme can be formulated in general terms as

follows:

ALGORITHM

set convergence tolerance € > (

initialize starting point puog

evaluate ®(pp) and VO(py)

set up = —V&(po)

k=0

while: [[V®(uy)|| > €
determine oy performing a line-minimization of ®(py + auy)
calculate a new estimate py 1 = px + oxug
calculate a new gradient V®(pyi1)

determine fy;; using Equation 5.17
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calculate new search direction uyxy; using Equation 5.16
set k=k+1

end(while)

5.2.3 Newton’s Method for Nonlinear Equations

To date mostly nonlinear CG methods have been applied to the image reconstruc-
tion problem in OT. However, nonlinear CG methods often suffer from slow convergence
rates and require a relatively large number of function evaluations during the exact line
search. These problems are compounded when the ERT is used as a forward model, be-
cause solving this equation is already a computationally intensive task.

Looking to overcome these problems, we focused on Newton-type optimization
methods. These methods solve a sequence of linear equations, instead of solving a nonlinear
equation (Equation 5.3) directly. Hence, the objective function ®(u) is replaced by a

quadratic model Q(uy) at py:
1
O (e + ux) ~ Q(ux) = ®(pe) + uy VO (i) + gusQQ’(Mk)Uk, (5.19)

where V2® is called the Hessian matrix. By simply setting the derivative of Q(uy) with
respect to uy to zero, we get a linear system of equations, called Newton equations, for the

unknown variable wy:
V2® (i) - ux = =V (). (5.20)
After computing wuy, a new estimate of the optical parameters,

M1 = px + Uk, (5.21)

is found.
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In general, Newton’s method is rarely used in its classical form for nonlinear prob-
lems. It can fail if the quadratic model Q(uy) is not a good approximation to the nonlinear
objective function ®(uy + uk) at pi. Another problem we have to face is guaranteeing the
positive-definiteness of the Hessian V2®. When V2@ is not positive definite, the Newton
update uy may not be defined, since the inverse (V2®)~! may not exist. Furthermore, even

when it is defined, it may not satisfy the descent property [Nocedal99]:
ul - Vo(uy) < 0. (5.22)

Consequently, refinements to Newton’s method have been proposed, which are
called quasi-Newton (QN) methods. They differ in their computational speed and stability
[Nocedal99]. Generally, all QN methods replace Equation 5.20 with various alternatives for

calculating the search direction wuy, which have the general form
Bk s Uk = —V(I)([.Lk), (5.23)

where By is a positive-definite matrix. Intuitively, By should be some approximation to
V®2(py). The search direction uy is required to be a descent direction (see Equation 5.22).
Furthermore, Equation 5.21 is replaced by the updating formula given by Equation 5.4. In
summary, QN methods require the first derivative V®(uy), an approximation By to the
Hessian V2®(puy), the solution wuy of a linear system (see Equation 5.23), and the storage

of the approximated Hessian Bj.

5.2.4 Quasi-Newton Method

In this subsection we derive two different QN methods from Newton’s method for
calculating the approximated Hessian By and search direction uy. All QN methods employ

generalizations of the secant method for computing the matrix By [Nash96] with

V20 (picr1) - (i1 — px) ~ VO(piey1) — V(). (5.24)



Chapter 5: Image Reconstruction as Nonlinear Optimization Problem 79

Replacing the Hessian with an approximated Hessian By yields

Bit1* (M1 — px) = VO (pict1) — V(). (5.25)

Two additional vectors are defined that will be used repeatedly:

Sk = Mk+1 — Mk

Yk = VO (pri1) — VO (k). (5.26)

Substituting Equations 5.26 into Equation 5.25 gives the secant condition [Nocedal99] or

quasi-Newton condition [Bishop97]

Byi1 - Sk = Yk, (5.27)

which has to be satisfied by the approximated Hessian By 1. Furthermore, the matrix By

is positive definite only if sk and yx satisfy the curvature condition [Nocedal99]
st -y > 0. (5.28)
A technique for calculating the matrix By that satisfies the secant condition is given by

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula [Nash96]:

(Bysy)(Bysi) T 4 Yy

Bk+1 - Bk - .
szksk y{sk

(5.29)

After each iteration a new update of the matrix By, which is a function of By, can be
computed by starting with By = I.

Instead of calculating By, and then evaluating its inverse, the QN method cal-
culates directly the inverse Hy41 of Byi1. Given Hy,1, it will be even easier to compute

the new search direction uy,1 using the Newton equation (5.23)

up1 = —Hi 1 Ve(pkt1) (5.30)
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since one will not have to solve a system of linear equations By 1 - ux11 = —V&(pyq1)-
The inverse Hessian is derived in an iterative manner by starting with # = I[Nash96] and
applying the following formula:

— Hysk)yl — Hysi)T
?‘tk+1 — Hk + (yk k k)yk _ (yk ksk) Sk (ykyi{). (5'31)

Yy Sk (yy )2

The BFGS method requires the storage of the inverse Hessian Hy for use by the
next iteration step. This storage space can be quite large and leads to a high computa-
tional burden !. Therefore, the limited-memory BFGS (Im-BFGS) method was devised
that required no storage of the inverse Hessian Hy [Nocedal80] [Liu89]. Consequently, the
Im-BFGS method is very suitable for large-scale problems [Nash96]. It is based on the
inverse formula of the BFGS method, the matrix Hy is replaced by the identity matrix I at
each iteration step. We make this substitution in Equation 5.31, and obtain the following
expression for the search direction wy by using Equation 5.30 and the vectors sy and yy

[Bishop97]:
ux = —VO(uy) + ysk + Ay (5.32)

The scalars v and A are defined by

. yiyr\ sEV®(puey1) | Y VO (k1)
v (14 % Plpkit) | ¥ VO (5.33)
S Yk S Yk S Yk
\— 85 VO (pi1)
Sfylc

! An example with N? = (2 x I x J)? = (2 x 60 x 60)*> = 5.184 - 107 elements requires a total storage space
of 4.05 - 10° KByte = 396 MByte with 8 Byte each element.
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An algorithm based on the presented approach has the general form:

ALGORITHM

set convergence tolerance € > (
initialize starting point g
calculate gradient V®(uy)

initialize inverse approximated Hessian Hy =1 with identity matrix

while: | V®(ui)|| > €
BFGS: calculate search direction ux by using Equation 5.30
1m-BFGS: calculate search direction uy by using Equation 5.32
determine o by performing a line search along wux
calculate a new estimate px 1 = px + ax - Uk
calculate a new gradient V&(pyi1)
define sy and yy by means of Equation 5.26
BFGS: calculate Hyi; by using Equation 5.31
Im-BFGS: calculate 7 and A by using Equation 5.33
k=k+1

end(while)

5.2.5 Positive Definite Inverse Hessian

As already mentioned on page 78, the approximated Hessian By may not always
be positive definite. In this case the quadratic model Q(u) (see Equation 5.19) is a poor
approximation to the objective function ®, and the curvature condition (see Equation 5.28)
is not satisfied. This can occur for example if the initial guess pg is far from the solution p*.

In the case of the BFGS method one commonly replaces the approximated inverse Hessian
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‘Hy in Equation 5.30 by the identity matrix I, which is positive definite. In the case of
the Im-BFGS method, the scalars v and A are set to zero. After replacement, the search

direction becomes uyx = —V®(uy), which is just the steepest descent direction.

5.3 Discussion

We have reviewed various gradient-based optimization methods for minimizing
the objective function ®(u). Typically, an initial guess pq is iteratively updated along
successive search directions uy. The nonlinear CG method, which utilizes only the first
derivative V®(uy) of the objective function for determining these search directions, often
leads to a slow convergence towards the minimum. The BFGS method makes additional use
of an approximation Hy to the inverse of the second derivative for computing the required
search directions. The inverse Hessian is iteratively built up by using the first derivatives
V®(py). Hence, it is expected that the BFGS method will find the minimum with less
function evaluations than the CG method. On the other hand, a drawback of the BFGS
method is the large memory requirement for the storage of Hy. This obstacle can partly be
overcome by employing the Im-BFGS method. The lm-BFGS method replaces the inverse
Hessian by the identity matrix I. It might, however, have a slightly slower convergence than
the BFGS method. Overall we will see that the BFGS and lm-BFGS methods outperform
the CG method despite their partly strong computational requirements. This will be subject

of Chapter 7.



