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Forward Model
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The forward model as part of the MOBIIR scheme predicts the detector read-
ings on the tissue boundary given a set of sources and the spatial distribution of optical
properties. In Chapter 2 we introduce a forward model for light transport based on the
time-independent equation of radiative transfer. We utilize a finite-difference discrete-
ordinates method for discretizing the spatial and angular variables of the ERT. The resulting
system of equations is solved by a successive overrelaxation method. The numerical error
that is introduced due to the discretization of the ERT is evaluated in Chapter 3. The
fluence on the boundary of tissue phantoms that contained void regions is compared to

experimental results in Chapter 4.






Chapter 2

Photon Transport in Turbid Media

A main component of the MOBIIR scheme is the forward model for light propaga-
tion in tissue (see Subsection 1.2.1). The forward model calculates the detector predictions
for a given set of spatially distributed optical parameters and source positions. The de-
tector predictions are used in the inverse model for updating the optical parameters. The
outcome of the reconstruction of the optical parameters largely depends on a sufficiently
correct forward model for light transport. Until now, existing reconstruction techniques in
OT cannot be applied to scattering media that include void-like areas. In this case the
widely applied diffusion theory fails to describe the light propagation accurately enough
and the reconstruction schemes provide erroneous results. Therefore, it is necessary to use
a forward model based on the ERT, which correctly describes the migration of photons in

void-like areas.

The mathematical description of the transport of particles such as neutrons, elec-
trons, gas molecules, ions, and photons through a host medium is called transport theory.
The goal of transport theory is to determine the distribution of these particles in the host

medium, taking account of the motion of the particles and their interactions with the host
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24 Chapter 2: Photon Transport in Turbid Media

medium. Most of the applications of transport theory have developed almost independently

of one another.

In the kinetic theory of gases Boltzmann developed the basic physics of transport
processes of particles [Boltzmann1872] [Boltzmann64] over one century ago. The early
development of the transport theory was stimulated by the radiant energy transfer in stellar
or planetary atmospheres [Chandrasekhar60]. In 1905 the astrophysicist Schuster discussed
the transmission of light through a foggy atmosphere taking light scattering effects besides
emission and absorption into account [Schuster05]. Perhaps the most famous problem in
transport theory is also known as the Milne problem [Milne21]. Near the center of a star
photons are produced in the region of very high temperature. These photons escape through
the stellar atmosphere and cross the boundary layer between the star and the surrounding
vacuum. Mathematically, the problem is treated assuming a plane geometry with the source
infinitely far from the boundary. Under these assumptions the angular distribution of the

radiant energy and the resulting temperature distribution is calculated.

In the 1940s research was strongly focused on neutron transport theory because of
the advent of the nuclear age [Lewis77]. Since then several analytical and numerical methods
were elaborated that solve particle transport problems within a broad range of geometrical
configurations and for heterogeneous media. These problems are typically encountered
in nuclear reactors [Davison57] [Case67] [Duderstadt79] [Lewis84]. A concise historical
overview is given by Zweifel [Zweifel78] [Zweifel97].

Currently, transport theory is applied to a variety of different fields in physics,
e.g. in neutrino transport [Mezzacappa99], electron transport [Yamada89] [Abramo94], or
in general for charged particles [Luo93]. Most recently transport theory was also applied to

OT [Dorn98].

In this chapter, we describe the ERT as it applies to photon propagation in tissue.
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Subsequently, methods for the numerical solution of this equation are discussed. Special
emphasize is given to the derivation of the finite-difference discrete-ordinates method, which

is used throughout the remainder of this work.

2.1 Equation of Radiative Transfer

The particle transport is mathematically described by the particle transport equa-
tion. It is a balance equation for the angular flux of particles. A derivation of this equation
is given in [Duderstadt79]. The particle transport equation applied to photons is also called
equation of radiative transfer (ERT) [Duderstadt79]. The ERT describes the transport of
low energy photons through matter, such as human tissue, with absorbing and scattering

properties. The three-dimensional time-independent ERT is given by:

w - Vip(r,w) + (ta(r) + ps(r))(r, w) = S(r,w) +us(f‘)/p(w,w')w(raw')dw'- (2.1)
4z

The fundamental quantity in radiative transport theory is the radiance (7, w), with units
of Wem 2sr !, at the spatial position 7 and unit direction w. The spatial position and the
direction of the radiance are defined by means of two coordinate systems [Duderstadt79].
A laboratory coordinate system describes the geometry of the medium in three-dimensional
space. We have chosen Cartesian coordinates due to the medium geometry under consider-
ation. Thus, each point of the medium is denoted by a vector » = r(x,y, z). Furthermore,
a local coordinate system describes the local scattering process of light along directions w at
a particular point . The local coordinate system can be expressed in spherical coordinates
with w = w(¥, ). Both coordinate systems are shown in Figure 2.1. Furthermore, the

integral of the radiance 1 (r,w) over all directions w at one point r yields the fluence ¢(r)
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Figure 2.1: The laboratory coordinate system describes the global geometry of the scattering
medium that contains all points . The local coordinate system describes the local scattering
process into directions w at the point 7.

with units of Wem ™ 2:

o(r) = /1/)(r,w)dw. (2.2)
am

Other quantities besides the radiance v that are included in the ERT are the source term
S(r,w) with the unit Wem™3sr™!, the scattering coefficient, us(r), the absorption coeffi-
cient, y14(7), both given in units of cm™!, and the scattering phase function p(w,w’) with
units of st~! [Patterson91].

The scattering phase function p(w,w’) in tissue optics is typically assumed to be
spatially independent. It gives the probability that a single photon is deflected by an angle
6. The angle 0 encloses the two directions formed by w and w’ in the interval 6 € [0, 7] with
w-w' = cosf. A commonly applied scattering phase function in tissue optics is the Henyey-
Greenstein function [Groenhuis83] [Prahl93]. This function was empirically introduced by
Henyey and Greenstein for radiative transfer in galaxies [Henyey41] and is given as:

1-— 92
47(1 + g2 — 2g cos )3/2°

p(cosh) = (2.3)
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Other scattering phase functions [Chandrasekhar60] [Groenhuis83] besides the Henyey-
Greenstein function have also been used in tissue optics, e.g. Mie scattering phase function
[Mourant96] [Mourant98] or J-Eddington phase function [Venugopalan98]. Furthermore,

the phase function p is normalized with:

/p(w,w')dw' = /p(w-w')dw' = /p(cos@)dw’ =1. (2.4)

4 4 47

Assuming that the incoming direction w is parallel to the z-axis with ¥ = 0 then the enclosed
angle 6 between w and the scattering direction w’ is 9'. Thus, we have cosf = cos9’. Due
to the azimuthal isotropy of the scattering process the phase function is independent of the

angle ¢’ and we obtain

2w 2n s

//p(z?,go,ﬁ',go') sin®'dd'dy’ = //p(cosﬁ') sind'dd'dy’ = 27r/p(cosq9') sind'dd’ = 1.
0 0 00 0

(2.5)

It is convenient to substitute the variable 7 € [—1,1] for the factor cos?¥’ and sind'd¥’ =

dcos¥ = dr within the integral. Therefore, the following identity holds for the integral:

1
2r [ p(r)dr = 1. (2.6)
/

Furthermore, the angular directions w of the radiance ¥ (r,w) can also be expressed in

Cartesian coordinates w = (wg, wy, w,) with:

wy = sind cos ¢,
wy = sin4 sin ¢, (2.7)

w, = cos ¥,
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and consequently we obtain for the ERT with the scalar product w -V

sin® cos (p%ip(r,w) + sin 9 sin (pagyzp('r,w) + cos ﬁ%ip(r,w) + (pa(r) + ps(r))yp(r,w) =

S(r,w) + pis(r) / plw, W' Yp(r, Yoo (2.8)

4

The three-dimensional ERT (Equation 2.8) is an equation of three spatial variables
(z,y, z) and two angular variables (¢, ). Numerically finding solutions to this equation is in
general a computationally very expensive task, both in terms of memory requirements and
computational time. Therefore, the majority of works concerning the ERT deals with one-
dimensional or two-dimensional problems, for which simplifying assumptions are introduced.
In this work, we reduce the number of variables by imposing certain conditions to the
medium geometry and source. First, assuming a medium with a translational invariance
of the optical properties, pus; and p,, and the source term S along z of the laboratory
system yields a two-dimensional ERT that only depends on two spatial variables z,y and
two angular variables ¢,1. Second, we further reduce the number of angular variables by
only considering the scattering process within the z —y plane by neglecting all out-of-plane

directions with respect to the local coordinate system.

To derive the two-dimensional ERT we make the following assumptions with re-
spect to the laboratory system. First, the geometry of the medium is independent of the
coordinate z with ps = ps(z,y) and pg = pe(z,y). Second, the boundary condition of the
medium is independent of z. Last, the source term S is independent of z with S = S(z, y).

We take the derivative of the ERT (Equation 2.8) with respect to z:

oo | @ T+ (alo) + (o 0)) ¥ = S(a,) + (o) [ plw,o el | (29
4
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We replace the derivative with QZ = g—qf and we get:

- V4 Y (hale) + 1a(,9) + (ral) + 1 (2,) =

%S(w,y) + (%us(x,y)> /p(w,w')wdw' —I—us(:c,y)/p(w,w')idw'. (2.10)

47 4

The second term on the left-hand side and the first and second term on the right-hand side

of Equation 2.10 vanish and we have

w - VY + (na(@,y) + ps(2,9)P = ps(z,y) /p(w, w')ipdw’. (2.11)
4m
The solution of Equation 2.11, which is Equation 2.1 having the source S(z,y) = 0, is ¢ = 0.

We conclude that the radiance 9 = 1(z,y) is not a function of the spatial coordinate z.

Therefore, we obtain the ERT for a two-dimensional plane:

) 0 ) ) 0
sind cos p (w9, ) + sindsin g7 h(z,,0) + (ta(e,) + sl 1) (1. 0) =

8(z,y,w) + pis(2,9) / pl(w, (2, y, ') (2.12)

This equation is, for example, also used in radiative heat transfer by Sakami et al, Wilson,
Ramankutty, and Thynell [Sakami96] [Wilson96] [Ramankutty97] [Thynell98].

We further simplify Equation 2.12 with respect to the local coordinate system. We
define two hemispheres S and S? around a point r = (z,v,29) as depicted in Figure 2.2.
The hemisphere S! sits on top of the z — y plane and contains all directions & that point
towards r. Hemisphere S? sits underneath the z — y plane and contains all directions @
pointing towards r. However, both hemispheres do not contain directions & that are within
the z — y plane. We assume that the radiance 9 (@) of out-of-plane directions @ negligibly
contributes to the transport process within the z — y plane due to the medium geometry
along the z-axis. This assumption introduces a disparity of the radiance distribution with

respect to Equation 2.12, that still needs to be qualitatively evaluated. We get as an
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Z w1

52

Figure 2.2: Hemispheres S' and S? around the point r. S' is on top and 52 is underneath
of the z — y plane at zy. All directions @ point towards r.

approximation:

& V(@) + (e + 1)(@) = 5(@) + s / (@, &) (@)d! (2.13)

&

or

0 0
CoS (pa_z’(p(x, Y, ‘:’) =+ Sin(Pa—y'lp(.’L', Y, ‘IJ) =+ (Ma(‘q", y) + Ns(x, y))‘lp(.’L‘, Y, d)) =
S(2,.@) + na(o,9) [ 5@ @)p(z,0.6')da (2.14)
2w

We replace all directions @ with the angle ¢ and obtain with p(& - @) = p(cos(¢ — ¢')):

0 0
COS(Pa—xiﬁ(ﬂv,y, 30) + Sin¢8—y¢($aya 80) + (ua(x,y) + Ms(may)),lp(xaya (P) =
27

82,9, ) + pal,) / Blcos(o — @)l v, ') dd' (2.15)
0

The scattering phase function p(cos6) = p(cos(p — ¢')) (Equation 2.3) within the z — y

plane is normalized to unity to obtain energy conservation:

leos(p — o)) 1= 2D (2.16)

Of p(cos(p — ¢'))dy'
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Johnson and Pitkaranta, Asadzadeh, Turek, Norton, Banoczi, Bal, Dorn, and Tamasan
solve the two-dimensional ERT (Equation 2.13 - 2.15) in radiative heat transfer, neutron
transport, and tissue optics by using only directions within the z — y plane [Johnson83]
[Asadzadeh86] [Asadzadeh89] [Turek93] [Norton97] [Dorn98] [Banoczi99] [Bal00a] [BalOOb]

[Dorn00] [Tamasan02].

An error analysis of Equation 2.13 due to the negligence of out-of-plane directions
w does not exist in literature. One possible approach to evaluate the model error could be
a direct comparison of solutions of Equation 2.13 to solutions of other light propagation
models. For example, Bal compared solutions of Equation 2.13 to solutions of the diffusion
equation for highly-scattering and void-like media [Bal01] [Bal02]. These comparisons show
a match of transport-theory-based with diffusion-theory-based calculations on the bound-
ary of homogeneous media, whereas a mismatch due to the failure of diffusion theory in
void areas was found. However, even for homogeneous and highly-scattering media, where
diffusion theory holds as an approximation to the ERT, a comparison of solutions to the
ERT might be of questionable value. For example, in recent publications different groups
have presented contradicting arguments concerning the inclusion of the absorption coeffi-
cient into the diffusion coefficient [Durduran97] [Aronson99] [Chen01]. Furthermore, the
diffusion-boundary condition for tissue-like media makes use of a heuristically introduced

factor that has to be determined experimentally and is not very reliable [Aronson95].

A better approach for validation is the direct comparison to experimental results
as we are going to show in Chapter 4. The main criterion for a match of numerical and ex-
perimental results is that the forward model based on Equation 2.13 as part of the MOBIIR
scheme predicts correctly the detector readings on the boundary of a tissue-like medium.
These detector readings constitute numbers (in arbitrary units [a.u.]) that are proportional

to the fluence ¢ (in units of Wem 2) on the boundary of the scattering medium. More-



32 Chapter 2: Photon Transport in Turbid Media

over, the comparison of relative fluence data, due to unknown source strength and unknown
coupling factors at the detector-tissue interface, is a standard procedure in OT [Pogue95]

[Jiang96b] [Venugopalan98] [Boas01].

2.2 Numerical Methods to the Solution of the Equation of

Radiative Transfer

Except for highly idealized problems [Case67] [Duderstadt79], solutions of the ERT
are accomplished by numerical means, e.g. in [Stenholm91] [Turek93] [Kisselev94] [Turek95]
[Chen98] [Folini99]. The choice of a given numerical technique depends on the approxima-
tions one uses to describe the properties of the medium and its geometrical configuration.
Numerical solutions to the particle transport equation are obtained, for example, by using
one of its three formulations: the integral, the surface-integral, or the integro-differential
form [Lewis77] [Duderstadt79] [Sanchez82] [Lewis84]. The ERT as shown in Equation 2.1
and 2.13 is the integro-differential form. This form is widely used for the treatment of
optically thick media, which we typically encounter in tissue optics. In the following work
we will only focus on the numerical solution of this integro-differential form.

In general, numerical methods convert the integro-differential equation into a sys-
tem of algebraic equations. The radiance 9 (r,w), which is a continuous function in space,
is replaced by a finite set of N/ values. The transport equation is replaced by a set of
approximate algebraic equations for each of these A/ values. These numerical techniques
include, for example, the singular eigenfunction expansion method, the spherical harmonics
method (Pyx-method), and the discrete-ordinates method (Sy-method) [Sanchez82].

The similarity between the Py-method and the Sy-method is that an approxi-

mation is used for eliminating the integral term in the ERT. The Py-method expands the
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the radiance in terms of eigenfunctions (e.g. spherical harmonics) of the integral operator.
After truncation of this expansion a set of coupled differential equations for the expansion
coefficients is obtained. On the other hand, the Sy-method uses a numerical quadrature
in the angular variable to obtain an approximation of the integral term. The resulting
set of coupled ordinary differential equations for the radiance in the directions specified by
the quadrature formula is solved either by a finite-difference method or by the method of

characteristics [Case67] [Carlson76] [Duderstadt79].

2.3 Finite-Difference Discrete-Ordinates Method

The Sy-method is employed with several finite-difference approximations [Carlson68]
[Lathrop72]. Commonly applied finite-difference methods [Richtmyer67] are the diamond-
differencing scheme [Alcouffe77], the weighted diamond-differencing scheme [Lathrop69]
[Reed71b][Alcouffe93], the centered-differencing scheme [Davis67], the weighted central-

differencing scheme [Madsen75], and the step function difference scheme.

The step function difference scheme or step method is applied in many fields,
such as neutron transport theory [Carlson68] [Duderstadt79] [Lewis84], neutrino transport
[Mezzacappa99], and in radiative transport in thermal plasma [Menart00]. The step method
is also known as upwind scheme in the fields of fluid dynamics [Sewell88] [Fletcher90] and

heat transfer [Zurigat90].

We use the upwind scheme in connection with the discrete-ordinates method to
the ERT as a computationally efficient method for the calculation of the radiance. It has
the advantage over other difference schemes that it supplies the necessary mathematical
structure for the adjoint derivative calculation. The adjoint derivative calculation is central

to the solution of the inverse problem and is the focus of Part I of this work.
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2.3.1 Spatial and Angular Discretization

To solve the ERT (Equation 2.13 - 2.15) using an upwind-difference discrete-
ordinates method the angular and spatial variables, @ and 7, have to be discretized. First,

the integral term

21
s / B(@, & (r, @)@ = iy / Blcos(o — @)e(r, ¢ )dg (2.17)
2w 0

in Equation 2.13 or 2.15 is replaced by a quadrature formula that uses a finite set of K

angular directions wy, represented by ¢y, with k € [1,K]:

A

K
ps Y ay 7 Blox — o + B)dB 3 Y(r, o) = ps Y awPrar o (7). (2.18)
K B k'

=2

The angular discretization yields a set of K coupled differential equations for the radiance
P(r, @) = P(r, k) = P (r) in the directions @x. The quadrature formula in Equation 2.18
is equivalent to the extended trapezoidal rule for numerical integration [Press92]. Hence, the
parameter ay is a weighting factor with ay = 2?”, whereas the coefficient Py constitutes the
mean value of p within the interval [gak — P — Pk — Qi+ %] We show all coefficients
awpre for K =16 and K = 32 ordinates for several anisotropy factors g in Appendix A.

Additionally, the spatial variable r needs to be discretized. The domain Q is
defined by a rectangular spatial mesh with I grid points on the z-coordinate and J grid
points on the y-coordinate. The distance between adjacent grid points along the z-axis is
Az and along the y-axis is Ay. The radiance ¥(r, px) at a grid point (i,j) with position
r = (zi,y;) and indices i € [1,I] and j € [1,J] for a particular direction @i with angle ¢y
is represented by tiij = i (i, y;).- The direction @y is expressed in Cartesian coordinates
with § = e, - Wy = cos gy and 7N = ey - Wy = sin py.

Finally, the spatial derivatives have to be replaced with a finite-difference scheme.

In this work we use an upwind-difference scheme. The upwind-difference formula depends
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Figure 2.3: Finite-difference grid.

on the direction @y of the angular-dependent radiance vy;;. Thus, the set of all directions
@y are subdivided into four quadrants and we get four different difference formulas for the

radiance 9

9

G >0, m>0: iy = t=n 2

v oy dytrij = Ay

9 i+1j—%ij O ij —Yij—
G <0, m>0: 58 mdoppy = UHEN B n gy = Bzt

(2.19)
& >0,m<0: g—lﬁ ~ 5m¢kij — wij—quzi,l. ’ ?9_15 ~ (Sywkij - ¢i1'+A1;1ﬁi.
&k <0,m<0: % N OgPiij = 7¢i+2w_wij ) % ~ Oyt = %;wj J

The ERT with the external and internal source term on the right-hand side, can now be

written as:

Exdzp i + Mby i + ([aliy + [1s)i5) Vi) = Skij + [1s)ij Z ai Pk Puri (2.20)
kl

and we get for example for the ordinates & > 0, nx > O:

Yidj — Pii—1j P
b ml L —

— Prij— _
A Ay 2+ (sl + [l = Siaj + [1s]i Z aw Pk Prrij- (2.21)

kl
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Recasting the left-hand side of Equation 2.20 as a single operator acting upon ;; we get

{&dz + meby + ([palij + [1s)iy) Yoy = Skij + [1s)i; Z i P Puri (2.22)
kl
from which it is apparent that the system of equations corresponding to all K directions

and I x J grid points can be written as a single matrix equation

Ay =b. (2.23)

2.3.2 Successive Overrelaxation Method

The resulting system of equations is solved for the radiance vector ¥ by a Gauss-
Seidel method [Ames77]. Accordingly, we split the matrix A into a diagonal part D, an
upper triangular part U, and a lower triangular part L, with A = L+ D+ U. The original

matrix equation (Equation 2.23) can now be written as
(L+D+U)y=b
or
(L+ D)y =-Uy +b. (2.24)
The iterative form with the iteration matrix (L + D) on the left-hand side is expressed as
(L 4+ D)¢*T! = —U+* + b. (2.25)

In order to break up the matrix A into L + D 4+ U and also have U = 0 we re-order the

radiance vector 9 for all ordinates in the following way:

§c>0,m>0: Y= (Yri1,Pr12; - Yr21, Y225 o Yijs - Y111, Y1)
e <0, m>0: = (Y1, Yui—11s - k12, Yk1—125 -, Ykij s ---» P23 Y1J)
>0, me<0: P = (Pu1g, Yk1I—1, -0 Yk2Ts Yk2T 15 ooy Yikijs ++s Pi125 Pic11)

§k <0, Mk <0: Y= (Yuag, Y11, - VK115 PKI-13—15 -+ Ykij» -+ P12, Pk11) - )

(2.26)
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Thus, we get for example for & > 0, g > 0:

€k €k N
{A.’B + A ([/J'a]lj + [/J‘S]l_]) "p}Z(jJ—l "/’ij—llj - —Qﬁlz(jﬁl = Skij + [/Js]ij Z a,klpkkl’lplz(lij .
~ _, kl

diagonal matrix D lower matrix L b
(2.27)
As we can see, the upper matrix U vanishes and we obtain the iterative equation:
(L+ D)y =b, (2.28)

where b, as a function of v},.., is updated after each iteration step. We solve this equation

ij
for zpku explicitly:

~ 1 1
Skij + [Us]ij Ek’ ak’pkk"‘plz(lij Qplﬁj— 1J 1Z<I: 1

R+ 2 4 ([maliy + [sly)

because all zﬁkl 1j and ¢1Z{;JL£1 on the right-hand side of Equation 2.29 were already calculated

at the current iteration step (z + 1). This is a result of the particular vector ordering as
shown in 2.26. The iteration process is stopped when the relative error norm, which is used

in most transport codes [Reed71a],

|¢1Z(;J'Ll — Y <c¢ (2.30)

Vi

of all boundary grid points (i,j) with ordinate index k is less than a predefined value (
(typically 1073 to 1075).

A significant improvement in convergence speed is achieved by a slight modification

to the Gauss-Seidel method. The successive overrelazation method (SOR) uses a relaxation

parameter p with 1 < p < 2 in order to correct the solution ¢Z+1 of the Gauss-Seidel-

iteration, now denoted as 'WH The accepted new value ’(/Jz+1 of the SOR is extrapolated

from the Gauss-Seidel value wlz(:;l and the previous accepted value 9 of the SOR using

Yiit = (1= p)oiy + Ui (2.31)



38 Chapter 2: Photon Transport in Turbid Media

The parameter p is empirically chosen. We found that the best value is p = 1.0 — 1.1 for

isotropic scattering and p = 1.5 — 1.9 for anisotropic scattering.

2.3.3 Boundary Conditions

The boundary grid points 14; are modified between each successive iteration step
according to the boundary condition. Because of the refractive index mismatch at the air-
medium interface (refractive index of the medium is depicted by n,, with n,, > ng = 1), the
incident radiance 1); is partly reflected on the boundary and only a fraction of that light,
1}, escapes the medium [Ishimaru89]. The internally reflected light, 1., contributes further
to the photon propagation inside the medium (see Figure 2.4).

medium (n,,) air (ng)

/l/)r ," w'é

boundary

Figure 2.4: Boundary conditions at a grid point (i,j). The incident radiance ; is partly
reflected due to the refractive index mismatch at the air-tissue interface.

The angle ¢}, which pertains to a radiance v, escaping the medium, is determined

by Snell’s law
nm Sin ; = ng sin @) (2.32)

given the angle ¢; of the radiance, which hits the boundary inside the medium. At this
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point we make an approximation because one often has only a limited discrete set of

(e.g. K =28,16). We do not change the direction and define the angles

Pt = @i (2.33)

instead of using Equation 2.32 of calculating ¢}. For example, an incoming radiance at
the boundary with ¢; = 25° has an outgoing radiance with ¢} = 39.3° according to Snell’s
law (n,, = 1.5). However, the outgoing radiance with ¢} pertains to the same discrete
ordinate wy, depicted by ¢y, as the incoming radiance with ¢; when K = 16. Hence, both
angles, ¢ and ¢}, cannot be distinguished within the numerical scheme due to the angular
discretization % = 22.5° > ¢} — ;. Furthermore, we take total reflection into account for
large angles ;.

Using Fresnel’s formula, the transmissivity T and reflectivity R are calculated at
the boundary grid points (i,]j) for each ordinate index k. The reflectivity R and transmis-

sivity T' are defined as:

1 9 P 2 .
Rt (sTn2(<pf ©i) n tan2(<pf ‘P%)> (2.34)
2 \sin*(p; + i) tan®(p; + @)
and
T=1-R (2-35)

The angle of the reflected radiance 1, on the boundary inside the medium is given by

©r = —;. Finally, the transmitted and reflected radiance are calculated with:
Yr=T-1; (2.36)
Yr =R 1. (2.37)

The reflected radiance 1, is further used within the z-th iteration process. It modifies the

old value of the radiance ty; at the boundary grid point (i,j) and ordinate index k. The
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transmitted radiance 1; modifies the outgoing radiance ¢Eij of the final iteration step Z at
a given boundary grid point (i,j). The fluence ¢;; on that particular boundary grid point
(i,j) is determined by only using ordinates @y that enter the detector aperture AP:

¢y = Z axPiij- (2.38)

keAP

Here, the parameter ay is a weighting factor given by the extended trapezoidal rule [Press92)].

2.4 Discussion

We have employed a finite-difference discrete-ordinates method to discretize the
ERT. An upwind-difference scheme was used for the spatial discretization, and discrete
ordinates were used for the angular discretization of the radiance ¥ (r,&). The resulting
system of difference equations was solved for the radiance by a SOR method.

The main focus of the choice of a forward model for light transport within a
MOBIIR scheme was the convergence speed towards the solution besides the numerical
accuracy of the solution, which will be discussed in the next Chapter 3. We found that the
processing time depends on the number I X J of grid points, number K of ordinates, the
overrelaxation parameter p, and the optical parameters us, o, and g.

Typical numerical examples, that can be found throughout this work, have ap-
proximately 61 x 61 or 81 x 81 grid points and 16 discrete ordinates. Assuming optical
parameters of us = 11.6 cm™!, p, = 0.35 cm™!, and ¢ = 0, the SOR method needed
280-300 iteration steps for ¢ = 10°. That amounts in 20-60 seconds calculation time by
using a PENTIUM III XEON® processor. Furthermore, we found that the processing time
decreases linearly when p, is increased, or s is decreased. However, the calculation time is
unchanged for examples where ps and g were altered simultaneously while p!, = (1 — g)us

was held constant.



