Max-Delbrück-Centrum für Molekulare Medizin, Berlin-Buch Forschungsgruppe Entwicklungsneurobiologie Leiter: Prof. Dr. Fritz G. Rathjen

Untersuchungen zur Funktion der cGMP-abhängigen Kinase Iα während der Entwicklung des Nervensystems

Dissertation

zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.)

eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin

vorgelegt von

Susanne Schäffer

aus Magdeburg

Berlin, im Februar 2006

1. Gutachter: Prof. Dr. Fritz G. Rathjen

2. Gutachter: Prof. Dr. Gary R. Lewin

Disputation am: 15.05.2006

Inhaltsverzeichnis

1. Einleitung	1
1.1. Axonale Wegfindung	1
1.2. cGMP	3
1.3. cGMP-abhängige Proteinkinasen	4
1.4. Substrate und Funktion der cGKI im Nervensystem	6
1.5. Funktion der cGKI in der Wegfindung sensorischer Axone	
1.6. Aufgabenstellung	
2. Material und Methoden	
2.1. Material	10
2.1.1. Chemikalien, Enzyme und Labormaterialen	10
2.1.2. Verwendete Antikörper	
2.1.2.1. Primäre Antikörper	
2.1.2.2. Sekundäre Antikörper	11
2.1.3. Verwendete Programme und Datenbanken	11
2.1.4. Versuchstiere	11
2.2. Methoden	12
2.2.1.Histologische Methoden	12
2.2.1.1. Beschichtung von Objektträgern mit Gelatine	12
2.2.1.2. Anfertigung von Gewebeschnitten	12
2.2.1.3. Immunhistochemie an Gewebeschnitten	12
2.2.1.4. Modifizierte Bielschowsky-Färbung für die Zellkörper- und Faserfärbung	g 13
2.2.1.5. Ganzkörperfärbungen von Embryonen/ "whole-mount staining"	14
2.2.1.6. Immunzytologie	15
2.2.2. Biochemische Methoden	
2.2.2.1.Gewinnung von Proteinextrakten aus Geweben	15
2.2.2.Gewinnung von Proteinextrakten aus Zelllinien	
2.2.2.3. Gewinnung der Zytosol- und Membran-Fraktion von HEK293-Zellen	16
2.2.2.4. Gewinnung der Kern-Fraktion von HEK293-Zellen	
2.2.2.5. Präparation und Stimulation von Spinalganglien mit 8-pCPT-cGMP	17
2.2.2.6. Dephosphorylierung mit λ – Protein-Phosphatase	18
2.2.2.7. SDS-PAGE und Western Blot	18
2.2.2.7.1. Dokumentation und Quantifizierung der Blots	19
2.2.2.8. Immunpräzipitation	19
2.2.3. Molekularbiologische Methoden	20
2.2.3.1. Genotypisierung	
2.2.3.1.1. Isolierung genomischer DNA	20
2.2.3.1.2. Primer/Oligonukleotide	20
2.2.3.1.3. PCR	20
2.2.3.2. Isolierung von DNA-Fragmenten.	
2.2.3.2. Plasmid-DNA Präparation	22
2.2.3.3. Transformation	
2.2.3.3.1. Chemokompetente E.coli DH5α	22
2.2.3.3.2. Transformation von DH5α	
2.2.3.4. Transfektion der Zelllinie COS 7 mit Lipofectamine 2000	
2.2.4. Zweihybrides Hefesystem	
2.2.4.1. Hefestämme	
2.2.4.2. cDNA-Bibliothek	24
2.2.4.3. Plasmide	25

2.2.4.4. Lösungen, Medien und Agar	25
2.2.4.5. Sequentielle Kotransformation	
2.2.4.5.1. Vorbereitung kompetenter Hefezellen	26
2.2.4.5.2. Transformation der Hefe mit der Sonde (BD-Fusionsplasmid)	
2.2.4.5.3. Vorbereitung der Hefezellen für die zweite Transformationsstufe	27
2.2.4.5.4. Transformation der Hefe mit der cDNA-Bibliothek	27
2.2.4.5.5. Bestimmung der Transformationseffizienz	
2.2.4.6. Simultane Kotransformation	28
2.2.4.7. β-Galaktosidase Filtertest	
2.2.4.8. Plasmidisolierung aus Hefezellen	
2.2.4.9. Transformation der Plasmid-DNA in Bakterien	
2.2.4.9.1. Vorbereitung elektrokompetenter Bakterien	
2.2.4.9.2 Transformation durch Elektroporation	
2.2.4.10. Gewinnung der Plasmid-DNA aus transformierten E. coli HB 101	
2.2.4.11. Sequenzierung der Plasmid-DNA	
2.2.5. Zweidimensionale Gelelektrophorese	
2.2.5.1. Probenaufbereitung und Proteinbestimmung	
2.2.5.2. Erste Dimension: Isoelektrische Fokussierung	
2.2.5.3. Rehydratisierung	
2.2.5.4. Equilibrierung der IPG-Streifen	
2.2.5.5. Zweite Dimension: SDS-PAGE	
2.2.5.6. Färbung der 2D Gele	
2.2.5.6.1. Silberfärbung von Polyacrylamidgelen	35
2.2.5.6.2. Färbung von Polyacrylamidgelen mit Coomassie	
2.2.5.6.3. Phosphoproteinfärbung von Polyacrylamidgelen	
2.2.5.7. Dokumentation und Auswertung der 2D Gele	
2.2.5.7.1. Dokumentation	
2.2.5.7.2. Auswertung und Quantifizierung	3/
2.2.5.7.3. Proteinspotidentifizierung	
3. Ergebnisse	
3.1. Expression der cGMP-abhängigen Kinase I im Nervensystem der Maus	
3.1.1. Expression der cGKIα im Nervensystem der Maus	
3.1.1.1 Expression der cGKIα in den Hirnnerven	
3.1.1.2. Expression der cGKIα im Mesencephalon	44
3.1.1.3. Expression der cGKIα im Notochord, in den Spinalganglien und im	
Rückenmark	
3.1.1.4. Expression der cGKIα im sich entwickelnden olfaktorischen System	
3.1.1.5. Expression der cGKIα im sich entwickelnden Auge	
3.1.1.6. Expression der cGKIα in den Purkinje-Zellen des Cerebellums	
3.1.1.7. Postnatale Expression der cGKIα in weiteren Hirnstrukturen	
3.1.2. Expression der cGKIβ im Nervensystem der Maus	
3.2. Analyse cGKIα-positiver Strukturen hinsichtlich morphologischer Veränderungen	
in cGKI-defizienten Mäusen	
3.2.1. Analyse der Spinalganglien	
3.2.2. Analyse der peripheren spinalen Innervation	
3.2.3. Analyse der Hirnnerven	
3.2.4. Analyse der präganglionären sympathischen Neurone	
3.2.5. Analyse des Hippocampus	
3.2.6. Analyse des Bulbus olfactorius	
3.2.7. Analyse des Cerebellums	61

3.3. Untersuchung bekannter und putativer cGKI-Substrate hinsichtlich einer	(2
Beteiligung an der axonalen Wegfindung	
3.3.1. Untersuchung von CRP2 (Cysteine-rich Protein 2)	
3.3.2. Untersuchung von Myosin IIB bzw. der Myosinphosphatase	
3.3.3. Untersuchung von VASP (Vasodilator-stimulated phosphoprotein)	65
3.3.3.1. Untersuchungen zur cGKI-abhängigen VASP-Phosphorylierung in	~
embryonalen Spinalganglien	
3.3.3.1.1. Ermittlung der optimalen Stimulationszeit mit 8-pCPT-cGMP	
3.3.3.1.2. Dephosphorylierung von VASP mit der λ- Protein-Phosphatase	68
3.3.3.1.3. Vergleichende Untersuchung zur VASP-Phosphorylierung in WT-	(0
und cGKI-defizienten Spinalganglien	68
3.3.3.2. Untersuchung der zentralen Projektion der Spinalganglienaxone	70
in VASP-defizienten Mäusen	
3.4. Suche nach Interaktionspartnern der cGKI	12
3.4.1. Untersuchungen des Cerebellum-Proteoms von cGKI-defizienten und	72
WT-Mäusen mittels Zweidimensionaler Gelelektrophorese	
3.4.1.1. Vergleichende Untersuchungen zur Proteinexpression in cGKI-defizienten und Wildtyp-Mäusen	
	12
3.4.1.2. Vergleichende Untersuchungen zum Phosphorylierungsmuster im Cerebellum cGKI-defizienter- und Wildtyp-Mäuse	75
	13
3.4.2. Suche nach intrazellulären Interaktionspartnern der cGKIα im Zweihybriden	90
Hefesystem	
3.4.2.2. Sequenzanalyse	
3.4.2.2.1. Sequenzanalyse der Klone 4 und 8	
3.4.2.2.1. Sequenzanalyse der Klone 4 und 8	04
	04
3.4.2.3. Verifizierung der Interaktion von cGKIα und Dnmt3a1 mittels	96
Immunpräzipitation	80
Nervensystem	80
3.4.2.5. Untersuchungen zur subzellulären Verteilung der Dnmt3a und cGKIα	
3.4.2.6. Untersuchungen zur Interaktion der cGKIα mit anderen Mitgliedern	
der DNA-Methyltransferasen	
3.4.2.6.1. Dnmt1, nicht Dnmt3b1 kann cGKIα in COS 7-Zellen kopräzipitieren.	
3.4.2.6.2. Untersuchungen zur subzellulären Verteilung der Dnmt1 und cGKIα	
Diskussion	
4.1. Expression der cGMP-abhängigen Kinasen im Nervensystem	
4.1.1. Hirnnerven	
4.1.2. Spinalganglien und Rückenmark	104
4.1.2.1. Gibt es Mausmodelle die ähnliche Wegfindungsfehler sensorischer Axone aufweisen?	106
4.1.3. Präganglionäre sympathische Neurone	
4.1.4. Notochord (Chorda dorsalis)	
4.1.5. Bulbus olfactorius	
4.1.6. Hippocampus	
4.1.7. Cerebellum	
4.1.7. Cerebenum 4.2. Untersuchung bekannter und putativer Substrate der cGK	
4.2.1. CRP2 (Cysteine-rich protein family)	
4.2.2. Myosin IIB und Myosinphosphatase	
4.2.3. VASP (Vasodilator-stimulated phosphoprotein)	116
(5

4.3. Suche nach Interaktionspartnern der cGKI bzw. cGKIα	119
4.3.1. Untersuchungen zur Proteinexpression und Phosphorylierung im Cerebellum	
mit Hilfe der 2D-Gelelektrophorese	
4.3.1.1. Unterschiede in der Proteinexpression cGKI-defizienter Mäuse	120
4.3.1.1.1 B22-Untereinheit der NADH-Q-Reduktase (Ndufb9) und D-Kette der	r
mitochondrialen ATP-Synthase (ATP5H)	121
4.3.1.1.2. Glutathion S-Transferase omega 1 (GSTO1-1)	121
4.3.1.1.3. ADP-Ribosylierungsfaktor-ähnliches Protein 3 (Arl3)	
4.3.1.2. Untersuchungen zum Phosphorylierungsmuster	
4.3.1.3. Anmerkungen zur Methode	123
4.3.2. Suche nach intrazellulären Interaktionspartnern der cGKIα im Zweihybriden	
Hefesystem	
4.3.2.1. Hydroxysteroidsulfotransferase 2b1b (Sult2b1b)	
4.3.2.2. DNA-Methyltransferase 3 (Dnmt3a)	
4.3.2.2.1. DNA-Methylierung und DNA-Methyltransferasen	
4.3.2.2.2. Interaktion der cGKIα mit der Dnmt3a1	
4.3.2.2.2.1. Expression der Dnmt3a1 und Dnmt3a2 im Nervensystem	
4.3.2.2.2. Subzelluläre Verteilung der cGKIα und der Dnmt3a	
4.3.2.2.3. cGKIα und die Dnmt1	130
4.3.2.2.4. cGKIα und die DNA-Methyltransferasen	
4.3.2.2.5. DNA-Methylierung und transkriptionelle Inaktivierung	131
4.3.2.2.6. cGK und Genexpression	132
4.3.2.2.7. Rolle der DNA-Methyltransferasen und der DNA-Methylierung im	
Nervensystem	
5. Zusammenfassung/ Summary	
5.1. Zusammenfassung	
5.2. Summary	
6. Literaturverzeichnis	
7. Anhang	
8. Abkürzungsverzeichnis	
9. Lebenslauf	
10. Erklärung	. 161