
Quad Layout Generation and Symmetric Tilings of
Closed Surfaces

Beim Fachbereich Mathematik und Informatik der Freien Universität Berlin
eingereichte Dissertation von

Faniry Harijaona Razafindrazaka

2015



Referees:

Prof. Dr. Konrad Polthier, Freie Universität Berlin, Germany
Prof. Dr. Pierre Alliez, Inria Sophia-Antipolis, France
Defended on February 9, 2016



Selbständigkeitserklärung

Gemäß §7 (4) der Promotionsordnung versichere ich hiermit, diese Arbeit selb-
ständig verfasst zu haben. Ich habe alle bei der Erstellung dieser Arbeit benutzten
Hilfsmittel und Hilfen angegeben. Diese Arbeit habe ich in keinem früheren Pro-
motionsverfahren eingereicht.



Acknowledgement

I thank God for giving me the strengths to achieve until the very end the develop-
ment of this thesis. Prof. Konrad Polthier as my supervisor, I thank him for his
valuable support. My full gratitude goes to Ulrich Reitebuch for all these years of
mathematical discussions until the final realization of this thesis. Thank you Prof.
Pierre Alliez for accepting without hesitation to review my thesis. I thank my
family for their everyday assistance mentally with perseverance. To all members
of the mathematical geometry processing group, I would have not make it this far
without your assistance. Sandra Ramanantoanina, thank you for always supporting
me with love and patience.

My research has been funded for 3 years by the Berlin Mathematical School and
for 1 year by the SFB TRR109, Discretization in Geometry and Dynamics.



Contents

1 Introduction 1

1.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Parameterizations and Quad Layouts 8

2.1 Surfaces and Parameterizations . . . . . . . . . . . . . . . . . . . . . 8

2.2 Base Complexes and Quad Layouts . . . . . . . . . . . . . . . . . . . 13

3 Matching Theory 15

3.1 Classical Matching Problem . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Disjunctive Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Quad Layouts and Matchings . . . . . . . . . . . . . . . . . . . . . . 17

4 Graph Construction 19

4.1 Motorcycle Growing . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Singularity-free Triangles . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Edge Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.6 Illegal Crossings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Global Optimization 29

5.1 Binary Program Formulation . . . . . . . . . . . . . . . . . . . . . . 29



CONTENTS

5.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Application I: Quad Layout on Triangle Meshes 35

6.1 Simplicial Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Function Spaces on Simplicial Manifolds . . . . . . . . . . . . . . . . 37

6.3 Field Curl on Simplicial Surfaces . . . . . . . . . . . . . . . . . . . . 37

6.4 Curl-free vs Non-curl-free . . . . . . . . . . . . . . . . . . . . . . . . 40

6.5 Injectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.6 Curl Minimization: Poisson Parameterization . . . . . . . . . . . . . 41

6.7 Graph Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.8 Stopping Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.9 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.10 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Application II: Quad Mesh Structure Optimization 53

7.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.2 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.3 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.4 Graph Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.6 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8 Reparameterization 65

8.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.2 Mapping the Quads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

9 Regular Maps 69

9.1 Background Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

9.2 Generating Large Genus Surfaces . . . . . . . . . . . . . . . . . . . . 73

9.3 Identification Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 76



CONTENTS

9.4 Regular Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9.5 Group Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.6 New Realizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

10 Extensions and Future Works 91

10.1 T-Layout to Quad Layout . . . . . . . . . . . . . . . . . . . . . . . . 92

10.2 Hexahedral Mesh Simplification . . . . . . . . . . . . . . . . . . . . . 95

11 Conclusions 97

Appendix A Energy minimization 100

Appendix B Solver Comparison 103

B.1 Input Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

B.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Zusammenfassung 111



Chapter 1

Introduction

In recent years, the digital processing of real world objects has become central in
geometry processing and computer graphics. The need of efficient discretizations
of digitalized shapes has grown exponentially in order to perform accurate analyses
as well as robust simulations. Traditionally, computer aided designers have been
using primitives such as cubes, cylinders, or planes until the recent development of
3D scanners which allows a fast generation and a robust approximation of free-form
surfaces represented as triangle meshes or in a more scientific context, simplifical
manifolds. Triangle meshes which were for longtime used for finite element analysis
have become the main foundation of modern geometry, giving birth to the field of
discrete differential geometry. In other branch of computer graphics such as car
design, computer animation or renderings, quadrilateral meshes or quadrilateral
patch layouts are preferred due to their high level representations of the underlying
surface. Several algorithms have been proposed to automatically convert dense tri-
angle meshes into uniform quadrilateral meshes but very little is known about the
global structure of the generated quad meshes. Mainly, the generation of coarse in-
trinsic partitions of the surface into all quadrilateral patches has not been addressed
until very recently.

This thesis is about tiling of surfaces. The main part of the thesis treats problems
related to quadrilateral patch layout generation while the second part proposes a
solution of the problem of visualizing regular maps. Given a prescribed highly
symmetric tiling, we model a closed surface on which this tiling preserves as much
as possible its symmetry.

Quad Layouts Quadrilateral patch layouts or quad layouts are partitions of man-
ifold surfaces into non-overlapping quadrilateral patches such that any two patches

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Triangle mesh, quadrilateral patch layout and a hierarchical quad mesh
representation.

share an edge or a vertex or are connected by a chain of adjacent patches. Quad lay-
outs are practically useful in contexts such as high order surface fitting, coarse base
mesh for subdivision surfaces, hierarchy in finite element analysis, surface compres-
sion, architectural design, and many more. Coarseness and alignment to geometric
features of the surface are very important for the generated patches. Finding a
good balance between these two quantities is one of the achievement of this thesis.

The automatic generation of pure quadrilateral patch layouts on manifold meshes is
a mixed topology and geometric problem. The geometry of the surface is captured
by a guiding frame field derived by local features of the surface such as principal
curvatures, while the topology is encoded in the singularities of this field. Finding a
quad layout of a surface is equivalent to finding a graph of the singularities as nodes
where patches bounded by intersecting edges are quads. Our approach considers
the graph nature of the problem. It is based on a careful construction of a graph
guided by a given input frame field. We derive a quadrilateral patch layout of the
surface as a minimum weight perfect matching with disjunctive constraints of that
graph. The resulting layout is optimal relative to a balance between coarseness
and geometric feature alignment. The main advantage of the new method is its
simplicity and its computation speed.

Regular Map A Regular map is an algebraic concept to describe most symmetric
tilings of closed surfaces. All regular maps resp. symmetric tilings of surfaces up to
genus 302 are algebraically known in the form of symmetry groups acting on their
universal covering spaces. But still little is known about geometric realizations,
i.e. finding most symmetric embedding of closed surfaces and a supported most
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symmetric tiling. The Platonic solids are particular cases of regular maps with genus
zero. The visualization of high genus regular maps is a challenging problem. In this
thesis, we introduce the concept of regular surfaces which are high genus surfaces
with well defined group structures. Regular surfaces are geometrically defined as
space models of regular maps. In contrast to [vW09], they do not necessarily depend
on a sequence of lower genus regular maps to exist. The construction can be directly
made from the hyperbolic space.

Figure 1.2: A realization of a hyperbolic regular map as a closed surface.

1.1 Main Contributions

The contributions of this thesis are divided into two parts: automatic generation
of high quality quad layouts for manifold meshes and symmetric tiling of closed
surfaces or visualization of regular maps.

Quad Layouts

� We propose a new formulation of the quad layout problem into a perfect
matching problem which is a global optimization problem.
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� We introduce a novel singularity graph which is based on the concept of
singularity-free triangles and whose perfect matching subgraphs are layouts
of the surface.

� We find a simple linear inequality constraints to identify quad-only matching
subgraphs of the singularity graph by analyzing the local crossings of the
edges.

� We give a complete proof of the existence of an optimal quad layout for quadri-
lateral meshes and a weak proof for triangle meshes.

� We give a conceptual extension of the proposed algorithm to non-conforming
meshes (e.g T-meshes) and hexahedral mesh simplification.

Regular Maps

� We introduce the concept of Regular surfaces which are high genus surfaces
with well defined group structures.

� We propose new realizations of regular maps ranging from genus 9 to 85 taking
advantage of the wide range of high genus surfaces using regular surfaces.

� By using a branch covering approach, we are able to design very symmet-
ric space models of some regular maps inherited from the symmetry of the
Platonic solids.

Publications Parts of this thesis appear in the following papers:

– “Perfect Matching Quad Layouts for Manifold Meshes”
Eurographics Symposium on Geometry Processing, Graz 2015 [RRP15]

– “The 6-rings”
In Proceedings of the Bridges Conference, Entschede 2013 [RP13]

– “Regular Surfaces and Regular Maps”
In Proceedings of the Bridges Conference, Seoul 2014 [RP14]

– “Visualizations of Regular Maps of Large genus”
Chapter submitted to the book Topological and Statistical Methods for Com-
plex Data, 2015 [RP15]
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Figure 9.1 in Chapter 9 appears on the cover of the proceeding of [RP14] and
Figure 9.11 in Chapter 9 is chosen as the cover of the book [RP15].

1.2 Previous Works

The literature on field aligned global parameterizations in general and quad layout
in particular is vast. A complete survey can be found in [BLP+12]. Our work is
based on several previous results using cross fields and line tracing techniques on
surfaces.

Field Aligned Global Parameterization One of the first field-aligned global pa-
rameterizations is the periodic global parameterization of Nicolas Ray et al. [RLL+06],
which was later on improved by using a branch covering based approach [KNP07]
or a mixed integer formulation [BZK09]. Since these methods rely heavily on good
input frame fields, recent works [KCPS13,PPTSH14,ECBK14,DVPSH15a] focus on
the generation of good frame fields. This class of parameterizations is not in gen-
eral injective such that more advanced convex constraints or iterative optimization
methods are required. Lipman [Lip12] introduces the bounded distortion mapping
which explores the maximum deformation of a triangle during the parameteriza-
tion. The trisector constraint proposed in [BCE+13] uses the Fermat point of a
triangle to generate simple convex constraints per triangle. The non linear iterative
optimization of [DVPSH15a] aims for curl free non symmetric poly-vectors which
induces a flip-free parameterization.

Global parameterization methods are practically useful for quad meshing. Unfor-
tunately, they do not always provide a high-level structure or coarse base mesh of
the surface. Other recent works concentrate on the direct generation of coarse quad
layouts for a given surface.

Quad Layouts In the past years, several methods have been introduce to gen-
erate high quality quad layouts on surface meshes. These include: direct algo-
rithms, spectral methods, parameterization approaches, or field tracing techniques.
Direct algorithms work directly on the triangulation of the surface without any
high order geometric information. Matthias Eck [Eck96] uses triangle pairing tech-
niques for the purpose of B-spline fitting; a Voronoi partition approach is used
in [BMRJ04]; Daniels [DSC09] proposes to quadrangulate the surface by a one step
Catmull-Clark subdivision, then uses quad mesh simplification techniques to get
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a coarse base mesh. Spectral methods use a Morse-Smale complex of the Lapla-
cian eigenfunctions [DBG+06]. Field-aligned parameterization can also generate
coarse quad layouts by using large target edge lengths with a quadratic integer
optimization [BCE+13]. Other methods generate initially a fine integer-grid map
and build a T-mesh layout [MPKZ10] or optimize the base complex of the induced
quad mesh [BLK11,TPP+11]. Recently, several works focus on direct field tracing.
Campen et al. [CBK12] trace anisotropic loops to build from scratch the dual of the
base complex, followed by a layout optimization [CK14]. Myles et al. [MPZ14] and
Ray et al. [RS14] propose, independently, a robust polyline tracing of rotational
symmetric fields. Their techniques produce a patch layout of the surface using the
Motorcycle graph algorithm of Eppstein et al. [EGKT08].

Our approach differs from [MPZ14] in two aspects. First, we trace isolines of a
parameterization induced from a curl free frame field which avoids the existence
of limit cycles. Second, an isoline tracing does not stop when it intersects another
one. Instead we evaluate the ratio of the arc lengths of the two isolines from their
intersection points to their respective singularities. Accordingly, we construct a
graph G defining the space of possible layouts of the surface.

Regular Maps Up to now, there is no general method to visualize regular maps
but a lot is already known about their symmetry group, see for example Con-
der [CD01]. The problem is two-fold, understanding the symmetry group of the
regular map and finding a suitable space model for the realization of this group.
Jack van Wijk [vW09], in his SIGGRAPH paper, suggested a generic approach
which gives interesting visualization of some of the lower genus regular maps up to
genus 29. He succeeds to handle about 50 cases by using a brute force computer
search. However, his method has some limitations and cannot realize even some
of the simplest cases. Séquin’s investigations [S0́7], [S1́0] are also a huge source of
inspiration. He uses physical modeling techniques, including sketches, paper mod-
els, and Styrofoams to finally obtain a computer generated model. Some cases
have been solved by his method from genus 2 to genus 5 but each regular map is
handled separately. Sequin’s approach is useful for a better understanding of the
structure of regular maps but too primitive to handle the large ones. In our early
work [Raz12,RP13], we use the same approach as van Wijk, but we added a relax-
ation procedure to obtain more symmetrical and smooth tubular geometries. We
use this relaxation scheme as a second step of the targetless tubification algorithm
proposed in this thesis. We aim at surfaces having more than two junctions and
with rich structures to accommodate regular maps. We are not interested in the
hosohedral kind of surface. These are the surfaces obtained by taking the tubular
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neighborhood of Hosohedra.

1.3 Structure

The thesis is subdivided in three parts. In the first part, containing Chapter 3, 4
and 5, we expose the theoretical foundation of our algorithm applied to general pa-
rameterized surfaces. These include, multi-chart parameterization, matching the-
ory, and the formulation of the quad layout problem into minimum weight perfect
matching problem. In the second part, we apply our algorithm to two examples
of discrete surfaces, triangle meshes, and quadrilateral meshes. These are given in
Chapter 6 and 7. The third part is our results on the symmetric embedding of reg-
ular maps. We introduce the concept of regular surfaces. We present in Chapter 9
the key ingredients of our construction. Chapter 10 proposes conceptual extensions
of the perfect matching quad layout algorithm to other types of meshes such as
T-meshes or hexahedral meshes.



Chapter 2

Parameterizations and Quad Layouts

Parameterization is the process of mapping a surface to a 2D domain. All known
concepts in 2D Euclidean geometry can then be transferred onto the surface by the
inverse mapping. Quantities such as angles, lengths and areas could be measured
on the 2D space instead of on the complicated 3D shape. In this Chapter, we give
a mathematical definition of a parameterization together with the notion of quad
layout.

2.1 Surfaces and Parameterizations

Definition 2.1. A parameterized surface element is an injective map f = (u; v)
from a closed region S to a closed set O � R2.

f = (u; v) : p 2 S 7! (u(p); v(p)) 2 O � R2 (2.1)

f
S

O

f is called a parameterization, O is called the parameter domain and u; v : R3 !
R are called the parameter functions. The 2D cartesian coordinates of O is pulled

8
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back on S via f�1. Parameter lines on O becomes parameter curves on S the
same as straight lines on O becomes geodesics on S. In standard differential ge-
ometry textbooks, a parameterization is defined by f�1. The choice is application
dependent. In theory, f�1 is given as a multivariate function where in practice it
is more suitable to look for f (e.g. in surface texture mappings). Also, f is not
necessarily open such that @O = f(@S). The use of closed region is more suitable
in practice than open ones.

The Jacobian matrix of f at a point p is the gradient of the coordinate functions
(rujp;rvjp) which defines a basis of the tangent plane at p. The set of all frames
f(rujp;rvjp)gp2S defines a frame field on S.

The distortion of f is measured by comparing the frame directions at each point
with the standard unit frame. For example,

� f is isometric if
D
rujp;rvjp

E
= 0 and krujpk = krvjpk for all p, i.e. measur-

ing lengths and angles are the same on S and O.

� f is conformal if
D
rujp;rvjp

E
= 0 for all p, i.e. measuring angles are the

same on S and O but not the lengths.

� f is area preserving if
���rujp �rvjp��� = 1 for all p, i.e. measuring the area of

patches are the same on S and O but not the lengths or angles.

Definition 2.2. A parameterized surface is a setM with a family of parameterized
surface elements f(Si; fi)gi2I which satisfies the following conditions:

1. M = [i2ISi.

2. if Si \ Sj 6= ; and is simply connected or is a connected 1D curve, then there
exists a transformation 'ij such that fj(Si \ Sj) = 'ij � fi(Si \ Sj).

The set ffigi2I defines a global parameterization of M, f(Si; fi)gi2I is called an
atlas, the Si’s are called charts and the 'ij’s are called transition functions.
Together, they define a manifold structure on M which is not necessarily differ-
entiable. In this definition, charts are allowed to intersect on boundary curves.
Surfaces which are only “chartwise” smooth such us polyhedral surfaces are also
included. To define a proper quadrangular parameterization, the 'ij’s are combi-
nation of rotations, translations and scalings. More precisely,

'ij(p) = Jrij(p) + tij; 8p 2 fi(Si \ Sj) (2.2)
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fi

fj

'ij

Oi

Oj

Si

Sj

where J is a 90� rotation matrix, rij is called the rotation index (also calledmatch-
ing) which is an integer modulo 4 and tij 2 R2 is a translation vector from the set Oi

to Oj. For the case of no rotations (rij = 0 for all i; j), the manifold is called affine.
The classical parameterization of a torus is an affine manifold. In this definition,
there is no assumption about the continiuty of parameter lines in the charts’ inter-
sections. The value of tij and the position of some special points ofM determine
the property of the parameter lines in each chart. If tij 2 Z2 and the singularities
(see Definition 2.3) are mapped onto 2D grid points (integer coordinates), then 'ij

is a grid automorphism which maps parameter grid lines to parameter grid lines.
This class of parameterization is a seamless continuous parameterization that we
call closed parameterization. It defines a quadrilateral grid of M. For the gen-
eral case, parameter grid lines are not necessarily mapped to parameter grid lines
by some 'ij. We call these parameterizations open parameterization or seamless
discontinuous parameterizations. Some isolines of open parameterized surfaces
have infinite lengths while they are either loops or parameter lines connecting two
singularities on closed parameterized surfaces.

Remark 2.1. On a global parameterized surface, we can only define locally a uv-
coordinate. If the rotation index rij is for example odd, then a u parameter line of
Si is mapped to a v parameter line in Sj.

Definition 2.3 (Valence, Regular and Singular points). On a parameterized sur-
face, the valence of a point is the number of isolines intersecting at that point.

Consider a surface element Si � M, p 2 Si a point of M, and q = fi(p) the
corresponding parameter point in Oi. We denote by �i

q the inner angle of the
vectors (left and right) tangent to the boundary curve of the parameter domain Oi

at q. For all i 2 I0 � I such that q 2 @Oi if

P
i2I0 �

i
q = 2� then p is regular.

P
i2I0 �

i
q = k�

2
for k � 1 and k 6= 4, then p is singular.
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If p 2 �Si, i.e. strictly inside Si, then p is always regular.

fi f�1i

k = 3 k = 5 k = 6

Figure 2.1: Examples of valence 3, 5 and 6 singular points.

Singular points ofM have valence k 6= 4. In Figure 2.1 are examples of singularity
points with valence three, five and six. If the valence of a singularity is less than
four, then a disc neighborhood of the point onM is mapped to an incomplete disc
in parameter domain taking transition functions between charts into account. If it
is greater than four, then the disc neighborhood is mapped to a spiraling type disc
in parameter domain. The gradient frame field is not defined at singular point but
only in a small neighborhood. Singularities can be characterized with respect to
the induced gradient field f(rujp;rvjp)gp of the parameterization by constructing
a small loop around each point and finding the holonomy angle of a frame along
the loop. For singularities, this angle is a multiple of �=2.

Definition 2.4 (Ports). A port is a vector in the tangential plane of a singularity
which is tangent to an isoline ofM. The number of ports is the same as the valence
of the singularity.

We say that a curve is aligned to a port if the angle between the corresponding curve
and the port is less than 45� in parameter domain. We denote by pi

a a port based
at a singularity si, its next counter-clockwise port by pi

a+1 and its next clockwise
port by pi

a�1.

Definition 2.5 (Closed separatrix, Open separatrix ). A closed separatrix is a
curve on M which connects two singularities (not necessarily distinct). For the
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case of surfaces with boundary, one of the singularities is allowed to be a boundary
point. If one of the endpoints is not a singular point and the curve is an isoline,
then we call it an open separatrix.

We denote by 
ijab : [0; 1]! R3, the closed separatrix which connects the singularities
si and sj, tangent to the ports pi

a and pj
b, and by 
ia` the open separatrix starting

at the singularity si and aligned to pi
a. Open separatrices do not exist on closed

parameterizations since all isolines starting at a singularity end at another, not
necessarily a different, singularity.

Definition 2.6 (Geodesics). A geodesic curve 
 connecting to points p; q on M
is a locally shortest path onM in the metric induced by the parameterization.


 = min
�2H(p;q)

Z tq

tp

gf(�
0(t); �0(t))dt

where, H(p; q) is the set of all homotopic curves connecting p and q considering
singularities as small holes. gf denotes the metric induced by the parameterization
f .

In standard differential geometry, geodesics are generalization of straight lines on
surfaces using the metric induced by the embedding space. In this definition, they
are geodesics not on the surface but in parameter domain whose homotopy class
are governed by singularities. A straight line onM is a line in parameter domain.
Straight lines are always geodesics but geodesics are not necessarily straight lines.
Consider two points p; q 2M and a starting curve 
0 connecting them. The locally
shortest geodesic curve connecting p and q homotopic to 
0 is a curve 
min such
that the surface bounded by 
0 and 
min does not contain a singularity and 
min is
the shortest in the homotopy class of 
0. As depicted in Figure 2.2, geodesic curves
onM are not necessarily straight but they are if there is not any singularity close
by.

Definition 2.7 (Triangles). A triangle is a geodesic right triangular patch whose
base and height are isolines ofM.

We consider the base of the triangle as the longer of the right-angled sides. If
both lengths are the same, then we choose either of them as a base. A triangle is
singularity-free if the geodesic homotopic to the combined base-height curve, which
defines the hypothenuse of the triangle, is straight on M. It is not otherwise and
curves exactly at “inner" singularities. In our context, we consider only triangles
whose hypotenuses are closed separatrices.
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Straight Curved Not locally shortest


0

min

p

q

Figure 2.2: Geodesics on a parameterized surface. Locally shortest geodesics are
the shortest within the homotopy class of curves not crossing a singularity.

2.2 Base Complexes and Quad Layouts

Definition 2.8 (Base Complex ). A base complex B of a parameterized surfaceM
is a graph of closed separatrices where all surface elements bounded by intersecting
separatrices are quadrilaterals.

Figure 2.3: Examples of base complexes on high genus surfaces.

A closed parameterized surface admits a natural base complex obtained by the union
of all parameter lines connecting singularities. Open parameterizations do not have
a priori base complexes. If the parameterization does not have a singularity, then a
regular vertex with the two intersecting isolines give a base complex of the surface.
A base complex is not unique. It can be very coarse but it can as well be fine
depending on the position of the singularities. In general, a base complex of a given
surface (non-parameterized) does not need a parameterization to exist. Campen
et al. [CBK12] for example construct a dual of the base complex using anistropic
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loops.

Base complexes are not only defined for quadrangular parameterization. Other type
of parameterization such as triangular or hexagonal have as well base complexes.
In this thesis, we only focus on quadrilateral base complexes for manifold surfaces.

Definition 2.9 (Quad Layout). A quadrilateral patch layout or quad layout is
the union of all patches induced by a base complex of the surface where the patches
are all quadrilaterals.

A quad layout induces a parameterization of the surface with coarser quad domains
or base domains. The rectangular patches are the charts together with maps taking
each chart to a 2D rectangular domain. The transition functions are composition
of 90� rotations and translations which maps a chart boundary to another chart
boundary. A good quad layout of a surface induces a low distortion parameterization

Figure 2.4: Quad layout induces a reparameterization of the surface whose charts
are all rectangular patches.

of the surface. The patches are coarse and the separatrices are aligned to important
features of the surface such as principal curvature directions. The individual charts
have patch angles close to 90�. In practice, this ideal quad layout is hard to obtained
such that a balance between coarseness and geometric feature alignment is alas
needed.



Chapter 3

Matching Theory

A weighted graph G is a set of vertices VG connected by weighted edges forming
a set EG with edge weight we associated to an edge e 2 EG. A matching Q in a
weighted graph G = (VG; EG; we), is a subgraph of G such that no two edges share
a vertex. A matching is perfect if all vertices of G are in Q. In other words, each
vertex of G is pairwise matched. A minimum (resp. maximum) weight perfect
matching is a perfect matching with a minimal (resp. maximal) total edge weight.
A typical example of a matching problem is the assignment problem. Suppose that
we have a set of workers and a set of duties which has to be assigned to the workers.
The number of duties is the same as the number of workers. For each duty, each
worker has its own individual salary proposal. Some are high, some are reasonable
and some are low. To maximize the production speed, each worker is assigned to
exactly one duty but the total cost should also be minimized. The workers and the
duties define a complete bibartite graph. The assignment problem is a minimum
weight perfect matching problem.

wewe

Workers Duties

w0

w1

w2

Figure 3.1: An example of a matching problem and a solution such that w0+w1+w2

is minimum among all sums of edge weights.

The study of matching has been a long-time discussion in the field of graph theory.
A complete overview can be found in [PL86]. Our algorithm uses the minimum
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weight perfect matching problem with conflict pair constraints (MWPMPC) intro-
duced in [DPSW11] and extended in [OZP13]. In our context, the conflict pair
constraints are described in Section 4.6 as illegal crossing constraints which assure
the quad topology of the resulting minimum weight perfect matching.

3.1 Classical Matching Problem

As a combinatorial optimization problem, the minimum weight perfect matching
problem (MWPM) can be formulated as a binary program that we denote by P0,

minimize
X
e2EG

wexe

subject to
X

e2Adj(v)

xe = 1; for all v 2 VG

xe 2 f0; 1g; for all e 2 EG

where Adj(v) is the set of edges incident to a vertex v.

Binary programs are in general NP-hard but it has been proven by Edmonds [Edm65b,
Edm65a] that the MWPM problem can be solve in polynomial time. He introduces
the famous Blossom algorithm based on the fact that the odd cycles which are
problematic in the solving of P0 can be identified using combinations of blossom
shrinking or expanding followed by the search of augmenting paths. An example of
the use of a MWPM is the direct conversion of triangle meshes to quad meshes as
done in [RLS+12]. The approach consists of finding a perfect matching of the dual
mesh edge graph which then induces a pairing of the triangles. A quad mesh is
derived by removing the common edge of each paired triangle. To avoid distortion,
a tangential smoothing of the mesh is applied.

3.2 Disjunctive Constraints

A disjunctive constraint or conflict pair constraint is a pair of edges which is not
allowed to appear simultaneously in the matching. Such constraints are sometimes
indispensable in context such as budget constraints in the assignment problem.
Mathematically, Darmann et al. [DPSW11] classify this type of constraints in two
categories. A negative constraint expresses a conflict between two edges such that
at most one of the edges is allowed to appear in the solution. A positive constraint



17 CHAPTER 3. MATCHING THEORY

Figure 3.2: Perfect matching can be used to convert triangle meshes into non uni-
form quad meshes.

makes sure that at least one edge of the pair is in the solution. They can be
translated into the following inequalities

xe0 + xe1 � 1 (negative) xe0 + xe1 � 1 (positive) (3.1)

if e0 and e1 are in conflict.

Surprisingly, the minimum weight perfect matching under disjunctive constraints
(or conflict pair constraints MWPMPC) is strongly NP-hard as proven by Darmann
et al..

3.3 Quad Layouts and Matchings

For a given parameterized surfaceM, we would like to generate a quad layout of the
surface. We formulate the problem as a minimum weight perfect matching problem
with conflict pair constraints.

Figure 3.3: Finding a matching of a given port in the graph of separatrices.
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In a quad layout, each singularity port is exactly matched to one other port. We
build a graph G whose vertices are the ports and whose edges are closed separatrices
tangent to the ports. As stated in the previous Chapter, the number of ports at a
singularity is the same as the valence of that singularity. Finding a quad layout of
M is then equivalent to finding a perfect matching of the ports.

Two edges are in conflict if the simultaneous appearence of both edges in the solution
induces non-quad patches. Since one of the edge pairs do not need to appear in the
solution, we are in the presence of a negative disjunctive constraints. As illustrated
in Figure 3.4, there can be several solutions of the perfect matching problem on the
graph of the ports. In this case, we allow the user to balance between coarseness
and geometric feature alignment. This is one parameter added to the edge weights.
In the next Chapter, we will see how to efficiently construct the graph of the ports
in a consistent and robust manner.

No constraints

Figure 3.4: Example of perfect matchings on the Block model. There can be
several perfect matching solutions. The number of patches versus geometric feature
alignment can be controlled via a parameter.



Chapter 4

Graph Construction

In this Chapter, we construct a graph G whose matching subgraphs are layout of
M. We then give a global formulation of the quad layout problem on closed as well
as open parameterized surfaces whose solution is garanteed to be optimal relative
to a weight function.

In parameter space, isolines of M are not necessarily connected. They are guided
by the transition functions when they reach chart boundaries. To trace an isoline at
a given point p 2M contained in a chart Si in direction of a gradient vector v, we
start at fi(p) and follow the niveau line in direction of Dfi(v) until the line hits the
boundary of Oi at a point fi(~p). We then use the transition function 'ij from Oi

to Oj to find the image of fi(~p) in Oj together with the new direction 'ij(v). The
same procedure is again applied to 'ij �fi(~p) and 'ij(v) until the desired maximum
tracing length is reached.

Oi

Oj

p
v

~p

fi(p)
Dfi(v)

fi(~p)

'ij �Dfi(v)

'ij � fi(~p)

fi

Figure 4.1: Tracing an isoline on a parameterized surface.
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4.1 Motorcycle Growing

At each singularity, we grow simultaneously all isolines, at unit parametric length
speed, in direction of the ports. These lines are open separatrices. If two of them
intersect, we build a closed separatrix from the two end singularities using a ratio
test. We add a new edge corresponding to that separatrix in G. We define a function
Li
a which measures the geodesic distance of the singularity si to a point of the open

separatrix 
ia` onM. Mainly, given a point p = 
ia`(tp),

Li
a(p) =

Z tp

0
gf(


i0

a`(t); 

i0

a`(t))dt:

If si 2 Sk and p 2 Sl, then Li
a(p) is the sum of the euclidean distances in each charts

visited by constructing 
ia` as a straight line from fk(si) to fl(p) in parameter space
as in Figure 4.1.

Now, consider two ports pi
a;p

j
b and the corresponding open separatrices 
ia`; 


j
b`

intersecting at a pointm ofM (see Figure 4.2). A new edge is added to G according
to the following conditions C1: if �simsj is a singularity-free triangle and

1. Lj
b(m)=Li

a(m) < 1, then we add an edge connecting pi
a to pj

b+1 in G if sj is on
the right side of 
ia`, or pi

a to pj
b�1, if sj is on the left side.

2. Lj
b(m)=Li

a(m) > 1, then we add an edge connecting pj
b to pi

a+1 in G if si is on
the right side of 
ia`, or p

j
b to pi

a�1, if si is on the left side.

3. Lj
b(m) = Li

a(m), then we add one edge following Condition 1 and another edge
following Condition 2, in G. Both edges should not appear simultaneously in
the final quad layout to avoid degeneration, we call these edges diagonal edges
(see Section 4.6).

The new edge is a closed separatrix 
ija(b�1) defined geometrically as the parametric
geodesic connecting si at the port pi

a and sj at the port pj
b�1 (not pj

b), homotopic
to the curve [
ia` � 


j
b`].

4.2 Singularity-free Triangles

On a parameterized surface M, singularities behave like small holes. Geodesics
can get stuck on these special points. In our construction, edges are geodesic



21 CHAPTER 4. GRAPH CONSTRUCTION

m

sj

si pia

pia+1

p
j
b

p
j
b�1

Li
a(m)

Lj
b(m)


i
a`



j

b`



ij

a(b
�1

)

Figure 4.2: Creation of an edge by evaluating the ratio of two intersecting separa-
trices at a point m.

curves homotopic to the combined base and height curves of triangles. Allowing
non straight edges will produce degenerate quadrilateral patches in the final layout
(patches might have side length equal to zero). We require all triangles to be
singularity-free during the isoline growing step.

For each port, we associate two propagation windows: left window and right window
which initially have an angle of 45� with the port. We will describe our construction
for the case of left window, the other case can be handled similarly. Consider an
open separatrix 
0a0`, starting at a singularity s0 in direction of p0

a0
, as illustrated in

Figure 4.3. Suppose that it intersects n other open separatrices 
1a1`; 

2
a2`; : : : ; 


n
an`

at the pointsm1;m2; : : : ;mn. Additionally, suppose that all the corresponding base

m1 m2 m3 m4 m5 m6

45
�

45
� 
0

a0`

s0

s1

s2

s3

s4

s5

s6

Figure 4.3: Singularities satisfying one of the ratio test along the open separatrix

0a0`. In this figure, only s1; s2; s3 and s6 agree with the singularity-free triangle
constraint

singularities satisfy one of the ratio tests in condition C1 but not necessarily the
singularity-free triangle condition.

Proposition 4.1. A triangle is singularity-free if the angle of its hypotenuse with
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0a0` is less than the latest updated window size.

The angle at the hypotenuse defines the window size. If this angle is greater than
the latest window size along 
0a0`, then there is a singularity with smaller slop and
hence lies inside the current triangle. Initially, the window size  is 45�. It is
then updated according to the first singularity satisfying condition C1. �s0m1s1
is always singularity-free since there is no other singularity preceding it within the
starting window size. Depending on the position of s1 (left or right of 
0a`), the
corresponding new window size becomes  = arctan

�
L1
a1
(m1)=L

0
a0
(m1)

�
. Along


0a0`, for k � 2, we collect singularities sk satisfying

arctan
�
Lk
ak
(mk)=L

0
a0
(mk)

�
<  ;

and assigning the value of  to be the newly computed angle. This window re-
duction approach makes sure that no triangle contains a singularity and hence
produces always straight geodesics onM. In Figure 4.4 is an example of candidate
singularities for a given port on the Icosahedron model.

Figure 4.4: Example of candidate singularities satisfying the singularity-free triangle
constraint on the Icosahedron model.

4.3 Edge Weights

Recall that an edge e 2 G connects two singularities si and sj tangent to their
respective ports. It is the hypotenuse of the triangle having sim as base and msj
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as height where m is the intersection point of the two separatrices 
ia` and 
jb`. We
define the weight of e as the linear combination of the base length and height length
of the corresponding triangle. Mainly,

we = Li
a(m) + �Lj

b(m): (4.1)

We can interpret � as a balance parameter which penalizes the deviation of a
separatrix from the isolines of the parameterization. Taking � = 0 ignores alignment
to geometric features but prioritize short separatrices which in general gives the
coarsest layout of the geometry. Choosing � = 1 increases the geometric feature
alignment at the cost of increased number of patches. The same weighting is used
in [TPP+11] as a separatrix’s energy.

4.4 Boundary

If an isoline ends at a boundary, we introduce a virtual port tangent to that sepa-
ratrix pointing inside the surface and based at the boundary vertex. We then add a
new vertex corresponding to the virtual port in G together with an edge represent-
ing the separatrix, as shown in Figure 4.5. We do not collect singularity candidates
from virtual ports, we only use them to have an uniform framework for surfaces
with and without boundary. For singularities lying on boundary curves, we collect
only candidates for the ports pointing inside the surface. The ports tangent to the
boundary only grow but can also be used to collect candidates for other isolines.
The concept of virtual port together with the previous consideration always main-
tain the quad topology of the boundary induced fromM. However, it requires that
the boundary curves are isolines ofM. If not, it only assures pure quad for interior
patches and arbitrary polygons for the boundary patches.

Figure 4.5: Tracing isolines for the case of surfaces with boundary.
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4.5 Matching

After constructing G, we would like to find a subgraph Q of G which forms a
quad layout of our surface M. The graph G is huge and finding a proper quad
layout subgraph needs a careful understanding of the edge crossings of G on M.
By choosing exactly one edge per port (one or zero edges per virtual port), we
obtain a perfect matching subgraph forming an arbitrary layout ofM which is not
necessarily a pure quad layout. In Figure 4.6 (middle) is a perfect matching without
constraints where the crossing red edges are for example in conflict. This is resolved
in Figure 4.6 (right) by allowing at most one edge of each conflict pair to appear in
the perfect matching.

Figure 4.6: Examples of a perfect matching subgraph of G on the Botijo model
where the middle one is unconstrained and the right one constrained for � = 0.

4.6 Illegal Crossings

The non-quad patches appearing in the unconstrained matching are caused by cross-
ing edges which are locally aligned to the same parameter lines. We detect these
edges and define a conflict set I in order to obtain a quad-only matching of the
final layout. Two crossing edges in G are aligned locally to the same parameter line
onM if the two triangles associated to the edges intersect and have parallel bases.
We then say that the crossing is illegal, and it is legal otherwise. We denote by I
the set of all illegal crossings of G,

I = f(e0; e1) 2 E
2
G; e0 crosses e1 illegallyg: (4.2)
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x

y


ia`

jb`

mk

sj

si

We construct I as follows. Consider two open separatrices 
ia` and

jb` intersecting at a point mk (see inset diagram). We define an
orthogonal frame fx;yg = fsimk;mksjg at mk in parametric space.
Now, consider all edges whose triangles have a side on 
ia` or 
jb`.
In this local coordinate system, we can do 2D triangle intersection

checks without ambiguity.

(a) (b)

(c) (d)

Figure 4.7: Example of edge crossings (yellow) represented in a common local
coordinate system. In (a) and (b) are examples of legal crossings where in (c) and
(d) are illegal crossings.

We say that an edge is x-aligned (resp. y- aligned) if the base of its associated tri-
angle is parallel to x (resp. y). Two edges which cross and have different alignment
have a legal crossing. On the other hand, if they cross and have the same align-
ment, they have an illegal crossing. It is important that they cross locally because
it can happen that two edges with the same alignment do not cross although their
triangles intersect, as illustrated in Figure 4.7 (b). We also add the pairs of edges
generated by the case Li

a(m) = Lj
b(m) in the graph construction to I, to avoid

degenerate patches in the final quad layout.

Remark 4.1 (Special cases). There are special cases where the local coordinate
system cannot determine a priori the crossings of two edges. Those cases appear
when one or more separatrices self-intersect. In Figure 4.8 is an example of such
case. The two open separatrices have two intersections points m0 and m1. The
crossings are legal according to their local frames. However, we can see from m2

which is another local frame that the crossing is illegal. In this case, illegality is
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always stronger than legality. Crossings might be legal at some frames but illegal
at other frames.

m0

m1

m2

m0

m1

m2

Figure 4.8: Special cases where the property of a crossing cannot be decided at one
local coordinate system. In this configuration, local frames at m0 and m1 make the
crossing of the two edges legal where it is illegal viewed from m2.

In the previous example, we can only decide about the property of the crossings at
m2. But ifm2 does not exist then we need to consider the local frame defined at the
point where the separatrix self-intersect. An example of this situation is given in
Figure 4.9. Let us denote this separatrix by 
ia`. In this Figure, m2 is considered to
be the point of the self intersection of 
ia`. At this point, the edges whose triangles
have their bases on 
ia` and contain m2 have two alignment x and y. They have
then two representations. Hence, to include this special case in our framework, we
also allow 
ia` = 
ib` in the local frame construction.

Remark 4.2 (Li
a(m) = Lj

b(m)). In the growing procedure, it can happen that the
ratio of length of two intersecting open separatrices is equal to one. In this case we
add two edges in G, assign them a different alignment and add the pairs to the set
of illegal crossing edges.

To understand the main problem, consider two open separatrices 
ia` and 
jb` which
intersect each other at a point m and Li

a(m) = Lj
b(m). Without loss of generality,

we suppose that sj is on the left of 
ia`. The two edges e0 = pi
ap

j
b�1 and e1 = pj

bp
i
a+1

bound a surface of zero area onM (as parametric geodesics). If both edges appear
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m0

m1

m2

m0

m1

m2

Figure 4.9: Special cases where the property of a crossing can only be decided at
the self intersection point of a separatrix.

m

p
j
b

pia

p
j
b�1

pia+1



ij

a(b�1)



ji

b(a+1)

Figure 4.10: Case where the ratio of lengths of two separatrices is equal to one. Two
edges are added in G, one of them is x�aligned and the other one is y�aligned.

in the perfect matching graph, then we will get a degenerate quad layout. Hence,
we extend I to I [ Z, where Z is the set of pairs of edges spanning a zero surface
area on M. If an edge e2 intersects one of e0 and e1, then (e2; e0) 2 I, i.e, they
have an illegal crossing, and (e2; e1) =2 I or vice versa. This case happens often for
closed parameterized surface but rarely, or even non-existent, for open ones.



28 CHAPTER 4. GRAPH CONSTRUCTION

Algorithm We summarize the construction of I in Algorithm 1. The set K
contains all intersection points of the open separatrices satisfying condition C1.
The set I can be empty if G is already a quad layout matching ofM.

Algorithm 1 Construction of the set of illegal crossings I
Require: Set of open separatrices intersection points K, set of pairs of edges Z

spanning a zero surface area

1: Put I = ;
2: for mk 2 K do
3: Take the two separatrices 
ia` and 


j
b` intersecting atmk. /* Not necessarily

distinct */
4: fx;yg = fsimk;mksjg

5: felgl=0;:::;n the set of edges whose triangles have a side on 
ia` or 
jb` .
6: for l 0 to n do
7: for r  l+ 1 to n do
8: if el and er are both x- or y-aligned then
9: if el and er intersect then
10: I = I [ f(el; er)g
11: end if
12: end if
13: end for
14: end for
15: end for
16: I = I [ Z



Chapter 5

Global Optimization

So far, we have constructed a graph of the ports with a set of edge pairs which
are disjunctive constraints. Finding a proper subgraph of G which forms a quad
layout of M is equivalent to solving a perfect matching problem with disjunctive
constraints. We show in this Chapter a proof of this statement and a simple ge-
ometrical approximation of the solution which does not involve advanced integer
program solvers.

5.1 Binary Program Formulation

We derive a quad layout ofM as a subgraph matching of G. Recall that the vertices
of G are the ports and the edges are closed separatrices. Assigning exactly one edge
per ports and making sure that no illegal pairs of edges are picked will always
produce a quad layout. Finding a quad layout ofM is then equivalent to solving a
MWPMPC in G. This is equivalent to solving the following binary program P1.

minimize
X
e2EG

wexe (5.1)

s.t.
X

e2Adj(v)

xe = 1; for all not virtual v 2 VG (5.2)

xe1 + xe2 � 1; for all (e1; e2) 2 I (5.3)
xe 2 f0; 1g; for all e 2 EG (5.4)

where Adj(v) is the set of edges sharing a vertex v 2 VG. The objective functional
minimizing the total edge weights is given by (5.1). Constraint (5.2) assures that
per vertex of G, exactly one incident edge is taken. In M, this is equivalent to

29
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assigning exactly one closed separatrix to each port. Condition (5.3) is a translation
of the illegal crossing constraints into inequality constraints. It assures the quad
topology of the final layout. Before going into the main theorems for quad layouts
on manifold meshes, we give the following Lemma on the quad topology of a feasible
solution of P1.

Lemma 5.1. If all edges in a minimum weight perfect matching Q of G are conflict
free, then Q is a quad layout ofM.

Proof. Suppose that there exists a patch P of Q which is a n-gon, n 6= 4 bounded
by legal edges. Consider the parameterized surface element S which contains P . In
S, we can characterize locally to which parameter lines the edges of P are aligned.
If n is odd, then a cyclic uv-assignment of the edges will always produce a uu or
vv intersections which contradict legality. If n is even, then the tangential property
of the lines induces again a uu or a vv intersection. In fact, it is only possible for
n = 4 or if P contains a singularity which is not the case here.

P
P

u

v

S

Figure 5.1: Examples of non-quad patches which can not be locally bounded by
legal edges.

This Lemma gives a guarantee that constraints (5.3) assure the quad topology of the
resulting perfect matching. We now formulate a Theorem for closed parameterized
surface.

Theorem 5.1 (Quad Layout for Closed Parameterization). Given a closed pa-
rameterized surface M and the graph of the ports G = (V;E;we) with the set
of illegal crossings I. An optimal quad layout of M relative to the weight we

is a solution of P1.
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Proof. The existence of a feasible solution is guaranteed by the closeness of the
parameterization obtained by its base complex. The quad topology of the resulting
perfect matching layout is assured by Lemma 5.1.

From this theorem, we can measure without ambiguity the quality of the base com-
plex of the parameterization in terms of coarseness and geometric feature alignment.
More, we can improve the base complex of the surface by solving the binary program
P1. A practical use of this Theorem is for example the global structure optimization
for quadrilateral meshes presented in Chapter 7.

The existence of a feasible solution of P1 on open parameterized surfaces is not a
priori guaranteed because they do not have a predefined base complex. Finding
an initial base complex of open parameterized surfaces is exactly the quad layout
problem. Assuming that G has a perfect matching (not necessarily constrained), we
can always design a base complex using what we call a bridge at the intersection
points of two illegal crossing edges. The main idea is to interpret a geometric
meaning of Lemma 5.1. If we succeed to repair geometrically all conflicting edges in
a perfect matching of G, then the repaired subgraph matching is added to G to assure
the existence of a solution. Notice, that the repaired graph is not necessarily optimal
and may not even satisfy the singularity-free condition. It is only a topological quad
layout which in case of degeneration need a post processing relaxation.

Consider a perfect matching Q in G and two edges e0 and e1 which are in conflict.
Without loss of generality, suppose that the two edges are directed such that their
starting vertices are on the “left” of their intersection point m and their end vertices
are on the “right” (see Figure 5.2) onM. We bridge the two edges at m such that
start(e0) is connected to end(e1) and start(e1) is connected to end(e0). The two
edges become then conflict free. We apply iteratively this local repair until no two
edges are in conflict. Even though, the resulting quad layout is not always visually
pleasing and might even be far from a solution of P1, it is a base complex of the
open parameterized surface. An example of this procedure is given in Figure 5.2.

Theorem 5.2 (Quad Layout for Open Parameterization). Given an open param-
eterized surface M and the graph of the ports G = (V;E;we) with the set of
illegal crossings I. If G has a perfect matching, then an optimal quad layout
of M relative to the weight we is a solution of P1.

A solution of P1 is geometrically constructed from a non constrained perfect match-
ing of G with the local repairs defined in the previous Chapter. We add it to the
graph, recompute the illegal crossing constraints and use Theorem 5.1. If G does
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Conflicting Edges Bridging Conflicting Edges

Figure 5.2: Resolving conflicting edges geometrically by introducing a bridge a
their intersection points.

not have a perfect matching, then the graph construction did not collect enough
candidates for one given port. Showing that any construction of G admits a perfect
matching subgraph of the ports is an open problem. Since checking if a graph has
a perfect matching can be done in polynomial time (using Edmonds’ Blossom al-
gorithm), we can always increase the shooting maximum length and let the graph
grow accordingly until a perfect matching is found. In practice, we never had to
use this approach since our default parameters always give a perfect matching.

5.2 Complexity

Understanding the complexity of P1 can be achieved by formulating a maximum
stable set problem. We construct a graph G 0 = (V 0; E 0; wv) derived from G =
(V;E;we) including the constraints I. Solving P1 in G is then equivalent to solving
a new integer program P0

1 in G 0. The vertices of G 0 are the edges of G. Two vertices
of G 0 are connected if the corresponding edges in G share the same vertex. At
this point G 0 is called the line graph of G. We add the constraints as follows. If
two edges of G cross illegally, then we connect the two vertices corresponding to
these edges in G 0. The edge weight we becomes a vertex weight wv = 1=we in G 0. In
summary, G 0 is a graph with jEj vertices and jEj(jEj�1)=2+jIj edges. In Figure 5.3
is an example of a graph G 0 (dotted) derived from G. The two red edges piqj and
pjqi cross illegally. An edge is then added between their respective vertices which
connects the two complete graphs in G 0. The binary program P1 is equivalent to
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qi

qj

pi

pj

Figure 5.3: Example of a construction of the graph G 0 from G. The red edges
are crossing illegaly (left). Illegal crossing edges in G are edges in G 0 connecting
complete graphs (right).

the following binary program P0
1,

maximize
X
v2V 0

wvxv (5.5)

subject to xv0 + xv1 � 1; for all v0v1 2 E
0 (5.6)

xv 2 f0; 1g; for all v 2 V 0 (5.7)

This is a maximum weight stable set problem which assigns one out of two numbers
(0 or 1) to all vertices such that no two adjacent vertices have the same numbering.

The structure of G 0 depends heavily on I. The complete sub-graphs can be inter-
preted as a set which are connected by disjunctive “vertices”. There are only few
class of graphs on which the maximum independent set is known to be solvable in
polynomial time. These are claw-free, fork-free and line graphs. In our case, G 0

would be the line graph of G without constraints.

claw fork

A claw is a graph with four vertices composed by a
central vertex connecting to the other three which in
their turn are not connected to each other. It is also
called a 3-star graph. A graph is claw-free if it does
not have an induced claw subgraph. A fork is an
extension of a claw with one more vertex attached to
the surrounding three vertices of a claw. A graph is fork-free, if it does not have
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an induced fork subgraph. A claw-free graph will be necessarily fork-free but a
fork-free is not necessarily claw-free which makes the class of fork-free graph larger.

Lemma 5.2. The graph G 0 is not in general fork-free.

Complete graphs are always fork-free. The same as the connection of two complete
graphs by an edge. G 0 would be fork-free if any edge e0 of G satisfies one of the
following conditions: e0 crosses exactly one edge e1 illegally and not any other edge
or e0 crosses several edges sharing the same vertex in G (see Figure 5.4). A fork
exactly appears in G 0 when an edge is crossed illegaly more than once in G . We
could get such a fork free graph by restricting the number of candidates per port in
G according to these conditions but the space of solutions become too small which
would be unsuitable to our application and even a non-constrained perfect matching
may not exist. The graph G 0 constructed in Figure 5.3 is for example fork-free as
well as claw-free.

G G 0

fork-free

fork-free

not fork-free

Figure 5.4: Appearance of a fork-free subgraph in G 0 caused by a multiple illegal
crossing edges in G.

Theorem 5.3. The integer program P1 can be solved in polynomial time if and
only if the maximum weight independant set problem and hence P0

1 can be
solved in polynomial time.

The fact that G 0 does not lie in some class of known graphs where a polynomial
time algorithm exists makes the problem a general maximum weight independent
set problem on G 0 which is known to be NP-hard.



Chapter 6

Application I: Quad Layout on Triangle Meshes

This Chapter shows the effectiveness of the perfect matching formulation to generate
coarse quad layouts on simplicial surfaces. In these class of surfaces, the charts
are represented by triangles. A parameterization is derived by generating first a
per triangle guiding frame field and integrating the field following the approach of
[KNP07] but avoiding the greedy integer rounding. The resulting parameterization
is an open parameterization whose gradients align best to the input guiding field
in a least square sens.

Typically, methods such as QuadCover [KNP07] and MIQ [BZK09] produce high
quality quadrilateral meshes within small amount of time. But, these algorithms
are not well suited for quad layout generation. Singularities might be mapped to the

35
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same grid points in the parameterization phase. Our approach avoids the integer
rounding by matching directly the ports induced by the input frame field.

6.1 Simplicial Surfaces

Definition 6.1. A simplicial surface is a piecewise linear surface obtained geo-
metrically by glueing simplices or triangles at their edges and is homeomorphic
to a topological manifold.

On a simplicial surface, the charts are represented by triangles forming a set TM.
They are connected by edges forming a set EM and edges are bounded by vertices
forming a set VM.

Definition 6.2. A discrete global parameterization M is a collection of triangle
charts f(T; fi)gT2TM such that M = [T2TMT and if two triangles Ti and Tj share
an edge eij, then there exists a transformation 'ij such that

fj(eij) = 'ij � fi(eij):

'ij is again a composition of rotation and translation as in the smooth case. A
gradient vector in a triangle is defined as a piecewise constant vector lying in that
triangle. Along the common edge of two triangles, the gradient vector is not de-
fined since they are different in both triangles. Hence, simplicial surfaces are only
piecewise smooth surfaces.

fi

fj

'ij

Oi

Oj

Ti

Tj

Figure 6.1: Triangle charts transition map on a simplicial surface.
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6.2 Function Spaces on Simplicial Manifolds

On a simplicial surfaceM, we consider two types of piecewise linear (PL) function
spaces, the conforming Lagrange space S(M) and the non-conforming space
S�(M). Both spaces are classic in finite element literature, but here we will see
how both function spaces team up to mimic the concept of primality and duality
of grids in the framework of function spaces on the same underlying geometry, thus
allowing to use the simplicial surfaceM as single base geometry. For example, so-
lutions of the discrete Cauchy-Riemann equations will consist of a pair of a discrete
conforming and non-conforming harmonic map in S and in S� resp. vice versa, all
defined onM .

Definition 6.3. The piecewise linear conforming S(M) and non-conforming
S�(M) function spaces on a 2-dimensional simplicial surface M � R2 are given
by:

S :=
n
f :M! R

��� fjT is linear on each triangle T , and f 2 C0 (M)
o

S� :=
n
f� :M! R

��� f�jT is linear, and continuous at edge midpoints
o

On first sight, the missing global continuity of functions f� 2 S� sounds like a
drawback but the space of non-conforming functions will turn out as a good match
to S. Both function types have piecewise gradients by ordinary differentiation.

Definition 6.4. The gradient field rf of a function f 2 S or S� is a constant
tangent vector in each triangle. The co-gradient field �f := Jrf is obtained by
rotation J of the gradient rf; i.e. by �

2
in each triangle.

6.3 Field Curl on Simplicial Surfaces

Piecewise constant vector fields were introduced to geometry processing in [PP03] as
a natural discretization of tangential vector fields on simplicial geometries. Among
the useful properties of PC vector fields, say compared to Whitney type differential
forms, are the formulation of the Hodge star operation in function spaces instead of
introducing a pair of primary and dual meshes. After a short overview of PC vector
fields and their integrability conditions we show how such theory can be extended
to sets of vector fields called frame fields in the goal of deriving a parameterization
on which we can reliably construct the graph G.
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Definition 6.5. The space of piecewise constant tangential vector fields �1(M)
on a 2-dimensional simplicial surfaceM is given by:

�1(M) :=
n
v :M! TM

��� vjtriangle T is a constant tangent vector in T
o

The gradient and co-gradients fields of functions in S or S� introduced above are
examples of piecewise constant (PC) tangential vector fields.

Definition 6.6. On a simplicial surface M let v 2 �1(M), p a vertex and m an
edge midpoint. Then the (total) discrete curl is given by

curlv(p) :=
1

2

kX
i=1

D
vjTi; ei

E

curl� v(m) := �
D
vjT1; e

E
+
D
vjT2; e

E
where ei is an edge of the oriented boundary of star p resp. e the common edge of
the triangles T1 and T2.

eiei+1

ei�1p e

Figure 6.2: Computation of curl and curl� on a simplicial surface.

Theorem 6.1 (Local integrability conditions for vector fields). Let M be a sim-
ply connected simplicial surface. Then a PC vector field v 2 �1(M) can be
characterized as gradient field in term of the discrete curl operator:

1. v is a gradient field of a function in S ()

curl� v(m) = 0 at all edge midpoints m.

2. v is a gradient field of a function in S� ()

curlv(p) = 0 at all vertices p.
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Definition 6.7 (Frame Fields). An orthogonal frame field or cross field F is a
set of pairs of constant tangent vectors f(uT ;vT )gT2TM based at each triangle of
the surfaceM. At a triangle Ti, it is defined by an angle � and three period-jumps
(pij; pik; pil) defined on the edges, where Tj; Tk; Tl are the neighboring triangles.

0

1
2

u
v

-u

-v

Figure 6.3: A cross field decomposed into four vector fields defined by the period
jumps.

The angle � is used to construct the frame in each triangle from a single edge
direction. On a flat surface , the smoothness of a cross field is determined by the
smoothness of the angle function between neighboring triangles,

Esmooth =
X
eij2E

(�i � �j)
2

where �i is the angle in the triangle Ti and �j is the angle in Tj when flattening Tj
in the plane of Ti. On curved surfaces, we use the formulation of [BZK09] for the
general smoothness energy incorporating the period jumps to detect singularities
and the intrinsic coordinate transformation between both triangles,

Esmooth =
X
eij

�
�i + �ij +

�

2
pij � �j

�2

where �ij 2 (��; �] is the curvature of the field from triangle Ti to Tj. It is computed
as the difference of the angles of both frame in the same local coordinate system.

Theorem 6.2 (Local integrability conditions for frame fields). LetM be a simply
connected simplicial surface. A triangle based frame field F = f(uT ;vT )gT2TM
is curl-free if as a vector field, (uT )T ; (vT )T ; (�uT )T ; (�vT )T are curl-free, taking
the period jumps’ assignment into account.
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This theorem also apply for poly-vector fields. For frame fields, it is sufficient to
have (uT )T ; (vT )T curl-free. A proof of the theorem can be done using the branch
covering approach presented in [KNP07] which transforms a frame field F into a
single vector field on a 4-sheeted covering ofM. The branch points of the covering
are the singularities and the layer shifts are defined at edges where the period jumps
are not trivial.

6.4 Curl-free vs Non-curl-free

It is tempting to directly trace streamlines from the singularities of
the frame field and apply the graph construction. However, we have
to handle the occurrence of limit cycles which is caused by the curl
of the field. Limit cycles are known in dynamical systems as closed
paths such that at least one streamline is spiraling into them as time approaches
infinity (see inset Figure for an example). They are not numerically stable. In our
graph construction, it can then happen that a streamline never intersects another
one making the matching problem infeasible. To avoid this issue, we remove the
curl part of the frame field and use the isolines induced by the parameterization.
Although, the isolines have infinite length, they are stable and as a helix, they have
constant pitch which is very useful in our design of a stopping criterion.

Robust tracing of field guided streamline has been recently published [MPZ14,RS14]
which can be used directly in our setting (see Chapter 10). They use a vertex based
frame field which is not piecewise constant in each triangle. The field topology inside
the triangles is then identified during the streamline tracings as well as limit cycles.
In our setting, we use a per triangle based frame field which is piecewise constant in
each triangle making our construction simple and robust. The isolines do not have
finite lengths. We then propose a strong stopping criterion to assure the feasibility
of the matching problem.

6.5 Injectivity

In the computation of the curl free part of the input frame field F , it is important
that the local frames orientation are preserved to obtain an injective parameteriza-
tion. This means that if

huT ;vT iT > 0 for all T 2 TM (6.1)

then they all should stay positive after the curl removal.
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Generating an injective parameterization is still a very active research topic pro-
ducing a wealth of innovative ideas [Lip12,BCE+13,MPZ14,DVPSH15b]. They all
attempt to approximate the non-linear and non-convex constraints relation 6.1 into
a linear [BCE+13], convex cone constraint [Lip12] or by an iterative nonlinear curl
reduction [DVPSH15b].

We propose a very simple approach to approximate the nonlinear constraints un-
der the condition that the input frame field is smooth and the resulting curl-free
field is not allowed to deviate more than 45� from the initial field. We call it a
bisector constraint in contrast to the trisector constraint of [BCE+13]. Suppose
that (~uT )T ; (~vT )T are the curl-free field derived from the initial fields (uT )T ; (vT )T
(taking always period jumps into account). If ~uT ; ~vT satisfy

h~uT ;uT + vT i > 0 and h~uT ;uT � vT i > 0 (6.2)

and
h~vT ;uT + vT i > 0 and h~vT ;vT � uT i > 0 (6.3)

then the frame fields f(uT ;vT )TgT and f(~uT ; ~vT )TgT have the same orientation in
each triangle. The space of triangle deformations on the induced parameterization is
composed by translations, scalings and rotations within (�45�; 45�) which is smaller
than the trisector space but works very well for open parameterizations.

6.6 Curl Minimization: Poisson Parameterization

In practice, instead of removing the curl of a frame field F = f(uT ;vT )gT2TM, one
looks for a potential f = (u; v) whose gradient field f(ru;rv)TgT is the closest to
F in a least square sense. f is called a Poisson parameterization and is computed
by the least square minimization

min
f2S

Z
M







 
u
v

!
�rf







2

(6.4)

resp. its discrete version of minimizing Ef

Ef =
X

T2TM

AT

�
khru� uTk

2 + khrv � vTk
2
�
; (6.5)

subject to the following curl-free condition. If two triangles Ti and Tj share an edge
e with edge direction e, then
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ejTj = JpijejTi (6.6)

where AT is the area of the triangle T , h is a sizing field which controls the size of
the grid patches, J is a 90� 2D rotation matrix and pij is the period jump inherited
from the local smoothness of the frame field. The curl-free constraints means that
the representation of e in the chart of Tj is related by a 90� rotation to Ti.

The size of the system consists of 6jTMj (uv-coordinate per vertex per triangle)
which is reduced by defining a dual spanning tree crossing a primal edge if the
period jump from the current triangle to the neighboring triangle is zero. The
remaining primal edges form a graph connecting the singularities and defining a
boundary which makes the surface a topological disc. Once an initial triangle of
the tree is mapped to 2D, all the triangles along the spanning tree are determined.
Hence, only those along the cut path has to be solved by a global optimization
approach. To assure injectivity, we use the inequality constraints 6.2 and 6.3. All
these procedure are illustrated in Figure 6.4, the implementation details can be
found in the Appendix.

From this point, we will always use the metric induced by the Poisson parameteriza-
tion on the surfaceM. We denote this open parameterized surface byMf . Bommes
et al. [BCE+13] uses a decimation algorithm on Poisson parameterized surface in or-
der to reduce the size of their integer quadratic program. In the layout optimization
of Campen et al. [CK14], a multiple computation of the Poisson parameterization
is used to reduce the global parameterization distortions by moving singularities.
The structure ofMf is not far from an integer-grid map, i.e. a seamless continuous
parameterization. The singularities have the same angle defects and port enumera-
tions as for rounded parameterizations. The difference lies in the local integrability
ofMf . Isolines ofMf do not close and have infinite length. In contrast to direct
field tracing approaches, tracing isolines on Mf is relatively simple. Deciding if
two isolines intersect or not can be done by classical 2D intersection checks. Mf is
governed by transition functions, which have to be taken into account, for each line
and patch construction. For example, to compute a locally shortest geodesic path
between two points, we use the algorithm proposed by Lee and Preparata [LP84].
For a given triangle run containing the two points, instead of an isometric unfold-
ing, we use the parameter domain ofMf using transition functions. In parameter
domain, singularities behaves like small holes such that geodesics get stuck on these
special points unless the homotopy type of the geodesic is changed.
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Input frame field Cut Paths and Spanning Tree

Poisson Parameterization

Figure 6.4: Computation of a curl-free frame field inducing a global parameteriza-
tion of the surfaceM.
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6.7 Graph Construction

The graph construction follows Chapter 4 where the charts are represented by the
triangles. In Figure 10.3 is an example of a port connection along an isoline. Non
singularity-free triangles must be detected along the tracing line.

Figure 6.5: Tracing of an isoline on a parameterized surface and evaluation of ratios
of lengths at the intersection points.

6.8 Stopping Criterion

In general, the isolines ofMf have infinite length. The line growing approach can
never end unless either all open separatrices end at a boundary, or in the very rare
case where they all hit singularities. This situation happens, for example, when the
surface is very symmetric. We need a correct way to stop the growing procedure
and make sure that enough edges are in G in order to get a large space of possible
solutions.

One approach is to fix a maximum growing length Lmax relative to the diameter
of the geometry and to terminate when all lines reach the prescribed length. This
approach will produce enough edges in G but can be very slow in practice, especially
if Mf contains too many singularities. A more elegant approach is an adaptive
stopping criterion. Mainly, a line stops growing while others continue. The main
observation is that the isolines ofMf are spiralling at some region. Our termination
condition is to stop an isoline when it starts to spiral. However, this procedure
involves the careful understanding of the structure of spirals (a priori unknown) on
Mf and a robust algorithm to detect them as done in [BLK11] on quadrilateral
meshes.

If a growing line intersects another one the second time, then one of them is suscep-
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si

pia0

sj
pa1

m0

m1


j
a1
`


ia0`

m1

m0 = si = sj

pi
a0

pi
a0�1

pi
a0+1=a1

(a) (b)

Figure 6.6: Spiral detection during the growing procedure: (a) a separatrix starting
from a far way singularity before spiralling in a cylindrical region; (b) separatrices
starting at a cylindrical region based at the same singularity.

tible to be a spiral. It is then convenient to stop it. The decision depends on a fixed
threshold � controlling the pitch of helices ofMf . Consider two open separatrices

ia0` and 
ja1` which intersect each other the first time at a point m0 and the second
time at a point m1 ofMf . If

jLi
a0
(m1)� L

i
a0
(m0)j > �jLj

a1
(m1)� L

j
a1
(m0)j (6.7)

then 
ia0` stops growing. Else if

jLj
a1
(m1)� L

j
a1
(m0)j > �jLi

a0
(m1)� L

i
a0
(m0)j (6.8)

then 
ja1` stops growing. If i = j and a1 = a0 � 1, then the inequality is checked
at the first intersection point of the two separatrices (see Figure 6.6). In that case,
m0 = si = sj.

If � is large, then the growing step might collect too many unwanted large pitch
spirals affecting considerably the size of G and the construction’s running time. If
� is too small, then some isolines might stop too early even if they do not start
to spiral, reducing the size of G and hence the space of possible solutions. In our
implementation, choosing the fix value � = 10 works very well.

In Figure 6.7 are two examples of stopping strategies. In the first approach, we use
a fix maximum tracing length Lmax for all isolines which produces many unwanted
spirals while in the second approach, we trigger the spiral detection during the
tracing which removes all unwanted spirals produced by the first approach.
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(a) (b)

Figure 6.7: (a) Example of spirals for a fixed maximum tracing length Lmax; (b)
isolines are stopped before spiraling using � = 10 in parameteric length unit.

6.9 Results and Analysis

We apply our algorithm on several datasets which are mainly classical benchmark
models. The input of the algorithm is either a frame-field or directly a Poisson
parameterization Mf . We use default parameters for all quad layout generated
on the benchmark models by choosing a balance � = 5, a maximum separatrix
length Lmax = 3=h � Diam(M), a sizing field h = 10�2 � Diam(M), and a spiral
detection constant � = 10. The choice of � is motivated by the experiment illus-
trated in Figure 6.8 but the use of different values of � is also encouraged. For the
benchmarking, we use the frame-fields also taken as input from the corresponding
previous works.

Data structure In our implementation, we use a triangle based data structure to
efficiently generate the graph G and the set of illegal constraints I. Each triangle
knows all open separatrices going through it together with the intersection points
used in the construction of I. The graph G is represented as an adjacency matrix
of the ports whose entries are zero or one using classical sparse matrix format. For
each non zero entry of that matrix, we store the corresponding triangles and their
geometries for a fast visualization of the layouts on the geometry.

Robustness The algorithm runs very well on badly triangulated meshes. In Fig-
ure 6.9 (a) is a bad triangulation of the Joint model which contains many skinny
triangles. Our method still produces correct quad layout on that model. We also
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� = 0

jP j = 86

RSD = 27:50%

� = 5

jP j = 113

RSD = 15:44%

� = 10

jP j = 138

RSD = 12:67%

� = 50

jP j = 483

RSD = 4:71%

� = 100

jP j = 801

RSD = 4:55%

� = 20

jP j = 187

RSD = 9:20%

Figure 6.8: Several quad patches on the Bunny model for different values of �. jP j
denotes the number of patches and RSD is the Relative Standard Deviation of the
patch angles measured in parametric space. Big values of � give a better alignment
to the input field at the cost of increasing number of patches. We find � = 5 to be
a good balance.
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generate random noises on some region of the Bumpy Spheremodel with bad shaped
triangles, over-foldings and self-intersections. The algorithm still produces valid
quad patches, as illustrated in Figure 6.9 (b).

(a) (b)

Figure 6.9: (a) A bad triangulation of the Joint model. (b) Exaggerated noise on
the Bumpy Sphere model.

Singularity placement In the quest of a good quad layout, the position of sin-
gularities is very important to assure geometrically meaningful patches. Our algo-
rithm is not very sensitive to local changes of singularity positions but can generate
a completely different layout (but still optimal with respect to the new singularity
positions) if the change induces a global effect on the field as illustrated in the
Figure 6.10.

Figure 6.10: Computation of the Layout under a local movement of a singularity.

6.10 Comparison

We compare against the Dual loops meshing (DLM) [CBK12] and the Integer-grid
map (IGM) [BCE+13] for the same models and cross-fields. The results are shown
in Figure [?] together with a comparison table. Our algorithm produces results
as good as both methods. The main advantage of our approach is its speed and
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control over the final layout. Changing the value of � or adding user constraints
can be done in a split second. The DLM approach is greedy and works on the dual
complex. It is not very much affected by singularity placement but unfortunately,
it is not clear how user constraints could be incorporated once the layout is com-
puted. The integer-grid map approach finds directly an optimal solution without
any balancing parameters. This method, unfortunately, requires a fold-over free
Poisson parameterization where in our case it is only needed for a very small set
of triangles. Our method also gives a balancing parameter which makes the layout
computation more flexible. In contrast to IGM, our method is guaranteed to be
spiral-free which on one hand allows smaller patch numbers but on the other hand
can produce nonuniform dense layout (see Appendix). In Table 7.2 is an overall
statistics of our algorithm. The timing does not include the frame field generation
nor the Poisson parameterization. We consider these two steps as preprocessing
and they can be taken as input to the algorithm. In our implementation, solving
P1 is in average one second making the computation of a new solution extremely
fast.

Figure 6.11: Our algorithm applied to benchmark models also taken as input by
DLM and IGM.

In Figure 6.12 is a close comparison of the layouts generated by IGM [BCE+13]
(left) and our method (right). On the Botijo model, we noticed that the layout
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generated by IGM still contains spirals (on the handle) where on our layout, this
is ignored. The IGM has, on the other hand, a better node connection on the
Elk model. From the Figures, we can clearly see that IGM tends to optimize for
regularity i.e. close to 90� angles at the intersection points.

Figure 6.12: Comparison of our method (right) to IGM (left). The layouts of
IGM corresponds to the base complexes of each model on the quadrilateral meshes
provided by IGM’s authors which make the renderings sub-optimal but the layouts
are exactly the same as in [BCE+13].

In Figure 6.13 are other models, where the frame fields are generated by our own im-
plementation. The models are especially chosen to show reliability of the proposed
approach even for large sized models. We did not add any sharp edge constraints
for the Casting model. The resulting layouts are naturally produced by the fix
value of � = 5.
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Figure 6.13: Perfect matching quad layouts generated on the Casting, Dragon,
Bunny, Boudha, Hand and the Genus-91 models.
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Models jTMj jSj Graph Av. length |P| RSD Time in s
jEG j jIj 1=N

P
k
i

a`
kf angles (%) P1 Layout

Torso 74628 28 528 7892 162.10 42 17.71 0.12 4.61
Sofa 29020 14 229 2162 68.23 24 4.90 0.06 1.73
Fertility 27954 48 1118 18831 80.33 137 15.84 1.09 2.54
Elk 18308 52 1023 14150 95.04 85 15.21 0.46 1.91
Botijo 29994 74 1736 32192 204.04 163 17.76 0.64 5.77
RockerArm 70318 30 609 9441 127.49 64 18.65 0.15 5.13
Joint 1784 24 255 6085 55.96 79 7.32 0.03 0.61
Bumpy sphere 102996 150 4194 122991 184.82 480 17.78 2.71 63.74
Boudha 198736 70 1804 48888 161.72 255 17.45 1.93 55.51
Genus-91 28800 720 15903 151430 86.46 1500 6.29 3.85 31.22
Casting 66914 100 2683 83489 87.21 235 18.92 1.89 14.59
Hand 99999 38 763 20297 84.36 117 18.26 1.03 14.64
Bunny 69666 60 1347 23939 119.52 113 14.95 0.43 8.48
Dragon 102400 44 1006 22412 283.81 105 14.15 0.37 23.30
Bimba 149524 76 1944 64551 141.27 231 20.37 1.95 59.08

Table 6.1: Statistics of the proposed method applied to several benchmark models. jSj is
the number of singularities, jP j the number of patches and RSD the patch angles relative
standard deviation measured in parameter space. P1 is the time taken to solve the con-
strained minimum weight perfect matching. Layout denotes the time needed to compute a
solution from a given Poisson parameterization (without per patch colorings).



Chapter 7

Application II: Quad Mesh Structure
Optimization

In many application scenarios, surfaces are often given as quadrilateral meshes
where the global structure characterized by the base complex of the mesh is pre-
defined. These base complexes have in most cases too many patches. Coarse base
complexes for quadrilateral meshes are for example very important in the quad mesh
modeling of [Vax14]. Several algorithms have been proposed to optimize the base
complex of a given quad mesh. Bommes et al. [BLK11] propose to remove helical
configurations present in the mesh using a state machine composed by local atomic

53
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operations such as shifts and edge collapses. Tarini et al. [TPP+11] disentangle the
graph of separatrices in order to get another graph with less separatrix energy and
hence less patches. Both methods preserve the singularities of the initial quad mesh.
Other methods [DSSC08,TPC+10] use quad mesh simplification techniques aiming
at a coarse base mesh of the surface and allowing singularities to collapse. Since
our method preserves the initial singularities, we compare our results to Bommes
et al. and Tarini et al. The main advantage of our approach is first optimality,
we formulate the problem as a global optimization problem and second simplicity,
implementing our algorithm only requires a binary program solver.

7.1 Problem

The main issues appearing in automatically generated quad meshes are the so called
near misses illustrated in Figure 7.1. A near miss characterizes a parameter line
which misses to connect to a near by singularities increasing the number of helical
configurations and hence the number of patches in the base complex of the mesh.
By rating those near misses, Tarini et al. use a trial and error approach which
repairs the near misses locally and finds a global closing moves to preserve the
quad topology of the base complex. Quadrilateral meshes are examples of closed

Figure 7.1: Problematic cases on automatically generated quad meshes character-
ized by near misses which induce the increased number of patches in the base
complex of the mesh.

parameterized surfaces where the charts are quads and the metric is the integer
metric on the edges. The graph construction can then be applied directly on the
surface without the need of an input guiding field or a parameterization.
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7.2 Preliminary

On a quad meshM, a vertex is regular if it is the intersection points of four quads
or two quads for the case of a boundary. It is singular otherwise. The valence
of a vertex is the number of quads sharing the vertex. In our setting, we use the
integer metric induced by the quad grid where the distance between two neighboring
vertices is always one. The ports are simply the normalized edge vectors incident
to the singularities.

We call a trivial base complex the base complex B of M obtained by the union
of all discrete parameter lines connecting two singularities. The construction of
B is straightforward but the induced quad layout often has too many patches. In
a sense, we would like to measure the quality of B in terms of coarseness and
geometric feature alignment but we provide on top a better base complex in case it
is not optimal.

7.3 Algorithm Overview

The construction of G is made along the separatrices of B following the ratio con-
ditions for the creation of new edges in G. The main step of our algorithm is
summarized as follows.

1. Generation of B.

2. Extension of B to a supergraph G.

3. Construction of the set of illegal edge crossings I.

4. Finding of a quad layout Q ofM as a MWPMPC of G.

We generate B by tracing all parameter lines emanating from the singularities ofM
until other singularities or boundaries are reached. It is equivalent to removing all
loops inM and keeping only the remaining parameter lines. If the input mesh has
a "good" connectivity information i.e. no near misses, then B can be already the
"best" quad layout ofM. In practice, quad meshes are generated either by frame
aligned global parameterization based methods [KNP07,BZK09] or spectral based
method [DBG+06, ZHLB10] or direct methods [TPC+10,RLS+12] which does not
give a priori high quality base complexes due to their greedy nature.
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M B G Q

Figure 7.2: Main steps of the quad layout optimization on quadilateral meshes.

We extend B to a supergraph G by evaluating at each regular vertex of M along
the separatrices of B the ratio of lengths of the two separatrices intersecting at
that vertex following the graph construction in Chapter 4. The set of illegal edge
crossings I is constructed at the regular vertices along the separatrices of B where
two closed separatrices intersect. Finally, the optimum quad layout according to
the value of � is obtained using Theorem 5.1 in Chapter 5.

7.4 Graph Properties

By construction G has
P

s2S valence(s) vertices where S is the set of singularities of
M. It has at most (4jVMj+jEBj) edges, where jVMj is the number of regular vertices
ofM and jEBj the number of separatrices in B. The upper bound is reached when
all regular vertices ofM lie on a singularity-free triangle. G can have multiple edges
i.e. two vertices of G can be connected with several edges with different weights.
In Figure 7.3, a spiraling separatrix can intersect another separatrix several times,
all intersections satisfying the singularity-free conditions and the ratio test. These
helical configurations are intensively studied in [BLK11] which are known to increase
significantly the number of patches in the quad mesh’s base complex.

We could already choose which one of these edges we add to G according to their
weights, but it implies the reconstruction of G for each value of the parameter �
which is not computationally efficient. Hence we keep them all, at the cost of a
bigger graph size. If B has no near misses, then G can be equal to B. In this case
no regular vertices along the separatrices satisfy the singularity-free and the ratio
lengths conditions. B is then the best quad layout ofM.

Datastructure For the implementation, we use a vertex-based datastracture for
a quick evaluation of the ratios and illegal crossings. Each non singular vertex of
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Figure 7.3: Two ports are connected by several separatrices on a region with helical
configuration.

the base complex stores the two intersecting separatrices together with the corre-
sponding port directions. The tracing starts at a singularity and goes successively
along the vertices of the base complex in direction of a port until an other singular-
ity or a boundary is reached. The window reduction strategy is used to avoid non
singularity-free triangles.

7.5 Results and Analysis

We apply the proposed quad layout optimization on several datasets which are
classical benchmark models. For rendering purpose, we add one or two refinement
steps to each of them which does not affect the base complex but slightly the
computation running time. The only parameter in our framework is �.

Choosing � In general, the choice of � depends on the user requirements as in
the triangle mesh case. To get a reasonable default value of �, we did sequences of
test ranging from 1 to 100. The selection criterion is again based on the Relative
Standard Deviation (RSD) of the angles of the patches with respect to the original
quad mesh against the number of patches. We choose the Fertility model with
21436 quads and 42 singularities. The initial base complex of the model induces
11432 patches with RSD = 8:30%. In Figure 7.5 are the series of tests where we
found � = 5 to be a very good balance similar to the triangle mesh case.
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Figure 7.4: The Dragon model, generated by [ECBK14], has 18632 patches from
its base complex with 611 singularities. Optimized to 2760 patches using our opti-
mization approach.

Robustness A common approach to test the robustness of the algorithm is to
use models with several singularities. In Figure 7.4 is a Dragon model, generated
by [ECBK14], which contains 611 singularities with initially 18632 patches from its
base complex. The number of patches is optimized by the algorithm to 2760 within
8 seconds.

Isosceles Triangles In the graph construction, it can happen that the ratios of
length of the two intersecting separatrices is one i.e. Li

a0
(m) = Lj

b0
(m), where m is

the intersection point of the two separatrices 
ia0` and 
jb0`. We handled this case
by adding extra disjunctive constraints to the matching problem. Nevertheless, the
generated diagonal edges will always have less speratrix energy independent of the
values of �. They are minimum in both length along the tracing separatrices and
offset deviations. They reduce the number of patches of the initial base complex
at the cost of high angle deviations at some singularities which cannot be resolved
unless � is very large as illustrated in Figure 7.6.

A solution to this problem is for example to allow only far apart singularities to
be diagonally connected. This is a parameter dependent since closeness is not well
defined. A post validation could also be applied by identifying these configurations,
removing the corresponding edges from the graph and recomputing a solution. In
our implementation, we did not do any of these optimizations. We keep diagonal
edges to avoid missing some interesting singularity layouts (see Figure 7.7).

In Figure 7.8 are examples of classical benchmark models optimized by our al-
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� = 1
jP j = 77

� = 5
jP j = 98

� = 20
jP j = 182

� = 10
jP j = 116

� = 50
jP j = 537

� = 100
jP j = 831

Figure 7.5: Quad layouts on the Fertility model for different values of �. Smaller
values of � tend to produce coarse quad layout at the cost of feature deviation.
Taking large values of � produces a nice feature aligned edges but unfortunately
produce too many patches. We find � = 5 is a good balance.
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� = 5 � = 10 � = 100

Figure 7.6: Effect of allowing diagonal connections which introduce big angles dis-
tortions at singularities that cannot be resolve by increasing the value of �.

Figure 7.7: Comparison of the singularity layout generated on the RockerArmmodel:
(left) allowing diagonal edges, (right) avoiding diagonal edges.

gorithm. On the FanDisk model, the sharp edges are naturally preserved in the
solution. The graph construction on quadrilateral meshes is much faster than on
triangle meshes. But because of multiple edges, the size of the illegal crossing con-
straints is large and hence it may take time for the solver to find a feasible solution.

7.6 Comparison

Simple Quad Domains Tarini et al. [TPP+11] propose a powerful heuristic to
simplify the trivial base complex into another base complex with less energy. Com-
pared to our approach, their algorithm collects potential candidate ports within the
corridors of the separatrices (the first left and right parallels separatrices delimited
by singularities). They check if connecting to one of the candidate ports decreases
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Figure 7.8: Several classical benchmark quadrilateral meshes optimized by our al-
gorithm. The models were generated by [BZK09]. The models with the orange grid
lines are the base complexes of the original models.

the global energy and try to find a closing move which keeps the global quad topol-
ogy of the base complex. If a closing move is not found, then the configuration goes
back to the last best move. A tree of all previous decision is then built defining all
local valid configurations until the last moves. A main drawback of their approach
is its greedy nature. Optimality is not guaranteed and valid configurations are only
driven by the existence of global closing moves. In contrast to our approach, we are
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not limited to the corridor of separatrices. We include ports outside the corridors
which satisfy the deviation and singularity-free triangle constraints. Instead of a
trial and error approach, we build a graph of all possible layouts of the surface
induced by the trivial base complex and formulate a global optimization problem.
Nevertheless, the method proposed by Tarini et al. does not involve an integer
program. Their algorithm can be efficiently implemented and produces respectable
results.

Input Ours [TPP+11] [BLK11]
460 10341644957

Figure 7.9: Comparison of our methods to recent state of the art quad mesh opti-
mization algorithms.

Global Structure Optimization Bommes et al. [BLK11] propose to reduce the
number of helical configurations present in the initial quad mesh which are the
main cause of increased number of patches. They used a state machine composed
by successive atomic operations. These operations are local mesh modification such
as flips and collapses. The first step of their algorithm is to detect the helices and
remove those which agree with the state machine. This approach does not need
a reparameterization which in our case and Tarinis’ case is necessary. The state
machine modifies directly the input quad mesh to another quad mesh. However,
there are still helices in the final layout of their solution. The state machine is
greedy and is not guaranteed to give the best possible layouts of the surface.

In Figure 7.9 is a comparison of our method to both methods. Visually and based
on the number of patches, our method generates less patches and still aligns with
the features of the geometry. We conjuncture that the solutions of Tarini et al.
and Bommes et al. are perfect matching subgraphs of our graph which do not have
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minimum weight.

Model |S| |F| of B Optimized RSD Total
Ours SQD GSO angles (%) time (s)

Botijo 74 4957 164 460 1034 27.27 1.14
Fertility 48 2271 100 253 526 28.37 0.78
Rockerarm 36 4524 64 98 178 28.36 0.26
Drill hole 26 1368 61 82 216 22.83 0.88
Fandisk 30 408 66 88 144 16.26 0.18
Beetle 56 259 156 - - 15.20 0.07

Table 7.1: Comparison to other quad mesh optimization algorithm with the same input
models also taken by [TPP+11] and [BLK11]. B denotes the base complex of the quad
mesh.

Parameterized Triangle Meshes. Given the recent development of robust quad
mesh extraction [EBCK13] for frame-field guided parameterized triangle meshes, it
is natural to ask if generating a quad mesh using [KNP07] and applying the global
structure optimization is more suitable than working on multi-chart parameterized
surface. This will avoid the needs of a stopping criterion and will increase the
computation speed. The quad layout generated by our algorithm on triangle meshes
and quad meshes are not necessarily the same. First, the graph generated from the
Poisson parameterized surfaces does not contain diagonal edges where they appear
frequently on quad meshes. Second, the rounding step in the integer-grid mapping
already predetermined the number of singularity triangles. Matching subgraphs
are not necessarily isomorphic in both cases. Since we allow multiple edges to
appear on quad meshes, the number of the disjunctive constraints can be very large
compared to the triangle mesh case. In Figure 7.10 is a close comparison where the
MWPMPC is computed in 8 seconds on the quad mesh and in 0.86 seconds on the
triangle mesh.
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Figure 7.10: Comparison of a generated quad layout on quad meshes (left) with 136
patches and on triangle meshes (right) with 120 patches, with the same � = 2:5.

Models jSj Graph Patches Time in s
jEG j jIj P1 Total

Pegaso 28 528 7892 42 0.12 4.61
Bretzel 14 229 2162 24 0.06 1.73
Dragon 48 1118 18831 137 1.09 2.54
Botijo 52 1023 14150 85 0.46 1.91
RockerArm 74 1736 32192 163 0.64 5.77
DrillHole 30 609 9441 64 0.15 5.13
FanDisk 24 255 6085 79 0.03 0.61
Fertility 150 4194 122991 480 2.71 63.74
Bettle 70 1804 48888 255 1.93 55.51

Table 7.2: Statistics of the proposed method applied to several benchmark models.
P1 is the time taken to solve the constrained minimum weight perfect matching.
The overall running time is from the construction of G until the generation of the
layout (without per patch colorings).



Chapter 8

Reparameterization

There are several post processing algorithms which can be applied to the final lay-
out. One attractive approach is the layout relaxation of Campen et al. [CK14]
consisting of realigning the frame field to the arcs direction and relaxing the sin-
gularities to reduce distortions. Another approach is the patch parameterization of
Tarini et al. [TPP+11] together with an iterative smoothing technique. Both meth-
ods still require a huge amount of work. Instead, we use a more direct approach
which takes advantage of both Poisson parameterization and the computed patches.

Once the layout is generated, we would like to parameterize each patch such that
the resulting integer-grid map is not far away from the already computed Poisson
parameterization. First, we refine the mesh along all patch edges. This is done by
clipping the polygonal curve against the surface. Next, we cluster each polygons in
parameter space according to their 3D colorings. At this point, we could used meth-
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ods similar to [MPZ14] with the iterative optimization suggested in [Lip12] but we
would like to directly minimize the distortion as close to the initial parameterization
as possible. A method such us [BCE+13] is then more suitable. However, we would
have to add arc connection constraints and the per triangle trisector constraints
which we avoid in our perfect matching based layouting.

8.1 Problem Formulation

In parameter space, the 2D domains induced by the patches are quadrilateral
patches with straight edges which are not necessarily aligned to the canonical axis.
This is due to the balance �. If � is large, then these quadrilaterals would all be
close to rectangular patches (minimizing deviation from the frame direction). We
realign the patch edges to the axis directions in parameter space, assign integer
lengths to these edges in order to preserve the continuity of the parameter lines
between neighboring patches. The problem can be formulated as a mixed integer
problem which is solved efficiently since most edge lengths are determined by the
continuity constraints. Once a length is assigned to an edge, the opposite edge on
the same patch is set to have the same length. This is recursively applied to the
sequence of opposite edges until the starting edge is reached.

Denote by (ei; li)i2I the set of edges of the resulting quad layout Q where li is the
length of ei measured in parameter space. We determine the closest integer lengths
(~li)i2I by solving the following minimization problem.

min
X
i2I

jli � �~lij
2 (8.1)

s.t. ~li = ~lj; if ei is opposite to ej (8.2)
~li 2 N� (8.3)

where � is a constant which allows a control over the final grid size. This mini-
mization problem has a solution ~li = 1 by forcing li = 1 for all i, which means
ignoring or individual lengths and aiming for a coarse base mesh suited for sub-
division surfaces. Otherwise, the resulting parameterization is a quasi-conformal
parameterization with as uniform grid line as possible in each patch.

Unfortunately, our approach depends on the initial layout. If a patch strip contains
at the same time an edge with a small length and another edge with a large length,
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� = 5 � = 10

Figure 8.1: Grid compression along a patch stripe which has big edge lengths
distribution can be solved by increasing the value of �.

then the grid discretization cannot be optimal for both edges (see Figure 8.1).
Moving the singularity positions as done in [CK14] or increasing the value of � at
the cost of increased number of patches can solve this issue.

8.2 Mapping the Quads

After assigning integer lengths to each patch edges, the next step is to map each 2D
quadrilateral patch to a rectangle with the associated integer lengths. We do it by
a simple Wachspress mapping which maps the corners of the source quadrilaterals
to a target rectangle having the computed integer lengths and interpolate the inner
surface using Wachspress coordinates [Wac75], see Figure 8.2. This is a bijective
mapping and hence the resulting parameterization is still flip free. Unfortunately,
using a per patch parameterization, we only obtain a zero order continuity between
neighboring patches. Since the initial patches induced by the Poisson parameter-
ization are already close to being rectangular, the first order discontinuity is not
really dominating in most cases. This is only visible when the deviation from the
input field is big. A more elaborate mapping which also considers first order con-
tinuity between neighboring patches would be a nice feature to have. For that the
quasiconformal maps introduced in [WMZ12] is a good starting point.

8.3 Examples

For all models shown in Figure 8.3, we choose � = 1. We use Ilog CPLEX to solve
the integer program. These models have been generated by the authors of [MPZ14]
as Poisson parameterizations. These are taken as input to our algorithm and con-



68 CHAPTER 8. REPARAMETERIZATION

l0

l2

l3l1

~l0

~l2

~l1 ~l3

Wachspress

Figure 8.2: Mapping of the 2D domains for a given prescribed lengths using a simple
Wachspress coordinates.

tinuously reparameterized.

Figure 8.3: Perfect matching quad layouts with globally continuous per patch pa-
rameterizations on models provided by the authors of [MPZ14].



Chapter 9

Regular Maps

Figure 9.1: A regular map of genus 61 appearing on the cover of the Bridges con-
ference proceedings in 2014.

The concept of map was first introduced by Coxeter and Moser [CM80]. A map
is a family of equivalent polygonal faces such that any two faces share an edge or
vertex, or are disconnected. Each edge of the map belongs precisely to two faces,
the faces containing a given vertex form a single cycle of adjacent faces and between
any two faces is a chain of adjacent faces. In other words, it is a closed 2-manifold
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without boundaries obtained by glueing topologically equivalent polygonal faces.
If the map has p-gonal faces and q-gonal vertex-figures (number of faces around a
vertex), then it has the Schläfi symbol fp; qg.

Figure 9.2: Examples of regular maps from left to right: a spherical cube, a f4; 4g
tiling of a torus and the Klein Quartic.

A regular map is a map which is flag transitive. On the surface, if a vertex or an
edge or a face is mapped to another vertex or an edge or a face, then the map is one
to one and preserves all adjacency properties. They can be viewed as generalizations
of the Platonic solids to higher genus surfaces. They define regular tilings of closed
surfaces and their group structure can be used to move along the surface behaving
like an "hyperbolic" parameterization. In Figure 9.2 are some examples of low
genus regular maps which include the cube, a checker-board tiling of a torus and
the Klein Quartic.

The visualization of regular maps is a very challenging problem. Until 2009, only
a handful regular map has been visualized. Then van Wijk [vW09] came with an
heuristic which finds matching between regular maps. His approach derives space
models of regular maps as the tubular neighborhood of the edge graph of other
regular maps. These are given as pairs consisting of source and target regular
maps. He was able to realize 50 cases of regular maps up to genus 29 using a
group theoretical heuristic to find the pairings. Unfortunately, his method requires
an embedding of the target map such that most of these pairings could not be
visualized since some of the target regular maps do not have a known realization.
Our main contribution in this thesis is the design of an algorithm which overcomes
this limitation by generating directly the target regular map from the hyperbolic
space. In this process, some important quality measurement should be met.

Quality Measures A regular map is a surface, hence a 3D realization of a reg-
ular map should have a manifold structure in order to achieve pleasing computer
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rendered models. The transitivity properties of the tiling should be kept as well
as all adjacency relations between individual faces. They should exhibit maximal
symmetry preferably geometrical symmetry as well as topological symmetry. These
include: geometrically equivalent faces (i.e. there exists a sequence of Euclidean
motions which maps a face to another face), a subset of geometrically equivalent
faces, and meaningful petrie polygon shapes (a closed zig-zag path on the edges).
In Figure 9.3 is an example of a realization of a regular map where it is first isomet-
rically drawn in the the hyperbolic space and realized as a closed genus five surface
where all faces are geometrically equivalent. It is flag transitive and has 24 quads
such that six of them always share a vertex.

Figure 9.3: A f4; 6g tiling mapped on a genus 5 surface where all faces are geomet-
rically equivalent.

The Chapter is organized as follows. First, we give theoretical backgrounds on reg-
ular maps including geometric and algebraic characterizations. Second, we describe
the basic procedure to obtain, with maximal symmetry, large genus surfaces. And
finally, we give a description of the method used to realize regular maps on these
large genus surfaces.

9.1 Background Notions

The realization of a tiling depends on the ambient space where they are embedded.
These are: the Sphere, the Euclidean plane and the hyperbolic plane. Examples
of spherical isometric tilings are the Platonic solids. The Euclidean plane can be
isometrically tiled by checker-board patterns and Honey-comb like structure. The
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hyperbolic plane are tiled by p-gons for large p’s.

A closed 3D realization of a sub-tiling of the Euclidean plane is a torus (see Fig-
ure 9.2). The closeness of the torus is topologically derived from a parallelogram
in the Euclidean plane wrapped in 3D by identifying opposite sides. In this 3D re-
alization, isometry is lost but the topology of the tiling is still preserved. We then
only talk about combinatorial or topological transitivity. Similar 3D realizations
can also be done from the hyperbolic plane. A genus g > 1 surface is derived by
taking a 4g-gon in the hyperbolic plane and identifying pairwise edges. Hence, any
sub-tiling of the hyperbolic plane can be realized as 3D surfaces by finding a proper
4g-gon partition of this tiling with the correct identification at the boundary.

If a map has V vertices, E edges and F faces, then its genus g is given by g =
(2 � �)=2 where � = V � E + F is the Euler-Poincaré characteristic. This is a
property of the surface, independent of the map; the dual map has also the same
Euler-Poincaré characteristic �. Intuitively, the genus of a surface is the number of
tunnel or handle in this surface. Depending on their genus, regular maps can be
abstractly realized as quotients of spherical tilings, Euclidean tilings or hyperbolic
tilings.

Definition 9.1. A finitely generated group is a group of the form hG jRi, where
G is a set of generators and R is a set of relations. If Ri 2 R, then Ri = I which is
the identity of the group.

Definition 9.2. A regular map is a finitely generated group of the following form

Sym(MS) =
D
R;S; T jRp; Sq; T 2; (RS)2; (ST )2; (RT )2;R1; : : : ;Rm

E
; (9.1)

where R is a rotation by 2�=q, S is a rotation by 2�=p and T is a reflection.

R;S and T are transformations acting on a fundamental triangle with corner angles
�=p; �=q and �=2 (see Figure 9.4). Depending on p and q, they can be Euclidean
motions, special orthogonal matrices (for spherical) or Moebius transformations (for
hyperbolic). R1; : : : ;Rm are extra relations making the group finite. The expres-
sion 9.1 is called the symmetry group of the map. It is the set of all automorphisms
of the regular maps as topological surfaces [CM80].

The symmetry group of the cube (a regular map of type f4; 3g) is for example
defined by

Sym(Cube) =
D
R;S; T jR4; S3; T 2; (RS)2; (ST )2; (RT )2

E
: (9.2)
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Figure 9.4: Two different representations of the cube using a Sphere and stereo-
graphic projection into the plane.

It can be realized on a blown up cube, taking as fundamental triangle a spherical
triangle with corner angles �=4; �=3 and �=2. It can also be visualized as a 2D
surface using stereographic projection which is only conformal but not isometric as
depicted in Figure 9.4.

Orientable regular maps are denoted in Conder [CD01] by Rg:ifp; qg, which is the
ith�reflexible orientable map of genus g. fp; qg is the Schläfi symbol of the tiling.
Reflexible means that the transformation T in Equation 9.1 is also an automorphism
of the map. Analogously, the dual map is represented by Rg:i0fq; pg. Conder listed
all reflixible regular maps of genus 2 to 302. They are given as symmetry groups
and used as input to our algorithm.

9.2 Generating Large Genus Surfaces

In this section, we explore in depth techniques to generate and visualize large genus
surfaces. Our aim is not only to generate some genus g surfaces but also surfaces
with rich topological structures and nice looking shapes.

Tubification Process A genus g surface can be generated by taking a sphere
and drilling non intersecting g tunnels on it. Another approach, very useful for
teaching, is the sphere with g handles. It consists of taking tori and glueing them
on a sphere to form handles. It is unclear where the tori should be placed and if
the resulting surface can be used to visualize symmetric tilings.

A better approach is the use of a tubification process or regular surface. The
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Figure 9.5: Regular surfaces (transparent).

process consists of taking a tiling of a surface, turning its edges into tubes, its
vertices into junctions and its faces into holes. For example, a genus 2 surface can
be derived from a tubified Hosohedron f2; 3g as illustrated in Figure 9.5. Surfaces
with rich structures or regular surfaces can be derived by taking regular tilings
having more than two vertices. The Platonic solids are direct examples of these.
Even more, we can take any regular maps and apply the tubification process to
derive large genus surfaces. In Figure 9.5, we show an example of a tubification of
the regular map R2.8’f8; 3g giving a genus 9 surface.

As in [vW09], a pairing of source and target map is used to generate higher genus
surfaces. The source map is the actual regular map that we want to realize and
the target map is the regular map which after tubification gives a space model for
the source map. Let (Mi)i2I be a finite sequence of regular maps such that a space
model of Mi+1 is the tubification of Mi. For a given n, if for all i < n, the Mi’s are
realized, then a tubification of Mn�1 is a space model of Mn. Otherwise, we cannot
give a space model for Mn. This becomes now a classical method used to visualize
successfully large class of regular maps. In the next section, we show that, in fact,
the sequence ofMi’s is not needed, only the pairing of source-target map is enough.

Targetless tubification The tubification of an existing regular map needs an
actual realization of the target regular map. If the target regular map does not
have a 3D embedding, then the tubification cannot be applied and thus no regular
surface can be generated.

We give a solution to this restriction by taking advantage of the planar represen-
tation of the target regular map. We call this process a targetless tubification.
Targetless in the sense that no actual 3D embedding of the target regular map is
needed but only an embedding of its edge graph is sufficient. In Figure 9.6 is an
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illustration of the overall process in comparison to the torus case.

We generalize the construction on the torus to hyperbolic space. Suppose we have
a tiling of a flat torus with its 2D edge graph. This edge graph can be mapped to
3D using the usual torus parameterization and hence a tubular surface is derived
naturally by the induced normals. In this process, only the edge graph is needed to
be embedded in space, not the 2D tiling. We apply the same process in hyperbolic
space which is done as follows. We identify explicitly boundary edges of the map
followed by the constrained relaxation described in [Raz12]. An example of a genus
5 surface obtained by the edge graph of the regular map R2.4f5; 10g is illustrated
in Figure 9.6. In this illustration, we start with the hyperbolic realization of R2.4
together with the identifications at the boundary (represented by the arrows). We
then match the boundary edges having the same label, head to head and tail to
tail. This results in a 2D connected graph which has the same combinatorics as
the edge graph of the underlying regular map. This 2D graph is smoothed using
a simple spring energy following Hook’s law. Notice that no actual embedding of
the regular map R2.4 is needed (see [S1́0] for a 3D realization of this map). Our
technique can be applied to any planar representation of a regular map to generate
a 3D tubular surface obtained from its edge graph.

parametrization

3

0

1 2

3

0

12 Identification Smoothing

1

1

2 2

Figure 9.6: Construction of a high genus surface by embedding directly the edge
graph of the target regular map.
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9.3 Identification Algorithm

In this section, we give a detail description of the identification algorithm. Given
the symmetry group of the target regular map, we give an automatic algorithm to
obtain the boundary edges to be identified. We first give a topological description
of the required settings and then the algorithmic construction.

Topological Representation Let Gpq be a regular map of genus � 2 whose
symmetry group is given by Sym(Gpq). This group can be realized as a triangu-
lar tiling in the hyperbolic plane, obtained from a triangle M0N0O0 with corner
angles (�=p; �=q; �=2) setting R to be the rotation of angle 2�=p around M0, S
the rotation of angle 2�=q around N0 and T the reflection across the edge M0N0

(see Figure 9.7). We denote this tiling by Tri(Gpq). Each triangle of Tri(Gpq) is a
geometrical representation of an element of Sym(Gpq).

I

S�1T

RT

RS

R

N0 O0

M0

T

S

Figure 9.7: Tri(Gpq) and Line(Gpq).

To make Tri(Gpq) a topological closed surface, we need to make correct identifi-
cations for the triangles at the boundary. This is similar to the representation of
a torus as a rectangle in the Euclidean plane with identified opposite edges (see
Figure 9.6). The correct identification at the boundary is obtained by finding the
missing neighbour of each triangle of Tri(Gpq) in Sym(Gpq) using the coset table
of the group. For example, in Figure 9.8(a), triangle T does not have a neighbour
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in Tri(Gpq) which in this case should be S. The relations of Sym(Gpq) imply that
S and S�1R3 lie in the same equivalence class. Since a triangle corresponding to
S�1R3 exists in Tri(Gpq), we identify their NO edges (blue lines). We proceed in
the same way for all boundary triangles to obtain finally a planar realization of
the regular map. Figure 9.8.b is an example of a topological representation of the
regular map R2.4f5; 10g preserving flag transitivity.

I RT

R

R2T
R2

R2T
R3

R3T

T

S�1T S�1R4

S�1R3T

S�1R3

S�1R2T

S�1R2
S�1R2T

S�1R

S�1RT

S�1

R4

3

0

1 2

3

0

12

(a) (b)

Figure 9.8: Representation of Sym(R2.4) in the hyperbolic space: (a) without
identification and (b) with correct identifications.

Let�i be a triangle of Tri(Gpq) with corner vertexMiNiOi. We denote by Line(Gpq)
the set of all NiOi segments of Tri(Gpq) which is again a geometrical realization of
Sym(Gpq). This group can be viewed as a “double covering” of the medial axis of
the associated regular surface. It is represented by red dashed segments and blue
segments in Figure 9.8. In the topological representation, the boundary arrows show
where a triangle or a NO segment should be glued. We can use this information
to make sure that an element L 2 Line(Gpq) has the same geometrical position
as LS�1T . Once all the L and LS�1T have the same geometrical position, we
can generate the regular surface by associating to each NO segment a half-tube
extending halfway to the middle of one of the tubular edges similar to [vW09].

Identification The goal of this Section is to give the elements L and LS�1T 2
Line(Gpq) (red dotted and blue segments on the boundary) the same geometrical
position. We do this by using the identifications induced from Tri(Gpq). As stated



78 CHAPTER 9. REGULAR MAPS

in the previous section, only the segments of Line(Gpq) on the boundary triangle of
Tri(Gpq) need to be moved. We could also try to do the identification directly on
the edges of Tri(Gpq) but it is hard if not impossible to resolve the intersecting faces
of the triangles after the identification. The identification is combinatorial and to
obtain a reasonable 3D initial configuration of the graph, we choose the Jemisphere
model of hyperbolic space. The Jemisphere model is a hemisphere like model of
hyperbolic space which is also conformal. Infinity is represented by the equator
(Figure 9.9).

1
2

3

0123

0

Figure 9.9: R2.4 projected on the Jemisphere model (left) and the resulting iden-
tification applied to Line(R2:4) on this model (right).

Suppose that we identify a directed edge a with a directed edge b. Define the tail of
a to be ta and tb the one of b. Find all segments of Line(Gpq) having ta as endpoint
and move these vertices to the tail tb of b. In this process, only the endpoints of a
are moved. We do the same for the head ha of a to the head hb of b. Once both
head and tail are matched, we update the geometrical position of a to be the one
of b. We iterate this process until all the boundary NO segments of Line(Gpq) are
identified. Figure 9.10 is an illustration of the overall process applied to Line(R2:4).
It is only a conceptual illustration to show how the identification is done. In state 1,
only four elements of Line(Gpq) are pairwise at the the same geometrical positions
(dotted segments are adjacent to continuous segments). The rest need to be moved
according to the glueing procedure defined previously. The orange dots represent
the edges to be identified. The red dots represent edges to be removed or updated.
The algorithm starts by identifying edge 0, first head to head and then tail to tail.
Once these are done (state 3), the red dotted line is updated to where it is identified.
Then, it continues with edges 1 and 2 with the same strategy. At state 10, there is
only one step to be done since the curve 3 is a loop.
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Figure 9.10: The process of identifying all elements L 2 Line(MT ) to have the same
geometrical positions as LS�1T and vice versa. On the final shape, each red and
blue line in state 1 are pairwise identified.

The input of the algorithm is the set of segments Line(Gpq) and the output is again
Line(Gpq) but the elements L and LS�1T have the same geometric positions.

The identification does not depend on the order of the glueing. The resulting curves
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and loops are the same. The only problem happens at the end of the identification
where the ordering of the segments at the nodes is not well-defined. If we try
to derive the regular surface, it might result in a degenerate tubular surface (see
Figure 9.13). We solve this ambiguity in the next section.

9.4 Regular Surfaces

Construction The regular surface obtained by the tubification of the edge graph
of a regular map Gpq is also a geometric realization of Sym(Gpq). It is derived by
associating to each element L 2 Line(Gpq) a quarter-tube QL. The folding of the
quarter-tubes depends on the corresponding element in Sym(Gpq). If the element
contains T (a continuous segment in Line(Gpq)), then it is folded left. Otherwise,
it is folded right. Here, left and right are defined according to the normals from O
to N . The geometric construction of the quarter-tubes is illustrated in Figure 9.11.
The normals along each segment are interpolated from the junctions.

QLS�1T

QL

QLT

Figure 9.11: Construction of the quarter-tube group Tub(Gpq) using normals de-
fined by the local neighborhood at the junctions vertices.

We call the resulting group Tub(Gpq). For all QL 2 Tub(Gpq), QL and QLS�1T form a
half-tube. This is possible due to the identification done previously. To have correct
tube junctions at the nodes of Line(Gpq), it is necessary to have, additionally, each
quarter-tube QL adjacent to QLT . This is equivalent to having a local ordering of
each segment of Line(Gpq) at the nodes.

The local ordering at each node is obtained from Sym(Gpq). Suppose that we are at
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a node v which is contained in the segments L0; : : : ; L2q�1 2 Line(MT ). The ordering
of the segments, as in the hyperbolic space, is reconstructed in a well defined plane
at v. If L0 = L, then we must find a plane on which L1 = LT;L2 = LS; : : : ; L2q�2 =
LSq�1; and L2q�1 = LSq�1T . In our implementation, we use this information as a
constraint and put Line(Gpq) in a spring relaxation procedure. An example of this
relaxation procedure is shown in Figure 9.12 for the case of Line(R2.4). The basic
idea is to consider each vertex of the graph as a charge particle attracted by its
neighbors and repulsed by the other vertices. This simple physical system gives
symmetrical shape but can also get stuck in local minima. For more details on the
implementation, we refer to [Raz12]. The resulting tubular surface is illustrated in
Figure 9.13.c.

Figure 9.12: Spring relaxation of Line(R2:4) with the plane constraint at the junc-
tion.

Figure 9.13.b is an example of such a plane where q = 4. Figure 9.13.a is an
example of a minimum state where the spring relaxation is not constrained inducing
a degenerate surface. The identification procedure does not unfortunately guarantee
this orientation. Figure 9.13.c is an example of Line(Gpq) for which Tub(Gpq) does
not have self-intersections with a well defined tangent plane at the node.
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v
L0 = L

L1 = LT

L2 = LS

L3 = LST

L4 = LS2

L5 = LS2T

L6 = LS3

L7 = LS3T

(a) Self intersection (b) Correct neighboring at a node(c) Correct tube junction

Figure 9.13: Wrong ordering at a junction may lead to a degeneracy of the regular
surface. The correct ordering is found on a suitable tangent plane.

9.5 Group Structure

In this section, we define a topological group structure on the surface generated
previously that we denote Sg.

Partition by Tube Elements The recursive tubfication procedure derived in
Section 9.2 allows us to choose a tiling of Sg. We have for example a tiling with
quarter-tubes, with half-tubes, with tube junctions, with full tubes or with multi-
ple quarter-tubes (see Figure 9.14). One piece of each tiling form a fundamental
domain of Sg, and as for every group, we can cover the surface by copies of this fun-
damental domain. These tilings are induced naturally from the underlying regular
map used to derive the tubular surface.

(a) quarter-tubes (b) half-tubes (c) tube junctions (c) full tubes

Figure 9.14: Example of a partition of Sg with some elements of the tubes.

The next step is now to define a group structure induced by the tube element in
order to define a parameterization of Sg. This parameterization will be then used
to map other regular maps as described in Section 9.5.
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Deriving the Symmetry Group We restrict our construction to the case of a
tiling with quarter-tubes as in [vW09]. The other cases can be handled analogously.
Let Q be the set containing all colored quarter-tubes of Sg. We label the edges of
a quarter-tube by a; b; c and d, where a is the one at the junction and b; c; d are
the next counter-clockwise edges as illustrated in Figure 9.15. The orientation is
defined by the normals of the surface at each quarter-tube.

We define a basic operation Adjx on Q which takes a quarter-tube Q and returns
the quarter-tube adjacent to Q at edge x:

Adjx : Q ! Q
Q 7! quartertube adjacent to Q at edge x

a

b

c

d

a

b

c
d

a

b
c

d

a

b

c

d

Adjc

Adjb

Adja

Figure 9.15: The adjacency operator defined on the set of quarter-tubes.

For example, (Adjb)2 is the identity since making two quarter-tube steps around a
tube returns to the same starting quarter-tube. (Adja)2 is also the identity. Let QI

be a fundamental domain of Q (it can be any quarter-tube of Q). We define three
operations A;B and C on Q as follows:

� A shifts QI two positions positively around a hole,
more precisely QA = Adja (Adjc(QI));

� B rotates QI around the junction, QB = Adjd (Adja(QI));

� C shifts QI one position down, QC = Adjb(QI).

Here, QM denotes the quarter-tube obtained by applying a transformation M to
QI .
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I

A

B
C

Figure 9.16: Three adjacency operators acting on the quarter-tube tiling: A shifts
QI two positions positively around a hole; B rotates QI around the junction; C
shifts QI one position down.

We can see A as a transformation moving a tube around a hole, B switches from
one hole to another hole and C enables to reconstruct a full tube from a quarter of
a tube. Using Adjx , we can derive the following relation

(CBA)2 = (BA)2 = (CB)2 = I

where, I denotes the identity transformation. Using the underlying symmetry group
of the tiling used to build Sg we can define a symmetry group of Sg as

Sym(Sg) =
D
A;B;C jApt ; Bqt; C2; (CB)2; (BA)2; (CBA)2;

g1(A;B;CB); : : : ; gn(A;B;CB)i ;

where, the gi’s are the extra relations of the symmetry group of the underlying
regular map.

A group structure on the genus 5 surface shown in Figure 9.16 is given by

Sym(M5) =
D
A;B;C jA4; B3; C2; (BA)2; (CB)2; (CBA)2

E
:



85 CHAPTER 9. REGULAR MAPS

This group has exactly 12�4 quarter-tubes. Once the group structure is introduced
on Sg, we can unfold this surface in hyperbolic space to embed a regular map on it.

Matching Symmetry Groups We give a brief description of the use of the
symmetry group introduced on Sg to realize a regular map. The regular map
is defined with its symmetry group Sym(Gpq) realized as a planar tiling in the
hyperbolic space.

The first step of the algorithm is to make an hyperbolic parameterization of Sg. The
parameterization is done by choosing a suitable fundamental quadrilateral hQI in
hyperbolic space as a fundamental domain of Sym(Sg). The idea is to make a 2D
realization of Sym(Sg) using another fundamental domain. Once the parameteriza-
tion is done, the regular map can be naturally mapped using the inverse mapping.
An overview of the algorithm is illustrated in Figure 9.17. The remaining problem is
then on the construction of hQi and the hyperbolic transformations corresponding
to the elements of Sym(Sg).

The construction of hQI depends on the matching between Sym(Sg) and Sym(Gpq).
These matchings are heuristics which check if there exists a partition of Sym(Gpq)
by Sym(Sg). A necessary condition is that the order of Sym(Sg) should divide
the order of Sym(Gpq) and a sufficient condition is the existence of a subgroup
of Sym(Gpq) isomorphic to Sym(Sg). In case of success, hQI can be constructed,
otherwise Sg is not a suitable space model for Sym(Gpq) and the mapping cannot
be done. Matchings between regular maps are generated using van Wijk [vW09]
heuristic. His heuristic also provides the exact position of the four points of hQI in
hyperbolic space.

In his lists, there are several mappings which cannot be visualized since the target
map does not have a 3D realization. This is mainly the case for the large genus
regular maps which depend on several lower genus ones. These cases are handled
by the targetless tubification in Section 9.2.

9.6 New Realizations

Unlike regular maps, regular surfaces can always be visualized. One weak point of
van Wijk’s approach [vW09] is that the embedding of a regular surface depends on
the embedding of the underlying regular map. For example, the regular surface of
the map R2.5f5; 10g can be used as a space model of the map R5.8f4; 20g but if
R2.5 is not embedded, so is R5.8. Our algorithm handles this case and depends only
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Abstract	tiling	of	
a	genus	g	surface	
(ex:	regular	map)

3D	structured	
genus		g	surface

Parametrization
using	the	group
structure

Projection	on	
a	fundamental
quarter-tube

Using	the	parametrization

Using	the	symmetry	group

Realization	of	the	regular	map	

Figure 9.17: Pipeline to visualize a regular map on a structured genus g surface.

on the regular surface of the target map, not the target map itself. In Figure 9.18
is our embedding of R5.8 together with its dual.

We find new realizations of regular maps by combining van Wijk’s heuristic [vW09]
with our algorithm. For the purpose of visualization, we show regular maps for
which q is not too large and regular surfaces whose number of junctions are not
2 (hosohedral surfaces). In all generated regular maps, we emphasize on the aes-
thetic visualization of the realizations in our most symmetric embeddings. Four
realizations are our favorite embeddings so far, mapped on the edge graphs of dou-
ble covered Platonic solids whose branch points are the centers of faces. They
are: R9.3’f6; 4g on a 2-Cube, the 6-rings or R13.1’f12; 3g on a 2-Octahedron (this
has also a nice relation with the Borromean rings [RP13]), R21.3’f6; 4g on a 2-
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Figure 9.18: A realization of the regular map R5.8f4; 20g (left) and its dual (right).

Dodecahedron and R37.2’f15; 3g on a 2-Icosahedron, see Figure 9.19.

Unfortunately, due to the even-sided faces of the cube, we could only achieve one C3
axis and one C2 axis on the double-covered geometry. For the other Platonic solids,
we only lost the non-oriented symmetry. The double covering of the Tetrahedron
gives the cube, so we do not show any regular maps mapped on its edge graph since
the edge graph of the cube is more symmetric.

In Figure 9.20 are more examples of regular maps we succeed to embed. For the
first three surfaces, we succeed in giving a rotational symmetry to the regular maps
since the valence of the junctions is not too high except those which have only one
junction. High valence junctions make the task of getting symmetry hard. Hence,
for those classes of regular maps, we only took a minimum of the spring relaxation
energy as the final shape.

In Figure 9.21 are three “really” large genus regular maps generated by our method.
For these classes of regular maps, obtaining symmetry is a huge amount of work.
Even a non self-intersecting surface is hard to obtain. However, we believe that a
careful understanding of the tubes and tiles can improve the symmetry of the shape.
R85.8’ is the regular map with the highest genus ever visualized so far (excluding
the hosohedral type of surfaces) where previously it was only a genus 29 regular
maps [vW09]. We asked ourselves how can one find an embedding even with one
C2 axis of such a complex topological object?

The algorithm does not have any limitation as long as the matchings between the
regular maps are provided. VanWijk’s heuristic gives correct matchings of hundreds
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R9.3’ on a 2-Cube R13.1’ on a 2-Octahedron

R21.3’ on a 2-Dodecahedron R37.2’ on a 2-Icosahedron

Figure 9.19: High genus regular maps embedded on the regular surfaces of double
covered Platonic solids.

of regular maps which can all now be visualized using our technique.

We showed how to generate an embedding of a regular surface implicitly from a
regular map. The regular map itself does not have a priori an embedding. Hence,
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R9.6’: 8 val-4 junctions, C2 R9.13’: 1 val-18 junctions, C9 R9.17’: 16 val-3 junctions, C3

R13.1’: 3 val-10 junctions R13.3’: 6 val-5 junctions R15.5’: 3 val-9 junctions

R16.3’: 10 val-5 junctions R17.11’: 8 val-6 junctions junctions R25.8’: 12 val-6 junctions

Figure 9.20: Some selected high genus regular maps generated by the algorithm.
In the first row, junctions are placed manually on a target shape while for the rest,
they are automatically generated.

such maps (for example, R2.5) are not handled by our algorithm. Our algorithm
also does not find regular maps for the Hurwitz surfaces. An interesting problem
will be to find a similar procedure to realize directly regular maps.
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R41.3’: 80 val-3 junctions

R85.8’: 84 val-4 junctions

R61.1’: 120 val-3 junctions

Figure 9.21: Some large genus regular maps generated that are intersection free.



Chapter 10

Extensions and Future Works

This Chapter brings light to a conceptual extension of the perfect matching quad
layout algorithm on T-meshes and volumetric meshes. We leave the implementation
as well as practical evaluations as future works.

T-edge

T-joint

T-joint

corner

singularitysingularitysingularitysingularitysingularitysingularitysingularitysingularitysingularitysingularitysingularitysingularitysingularitysingularitysingularitysingularitysingularity

Figure 10.1: An example of a T-layout on the Botijo model where the grey patch
is a quadrilateral face with four corners (grey and blues) bounded by T-edges.

91
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10.1 T-Layout to Quad Layout

In our graph construction, we either stop a tracing line when it starts to spiral (on
triangle mesh) or we stop when a singularity is reached (on quadrilateral mesh).
In the later case, the set of isolines gives the base complex of the surface while in
the first case we have constructed the so called T-mesh or in the spirit of coarse
layout, a T-layout ofM induced by all stopped isolines.

Definition 10.1. A T-layout is a partition of M into quadrilateral patches but
patch edges are split into sub-edges called T-edges delimited by vertices called
T-joint.

A quad layout is a particular type of T-layout where there is no T-joint. Following
the notation of [MPKZ10], there are three types of node vertices on a T-layout:
T-joints, regular and singular nodes. A T-joint is a valence three vertex where
three quads meet at an edge. A vertex is called regular if it has valence four (or
three on the boundary) and it is singular otherwise. A quad of a T-layout has four
corners which are not T-joint with respect to the face and four edges which are split
into T-edges (see Figure 10.1).

The graph construction presented in Chapter 4 can be directly adapted to work
on T-layouts. By finding a consistent T-edge weights as proposed in [MPZ14], we
can bypass the computation of a parameterization and work directly on the metric
induced by these weights.

Definition 10.2 (Geometric Integrability). A T-layout is integrable if it can be re-
alized as 2D periodic rectangular patches without degeneration. It is non-integrable
otherwise.

An example of an integrable T-layout is the motorcycle graph obtain by the sin-
gularity ports of a Poisson parameterization. The term integrable is here inherited
from the curl freeness of the induced gradient field. Non-integrable T-layouts are
characterized by the existence of limit cycles. Those are layouts which cannot
be realized as a 2D rectangular patch without collapsing some T-edges, e.g. in
Figure 10.2.

Definition 10.2 is too tight. It already assumes a geometric realization of the layout
which resumes to a global parameterization of M. Nevertheless, we could ignore
the realization and still work in a combinatorial manner on the layout graph as in
the quadrilateral mesh case.
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Figure 10.2: An example of a non-integrable T-mesh.

Definition 10.3 (Combinatorial Integrability). A T-layout is integrable if there
exists a non trivial edge map h : ET ! R�

+ such that the sum of the T-edge weights
on one side of a patch is equal to the sum of the T-edge weight of the opposite side
of the same patch.

In a more mathematical formalism, let (ei)i2I be the set of T-edges along an edge of
a quad patch and (ej)j2J , the opposite T-edges in the same patch. Then h satisfy
the following equality,

X
i2I

h(ei) =
X
j2J

h(ej): (10.1)

Definition 10.2 and Definition 10.3 are equivalent. In the combinatorial represen-
tation, we do not need a geometric realization of the patches as a parameterization
which is advantageous since we can directly construct G on a purely combinatorial
computation. Our construction can also be extended to non-integrable T-layouts
allowing zero edge weights to be an indicator as a stopping criterion. Without
loss of generality, we suppose that for a given T-joint, there exists a sequence of
monotone T-edges, i.e. without turning left or right on the T-layout, connecting
the T-joint to a singularity. We denote by dh the distance on the T-edges induced
by h.

Isoline Tracing Isoline tracings on T-layouts are much faster than on Poisson
parameterized surfaces. In the later case, for each triangle of the surface, we always
need to store all separatrices going through it which is mesh resolution dependent.
On a T-layout we can save this information on the T-joints and the T-edges. More,



94 CHAPTER 10. EXTENSIONS AND FUTURE WORKS

the T-layout can be given as input without the extra computation of a parameter-
ization.

xi

xj

c0Ti c1Ti

Ti
Tj

c0Tj
c
Tj
1 xk

sk

pk
a

c2Tic3Ti

m0 m1 m2

Figure 10.3: Isoline tracing on a T-layout.

Suppose we want to trace an isoline 
ka` on the T-layout. We start at a port pk
a and

follow the monotone T-edges until a T-face is intersected orthogonaly at a T-joint
m0. We denote by Ti the oriented T-face with corner vertices c0Ti; c

1
Ti
; c2Ti; c

3
Ti

which
contains m0. In this notation, c0Ti is always the first corner on the right of m0

in Ti. We denote by xi the distance of m0 to c0Ti using the metric induced by h.
Then 
0a` leaves Ti at a point m1 with distance xi from c1Ti at a T-edge opposite to
m0. We compute the new distance xj of m1 with respect to the adjacent T-face Tj
containing m1. It is computed by taking the difference of xi with dh(c1Ti; c

0
Tj
).

xj = xi � dh(c
1
Ti
; c0Tj)

We proceed similarly for the next T-faces until a stopping criterion or a maximum
tracing length is reached.

Given a point m = 
ka`(tm) such that m is on a T-edge of a T-face generated by the
previous isoline tracing approach, the distance of m to the singularity si is defined
as

Li
a(m) = dh(sk;m0) +

nX
k=0

dh(c
0
Tk
; c1Tk):

The point m0 is the T-joint where 
ia` intersects orthogonaly a T-face for the first
time. Here, n is the number of T-faces previously visited by 
ia` such that m 2 Tn.
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Graph construction The construction of G is similar to the quad mesh case. The
collection of the possible ports connection is done in three parts. First, at each T-
joint, we evaluate the ratio of the two intersecting separatrices. The corresponding
edges are then added temporarily to G. Second, we do a discrete tracing from each
T-joint and evaluate ratio of separatrices whenever a tracing intersect a T-edge of
a T-face. Finally, we evaluate the inter-relationship of all traced lines at a T-face
and deduce the edges of G accordingly. To avoid non singularity-free triangles in
the final graph, we post process all collected candidate ports of a port by sorting
them along their base length and applying the window reduction.

10.2 Hexahedral Mesh Simplification

Hexahedral meshes or cube meshes are 3D volumes made from cubes glued at their
faces and aligned smoothly to the boundary surface. In contrast to quadrilateral
meshes, the generation of hexahedral layouts are far more complicated. On these
meshes, there are two types of singularities. Most of them are edge singularities
i.e. edges whose number of adjacent cubes is not four and few of them are ver-
tices. Vertex singularities or node points are inner points where singular edges

Figure 10.4: Examples of edge singularities in a hexahedral mesh.

ends. Deriving base complexes for hexahedral meshes is achieved by tracing all
the separation surfaces emanating from the singular edges. Isolines become then
isosurfaces. The ports become surface directions and the separatrices are again
surfaces or separation surfaces. In Figure 10.4 are examples of singularities and
ports initialization on hexahedral meshes.

The graph construction algorithm applied to the isosurfaces cannot be extended
naturally. It only works for the trivial extruded 2D case, i.e. the base complex does
not contain node singularities and the isosurfaces do not contain any singularities,



96 CHAPTER 10. EXTENSIONS AND FUTURE WORKS

Figure 10.5: Base complex optimization can be trivially extended if the hexahedral
mesh does not contain singular nodes. Here, a 2D optimize hexahedral meshing of
a cylinder.

as in Figure 10.5. The problems appear when the isosurfaces contain singularities
generated by orthogonal intersecting isosurfaces. The isosurface can have branch
points where in the 2D case, we will just stop the tracing ehem a singularity is
reached. Understanding operations on the singularities of hexahedral meshes such
as collapses, creations and splits are still an open problem. In our investigation, we
realize that merging singular edges into node points is indispensable to obtain an
optimal base complex for hexahedral meshes. This is alas not anymore a matching
problem.

However, we can still apply the graph construction and the matching formulation
by restricting the list of candidate connections only on valid removal base complex
sheets as in [GDC15]. The main problem appears on the handling of singular
nodes. There is no much degrees of freedom for the ports at these singularities.
They behave like boundary ports in the quadrilateral mesh case i.e., we cannot
assign any candidates to them in order to preserve the singularity of the initial
hexahedral mesh. Hence, they do not enter in the matching problem but only in
the illegal crossing surfaces.



Chapter 11

Conclusions

Through the development of this thesis, we have been able to understand the
graph nature of the quad layout problem on manifold meshes. Previous works
have attempted to solve the problem either as iterative greedy constructions or
as a quadratic optimization. We have used the graph nature of the problem and
found its beautiful connection to the perfect matching problem with disjunctive
constraints which is classical in graph theory. Our construction is based on the
concept of singularity-free graph and disjunctive constraints guaranteeing the quad
topology of the resulting layouts. We have shown the effectiveness of our approach
for triangle meshes and for the global structure optimization of quad meshes. The
new approach is not limited to these classes of meshes, it could as well be used for
quad layout generation on non-conforming meshes such as T-meshes or applied to
the global optimization of hexahedral meshes.

Moreover, we have introduced the concept of regular surfaces which are very sym-
metric space models for regular maps. The visualization of regular maps is a very
challenging problem but our concept of targetless tubification increases the num-
ber of realized regular maps in their most symmetric visualization. Using a novel
identification in hyperbolic space which takes advantage of the group structure of
the regular map, we are able to visualize the regular surfaces of all regular maps
without an actual embedding of the surface. We have also introduced a covering
approach which enables us to make use of symmetric shapes such as the Platonic
solids as base shape to generate higher genus surfaces. These surfaces turn out to
be nice space models for other regular maps.

There are many interesting open questions which can be addressed for future works
from both topics.
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� Quad Layouts

– A strong proof of existence of a perfect matching for the graph con-
struction on triangle meshes.
We already proved that a non-constrained perfect matching would be
enough to construct a solution of the linear program P1 (introduced in
Chapter 5) but there is no guarantee that the graph constructed by our
method gives even one perfect matching. Nevertheless, we conjecture
that stopping at the spirals always gives a perfect matching in G.

– The correct number and placement of singularities.
The quality of a quad layout depends strongly on the number of singu-
larities, allowing singularities to move or merge will improve the layout
quality.

– A larger graph G.
We use singularity-free triangles for consistent candidate collections.
The introduction of non-singularity-free triangles which ignore geodesic
homotopy classes will enlarge the space of feasible solutions.

– Extension of the matching problem to 3D volume.
The tracing of isolines in a parameterization does not generalize on
hexahedral meshes. Isosurfaces might have branch lines on hexahedral
meshes, making them non simply connected where for isolines, such phe-
nomenon does not appear. We would like to see the extent of our algo-
rithm on hexahedral meshes.

� Regular Maps

– Better heuristics to find pairings of source and target regular maps.
Our pairing of source and target maps is based on [vW09] which reduces
the number of possible realizations to having only 4-fold symmetry in
each tube. The correlation between the symmetry groups of regular
maps is not yet fully understood. In other words, why can some regular
surfaces of regular maps be used as space models of others and some not?
This is a deep group theoretical problem which may involve advanced
algebraic geometric notions.

– Visualization of the Hurwitz surfaces.
Hurwitz surfaces are compact Riemann surfaces with exactly 84(g � 1)
automorphisms where g is the genus of the surface. These are genus
g surfaces with the highest symmetry. They are f3; 7g triangle tilings
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and the lower genus one include: the Klein quartic (genus 3), Macbeath
surface (genus 7) and the First Hurwitz triplet (genus 14). We give
a realization of the Klein Quartic in Figure 9.2. Finding a symmetric
embedding of the other two regular maps is still an open problems.



Appendix A

Energy minimization

Problem Formulation Given a triangle based cross field F = f(ut;vt)gt2TM, we
would like to find a parameterization map f(ti; fi = (ui; vi)gti2TM whose per triangle
gradients align best to F . It is equivalent to minimizing the energy

Ef =
X
t2TM

Area(t)Et (A.1)

with Et = (khrut � utk
2 + khrvt � vtk

2) such that for all edge e 2 fi(ti\tj), there
exists a transformation 'ij satisfying the curl free condition

'ij(e) = Jrij(e): (A.2)

Discretization Let us consider the space of continuous piecewise linear functions
in each triangle,

Sh = fu 2 C0(M); u is linear in each triangle ofMg

where C0(M) is the space of continuous function.

Sh is a vector space spanned by the vertex based Lagrange basis functions ('i)i2VM
which are linear functions defined at each vertex satisfying the Kronecker delta,

'i(j) = �ij

which is 1 at the vertex pi and zero everywhere else. For all u 2 Sh and for all
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t 2 TM,
ut = ut0'0 + ut1'1 + ut2'2

and
rut = ut0rjt'0 + ut1rjt'1 + ut2rjt'2

where 'i; i = 0; 1; 2 are the basis functions defined at the vertices of ti. The gradient
of a basis function rjt'i in the triangle t is defined by the 90 degree rotated edge
e opposite to pi in t scaled by the inverse of the area of t,

rjt'i =
1

2Area(t)
Je:

Consider ut = (ut0; u
t
1; u

t
2) and vt = (vt0; v

t
1; v

t
2) the coefficient of the scalar functions

at a triangle t. Then, Et can be formulated into the following quadtratic energy.

Et = (uTt Aut +Buut + Cu) + (vTt Avt +Bvvt + Cv) (A.3)
= E(ut) + E(vt) (A.4)

where A 2 R3�3;Bx 2 R3 and Cu 2 R such that
8>>><
>>>:
Aij = h2

D
rjt'i;rjt'j

E
(Bx)i = �2h

D
rjt'i;xt

E
Cx = kxtk

2:

(A.5)

The usual way to minimize Equation A.1 is to take the partial derivatives, make
it equal to zero and solve the linear system. It is a very fast computation but not
robust in practice. The resulting parameterization is not in general injective which
is not suitable for our application unless stiffening like approach [?] is applied. In
order to guarantee (partially or generally) injectivity, we consider the problem as
a global optimization problem, i.e. we would like to find (u; v) that minimizes
Equation A.1 subject to curl-freeness and local as well as global injectivity. Mainly,
we want to solve the following linear program

minimize
X
t2TM

Area(t)Et (A.6)
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subject to Equation A.2 and the bisector condition for injectivity introduced in
Chapter 6. The system has 6jTMj unknowns ( (u; v) coordinates per vertex, per
face) which can be reduced by defining a spanning tree onM inducing a cut graph
connecting the singularities and makingM a topological disk.

Let us consider two triangles t and l sharing an edge e represented respectively by
(uti+1�u

t
i; v

t
i+1� v

t
i) and (ulj+1�u

l
j; v

l
j+1� v

l
j) in both chart. More, denote by C the

set of edges along the cut path of the surface. Then for all e 2 C, the curl-freeness
condition becomes,

 
uti+1 � u

t
i

vti+1 � v
t
i

!
� Jrlt

 
ulj+1 � u

l
j

vlj+1 � v
l
j

!
= 0 (A.7)

and for all e =2 C,
 
uti
vti

!
� Jrlt

 
ulj+1
vlj+1

!
= 0 and

 
uti+1
vti+1

!
� Jrlt

 
ulj
vlj

!
= 0 (A.8)

(ulj+1; v
l
j+1)

(ulj; v
l
j)

(uti; v
t
i)

(uti+1; v
t
i+1)

t

l

e

rlt

Where rlt is the matching between the two frame directions from l to t. We use
CPLEX to solve the linear program by constraining only the triangles adjacent to
singularities. Far away fold-over does not affect our isoline tracing algorithm.
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Solver Comparison

We compare existing optimization packages to solve the minimum weight perfect
matching with pair constraints on triangle meshes. The input graphs are derived
from our construction which have in most cases more number of conflicting edges
than number of edges. For each solver, we emphasize on the flexibility, i.e. free
versus commercial. The free software should be open-source and should run in
reasonable amount of time. There exists several open sources as well as commercial
software for integer optimization problem. Most popular among them are

� GLPK (GNU Linear Programming Kit). GLPK is a free and open source
software written in ANSI C which uses the Branch-and-bound algorithm for
mixed integer problems. It is authored by Andrew O. Makhorin [Mak00] and
is still actively maintained.

� LP_ SOLVE. lp_solve is a Mixed Integer Linear Program solver which is
also open source written in ANSI C and uses the Branch-and-bound algorithm.
It was originally developed by Michel Berkelaar at Eindhoven University of
Technology, several enhancement followed later on [MBN04].

� SCIP. SCIP is a non-commercial solver for mixed integer programming de-
veloped at the Zuse Institute Berlin. It is implemented as C callable library
and can also be used as a standalone program to solve mixed integer programs
given in classical data format [Ach09].

� CPLEX. CPLEX [IBM15] is one of the standard commercial software to solve
mixed integer problems. It uses the primal-dual simplex method implemented
in C, highly parallelized routines and several interfacing with high-level pro-
gramming language. It is unfortunately very expensive but the software can
be fully used for academic purpose.
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Describing the specific methods and routines used in each software is not our main
focus. We would like to check which of them is best appropriate to our specific
problem.

B.1 Input Models

We choose four triangulated models to run the algorithm which are classical bench-
mark models also used by IGM [BCE+13] and DLM [CBK12]. The problem is first
generated as .lp file from CPLEX and then given as input to the other software.
The CPU timing is in second and is return by the respective packages. If the solver
takes too much time to look for a feasible solution i.e. more than one hour, we give
it the mention fail.

B.2 Statistics

Models Graph Timings
|E| |I| GLPK lp_solve SCIP CPLEX

Botijo 1736 32192 9.4 224.5 2.0 0.64
Elk 1023 14150 7.0 11.0 0.9 0.46
Fertility 1118 18831 1.8 0.9 2.6 1.09
Rockerarm 609 9441 0.8 0.2 0.9 0.15
Boudha 2657 81139 49.5 Fail 7.28 1.9

Table B.1: Comparison of several integer program optimization package on closed
parameterized surfaces allowing multiple edges in G.

As expected, CPLEX performs best in our benchmarks. For the free software, it is
hard to decide which of them is better. On the Botijo model LP_SOLVE took
too much time where on the Fertility, it outperformed all other free software.
We find SCIP to be more stable among the three software. It scales very well with
respect to the graph and the number of conflicting edges. LP_SOLVE fails to give
a solution on the Boudha model where SCIP still performs reasonably well.
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Zusammenfassung

Diese Dissertation beschäftigt sich mit zwei grundsätzlichen Konzepten in der Oberflächen-
topologie. Der erste Teil behandelt das Problem, eine gegebene Oberfläche in Vierecksgitter
zu pflastern. Ist eine regelmäßige Pflasterung gegeben, werden im zweiten Teil Methoden
vorgeschlagen, um eine symmetrische geschlossene Oberfläche zu bauen und diese sym-
metrisch einzubetten. Oberflächepflasterung hat eine breite Reihe von Anwendung in der
Computergrafik und Geometrieverarbeitung.

Für eine gegebene Oberfläche schlagen wir einen flexiblen Algorithmus vor, welcher aut-
moatisch Vierecksgitter von hoher Qualität auf dieser Oberfläche erzeugt. Strukturierte
Darstellung einer Oberfläche durch Vierecksgitter hat praktische Anwendungen in unter-
schiedlichen Bereichen, wie Unterteilungsflächen, Approximation von Oberflächen, Kom-
pression und Hierarchien in der finiten Element Methode. Unser Ansatz besteht darin,
einen Singularitäten-Graph eines Rahmenfeldes zu konstruieren. Dieses Feld dekodiert die
lokalen Strukturen der Geometrie. Das Problem, ein Vierecksgitter auf der Oberfläche zu
erzeugen ist damit äquivalent zur Konstruktion eines minimalen gewichteten Matchings mit
disjunkten Nebenbedingungen. Das resultierende Vierecksgitter ist von hoher Qualität in
dem Sinne, als das es trotz grober Auflösung den lokalen Strukturen der Geometrie folgt.
Anwendungen unserer Methode auf Dreiecks- und Vierecksgitter zeigen, dass die Ergebnisse
sich mit denen anderer aktueller Methoden messen können.

Für eine gegebene reguläre Pflasterung, präziser eine reguläre Karte, führen wir die entsprechende
reguläre Oberfläche ein. Diese ist die passendste Oberfläche von hohem Genus, welche
die gegebene Pflasterung realisiert. Das Visualisieren regulärer Karten ist ein schwieriges
Problem. Alle regulären Karten, bzw. symmetrischen Pflasterungen einer Oberfläche
von Genus bis 302 sind algebraisch bereits bekannt. Sie liegen in Form von Symme-
triegruppen vor, welche auf den entsprechenden universellen Abdeckungsräumen agieren.
Jedoch ist wenig über die geometrischen Realisierungen bekannt, d.h. über das Finden
hoch-symmetrischer Einbettungen abgeschlossener Oberflächen und die passenden hoch-
symmetrischen Pflasterungen. In dieser Arbeit führen wir einen Algorithmus ein, welcher
automatisch räumliche Modelle für einige dieser regulären Karten erstellt und dabei schöne
Oberflächen mit sehr hoher Symmetrie erzeugt.
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