Chapter 3

Error Estimation

In this chapter we estimate the numerical error that was introduced by the spatial
and angular discretization of the finite-difference discrete-ordinates method for solving the
ERT. We performed calculations for different number of ordinates and different number of

grid points.

3.1 Grid Size and Number of Ordinates

The finite-difference discrete-ordinates method as given in Chapter 2 is an approx-
imation to the continuous ERT. The spatial derivatives of the ERT are approximated by
finite differences, and the integral term (internal source term) of the ERT is replaced by
a quadrature formula using discrete ordinates. These approximations introduce a numeri-
cal error, as a result of which the numerical solution differed somewhat from the analytical
solution of the ERT. The magnitude of this numerical error depends on the number K of or-
dinates and on the number I x J of grid points. In this chapter we focus on the quantification
of the errors that these approximations cause.

The impact of different numbers of ordinates and grid points on the numerical
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solution was determined by comparing the fluence profiles on the boundary of a test medium.
We only compared relative fluence profiles, not absolute fluences. Therefore, the calculated

fluences ¢4 at the D detector positions were normalized by their mutual mean value':

rel __ ¢d
bq” = DS g (3.1)

As explained later, relative fluence profiles could only be measured with our experimental
set-up because the source strength was not exactly known (see Chapter 4). Furthermore,
relative fluence profiles were always input to the MOBIIR scheme for reconstructing the
optical parameters (see Chapters 7-9). Consequently, we were interested in determining the
numerical error of relative fluence profiles instead of absolute fluence profiles.

First, we determined the impact of different numbers of ordinates in the forward
calculation. A scattering medium with dimensions of 3 cm x 3 cm was used as a test
example (see Figure 3.1). It had a scattering coefficient ys= 11.6 cm™!, an absorption
coefficient p,= 0.35 cm™!, and an anisotropy factor ¢ = 0. The light transport with non-
reentry boundary conditions was solved on a grid with 181 x 181 grid points. We varied
the number of ordinates with K € {4,8,12,16,32}. The isotropic source was positioned
at one side of the medium with a distance of 0.3 cm to the adjacent boundary (source
position A in Figure 3.1). The results are shown in Figure 3.2 for the fluence along the
side opposite to the source position (z-axis), and along the side adjacent to the source
position (y-axis). Provided that K > 4, the number of ordinates had negligible impact
on the numerical results for this particular test medium. However, it is well-known that
for weakly-scattering media the ray-effect has a strong impact on the numerical results
[Lathrop68] [Duderstadt79] [Chai93]. In these cases more ordinates have to be used.

Second, a similar numerical experiment was performed for an anisotropically scat-

!Note! D represents the number of detectors of one particular source. However, in Chapter 5 on page 70
we use D as the total number of all source-detector pairs.
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Figure 3.1: Schematic of the test medium with dimensions of 3 cm x 3 ¢cm and source
position A. The relative fluence profiles were taken on the boundary along the z-axis and
y-axis.

tering medium with ¢ = 0.8 and a scattering coefficient 1, = 58 cm™!. As in the previous
case, the reduced scattering coefficient was p, = 11.6 cm !. The results are shown in
Figure 3.3. Again, the relative fluence profiles were almost independent of the number of

ordinates for K > 4.

Additionally, we studied the impact of different grid sizes on the numerical result
keeping the number of discrete ordinates constant (K=32). We chose 4 different grid sizes
31 x 31, 61 x 61, 181 x 181, and 361 x 361 with grid spacings Az = Ay of 0.1 cm, 0.05 cm,
0.01666 c¢m, and 0.00833 cm, respectively. For comparison, the isotropically scattering
medium with pgg = 11.6 cm™! had a mean free pathlength of 1/us = 0.0862 cm, whereas
the anisotropically scattering medium with s = 58 cm ! had a mean free pathlength of

1/ps = 0.01724 cm.

In Figure 3.4 and in Figure 3.5 we show the fluence as a function of the spatial

variable for different grid sizes of the isotropically and anisotropically scattering medium.
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Figure 3.2: Relative fluence ¢ for different numbers of ordinates. The medium was isotrop-
ically scattering (g=0). The source was located at position A.
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Figure 3.3: Relative fluence ¢ for different numbers of ordinates. The medium was anisotrop-
ically scattering (g=0.8). The source was located at position A.
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As can be seen in Figures 3.4(a) and 3.5(a) the calculated fluence along the z-axis is only
weakly dependent on the grid size. Differences between results obtained with a 31 x 31 grid
and a 361 x 361 grid are smaller than 10%. Stronger differences are observed for data along
the y-axis (Figures 3.4(b) and 3.5(b)). Especially at large distances from the sources the
error accumulates and the results obtained with a 31 x 31 grid, are up to 5 times larger
than the calculated fluences using a 361 x 361 grid.

The approximation of the spatial derivative by finite differences introduced a trun-
cation error, which we called @. The truncation error is quantified by using the Taylor series
ezpansion at one grid point a = (z;,;) along the z-axis. Expanding the Taylor series for

the radiance 9 (a + Az) about a gives

o(a)
+ Oda A

2 (a
P(a + Az) = 1P(a) z + (98161(2 )A:E2 + O0(Ad?). (3.2)

We obtained an estimate for the first derivative by neglecting all higher terms on the right-
hand side of Equation 3.2

Y(a+ Az) —p(a) _ O(a)
= = =52+ 0(Aa). (3.3)

The upwind scheme, which uses the expression on the left-hand side of Equa-
tion 3.3, provides a first-order approximation to the first derivative with the truncation
error O(Az). This error is linearly dependent on the step size Az for adjacent grid points.
Therefore, the grid spacing Az for a given medium has an effect on the computed radiance
9 that is proportional to Az. If we decrease Az, the numerical error O(Az) decreases

linearly. The same holds for Ay.

3.2 Discussion

We estimated the numerical error that was introduced due to the finite-difference

discrete-ordinates method. We found that the numerical result did not strongly depend on
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Figure 3.4: Relative fluence ¢ for different numbers of grid points. The medium was isotrop-
ically scattering (g=0) and had optical parameters pus = 11.6 cm ' and pu, = 0.35 cm 1.
The source was located at position A.
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Figure 3.5: Relative fluence ¢ for different numbers of grid points. The medium was
anisotropically scattering (¢ = 0.8) and had optical parameters pys = 58 cm~! and
ta = 0.35 cm~!. The source was located at position A.
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the degree of angular discretization for both the isotropically (¢ = 0) and anisotropically
scattering medium (g = 0.8), when more than 4 ordinates were used. Similar results for the
relative fluence profiles were obtained for 8,12,16, and 32 discrete ordinates. Therefore, we

suggest for subsequent simulations to use at least K > 8 discrete ordinates.

Varying the number of grid points used in the spatial discretization we found that
a finer mesh yields more accurate solutions. We observed that the disparity between the
different fluence profiles was larger along the y-axis than along the z-axis. This can be seen
if we compare Figure 3.4(a) with Figure 3.4(b) for g = 0, or Figure 3.5(a) with Figure 3.5(b)
for g = 0.8. Consequently, the use of detectors along the y-axis requires a finer discretization

for calculating the fluence than the use of detectors along the z-axis opposite to the source.

Furthermore, we found for the isotropically scattering medium that at least a grid
size of 181 x 181 grid points needed to be employed (see Figure 3.4(b)). This results in a
grid spacing Az = Ay of 0.01666 cm between two grid points, which is approximately 1/5

of the mean free pathlength 1/ugs = 0.0862 cm of the scattering medium.

The anisotropically scattering medium (g = 0.8) with a mean free pathlength of
1/us = 0.01724 cm required only a grid spacing of 0.05 cm or 61 x 61 grid points, respectively
(see Figure 3.5(b)). When we use the reduced scattering coefficient u. = (1 — g)us =
11.6 cm™! instead of p,, the step size between adjacent grid points had to be at least the
mean free pathlength 1/u, = 0.0862 cm. This result is very encouraging for applications in
tissue optics, where we encounter anisotropically scattering media with g > 0.7.

It was reported in the literature that the upwind scheme introduces an additional
numerical error, called numerical diffusion, due to the first-order discretization of the spatial
derivatives [Sewell88] [Fletcher90] [Chai93] [Mezzacappa99]. This artificial diffusion term,
which is not present if higher-order discretization schemes are used, increases the fluence

within the scattering medium. In order to match our numerical results with an analytical
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solution of the ERT or with experimental data we would have to increase the absorption
coefficient within the upwind-difference discrete-ordinates method. This leads to the con-
sequence that the upwind-difference scheme overestimates the absorption when employed

within a MOBIIR, scheme for reconstructing optical parameters.



