Inhaltsverzeichnis

1	Einl	eitung	1
	1.1	Membranen	1
		1.1.1 Transport über Membranen	2
	1.2	CLC Chloridkanäle und -transporter	3
		1.2.1 Die Struktur der CLC-Proteine	6
		1.2.2 Bindungspartner von CLC-Proteinen	7
		1.2.3 Die CLC-Proteine des endozytotischen Weges	8
		1.2.4 Ansäuerung von Endosomen und Lysosomen	11
		1.2.5 CIC-7 – Osteopetrose und Neurodegeneration	12
	1.3	Osteopetrose	14
		1.3.1 Osteoklasten	14
		1.3.2 Genetische Ursachen der Osteopetrose	15
	1.4	Die grey-lethal Maus	17
2	Fraç	gestellung	19
3 Eraebnisse		21	
	3.1	Charakterisierung des Proteins Ostm1	21
		3.1.1 Gewebsverteilung von Ostm1	21
		3.1.2 Nachweis von Ostm1 in Proteinlysaten	22
		3.1.3 Aufklärung der Topologie von Ostm1	24
		3.1.4 Subzelluläre Lokalisierung von Ostm1	27
		3.1.5 ClC-7 ist essentiell für die lysosomale Lokalisation von Ostm1	30
		3.1.6 Analyse der Reifung und Prozessierung von Ostm1	30
	3.2	Untersuchung der Interaktion von ClC-7 und Ostm1	36
		3.2.1 Ostm1 ist essentiell für die Stabilität des ClC-7 Proteins	38
		3.2.2 Untersuchung des lysosomalen pH	41
	3.3	Vergleichende Analyse des Phänotyps der ClC-7-Knockout und grey-	
		lethal Maus	42
4	Disł	kussion	47
	4.1	Ostm1 – ein lysosomales Typ-I-Transmembranprotein	47
		4.1.1 Transmembrantopologie	48
		4.1.2 Lokalisierung	49
		4.1.3 Prozessierung	50
	4.2	Ostm1 als β -Untereinheit von ClC-7	52

		4.2.1	Bindung an ClC-7 ist Voraussetzung für die lysosomale Zielsteue-	52
		122	Ostm1 ist assantiall für die Stabilität des CIC 7 Proteins	54
		4.2.2	Finfluss von Mutationan in CIC 7 und Octm1 auf dan Komplay	55
		4.2.3	Varalaich mit Untersinheiten anderer Kanöle	55
		4.2.4	Vergleich mit ClC K/Porttin	55
	12	4.2.J	vergleich hill CIC-K/Baltun	50
	4.3		Einflugg von ClC 7/Ostm1 auf den lugggomelen nU	39 50
		4.5.1	Einnuss von CIC-7/Ostin1 auf den Tysosonnalen pri	39
		4.3.2	Emiluss von CiC-//Ostm1 auf die Feilfarde	00
		4.5.5	Neuronale Delekte	04
	4 4	4.3.4	grey-lethal, nur eine Kopie der CIC-/ Knockout Maus?	66
	4.4	Ausbli	2K	66
5	Mate	erial ur	nd Methoden	69
	5.1	Materia	al	69
		5.1.1	Chemikalien und Enzyme	69
		5.1.2	Lösungen und Medien	69
		5.1.3	Antikörper	70
		5.1.4	Zellinien	72
		5.1.5	Bakterienstämme	72
		5.1.6	Grey-lethal Mäuse	72
		5.1.7	Filmmaterialien und bildgebende Verfahren	72
		5.1.8	Elektronische Datenverarbeitung und Datenanalyse	73
	5.2	Molek	ularbiologische Techniken	73
		5.2.1	Transformation von <i>E.coli</i>	73
		5.2.2	Isolierung von Plasmid-DNA	74
		5.2.3	Konzentrationsbestimmung von DNA	74
		5.2.4	Restriktionsverdau	74
		5.2.5	Phosphorylierung und Hybridisierung von Oligonukleotiden	74
		5.2.6	Dephosphorylierung von DNA	75
		5.2.7	Auffüllen und Entfernen überhängender DNA-Enden	75
		5.2.8	DNA-Gelelektrophorese	75
		5.2.9	Elution von DNA-Fragmenten aus Agarosegelen	75
		5.2.10	Ligation	76
		5.2.11	Amplifizierung von PCR-Fragmenten zur Klonierung aus cDNA	
			oder Subklonierung	76
		5.2.12	Rekombinante PCR	77
		5.2.13	DNA-Sequenzierung	78
		5.2.14	RNA Präperation aus Gewebe	78
		5.2.15	Northern Blot	79
		5.2.16	Isolierung genomischer DNA aus Schwanzbiopsien	79
		5.2.17	Genotypisierung der Edar ^{dl-J} Punktmutation mittels Sequenzierung	80
		5.2.18	Genotypisierung von ClC-7 Mäusen mittels PCR	80

	5.2.19	Genotypisierung von grey-lethal Mäusen mittels PCR	81
5.3	Bioche	emische Methoden	81
	5.3.1	Herstellung von S1-Proteinlysaten aus Gewebe	82
	5.3.2	Herstellung von Proteinlysaten aus transfizierten HEK293-Zellen	82
	5.3.3	Proteinbestimmung mit Bicinchoninsäure (BCA)	82
	5.3.4	Bestimmung der β -Hexosaminidase-Aktivität	82
	5.3.5	Kopplung von Antikörpern and Protein-A-Sepahrose	83
	5.3.6	Immunpräzipitation mit ungekoppelten Antikörpern	83
	5.3.7	Immunpräzipitation mit gekoppelten Antikörpern	83
	5.3.8	Deglykosylierung mit N-Glycosidase F	84
	5.3.9	Deglykosyliereung mit Endo-H	84
	5.3.10	SDS-Gelelektrophorese	84
	5.3.11	Nicht-reduzierende Gelelektrophorese	85
	5.3.12	Western Blot	85
	5.3.13	Immundetektion	85
	5.3.14	Herstellung und Affinitätsreinigung polyklonaler Antiseren	86
		5.3.14.1 Immunisierung	86
		5.3.14.2 Peptidkopplung	86
		5.3.14.3 Aufreinigung	87
5.4	Zellku	Ilturarbeiten	87
	5.4.1	Kultur von HEK293- und HeLa-Zellen	87
	5.4.2	Einfrieren von Zellen	88
	5.4.3	Auftauen von Zellen	88
	5.4.4	Kultivierung von murinen adulten Fibroblasten	88
	5.4.5	Immortalisierung von Fibroblasten	88
	5.4.6	Kultivierung von murinen embryonalen Neuronen	89
	5.4.7	Transiente Transfektion	89
		5.4.7.1 Transfektion von HeLa-Zellen und Mausfibroblasten	
		mit FuGene6	89
		5.4.7.2 Kalciumphosphat-Transfektion von HEK293-Zellen	90
	5.4.8	Proteaseinhibition	90
	5.4.9	Messung des lysosomalen pH-Wertes	90
5.5	Histolo	ogische Methoden	91
	5.5.1	Perfusion von Mäusen	91
	5.5.2	Gewebeschnitte	92
		5.5.2.1 Gefrierschnitte	92
		5.5.2.2 Paraffinschnitte	92
	5.5.3	Elektronenmikroskopie	92
	5.5.4	Immunhistochemie	93
		5.5.4.1 Immunhistochemie an Schnitten	93
		5.5.4.2 Immunzytochemie von Zellkulturen	93

6 Publikationen und Patente

113

7	Dan	ksagung	115
Α	Anh	ang	117
	A.1	Plasmidvektoren und DNA-Konstrukte	117
	A.2	Oligonukleotide	118

Abbildungsverzeichnis

1.1	Die CLC-Chloridkanalfamilie der Säuger	5
1.2	Topologie und Struktur eukaryontischer CLC-Kanäle und -Transporter	6
1.3	CLC-Proteine im endozytotischen Weg	9
1.4	Schematische Darstellung der Vesikelansäuerung	11
1.5	Osteopetrotischer Phänotyp von <i>Clcn7</i> ^{-/-} -Mäusen	13
1.6	Elektronenmikroskopische und schematische Darstellung eines aktiven	
	Osteoklasten	15
1.7	Phänotyp der grey-lethal Maus	17
3.1	Ostm1 ist ubiquitär exprimiert	21
3.2	Sequenz und Strukturelemente von Ostm1	22
3.3	Western Blot von Ostm1	23
3.4	Ostm1 ist glycosyliert	25
3.5	Der N-Terminus von Ostm1 ist luminal orientiert	26
3.6	Ostm1 ist lysosomal lokalisiert	28
3.7	Ostm1 ist in der <i>ruffled border</i> von Osteoklasten exprimiert	29
3.8	Koexpression von ClC-7 führt zu lysosomaler Lokalisation von expri-	
	miertem Ostm1 in Fibroblasten	31
3.9	Koexpression von ClC-7 führt zu lysosomaler Lokalisation von expri-	
	miertem Ostm1-GFP in Hela-Zellen	32
3.10	Die kleine Ostm1-Form fehlt im ClC-7 Knockout	33
3.11	Subzelluläre Fraktionierung zeigt Unterschiede in der Lokalisation beider	
	Formen von Ostm1	34
3.12	Die kleine Ostm1 Form ist teilweise EndoH resistent	35
3.13	Lysosomale Spaltung von Ostm1	36
3.14	ClC-7 und Ostm1 interagieren in vivo	37
3.15	ClC-7 interagiert mit der großen Ostm1-Form	38
3.16	Reduzierte ClC-7-Proteinmenge in grey-lethal Zellen	39
3.17	Der lysosomale pH von gl- sowie Clcn7 ^{-/-} -Zellen erscheint unverändert	41
3.18	WT, ClC-7-Knockout und <i>gl</i> -Mäuse im Vergleich	42
3.19	Neurodegeneration im Hippocampus von grey-lethal Mäusen	43
3.20	Speichermaterial in <i>gl</i> - und <i>Clcn7</i> ^{-/-} - Zellen	44
3.21	Retinadegeneration in grey-lethal und ClC-7-Knockout Mäusen	45
4.1	Mögliche Membrantopologien von Ostm1	48
4.2	Prozessierung von Ostm1	50

4.3 4.4	Inhibierung der Pheomelaninsynthese Modell zur Regulation der Melaninproduktion durch ClC-7/Ostm1	62 63
5.1	pH-abhängiges Spektrum von Oregon-Green	90

Tabellenverzeichnis

3.1	ClC-7 und Ostm1 mRNA Level sind in <i>gl</i> - und <i>Clcn7</i> ^{-/-} -Mäusen unverändert	40
5.1 5.2	Lösungen	69 70
5.3	Sekundärantikörper	71
A.1 A.2	Plasmide	.17 18

Abkürzungen

AS	Aminosäure
ATP	Adenosintriphosphat
Bp	Basenpaare
cDNA	Komplementäre DNA (complementary DNA)
DNA	Desoxyribonukleinsäure
DNAse	Desoxyribonuklease
dNTP	Desoxyribonukleotidtriphosphat
EGFP	Enhanced green fluorescent protein
EndoH	Endoglycosidase H
ER	Endoplasmatisches Reticulum
gl	grey-letahl
HA	Hämagglutinin
HRP	Horseradish Peroxidase
kD	Kilodalton
ko	Knockout
Lamp-1	Lysosomen-assoziiertes Membranprotein-1
Lamp-2	Lysosomen-assoziiertes Membranprotein-2
NCL	neuronale Ceroid-Lipofuscinose
OD	Optische Dichte
Ostm1	Osteopetrose-assoziiertes Transmembranprotein 1
PBS	Phosphat-gepufferte Saline (Phosphate buffered saline)
PCR	Polymerasekettenreaktion (Polymerase chain reaction)
PNGaseF	$Peptid-N4-(acetyl-\beta-glucosaminyl)-asparagin amidase$
rpm	Umdrehungen pro Minute (revolutions per minute)
SDS	Natriumdodecylsulfat (Sodium dodecyl sulfate)
H ⁺ -ATPase	Vakuoläre Protonenpumpe
v/v	Volumenprozent
wt	Wildtyp
w/v	Gewichtprozent