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I. MOTIVATION 
 

The growing world population comes along with an increasing demand for fuel and electricity. So far, 

the energy needs have been covered predominantly by fossil fuels and to a minor extent by nuclear 

power. Both energy sources possess significant drawbacks. The major disadvantages of fossil fuels are 

that the combustion produces carbon dioxide, a powerful greenhouse gas, and that the fossil sources 

will be depleted in the long run. Nuclear power, on the other hand, involves a significant risk for 

radioactive contamination of human habitat and a problematic disposal of nuclear waste. 

Renewable energy sources like solar or wind power are potential alternatives to fossil fuels and nuclear 

power, as they are CO2 neutral, sustainable (Lewis and Nocera 2006) and non-hazardous. However, 

solar and wind power are not as reliable as the conventional energy sources, since they vary with 

daytime and weather. A storage technology is required to compensate these temporal fluctuations 

(Lewis and Nocera 2006). The storage of the renewable energy in the form of chemical fuels is a 

promising approach, since fuels exhibit clearly higher energy densities than batteries (Cook, Dogutan 

et al. 2010). 

One way to convert renewable energy into fuel is the use of electrochemical cells driven by solar or 

wind power. The cells can produce molecular hydrogen as a fuel through water splitting (electrolyser) 

(Gratzel 2001, Lewis and Nocera 2006, Cook, Dogutan et al. 2010, Walter, Warren et al. 2010, Armaroli 

and Balzani 2011, Reece, Hamel et al. 2011) or liquid fuels like formic acid or methanol through CO2 

reduction (Morris, Meyer et al. 2009, Appel, Bercaw et al. 2013, Centi, Quadrelli et al. 2013, Costentin, 

Robert et al. 2013, Kondratenko, Mul et al. 2013, Reske, Duca et al. 2013, Mistry, Reske et al. 2014, 

Qiao, Liu et al. 2014, Reske, Mistry et al. 2014). To regain the energy, the fuel can be combusted later 

on demand in a fuel cell or engine.  

The water splitting as well as the CO2 reduction rely on electro-catalysts to boost the slow kinetics of 

the involved chemical reactions and to lower the required electrode voltage close to the thermo-

dynamical potential of the reactions. So far, catalysts are often based on rare and, therefore, expensive 

noble metals like Pt, representing an economic bottle neck for the electrochemical fuel production and 

combustion. The development of catalytic materials based on earth-abundant and, hence, cheap 

elements would remove this economic obstacle (Gordon, Bertram et al. 2006) and, thus, support the 

proliferation of renewable energy sources. The understanding of the catalytic mechanisms at work in 

these materials would help to optimize their catalytic performance. 
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In this thesis, we investigate the atomic structure of a variety of catalytic materials for H2 formation 

and CO2 reduction that are based on earth-abundant elements. The investigations are performed with 

X-ray absorption spectroscopy because of the amorphous or ‘weak crystalline nature’ of the materials. 

The following topics are addressed: 

I. Methods 

 

II. Results 

 

1. MoSx catalyst (x = 2 or 3) for H2 formation prepared by electro-deposition and doped 

with Co or Ni 

 

2. Co-based catalyst for H2 formation prepared by electro-deposition 

 

3. Molecular Ni catalyst for H2 formation grafted on a carbon-nanotube support 

 

4. Fuel cell with noble-metal free catalysts for H2 oxidation and O2 reduction 

 

5. Cu-based catalyst for CO2 reduction prepared by electro-deposition 

 

III. Summary 

In ‘Methods’, we give an introduction to the basics of the used measurement methods, X-ray 

absorption spectroscopy (XAS) and electrochemical experiments. The practical implementation of the 

methods is described and important experimental details are denoted. Furthermore, we provide a 

description of the data processing, the spectra simulation and the analytical methods applied in our 

XAS analysis. 

In ‘Results’, the investigated catalytic systems are introduced in detail and the obtained results from 

the XAS investigations and (if conducted) electrochemical studies are presented. The results are 

discussed in respect of the open questions about the atomic structure and (if possible) the catalytic 

mechanism of the investigated catalyst. Furthermore, we provide for each catalytic system a 

description of the specific preparation procedure. 

In ‘Summary’, we summarize the outcome of our investigations on the catalytic systems presented in 

this thesis. For each system, the crucial findings of the investigation are stated and the open questions 

about the atomic structure and (if possible) the catalytic mechanism are answered as conclusive as 

possible. 

In the following, we give a brief introduction into the catalytic systems studied in this thesis and 

describe the objectives of our investigations. 
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ELECTRO-DEPOSITED MoSX AND Co/Ni:MoSX ELECTRODES 

In the first chapter of ‘Results’, we study an electro-deposited molybdenum sulfide catalyst for the 

hydrogen-evolution reaction (HER) and the promotion of its catalytic activity by doping with Co or Ni. 

In general, molybdenum sulfide materials are a non-precious alternative as HER catalysts to the highly 

active but scarce and, hence, expensive Pt. MoS2 crystals are known as poor catalysts (Tributsch and 

Bennett 1977, Jaegermann and Tributsch 1988) but nanocrystals of MoS2 with unsaturated edge sites 

exhibit significant catalytic activity (Hinnemann, Moses et al. 2005, Jaramillo, Jorgensen et al. 2007, 

Bonde, Moses et al. 2008, Chen, Cummins et al. 2011, Li, Wang et al. 2011). The preparation of the 

nanocrystals, however, involves ultrahigh vacuum or thermal treatments at high temperatures of 400 

– 550 °C, leading to high production costs for the catalyst. The amorphous MoSx catalysts (x = 2 or 3) 

established by Merki et al. might be a less costly alternative, as it can be prepared by simple electro-

deposition under ambient conditions and exhibits a high activity for HER (Merki, Fierro et al. 2011, 

Merki, Vrubel et al. 2012). The as-prepared MoSx catalyst is a mixture of amorphous MoS2, which is the 

catalytic species, and MoS3 (Merki, Fierro et al. 2011, Merki, Vrubel et al. 2012, Lassalle-Kaiser, Merki 

et al. 2015). Merki et al. reports that the doping of the MoSx catalyst with Co or Ni increases its catalytic 

activity for HER, as the dopants promote catalytic load, surface area and intrinsic activity of the catalyst 

(Merki, Vrubel et al. 2012). In this thesis, we analyse the doped and undoped MoSx catalyst via X-ray 

absorption spectroscopy and, thus, provide insight into the atomic structure of the Mo and dopant 

sites during HER catalysis. From these structural insights, we derive possible implications for the 

catalytic HER mechanism, supported by complementary electrochemical studies. We additionally 

examine the MoSx catalyst for OER activity and identify the corresponding catalytic species. A non-

precious, easy-to-produce MoSx catalyst active for HER and OER could be interesting for possible 

electrolyser or fuel cell devices. 

 

CATALYTIC Co ELECTRODE ELECTRODEPOSITED UNDER REDUCTIVE CONDITIONS 

In the second chapter of ‘Results’, we investigate an electro-deposited Co-based catalyst for HER and 

OER. Cobalt-based oxides have been reported as robust electro-catalysts for the oxygen-evolution 

reaction (OER) (Kanan and Nocera 2008, Risch, Khare et al. 2009, Dau, Limberg et al. 2010, Jiao and 

Frei 2010, Yin, Tan et al. 2010, Chou, Ross et al. 2011, Shevchenko, Anderlund et al. 2011, Wee, 

Sherman et al. 2011). For the hydrogen-evolution reaction (HER), cobalt compounds are promising as 

well. Several investigations reported a series of cobaloxime and diimine-dioxime  compounds that 

show notable properties for HER at low over-potentials (Hu, Cossairt et al. 2005, Razavet, Artero et al. 

2005, Baffert, Artero et al. 2007, Hu, Brunschwig et al. 2007, Jacques, Artero et al. 2009, Dempsey, 

Winkler et al. 2010, Fourmond, Jacques et al. 2010). However, for the application in devices, molecular 

catalysts have to be grafted onto an electrode material without degrading their catalytic activity (Le 

Goff, Artero et al. 2009). For the mentioned Co compounds, this has not been be achieved so far due 

to synthetic issues (Artero, Chavarot-Kerlidou et al. 2011). To avoid the complications of a grafting 

process, Cobo et al. present an convenient approach of forming a Co-based HER catalyst directly on 

the electrode via reductive electro-deposition from an aqueous solution of Co(NO3)2·6H2O at pH 7 

(Cobo, Heidkamp et al. 2012). The Co-based catalyst also exhibits catalytic activity for OER. In this 

thesis, we analyse this catalyst via X-ray absorption spectroscopy and provide insight into the atomic 

structure of the catalytic species for HER and OER. 
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MOLECULAR Ni CATALYST GRAFTED ON A CARBON-NANOTUBE CATHODE 

In the third chapter of ‘Results’, we study the [Ni(P2
PhN2

CH2Pyrene)2]2+ complex (“NiP4”) which is a 

molecular catalyst for H2 formation. Its structure is inspired by the active sites of hydrogenases, 

enzymes for H2 oxidation and reduction (Canaguier, Artero et al. 2007, Tard 2009). For the use in fuel 

cells or electrolysers, the NiP4 complex is grafted on multi-walled carbon nanotubes (MWCNTs) to 

assemble electrode material (Le Goff, Artero et al. 2009). MWCNTs are advantageous as support 

material, as they offer high surface areas (facilitating high catalyst loading), high stability and electrical 

conductivity (Tasis, Tagmatarchis et al. 2006, Sgobba and Guldi 2009). For grafting the NiP4 complex 

on the MWCNTs, Tran et al. present an approach (based on (Zhao and Stoddart 2009)) that is more 

suitable for application than previous ones (Le Goff, Artero et al. 2009) as it attaches the NiP4 complex 

via noncovalent π–π stacking directly on the MWCNTs (Tran, Le Goff et al. 2011). The final NiP4-

MWCNTS electrode material is noble-metal free, exhibits a low over-potential and high stability for H2 

evolution or uptake and is compatible with conditions in classical proton-exchange membrane devices 

(Le Goff, Artero et al. 2009, Tran, Artero et al. 2010). In this thesis, we analyse the NiP4-MWCNTs 

material via X-ray absorption spectroscopy and show that the grafting process can affect the structural 

integrity of the NiP4 complex. 

 

NOBLE METAL-FREE FUEL CELL 

In the fourth chapter of ‘Results’, we investigate a fuel cell based on proton exchange membrane (PEM) 

technology that employs earth-abundant materials as catalysts for the H2 oxidation and O2 reduction 

reactions (HOR and ORR). PEM fuel cells can be used in a wide range of portable and automotive 

applications. However, so far PEM fuels cells require Pt as catalyst for the HOR and ORR. This 

represents an economic bottle neck for the fuel cells, as Pt is rare and, hence, expensive. The 

substitution of Pt by earth-abundant catalysts is a potential way to remove this economic handicap. 

Significant progress in the substitution of Pt was achieved for the ORR-side of the fuel cells (Bashyam 

and Zelenay 2006, Pylypenko, Mukherjee et al. 2008, Gong, Du et al. 2009, Lefevre, Proietti et al. 2009, 

Liu, Wu et al. 2010, Morozan, Jegou et al. 2011, Morozan, Jousselme et al. 2011). However, a PEM fuel 

cell with earth-abundant catalysts on both electrodes, ORR and HOR, has not been reported before 

the work of Tran et al. (Tran, Morozan et al. 2015). The fuel cell of Tran et al. utilizes as ORR catalyst a 

novel Cobalt/nitrogen/Vulcan (Co-N-C) material and as HOR catalyst a previously studied carbon-

nanotube material functionalized with biomimetic Ni complexes (Ni-CNT) (Tran, Le Goff et al. 2011). In 

thesis, we analyse both catalysts, ORR and HOR, via X-ray absorption spectroscopy and show effects 

on the atomic structure of the catalysts by the operation conditions in a PEM fuel-cell. Furthermore, 

we provide first insights in the atomic structure of the ORR catalyst. 

 

CATALYTIC Cu ELECTRODE FOR CO2 REDUCTION 

In the fifth chapter of ‘Results’, we study an electro-deposited Cu-based catalyst for CO2 reduction. In 

recent studies, electro-catalytic material for CO2 reduction has been investigated in non-aqueous 

media like organic solvents or ionic liquids (DiMeglio and Rosenthal 2013, Asadi, Kumar et al. 2014, 

Medina-Ramos, DiMeglio et al. 2014, Nakata, Ozaki et al. 2014, Oh, Vrubel et al. 2014). Non-aqueous 

media enables a higher solubility of CO2 and a convenient control of H2 evolution via adjusting the 
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water concentration. Novel catalytic materials were developed based on MoO2 (Oh, Vrubel et al. 2014), 

Bi (DiMeglio and Rosenthal 2013, Medina-Ramos, DiMeglio et al. 2014) and B-doped diamond (Nakata, 

Ozaki et al. 2014) or consist of molecular metal complexes (Morris, Meyer et al. 2009, Appel, Bercaw 

et al. 2013, Costentin, Robert et al. 2013, Qiao, Liu et al. 2014) whose activity is adjustable via ligand 

variations. Huan et al. report a novel Cu material that is electro-catalytic for the reduction of CO2 into 

formic acid (liquid fuel), showing remarkable activity, selectivity and stability (Huan, Andreiadis et al. 

2015). The material is prepared via electro-deposition and operates in a non-aqueous medium 

(dimethylformamide). In thesis, we analyze the catalytic Cu material via X-ray absorption spectroscopy 

and provide insights in the atomic structure of the catalytic species. 
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II. METHODS 
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1. X-ray absorption spectroscopy on 

catalyst electrodes 
 

BASICS 

The following short introduction in X-ray absorption spectroscopy is based on the textbooks of B. Teo, 

G. Bunker and S. Calvin (Teo 1986, Bunker 2010, Calvin 2013). 

In X-ray absorption spectroscopy (XAS), a sample is irradiated with a monochromatic X-ray beam and 

the absorption of the beam by the sample is measured. To obtain a XAS spectrum, the absorption 

behaviour of the sample is recorded over an interval of beam energies. Absorption appears if the beam 
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Figure 1 

A representative XAS spectrum for K-edge absorption, here, recorded at the Co edge for Co metal. The division 
of the spectrum in XANES and EXAFS is marked by the vertical dashed gray lines. The XANES are created by 
exciting the 1s electrons (K shell) via X-ray photons (excitation energy) into unoccupied d orbitals (pre-edge) 
and, at higher energies, into unoccupied p orbitals (main edge). The 1s � 3d and 1s � 4p transitions are 
indicated by vertical arrows, the former in blue and the latter in red, at their usual energy range in the spectrum. 
The EXAFS are created by expelling the 1s electrons out of the absorber atom and their interactions with the 
electron clouds of neighbour atoms. The transition is indicated by a green arrow. 
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energy matches or exceeds the binding 

energy of core electrons of atoms in the 

sample. The core electrons absorb the 

beam photons and are excited into 

higher unoccupied shells or are expelled 

from the atom. The threshold of the 

binding energy is visible in the XAS 

spectrum as absorption edge (see Figure 

1 and Figure 2). The mean energy of the 

absorption edge (first inflection point) is 

specific for each chemical element (e. g. 

7709 eV for Co, 8333 eV for Ni, 20000 eV 

for Mo, …). 

In the K-edge absorption (see Figure 1), 

the beam is absorbed by electrons in the 

1�  orbital (K shell) and, obeying the 

selection rule for electromagnetic 

dipole transitions, excites them into 

higher �  orbitals, if they are 

unoccupied. Transitions into 

unoccupied � orbitals may also happen 

but only if they possess a minor � 

character due to mixing with � orbitals. 

However, the probability for this 

transition is significantly smaller. All 

transitions together give rise to an 

abrupt absorption edge. A pre-edge may 

precede the main edge, if unoccupied � 

orbitals are available at a lower energy 

than unoccupied � orbtials. The spectral 

features of the pre-edge, the main edge 

and until ≈30 eV beyond are the so-

called X-ray absorption near-edge 

structure (XANES). The XANES spectra 

contain information about the chemical 

nature of the neighbouring atoms or 

ligands around the absorber atom 

within a radius of ≈3 Å including the 

geometry of their coordination 

environment and the oxidation state of the absorber atom. Usually, it is very complicated to extract 

this information from the XANES in a quantitative way. Hence, most of the time a XANES spectrum is 

interpreted in a more qualitative way via a comparison with reference spectra where the atomic 

structure of the ligand environment is known. 

0

1

2

3

4

5

6

7

8

7600 7800 8000 8200 8400 8600 8800

0

1
2

 

 

Io
n

iz
a

ti
o

n
 c

u
rr

e
n

t 
[n

A
]

1

 

 

N
o

rm
a

li
ze

d
 a

b
s

o
rp

ti
o

n
 [
r.

u
.]

Excitation energy [eV]

 

Figure 2 

A representative XAS spectrum (Co metal foil) for K-edge 
absorption before (raw) and after data processing, here, 
recorded at the Co edge. Panel 1 shows the raw, unprocessed 
spectrum. The ionization current represents the beam intensity. 
After the sample, the beam passes through an ionization 
chamber. The ionization of the gas in the chamber is 
proportional to the beam intensity. K-edge absorption of the 
sample appears as an abrupt drop in the ionization current. 
Panel 2 shows the same spectrum after the complete data 
processing: normalization with the beam intensity before the 
sample, application of the negative logarithm, energy 
calibration, removal of the background before the edge and 
removal of the slope after the edge. 
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In the high end of the XANES spectrum, the extended X-ray absorption fine-structure (EXAFS) starts to 

emerge and expands over ≈1000 eV beyond the XANES region (see Figure 1). In the EXAFS region, the 

beam energy is sufficient to expel the excited 1� electron out of the atom. The probability for the 

electron ejection is modified by the interaction of the photo-electron with the electron clouds of 

neighbour atoms. The matter wave of the photo-electron is scattered by the neighbour atoms, leading 

to an interference between the original wave and the scattered wave. During a scan of the EXAFS 

region, the continuous increase in beam energy varies the wave length of the photo-electron, leading 

to an oscillation between constructive and destructive interference. This oscillation affects the 

probability for the photo-electron ejection and induces an oscillating behaviour in the EXAFS region of 

the absorption signal (see Figure 2). The EXAFS contain structural information of the atomic 

environment around the X-ray absorbing atom, since the phase and the amplitude of the scattered 

photo-electron wave are dependent on the type of the neighbour atoms and their distance to the 
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Figure 3 

A representative Fourier transform (FT) of a k3 weighted EXAFS spectrum (k = wavenumber of photo-electron 
wave) recorded of a Co metal foil at the Co K-edge. The original EXAFS were extracted from the spectrum 
shown in Figure 2.2. In the FT, each prominent peak represents a coordination shell of ligands or neighbour 
atoms around the absorber atom. The peak position corresponds to the reduced mean distance, r, between the 
atoms of the coordination shell and the absorber atom. The reduced distance differs up to 0.3 Å from the correct 
value. The peak magnitude corresponds to the coordination number, N, and the Debye-Waller parameter, σr, 
of the coordination shell. The latter is the root-mean-square (RMS) deviation from r and is a measure for the 
spatial order of the coordination shell. The exact values for r, N and σr can be determined from EXAFS 
simulations. 
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absorber atom. The Fourier-transform (FT) of the EXAFS is a way to make the structural information 

directly visible (see Figure 3). In the FT, each coordination shell of neighbour atoms is represented by 

a peak. The position of the peak corresponds to the mean distance, �, from the coordination shell to 

the X-ray absorbing atom; and the peak height to the coordination number, �, and the Debye-Waller 

parameter, ��, of the coordination shell. This information can be determined quantitatively via EXAFS 

simulations (see subsequent sections). 

The X-ray absorption of the sample leads to simultaneous fluorescence, as electrons of higher atom 

orbitals relax into the 1�  vacancies created by the ejected core electrons. The probability of the 

fluorescence emission is directly proportional to the probability of the absorption process, which 

created the vacancy in the 1�  orbital. Therefore, the excitation spectrum of the fluorescence is 

proportional to the absorption spectrum, enabling the fluorescence detection of the absorption. 

However, the proportionality holds only if the optical thickness of the sample is sufficiently low to 

avoid re-absorption of the fluorescence photons (self-absorption). The fluorescence detection of the 

K-edge absorption can be achieved via recording the Kα fluorescence, which arises from 2� electrons 

relaxing into the unoccupied 1� orbitals. 

 

MEASUREMENT DETAILS 

The X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine-structure 

(EXAFS) measurements at the Co, Ni and Cu K-edge were performed at the KMC-1 bending-magnet 

beam line of the BESSY synchrotron (Helmholtz-Zentrum Berlin for Materials and Energy). The energy 

of the X-ray beam (excitation energy) was adjusted by a double-crystal monochromator (Si-111). The 

sample was transferred into a cryostat (Oxford instruments) to keep it at a temperature of 20 K during 

the measurement. The liquid He cryostat cooled the sample via heat conduction over He gas (0.2 bar). 

The used sample holders provide a sample spot of 6 x 15 mm2 for powder samples, and of 11 x 15 mm2 

for tissue and quasi in-situ electrochemical samples. 

For the recording of XANES and EXAFS spectra, the X-ray beam energy was screened over a typical scan 

range for Co K-edge from 7580 to 8750 eV, for Ni from 8215 to 9375 eV and for Cu from 8840 to 

10010 eV.  The measurements were performed in absorption and fluorescence mode. In absorption 

mode (see Figure 4), the intensity of the X-ray beam is measured before and after the sample via 

ionisation chambers (containing N2 gas). The face of the sample was oriented perpendicularly to the 

incoming beam. In fluorescence mode (see Figure 4), a fluorescence detector with 13 Ge-elements 

(Canberra) was aligned orthogonal to the X-ray beam and collected the fluorescence photons emitted 

by the sample. The face of the sample was oriented to the detector and the incoming beam in an angle 

of 45°, respectively. The distance between detector and sample was adjusted to gain optimal 

fluorescence counts and to prevent saturation of its elements. The energy windows of the single 

channel analysers for the 13 detector-elements were set to the Kα-emission line of Co, Ni or Cu, 

respectively. Beam scattering from the sample can lead to saturation of the detector elements. In this 

case, a filter foil (5 µm thick) was placed between sample and detector consisting of metallic Fe, Co or 

Ni when measuring Co, Ni or Cu Kα-emission, respectively. Absorption mode was applied if the sample 



 

13 
 

absorbs ≈90 % of the X-ray beam intensity (powder samples), and fluorescence mode if the absorption 

is below 10 % (tissue or electrochemical quasi in-situ samples). Spectra were collected from different 

non-overlapping spots of the sample, then weighted by their signal to noise ratio and averaged to one 

sample spectrum. 

For calibrating the energy axis of the sample spectrum, a reference (energy standard) with an 

established energy position of its absorption edge was recorded simultaneously with the sample. In 

the case of measurements at the Co, Ni or Cu K-edge, a metallic Co, Ni or Cu foil (10 µm thick) was used 

as reference, respectively. The first maximum in the derivative of the metal-foil spectra (= first inflexion 

point of their absorption edges) has an established energy position that is for Co at 7709 eV, for Ni at 

8333 eV and for Cu at 8979 eV (published in (Bearden and Burr 1967)). In the experiment, the energy 

position of this maximum can differ from the denoted reference values. Then, the energy axis of the 

experimental data (foil and sample spectra) is shifted until the energy position of the maximum 

coincidences with the reference value. 

The XANES and EXAFS measurements at the Mo K-edge were performed at the SAMBA bending-

magnet beam line at the SOLEIL synchrotron in Paris. The excitation energy was adjusted by a double-

crystal monochromator (Si-220). The typical scan-range for a measurement at the Mo K-edge was 

 

Figure 4 

Schematic representation of a set-up for XANES and EXAFS spectroscopy. 
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19810 to 20980 eV. To record the Mo Kα-emission of the sample, a 35 Ge-elements detector (Canberra) 

was used. In case of saturation of the detector-elements due to beam scattering, a Nb or Zr foil was 

placed between the sample and the detector. A metallic Mo foil was used as reference for the energy 

axis with the established energy position of its Mo K-edge at 20000 eV (see (Bearden and Burr 1967)). 

The used set-up was analogous to the set-up at KMC-1 in BESSY as well as the applied experimental 

methods. At SAMBA, the same types of samples could be measured as at KMC-1, since the same 

sample holders could be applied. 

 

POWDER AND TISSUES SAMPLE 

The powder samples were carefully grinded and appropriately diluted with BN. The final powder was 

filled into a sample frame (thickness 1 mm, made of transparent poly(methyl methacrylate) (PMMA)) 

whose window (area 6 x 15 mm2) on the backside was closed with Kapton tape (thickness 0.025 mm). 

After filling the sample, the front window of the sample frame was closed with Kapton tape as well. In 

the case of a tissue sample, the tissue was carefully attached onto the sticky inner side of the Kapton 

tape that closes the window (area 11 x 15 mm2) of the sample frame from the backside. After this 

preparation, the powder and tissues samples were stored in liquid N2 until the XANES/EXAFS 

measurement. 

 

FREEZE-QUENCH PREPARATION 

For the freeze-quench preparation of samples (see Figure 5), a 3 mm thick sample frame (made of 

transparent poly(methyl methacrylate) (PMMA)) was used with a window area of 11 x 15 mm2. The 

working electrode (WE) was attached on the backside of sample frame via a silicone glue or Kapton 

tape, completely covering the window of the frame. The electrical contact of the electrode consisted 

of copper tape, sticking out by ≈1 cm on the bottom of the sample frame. As counter electrode (CE), a 

Pt wire was pierced through two holes on the side of the sample frame and formed to a single loop 

parallel to the surface of the WE in a distance of 3 – 5 mm. The ends of the wire, sticking out by ≈1 cm 

laterally from the frame, were twisted to one electrical contact. After incorporation of the Pt wire, the 

holes on the side of the sample frame were sealed with glue. 

For the electrochemical experiment, the electrical contacts of the WE and CE were connected to a 

potentiostat via cables with crocodile clamps. The probe of a reference electrode (RE) was approached 

to the WE at a distance of 5 mm and placed in the window centre of the sample frame. Then, 

electrolyte was filled into the window until the Pt wire of the CE and the probe of the RE were 

completely immersed. 

For freezing the sample at a certain potential of the WE, a two-step procedure for the electrochemical 

conditioning was applied. The freeze-quench sample was placed in a small tray made of polystyrene 

(PS). In the first step, the sample was kept at the desired WE potential for a certain time and the 

potential difference between WE and CE was recorded simultaneously. After that, the RE was removed 



 

15 
 

and its cable to the potentiostat was connected to the CE. In a second step, the equilibrium value of 

the beforehand determined potential difference, WE – CE, was applied as new WE potential. After 

1 min, the PS stray was filled with liquid N2 (LN2) to freeze the sample. Then, the conditioning was 

stopped and the sample was stored in LN2 until the XANES/EXAFS measurements. 

The freeze-quench preparation was developed by my co-worker Marcel Risch (published in (Risch, 

Klingan et al. 2012)). 

 

SPECTRA PROCESSING 

All XANES/EXAFS spectra recorded from one sample were processed in the same way. The intensity of 

the absorption spectra, 
� , (see Figure 6.1) was converted into absorbance (see Figure 6.2) via 

�log���
� 
�⁄ � with the intensity of the X-ray beam before the sample, 
�. The photon counts of the 

fluorescence spectra were corrected for the number of not-detected photons due to possible dead 

time of the detector elements and, then, normalized with 
�. The single fluorescence spectra of all 

detector elements were averaged to one spectrum. After these initial steps, both types of spectra, 

absorbance and fluorescence, were processed in the same way. 

 

Figure 5 

Schematic representation of a freeze-quench sample. The potentiostat is connected via the Cu and Pt contacts 
of working and counter electrode, respectively. 
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The energy axis of the XANES/EXAFS spectrum was corrected with the simultaneously measured 

reference spectra, as previously explained. Then, the background of the spectrum was removed by 

subtracting a linear function fitted to the range of the spectrum before the absorption edge (see Figure 

6.3). After that, the jump of the absorption edge was normalized to one via dividing the spectrum by 

a polynomial function (of polynomial order = 1, 2 or 3) fitted to the range of the spectrum shortly after 

the edge (see Figure 6.4). All spectra from one sample are averaged to one sample spectrum weighted 

by their individual signal-to-noise ratio. The final XANES/EXAFS spectrum is shown in (see Figure 7.1). 

For extracting the EXAFS, the range of the spectrum after the edge was fitted with a spline function 

(number of knots = 3 – 7) as centre line through the EXAFS oscillations (see Figure 7.1). Then, this part 

of the spectrum was cut-out and its background was removed by subtracting the spline function, 

yielding a so-called  � spectrum (see Figure 7.2). The energy axis of the spectrum, �, was substituted 

by an energy offset, � – ��, relative to the threshold energy, ��, of the absorption edge. After that, 

the energy offset was converted into an axis of the photo-electron wave vector, � , via � =
 ��2� ⁄ ℏ�  �� �  �� �  (� … mass of the electron, ℏ … Planck constant divided by 2�). The converted 

spectrum was weighted with �� to compensate the increasing damping of the EXAFS oscillations at 

larger � values (see Figure 7.3). This form of the EXAFS spectrum was fitted via EXAFS simulations to 
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Figure 6 

Data processing of a representative XAS spectrum for K-edge absorption (here Co edge). (1) raw, unprocessed 
spectrum. (2) conversion into absorbance spectrum. (3) removal of the background by subtracting a linear 
function (red line). (4) normalization via dividing the spectrum by a polynomial function (red line). 
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obtain the structural information from the EXAFS (see subsequent sections). In the last step, the 

spectrum was Fourier-transformed to make the structural information of the EXAFS directly visible (see 

Figure 7.4). 

The entire processing of the XANES/EXAFS spectra was executed with the in-house software Bessy. A 

program developed by Dr. Petko Chernev. 
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Figure 7 

Extraction of the EXAFS from a representative XAS spectrum for K-edge absorption (here at the Co edge). 
(1) spectrum from Figure 6 with a spline function (red line) fitted as centre line through the EXAFS oscillations. 
(2) cut-out EXAFS oscillations, the so-called � spectrum. The energy axis is substituted by an energy offset, 
E – E0, relative to the threshold energy, E0, of the absorption edge. (3) energy offset is converted into the photo-
electron wave vector k and the spectrum is weighted with k3. (4) Fourier transform of 3. 
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EXAFS SIMULATIONS 

The extracted and k3 weighted EXAFS data (see Figure 7.3) was simulated in k space with the software 

SimX lite (developed by Dr. P. Chernev). For the simulation, the atomic environment around the X-ray 

absorbing central atom was modelled via a certain number,  !"#$$ , of atomic shells. Each shell, % , 

consisted of atoms of the same element in a certain number, �&, and distance, �&, to the absorber 

atom. The following formular was applied to calculate the contribution of each shell to the EXAFS 

spectrum, ����, and to sum up all contributions to the final spectrum (Teo 1986, Penner-Hahn 1999, 

Rehr and Albers 2000): 

���� =  '�� ∙ ) *�+& , ��& ∙ �& ∙
-./011

&
23�456∙76 ∙ sin�2� ∙ +& + <&� 

Equation 1 

'�� … amplitude reduction factor 

*�+&, ��& … scattering amplitude of the electron wave 

�&  … number of neighbours in the %th atomic shell 

�& … Debye-Waller parameter of the %th atomic shell 

+& … distance between the X-ray absorbing atom and the atoms in the %th atomic shell 

<& … phase shift experienced by the photo electron 

The structural parameters �& , �&  and +&  as well as '�� were used as fit parameters for fitting the 

simulation to the real spectrum. In the fitting, the simulation error, =�>�, represented by the following 

function was minimized via a least-square approach using a Levenberg-Marquardt algorithm: 

=�>� =  )����, >�& � ?&��
-

&
 

Equation 2 

> … vector containing all fit parameters 

���, >�& … data point of simulated EXAFS spectrum 

?&  … data point of experimental EXAFS spectrum (  data points) 

The used phase functions, <& , in ���� , (see Equation 1) were calculated with the FEFF program 

(Ankudinov, Ravel et al. 1998, Rehr and Albers 2000) (version 8.4, self-consistent field option 

activated). Atomic coordinates of the FEFF input files were generated from crystal structures of 

appropriate reference compounds. The scattering paths were obtained up to a radius of 12 Å for up to 

‘four-legged’ paths. 
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UNCERTAINTY OF FIT PARAMETER 

The uncertainty of the fit parameters > was determined by calculating the inverse Hesse matrix of the 

normalised simulation error via d�=-A�B�>�/d>� for the optimal fit parameters >DEF. The diagonal 

elements GHH of the inverse Hesse matrix are the squared uncertainties of the single fit parameters IH. 

The normalised simulation error was obtained via =-A�B�>� =  =�>�/� using the statistically relevant 

(averaged) experimental error � as norm. In the case of a reasonable simulation, the error � can be 

estimated via the equation: 

J =  �&KL
� ∙  =�>DEF�

�  

Equation 3 

J … degrees of freedom in the simulation 

� … number of data points in the fit range 

�&KL … number of statistically independent data points in the fit range 

� … experimental error 

=�>DEF� … simulation error with optimal fit parameters >DEF 

The degrees of freedom of a simulation are the difference, J = �&KL � �M&N, between the number of 

independent data points, �&KL , and the number of fit parameters, �&KL , in the simulation (Eadie, 

Drijard et al. 1971). In a reasonable simulation, the simulation error correlates with the degrees of 

freedom, since a certain number of fit parameters only enables the optimal simulation of an equal 

number of independent data points. Hence, the degrees of freedom weighted with the experimental 

error should be equal to the simulation error. This relation enables the estimation of the experimental 

error, under the assumption that the error is equal for all independent data points. 

The number of independent data points was estimated via �&KL  ≈ 2 ∙ ∆� ∙ ∆+/� (Stern 1993, IXAS 

2000). ∆� corresponds to the fit range in �-space and ∆+ to the range of meaningful data above the 

noise in +-space. 

 

MEASURE OF THE FIT QUALITY 

The quality of EXAFS simulations were quantified with the filtered Rf-factor that is the relative 

difference between the simulated and the real EXAFS spectrum after Fourier-filtering. The simulated 

and the real spectrum were Fourier-transformed into R-space and only the R-range of the Fourier-

transforms containing the relevant structural information was transformed back into k-space. Only 

these Fourier-filtered spectra were used for the Rf calculation via the formula: 
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 +M =  100 ×  ∑ |���, >�&∗ � ?&∗|-&
|?&∗|  

Equation 4 

> … vector containing all fit parameters 

���, >�&∗ … data point of simulated, Fourier-filtered EXAFS spectrum 

?&∗ … data point of experimental. Fourier-filtered EXAFS spectrum (  data points) 

 

SUBTRACTION OF METAL CONTRIBUTION FROM SPECTRUM 

The extended X-ray absorption fine-structure (EXAFS) spectrum of a non-metallic species can be 

obscured by the spectrum of a prominent metallic contribution in the sample. In this case, the metallic 
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Figure 8 

Demonstration of the artificial diminishment of a metallic EXAFS contribution. Blue line: spectrum of a sample, 
here H2-CoCat at -0.79 V vs. NHE, exhibiting oscillations in the predominantly metallic range of the EXAFS 
(> 7900 eV). Light blue line: sample spectrum subtracted by a metal spectrum (here a Co metal foil) weighted 
with a factor of 0.30; and subsequently re-normalized. The same repeated with a weighting factor of 0.50 or 
0.60 yields the green or yellow spectrum, respectively. Black line: ideal EXAFS spectrum without any metallic 
oscillations. Ri represents the fit residuals calculated for every point of the metal-subtracted spectrum. In a 
least-squares approach, the optimal weighting factors of the metal subtraction are determined by minimizing 
the sum of the squared fit residuals. 
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contribution can be artificially diminished (see Figure 8) by subtracting a weighted metal spectrum 

from the EXAFS of the sample: 

�2VWX-�2�ZG2� ��2GV�Z� = 1
1 � [ × ��W��X2 ��2GV�Z� � [ × �2VWX ��2GV�Z�� with [ < 1 

Equation 5 

The “metal-reduced” difference spectrum is re-normalized with the factor 1 �1 � [�⁄ . The weighting 

factor [ corresponds to the relative amount of metal in the sample. In the predominantly metallic 

range of the difference spectrum, the EXAFS oscillations are fitted to a horizontal line with amplitude 

one, leading to a minimization of their amplitude. In the fit procedure, the weighting factor is varied 

from zero to one. The fit uncertainty is estimated as the difference between the final weighting factor 

with a minimal sum of squared residuals and a sub-optimal weighting factor exhibiting the double sum. 

 

LINEAR COMBINATION OF SPECTRA 

The X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine-structure 

(EXAFS) spectrum of a sample recorded at a certain absorption edge can be a composition of spectra 

from various species of the X-ray absorber atom present in the sample. To reassemble the sample 

spectrum via a linear combination of two or more reference spectra is a possible way to identify these 

various species of the absorber atom. The linear combination (see Figure 9) is a weighted addition of 

the reference spectra: 

X% 2W� G`�a% WV%` =  [�  × �2b2�2 G2 ��2GV�Z� 1 +  [�  ×  �2b2�2 G2 ��2GV�Z� 2 + ⋯ 

Equation 6 

The weighting factors [& (linear coefficients) correspond to the individual proportions of the reference 

species in the sample (∑ [& = 1&  and [& < 1). The linear combination is fitted to the sample spectrum 

via a least-squares approach with the weighting factors as fit parameters. In the fit procedure, the 

weighting factors are varied from zero to one. The fit uncertainty is estimated as the difference 

between the final weighting factors with a minimal sum of squared residuals and sub-optimal 

weighting factors exhibiting the double sum
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Figure 9 

Demonstration of the linear combination of XANES/EXAFS spectra. Green line: a sample spectrum, here the 
H2-CoCat at +1.37 V vs. NHE. Red line: first reference spectrum, here the O2-CoCat, weighted with the factor 
0.75. Blue line: second reference spectrum, here H2-CoCat at -0.79 V, weighted with the factor 0.25. Blue-

dotted red line: linear combination of the two weighted reference spectra. Ri and Rj represent the fit residuals 
calculated for every point of the linear-combination spectrum. In a least-squares approach, the optimal 
weighting factors of the linear combination are determined by minimizing the sum of the squared fit residuals. 
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2. Electrochemical cell and methods 
 

THREE-ELECTRODE SYSTEM 

The following short introduction in a electrochemical cell (three-electrode system) and cyclic 

voltammetry is based on the textbook of A. J. Bard and L. R. Faulkner and the publication of P. T. 

Kissinger and W. R. Heineman (Bard and Faulkner 1980, Kissinger and Heineman 1983). 

In a three-electrode configuration (see Figure 10), an electrochemical cell consists of a working 

electrode, a counter electrode and a reference electrode placed in an electrolyte. The working 

electrode and the counter electrode are connected to an external power source provided by a 

 

Figure 10 

Set-up of an electrochemical cell with a three-electrode system connected to a potentiostat. Here, the 
potentiostat applies a cathodic voltage between working and counter electrode. The corresponding flow 
direction of the electrons in the wire as well as for the ions in the electrolyte is indicated by arrows. An anodic 
voltage would reverse the flow directions and the assignment of the electrodes as ‘cathode’ or ‘anode’. ‘A’ and 
‘V’ represent the ampere- and the voltmeter incorporated into the potentiostat. The electrical circuit depicted in 
the potentiostat is very simplified. 
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potentiostat and form, together with the 

electrolyte, a closed electric circuit (see 

Figure 10). The potentiostat is a device 

for controlling and measuring the 

electrode potential of the working 

electrode as well as the current flowing 

through the electrode. The potentiostat 

can adjust the potential and the current 

of the working electrode by modifying 

the voltage between working and 

counter electrode. 

The working electrode contains the 

sample (in this thesis: a catalytic film on 

a substrate). The electrode potential and 

current of the working electrode are 

crucial probes to characterize the 

sample. The electrode potential arises at 

the interface between working electrode 

and electrolyte due to the transfer of 

charged species across the sample, 

specific adsorption of ions at the sample 

surface, and orientation of polar 

molecules in sample and electrolyte. 

The electrode potential of the working 

electrode is measured against a constant 

equilibrium potential provided by the 

reference electrode. The probe of the 

reference electrode is located close to 

the surface of the working electrode and 

is shielded via a diaphragm to protect its 

electrochemical equilibrium. Almost no 

current is flowing through the reference 

electrode due to the very high ohmic 

resistance of the circuit of the 

potentiostat. 

The counter electrode completes the 

electrical circuit formed by the 

potentiostat, the working electrode and 

the electrolyte. The function of the 

counter electrode is to provide the 

electric potential needed for maintaining 

a certain electric current required by the working electrode. The magnitude of the electric current is 

determined by electric potential and processes at the working electrode. The counter electrode must 
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Figure 11 

The principle of cyclic voltammetry (CV). (A) The potential of 
the working electrode is cycled with a constant (absolute) scan 
rate between a lower and an upper potential limit. (B) 
Simultaneously, the current occurring at the electrode is 
recorded. (C) In the common representation of cyclic 
voltammetry, the current is plotted over the potential and the 
time line is neglected or indicated by arrows. The CV was 
recorded on a Co doped MoSx catalyst (x = 2 or 3). 
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not affect or limit the electrochemical reactions at the working electrode. Hence, the material of the 

counter electrode possesses a high surface area and exhibits a low electrical resistance. 

 

CYCLIC VOLTAMMETRY 

Cyclic voltammetry (CV) is a method for the electrochemical characterisation. In this method, the 

electrode potential of the working electrode is cycled with a constant scan rate between a lower and 

an upper potential limit (see Figure 11A) while the current response is simultaneously recorded (see 

Figure 11B). Positive currents correspond to anodic currents and indicate that an oxidation process 

takes place at the working electrode. In this process, anions are forced by the electrical potential to 

react chemically and to release electrons to the working electrode. Negative currents in CV correspond 

to cathodic currents, indicating a reduction process at the working electrode. In this process, the 

electrical potential forces cations to react chemically and to receive electrons from the working 

electrode. The sample attached to the working electrode (in this thesis, a catalytic film on a substrate) 

can contain chemical species (i. a. metal ions) that are involved in the oxidation and reduction 

processes and undergo oxidation-state changes. These species provide only a limited quantity of 

oxidizable or reducable atoms and, therefore, exhibit anodic or cathodic currents which decay after 

the initial rise as the available atoms are consumed by the oxidation or reduction. These limited anodic 

or cathodic currents can be visible as distinct waves in CV if an appropriate scan velocity is used (see 

anodic wave a and cathodic wave b in Figure 11C). In an aqueous electrolyte, CV can indicate catalytic 

hydrogen formation or water oxidation after exceeding the corresponding standard electrode 

potential by a steep rise in respective cathodic or anodic current (see anodic rise c in Figure 11C). These 

catalytic currents do not decay as their educts are abundant in an aqueous electrolyte or formed at 

the counter electrode. 
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III. RESULTS 
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1. Electro-deposited MoSx and 

Co/Ni:MoSx electrodes 
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INTRODUCTION 
Molybdenum sulfide materials as catalysts for hydrogen formation are a non-precious alternative to 

the highly active but scarce and, hence, expensive Pt. Bulk MoS2 crystals are known as poor catalysts 

(Tributsch and Bennett 1977, Jaegermann and Tributsch 1988) but nanocrystals of MoS2 with 

unsaturated edge sites exhibit significant catalytic activity (Hinnemann, Moses et al. 2005, Jaramillo, 

Jorgensen et al. 2007, Bonde, Moses et al. 2008, Chen, Cummins et al. 2011, Li, Wang et al. 2011). The 

preparation of the nanocrystals, however, involves ultrahigh vacuum or thermal treatments at high 

temperatures of 400 – 550 °C, leading to high production costs for the catalyst. The amorphous MoSx 

catalysts (x = 2 or 3) established by Merki et al. might be a less costly alternative, as it can be prepared 

by simple electro-deposition under ambient conditions and exhibits a high activity for H2 formation 

(Merki, Fierro et al. 2011, Merki, Vrubel et al. 2012). The as-prepared MoSx catalyst is a mixture of 

amorphous MoS2, which is the catalytic species, and MoS3 (Merki, Fierro et al. 2011, Merki, Vrubel et 

al. 2012, Lassalle-Kaiser, Merki et al. 2015). 

Merki et al. reports that the doping of the MoSx catalyst with Co or Ni increases its catalytic activity for 

H2 formation, as the dopants promote the film growth leading to a higher catalytic load and a larger 

surface area (Merki, Vrubel et al. 2012). Merki et al. suggests that, under certain conditions, the 

dopants can additionally increase the intrinsic activity of the catalyst (Merki, Vrubel et al. 2012). At 

pH 7, the doped catalysts exhibit an increase in their exchange current densities (ca. 12 fold) that is 

significantly higher than the increase in either surface area (ca. 1.5 – 3 fold) or catalyst loading (ca. 3 

fold) (all values reported in (Merki, Vrubel et al. 2012)). 

Our objective is to gain insight into the atomic mechanism behind the intrinsic activity and its 

promotion by doping. In the first main section Atomic structure, we will investigate the atomic 

structure of the MoSx catalyst at the Mo, Co and Ni site with X-ray absorption spectroscopy. The atomic 

structure will be studied in a state of H2 formation and in a non-catalytic state. In the second main 

section Hydrogen formation, we will discuss possible implications of the observed atomic structure 

and of its structural modification during catalysis on the catalytic mechanism for H2 formation. The 

magnitude of the modification could be an indicator for the catalytic activity of the corresponding site. 

In the last main section Water oxidation, we will additionally investigate whether the MoSx catalysts, 

undoped or doped, exhibit catalytic activity for water oxidation and will try to identify the catalytic 

species. A non-precious, easy-to-produce MoSx catalyst active for H2 formation and water oxidation 

could be interesting for possible electrolyser or fuel cell devices.
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PREPARATION 
The MoSx and Co/Ni:MoSx electrodes (x = 2 or 3) were prepared according to the protocol of Merki et 

al. as published in (Merki, Vrubel et al. 2012). The MoSx films were electro-deposited (three-electrode 

system) on glassy carbon substrates (100 µm thick, 5 - 10 Ω) via cyclic voltammetry in an aqueous 

solution (100 ml milliQ water) of 0.1 M NaClO4 with 2 mM (NH4)2MoS4. For doping the films with Co or 

Ni, 0.67 mM CoCl2·6H2O or NiCl2·6H2O were added to the solution, respectively. The solution was 

freshly prepared for each film deposition. The back side of the glassy carbon was covered by Kapton 

tape to allow film deposition only on the front side (deposition area 15 x 12 mm2) facing the reference 

electrode. For film deposition, the applied cyclic voltammetry performed 25 cycles between +0.30 V 

and -0.80 V vs. normal hydrogen electrode (NHE) with a scan rate of 50 mV/s. After deposition, the 

electrodes were rinsed with milliQ water. The used type of reference electrode was mercury-sulphate 

with an equilibrium potential of +0.65 V vs. NHE. The counter electrode was a Pt mesh located in a 

glass compartment with a glass frit and filled with 0.1 M NaClO4 solution. The used potentiostat was a 

Biologic SP200 or SP300. 

The MoSx and Co/Ni:MoSx electrodes were characterized by cyclic voltammetry (scan rate of 1 mV/s 

or 20 mV/s) in a 0.1 M KH2PO4/K2HPO4 buffer (in milliQ water) of pH 7. IR compensation was applied. 

The characterization was executed in the same three-electrode set-up as described for the film 

deposition. 

Prior to the X-ray absorption spectroscopy (XAS) measurements, the MoSx and Co/Ni:MoSx electrodes 

were conditioned at -0.80 V, -0.35 V or +1.40 V vs. NHE for 12 min in a 0.1 M KH2PO4/K2HPO4 buffer (in 

milliQ water) of pH 7. After the conditioning, the electrodes were immediately frozen and stored in 

liquid N2 until the XAS measurements. The conditioning and freezing were performed in a special 

electrochemical cell adapted for XAS measurements as described in the section Freeze-quench 

preparation of the Methods chapter. 

The deposition, conditioning, freezing and characterization of the electrodes were executed under N2 

atmosphere. All used solutions were degassed by purging with N2 gas prior to the experiments. 
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ATOMIC STRUCTURE 
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Mo SITE - ATOMIC STRUCTURE 
 

RESULTS AND DISCUSSION 

 

EXPECTED STRUCTURE 

The applied preparation method 

for the Co-doped, Ni-doped and 

undoped MoSx (x = 2 or 3) Merki 

electrodes is supposed to 

produce a mixture of amorphous 

MoIVS2 and MoVS3 (Merki, Fierro 

et al. 2011, Merki, Vrubel et al. 

2012). The deposition is done by 

cycling the potential 

between -0.8 V and +0.3 V vs. 

normal hydrogen electrode (NHE) 

in an aqueous solution of 

(NH4)2MoS4 with an additional 

contribution of CoCl2 or NiCl2 for 

the doping. In a potential cycle, 

MoS3 is deposited between 0 V 

and +0.3 V and MoS2 

between -0.8 V and -0.7 V (Vrubel 

and Hu 2013). In the intermediate 

potential range, the deposited 

MoS3 experiences a partial 

corrosion (Vrubel and Hu 2013). 

In general, there is evidence 

(Merki, Fierro et al. 2011) that 

MoS3 is deposited under anodic 

conditions (shown for electrolysis at ≈ +0.55 V in (Belanger, Laperriere et al. 1993)) and MoS2 under 

cathodic conditions (shown for electrolysis from -0.75 V to -1.15 V in (Ponomarev, Neumann-Spallart 

et al. 1996)). Additionally, MoS3 can convert to MoS2 at cathodic potentials by reducing the S2
2- in MoS3 

to S2- (Merki, Fierro et al. 2011, Merki, Vrubel et al. 2012). In our study, the Merki electrodes were 

conditioned and frozen at cathodic potentials, -0.8 V and -0.35 V, to capture their state during H2 

formation and inactivity, respectively. Hence, the electrodes should mainly consist of amorphous 

MoS2. 

The atomic structure of amorphous MoS2 is not defined but it is supposed to consist of MoIV centres 

coordinated to S2- ligands like in crystalline MoS2 exhibiting similar Mo-S distances. However, the 

number of the S ligands and their geometry is unclear. Amorphous MoS2 does not possess a long-range 

order. Amorphous MoS3 (see Figure 12), on the other hand, consists of MoV centres coordinated to S2- 

 

Figure 12 

Left side: proposed Mo2S9 building block for the atomic structure of 
amorphous MoS3 (scheme based on illustration in (Hibble, Rice et al. 
1995)). Right side: chain model proposed for amorphous MoS3 with 
the possible inter-connection between the chains (scheme based on 
illustration in (Weber, Muijsers et al. 1995)). 
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and S2
2- ligands. The Mo centres form Mo2S9 units via a Mo-Mo coordination of 2.8 Å (see XAS studies 

in (Cramer, Liang et al. 1984, Scott, Jacobson et al. 1986, Hibble, Rice et al. 1995, Afanasiev and 

Bezverkhy 2002, Afanasiev, Jobic et al. 2009, Tang, Grauer et al. 2011)). The Mo-Mo distance is shorter 

than in crystalline MoS2 with 3.2 Å. The Mo2S9 units of MoS3 possibly form chain-like structures, as 

proposed by (Chien, Moss et al. 1984). 

 

Mo-S COORDINATION 

X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) of 

the doped and undoped MoSx Merki electrodes (x = 2 or 3) were recorded at the Mo K-edge to gain 

insight into the atomic structure of their Mo sites. Prior to the XANES/EXAFS measurements, the 

electrodes were conditioned (12 min, pH 7) and frozen either at -0.80 V or -0.35 V vs. normal hydrogen 

electrode (NHE), to study structural differences between Mo sites in a state of catalytic H2 formation 
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Figure 13 

XANES spectra recorded at the Mo K-edge of the undoped MoSx Merki electrode at -0.80 V vs. NHE (black 
line) compared to MoIVS2 (blue line) and MoVIS4(NH4)2 (magenta line). The shown electrode spectrum is 
representative for the doped electrodes at -0.80 V and for the electrodes at -0.35 V. 
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(-0.80 V) and in a non-catalytic state (-0.35 V) (standard electrode potential of hydrogen reduction E0
H2 

= -0.41 V at pH 7). 

The Mo XANES of the undoped Merki electrodes (see Figure 13) are similar in shape to the spectrum 

of MoIVS2 and show larger deviations when compared to the spectrum of MoVIS4(NH4)2, in particular, 

the lack of a pre-edge (see arrow in Figure 13). This suggests that the first coordination sphere of the 

Mo sites in the electrodes is rather a geometry of six S ligand as in MoIVS2 than a four-ligand geometry 

as in MoVIS4(NH4)2. The same can be deduced for the Mo sites in the Co or Ni doped Merki electrodes, 

since their XANES are almost identical to spectra of the undoped electrodes (see Figure 14B). The 

XANES of the electrodes exhibit a position of the Mo edge close to the edge of MoIVS2 (see Table 1), 

1.1

1.2

1.3

20000 20020 20040
0.0

0.5

1.0

1.5

2.0

20000 20020 20040
0.0

0.5

1.0

1.5

2.0

2.5

MoS
x

Ni:MoS
x

Co:MoS
x

-0.35 V

MoS
x

Ni:MoS
x

-0.80 V

 

 
N

o
rm

a
li
ze

d
 f

lu
o

re
s

c
e

n
c

e
 (

r.
u

.)

Excitation energy (eV)

Co:MoS
x

1

2

2

A B

-0.35 V

-0.80 V

Ni:MoS
x

MoS
x

-0.35 V

-0.80 V

Co:MoS
x

MoS
x

 

 

Excitation energy (eV)

 

Figure 14 

XANES spectra recorded at the Mo K-edge of the Merki electrodes. In A: doped and undoped MoSx Merki 
electrodes at -0.80 V vs. NHE (magenta line) compared to the same electrodes at -0.35 V (black line). The 
inlet shows a magnification of the edge summit indicated by arrow 2. In B: Ni doped (green line) and Co doped 
(red line) Merki electrodes compared to the undoped electrodes (blue line) at the same electrode potential. 



 

34 
 

indicating a mean oxidation state of about IV for the 

Mo sites in the electrodes. The alteration in 

electrode potential from -0.35 V to -0.80 V leads only 

to small modifications in the XANES of the 

electrodes. At -0.80 V, the XANES exhibit a small shift 

in the summit of the edge towards lower excitation 

energies by 0.3 – 0.7 eV (see arrow 2 and inlet in 

Figure 14A) as well as an analogue shift in the upper 

half of the edge by 0.3 – 0.4 eV (except for the Ni 

doped electrode) (see arrow 1 in Figure 14A). Both 

shifts (see Table 1) suggest that, at -0.80 V, a small 

fraction of MoIV ions is reduced to MoIII. Similar but 

smaller shifts are visible between the undoped and 

doped electrodes (see arrow in Figure 14B), 

suggesting a weaker reduction effect for the MoIV 

ions in the doped electrodes. The Ni doped 

electrodes exhibits the smallest modifications in the 

XANES, suggesting more inert Mo ions than in the 

other electrodes. 

The Mo EXAFS of the undoped and doped Merki 

electrodes exhibit the two prominent peaks 1 and 2 

in the Fourier transforms (see Figure 15). When 

compared to the spectrum of MoIVS2, peak 1 can be 

assigned to a Mo-S coordination similar to MoS2. The 

nature of peak 2 remains unclear but is possibly a 

Mo-Mo coordination, see section Mo-metal 

coordination. For all electrodes, EXAFS simulations 

(see Figure 17 and Figure 18) of peak 1 yield the same 

Mo-S distance between 2.37 – 2.38 Å (see Table 3), 

showing no effect of the doping or the electrode 

potential. The S distance can be found in MoS2 (see 

Figure 15) with 2.35 – 2.41 Å and is too short for MoS3 (2.41 – 2.44 Å) and too long for MoVIS4(NH4)2 

(2.17 – 2.18 Å) (see Figure 15). This supports the deduction from the XANES analysis that the Mo sites 

in the electrodes possess a MoS2-like S coordination with more than four ligands. 

Peak 1 of the electrodes exhibits a smaller amplitude than in MoS2 (see Figure 15). The amplitude of 

the peak is presumably damped by a high spatial disorder of the S shells in the electrodes. EXAFS 

simulations of peak 1 indeed yield a clearly higher Debye-Waller factor of σS = ±0.08 Å for the 

electrodes than for crystalline MoS2 with σS = ±0.03 Å. The Debye-Waller factor is a measure for the 

spatial disorder of a ligand shell, as the factor corresponds to the root-mean-square deviation of the 

mean distance between ligand and central atom. 

For all Merki electrodes, EXAFS simulations of peak 1 (see Figure 17 and Figure 18) yield a mean S 

coordination number close to five at both electrode potentials (see Table 4). This suggests that the Mo 

sites in the doped and undoped electrodes possess presumably five S ligands in the first coordination 

Mo edge Edge 
position 
[eV] 

Summit 
position 
[eV] 

MoSx -0.35V 20011.8 20032.3 
MoSx -0.80V -0.3 -0.7 
   

MoSx:Ni -0.35V 20011.6 20032.4 
MoSx:Ni -0.80V -0.0 -0.3 
   

MoSx:Co -0.35V 20011.9 20034.6 
MoSx:Co -0.80V -0.4 -0.6 

   
References   

MoIVS2 20011.9 20031.8 
MoVIS4(NH4)2 20013.2 20045.9 

 

Table 1 

Mo K-edge positions of the Merki electrodes 
at -0.80 V and -0.35 V vs. NHE. The edge 
positions were determined with the integral 
method as described in (Dau, Liebisch et al. 
2003) but with an smaller interval of integration 
from 0.5 to 1.0 of normalized absorption to 
exclude pre-edges. The summit position of the 
edges (indicated by arrow 2 in Figure 14) were 
determined by a weighted addition of the 
excitation energies in the summit range. The 
weighting factors are the normalized absorption 
per excitation energy divided by the total 
absorption of the summit range. 
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sphere. A possible six fold S coordination of the Mo sites as in crystalline MoIVS2 is not favoured by the 

simulations but cannot be excluded. Analogue EXAFS simulations with a S coordination number of six 

exhibit an increase in Rf-factor by 20 – 50 % (= degradation of simulation quality) but the simulation 

quality is still reasonable with an Rf-factor below 20 % (see Table 2). The doped electrodes show a 

smaller increase in Rf-factor by 1.5 – 3.3 than the undoped electrodes with 4.7 – 5.1 (see Table 2), 

suggesting a higher likelihood for a six fold S coordination in the doped electrodes. For all electrodes, 
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Figure 15 

Left side: Fourier transforms of k3 weighted EXAFS spectra (k range = 3 - 12 Å-1) recorded at the Mo K-edge:  
Co doped (red line), Ni doped (green line) and undoped (dark blue line) MoSx Merki electrodes at -0.80 V vs. 
NHE compared to MoIVS2 (light blue line) and MoVIS4(NH4)2 (magenta line). The main peaks of MoS2 and 
MoS4(NH4)2 are labelled with the corresponding Mo-S and Mo-Mo distances. For this comparison, the -0.80 V 
Merki electrodes are representative for the not shown electrodes at -0.35 V (similar spectra). Right side: 
Schematic structures of MoIVS2 (layered structure, top view on single layer) and MoVIS4(NH4)2. Characteristic 
Mo-S and Mo-Mo distances are indicated. The images are based on crystal data published for MoS2 (Dickinson 
and Pauling 1923) and for MoS4(NH4)2 (Hill, Lerner et al. 2010). 



 

36 
 

the simulated Debye-Waller parameters for a possible six-fold S coordination are larger than for a 

fivefold coordination (see Table 2), suggesting a higher spatial disorder for the S6 shell. 

The alteration in electrode potential from -0.35 V to -0.80 V does not significantly affect peak 1 (see 

Figure 16B). The doping of the electrodes, however, seems to have an effect on the amplitude of 

peak 1. At both electrode potentials (-0.35 V and -0.80 V), the Co doped electrode exhibits the largest 

amplitude, followed by the Ni doped and then the undoped electrode (see Figure 16A). The EXAFS 

simulations in Table 4 reflect that and exhibit slightly larger S coordination numbers for the doped 

electrodes, in particular with Co, than for the undoped electrodes. However, the increase in amplitude 

of peak 1 is small, showing a maximal difference of only 10 % between peak 1 of the Co doped and the 

undoped electrode at -0.80 V. This suggests that the doping does not affect the number of five S ligands 

per Mo site but decreases the spatial disorder of the S shell in the doped electrodes. This interpretation 
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Figure 16 

Fourier transforms of k3 weighted EXAFS spectra (k range = 3 - 12 Å-1) recorded at the Mo K-edge. In A: Co 
doped (red line), Ni doped (green line) and undoped (blue line) MoSx Merki electrodes at -0.80 V vs. NHE (top) 
and at -0.35 V (bottom). In B: Co doped (top), Ni doped (middle) and undoped (bottom) MoSx Merki electrode 
at -0.80 V vs. NHE (red line) compared to the same electrode at -0.35 V (blue line). In A and B, the main peaks 
of the Merki electrodes are labelled with 1 and 2 and can be assigned to a Mo-S and a Mo-Mo coordination, 
respectively. 
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is possible due to the direct correlation in the EXAFS between the coordination number of a ligand 

shell and its Debye-Waller factor (= measure for the spatial disorder). 

The high spatial disorder of the Mo-S coordination in the Merki electrodes, in comparison to crystalline 

MoS2, suggests that the S shells of their Mo sites contain a significant number of coordinatively 

unsaturated S sites. Furthermore, the Mo sites exhibit a mean S coordination number that is 

presumably lower than in crystalline MoS2, suggesting that coordinatively unsaturated Mo sites are 

present as well. The presence of these unsaturated sites in the electrodes was already proposed by 

Merki et al. (Merki, Vrubel et al. 2012). The doping of the electrodes with Co or Ni slightly increases 

the mean S coordination number of the Mo sites and/or decreases the spatial disorder of their S shells. 

Hence, the doping seems to have a slight impeding effect on the formation of unsaturated S and Mo 

sites in the electrodes. 

The Mo sites in the electrodes do not possess O, N or C ligands (or CN- and CO ligands) to a significant 

extent. In the Mo EXAFS, prominent peaks of correspondingly short Mo-ligand distances (shorter than 

the distance of peak 1) are not visible (see Figure 16). The left shoulder of peak 1 is part of the side 

lobes of the Mo-S peak as shown by the EXAFS simulations (see Figure 17 and Figure 18). 

  

Mo-S coordination NS ≈ 5 
 

NS = 6 

Rf [%] σS x 103 [Å2] Rf [%] σS x 103 [Å2] 

MoSx -0.80 V 13.9 13 18.6 18 
MoSx:Ni -0.80 V 9.2 14 12.5 17 
MoSx:Co -0.80 V 8.1 12 9.6 14 
      
MoSx -0.35 V 10.3 14 15.4 18 
MoSx:Ni -0.35 V 11.0 14 13.6 17 
MoSx:Co -0.35 V 10.3 12 12.5 16 

  

Table 2 

Quality of EXAFS simulations (= filtered R-factor, Rf) for the Mo sites in the Merki electrodes in dependence of 
the simulated mean S coordination number, NS. Additionally, the simulated Debye-Waller parameters, σS, of 
the Mo-S coordination are listed. Middle column: mean S coordination number close to five, NS ≈ 5. The 
complete details of the EXAFS simulations are shown in Table 3 and Table 4. Right column: analogue EXAFS 
simulations but mean S coordination number fixed at six, NS = 6. Rf was determined over a R-range of 1 – 3 Å. 
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 mean Mo-ligand distance [Å]  
S Mo EXAFS 

 MoSx -0.80 V 2.37 ± 0.01 2.81 ± 0.01 
MoSx:Ni -0.80 V 2.37 ± 0.01 2.81 ± 0.01 
MoSx:Co -0.80 V 2.38 ± 0.01 2.81 ± 0.01 
    
MoSx -0.35 V 2.38 ± 0.01 2.80 ± 0.01 
MoSx:Ni -0.35 V 2.38 ± 0.01 2.79 ± 0.01 
MoSx:Co -0.35 V 2.38 ± 0.01 2.79 ± 0.01 
 
Referencesa) S Mo XRD 
MoIVS2 2.35 – 2.41 3.14 – 3.16 
MoVIS4(NH4)2 2.17 – 2.18  
 
Amorphous MoS3

b) S Mo EXAFS 
MoS3, min - max 2.41 – 2.44 2.75 – 2.78 

 
Cubane structurea) S Mo Ni XRD 
[Mo3S4(H2O)9]4+ 2.28 – 2.34 2.73 – 

2.74 
 

[Mo3NiS4(H2O)10]4+ 

[Mo3NiS4Cl(H2O)9]3+ 
2.30 – 2.35 2.74 – 

2.80 
2.63 – 
2.67 

 

Table 3 

Mo-ligand distances of the S shell and Mo coordination in the MoSx Merki electrodes during catalytic H2 
formation (-0.80 V vs. NHE) and in the non-catalytic state (-0.35 V). Denoted as references are the crystal 
structuresa) of MoS2, MoS4(NH4)2, [Mo3S4(H2O)9]4+, [Mo3NiS4(H2O)10]4+ and [Mo3NiS4Cl(H2O)9]3+; and the 
structural parametersb) of various amorphous MoS3. For the Merki electrodes, the structural parameters were 
obtained from fitting their Mo EXAFS spectra with S and Mo phase functions calculated from the crystal structure 
of MoS2. The simulations of all electrodes were performed with the same Debye-Waller parameter for Mo (2σMo

2 
= 0.005 Å2), the same energy offset (E0 = 3.8 eV) and the same amplitude reduction factor (S0

2 = 0.85). The 
values of σMo and E0 were determined from a previous simulation of the undoped electrode at -0.35 V and the 
value of S0 from a simulation of MoS2 with a fixed S coordination number of six. In all simulations, the 
coordination numbers of the ligands and the Mo-ligand distances were free to move. The Debye-Waller 
parameter of S was free as well and yielded, at -0.80 V and -0.35 V, 2σS

2 = 0.012 Å2 for the Co doped electrode 
and 2σS

2 = 0.014 Å2 for the Ni doped and undoped electrode. The simulated EXAFS spectra are presented in 
Figure 17 and Figure 18. 

a) Crystal structure data for MoS2 was obtained from (Dickinson and Pauling 1923, Hassel 1925, Wyckoff 1963, Schonfeld, Huang et al. 1983), for 
MoS4(NH4)2 from (Belougne, Chezeau et al. 1976, Hill, Lerner et al. 2010), for [Mo3S4(H2O)9]4+ from (Akashi, Shibahara et al. 1990, Taniguchi, Imamura 
et al. 1999), for [Mo3NiS4(H2O)10]4+ from (Shibahara, Yamasaki et al. 1991) and for [Mo3NiS4Cl(H2O)9]3+ from (Shibahara, Yamasaki et al. 1991, 
Taniguchi, Imamura et al. 1999).  

b) The structural  parameters of amorphous MoS3 were extracted from EXAFS results reported in (Cramer, Liang et al. 1984, Scott, Jacobson et al. 
1986, Hibble, Rice et al. 1995, Afanasiev and Bezverkhy 2002, Afanasiev, Jobic et al. 2009). 
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 mean Coordination number  
S Mo EXAFS 

MoSx -0.80 V 4.7 ± 0.5 0.9 ± 0.1 
MoSx:Ni -0.80 V 5.0 ± 0.4 1.0 ± 0.1 
MoSx:Co -0.80 V 5.3 ± 0.3 0.8 ± 0.1 
   
MoSx -0.35 V 4.7 ± 0.4 1.0 ± 0.1 
MoSx:Ni  -0.35 V 5.1 ± 0.5 0.9 ± 0.1 
MoSx:Co -0.35 V 5.0 ± 0.4 0.7 ± 0.1 
 
Referencesa) S Mo XRD 
MoIVS2 6 6 

MoVIS4(NH4)2 4  
 
Amorphous MoS3

b) S Mo EXAFS 
MoS3, min – max 5.4 – 6.1 0.9 – 2.3 
 
Cubane structurea) S Mo Ni XRD 
[Mo3S4(H2O)9]4+ 3 2  
[Mo3NiS4(H2O)10]4+ 

[Mo3NiS4Cl(H2O)9]3+ 
3 2 1 

 

Table 4 

Coordination numbers of the S shell and Mo coordination in the MoSx Merki electrodes during catalytic H2 
formation (-0.80 V vs. NHE) and in the non-catalytic state (-0.35 V). Denoted as references are the crystal 
structuresa) of MoS2, MoS4(NH4)2, [Mo3S4(H2O)9]4+, [Mo3NiS4(H2O)10]4+ and [Mo3NiS4Cl(H2O)9]3+; and the 
structural parametersb) of various amorphous MoS3. For the Merki electrodes, the structural parameters were 
obtained from fitting their Mo EXAFS spectra with S and Mo phase functions calculated from the crystal structure 
of MoS2. The simulations of all electrodes were performed with the same Debye-Waller parameter for Mo (2σMo

2 
= 0.005 Å2), the same energy offset (E0 = 3.8 eV) and the same amplitude reduction factor (S0

2 = 0.85). The 
values of σMo and E0 were determined from a previous simulation of the undoped electrode at -0.35 V and the 
value of S0 from a simulation of MoS2 with a fixed S coordination number of six. In all simulations, the 
coordination numbers of the ligands and the Mo-ligand distances were free to move. The Debye-Waller 
parameter of S was free as well and yielded, at -0.80 V and -0.35 V, 2σS

2 = 0.012 Å2 for the Co doped electrode 
and 2σS

2 = 0.014 Å2 for the Ni doped and undoped electrode. The simulated EXAFS spectra are presented in 
Figure 17 and Figure 18. 

a) Crystal structure data for MoS2 was obtained from (Dickinson and Pauling 1923, Hassel 1925, Wyckoff 1963, Schonfeld, Huang et al. 1983), for 
MoS4(NH4)2 from (Belougne, Chezeau et al. 1976, Hill, Lerner et al. 2010), for [Mo3S4(H2O)9]4+ from (Akashi, Shibahara et al. 1990, Taniguchi, Imamura 
et al. 1999), for [Mo3NiS4(H2O)10]4+ from (Shibahara, Yamasaki et al. 1991) and for [Mo3NiS4Cl(H2O)9]3+ from (Shibahara, Yamasaki et al. 1991, 
Taniguchi, Imamura et al. 1999). 

b) The structural parameters of amorphous MoS3 were extracted from EXAFS results reported in (Cramer, Liang et al. 1984, Scott, Jacobson et al. 1986, 
Hibble, Rice et al. 1995, Afanasiev and Bezverkhy 2002, Afanasiev, Jobic et al. 2009). 
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Figure 17 

EXAFS simulations (black line) of the experimental spectra of the undoped (blue line), Ni doped (green line) 
and Co doped (red line) Merki electrode at -0.80 V vs. NHE. Left side: the EXAFS represented as χ spectra. 
Right side: Fourier transforms of the k³ weighted EXAFS spectra. The EXAFS simulations and Fourier 
transforms were performed over the k range shown on the left side. The EXAFS simulations correspond to the 
structural parameters presented in Table 3 and Table 4. 



 

41 
 

 

3 4 5 6 7 8 9 10 11 12

-8

-4

0

4

8

12

16

20

24

28

32

0 1 2 3 4 5 6 7

0

2

4

6

8

10

12

14

16

18

20

22

24

C
h

i

k (1/Å)

undoped

Ni doped

F
T

 o
f 

E
X

F
A

S
 (

k
³ 

w
e
ig

h
te

d
)

Reduced distance (Å)

Merki electrodes at -0.35 V

Co doped

 

Figure 18 

EXAFS simulations (black line) of the experimental spectra of the undoped (blue line), Ni doped (green line) 
and Co doped (red line) Merki electrode at -0.35 V vs. NHE. Left side: the EXAFS represented as χ spectra. 
Right side: Fourier transforms of the k³ weighted EXAFS spectra. The EXAFS simulations and Fourier 
transforms were performed over the k range shown on the left side. The EXAFS simulations correspond to the 
structural parameters presented in Table 3 and Table 4. 
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Mo-METAL COORDINATION 

The Mo sites in the Merki electrodes exhibit, besides the MoIVS2-like Mo-S coordination, also structural 

features that can be assigned to amorphous MoVS3. 

The Mo EXAFS of the electrodes contain, besides the peak for the Mo-S coordination, a second 

prominent peak (marked as 2 in Figure 15). A comparison with EXAFS studies of amorphous MoS3 from 

(Cramer, Liang et al. 1984, Scott, Jacobson et al. 1986, Hibble, Rice et al. 1995, Afanasiev and Bezverkhy 

2002, Afanasiev, Jobic et al. 2009, Tang, Grauer et al. 2011) suggests that peak 2 can be assigned to a 

Mo-Mo coordination that can be found in the Mo2S9 building blocks of MoS3 (see structural scheme in 

Figure 12). EXAFS simulations of peak 2 (see Figure 17 and Figure 18) support this assignment to a 

MoS3-like Mo-Mo coordination. For all electrodes, the simulations indicate a Mo-Mo distance of 2.79 

– 2.81 Å that is close to the distance in MoS3 of 2.75 – 2.78 Å (see Table 3). The simulated Mo 

coordination number of 0.7 – 1.0 suggests that the majority of the Mo sites in the electrodes is 

coordinated to a neighbouring site. This is also similar to MoS3 which shows Mo coordination numbers 

in the range of 0.9 - 2.3 (see Table 4). Compared to MoS2, the Mo-Mo coordination of the electrodes 

is too short (3.2 Å Mo-Mo distance in MoS2, see Table 3) and its coordination number too low (six Mo 

ligands in MoS2, see Table 4). 

In Figure 16A, peak 2 of the electrodes exhibits small variations in amplitude that suggest a doping 

effect. At both electrode potentials, the Co doped electrode shows the smallest amplitude, followed 

by the Ni doped electrode and then the undoped electrode. EXAFS simulations of peak 2 also show, in 

tendency, a smaller Mo coordination number for the Co doped electrode than for the other electrodes 

(see Table 4). However, the difference of 0.1 – 0.2 between their Mo coordination numbers is small 

and suggests only a slightly weaker occurrence of the Mo-Mo coordination in the Co doped electrode 

or a Mo coordination that is a bit more spatially disordered. Considering the electrode potential, peak 

 

Figure 19 

Schematic structure of the cubane-type [Mo3NiS4(H2O)10]4+ cluster with denoted Mo-S, Mo-Mo and Mo-Ni 
distances. The image is based on crystal data published for [Mo3NiS4(H2O)10]4+ in (Shibahara, Yamasaki et al. 
1991). 
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2 does not show significant differences between the -0.80 V and -0.35 V electrodes, except for the Co 

doped electrode (see Figure 16B). There, the amplitude of peak 2 decreases at -0.80 V but EXAFS 

simulations do not suggest a significant modification in the Mo coordination number (see Table 4). The 

EXAFS simulations also show that the Mo-Mo distances of the electrodes are not significantly affected 

by the doping or the alteration in electrode potential (see Table 3). In conclusion, the Mo sites of all 

electrodes exhibit the same Mo-Mo coordination. 

In contrast to MoS2, the Mo EXAFS of the electrodes lack significant peaks at longer distances than 3 Å 

(see Figure 15). This indicates that the Mo sites in the electrodes do not possess a prominent long-

range order as found in MoS2. The atomic structure of the electrodes seems to be amorphous. 

The Ni doped Merki electrodes could contain a Mo-Ni coordination as in the cubane-type complexes, 

[Mo3NiS4(H2O)10]4+ (Shibahara, Yamasaki et al. 1991) and [Mo3NiS4Cl(H2O)9]3+ (Shibahara, Yamasaki et 

al. 1991, Taniguchi, Imamura et al. 1999) (see Figure 19). The complexes possess a mixed S/O ligand 

environment with a shorter Mo-S coordination (Mo-S distance of 2.30 – 2.35 Å) than the electrodes 

but their Mo-Mo coordination is similar (Mo-Mo distance of 2.74 – 2.80 Å and two Mo ligands) (see 

Table 3 and Table 4). The latter suggests that peak 2 in the EXAFS of the Ni doped electrode might 

contain a cubane-type Mo-Ni coordination with a distance of 2.63 – 2.67 Å that is obscured by the 

dominant Mo-Mo coordination. However, EXAFS simulations of peak 2 with a mixed Mo-Mo/Ni 

coordination cannot confirm that. For the Co doped electrode, analogue simulations support an 

obscured Mo-Co coordination neither. Aside from the cubane structure, other known Mo-Ni/Co 

distances are longer than 3 Å. The Ni or Co doped electrode do not exhibit prominent peaks at that 

distance (see Figure 16B), indicating the absence or a weak occurrence of Mo-Ni/Co coordinations. 

The latter is the case as shown in the sections Co-metal coordination and Ni-metal coordination. 
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SUMMARY 

The Co doped, Ni doped and undoped MoSx Merki electrodes (x = 2 or 3) (preparation as in (Merki, 

Vrubel et al. 2012)) were investigated with X-ray absorption spectroscopy (XAS) at the Mo K-edge to 

gain insight into the atomic structure of their Mo sites. Prior to the XAS measurements, the electrodes 

were conditioned (12 min, pH 7) and frozen either at -0.80 V or -0.35 V vs. normal hydrogen electrode 

(NHE), to study structural differences between Mo sites in a state of catalytic H2 formation (-0.80 V) 

and in a non-catalytic state (-0.35 V) (standard electrode potential of hydrogen reduction E0
H2 = -0.41 V 

at pH 7). 

The Mo sites of the electrodes (see Figure 20) consist of MoIV ions coordinated to presumably five S 

ligands in their first coordination sphere with a mean Mo-S distance of 2.37 – 2.38 Å typical for MoIVS2 

(see Table 3 and Table 4). The change in electrode 

potential from -0.35 V to -0.80 V possibly leads to 

the reduction of a small fraction of MoIV ions to 

MoIII (see Figure 14A) but does not affect the Mo-

S coordination significantly. The fivefold S 

coordination of the Mo sites is favoured by the 

EXAFS simulations but a possible six fold S 

coordination as in MoIVS2 cannot be excluded. 

Simulations with a S coordination number of six 

exhibit a 20 – 50 % higher Rf-factor (= degradation 

in simulation quality) but their simulation quality 

is still reasonable with a Rf-factor below 20 % (see 

Table 2). The high spatial disorder of the Mo-S 

coordination in the Merki electrodes (Debye-

Waller factor of σS = ±0.08 Å) compared to 

crystalline MoS2 (with σS = ±0.03 Å) suggests that 

the S shells of their Mo sites contain a significant 

number of coordinatively unsaturated S sites. 

Furthermore, the Mo sites exhibit a mean S 

coordination number that is presumably lower 

than in crystalline MoS2, suggesting that 

coordinatively unsaturated Mo sites are present 

as well. The presence of these unsaturated sites in the electrodes was already proposed by Merki et 

al. (Merki, Vrubel et al. 2012). The doping of the electrodes with Co or Ni slightly increases the mean S 

coordination number of the Mo sites by 0.3 – 0.6 (see Table 4 and increase in S peak in Figure 16A) 

and/or decreases the spatial disorder of their S shells. Hence, the doping seems to have a slight 

impeding effect on the formation of unsaturated S and Mo sites in the electrodes. 

The Mo sites in the electrodes do not exhibit O, N or C ligands (or CN- and CO ligands) to a significant 

extent. The correspondingly short Mo-ligand distances are absent in the Mo EXAFS of the electrodes 

(see Figure 16). 

The majority of the Mo sites in the Merki electrodes is coordinated to a neighbouring site with a mean 

Mo-Mo distance of 2.79 – 2.81 Å (see Table 3). The Mo2S9 building blocks of amorphous MoVS3 (see 

 

Figure 20 

Schematic representation of a possible Mo-site 
structure in the undoped, Ni doped and Co doped 
Merki electrodes at -0.80 V and at -0.35 V vs. NHE. 

MoSx bulk
(x = 2 or 3)

MoIV

S

2.8 Å

2.4 Å

Merki electrode
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Figure 12) exhibit a similar Mo-Mo coordination (see Table 3). The doping of the electrodes or the 

alteration in electrode potential hardly affects the Mo-Mo coordination (see Figure 16). In the doped 

electrodes, the Mo sites might possess an additional Mo-Ni/Co coordination as in the cubane-type 

complexes, [Mo3NiS4(H2O)10]4+ (Shibahara, Yamasaki et al. 1991) and [Mo3NiS4Cl(H2O)9]3+ (Shibahara, 

Yamasaki et al. 1991, Taniguchi, Imamura et al. 1999) (see Figure 19), that is obscured in the Mo XAS 

by the dominant Mo-Mo coordination. Beyond the Mo-Mo coordination, the Mo sites of the electrodes 

do not exhibit a prominent long-range order in their atomic structure as in MoIVS2 (see Figure 15). 

The Merki electrodes were conditioned under a cathodic regime and, hence, are supposed to consist 

of amorphous MoIVS2, according to Merki et al. (Merki, Fierro et al. 2011, Merki, Vrubel et al. 2012). 

The XAS analysis, however, indicates that Mo sites in the electrodes combine a MoIVS2-like Mo-S 

coordination with a Mo-Mo coordination typical for amorphous MoVS3. The atomic structure of the 

sites possibly builds up from Mo2S9 blocks as in MoS3, based on the same Mo-Mo coordination, but 

with MoIV centres as in MoS2. As suggested by Merki et al. (Merki, Fierro et al. 2011, Merki, Vrubel et 

al. 2012), the Mo sites seem to have only S2- ligands as in MoS2 (Mo-S distance of 2.4 Å) and no 

additional S2
2- ligands as in MoS3 (with a Mo-S distance of 2.6 Å (Hibble, Rice et al. 1995)). 

Tang et al. reports a MoS3 catalyst that after H2 formation exhibits a diminished S coordination number 

of 3.1 – 4.1 and a shortened Mo-S distance of 2.35 – 2.36 Å (Tang, Grauer et al. 2011). The Merki 

electrodes in our study exhibit similar values (see Table 3 and Table 4). Tang et al. suggests that the 

S2
2- ligands of the original MoS3 species are reduced and transformed into S-H ligands (Tang, Grauer et 

al. 2011). This may be also the case for some S ligands of the Merki electrodes. 



 

46 
 

Co SITE - ATOMIC STRUCTURE 
 

RESULTS AND DISCUSSION 

 

Co-S COORDINATION 

X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) of 

the Co doped MoSx Merki electrodes (x = 2 or 3) were recorded at the Co K-edge to gain insight into 

the atomic structure of their Co sites. Prior to the XANES/EXAFS measurements, the electrodes were 

conditioned (12 min, pH 7) and frozen either at -0.80 V or -0.35 V vs. normal hydrogen electrode (NHE), 

to study structural differences between Co sites in a state of catalytic H2 formation (-0.80 V) and in a 

non-catalytic state (-0.35 V) (standard electrode potential of hydrogen reduction E0
H2 = -0.41 V at pH 7). 

The Co absorption edge in the XANES of the Merki electrodes (see Figure 21) shows a position close to 

the Co edge of the CoIIS2 reference. This indicates that the mean oxidation state of the Co ions in the 

electrodes is close to II as in the reference. The quantitative edge positions of the electrodes (see Table 

5) are slightly shifted to higher excitation energies than in CoIIS2. The electrode at -0.35 V exhibits the 

largest shift with +1.5 eV. This indicates that the Co ions in the electrodes are more oxidized than in 
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Figure 21 

XANES spectra recorded at the Co K-edge of the Co doped MoSx Merki electrode at -0.80 V vs. NHE (magenta 
line) and at -0.35 V (blue line) compared to CoIIS2 (black line). 
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CoIIS2 and, hence, their mean oxidation 

state is a bit larger than II, in particular for 

the -0.35 V electrode. The more oxidized 

Co oxidation state in the -0.35 V electrode 

compared to the -0.80 V electrode is most 

likely an effect of the less reductive 

electrode potential. The XANES of the 

electrodes show a flattened absorption 

edge as CoS2. This feature is typical for Co 

coordinated to S atoms in its first 

coordination sphere. The arrows A and B 

in Figure 21 mark modifications of the 

electrode XANES that are possibly related 

to the different electrode potential as well, 

and could indicate structural differences in 

the S coordination sphere. 

The Co EXAFS of the Co doped Merki 

electrodes, at both potentials, exhibit two prominent peaks, labelled as 1 and 2 in Figure 22. When 

compared to the spectrum of CoIIS2 (see structure in Figure 24), peak 1 of the electrodes can be 

assigned to a Co-S coordination. Peak 2, however, is difficult to assign but is possibly a Co-Mo or Co-

Co coordination, see section Co-metal coordination. The low amplitude of peak 2 as well as the lack of 

peaks beyond 3 Å indicates that the Co-S species in the electrodes has no significant long-range order 

as in CoIIS2. 

In both electrodes, EXAFS simulations of peak 1 (see Figure 23) yield a mean S distance of 2.25 – 2.26 Å 

that is -0.07 Å shorter than in CoS2 (see Table 6). The shortening of the distances could be due to the 

stronger oxidized Co ions in the electrodes. In the -0.35 V electrode, peak 1 exhibits an amplitude 

comparable to CoS2, suggesting a S coordination number of six as in the reference. This is confirmed 

by EXAFS simulations yielding a coordination number of 6.2 (see Table 6). At -0.80 V, the amplitude of 

peak 1 significantly decreases by 25 %. EXAFS simulations indicate a lowering of the S coordination 

number to 5.3 (see Table 6). However, the subsidence of peak 1 is small and, hence, could be 

alternatively interpreted as an increase in the spatial disorder of the S6-ligand shell. This is possible due 

to the direct correlation in the EXAFS between the coordination number of a ligand shell and its Debye-

Waller factor (= measure for the spatial disorder). The observed differences in the XANES between 

the -0.35 V and -0.80 V electrode (see arrow A and B in Figure 21) could be related to the structural 

modifications in the S shell. 

The electrodes exhibit a different Co-S coordination than CoS2. Considering other Co-S compounds, the 

Co-S distance of the electrodes can be found in octahedral CoS6 clusters of CoII, III
3S4 (no XAS spectrum 

recorded) (see structure in Figure 24). Co3S4 also possesses tetrahedral CoS4 clusters with a S distance 

of 2.20 Å. This distance is close to the mean Co-S distance of the electrodes. Hence, it could be possible 

that the electrodes contain a mixture of Co-S4 and Co-S6 species. At -0.35 V, the mixture is dominated 

by the octahedral species, leading to a coordination number of S close to six. At -0.80 V, the tetrahedral 

species becomes more prominent and lowers the average S coordination number to five. The structural 

Co edge Edge 
position 
[eV] 

Mean 
oxidation 
state 

Co:MoSx -0.80 V 7717.6 > 2 
Co:MoSx -0.35 V 7717.9 > 2 
   
CoIIS2 7716.4 2 

 

Table 5 

Co K-edge positions of the Co doped Merki electrodes 
at -0.80 V and -0.35 V vs. NHE and their corresponding 
mean oxidation states for Co. The edge positions were 
determined with the integral method as described in (Dau, 
Liebisch et al. 2003) with an interval of integration from 0.15 
to 1.0 of normalized fluorescence. 



 

48 
 

similarities with CoII, III
3S4 suggest, in concordance with the XANES analysis, that the Co ions in the 

electrodes exhibit a mean oxidation state between II and III. 

Another interpretation for the low S coordination number could be that the CoS6 species in the -0.80 V 

electrode contains coordinatively unsaturated Co sites where one or two S ligands are missing. Merki 

et al. already suggested the presence of coordinatively unsaturated Mo and S sites in the electrodes 

(Merki, Vrubel et al. 2012). The unsaturated Co sites mainly occur in the -0.80 V electrode and, hence, 

could be produced by the catalytic reaction, as proposed in (Miller, Marschall et al. 2001). 

The Co sites in the electrodes do not possess O, N or C ligands (or CN- and CO ligands) to a significant 

extent. In the Co EXAFS, prominent peaks of correspondingly short Co-ligand distances (shorter than 

the distance of peak 1) are not visible (see Figure 22). The left shoulder of peak 1 is part of the side 

lobes of the Co-S peak as shown by the EXAFS simulations (see Figure 23). 
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Figure 22 

Fourier transforms of k3 weighted EXAFS spectra (k range = 3 – 13 Å-1) recorded at the Co K-edge: Co doped 
MoSx Merki electrode at -0.80 V vs. NHE (magenta line) and at -0.35 V (blue line) compared to CoIIS2 (black 
line). The main peaks of the latter are labelled with the corresponding Co-S and Co-Co distances. 
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Figure 23 

EXAFS simulations (black line) of the experimental spectra of the Co doped Merki electrode at -0.80 V vs. NHE 
(magenta line) and -0.35 V (blue line). Left side: the EXAFS represented as k3 weighted χ spectra. Right side: 
Fourier transforms of the k³ weighted EXAFS spectra. The EXAFS simulations and Fourier transforms were 
performed over the k range shown on the left side. The EXAFS simulations correspond to the structural 
parameters presented in Table 6. 
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mean Co-ligand distance  
Co edge Co-S [Å] Co-Mo [Å] EXAFS 
Co:MoSx -0.80 V 2.25 ± 0.01 2.72 ± 0.01 
Co:MoSx -0.35 V 2.26 ± 0.01 3.19 ± 0.01 
 
Referencesa)    
CoI, II

9S8 2.15 2.48 - XRD 
CoIIS 2.33 – 2.34 - 
CoIIS2 2.33 – 2.36 - 
CoII, III

3S4 2.04 – 
2.20 

2.26 – 
2.35 

- 

 
Co-Mo-S phaseb) 2.18 – 2.26 2.75 – 2.82 EXAFS 
 

mean Coordination number  
Co edge Co-S Co-Mo EXFAS 
Co:MoSx -0.80 V 5.3 ± 0.3 0.9 ± 0.1 
Co:MoSx -0.35 V 6.2 ± 0.3 0.9 ± 0.2 
 
Referencesa)    
CoI, II

9S8 4 6 - XRD 
CoIIS 6 - 
CoIIS2 6 - 
CoII, III

3S4 4 6 - 
 
Co-Mo-S phaseb) 4.0 – 6.2 0.5 – 2.0 EXAFS 

 

Table 6 

Structural parameters of the Co ligand environment in the Co doped Merki electrodes at -0.80 V and -0.35 V 
vs. NHE, compared to the crystal structuresa) of Co9S8, CoS, CoS2, Co3S4 and the Co-Mo-S phaseb) of various 
CoMoS2 catalyst for hydrodesulphurization. For the Merki electrodes, the structural parameters were obtained 
from fitting their Co EXAFS spectra with S and Mo phase functions calculated from the crystal structurea) of 
CoS and CoMoO4. The simulations of both electrodes were performed with the same Debye-Waller parameter 
for Mo (2σMo

2 = 0.009 Å2), the same energy offset (E0 = 3.9 eV) and the same amplitude reduction factor (S0
2 = 

0.70). The values of σMo and E0 were determined from a previous simulation of the -0.35 V electrode with a 
fixed Mo coordination number of one. The value of S0

 was established in (Risch, Khare et al. 2009). In all 
simulations, the coordination numbers of the ligands and the Co-ligand distances were free to move. The 
Debye-Waller parameter of S was free as well and yielded 2σS

2 = 0.009 Å2 for the -0.80 V electrode and 
0.008 Å2 at -0.35 V. The simulated EXAFS spectra are presented in Figure 23. 

a) Crystal structure data for Co9S8 was obtained from (Lindqvist 1936), for CoS from (Alsen 1925, Wyckoff 1963), for CoS2 from (Wyckoff 1931, Nowack, 
Schwarzenbach et al. 1989, Nowack, Schwarzenbach et al. 1991), for Co3S4 from (Lundqvist 1938, Brown 1973) and for Co:MoO4 from (Smith and 
Ibers 1965). 

b) The structural parameters of the Co-Mo-S phase of various CoMoS2 catalyst for hydrodesulphurization were extracted from EXAFS results reported 
in (Bouwens, van Veen et al. 1991, Craje, Louwers et al. 1992, Eijsbouts 1997, de Bont, Vissenberg et al. 1998, Miller, Marschall et al. 2001, Kadono, 
Kubota et al. 2006, Okamoto, Kato et al. 2009, Dugulan, van Veen et al. 2013). 
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Figure 24 

Schematic structures of the Co ligand environment in bulk CoIIS2 and CoII,III
3S4 with denoted Co-S and Co-Co 

distances. Co atoms with a ligand environment of the same atomic structure are labelled with the same letter 
(“a”) or number (“1” or “2”). The images are based on crystal data published for CoS2 in (Nowack, 
Schwarzenbach et al. 1989) and for Co3S4 in (Lundqvist 1938). 
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Co-Mo-S PHASE 

In the Co doped Merki electrodes, the structural incorporation of the Co-S species into the amorphous 

MoSx (x = 2 or 3) bulk could form a “Co-Mo-S” phase (structure) similar to the phase known from 

various CoMoS2 catalysts for hydrodesulphurization (a selection of XAS studies for these catalysts can 

be found in (Bouwens, van Veen et al. 1991, Craje, Louwers et al. 1992, de Bont, Vissenberg et al. 1998, 

Miller, Marschall et al. 2001, Kadono, Kubota et al. 2006, Okamoto, Kato et al. 2009, Dugulan, van Veen 

et al. 2013)). There, the Co-Mo-S phase consists of Co sulphide clusters located on the edge of small 

MoS2 crystallites. The clusters contain Co ions coordinated to five or six S ligands. The Co ions can be 

connected via S bridges to the Mo of the crystallites or to neighbouring Co atoms in its cluster. 

According to (Okamoto, Kato et al. 2009, Dugulan, van Veen et al. 2013), it seems to be generally 

accepted that the Co-Mo-S phase is the catalytic (or active) phase in the CoMoS2 catalysts. 

The Co-S coordination of the Merki electrodes exhibits S distances and coordination numbers that fall 

into the range of values reported for 

the Co-Mo-S phase of the CoMoS2 

catalysts (see Table 6). This suggests 

that the electrodes might possess a 

similar Co-Mo-S phase. 

For the Co-Mo-S phase of the CoMoS2 

catalysts, (Miller, Marschall et al. 2001) 

proposes that the S ligands at the Co 

site have a shorter distance of 2.18 Å, 

when they are incorporated into a 

Co-(µ-S)2-Mo bridge, and a longer 

distance of  2.26 Å, when they are 

terminal. However, these two 

distances are usually difficult to resolve 

in the EXAFS. The model of (Miller, 

Marschall et al. 2001) (see illustration 

in Figure 25) suggests a number of four 

bridging S ligands and one or two 

terminal ligands per Co site. 

In Table 7, the Merki electrodes are simulated with two S shells at the Co site, one for the bridging S 

ligands and one for the terminal ligands. The yielded distances of 2.21 – 2.22 Å and 2.27 – 2.30 Å, 

respectively, are similar to the proposed distances of (Miller, Marschall et al. 2001). The simulated 

number of bridging ligands, however, is with 1.8 – 2.9 lower than in the model of (Miller, Marschall et 

al. 2001). The mean Co-S distance of the electrodes matches the one of the terminal ligands and, 

hence, underlines their higher abundance. Therefore, it seems that, in the electrodes, the connection 

between the Co-S clusters and the MoSx bulk is more loose than in the Co-Mo-S phase of the CoMoS2 

catalysts. A reason for this difference and others could be that the Co-Mo-S phases in the literature 

were characterized on crystalline MoS2 whereas the electrodes consist of amorphous MoSx that 

exhibits a very different long-range structure. 

 

Figure 25 

Atomic structure of the Co-Mo-S phase consisting of CoS5 
clusters at the edges of crystalline MoS2 as proposed by (Miller, 
Marschall et al. 2001). The scheme is a modified reproduction 
from an illustration in (Miller, Marschall et al. 2001). 
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The EXAFS simulation of the Co-S coordination in the electrodes with two S hells instead of one does 

not significantly improve the simulation quality (= Rf-factor decreases only by 5 % over R range = 1 – 

3 Å). This suggests that the actual Co-S coordination in the electrodes consists most likely of one S 

shell. 

 

mean Co-ligand distance 
Co edge Co-S [Å] Co-Mo  [Å] EXAFS 
 bridging terminal  
Co:MoSx -0.80 V 2.22 ± 0.01 2.27 ± 0.01 2.72 ± 0.01 
Co:MoSx -0.35 V 2.21 ± 0.01 2.30 ± 0.01 3.19 ± 0.01 
 
Co-Mo-S phase bridging terminal  EXAFS 
model of 
(Miller, 
Marschall et al. 
2001) 

2.18 2.26 2.80 

 
mean Coordination number 

Co edge Co-S Co-Mo EXAFS 
 bridging terminal  
Co:MoSx -0.80 V 1.8 ± 0.5 3.5 ± 0.4 1.0 ± 0.3 
Co:MoSx -0.35 V 2.9 ± 0.5 3.1 ± 0.4 0.9 ± 0.3 
 
Co-Mo-S phase bridging terminal  EXAFS 
model of 
(Miller, 
Marschall et al. 
2001) 

4 1 - 2 2 

 

Table 7 

Structural parameters of the Co ligand environment in the Co doped Merki electrodes at -0.80 V and -0.35 V 
vs. NHE, compared to the Co-Mo-S phase of a CoMoS2 catalyst for hydrotreating, published in (Miller, Marschall 
et al. 2001) (atomic model shown in Figure 25). For the Merki electrodes, the structural parameters were 
obtained from fitting their Co EXAFS spectra with S and Mo phase functions calculated from the crystal structure 
of CoS (Alsen 1925, Wyckoff 1963)  and CoMoO4 (Smith and Ibers 1965). The simulations of both electrodes 
were performed with the same Debye-Waller parameter for Mo (2σMo

2 = 0.010 Å2), the same energy offset (E0 
= 3.6 eV) and the same amplitude reduction factor (S0

2 = 0.70). The values of σMo and E0 were determined from 
a previous simulation of the -0.35 V electrode with a fixed Mo coordination number of one. The value of S0

 was 
established in (Risch, Khare et al. 2009). In all simulations, the coordination numbers of the ligands and the Ni-
ligand distances were free to move. The Debye-Waller parameter of S was free as well but restrained to be the 
same for the bridging and terminal S ligands. For the -0.80 V electrode the yielded parameter was 2σS

2 = 
0.008 Å2 and, for the -0.35 V electrode, 2σS

2 = 0.002 Å2. 
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Co-METAL COORDINATION 

Peak 2 in the Co EXAFS of the Co doped Merki electrodes (see Figure 22) is difficult to assign via the 

reference spectrum of CoS2. However, if the electrodes possess a similar Co-Mo-S phase as observed 

in various CoMoS2 catalysts for hydrodesulphurization (see previous section), then peak 2 might 

represent Mo atoms in the Co-(µ-S)2-Mo bridges between Co-S cluster and MoSx bulk, or neighbouring 

Co atoms within the Co-S cluster. 

Under the assumption of a Co-Mo coordination, the EXAFS simulations (see Figure 23) yield a Co-Mo 

distance of 2.72 Å at -0.80 V and a longer distance of 3.19 Å at -0.35 V (see Table 6). The coordination 

number of Mo can be simulated with a value close to one for both potentials, suggesting that the 

majority of the Co sites in the electrodes possesses a coordination to a Mo atom. The short Co-Mo 

distance at -0.80 V is similar (∆ = -0.03 Å) to the 2.75 – 2.82 Å of the Co-(µ-S)2-Mo bridge in the Co-Mo-S 

phase of hydrodesulphurization catalysts (see Table 6). The longer Co-Mo distance at -0.35 V can be 

found in Co-(µ4-O)2-Mo bridges of CoMoO4. This might indicate for the -0.35 V electrode the presence 

of Co-S-Mo bridges similar to the O bridges of CoMoO4. 

If the Co-Mo coordination is substituted by a Co-Co coordination, then the simulations yield a Co-Co 

distance of 2.89 Å at -0.80 V and a longer distance of 3.34 Å at -0.35 V (see Table 8). The coordination 

number of the Co-Co coordination can be simulated with a value close to one as well, suggesting that 

the majority of the Co sites in the electrodes exhibit a coordination to a neighbouring Co site. The 

Co-Co distances of the electrodes are unusual, as they cannot be found in the crystalline Co-S 

references: Co9S8, CoS, CoS2 and Co3S4. However, the Co-Mo-S phase of hydrodesulphurization 

catalysts contains Co-S clusters that can exhibit Co-Co distances similar to the ones simulated for the 

electrodes (see Table 8). 

The shorter Co-Mo/Co distance of the -0.80 V electrode in comparison to the -0.35 V electrode could 

be due to the smaller number of S ligands at the Co sites, which diminishes the effective dimensions 

of the sites and enables them to get closer to the MoSx bulk (shorter Co-Mo distance) or to each other 

(shorter Co-Co distance). 

It is complicated to decide whether a Co-Mo or a Co-Co coordination is actual present in the electrodes. 

Corresponding data of the electrodes recorded at the Mo K-edge cannot help to differentiate. In the 

case of an existing Mo-Co coordination, only a very low coordination number of 0.3 for Co would be 

visible at the Mo edge, which is difficult to detect with EXAFS. This low coordination number arises 

from the small Co : Mo stoichiometry of 1 : 4 in the electrodes (as reported in (Merki, Vrubel et al. 

2012) and indicated by our elemental analysis in Table 12). The EXAFS simulations, however, favour 

the existence of a Co-Mo coordination by yielding a significantly higher simulation quality (= decrease 

in Rf-factor by 30 – 40 % over R range = 1 – 3 Å) than for the Co-Co coordination. Furthermore, it is 

more reasonable to assume that the Co-Mo coordination exists, since Mo is more abundant in the 

electrodes than Co. 

Alternative EXAFS simulations of peak 2 in the spectrum of the electrodes (see Figure 22) with other 

ligands like S or O yielded a significantly lower simulation quality and/or more unassignable distances 

than with Mo or Co. 
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mean Absorber-ligand distance 
Co edge Co-Co [Å] EXAFS 
Co:MoSx -0.80 V 2.89 ± 0.02 
Co:MoSx -0.35 V 3.34 ± 0.02 
 
Referencesa)  XRD 
Co9S8 2.48 3.51 
CoS 2.58 3.37 
CoS2 3.92 – 3.99 
Co3S4 3.32 
 
Co-Mo-S phaseb) 2.53 – 2.60, 

2.90, 
3.13 – 3.35 

EXAFS 

 
mean Coordination number 

Co edge Co-Co EXAFS 
Co:MoSx -0.80 V 0.9 ± 0.2 
Co:MoSx -0.35 V 0.8 ± 0.3 
 
Referencesa)  XRD 
Co9S8 1.5 3 
CoS 2 6 
CoS2 12 
Co3S4 3 

 

Table 8 

Structural parameters of a possible Co-Co coordination in the Co doped Merki electrodes at -0.80 V and -0.35 V 
vs. NHE, compared to the first and second shortest Co-Co coordinations in Co9S8, CoS, CoS2, Co3S4 and the 
Co-Mo-S phase of various CoMoS2 catalysts for hydrodesulphurization. For the Merki electrodes, the structural 
parameters were obtained from fitting their Co EXAFS spectra with S and Co phase functions calculated from 
the crystal structurea) of CoS and CoMoO4. The simulations of both electrodes were performed with the same 
Debye-Waller parameter for Co (2σCo

2 = 0.009 Å2), the same energy offset (E0 = 3.9 eV) and the same amplitude 
reduction factor (S0

2 = 0.70). The values of σCo and E0 were determined from a previous simulation of the -0.35 V 
electrode with a fixed Co coordination number of one. The value of S0

 was established in (Risch, Khare et al. 
2009). In all simulations, the coordination numbers of the ligands and the Co-ligand distances were free to 
move. 

a) Crystal structure data for Co9S8 was obtained from (Lindqvist 1936), for CoS from (Alsen 1925, Wyckoff 1963), for CoS2 from (Wyckoff 1931, Nowack, 
Schwarzenbach et al. 1989, Nowack, Schwarzenbach et al. 1991), for Co3S4 from (Lundqvist 1938, Brown 1973) and for Co:MoO4 from (Smith and 
Ibers 1965). 

b) The structural parameters of the Co-Mo-S phase of various CoMoS2 catalyst for hydrodesulphurization were extracted from EXAFS results reported 
in (Bouwens, van Veen et al. 1991, Craje, Louwers et al. 1992, Eijsbouts 1997, de Bont, Vissenberg et al. 1998, Miller, Marschall et al. 2001, Kadono, 
Kubota et al. 2006, Okamoto, Kato et al. 2009, Dugulan, van Veen et al. 2013). 
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SUMMARY 

The Co doped MoSx Merki electrodes (x = 2 or 3) (preparation as in (Merki, Vrubel et al. 2012)) were 

investigated with X-ray absorption spectroscopy (XAS) at the Co K-edge to gain insight into the atomic 

structure of their Co sites. Prior to the XAS measurements, the electrodes were conditioned (12 min, 

pH 7) and frozen either at -0.80 V or -0.35 V vs. normal hydrogen electrode (NHE), to study structural 

differences between Co sites in a state of catalytic H2 formation (-0.80 V) and in a non-catalytic state 

(-0.35 V) (standard electrode potential of hydrogen reduction E0
H2 = -0.41 V at pH 7). 

The Co sites in the electrodes (see Figure 26) consist of Co ions with a mean oxidation state between 

II and III. At -0.80 V, the oxidation state is more reduced than at -0.35 V, possibly an effect of the more 

reductive electrode potential (see Table 5 and Co XANES of the electrodes in Figure 21). The Co ions 

are coordinated to S atoms in their first coordination sphere, presumably with a coordination number 

of five at -0.80 V and of six at -0.35 V (see Table 6 and peak 1 in Figure 22). At both potentials, the 

mean Co-S distance is 2.25 – 2.26 Å (see Table 6) which can be found in octahedral CoS6 species of 

CoII, III
3S4 (see Figure 24). This could be the main Co-S species in the electrodes. At -0.80 V, the 

tetrahedral form of Co3S4 might be present as well, indicated by a mean S coordination number lower 

than six. The low S coordination number could also indicate that, in the -0.80 V electrode, the CoS6 

species contains coordinatively unsaturated Co sites where one or two S ligands are missing. Merki et 

al. already suggests the presence of unsaturated Mo sites in the electrodes (Merki, Vrubel et al. 2012). 

The unsaturated Co sites mainly occur in the -0.80 V electrode and, hence, might be produced by the 

catalytic reaction, as proposed in (Miller, Marschall et al. 2001). However, the decrease in the S 

coordination number at -0.80 V is small and allows the alternative interpretation that the S shell retains 

 

Figure 26 

Schematic representation of a possible Co-site structure in the Co doped Merki electrode at -0.80 V and 
at -0.35 V vs. NHE. 



 

57 
 

all six ligands and, instead, the spatial disorder of the shell increases. This interpretation is possible due 

to the direct correlation in the EXAFS between the coordination number of a ligand shell and its Debye-

Waller factor (= measure for the spatial disorder). 

The Co sites in the electrodes do not exhibit O, N or C ligands (or CN- and CO ligands) to a significant 

extent. The correspondingly short Co-ligand distances are absent in the Co EXAFS of the electrodes 

(see Figure 22). 

The majority of the Co sites in the electrodes possesses a coordination to a neighbouring Mo atom (see 

peak 2 in Figure 22). This Co-Mo coordination exhibits a short distance of 2.72 Å at -0.80 V and a longer 

one of 3.19 Å at -0.35 V (Table 6). The EXAFS simulations would also support a Co-Co coordination. 

However, this is less likely in the electrodes due to the four-times higher abundance of Mo (as reported 

in (Merki, Vrubel et al. 2012) and indicated by our elemental analysis in Table 12). Besides this Co-

metal coordination, the Co sites exhibit no significant long-range order. 

The Co sites in the electrodes, in particular at -0.80 V, exhibit an atomic structure similar to the so-

called “Co-Mo-S” phase (structure) observed in various CoMoS2 catalysts for hydrodesulphurization (a 

selection of XAS studies for these catalysts can be found in (Bouwens, van Veen et al. 1991, Craje, 

Louwers et al. 1992, de Bont, Vissenberg et al. 1998, Miller, Marschall et al. 2001, Kadono, Kubota et 

al. 2006, Okamoto, Kato et al. 2009, Dugulan, van Veen et al. 2013)). The Co-Mo-S phase consists of 

Co-S clusters located at the edges of MoS2 crystallites. The clusters contain Co ions coordinated to five 

or six S ligands. According to (Okamoto, Kato et al. 2009, Dugulan, van Veen et al. 2013), it is generally 

accepted that the Co-Mo-S phase is the catalytic or active phase in the CoMoS2 catalysts. 

Miller et al. proposes for the Co-Mo-S phase that the Co ions in the Co-S clusters exhibit two types of 

S ligands, terminal and bridging (see Figure 25) (Miller, Marschall et al. 2001). The latter are 

incorporated into the Co-(µ-S)2-Mo bridges between Co-S cluster and MoS2 bulk and exhibit a shorter 

Co-S distance of 2.18 Å than the terminal ligands with 2.26 Å. When the model of (Miller, Marschall et 

al. 2001) is applied to the Co site in the Merki electrodes, similar distances can be resolved but with a 

lower number of bridging ligands. This indicates a more loose connection between the Co-S clusters 

and the MoSx bulk than in the Co-Mo-S phase of the CoMoS2 catalysts. 

In the context of the Co-Mo-S phase, the Co-Mo coordination of the Merki electrodes represents the 

Co-(µ-S)2-Mo bridges between the Co-S cluster and the MoSx bulk. At -0.35 V, the Co-Mo distance of 

the electrodes is unusually long in comparison to a typical Co-Mo-S phase in the CoMoS2 catalysts. At 

-0.80 V, the Co-Mo coordination of the Merki electrodes contracts indicating that the Co sites approach 

closer to the MoSx bulk. This could have been enabled by a reduction in the effective dimensions of 

the Co sites caused by the loss of an S ligand. If the Co-Mo coordination of the electrodes is considered 

as a Co-Co coordination (comparable quality of the corresponding EXAFS simulations), a contraction of 

the Co-Co distance from 3.3 Å to 2.9 Å analogue to the Co-Mo distance can be observed as well. The 

Co-Co contraction at -0.80 V could indicate the formation of spots in the electrode where the Co sites 

are spatially more concentrated. 

The differences between the Co-Mo-S phase of the CoMoS2 catalysts and the one of the Merki 

electrodes could arise from the fact that the former is based on MoS2 crystallites while the electrodes 

consist of amorphous MoSx, which exhibits a different long-range structure. 
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Ni SITE - ATOMIC STRUCTURE 
 

RESULTS AND DISCUSSION 

 

Ni-S COORDINATION 

X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) of 

the Ni doped MoSx Merki electrodes (x = 2 or 3) were recorded at the Ni K-edge to gain insight into the 

atomic structure of their Ni sites. Prior to the XANES/EXAFS measurements, the electrodes were 

conditioned (12 min, pH 7) and frozen either at -0.80 V or -0.35 V vs. normal hydrogen electrode (NHE), 

to study structural differences between Ni sites in a state of catalytic H2 formation (-0.80 V) and in a 

non-catalytic state (-0.35 V) (standard electrode potential of hydrogen reduction E0
H2 = -0.41 V at pH 7). 

The Ni absorption edge of in the XANES of the Merki electrodes (see Figure 27) exhibits a similar shape 

as the Ni edge of NiI, II3S2 (heazlewoodite). This suggests that the Ni sites in the electrodes have a first 

coordination sphere similar to Ni3S2 where each Ni atom is tetrahedrally coordinated to four S ligands. 
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Figure 27 

XANES spectra recorded at the Ni K-edge: Ni doped Merki MoSx electrode at -0.80 V vs. NHE (magenta line) 
and at -0.35 V (blue line); crystalline NiI, II3S2 (black line). 
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Furthermore, the edge position of the 

-0.35 V electrode is close to the one 

of NiI, II3S2 suggesting that the Ni ions 

in the electrode, as in Ni3S2, exhibit a 

mean oxidation state of ≈ +1.3 (see 

Table 9). The edge position of 

the -0.80 V electrode is shifted to 

lower excitation energies by -0.8 eV 

indicating that the Ni ions have a 

more reduced mean oxidation state 

than at -0.35 V. 

The Ni EXAFS spectra of Merki 

electrodes, at both potentials, exhibit 

two prominent peaks, labelled as 1 

and 2 in Figure 28. A comparison with 

the spectrum of Ni3S2 (see structure in Figure 30) indicates that peak 1 can be assigned to a Ni-S 

coordination. The nature of peak 2 remains unclear but is possibly a Ni-Mo coordination, see section 

Ni-metal coordination. EXAFS simulations of peak 1 (see Figure 29) yield a Ni-S distance of 2.22 Å (see 

Table 11), which is a bit shorter than in Ni3S2 with 2.27 ± 0.01 Å (see Table 10). The simulated S 

coordination number for peak 1 is close to four (= S coordination number of Ni3S2) but fluctuates with 

the electrode potential. From -0.35 V to -0.80 V, the coordination number decreases from 4.3 to 3.7 

(see Table 11). The corresponding subsidence of peak 1 by 10 % (see Figure 28) is small and allows the 

alternative interpretation that the S shell retains all four ligands and, instead, the spatial disorder of 

the shell increases. This interpretation is possible due to the direct correlation in the EXAFS between 

the coordination number of a ligand shell and its Debye-Waller factor (= measure for the spatial 

disorder). The observed differences in the XANES between the -0.35 V and -0.80 V electrode (see 

Figure 27) could be related to the structural modifications in the S shell. 

Ni edge Edge 
Position 
[eV] 

Mean 
oxidation 
state 

Ni:MoSx -0.80 V 8340.3 < 1.3 

Ni:MoSx -0.35 V 8341.1 ≈ 1.3 
   

NiI, II3S2 8340.9 1.3 

 

Table 9 

Ni K-edge positions of Ni doped Merki electrodes at -0.80 V 
and -0.35 V vs. NHE and their corresponding mean oxidation 
states for Ni. The edge positions were determined with the integral 
method as described in (Dau, Liebisch et al. 2003) with an interval 
of integration from 0.15 to 1.0 of normalized fluorescence. 

 mean Ni-S distance [Å] 

S 
coordination 
number 

NiI, II3S2 NiI, II9S8 NiIIS NiII, III3S4 NiIVS2 XRD 

4 2.27 ± 0.01 2.23 ± 0.03  2.15 ± 0.06  

5  2.31 ± 0.04 2.31 ± 0.05   

6    2.34 ± 0.07 2.40 ± 0.01 

 

Table 10 

Ni-S distances for various ligand environments of Ni with four, five or six S atoms. The denoted distances for 
each Ni-S compound (Ni3S2, Ni9S8, NiS, Ni3S4 and NiS2) are mean values for a certain S-ligand geometry 
averaged from one or several crystal structures of the compound. 

The crystal structure for Ni3S2 is published in (Westgren 1938, Fleet 1977, Parise 1980), for Ni9S8 in (Fleet 1987), for NiS (Millerite) in (Alsen 1925, Grice 
and Ferguson 1974, Rajamani and Prewitt 1974), for Ni3S4 in (Wyckoff 1931, Lundqvist 1974) and for NiS2 in (Furuseth, Kjekshus et al. 1969, Nowack, 
Schwarzenbach et al. 1989, Nowack, Schwarzenbach et al. 1991). 
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A comparison with various Ni-S compounds (see Table 10) suggests that the Ni-S distance of the Merki 

electrodes, which is the same at both potentials, exclusively corresponds to a geometry of four S 

ligands in the first coordination sphere. In particular, the tetrahedral NiS4 species of Ni9S8 (see structure 

in Figure 30) (no XAS spectrum recorded) shows a S distance coincident with the electrodes. This 

suggests for the electrodes that the small drop in the simulated S coordination number from -0.35 V 

to -0.80 V (see Table 11) is rather due to an increase in spatial disorder of the S shell than due to a 

change in ligand number. 

On the other hand, the Merki electrodes could contain coordinatively unsaturated Ni sites at -0.80 V 

where one or two S ligands are missing. This would decrease the mean S coordination number below 

four. Merki et al. already suggests the presence of coordinatively unsaturated Mo sites in the 

electrodes (Merki, Vrubel et al. 2012). 
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Figure 28 

Fourier transforms of k3 weighted EXAFS spectra (k range = 3 -13 Å-1) recorded at the Ni K-edge: Ni doped 
Merki MoSx electrodes at -0.80 V vs. NHE (magenta line) and at -0.35 V (blue line); crystalline NiI, II3S2 (black 
line). The main peaks of Ni3S2 are labelled with the corresponding Ni-ligand coordination and distance. 
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The Ni sites in the electrodes do not possess O, N or C ligands (or CN- and CO ligands) to a significant 

extent. In the Ni EXAFS, prominent peaks of correspondingly short Ni-ligand distances (shorter than 

the distance of peak 1) are not visible (see Figure 28). The left shoulder of peak 1 is part of the side 

lobes of the Ni-S peak as shown by the EXAFS simulations (see Figure 29). 
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Figure 29 

EXAFS simulations (black line) of the experimental spectra of the Ni doped Merki electrode at -0.80 V vs. NHE 
(magenta line) and -0.35 V (blue line). Left side: the EXAFS represented as k3-weighted χ spectra. Right side: 
Fourier transforms of the k³ weighted EXAFS spectra. The EXAFS simulations and Fourier transforms were 
performed over the k range shown on the left side. The EXAFS simulations correspond to the structural 
parameters presented in Table 11. 



 

62 
 

  

 

Figure 30 

Schematic structures of the Ni ligand environment in bulk NiI, II3S2 and NiI,II9S8. For each structure, the central 
Ni atom is indicated as “0”. The numbering of the S/Ni ligand atoms increases with their distance from the 
central atom. Ligand atoms with the same number have the same distance. The concrete distance for each 
number is listed in the corresponding table next to the structure. The shown structures for Ni9S8 are a 
representative selection from the various Ni ligand environments present in this compound. The images are 
based on crystal data published for Ni3S2 in (Westgren 1938) and for Ni9S8 in (Fleet 1987). 
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mean Ni-ligand distance 
Ni edge Ni-S [Å] Ni-Mo [Å] Ni-Ni [Å] EXAFS 
Ni:MoSx -0.80 V 2.22 ± 0.01 2.67 ± 0.01 3.85 ± 0.02 
Ni:MoSx -0.35 V 2.22 ± 0.01 2.67 ± 0.01 3.87 ± 0.03 
     
Cubane structurea)  

[Mo3NiS4(H2O)10]4+ 
[Mo3NiS4Cl(H2O)9]3+ 

2.20 – 
2.22 

2.63 – 
2.67 

- XRD 

     
“Ni-Mo-S” phaseb) 2.12 – 

2.29 
2.81 – 
2.85 

2.53, 2.81 EXAFS 

 
mean Coordination number 

Ni edge Ni-S Ni-Mo Ni-Ni EXAFS 
Ni:MoSx -0.80 V 3.7 ± 0.3 0.9 ± 0.2 1.2 ± 0.4 
Ni:MoSx -0.35 V 4.3 ± 0.3 0.9 ± 0.2 0.8 ± 0.4 
     
Cubane structurea) 

[Mo3NiS4(H2O)10]4+ 
[Mo3NiS4Cl(H2O)9]3+ 

3 3 - XRD 

     
“Ni-Mo-S” phaseb) 1.5 – 6.7 0.5 – 2.0 0.8 – 1.2 EXAFS 

 

Table 11 

Structural parameters of the Ni ligand environment in the Ni doped Merki electrodes at -0.80 V and -0.35 V vs. 
NHE, compared to the cubane-type structuresa) [Mo3NiS4(H2O)10]4+ and [Mo3NiS4Cl(H2O)9]3+ and the Ni-Mo-S 
phaseb) of various NiMoS2 catalyst for hydrodesulphurization. For the Merki electrodes, the structural 
parameters were obtained from fitting their Ni EXAFS spectra with S, Mo and Ni phase functions calculated 
from the crystal structurea) of Ni3S2 and Ni:MoO4 ·H2O. The simulations of both electrodes were performed with 
the same Debye-Waller parameters for Mo and Ni (2σMo

2 = 0.009 Å2 and 2σNi
2 = 0.009 Å2), the same energy 

offset (E0 = 2.7 eV) and the same amplitude reduction factor (S0
2 = 0.90). The values of σMo, σNi and E0 were 

determined from a previous simulation of the -0.35 V electrode with a fixed Mo coordination number of one. 
The value of S0

 was established in (Haumann, Porthun et al. 2003). In all simulations, the coordination numbers 
of the ligands and the Ni-ligand distances were free to move. The Debye-Waller parameter of S was free as 
well and yielded 2σS

2 = 0.010 Å2 for the -0.80 V electrode and 0.011 Å2 at -0.35 V. The simulated EXAFS 
spectra are presented in Figure 29. 

a) The crystal structure data for [Mo3NiS4(H2O)10]4+ was obtained from (Shibahara, Yamasaki et al. 1991), for [Mo3NiS4Cl(H2O)9]3+ from (Shibahara, 
Yamasaki et al. 1991, Taniguchi, Imamura et al. 1999), for Ni3S2 from (Westgren 1938, Fleet 1977, Parise 1980) and for Ni:MoO4 ·H2O from (Eda, 
Kato et al. 2010). 

 
b) The structural parameters of the Ni-Mo-S phase of various NiMoS2 catalyst for hydrodesulphurization were extracted from EXAFS results reported in 

(Bouwens, Koningsberger et al. 1990, Niemann, Clausen et al. 1990, Medici and Prins 1996, Eijsbouts 1997). 
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Ni–METAL COORDINATION 

For peak 2 in the Ni EXAFS of the Merki electrodes (see Figure 28), EXAFS simulations (see Figure 29) 

suggest a Ni-Mo coordination. Simulations with a Ni-Ni coordination show less agreement with the 

electrode spectra (increase in the filtered R-factor by 50-60 %, R range = 1 – 3 Å). The Mo coordination 

number can be simulated with a value close to one, suggesting that the majority of the Ni sites in the 

electrodes are coordinated to a Mo atom. The simulated Ni-Mo distance of 2.67 Å (see Table 11) can 

be found in cubane-type bimetallic sulphide clusters as [Mo3NiS4(H2O)10]4+ (Shibahara, Yamasaki et al. 

1991) and [Mo3NiS4Cl(H2O)9]3+ (Shibahara, Yamasaki et al. 1991, Taniguchi, Imamura et al. 1999) (see 

Figure 19) where the Ni-Mo distances are between 2.63 – 2.67 Å. The clusters also possess a Ni-S 

coordination with a S distance of 2.20 – 2.22 Å (see Table 11) that is similar to the one simulated for 

the Merki electrodes. Hence, the Ni sites in the electrodes might similar S bridges between Ni and Mo 

as in the clusters. However, cubane-type structures are probably not formed between the Ni sites and 

the MoSx bulk of the electrodes, since the Ni sites do not achieve a three-fold Mo coordination as in 

the clusters (see Table 11). The Mo coordination of the Ni sites is not visibly affected by the alteration 

of the electrode potential from -0.35 V to -0.80 V. 

Peak 3 in the Ni EXAFS of the electrodes indicates the presence of a weak long-range structure (see 

Figure 28). At -0.35 V, the long-range structure is not as evident as at -0.80 V, since the amplitude of 

peak 3 is closer to the noise level. In EXAFS, peaks at such long distances as peak 3 (≈3.7 Å) most likely 

correspond to heavy backscatterers like metal atoms. In the case of the Ni doped Merki electrodes, 

the possible metals are Ni or Mo. EXAFS simulations of peak 3 support a Ni-Ni coordination (see Figure 

29) as well as a Ni-Mo coordination. Both coordinations result in the same simulation quality. In case 

of a Ni-Ni coordination, the simulations yield a Ni-Ni distance of 3.85 – 3.87 Å (see Table 11) which can 

be found in Ni-µ4-S-Ni bridges of Ni9S8 or Ni3S2 (see structure in Figure 30). The former would be in 

concordance with the Ni9S8-like Ni-S coordination of peak 1 (see Figure 28). In case of a Ni-Mo 

coordination, the simulations of peak 3 yield a Ni-Mo distance of 3.69 – 3.72 Å which is unusual and 

prevents an assignment to a certain structural motif. For both coordinations, Ni-Ni and Ni-Mo, the 

simulated coordination numbers are close to one (for Ni-Ni see Table 11) and indicate only a weak 

occurrence of this long-range structure. The Ni doped Merki electrodes possibly contain only spots 

where either the Ni sites are more concentrated or the MoSx bulk exhibits a higher structural order. 

This could lead to a higher spatial correlation between remote metal sites and would sum up to a 

corresponding long-range feature in the EXAFS. 

The Ni sites in the electrodes exhibit only a weak similarity with the so-called “Ni-Mo-S” phase 

(structure) of NiMoS2 catalysts for hydrodesulphurization (a selection of XAS studies for these catalysts 

can be found in (Bouwens, Koningsberger et al. 1990, Niemann, Clausen et al. 1990, Medici and Prins 

1996, Eijsbouts 1997)). This is interesting, since the Co sites in the electrodes share common features 

with the “Co-Mo-S” phase of analogue CoMoS2 catalysts. The Ni-Mo-S phase consists of Ni-S clusters 

on the edges of MoS2 crystallites and, according to (Eijsbouts 1997), contains the active site of the 

catalysts or a part of it. The S shell of the Ni sites in the electrodes exhibits a Ni-S distance and 

coordination number that falls in the range of observed values for the Ni-Mo-S phase (see Table 11). 

However, the Ni-metal coordinations of the sites significantly deviate from the Ni-Mo-S structure. The 

amorphicity of the MoSx bulk in the electrodes could affect the formation of the Ni-Mo-S phase leading 

to a different atomic structure than on crystalline MoS2. 
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SUMMARY 

The Ni doped MoSx Merki electrodes (x = 2 or 3) (preparation as in (Merki, Vrubel et al. 2012)) were 

investigated with X-ray absorption spectroscopy (XAS) at the Ni K-edge to gain insight into the atomic 

structure of their Ni sites. Prior to the XAS measurements, the electrodes were conditioned (12 min, 

pH 7) and frozen either at -0.80 V or -0.35 V vs. normal hydrogen electrode (NHE), to study structural 

differences between Ni sites in a state of catalytic H2 formation (-0.80 V) and in a non-catalytic state 

(-0.35 V) (standard electrode potential of hydrogen reduction E0
H2 = -0.41 V at pH 7). 

The Ni sites in the electrodes (see Figure 31) consist of Ni ions with a mean oxidation state close to 

+1.3. At -0.80 V, the Ni ions are more reduced than at -0.35 V due to the more reductive electrode 

potential (see Table 9 and Ni XANES of the electrodes in Figure 27). The Ni ions are coordinated to S 

atoms in their first coordination sphere with a mean Ni-S distance of 2.22 Å (see Table 11). The mean 

S coordination number is close to four but fluctuates with the electrode potential. From -0.35 V 

to -0.80 V, the coordination number decreases from 4.3 to 3.7 (see Table 11 and subsidence of peak 1 

in Figure 28). The Ni-S distance and S coordination number indicate that the Ni-S species in the 

electrodes is similar to tetrahedral species present in NiI, II9S8 (see structure in Figure 30). The lower S 

coordination number at -0.80 V could originate from coordinatively unsaturated Ni sites where one or 

two S ligands are missing. Merki et al. already suggests the presence of unsaturated Mo sites in the 

electrodes (Merki, Vrubel et al. 2012). The unsaturated Ni sites mainly occur in the -0.80 V electrode 

and, hence, could be produced by the catalytic reaction, as proposed in (Miller, Marschall et al. 2001). 

However, the decrease in the S coordination number at -0.80 V is small and allows the alternative 

interpretation that the S shell retains all four ligands and, instead, the spatial disorder of the shell 

 

Figure 31 

Schematic representation of a possible Ni-site structure in the Ni doped Merki electrode at -0.80 V and at -0.35 V 
vs. NHE. 
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increases. This interpretation is possible due to the direct correlation in the EXAFS between the 

coordination number of a ligand shell and its Debye-Waller factor (= measure for the spatial disorder). 

The Ni sites in the electrodes do not exhibit O, N or C ligands (or CN- and CO ligands) to a significant 

extent. The correspondingly short Ni-ligand distances are absent in the Ni EXAFS of the electrodes (see 

Figure 28). 

The majority of the Ni sites in the electrodes possess a single Ni-Mo coordination with a Ni-Mo distance 

of 2.67 Å (see Table 11 and peak 2 in Figure 28). The Ni-Mo coordination is not affected by the 

alteration of the electrode potential from -0.35 V to -0.80 V. The distance of the Ni-Mo coordination 

can be found in the cubane-type bimetallic sulphur clusters [Mo3NiS4(H2O)10]4+ (Shibahara, Yamasaki 

et al. 1991) and [Mo3NiS4Cl(H2O)9]3+ (Shibahara, Yamasaki et al. 1991, Taniguchi, Imamura et al. 1999) 

(see Figure 19). The clusters also possess a Ni-S coordination similar to the one observed for the Ni 

sites of the electrodes (see Table 11). Hence, the Ni sites might exhibit similar S bridges between Ni 

and Mo as in the clusters. However, cubane-type structures are probably not formed between the Ni 

sites and the MoSx bulk of the electrodes, since the Ni sites do not achieve a three-fold Mo coordination 

as in the bimetallic sulphide clusters (see Table 11). In (Taniguchi, Imamura et al. 1999), the cubane-

type cluster [Mo3NiS4Cl(H2O)9]3+ is applied as precursor for hydrodesulphurization catalysts. Hence, the 

structural similarity between the Ni sites of the Merki electrodes and the cluster could be a reason for 

the catalytic activity of the sites.  

The Ni sites exhibit a weak long-range structure consisting of a Ni-Ni or Ni-Mo coordination longer than 

3 Å (peak 3 in Figure 28). The potential Ni-Ni coordination would exhibit a Ni-Ni distance of 3.85 – 

3.87 Å (see Table 11) which can be found in Ni-µ4-S-Ni bridges of Ni9S8 and would be in concordance 

with the Ni9S8-like Ni-S coordination of the Ni sites. The potential Ni-Mo coordination would show an 

unusual Ni-Mo distance of 3.69 – 3.72 Å which prevents an assignment to a certain structural motif. 

For both coordinations, Ni-Ni and Ni-Mo, the coordination numbers are close to one (for Ni-Ni see 

Table 11) indicating only a weak occurrence of the long-range structure. It seems that the Ni doped 

Merki electrodes contain only spots where either the Ni sites are more concentrated or the MoSx bulk 

exhibits a higher structural order. The former could lead to a weak long-range coordination between 

Ni sites and the latter between Ni and Mo sites. 

In various NiMoS2 catalysts for hydrodesulphurization, a so-called “Ni-Mo-S” phase (structure) is 

observed (a selection of XAS studies for these catalysts can be found in (Bouwens, Koningsberger et al. 

1990, Niemann, Clausen et al. 1990, Medici and Prins 1996, Eijsbouts 1997)). This phase contains the 

active sites of the catalysts or parts of it. The Ni sites in the electrodes exhibit a Ni-S coordination 

suitable for a possible Ni-Mo-S phase but their Ni-Mo coordination does not match. This is interesting, 

since the Co sites in the electrodes show a high similarity with the analogous “Co-Mo-S” phase of 

CoMoS2 catalysts for hydrodesulphurization. 

In the Mo EXAFS of the same electrodes, the Mo-Ni distances are hardly visible due to the low 

stoichiometric ratio between Ni and Mo of about 1 : 5 (as reported in (Merki, Vrubel et al. 2012) and 

indicated by our elemental analysis in Table 12). 
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HYDROGEN FORMATION – MECHANISTIC 

IMPLICATIONS 
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DISCUSSION 
 

XAS MEASUREMENTS ON THE MERKI ELECTRODES 

The Co doped, Ni doped and undoped MoSx Merki electrodes (x = 2 or 3) were investigated with X-ray 

absorption spectroscopy (XAS) at the Mo K-edge to gain insight into the atomic structure of their Mo 

sites. For the doped electrodes, additional XAS measurements were performed at the Co or Ni K-edge 

to obtain information about the atomic structure of the Co or Ni sites. The XAS spectra were recorded 

at electrode potentials of -0.80 V and -0.35 V vs. normal hydrogen electrode (NHE) under neutral 

conditions (pH 7), to study structural differences between Mo, Co and Ni sites in a state of catalytic 

hydrogen-evolution reaction (HER) (-0.80 V) and in a non-catalytic state (-0.35 V) (standard electrode 

potential of hydrogen reduction E0
H2 = -0.41 V at pH 7). 

 

HER MECHANISM OF MoS2 CATALYSTS 

Amorphous MoS2 is proposed as the catalytic Mo species for hydrogen evolution reaction (HER) in the 

Merki electrodes while a non-catalytic MoS3 species can be present as well (Merki, Fierro et al. 2011, 

Merki, Vrubel et al. 2012, Lassalle-Kaiser, Merki et al. 2015). Our X-ray absorption spectroscopy (XAS) 

investigations of the electrodes support that and indicate that the Mo sites of the electrodes combine 

a MoIVS2-like Mo-S coordination (= S2- ligands) with a 2.8 Å Mo-Mo coordination typical for amorphous 

MoVS3 (see chapter Mo site – Atomic structure). The atomic structure of the sites possibly builds up 

from Mo2Sx blocks (x = 7, 8 or 9) similar to the Mo2S9 building blocks of MoS3 (see Figure 12), based on 

the same Mo-Mo coordination, but with MoIV centres as in MoS2. The Mo sites do not show a long-

range order comparable to crystalline MoS2 with a 3.2 Å Mo-Mo coordination (see chapter Mo site – 

Atomic structure). The missing long-range order suggests an amorphous character for the Mo-S species 

of the electrodes. 

A tentative model for catalyst in the Merki electrodes could be MoS2 crystals (as proposed by (Merki, 

Vrubel et al. 2012)), as they exhibit significant catalytic activity for HER in form of nanocrystals 

(Jaramillo, Jorgensen et al. 2007) and possess structural similarities with the Mo-S species of the 

electrodes. The catalytic sites of the MoS2 crystals are the edges while the basal planes of the crystals 

are inactive (Jaramillo, Jorgensen et al. 2007). A bulk MoS2 crystal possesses a hexagonal morphology 

leading to two types of edge sites: the Mo (1010) edge and the S (1010) edge (see Figure 32A) 

(Bollinger, Jacobsen et al. 2003). The Mo edge is the catalytically active site (Jaramillo, Jorgensen et al. 

2007) and is sulfided, presumably with a S monomer (see Figure 32B) (Bollinger, Jacobsen et al. 2003). 

Crystalline MoS2 nanoparticles exhibit a higher catalytic activity than bulk crystals, as their truncated 

triangular shape (see Figure 32C) leads to a predominance of Mo edges (Jaramillo, Jorgensen et al. 

2007). 

The doping of MoS2 nanocrystals with Co can increase their catalytic activity for HER (Bonde, Moses et 

al. 2008). The Co atoms exclusively bind to the S edges (Raybaud, Hafner et al. 2000, Schweiger, 

Raybaud et al. 2002, Lauritsen, Kibsgaard et al. 2007) and transform them into catalytically active sites 

(Bonde, Moses et al. 2008). This leads to a higher number of active sites in the Co doped MoS2 
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nanoparticles compared to the undoped particles. For the doping with Ni, analogue promotion effects 

on MoS2 nanoclusters were observed (Kibsgaard, Tuxen et al. 2010). 

The Gibbs free energy, ΔGH, for atomic hydrogen adsorption on a specific atomic site is a measure of 

its catalytic activity. The smaller the value of ΔGH (closer to zero) the higher the activity or exchange 

current density, respectively. Density functional theory (DFT) calculations of ΔGH for the MoS2 

nanocrystals yield a lower value of +0.08 eV for the Mo edges than for the S edges with +0.18 eV 

(Bonde, Moses et al. 2008), suggesting a higher catalytic activity for the Mo edges. The ΔGH calculations 

propose that, at room temperature, the S monomer of the Mo edge is the most attractive adsorption 

site for atomic hydrogen (Hinnemann, Moses et al. 2005). The doping of the MoS2 nanocrystals with 

Co does not affect ΔGH of the Mo edges but lowers the value of ΔGH for the S edges to +0.10 eV (Bonde, 

Moses et al. 2008), suggesting that the Co-binding S edges possess a catalytic activity comparable to 

the Mo edges. 

 

Figure 32 

A: Schematic structure of the Mo and S edges of a single MoS2 crystal layer (view on basal plane). B: Mo edge 
covered by a S monomer. C: MoS2 nano-crystal. Schemes are based on illustrations in (Bollinger, Jacobsen et 
al. 2003, Bonde, Moses et al. 2008). 
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The edge sites in the MoS2 crystals can be considered as defect sites and/or unsaturated sites. The 

configuration of the Mo and S atoms at the edge sites breaks the symmetry of the crystal lattice 

(Bollinger, Jacobsen et al. 2003) leading to edge atoms that are coordinatively unsaturated. This 

enables the edge sites to adsorb hydrogen and to mediate HER. The Merki electrodes do not possess 

such well-defined Mo edge sites as the MoS2 crystals but they still exhibit a catalytic activity 

comparable to other MoS2-based catalysts (Merki and Hu 2011). The hypothesis of Merki et al. is that 

the amorphous MoS2 character of the electrodes leads to a significant amount of defect sites and, 

thereby, coordinatively unsaturated Mo and S atoms where HER may take place (Merki, Vrubel et al. 

2012). The Co or Ni dopants can enhance the activity of these unsaturated sites (Merki, Vrubel et al. 
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Figure 33 

Cyclic voltammetry (CV) of the Merki electrodes in 0.1 M potassium phosphate at pH 7.0: (blue line) undoped, 
(red line) Ni doped and (green line) Co doped electrode. The scan direction is indicated by the arrows. Before 
cyclic voltammetry, the electrolyte was degassed via flushing with N2. The measurement was performed under 
N2 atmosphere. In (A), the 4th cycle of the CV is shown with a scan rate of 1 mV/s. The forward traces are in 
good agreement with analogue measurements reported by Merki et al. in (Merki, Vrubel et al. 2012). In (B), the 
as-prepared Merki electrodes were slowly ramped up from the open-circuit voltage (non-catalytic conditions) to 
-0.80 V vs. NHE (HER conditions) with a scan rate of 5 mV/s. The ramp-up is part of the electrode conditioning 
for the XAS measurements and was performed in a freeze-quench configuration (for a detailed description see 
chapter Methods). The standard potential E0

H2 of hydrogen reduction at pH 7.0 is marked by the vertical line for 
both measurements, A and B.  
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2012) and/or create new ones as observed in the MoS2 nanocrystals (transforming S edges into active 

sites). The dopant sites themselves could be potential reaction sites for HER as well. 

DFT calculations of ΔGH suggest that the unsaturated S sites are the most suitable sites for HER in the 

Merki electrodes, as they require the lowest energy to adsorb atomic hydrogen (Hinnemann, Moses 

et al. 2005). Unsaturated Mo, Co and Ni sites form stronger bonds with atomic hydrogen which could 

impede HER via a slow hydrogen-release step (Hinnemann, Moses et al. 2005). However, the Mo, Co 

and Ni sites could support HER by providing an additional source of bound atomic hydrogen. This might 

happen in analogy to the catalytic mechanism in hydrogenase where molecular hydrogen is formed by 

the interplay between a hydride-binding metal site and a proton-binding pendant base in close 

proximity (Lubitz, Ogata et al. 2014). In the case of the Merki electrodes, the unsaturated Mo, Co and 

Ni sites would bind the hydride and the unsaturated S sites the proton. In the Merki electrodes, this 

mechanism could operate in parallel to a mechanism solely based on unsaturated S sites. 

 

ELECTROCHEMICAL EFFECTS BY THE DOPING OF THE MERKI ELECTRODES 

Cyclic voltammetry (CV) on the Merki electrodes, at pH 7, indicates a correlation between the doping 

with Co or Ni and the over-potential of the electrodes for HER and the redox currents occurring under 

HER conditions. The CV scans of the electrodes in Figure 33A (scan rate 1 mV/s) show that the doping 

with Co or Ni shifts the rise of the catalytic HER current to lower electrode potentials: for the Co doped 

electrode, the catalytic current reaches -0.5 mA/cm2 at -0.55 V vs. normal hydrogen electrode (NHE), 

for the Ni doped electrode at -0.58 V and for the undoped electrode at -0.66 V. This indicates that the 

doping, in particular with Co, lowers the over-potential of the electrodes for HER (standard electrode 

potential of hydrogen reduction, E0
H2 = -0.41 V vs. NHE at pH 7.0) (the doping effect on the over-

potential was already reported in (Merki, Vrubel et al. 2012)). The Merki electrodes exhibit significant 

redox currents under HER conditions. These currents are indicated in the CV scans of the electrodes 

by the difference area “a” between forward and backward trace in Figure 33A (scan rate 1 mV/s) and 

by the occurrence of the cathodic current wave “1” in Figure 33B (scan rate 5 mV/s). In both cases, the 

doping with Co or Ni effects that the redox-currents occur at less negative potentials than in the 

undoped electrode. This suggests that doping enables a provision of redox equivalents for HER closer 

to E0
H2 than in the undoped electrode. The occurrence of the redox currents and their midpoint 

potential do not degrade over time as shown by the one-hour CV measurements in Figure 34. 

The occurrence of redox currents under HER conditions indicate that a fraction of the Mo, Co, Ni and/or 

S atoms in the Merki electrodes undergo oxidation state changes and, hence, participate as 

redox-equivalents in the catalytic reaction and/or in the formation of the catalytic state. The number 
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of the redox-equivalents can be estimated from the integration of the redox currents in Figure 33A (= 

difference area “a” between forward and backward trace). However, it is complicated to correctly 

separate the catalytic current from the redox currents and, therefore, the determined numbers for the 

redox equivalents are uncertain. The rough approach used for Figure 33A assumes that the catalytic 

current corresponds to the midline between the forward and backward trace of the CVs and, hence, 

can be compensated by diminishing the integral of the redox currents by a factor of two. 

For the undoped Merki electrode, the determined number of redox equivalents approximately 

matches the number of all Mo and S atoms present in the electrode (see Table 12). This suggests that, 

besides the surface, the MoSx bulk of the electrode participates in HER, involving a significant fraction 

of its S and Mo atoms. However, XAS analysis indicates only oxidation state changes around one or 

smaller for Mo (see Table 1), suggesting that S (no XAS recorded at S K-edge) is stronger involved in 

HER than Mo. In the Co and Ni doped electrodes, the MoSx bulk presumably exhibits a comparable 

catalytic behaviour, since its atomic structure is similar to the one of the undoped electrode (see 

chapter Mo site – Atomic structure) and the observed oxidation-state changes for Mo are around one 

or smaller as well. 

Elemental analysis 

 Co:MoSx  
[nmol / cm2] 

Ni:MoSx  
[nmol / cm2] 

MoSx  
[nmol / cm2] 

Co 50   
Ni  20  

Mo 200 90 50 

S 430 200 90 
Mo [µg / cm2] 19 9 4 

    
Co : Mo 1 : 4   
Ni : Mo  1 : 5  
S : Mo 2 : 1 2 : 1 2 : 1 
 

Redox equivalents 

 Co:MoSx  
[nmol / cm2] 

Ni:MoSx  
[nmol / cm2] 

MoSx  
[nmol / cm2] 

 200 60 130 

 

Table 12 

Top: elemental analysis of the Co:MoSx, Ni:MoSx and MoSx Merki electrodes via inductively coupled plasma – 
optical emission spectrometry (ICP-OES). Prior to analysis, the electrodes were digested in mixtures of 
concentrated HNO3 : HCl in a 1 : 3 ratio for ≈ 2 h. The measurement was executed and evaluated by Mikaela 
Görlin of the group of Prof. Strasser at the Technical University of Berlin. Our results, in particular the 
proportions between Co, Ni and Mo, are in good agreement with analogue measurements reported by Merki et 

al. in (Merki, Vrubel et al. 2012). Bottom: numbers of redox equivalents present in the doped and undoped 
Merki electrodes under HER conditions. The numbers were determined by calculating the difference integral 
between the forward and backward trace of the 4th cyclic-voltammetry cycle shown in Figure 33A and by 
dividing the result by two to compensate for the catalytic current. 
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For the Co/Ni doped Merki electrodes, the determined number of redox equivalents seems to correlate 

with the number of dopant atoms present in the electrodes. The Co doped electrode exhibits a larger 

number of redox equivalents and of dopant atoms than the Ni doped electrode while the proportion 

between dopant atoms and redox equivalents is similar for both electrodes (see Table 12). This effect 

and the observed shift of the redox currents to less negative electrode potentials in the doped 

electrodes (see Figure 33A and B) suggest a direct involvement of the dopant atoms in the HER 
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Figure 34 

Cyclic voltammetry of the Merki electrodes with a scan rate of 1 mV/s: (A) undoped, (B) Ni doped and (C) Co 
doped. Shown are the 2nd (blue line), 3rd (light green line) and 4th cycle (dark green line). The standard 
potential E0

H2 of hydrogen reduction at pH 7.0 is marked by the vertical line. The scan direction is indicated by 
the arrows. The used electrolyte is 0.1 M potassium phosphate at pH 7.0. Before cyclic voltammetry, the 
electrolyte was degassed via flushing with N2. The measurement was performed under N2 atmosphere. 
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catalysis. This dopant-related catalysis, however, is not solely based on the dopants and involves other 

catalytic sites as S and/or Mo sites, since the turnover of redox equivalents for the doped electrodes 

exceeds the number of available dopant atoms by a factor of three or four (see Table 12). The 

involvement of other catalytic sites is also supported by XAS analysis, indicating only moderate 

oxidation states changes for Co and Ni during HER with an estimated magnitude of one or smaller (see 

Table 5 and Table 9). 

The Merki electrodes possibly form a S-hydride whose activity and/or formation is promoted by the 

doping with Co or Ni. The observed redox currents of the electrodes under HER conditions (difference 

area “a” between forward and backward trace in Figure 33A and current wave “1” in Figure 33B) are 

probably dominated by redox processes of the S-hydride. The origin of the pre-wave “2” in B is unclear 

but possibly arises from the partial reduction of MoIV to MoIII ions in the electrodes. 

 

Mo SITES OF THE MERKI ELECTRODES 

Our XAS analysis of the Merki electrodes at pH 7 supports the hypothesis of Merki et al. that the 

amorphicity of the electrodes leads to coordinatively unsaturated Mo and S sites where HER can take 

place. Our XAS analysis, however, provides mainly information for the Mo sites. The analysis indicates 

that the Mo sites in the electrodes (see Figure 35) exhibit a MoS2-character (oxidation state close to IV 

and a Mo-S distance typical for MoS2, see chapter Mo site – Atomic structure) but presumably a mean 

S coordination number of five which is smaller than in MoS2 (six S ligands per Mo atom) (see Table 12). 

This suggests that a major fraction of the Mo sites in the bulk of the electrodes are coordinatively 

unsaturated (missing S ligands). These sites could be accessible for HER via proton diffusion into the 

electrode bulk (proposed by (Casalongue, Benck et al. 2014)) supported by the porosity of the 

electrodes (Merki, Vrubel et al. 2012). The participation of the electrode bulk in HER is also suggested 

by the amount of charges involved in the redox currents of the undoped electrode in Figure 33 which 

approximately matches the number of all Mo and S atoms present in the electrode (see Table 12). The 

involvement of the unsaturated Mo sites in HER would require a mechanism where molecular 

hydrogen is formed by the recombination of a sulphur-bound proton with a neighbouring metal-bound 

hydride as observed in hydrogenase (Lubitz, Ogata et al. 2014). The one-to-one Mo-Mo coordination 

present in the electrodes (see Figure 35) could be considered as a double-metal active site in analogy 

to the sulphur-bridged Ni-Fe or Fe-Fe active sites in hydrogenase (Lubitz, Ogata et al. 2014). 

The determination of the mean S coordination number to a value below six for the Mo sites is not 

definite. In the EXAFS (extended X-ray absorption fine-structure), the coordination number of a ligand 

shell and its Debye-Waller factor (= measure for spatial disorder) are directly correlated, rendering a 

definite determination of the coordination number very problematic. Our EXAFS simulations favour a 

S5 shell over a stronger spatially disordered S6 shell, as the latter exhibits 20 – 50 % higher Rf-factors (= 

degradation in simulation quality, see Table 2). However, this is not sufficient to completely exclude 

the presence of the S6-shell, as the quality of the corresponding simulations is still reasonable with a 

Rf-factor below 20 % (see Table 2). Therefore, the Merki electrodes could possess a significant 

contribution of coordinatively saturated Mo sites with a six-fold S coordination.
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Figure 35 

Schematic representation of possible Mo-, Co. and Ni-site structures in the undoped, Ni doped and Co doped 
Merki electrodes during H2 evolution reaction (-0.80 V vs. NHE) and in the non-catalytic state (-0.35 V). 
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The S shell of the Mo sites exhibits a high spatial disorder (Debye-Waller factor of σS = ±0.08 Å) in 

comparison to crystalline MoS2 (with σS = ±0.03 Å). This suggests that, in the Merki electrodes, the S 

shells of the Mo sites contain a significant number of coordinatively unsaturated S sites. As discussed 

in the previous section HER mechanism of MoS2 catalysts, the unsaturated S sites are potential catalytic 

sites for HER. The high abundance of the unsaturated S sites in the electrodes is possibly a reason for 

their higher HER activity in comparison to bulk crystalline MoS2. 

Lassalle-Kaiser et al. proposed that the surface catalysis of the Merki electrodes for HER is carried by 

MoIII ions that are located in the surface layer and possess terminal disulphide ligands (S2
2-) (Lassalle-

Kaiser, Merki et al. 2015). The disulphide ligands serve as adsorption sites for atomic hydrogen via the 

formation of thiol groups (SH) (Lassalle-Kaiser, Merki et al. 2015). Our XAS analysis of the electrodes 

under HER conditions indicates a partial reduction of the Mo sites from oxidation state IV to III (see 

Table 1). According to Lassalle-Kaiser et al., this partial reduction can be assigned to the formation of 

catalytically active MoIII ions in the surface layer (Lassalle-Kaiser, Merki et al. 2015). 

The formation of single metal-hydrogen coordinations in the Merki electrodes is difficult to verify 

directly with XAS analysis, since H ligands are very weak backscatterers and, hence, hardly detectable 

in EXAFS when not occurring in a large coordination number. 

 

Co AND Ni SITES OF THE MERKI ELECTRODES 

The doping of the Merki electrodes at pH 7 with Co or Ni leads to a significant promotion of their 

catalytic HER activity, indicated by a significant increase in exchange current density and decrease in 

over-potential (Merki, Vrubel et al. 2012). Furthermore, the doping affects the magnitude of the redox 

currents occurring during HER (see Figure 33). At pH 0, the increase in catalytic activity of the doped 

electrodes can be solely attributed to the promotion of film growth and surface area by the doping 

(Merki, Vrubel et al. 2012). At pH 7, these promotion effects alone (3 fold increase in film growth and 

1.5 – 3 fold increase in surface area) are not sufficient to account for the observed increase in exchange 

current density (12 fold), indicating that the doping improves the intrinsic activity as well (Merki, 

Vrubel et al. 2012). Merki et al. assumed that the dopants in the electrodes enhance the HER activity 

of the coordinatively unsaturated Mo and S sites in an analogous way as in crystalline MoS2. 

Our XAS analysis of the Co and Ni doped Merki electrodes at pH 7 does mainly provide information 

about the Mo, Co and Ni sites. The analysis indicates that the doping with Co or Ni does not affect the 

atomic structure of the Mo sites besides a tendency to increase the S coordination number of the Mo 

sites or the spatial order of their S shells. The small effect is only qualitatively visible in the EXAFS 

spectrum (see Figure 37) and is more prominent for the Co doping than for the Ni doping. This increase 

in S coordination number or spatial order for the S shell of the Mo sites suggests that the doping slightly 

diminishes the density of coordinatively unsaturated Mo or S sites, respectively, and, hence, could 

impede Mo-carried bulk catalysis to a small extent. 

The CoS6 and NiS4 sites of the doped Merki electrodes (see Figure 35) experience under HER conditions 

(-0.8 V vs. NHE at pH 7) a decrease in mean S coordination number (lowering of S peak in the Co and 

Ni EXAFS, see Figure 37). The Co sites exhibit the largest decrease with 0.9 (from 6.2 ± 0.3 to 5.3 ± 0.3) 

followed by the Ni sites with 0.6 (from 4.3 ± 0.3 to 3.7 ± 0.3) (see Table 14). The S ligands might be 
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removed from the dopant sites via H2S formation during HER (as observed for Mo-S nano-particles by 

(Stellmach 2015)). The loss in S ligands at the dopant sites creates coordinatively unsaturated Co and 

Ni sites. These sites could improve the catalytic activity of the electrode as they are potential 

adsorption sites for atomic hydrogen. As for the unsaturated Mo sites, the possible HER mechanism 

might be analogous to the one of hydrogenase (Lubitz, Ogata et al. 2014). The unsaturated Co and Ni 

sites could bind hydrides and fuse them with protons adsorbed to neighbouring S ligands to form 

molecular hydrogen. Furthermore, the majority of the Co and Ni sites possesses a metal-metal 

coordination to a neighbouring Mo atom (see Table 14) that could be interpreted as a double-metal 

active site as present in NiFe or FeFe hydrogenases (Lubitz, Ogata et al. 2014). However, the decrease 

in S coordination number during HER is small, in particular for Ni, and could be also interpreted as an 

increase in spatial disorder of the S shell while the ligand number remains unmodified. In this case, the 

Co and Ni sites presumably promote the formation of coordinatively unsaturated S sites during 

catalysis which leads to an increase in the spatial disorder of their S shells. The dopant sites could 

stabilize unsaturated S sites via charge compensation (in analogy to the observed stabilization of 

catalytically active O defects via Fe ions in TiO2-Fe systems (Wu and van de Krol 2012)). 
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Figure 36 

XANES spectra of the Merki electrodes at -0.80 V vs. NHE (H2 evolution reaction) (red line) and -0.35 V (non-
catalytic state) (blue line). Left side: XANES recorded at the Mo K-edge of the Co doped (left top), Ni doped 
(left middle) and undoped electrode (left bottom). Right side: XANES of the Co doped electrode recorded at 
the Co K-edge (right top) and of the Ni doped electrode recorded at the Ni K-edge (right bottom).This figure 
is a selective compilation of Figure 14, Figure 21 and Figure 27. 



 

78 
 

The dopant sites exhibit more significant structural modifications under HER conditions (-0.80 V vs. 

NHE at pH 7) than the Mo sites. Additional to the modifications in the S shell, the dopant sites show a 

significant reduction of the Co and Ni ions (see alterations of Co and Ni XANES (X-ray absorption near-

edge structure) in Figure 36). The Mo sites, however, exhibit no significant modifications of their Mo-

S and Mo-Mo coordination (no significant alteration in Mo EXAFS, see Figure 37) and only a slight 

reduction of the Mo ions (see arrow in Mo XANES in Figure 36). This suggests an involvement of the 

Co and Ni sites in the HER catalysis and a higher reactivity for these sites than for the Mo sites. The Co 

and Ni doped electrodes could contain a smaller density of unsaturated Mo or S sites than the undoped 

electrode but, at pH 7, compensate this loss in catalytically active sites with the superior reactivity of 

their dopant sites. 

The dopant sites, Co and Ni, exhibit shorter S distances with 2.22 – 2.26 Å than the Mo sites with 2.37 

– 2.38 Å (see Table 13). This difference could affect the catalytic activity of the sites, since the S shell 
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Figure 37 

Fourier transforms (FT) of the k3-weighted EXAFS spectra of the Merki electrodes at -0.80 V vs. NHE (H2 
evolution reaction) (red line) and -0.35 V (non-catalytic state) (blue line). Left side: EXAFS (k range = 3 – 12 
Å-1) recorded at the Mo K-edge of the Co doped (left top), Ni doped (left middle) and undoped electrode (left 

bottom). Right side: EXAFS (k range = 3 – 13 Å-1) of the Co doped electrode recorded at the Co K-edge (right 

top) and of the Ni doped electrode recorded at the Ni K-edge (right bottom). This figure is a selective 
compilation of Figure 16, Figure 22 and Figure 28. 



 

79 
 

is significantly involved in HER. The dopant sites also possess shorter Mo distances with 2.67 - 2.72 Å 

(under HER conditions) than the Mo site with 2.79 – 2.81 Å (see Table 13). This could affect their 

activity as well, since Co/Ni-Mo coordinations, according to (Eijsbouts 1997) and (Taniguchi, Imamura 

et al. 1999), are involved in the catalytic mechanism. 

The Co and Ni sites show different behaviour in XAS during HER (= doped Merki electrodes at -0.80 V 

vs. NHE). The Co sites exhibit a stronger modification of their S coordination in the EXAFS (see Figure 

37) than the Ni sites while the latter show a more prominent reduction of their metal ions in the XANES 

(see Figure 36). This suggests that the catalytic mechanism of HER and/or its effectivity differ between 

the Co and Ni sites. A reason for that could be the difference in atomic structure between the two 

dopant sites. 

The Co sites exhibit an atomic structure that is similar to the “Co-Mo-S” phase (see Figure 25), 

responsible for the major catalytic activity of hydrodesulphurization (HDS) CoMoS2 catalysts ( selection 

of XAS studies in (Bouwens, van Veen et al. 1991, Craje, Louwers et al. 1992, de Bont, Vissenberg et al. 

 Merki film mean S distance [Å] 
 
-0.80 V vs. NHE 
 

-0.35 V 

Mo Undoped 2.37 ± 0.01 2.38 ± 0.01 
Ni doped 2.37 ± 0.01 2.38 ± 0.01 
Co doped 2.38 ± 0.01 2.38 ± 0.01 

 
Ni Ni doped 2.22 ± 0.01 2.22 ± 0.01 
 
Co Co doped 2.25 ± 0.01 2.26 ± 0.01 

 

 Merki film mean Mo distance [Å] 
 
-0.80 V vs. NHE 
 

-0.35 V 

Mo Undoped 2.81 ± 0.01 2.80 ± 0.01 
Ni doped 2.81 ± 0.01 2.79 ± 0.01 
Co doped 2.81 ± 0.01 2.79 ± 0.01 

 
Ni Ni doped Mo: 2.67 ± 0.01 

Ni: 3.85 ± 0.02 
Mo: 2.67 ± 0.01 

Ni: 3.87 ± 0.03 
 
Co Co doped 2.72 ± 0.01 3.19 ± 0.01 

 

Table 13 

Distances to S, Mo and Ni at the Mo, Ni and Co site in the Merki electrodes. This table is a selective compilation 
of Table 3, Table 11 and Table 6. The presented values were determined via EXAFS simulations. For more 
details, see the description at the source tables.  
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1998, Miller, Marschall et al. 2001, Kadono, Kubota et al. 2006, Okamoto, Kato et al. 2009, Dugulan, 

van Veen et al. 2013)). There, the phase consists of Co ions coordinated to five or six S ligands that 

form Co-S clusters on the edge of MoS2 crystallites. The structural similarity between the Co sites and 

the Co-Mo-S phase suggests that the catalytic mechanisms in both structures might be similar as well. 

For the Co-Mo-S phase, the review of (Eijsbouts 1997) presents several hypotheses for the basic 

catalytic mechanisms. One of the hypotheses is that an electron transfer takes place from the Co to 

the Mo site, removing antibonding electrons from the Co site. Thus, the Co site can offer more binding 

spots for reactants. Another hypothesis is the contact synergy model (Eijsbouts 1997). The Co and Mo 

sites in this model are part of two distinct phases that have an intimate contact to each other. Due to 

this contact, the Mo site is provided with over-spill hydrogen from the Co site, enhancing the catalytic 

activity of the Mo site. Both hypotheses for the catalytic mechanism of the Co-Mo-S phase require a 

strong interaction between the Co and Mo sites. The Co-Mo coordination of the Merki electrodes 

during HER is similar to the Co-Mo-S phase (see Table 6) and, hence, could enable a comparable Co-

Mo interaction. 

 Merki film mean S coordination number 
 
-0.80 V vs. NHE 
 

-0.35 V 

Mo Undoped 4.7 ± 0.5 4.7 ± 0.4 
Ni doped 5.0 ± 0.4 5.1 ± 0.5 
Co doped 5.3 ± 0.3 5.0 ± 0.4 

 
Ni Ni doped 3.7 ± 0.3 4.3 ± 0.3 
 
Co Co doped 5.3 ± 0.3 6.2 ± 0.3 

 

 Merki film mean Mo coordination number 
 
-0.80 V vs. NHE 
 

-0.35 V 

Mo Undoped 0.9 ± 0.1 1.0 ± 0.1 
Ni doped 1.0 ± 0.1 0.9 ± 0.1 
Co doped 0.8 ± 0.1 0.7 ± 0.1 

 
Ni Ni doped Mo: 0.9 ± 0.2 

Ni: 1.2 ± 0.4 
Mo: 0.9 ± 0.2 
Ni: 0.8 ± 0.4 

 
Co Co doped 0.9 ± 0.1 0.9 ± 0.2 

 

Table 14 

Coordination numbers of S, Mo and Ni for the Mo, Ni and Co site in the Merki electrodes. This table is a selective 
compilation of Table 4, Table 11 and Table 6. The presented values were determined via EXAFS simulations. 
For more details, see the description at the source tables. 
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The Ni sites of the Merki electrodes exhibit an atomic structure similar to cubane-type NiMo sulphide 

clusters as [Mo3NiS4(H2O)10]4+ (Shibahara, Yamasaki et al. 1991) and [Mo3NiS4Cl(H2O)9]3+ (Shibahara, 

Yamasaki et al. 1991, Taniguchi, Imamura et al. 1999) (see Figure 19). (Taniguchi, Imamura et al. 1999) 

uses the latter of the sulphide clusters as pre-cursor for the preparation of HDS catalysts; and shows 

that the Ni-Mo-S linkage of the cluster is preserved in the catalysts and enhances their activity. A 

fraction of the Ni sites in the Merki electrodes possesses a Ni-Mo-S linkage as in the sulphide clusters 

(see Table 11), leading to a higher catalytic activity of the Ni doped electrode in comparison to the 

undoped electrode. The Ni-Mo-S linkage might play a similar role in the catalytic mechanism as the Co-

Mo coordination of the Co sites. 

In contrast to the Co sites, the Ni sites exhibit a direct metal-metal coordination to neighbouring Ni 

sites. The distance of the Ni-Ni coordination is longer than 3 Å (see Table 13), indicating a long-range 

order for the atomic structure of the Ni site. This suggests a more cohesive and, hence, more distinct 

phase for the Ni sites than for the Co sites. Hence, the catalytic mechanism of the Ni sites could be 

more similar to the contact synergy model of the Co-Mo-S phase (described in the review of (Eijsbouts 

1997)) than the one of the Co sites. 
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CONCLUSIONS 
The Co doped, Ni doped and undoped Merki MoSx electrodes were investigated with X-ray absorption 

spectroscopy (XAS) at the Mo K-edge to gain insight into the atomic structure of their Mo sites. For the 

doped electrodes, additional XAS measurements were performed at the Co or Ni K-edge to obtain 

information about the atomic structure of the Co and Ni sites. The XAS spectra were recorded at 

electrode potentials of -0.80 V, -0.35 V and +1.40 V vs. normal hydrogen electrode (NHE) under neutral 

conditions (pH 7), to study structural differences between Mo, Co and Ni sites in a state of catalytic 

hydrogen-evolution reaction (HER) (-0.80 V), in a non-catalytic state (-0.35 V) and under conditions of 

water-oxidation (+1.40 V) (standard electrode potential of hydrogen reduction E0
H2 = -0.41 V and of 

water-oxidation E0
O2 = +0.82 V at pH 7). 

Our XAS analysis indicates that the bulk of the Co/Ni doped and undoped Merki electrodes at pH 7 

(Merki, Vrubel et al. 2012) comprises an amorphous MoSx species (x = 2 or 3). For all electrodes, the 

atomic structure of the species is composed of MoIV ions coordinated to presumably five S atoms in 

the first coordination sphere and to a proximate Mo atom in the second sphere (see Figure 35). The 

Mo sites of the electrodes combine structural features of MoIVS2 and MoS3, as the mean Mo-S distance 

of 2.37 – 2.38 Å is typical for MoIVS2 while the mean Mo-Mo distance of 2.79 – 2.81 Å as well as the 

low Mo coordination number are characteristic for MoS3. The Mo-S coordination in the Merki 

electrodes exhibits a higher spatial disorder of the S coordination sphere (Debye-Waller parameter σS 

= ±0.08 Å) than in crystalline MoIVS2 (σS = ±0.03 Å), suggesting a higher abundance of coordinatively 

unsaturated S sites. Furthermore, the Mo sites in the Merki electrodes seem to possess less S ligands 

(mean S coordination number NS = 4.7 – 5.3) than in crystalline MoIVS2 (NS = 6), suggesting the presence 

of coordinatively unsaturated Mo sites. A six-fold S coordination of the Mo sites is not favoured by 

EXAFS simulations (EXAFS = extended X-ray absorption fine structure) (see Table 2) but cannot be 

excluded. The unsaturated S and Mo sites are possible adsorption sites for atomic hydrogen and, 

therefore, potential catalytic sites for HER. The higher density of unsaturated S and Mo sites in the 

Merki electrodes compared to bulk crystalline MoIVS2 could explain the higher catalytic activity of the 

electrodes (Merki, Fierro et al. 2011, Merki, Vrubel et al. 2012). The presence of these unsaturated 

sites throughout the bulk of the Merki electrodes suggests that the bulk participates in the HER 

catalysis. This could be enabled via proton diffusion into the bulk (proposed by Casalongue et al.) 

supported by the porosity of the electrodes (Merki, Vrubel et al. 2012, Casalongue, Benck et al. 2014).  

Our electrochemical studies on the Merki electrodes under neutral conditions (pH 7) also suggest a 

participation of the MoSx bulk in HER catalysis. Cyclic voltammetry of the undoped Merki electrode (= 

pure MoSx) under HER conditions shows redox currents (see Figure 33) that indicate the occurrence of 

redox equivalents approximately equal (order of magnitude estimate) in number to Mo and S atoms 

present in the electrode (see Table 12). Rather than the Mo ions itself, S sites appear to be crucial for 

the redox chemistry, since XAS analysis indicates only a minor change in mean oxidation state for the 

Mo ions when comparing non-catalytic and catalytic potentials (see arrow in Figure 36). This sub-

stoichiometric reduction of MoIV ions to MoIII could be related to HER catalysis at the electrode surface 

as previously suggested by Lassalle et al. (Lassalle-Kaiser, Merki et al. 2015). 

In the Co/Ni doped Merki electrodes, the MoSx bulk is permeated by Co or Ni sites. Our XAS analysis 

indicates that the Co sites consist of CoII,III ions coordinated to six S atoms in the first coordination 

sphere while the Ni sites consist of NiI,II ions coordinated to four S atoms (see Figure 35). The majority 
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of the Co and Ni sites is directly coordinated to a neighbouring Mo atom, suggesting an incorporation 

of the sites in the MoSx bulk. During HER catalysis at pH 7, the Co and Ni sites exhibit a decrease in S 

coordination number (see Table 14) and/or spatial order of the S coordination sphere, suggesting the 

formation of coordinatively unsaturated dopant sites and/or S sites. These sites are potential catalytic 

sites for HER, in analogy to the unsaturated S and Mo sites of the MoSx bulk. This is especially evident 

for the Co sites, as their atomic structure likely is similar to the catalytic site of CoMoS2 catalysts for 

hydrodesulphurisation. A direct involvement of the Co and Ni sites in HER catalysis is also supported 

by our electrochemical studies on the doped Merki electrodes, since cyclic voltammetry suggests (i) an 

influence of the dopant ions (Ni or Co) on the number of reducing equivalents accumulated when 

comparing catalytic with non-catalytic potentials (see Table 12), and (ii) a clear shift in the midpoint 

potential of the corresponding redox transition to less negative value by doping with Co or Ni ions (see 

Figure 33). The Co and Ni sites may be directly involved in active-site formation at catalytic potentials, 

since our XAS analysis suggests more significant structural modifications and oxidation state changes 

for the dopant sites than for the Mo sites (see Figure 36 and Figure 37). The effect of the Co/Ni doping 

on the atomic structure of the MoSx bulk material is small, leading only to a slight diminishment in 

density of unsaturated Mo or S sites for the doped Merki electrodes.  

The intrinsic HER activity of the Merki electrodes under neutral conditions (pH 7) can be promoted by 

the doping with Co or Ni (Merki, Vrubel et al. 2012). The promotion effect in the doped electrodes 

could arise from the additional presence of unsaturated dopant and/or S sites and from the superior 

reactivity of the dopant sites in comparison to the Mo sites. The Merki electrodes possibly form a S-

bound hydride whose reactivity and/or formation is promoted by the doping with Co or Ni. The HER 

mechanism of the electrodes most likely involves coordinatively unsaturated metal ions (Mo, Co and 

Ni) and S sites and could be analogous to the one in hydrogenases where molecular hydrogen is formed 

by the interplay between a hydride-binding metal site and a proton-binding pendant base in close 

proximity (Lubitz, Ogata et al. 2014). 
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WATER OXIDATION 
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Mo SITE – WATER OXIDATION 
 

RESULTS AND DISCUSSION 

X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) of 

the Co doped, Ni doped and undoped MoSx Merki electrodes (x = 2 or 3) were recorded at the Mo K-

edge to gain insight into the atomic structure of their Mo sites. To study the structure of the sites under 

conditions for water-oxidation, the electrodes were conditioned (12 min, pH 7) and frozen at +1.40 V 
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Figure 38 

XANES spectra recorded at the Mo K-edge: Co doped (black line), Ni doped (red line) and undoped (orange 
line) MoSx Merki electrodes at +1.40 V vs. NHE; MoIVO2 (violet line) and MoVIO3 (pink line). 
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vs. normal hydrogen electrode 

(NHE) (standard electrode 

potential of water oxidation = 

+0.82 V at pH 7). 

Under water-oxidation 

conditions (+1.40 V vs. NHE), the 

X-ray absorption near-edge 

structure (XANES) spectra of the 

Merki electrodes exhibit a 

position of the Mo absorption 

edge located between the edges 

of MoIVO2 and MoVIO3 (see Figure 

38). This indicates that the 

electrodes at +1.40 V consist of 

Mo ions with a mean oxidation 

state between IV and VI. Using 

the MoIVO2 and MoVIO3 edge 

positions as reference, a 

quantitative determination 

yields a Mo oxidation state of 

five (see Table 15). The XANES of 

the +1.4 V electrodes exhibit an 

edge shape similar to MoO3, in particular the presence of a pre-edge (see Figure 38). This suggests that 

the Mo ions in the electrodes are coordinated to O ligands, possibly in a six-ligand geometry similar to 

MoO3. 

The extended X-ray absorption fine-structure (EXAFS) of all +1.4 V electrodes exhibit three prominent 

peaks, labelled as 1, 2 and 3 (see Figure 40). A comparison with the spectrum of MoO3 suggests that 

peak 1 can be assigned to a Mo-O coordination and peak 3 possibly to a Mo-Mo coordination (see 

Figure 40). Both peaks presumably belong to a Mo-O species similar to MoO3. A comparison with the 

spectrum of a Merki electrode indicates that peak 2 can be assigned to a Mo-S coordination similar to 

the one present in the electrodes at -0.8 V or -0.35 V (see Figure 40). Therefore, the +1.4 V electrodes 

seem to contain two Mo species, a Mo-S and a Mo-O species. In all +1.4 V electrodes, the latter is the 

predominate species, since peak 1 exhibits a larger amplitude than peak 2 (see Figure 40). 

In the EXAFS simulations, peak 1 (see Figure 41) can be simulated by two O coordination shells, one 

with a mean Mo-O distance of 1.70 – 1.71 Å (O1) and the other with a mean O distance of 1.99 – 2.04 Å 

(O2) (see Table 16). Both distances can be found in the O6 octahedra of MoO3 (see structure in Figure 

39). The simulations of peak 2 (see Figure 41) yield a mean Mo-S distance of 2.36 – 2.40 Å (S1) (see 

Table 16) that matches with the Mo-S distances of the -0.8 V and -0.35 V electrodes (see Table 3). The 

sum of the simulated coordination numbers for O and S (= O1 + O2 + S1, see Table 16) are close to six, 

suggesting a mixture of two Mo species, one with six O ligands as in MoO3 and the other with five to 

six S ligands as in the -0.8 V and -0.35 V electrodes. The EXAFS simulations of peak 3 (see Figure 41) 

suggest that the peak can be assigned rather to a Mo-S coordination than to a Mo-Mo coordination. 

The simulated Mo-S coordination contains two types of S ligands, one with a mean Mo-S distance of 

 Edge 
position 
[eV] 

Oxidation 
state 

MoS3 at +1.4V 20016.1 4.8 

MoS3:Ni at +1.4V  20016.2 4.8 

MoS3:Co at +1.4V  20016.6 5.0 

   

MoIVO2 20014.7 4.0 

MoVIO3 20018.3 6.0 

 

Table 15 

Mo K-edge positions of the Merki electrodes at +1.40 V vs. NHE and 
their corresponding mean oxidation states for Mo. The oxidation states 
were interpolated via a linear function of the edge position calibrated 
with the edge positions of the MoIVO2 and MoVIO4 reference. The edge 
positions were determined with the integral method as described in 
(Dickinson and Pauling 1923, Dau, Liebisch et al. 2003) but with a 
different interval of integration. The interval started at a higher 
normalized intensity of 0.5 to exclude possible pre-edges from 
integration. 
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3.33 – 3.34 Å (S2) and the other with a mean S distance of 3.64 – 3.65 Å (S3) (see Table 16). Both 

distances are close to the two types of Mo-µ-O-SO4 bridges in MoVIO2(SO4) (see Figure 39) (no 

XANES/EXAFS spectrum recorded). This suggests that, during the oxidation of the original Mo-S species 

in the electrodes, the S ligands are displaced from the first coordination sphere by O and form nearby 

SOx groups similar to MoO2(SO4). A long-range structure as in MoO3 based on Mo-µ-O-Mo and 

Mo-(µ3-O)2-Mo bridges is probably not formed. In conclusion, the EXAFS simulations suggest that peak 

1 and 3 can be assigned to a Mo-O species consisting of O6 octahedra with a coordination to SOx groups; 

and that peak 2 can be assigned to a Mo-S species similar to the one present in the -0.8 V and -0.35 V 

electrodes. 

The Mo-O species presumably exhibits a Mo oxidation state of VI as MoO3 and MoO2(SO4) while the 

Mo-S species exhibits an oxidation state of IV as in the -0.8 V and -0.35 V electrodes. This results in an 

average oxidation state of Mo around five matching the estimated oxidation state from the XANES 

analysis (see Table 15). 

The doping of the +1.4 V electrodes seems to effect the amplitudes of peak 1, 2 and 3. The Co doped 

electrode exhibits the largest amplitudes for peak 1 and 3, followed by the Ni doped electrode and 

then the undoped electrode (see Figure 40). For peak 2, the opposite behaviour is observed. This 

suggests that the Mo-O species, represented by peak 1 and 3, is more prominent in the doped +1.4 V 

electrodes. The undoped electrode, instead, exhibits a stronger occurrence of the Mo-S species, 

represented by peak 2. The doping, in particular with Co, seems to promote the presence of the Mo-O 

species in the +1.4 V electrodes. 

 

Figure 39 

Schematic structures of MoVIO3 (layered structure, side view on layer) and MoVIO2(SO4) with denoted Mo-O, 
Mo-Mo and Mo-S distances. The images are based on crystal data published for MoO3 in (Sitepu, O'Connor et 
al. 2005) and for MoO2(SO4) in (Betke and Wickleder 2011). 
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EXAFS simulations support these qualitative indications for a doping effect. The coordination number 

of S1 representing the original Mo-S species decreases by trend from the Co doped electrode, over the 

Ni doped electrode to the undoped electrode (see Table 16). Simultaneously, the coordination number 

of S2 and S3 representing the SOx groups increases in the same order. This suggests that the conversion 

of the original Mo-S species into the Mo-O species is promoted by the doping, in particular with Co. 
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Figure 40 

Fourier transforms (FT) of k3 weighted EXAFS spectra (k range = 3 – 12 Å-1) recorded at the Mo K-edge: Co 
doped (green line), Ni doped (blue line) and undoped (red line) Merki MoSx electrodes at +1.40 V vs. NHE 
compared to MoVIO3 (pink line) and the undoped Merki electrode at -0.80 V (orange line). The main peaks of 
MoO3 and the undoped -0.8 V electrode are labelled with the corresponding Mo-ligand distances. 
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mean Mo-ligand distance [Å] 
O1 O2 S1 S2 S3 EXAFS 

MoS3:Co +1.4V 1.71 ± 0.01 2.00 ± 0.01 2.40 ± 0.01 3.33 ± 0.01 3.65 ± 0.01 

MoS3:Ni +1.4V 1.70 ± 0.01 1.99 ± 0.01 2.38 ± 0.01 3.34 ± 0.01 3.64 ± 0.01 

MoS3 +1.4V 1.70 ± 0.01 2.04 ± 0.03 2.36 ± 0.01 3.34 ± 0.03 3.65 ± 0.04 

  

MoVIO3 1.67 – 2.47 Å   XRD 

MoVIO2(SO4) 1.67 – 
1.68 Å 

2.03 – 
2.05 Å 
2.22 –  
2.38 Å 

 3.29 – 
3.37 Å 

3.51 – 
3.61 Å 

 
 mean coordination number 

O1 + O2 S1 S2 + S3 EXAFS 
MoS3:Co +1.4V 4.9 ± 0.3 1.2 ± 0.1 3.2 ± 0.4 

MoS3:Ni +1.4V 4.6 ± 0.5 1.7 ± 0.2 2.9 ± 0.5 

MoS3 +1.4V 4.7 ± 0.9 1.9 ± 0.4 1.9 ± 1.0 

 
MoVIO3 6   XRD 

MoVIO2(SO4) 2 4  4 

 

Table 16 

Structural parameters of the Mo ligand environment in the Co doped, Ni doped and undoped Merki electrodes 
at +1.40 V vs. NHE (conditions of water-splitting), compared to the crystal structure of MoO3 (Sitepu, O'Connor 
et al. 2005, Sitepu 2009) and MoO2(SO4) (Betke and Wickleder 2011). For the Merki electrodes, the structural 
parameters were obtained from fitting the Mo EXAFS spectra with O and S phase functions calculated from the 
crystal structure of MoO3 (Sitepu, O'Connor et al. 2005, Sitepu 2009) and MoS2 (Dickinson and Pauling 1923). 
To enable a direct comparison, the simulations of all electrodes were performed with the same Debye-Waller 
factors for O and S (2σO

2 = 0.016 Å2 for O1 and O2, 2σS
2 = 0.014 Å2 for S1 and 2σS

2 = 0.008 Å2 for S2 and S3), 
the same amplitude reduction factor (S0

2 = 0.93) and the same energy offset (E0 = 1.4 eV). The value of σS for 
S1 was established by simulations of the -0.8 V and -0.35 V electrodes (see Table 3). The values of σO for O1 
and O2, σS for S2 and S3 and E0 were initially determined from a simulation of the Ni doped +1.4 V electrode. 
The value of S0 was determined from a simulation of MoO3 with a fixed O coordination number of six. The 
simulated EXAFS spectra are presented in Figure 41. 
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Figure 41 

EXAFS simulations (black line) of the experimental spectra of the undoped (blue line), Ni doped (green line) 
and Co doped (red line) Merki electrode at +1.40 V vs. NHE. Left side: the EXAFS represented as χ spectra. 
Right side: Fourier transforms of the k³ weighted EXAFS spectra. The EXAFS simulations and Fourier 
transforms were performed over the k range shown on the left side. The EXAFS simulations correspond to the 
structural parameters presented in Table 16. 
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SUMMARY 

X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) of 

the Co doped, Ni doped and undoped MoSx Merki electrodes (x = 2 or 3) were recorded at the Mo K-

edge to gain insight into the atomic structure of their Mo sites. To study the structure of the sites under 

conditions for water-oxidation, the electrodes were conditioned (12 min, pH 7) and frozen at +1.40 V 

vs. normal hydrogen electrode (NHE) (standard electrode potential of water oxidation E0
O2 = +0.82 V 

at pH 7). 

Under conditions of water oxidation (+1.40 V vs. NHE), the Merki electrodes exhibit a dominant Mo-O 

contribution besides the original Mo-S species present in the electrodes at -0.80 V (H2 formation) and 

-0.35 V (non-catalytic state but cathodic conditions). The oxide contribution of the +1.4 V electrode 

consists of MoVI ions coordinated to six O atoms in their first coordination sphere and to SOx groups in 

the second sphere. The Mo-O coordination exhibits to mean O distances of 1.70 – 1.71 Å and 1.99 – 

2.04 Å that can be found in the O6 octahedra of MoVIO3 (see Figure 39). The coordination to the SOx 

groups shows mean Mo-S distances of 3.33 – 3.34 Å and 3.64 – 3.65 Å that are close to the distances 

of Mo-µ-O-SO4 bridges present in MoVIO2(SO4) (see Figure 39). A long-range structure as in MoO3 based 

on Mo-µ-O-Mo and Mo-(µ3-O)2-Mo bridges is probably not present in the Mo-O contribution of the 

electrodes. 

The doped +1.4 V electrodes contain a larger Mo-O contribution than the undoped electrode. In the 

extended X-ray absorption fine-structure (EXAFS), the doped electrodes, in particular when doped with 

Co, exhibit larger peaks for the Mo-O coordination and for the coordination to the SOx groups than the 

undoped electrode (see peak 1 and 3 in the Fourier transform of the EXAFS in Figure 40). The undoped 

+1.4 V electrode, on the other hand, exhibits a larger peak for the original Mo-S species as present in 

the electrodes under conditions of H2 formation (see peak 2 in Figure 40). This suggests that the Mo-S 

species is transformed into the Mo-O contribution and that the transformation is promoted by the 

doping, in particular with Co. 

During the oxidation of the electrodes at +1.4 V, S is possibly displaced from the first coordination 

sphere by O and forms nearby SOx groups. EXAFS simulations indicate a total coordination number of 

the first coordination sphere close to six for the doped and undoped electrodes (sum of O1 + O2 + S1 

in Table 16) while the proportion between O and S ligands varies among the electrodes.  

The mean oxidation state of the Mo ions in the +1.4 V electrodes is V and, thereby, an average between 

the MoIV ions of the original Mo-S species and the MoVI ions of the formed Mo-O contribution (see 

Table 15). 
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Co SITE – WATER OXIDATION 
 

RESULTS AND DISCUSSION 

X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) of 

the Co doped MoSx Merki electrodes (x = 2 or 3) were recorded at the Co K-edge to gain insight into 

the atomic structure of their Co sites. To study the structure of the sites under conditions for water-

oxidation, the electrodes were conditioned (12 min, pH 7) and frozen at +1.40 V vs. normal hydrogen 

electrode (NHE) (standard electrode potential of water oxidation = +0.82 V at pH 7). 

Under water-oxidation conditions (+1.40 V vs. NHE), the X-ray absorption near-edge structure (XANES) 

of the Co doped Merki electrode at the Co K-edge (see Figure 42) is almost identical in shape and edge 

position with the spectrum of the CoCat, a well-known amorphous Co-oxide catalyst for water 

oxidation (Kanan, Surendranath et al. 2009, Risch, Khare et al. 2009). This indicates that the Co species 

in the electrode consists of Co2+/3+ ions with a ligand environment of O and Co like in the CoCat (see 

Figure 45). However, the congruence between the electrode and CoCat spectrum is not perfect. A 

linear combination of the CoCat spectrum with the spectrum of the Co doped Merki electrode at -0.8 V 
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Figure 42 

XANES spectra recorded at the Co K-edge: Co doped MoSx Merki electrode at +1.40 V vs. NHE (red line); 
CoCat, amorphous Co-oxide catalyst for water-splitting (black line). The XANES data of the CoCat was 
recorded, analysed and published by Marcel Risch (Dickinson and Pauling 1923, Risch, Khare et al. 2009). 
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yields a better coincidence with the +1.4 V spectrum than the CoCat spectrum alone. This indicates 

that the +1.4 V electrode still contains a fraction of the Co-S species which is characteristic for the -0.8 V 

electrode. However, suggested by the corresponding linear coefficient, this contribution is small 

accounting only for ≈10 % of the Co absorbers in the +1.4 V electrode. In conclusion, it seems that the 

conditioning of the electrode at +1.40 V oxidizes the original Co-S species to the well-known CoCat 

catalyst. However, a residual Co-S contribution is still present, since the oxidation is not completed 

during the conditioning. 

The extended X-ray absorption fine-structure (EXAFS) confirms the conclusions from the XANES 

analysis. The Co EXAFS spectrum (see Figure 43) of the Co doped Merki electrode at +1.4 V exhibits 

three prominent peaks, labelled as 1, 2 and 3. When compared to the EXAFS of the CoCat, it seems 
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Figure 43 

Fourier transforms (FT) of k3 weighted EXAFS spectra (k range = 3 – 14 Å-1) recorded at the Co K-edge: Co 
doped MoSx Merki electrode at +1.40 V vs. NHE (red line) and at -0.80 V (blue line); CoCat, amorphous Co-
oxide catalyst for water-splitting (black line). The EXAFS data of the CoCat was recorded, analysed and 
published by Marcel Risch (Hassel 1925, Risch, Khare et al. 2009). The main peaks of the -0.80 V Merki 
electrode and the CoCat are labelled with the corresponding Co-ligand coordination and distance. 
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that peak 1 and 3 of the electrode can be assigned to a Co-O and Co-Co coordination as present in this 

water-splitting catalyst. EXAFS simulations (see Figure 44) yield a Co-O distance of 1.90 Å and a Co-Co 

distance of 2.82 Å that are the same as reported in (Risch, Khare et al. 2009) for the CoCat (see Table 

17 and Figure 45). The simulated coordination numbers of O and Co with 4.7 and 2.7, respectively, are 

a bit lower than in the CoCat (see Table 17). Considering peak 2 of the +1.4 V electrode, a comparison 

with the EXAFS of the original -0.8 V electrode (see Figure 43) indicates that peak 2 can be assigned to 

a Co-S coordination. EXAFS simulations (see Figure 44) yield a mean S distance of 2.27 Å that is close 

to the one of the Co-S species in the -0.8 V electrode with 2.25 - 2.26 Å (see Table 6). The simulated 

coordination number of S is only 1.0 (see Table 17). 

In conclusion, the EXAFS suggest, as the XANES analysis, a transformation of the original Co-S species 

into the CoCat catalyst. However, the Co-S peak (= 2 in Figure 43) in the +1.4 V electrode indicates that 

the transformation is not complete and, hence, a residual fraction of the original Co-S species is still 

present. This is also reflected in the CoCat-contribution of the +1.4 V electrode with an O and Co 

coordination number lower than in the CoCat. 

 

mean absorber-ligand distance 
Co edge Co-O [Å] Co-S [Å] Co-Co [Å] EXFAS 
Co:MoS3 
+1.40 V 

1.90 ± 0.01 2.27 ± 0.02 2.82 ± 0.01 

    
CoCat 1.88 – 

1.90 
 2.79 – 

2.82 
 

mean coordination number 
Co edge Co-O Co-S Co-Co 
Co:MoS3 
+1.40 V 

4.7 ± 0.3 1.0 ± 0.2 2.7 ± 0.3 

    
CoCat 5.2 – 6.2  3.1 – 6.1 

 

Table 17 

Structural parameters of the Co ligand environment in the Co doped Merki electrode at +1.40 V vs. NHE (water-
oxidation) compared to the corresponding parameters of the CoCat (published in (Risch, Khare et al. 2009)), 
an amorphous Co oxide catalyst for water oxidation. Listed are the type of the ligands, their Co-ligand distances 
and coordination numbers. The structural parameters were obtained from fitting the EXAFS spectrum of the 
+1.4 V electrode with S and Mo phase functions calculated from the crystal structure of Co:MoO4, Co:MoO4 · 
nH2O and CoS. In the simulation, the amplitude reduction factor was fixed at S0

2 = 0.70, a value established for 
the EXAFS simulations of the CoCat in (Risch, Khare et al. 2009). The Debye-Waller factors of O and Co were 
taken from (Risch, Khare et al. 2009) as well and were fixed at σO = 0.051 Å and σCo = 0.069 Å, respectively. 
The Debye-Waller factor of S was taken from simulations of the Co doped Merki electrode at cathodic potentials 
and was fixed at σS = 0.063 Å. The simulated EXAFS spectra are presented in Figure 44. 

Crystal structure data for Co:MoO4 obtained from (Smith and Ibers 1965), for Co:MoO4 · nH2O from (Eda, Uno et al. 2005) and for CoS from (Wyckoff 
1963) and (Alsen 1925, Teo 1986, Penner-Hahn 1999). 
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Figure 44 

EXAFS simulations (black line) of the experimental spectra of the Co doped Merki electrode at +1.40 V vs. 
NHE (red line). Left side: the EXAFS represented as χ spectra. Right side: Fourier transforms of the k³ 
weighted EXAFS spectra. The EXAFS simulations and Fourier transforms were performed over the k range 
shown on the left side. The EXAFS simulations correspond to the structural parameters presented in Table 17. 
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SUMMARY 

X-ray absorption near-edge structure (XANES) and 

extended X-ray absorption fine-structure (EXAFS) of 

the Co doped MoSx Merki electrodes (x = 2 or 3) 

were recorded at the Co K-edge to gain insight into 

the atomic structure of their Co sites. To study the 

structure of the sites under conditions for water-

oxidation, the electrodes were conditioned (12 min, 

pH 7) and frozen at +1.40 V vs. normal hydrogen 

electrode (NHE) (standard electrode potential of 

water oxidation E0
O2 = +0.82 V at pH 7). 

Under water-oxidation conditions (+1.40 V vs. 

NHE), the Co doped MoSx Merki electrode (x = 2 or 

3) experiences a transformation of the original Co-S 

species, present under cathodic conditions, into the 

well-known CoCat (Kanan, Surendranath et al. 

2009, Risch, Khare et al. 2009), an amorphous Co-

oxide catalyst for water-splitting (see Figure 42 and 

Figure 45). In the +1.4 V electrode, the Co-O and Co-

Co distance of 1.90 Å and 2.82 Å, respectively, (see 

Table 17 and Figure 43) are the same as in the 

CoCat. However, the coordination number of O and 

Co in the +1.4 V electrode are a bit lower than in the CoCat (see Table 17). The difference is close to 

the S coordination number of the residual Co-S species in the +1.4 V electrode. The presence of this 

Co-S species indicates that the transformation into the CoCat has not been completed during the 

conditioning of the electrode at +1.40 V. The residual Co-S species exhibits a S distance of 2.27 Å that 

is close to the one of the original species in the Co doped Merki electrode at -0.80 V (see Table 6). 

 

 

 

Figure 45 

Atomic structure of the bulk CoCat proposed by 
(Risch, Khare et al. 2009). The here presented 
scheme was also produced by Marcel Risch. 
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CONCLUSIONS 
X-ray absorption spectroscopy (XAS) spectra of the Co doped, Ni doped and undoped MoSx Merki 

electrodes (x = 2 or 3) were recorded at the Mo K-edge to gain insight into the atomic structure of their 

Mo sites. For the Co and Ni doped electrodes, additional XAS spectra were recorded at the Co and Ni 

K-edge to obtain information about the atomic structure of their Co and Ni sites, respectively. To study 

the structure of the sites under conditions for water oxidation, the electrodes were conditioned (12 

min, pH 7) and frozen at +1.40 V vs. normal hydrogen electrode (NHE) (standard electrode potential of 

water oxidation E0
O2 = +0.82 V at pH 7). 

Under conditions for water oxidation, only the Co doped Merki electrode shows activity in form of an 

anodic current wave at +1.25 V vs. normal hydrogen electrode (NHE) in cyclic voltammetry (CV) (see 

wave C in Figure 46). The reason is that the Co sites in the electrode form the CoCat (established by 

(Kanan and Nocera 2008, Risch, Khare et al. 2009)), an amorphous Co-oxide catalyst for water 

oxidation. X-ray absorption near-edge structure (XANES) (see Figure 42) and extended X-ray 

absorption fine-structure (EXAFS) (see Figure 43) of the Co doped electrode at +1.4 V clearly indicate 

the formation of this catalyst. In the Ni doped electrode, under the same conditions (exposure to +1.4 V 

for 12 min), no analogous Ni oxide is formed, since X-ray absorption spectroscopy (XAS) indicates that 

all Ni is dissolved.
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Figure 46 

Cyclic voltammetry of the MoSx Merki electrodes with a scan rate of 20 mV/s. Shown is the 1st cycle recorded 
on the (blue line) undoped, (red line) Ni doped and (green line) Co doped electrode (zoom-in from Figure 47). 
The standard potential of water oxidation, E0

O2, at pH 7.0 is marked by a vertical line. The scan direction is 
indicated by the arrows. The used electrolyte is 0.1 M potassium phosphate at pH 7.0. Before the cyclic 
voltammetry measurement, the electrolyte was degassed via flushing with N2 and kept under N2 atmosphere 
during the measurements. 
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Figure 47 

Cyclic voltammetry of the MoSx Merki electrodes with a scan rate of 20 mV/s. Shown are all six cycles recorded 
on the (blue line) undoped, (red line) Ni doped and (green line) Co doped electrode. The 1st cycle is highlighted 
as coloured line and the residual cycles are shown as grey lines. All cycles are numbered in chronological order. 
The standard potential of water oxidation, E0

O2, and of hydrogen reduction, E0
H2, at pH 7.0 are marked by vertical 

lines. The scan direction is indicated by the arrows. The used electrolyte is 0.1 M potassium phosphate at pH 
7.0. Before the cyclic voltammetry measurement, the electrolyte was degassed via flushing with N2 and kept 
under N2 atmosphere during the measurements. 
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The Mo sites in the Merki electrodes do not show a catalytic activity for water oxidation. In all +1.4 V 

electrodes, the XANES (Figure 38) and EXAFS (Figure 40) indicate that the Mo sites experience a partial 

transformation of the original Mo-S species into a Mo-O species (MoVIO6 octahedra coordinated to SOx 

groups). The doped electrodes possess a larger contribution of the Mo-O species than the undoped 

electrode. However, both Mo species seem to be inactive under water oxidation conditions, since the 

Ni doped electrode as well as the undoped electrode do not exhibit an anodic current wave 

comparable to the one of the Co doped electrode (see Figure 46). 

The transformation of the original Mo-S species of the Merki electrodes into a Mo-O species can be 

assigned to the anodic current wave B around +0.5 V (see Figure 46 and Figure 47) that originates from 

a partial oxidation of the sulphur presumably via the following reaction: MoS2 + 7H2O � MoO3 + SO4
2- 

+ ½ S2
2- + 14H+ + 11e- (Bonde, Moses et al. 2008). The magnitude of the wave B correlates with the 

amount of Mo-S species present in the electrodes and, therefore, is larger for the doped electrodes 

than for the undoped electrode (see elemental analysis in Table 12). The transformation process is 

irreversible and leads to a dissolving of the Mo film on the electrodes when the electrode potential is 

cycled between -0.8 V and +1.4 V (see Figure 47). The film dissolution is indicated by a successive 

decrease in magnitude of wave B and of cathodic currents occurring under hydrogen evolution 

conditions (see A in Figure 47). 
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2. Catalytic Co electrode 

electrodeposited under reductive 

conditions 
 

 

 

The X-ray absorption spectroscopy (XAS) data and analysis shown in this chapter are published in 

(Cobo, Heidkamp et al. 2012): 

 

“A Janus cobalt-based catalytic material for electro-splitting of water” 

Saioa Cobo, Jonathan Heidkamp, Pierre-André Jacques, Jennifer Fize, Vincent Fourmond, Laure Guetaz, 

Bruno Jousselme, Valentina Ivanova, Holger Dau, Serge Palacin, Marc Fontecave and Vincent Artero 

Nature Materials 2012, Vol 11, 802-807 

http://dx.doi.org/10.1038/nmat3385 

 

Reproduced with permission from Nature Publishing Group. Copyright 2012 Nature Publishing Group. 

http://www.nature.com/ 

 

 

 

Contributions: 

• J. Heidkamp – X-ray absorption spectroscopy: entire data analysis, all measurements and 

sample preparations (incl. electro-deposition and conditioning of the Co electrodes) 

• Co-workers - sample preparation, measurement and data analysis for all other used 

techniques aside from XAS
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INTRODUCTION 

Fuel cells and electrolysers typically require electro-catalysts based on noble metals like Pt or Ir. These 

metals are rare and, hence, expensive. The substitution of the noble metals in the catalysts with earth-

abundant and, therefore, cheaper elements is necessary to improve the economic viability and to 

promote application. 

For the oxygen-evolution reaction (OER), cobalt-based oxides (Kanan and Nocera 2008, Risch, Khare et 

al. 2009, Dau, Limberg et al. 2010, Jiao and Frei 2010, Yin, Tan et al. 2010, Chou, Ross et al. 2011, 

Shevchenko, Anderlund et al. 2011, Wee, Sherman et al. 2011), nickel (Dincă, Surendranath et al. 2010) 

and manganese-based oxides (Jiao and Frei 2010, Zaharieva, Najafpour et al. 2011) have been reported 

as robust electro-catalysts. Cobalt compounds, in particular, enabled innovative breakthroughs in the 

field of OER electro-catalysts in the past decade (Artero, Chavarot-Kerlidou et al. 2011). 

For the hydrogen-evolution reaction (HER), cobalt compounds are promising as well. Several 

investigations reported a series of cobaloxime and diimine-dioxime  compounds that show notable 

properties for HER at low over-potentials (Hu, Cossairt et al. 2005, Razavet, Artero et al. 2005, Baffert, 

Artero et al. 2007, Hu, Brunschwig et al. 2007, Jacques, Artero et al. 2009, Dempsey, Winkler et al. 

2010, Fourmond, Jacques et al. 2010). However, for the application in devices, molecular catalysts have 

to be grafted onto an electrode material without degrading their catalytic activity (Le Goff, Artero et 

al. 2009). For the mentioned Co compounds, this has not been be achieved so far due to synthetic 

issues (Artero, Chavarot-Kerlidou et al. 2011). 

To avoid the complications of a grafting process, we  present an approach of forming a Co-based HER 

catalyst directly on the electrode via reductive electro-deposition (Cobo, Heidkamp et al. 2012). This 

method has been successfully applied for the preparation of MoS2-based (Jaramillo, Jorgensen et al. 

2007, Merki and Hu 2011) or NiMo-based (McKone, Warren et al. 2011, Reece, Hamel et al. 2011) HER 

catalysts as well. In Cobo et al., an electro-catalytic Co-based material for HER and OER is electro-

deposited from a solution of Co(NO3)2·6H2O in an aqueous phosphate buffer at pH 7 onto an electrode 

made of fluorine tin-oxide or glassy carbon (Cobo, Heidkamp et al. 2012). The electro-deposition is 

convenient and the deposited catalyst is robust. 

We perform X-ray absorption spectroscopy on the Co-based catalysts to gain insight into the atomic 

structure of the catalytic species at HER and OER. 

This introduction text is based on a co-authored article (Cobo, Heidkamp et al. 2012). 
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PREPARATION 

Preparation of Co electrode (H2-CoCat) for XAS measurement 

The H2-CoCat for our X-ray absorption spectroscopy (XAS) studies was electrodeposited at -0.79 V vs. 

normal hydrogen electrode (NHE) on a glassy carbon (100 µm thick, 5 – 10 Ω) substrate for 3 h. The 

deposition solutions contained 0.5 mM Co(NO3)2 in a 0.5 M  KH2PO4/K2HPO4 (KPi) buffer (in milliQ 

water) at pH 7. For the conditioning, the H2-CoCat was kept for 4 min at -0.79 V or +1.37 V in a cobalt-

free 0.5 M KPi buffer at pH 7, and then rapidly frozen in liquid N2. IR compensation was applied. The 

deposition and conditioning were directly performed in an electrochemical cell (three-electrode 

system) embedded in a sample holder for XAS studies. A detailed description of this way of preparation 

is presented in the section Freeze-quench preparation of the Methods chapter. The used type of 

reference electrode was mercury-sulphate with an equilibrium potential of +0.65 V vs. NHE. The 

counter electrode was a Pt wire. The applied potentiostat was a Biologic SP200 or SP300. 
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RESULTS AND DISCUSSION 

The H2-CoCat was investigated by measurement and analysis of the Extended X-ray absorption fine-

structure (EXAFS) and X-ray absorption near-edge structure (XANES) at the Co K-edge, to gain insight 

into the atomic structure of the material during H2 formation and water oxidation. Therefore, the H2-

CoCat was conditioned and frozen prior to X-ray absorption spectroscopy (XAS) at electrode potentials 

of -0.79 V or +1.37 V vs. normal hydrogen electrode (NHE), respectively. 

At both potentials, the Co EXAFS at the Co K-edge of the H2-CoCat (see Fourier transforms in Figure 48) 

exhibit a strong contribution of a hexagonal close-packed phase of metallic Co (see structure scheme 

in Figure 48), indicated by the presence of peaks corresponding to metallic Co-Co coordinations. 

However, the amplitude of the metal peaks in the H2-CoCat is ≈40 % lower in than in the metal 

reference. The damping of the peaks indicates the presence of a non-metallic Co species. The H2-CoCat 

at +1.37 V additionally exhibits a non-metallic peak at 1.6 Å (see arrow A in Figure 48) and a shoulder 

at 2.6 Å (see arrow B in Figure 48). The former indicates the presence of a Co-O/N/C coordination and 

the latter the possible appearance of a non-metallic Co-Co peak. The non-metallic features of the H2-

CoCat EXAFS are more prominent at +1.37 V than at -0.79 V, indicating a larger non-metallic 

contribution at +1.37 V. The non-metallic contribution is crucial for the catalytic activity of the H2-

CoCat, since its electrochemical performance is much higher than of an electrode consisting of pure 

Co metal. Tafel analysis for the H2-CoCat (performed and analysed by co-workers (Cobo, Heidkamp et 
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Figure 48 

Left side: Fourier-transformed EXAFS spectra (k3 weighted, k range = 3 – 16 Å-1) recorded at the Co K-edge. 
Red trace: H2-CoCat conditioned at -0.79 V vs. NHE. Blue trace: H2-CoCat conditioned at +1.37 V. Black trace: 
Co metal foil (hexagonal close-packed state). The blue arrows, “A” and “B”, mark features that are assignable 
to the contribution (≈50%, Figure 52) of a phase of edge-sharing CoO6 octahedra in the H2-CoCat at +1.37 V. 
The peaks of the Co metal are labelled with the corresponding Co-Co distances. Right side: Schematic 
structure of metallic Co0 in the hexagonal close-packed phase (hcp). Image based on crystal data of Co metal 
published in (Wyckoff 1963). 
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al. 2012)) results in exchange current densities of 10-5.5 A/cm2 that are three-times higher than for a 

comparable electrode of pure Co metal with 10-6 A/cm2. 

The Co XANES of the H2-CoCat (see Figure 49) exhibits significant deviations from the spectrum of Co 

metal, indicating the presence of a non-metallic contribution. At both potentials, the amplitude of the 

absorption edge is higher than in the metal spectrum. Usually, a pronounced amplitude correlates with 

the occurrence of an O/N contribution. Furthermore, the edge position of the H2-CoCat is shifted to 

excitation energies higher than in the metal spectrum, indicating the presence of a Co species with a 

less reduced oxidation state than in metallic Co0. At +1.37 V, the deviations from the metal spectrum 

and the shift of the edge positions are larger than at -0.79 V. Hence, the non-metallic contribution is 

more prominent in the H2-CoCat at +1.37 V than at -0.79 V and the Co ions are more oxidized. 

In Figure 50, the metallic Co contribution in the EXAFS of the H2-CoCat at -0.79 V is subtracted, to 

elucidate the non-metallic Co contribution (minor metal contribution may still be present). The metal-

reduced spectrum exhibits a non-metallic peak at 1.7 Å which can be assigned to a coordination of the 

Co atom to light atoms (O, N or C) in its first coordination sphere (see Figure 53). However, the noise 

level of the spectrum and the uncertainties of the approach used for subtraction of the metallic 

contribution prevent reasonable EXAFS simulations to determine the Co-O/N/C distance and 

coordination number. 

In XAS, metallic contributions can overshadow other contributions as they consist of heavy 

backscattering atoms and exhibit a significant long-range order. The minimization of the metal 
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Figure 49 

XANES spectra recorded at the Co K-edge. Red trace: H2-CoCat conditioned at -0.79 V vs. NHE. Blue trace: 
H2-CoCat conditioned at +1.37 V. Black trace: Co metal foil (hexagonal close-packed state). 
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contribution in the -0.79 V H2-CoCat was achieved by subtracting the original electrode spectrum (not 

Fourier-transformed) by a weighted spectrum of Co metal and a subsequent renormalization of the 

difference spectrum (see Equation 5). The weighting factor of the metal spectrum was set to a value 

that minimizes the metal oscillations of the difference spectrum in the energy range from 7900 to 

8750 eV. In this range, only metal oscillations are present, since the damping of the non-metallic 

contribution is stronger and the corresponding oscillations already disappear at lower energies (for a 

more detailed description of the metal-subtraction method, see section Subtraction of metal 

contribution from spectrum in chapter Methods). The optimal weighting factor for the H2-CoCat was 

determined to 0.59 and indicates that ≈60 % of the Co species in the H2-CoCat at -0.79 V are metallic 

and ≈40 % non-metallic (see table in Figure 51). Together with XPS measurements showing a spectrum 

comparable to Co3(PO4)2 · xH2O (performed and analysed by co-workers in (Cobo, Heidkamp et al. 

2012)), it can be assumed that the H2-CoCat is a combination of a CoII phosphate with a Co oxo/hydroxo 

species formed on the surface of metallic Co. 

The XANES/EXAFS of the H2-CoCat at +1.37 V are well reassembled by a linear combination (in the 

energy range from 7680 to 8455 eV) (see Figure 51) of the -0.79 V spectrum and the spectrum of the 

well-known O2-CoCat (see Figure 51), an amorphous Co oxide catalyst for water oxidation (established 

and well-studied by (Kanan and Nocera 2008, Risch, Khare et al. 2009)). This suggests that the catalytic 
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Figure 50 

Fourier-transformed Co EXAFS (k3 weighted, k range = 3 – 16 Å-1) of the H2-CoCat before (red line) and after 
subtraction of the Co metal contribution (blue line). The most prominent non-metallic peak is marked with “Co-
O/N/C”. The diminishment of the metal contribution was achieved by subtracting a weighted spectrum of Co 
metal spectrum from the original H2-CoCat spectrum and renormalizing the difference spectrum (see Equation 

5). The optimal weighting factor was determined by minimizing the oscillations in the metallic energy range of 
the H2-CoCat spectrum. 
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Co species in the +1.37 V H2-CoCat is similar to the O2-CoCat, and that residuals of the -0.79 V H2-CoCat 

are still present at +1.37 V. It seems that the H2-CoCat transforms into the O2-CoCat. The determined 

coefficients (see Equation 6) of the linear combination indicate a proportion between these two 

contributions of 1 : 1 after 4 min of conditioning at +1.37 V (see H2-CoCat at +1.37 V in Figure 51). After 

the subtraction of the -0.79 V contribution, the renormalized EXAFS of the H2-CoCat at +1.37 V (see 

Figure 52) exhibit a Co-O and Co-Co peak as in the O2-CoCat. This confirms that H2-CoCat at +1.37 V 

contains an O2-CoCat-like Co species consisting of clusters of edge-sharing CoIIIO6 octahedra. For a 

more detailed description of the linear-combination method, see section Linear combination of spectra 

in chapter Methods. 
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Figure 51 

The Co XANES of H2-CoCat at +1.37 V vs. NHE (black line) are fitted with a linear combination (red line) of 
the H2-CoCat spectrum at -0.79 V and the spectrum of the O2-CoCat (recorded by M. Risch), an amorphous 
Co oxide catalyst for water oxidation (established and well-studied by (Kanan and Nocera 2008, Risch, Khare 
et al. 2009)). The optimal linear coefficients are ≈0.5 for both spectra. Table: Composition of Co species in the 
H2-CoCat at -0.79 V and at +1.37 V as deduced from the XANES and EXAFS spectra. 
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Figure 52 

Fourier-transformed Co EXAFS (k3 weighted, k range = 2 – 13 Å-1) of the H2-CoCat at +1.37 V vs. NHE after 
subtraction of the Co metal contribution (green line). The metal-reduced spectrum is compared to the spectrum 
of the O2-CoCat (blue line, recorded by M. Risch, and structure scheme of M. Risch), an amorphous Co oxide 
catalyst for water oxidation (established and well-studied by (Kanan and Nocera 2008, Risch, Khare et al. 
2009)). The O2-CoCat peaks of its characteristic Co-O and Co-Co coordination are labelled with “Co-O” and 
“Co-Co”, respectively. The diminishment of the metal contribution was achieved by subtracting a Co metal 
spectrum weighted with a factor of 0.5 from the H2-CoCat spectrum at +1.37 V. The resulting difference 
spectrum was renormalized. The weighting factor was determined by fitting a linear combination consisting of 
the H2-CoCat spectrum at -0.79 V and the O2-CoCat spectrum to the H2-CoCat spectrum at +1.37 V. 
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CONCLUSIONS 

The H2-CoCat is a Co-based material electro-deposited under reductive conditions (deposition 

potential of -0.79 V vs. normal hydrogen electrode (NHE)) and exhibits a catalytic evolution of H2 at -

0.79 V and of O2 at +1.37 V as verified by gas chromatography measurements (performed and analysed 

by our co-workers in France (Cobo, Heidkamp et al. 2012)). The H2-CoCat can be switched multiple 

times from catalytic H2 to O2 evolution and back, while maintaining its activity (shown by co-workers 

(Cobo, Heidkamp et al. 2012)). X-ray diffraction (XRD) measurements of the H2-CoCat (performed and 

analysed by co-workers (Cobo, Heidkamp et al. 2012)) indicate a non-crystalline character of its Co 

species. This prevents further structural investigation of the H2-CoCat by XRD and suggests a 

continuation with X-ray absorption spectroscopy (XAS). 

Our XAS investigation show that, in the state of H2 evolution, about 60 % of the H2-CoCat consists of a 

hexagonal close-packed phase of metallic Co0 (see Figure 48) and about 40 % of a non-metallic species 

with Co ions coordinated to O, N or C ligands in their first coordination sphere (see Figure 53). The 

non-metallic contribution is crucial for the catalytic activity of the H2-CoCat, since its electrochemical 

performance is much higher than of a pure metallic electrode (Cobo, Heidkamp et al. 2012). Together 

with evidence from X-ray photoelectron spectroscopy (XPS) measurements (performed and analysed 

by our co-workers (Cobo, Heidkamp et al. 2012)), it can be assumed that the H2-CoCat is a combination 

of a CoII phosphate with a Co oxo/hydroxo species formed on the surface of metallic Co. In the state of 

O2 evolution, XAS shows that the H2-CoCat (partly) transforms into a Co species similar to the O2-CoCat 

(see Figure 52), an amorphous Co oxide catalyst for water oxidation (Kanan and Nocera 2008, Risch, 

Khare et al. 2009). The O2-CoCat-like Co species consists of clusters of edge-sharing CoIIIO6 octahedra. 

 

Figure 53 

Schematic representation of the H2-CoCat structure and, at +1.37 V vs. NHE, its conversion into the O2-Cocat. 
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3. Molecular Ni catalyst grafted on a 

carbon-nanotube cathode 
 

 

The X-ray absorption spectroscopy (XAS) data and analysis shown in this chapter are published in 

(Tran, Le Goff et al. 2011): 

 

“Noncovalent Modification of Carbon Nanotubes with Pyrene-Functionalized Nickel Complexes: 

Carbon Monoxide Tolerant Catalysts for Hydrogen Evolution and Uptake” 

Phong D. Tran, Alan Le Goff, Jonathan Heidkamp, Bruno Jousselme, Nicolas Guillet, Serge Palacin, 

Holger Dau, Marc Fontecave and Vincent Artero 

Angewandte Chemie International Edition 2011, Vol 50, 1371-1374 

http://dx.doi.org/10.1002/anie.201005427 

 

Reproduced with permission from Wiley-VCH. Copyright 2011 Wiley-VCH. 

http://www.interscience.wiley.com/ 

 

 

 

Contributions: 

• J. Heidkamp – X-ray absorption spectroscopy: entire data analysis and all measurements 

(samples were provided by co-workers) 

• Co-workers – synthesis of molecular Ni catalyst and grafting of catalyst on a carbon-

nanotube cathode (development and execution); sample preparation, measurement and 

data analysis for all other used techniques aside from XAS 
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INTRODUCTION 

The [Ni(P2
PhN2

Ar)2]2+ complex (“NiP4”) is a molecular catalyst for H2 formation (see structure in Figure 

56 with Ar = CH2Pyrene). Its structure is inspired  by the active sites of hydrogenases, enzymes for H2 

oxidation and reduction (Canaguier, Artero et al. 2007, Tard 2009). The complex combines a nickel 

centre in an electron-rich environment with proton relays provided by a pendant base. The former can 

be found in NiFe hydrogenases and the latter mimics the putative azapropanedithiolato cofactor of 

FeFe hydrogenases. 

For the use in fuel cells or electrolysers, the NiP4 complex is grafted on multi-walled carbon nanotubes 

(MWCNTs) to assemble electrode material (Le Goff, Artero et al. 2009). MWCNTs are advantageous as 

support material, as they offer high surface areas (facilitating high catalyst loading), high stability and 

electrical conductivity (Tasis, Tagmatarchis et al. 2006, Sgobba and Guldi 2009). The NiP4-MWCNTS 

electrode material is noble-metal free and exhibits a low over-potential and high stability for H2 

evolution or uptake (Le Goff, Artero et al. 2009, Tran, Artero et al. 2010).  

To graft the NiP4 complex onto the MWCNTs, a polyphenylene layer bearing amino groups was formed 

on the MWCNTs and, then, an activated ester derivative of the complex (with Ar = phtalimide ester 

moiety) was attached to the layer via amide linkage (Le Goff, Artero et al. 2009). However, as current 

manufacturing techniques for active layers for fuel cells or electrolysers rely on standard deposition or 

printing of an ink containing the electroactive material, this procedure has practical and technical 

drawbacks. 

Tran et al. presents an approach (based on (Zhao and Stoddart 2009)) that is more suitable for 

application as it attaches the NiP4 complex (with Ar = CH2Pyrene) via noncovalent π–π stacking directly 

on the MWCNTs (see Figure 56) (Tran, Le Goff et al. 2011). The resulting electrode material is 

compatible with conditions in classical proton-exchange membrane (PEM) devices. In addition, the 

material exhibits CO tolerance, as its catalytic activity for H2 uptake is sustained in the presence of CO, 

a major impurity in H2 fuels derived from reformed hydrocarbons or biomass. This is an advantage in 

comparison to Pt electro-catalysts that suffer from CO poisoning in PEM fuel cells (Baschuk and Li 

2001). 

We perform X-ray absorption spectroscopy on the NiP4-MWCNTs electrode material to look for 

possible effects of the grafting process on the structural integrity of the NiP4 complex. 

This introduction text is based on a co-authored article  (Tran, Le Goff et al. 2011). 
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PREPARATION 

The synthesis of the [Ni(P2
PhN2

CH2Pyrene)2]-(BF4)2 complex, a molecular Ni catalyst for H2 formation, was 

performed and developed by co-workers (Tran, Le Goff et al. 2011) as well as the grafting of the catalyst 

on a cathode, a gas diffusion layer (GDL) with a surface of multi-walled carbon-nanotubes (MWCNTs). 

The grafting procedure is described in the following: 

 

Immobilisation of the nickel bisdiphosphine complex 

Solution of [Ni(P2
PhN2

CH2Pyrene)2]-(BF4)2 (1 mmol/l) in dichloromethane (10 ml) was slowly filtered over a 

MWCNTs/GDL electrode (15 cm2). The electrode was washed with acetonitrile (2 × 15 ml) to remove 

any un-immobilized nickel complex. The functionalized MWCNTs/GDL electrodes were then air-dried 

for 2h. 

 

Membrane-electrode assembly preparation 

The MWCNTs/GDL electrodes (14 mm disc diameter) and Nafion® NRE 212 CS membrane (DuPontTM) 

were directly bonded together by hot-pressing process (4 MPa at 135°C for 2 minutes and 30 seconds). 

 

Sample preparation for X-ray absorption spectroscopy 

Microcrystalline [Ni(P2
PhN2

CH2Pyrene)2]-(BF4)2 (“NiP4”) was carefully grinded and thoroughly mixed with 

boron nitride to obtain homogeneous samples of appropriate optical thickness. The same was done 

with a powder of the NiP4 complex grafted on MWCNTs that was removed from the GDL. 
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RESULTS AND DISCUSSION 

To assemble an electrode for H2 formation, the catalytic [Ni(P2
PhN2

CH2Pyrene)2](BF4)2 complex (= NiP4) was 

grafted on the multi-walled carbon nanotube (MWCNTs) surface of a gas-diffusion layer (GDL). X-ray 

absorption near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) of the 

functionalized MWCNTs/GDL electrode and the original NiP4 complex were recorded at the Ni K-edge, 

to check for possible effects of the grafting process on the structure of the complex. 
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Figure 54 

(a) XANES/EXAFS spectra collected at the Ni K-edge of the catalytic [Ni(P2
PhN2

CH2Pyrene)2]-(BF4)2 complex (red 
line) and of the complex after grafting onto the MWCNTs/GDL (black line). The spectra are compared to the 
reference spectrum of [NiII(OH2)6]2+ (blue-dotted line). (b) linear combination of the spectra of the 
[Ni(P2

PhN2
CH2Pyrene)2]-(BF4)2 complex and of the [NiII(OH2)6]2+ reference (orange line) with the respective linear 

coefficients of 0.65 and 0.35. The linear combination is compared to the spectrum of the complex after grafting 
onto the MWCNTs/GDL (black line). (c) and (d) Fourier transforms (FT) of the EXFAS spectra in (a) and (b) 
weighted with k3 (k range = 2 – 11 Å-1). 
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The Ni XANES of the functionalized electrode differ from the spectrum of the original NiP4 complex 

(see Figure 54a). The electrode XANES show an increased amplitude of the absorption edge and a 

decreased amplitude of the pre-edge. A comparison with the reference spectrum of [NiII(OH2)6]2+ (NiCl2 

in aqueous solution) suggests that these features correlate with the occurrence of a Ni coordination 

to six O/N atoms. The edge in the electrode XANES reaches the half of its amplitude at almost the same 

excitation energy as the edge of the NiII(OH2)6 reference, indicating that the mean oxidation state of 

the Ni ions grafted on the electrode is II as in the original NiP4 complex before grafting. 

Analogue to the XANES, the Ni EXAFS of the MWCNTs/GDL electrode functionalized with the NiP4 

complex deviates from the original complex (see Fourier transform in Figure 54c). The Ni-P peak of the 

original complex, representing the P4 ligand environment, shifts to shorter distances after grafting on 

the MWCNTs from 1.8 to 1.7 Å and coincides in position with the Ni-O peak of the Ni(OH2)6 reference. 

This suggests that, after grafting, the Ni-P peak contains an additional Ni-O/N contribution. EXAFS 

simulations of the peak indicate, for the Ni-P contribution, a Ni-P distance of 2.23 Å as in the original 

NiP4 complex and, for the Ni-O/N contribution, a Ni-O/N distance of 2.04 Å as in the Ni(OH2)6 reference 

(see Table 18). The simulated P coordination number of 1.9 is lower than in the original NiP4 complex, 

indicating that the complex constitutes only a fraction of the Ni species on the electrode or that the 

ligand environment in the complex is modified towards a mixture of P and O/N atoms (simulated O 

coordination number is 2.0) (see Table 18). 

In summary, XANES and EXAFS indicate that, after grafting on the MWCNTs/GDL electrode, the planar 

tetrahedral P4 ligand environment of the NiP4 complex incorporates O/N ligands or that a separate Ni-

O/N species with octahedral ligand geometry similar to Ni(OH2)6 is formed. The Ni-O/N coordination 

could arise from a fraction of NiP4 complexes binding to water molecules, carboxylate, or hydroxo 

defects present at the surface of MWCNTs as well as from the oxidation of a diphosphine ligand of the 

NiP4 complex, either through the phosphine oxide function or through the amine function, as shown 

recently in a similar system (Yang, Bullock et al. 2010). 

The XANES/EXAFS spectrum of the functionalized MWCNTs/GDL electrode is well reassembled by a 

linear combination of the spectrum of the original NiP4 complex (crystalline powder) and the Ni(OH2)6 

spectrum (in the energy range from 8300 to 8780 eV, see Figure 54b). The same can be observed of 

the EXAFS part of the linear combination (see Fourier transform in Figure 54d). At larger distances, 

there are deviations that could be explainable by differences in higher coordination spheres between 

the Ni(OH2)6 reference, a complex in aqueous solution, and the actual Ni-O species on the MWCNTs. 

The good agreement between the linear combination and the XANES/EXAFS spectra confirms that the 

Ni species on the MWCNTs is a mixture of the original NiP4 complex with an octahedral NiO6 species 

or that the NiP4 complex incorporates O/N ligands. The linear coefficients (see Equation 6) suggest that 

35 ± 15 % of the NiP4 complexes transform into a Ni-O species or that a majority of the complexes 

incorporate one or two O ligands in their ligand environment. For a more detailed description of the 

linear-combination method, see section Linear combination of spectra in chapter Methods.
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Figure 55 

Simulated XANES spectra at the Ni K-edge of a NiPmOn model structure with a mixed P and O ligand 
environment of various D/F ratios (black line), compared to corresponding linear combinations (red line) of 
the simulated spectra of a planar-tetrahedral NiP4 (blue line) and a octahedral NiO6 model structure (magenta 
line). In the linear combination, the P/O ratio per Ni atom matches the D/F ratio of the corresponding NiPmOn 
structure. The linear coefficients for NiP4 and NiO6 are calculated by F d⁄ × e �F d⁄ + D f⁄ �⁄  and D f⁄ ×
e �F d⁄ + D f⁄ �⁄ , respectively. All XANES simulations were carried out with feff 9.05 (Rehr, Kas et al. 2009) 
using self-consistent muffin-tin potentials and full multiple-scattering calculations. 
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XANES simulations (see Figure 55) suggest that the formation of a Ni species on the MWCNTs with 

mixed P and O ligand is less likely than the formation of separate Ni-P and Ni-O species. The XANES of 

a species with mixed ligands can be simulated from a NiPnOm model structure for various ratios  /� 

between the P and O ligands. The XANES of the separate Ni species can be emulated by simulating the 

spectra of a planar tetrahedral NiP4 and an octahedral NiO6 model structure and combining them in a 

weighted addition. The weighting factors set the percentage of Ni ions in the sample having either a 

P4 or an O6 ligand environment. If one averages the number of P and O ligands over all Ni ions, then 

one can determine a mean P/O ratio per Ni ion for each weighted addition of NiP4 and NiO6. In Figure 

55, the XANES of NiPnOm for various ratios  /� are compared to additions of NiP4 and NiO6 spectra 

with the same P/O ratio per Ni ion. The corresponding weighting factors for NiP4 and NiO6 are 

calculated by  4⁄ × 1 � 4⁄ + � 6⁄ �⁄  and � 6⁄ × 1 � 4⁄ + � 6⁄ �⁄ , respectively. The comparison in 

Figure 55 shows that the NiPnOm spectra deviate significantly from the corresponding additions of NiP4 

and NiO6. This suggests that, for the Ni species grafted on the MWCNTs, the real spectrum should look 

significantly different in the case of possessing a mixed P/O ligand environment than in the case of 

forming a separate Ni-P and Ni-O species. The sufficient resemblance of the spectrum of the Ni-

MWCNTs species via a weighted addition of the NiP4 complex with the Ni(OH2)6 spectrum (see Figure 

54b and d) suggests that the case of a separate Ni-P and NI-O species is more likely. The spectrum of a 

possible Ni-MWCNTs species with a mixed P/O ligand environment should significantly differ from the 

addition of the NiP4 and Ni(OH2)6 spectra and, therefore, differ from the actual spectrum of the Ni-

MWCNTs species. 
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CONCLUSIONS 

The [Ni(P2
PhN2

CH2Pyrene)2]2+ complex (“NiP4”) is a molecular catalyst for H2 formation (see Figure 56). Its 

structure is bioinspired by the active sites of hydrogenases, enzymes for H2 oxidation and reduction. 

The NiP4 complex is grafted on the multi-walled carbon-nanotubes (MWCNTs) surface of a gas diffusion 

layer (GDL) via noncovalent π-π stacking. The resulting noble-metal-free electro-catalytic nanomaterial 

is suitable for the use in fuel cells; and is not affected by CO poisoning as observed in Pt-based electro-

catalysts. Our X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine-

structure (EXAFS) investigations monitor the structure of the NiP4 complex during the grafting on the 

MWCNTs/GDL electrode. 

The Ni XANES/EXAFS of the MWCNTs/GDL electrode functionalised with the NiP4 complex (see Figure 

54a and c) indicate that one third of the complexes incorporates O/N ligands or transforms into an 

octahedral Ni2+ species with a coordination to six light atoms (O, N or C) similar to [NiII(OH2)6]2+ (see 

Figure 56). The other two third maintain their original planar-tetrahedral P4 ligand system. The 

spectrum of the functionalised MWCNTs/GDL electrode is well reassembled by a linear combination 

of the XANES/EXAFS of the original NiP4 complex and the Ni(OH2)6 reference (NiCl2 in aqueous solution) 

(see Figure 54b and d). The optimal linear coefficients indicate that 35 ± 15 % of the original NiP4 

complexes transform into an octahedral Ni2+-O/N species; or that a majority of the NiP4 complexes 

 

Figure 56 

The molecular Ni catalyst, [Ni(P2
PhN2

CH2Pyrene)2]2+, grafted a on cathode with a multi-walled carbon-nanotubes 
surface. During grafting, one third of the Ni catalysts converts into an octahedral NiII(O/N)6 species. 
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incorporates one or two O/N ligands in their structure. XANES simulations (see Figure 55) suggest that 

the former is more likely, resulting into the formation of separate Ni-P and Ni-O species without mixed 

P/O ligand environments on the MWCNTs. The Ni-O/N coordination could arise from a fraction of the 

NiP4 complexes binding to water molecules, carboxylate, or hydroxo defects present at the surface of 

MWCNTs. Furthermore, the oxidation of a diphosphine ligand in the NiP4 complex, either through the 

phosphine oxide function or through the amine function, could also lead to a Ni-O/N coordination as 

recently shown in a similar system (Yang, Bullock et al. 2010). 
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4. Noble metal-free fuel cell 
 

 

The X-ray absorption spectroscopy (XAS) data and analysis shown in this chapter are published in 

(Tran, Morozan et al. 2015): 

 

“A noble metal-free proton-exchange membrane fuel cell based on bio-inspired molecular catalysts” 

P. D. Tran, A. Morozan, S. Archambault, J. Heidkamp, P. Chenevier, H. Dau, M. Fontecave, A. Martinent, 

B. Jousselme and V. Artero 

Chemical Science 2015, Vol 6, 2050-2053 

http://dx.doi.org/10.1039/c4sc03774j 

 

Published by The Royal Society of Chemistry. 

http://www.rsc.org/ 

 

 

 

Contributions: 

• J. Heidkamp – X-ray absorption spectroscopy: entire data analysis and all measurements 

(samples were provided by co-workers) 

• Co-workers – synthesis of catalyst material and fabrication of fuel cell (development and 

execution); sample preparation, measurement and data analysis for all other used 

techniques aside from XAS 
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INTRODUCTION 

Fuel cells based on proton exchange membrane (PEM) technology (see Figure 65) can be used in a 

wide range of portable and automotive applications. However, PEM fuels cells require Pt as catalyst 

for the H2 oxidation and O2 reduction reactions (HOR and ORR). Pt is rare and, hence, expensive, 

representing an economic bottle neck for the fuel cells. This represents an economic bottle neck for 

the fuel cells, as Pt is rare and, hence, expensive. The substitution of Pt by earth-abundant catalysts is 

a potential way to remove this economic handicap. Significant progress in the substitution of Pt was 

achieved for the ORR-side of the fuel cells (Bashyam and Zelenay 2006, Pylypenko, Mukherjee et al. 

2008, Gong, Du et al. 2009, Lefevre, Proietti et al. 2009, Liu, Wu et al. 2010, Morozan, Jegou et al. 2011, 

Morozan, Jousselme et al. 2011). However, a PEM fuel cell with earth-abundant catalysts on both 

electrodes, ORR and HOR, has not been reported before the work of Tran et al. (Tran, Morozan et al. 

2015). The fuel cell of Tran et al. utilizes as ORR catalyst a novel Cobalt/nitrogen/Vulcan (Co-N-C) 

material, and as HOR catalyst a previously studied carbon-nanotube material functionalized with 

biomimetic Ni complexes (Ni-CNT) (see chapter Molecular Ni catalyst grafted on a carbon-nanotube 

cathode) (Tran, Le Goff et al. 2011). 

The Co-N-C material is prepared by an adaptation of the procedure from (Morozan, Jegou et al. 2011, 

Matsubara, Fujita et al. 2012). The catalytic activity of the material can be assigned to pyridinic-N 

functional groups located at the surface of the carbon matrix and binding cobalt ions as well as metallic 

cobalt nanoparticles (Morozan, Jegou et al. 2011). 

The fuel cell of Tran et al. consists of a layer of Ni-CNT material attached to a layer of Co-N-C material 

via an interfacing Nafion membrane only permeable for protons (Tran, Morozan et al. 2015). The 

electrical contacts of the fuel cell are gas-permeable Au layers evaporated onto the outside of the Ni-

CNT and Co-N-C layers. The performance of the noble metal-free fuel cell is comparable to PEM fuel 

cells based on Pt, as demonstrated by co-workers in (Tran, Morozan et al. 2015). 

We perform X-ray absorption spectroscopy on the ORR and HOR catalysts to monitor possible effects 

of the operation conditions in a PEM fuel-cell on the atomic structure of the catalysts. Furthermore, 

we provide first insights in the atomic structure of the novel ORR catalyst. 

This introduction text is based on a co-authored article (Tran, Morozan et al. 2015). 
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PREPARATION 

The synthesis and preparation of the Ni-CNT material, the Co-N-C material, the catalyst inks as well as 

the fabrication of the fuel-cell were performed and developed by co-workers (Tran, Morozan et al. 

2015). The procedures are described in the following: 

 

Ni-CNT material 

Anode catalyst was prepared by suspending [Ni(P2
PhN2

CH2Pyrene)2](BF4)2 (40 mg) and MWCNTs (30 mg) in 

CH3CN (100 ml). After 10 min sonication, Vulcan XC-72 (30 mg) was added to the solution and the 

suspension was sonicated for 5 more min. The solvent was then evaporated in vacuum. 

 

Co-N-C material 

Cobalt/nitrogen/Vulcan (Co-N-C) cathode catalyst (12 wt. % is the nominal weight percentage of Co 

over the TAPy-CNTs mixture, 2/1 is the mass ratio of TAPy to CNTs) was prepared as follows. 

1H-1,2,3-triazolo[4,5-b]pyridine (TAPy) (400 mg) was added to a solution of Co(NO3)2·6H2O (355.1 mg) 

in ethanol (30 ml) and the solution was stirred for 2 h at 60 °C. Then, a dispersion of Vulcan XC-72 (200 

mg) in ethanol (100 ml) was ultra-sonicated for 30 min and added to the previous solution. The mixture 

was heated under reflux at 60 °C for 5 h. Ethanol was removed under reduced pressure to give a black 

Co–TAPy-Vulcan powder which was subsequently placed for 2 h in a tube furnace under a flux of Ar to 

remove residual air, heated at 5 °C/min until 700 °C, held at this temperature for 1 h and then cooled 

at 5 °C/min until room temperature. The whole procedure was executed under in a flowing Ar 

atmosphere. 

 

Catalyst ink 

Inks were prepared by mixing anode or cathode catalyst with 5wt. % Nafion® solution in hydro-

alcoholic solution. The mixtures were sonicated for 1 h. Isopropanol was added to the catalyst ink 

which was sonicated again for 30 min. The Nafion® polymer and the catalyst are respectively 20-30 wt. 

% and 70-80 wt. % of the total solid content of the catalyst inks. 

 

Fuel cell - Membrane electrode assembly (MEA) fabrication 

The catalyst suspensions are directly sprayed using an air brush (Harder and Stenbeck) to both sides 

on NRE-212 Nafion® perfluorosulfonic acid membranes commercialised by DuPontTM. The membrane 

is used without pre-treatment steps and attached on glass with adhesive tape. The deposition is carried 

out at 60-80 °C on a hot plate in order to evaporate both the water in the membrane and the solvent 

in the catalyst ink. Both sides are subsequently sprayed and the resultant MEA is dried for one night in 

the air at room temperature. The MEA is then pressed at 50 °C under a pressure of 0.2 MPa for 3 min. 

The active electrode area was 5.76 cm². Gold was deposited by physical vapour deposition, thin enough 

to let H2 and O2 reach catalysts sites but thick enough to ensure a good collect of current. 
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Sample preparation for X-ray absorption spectroscopy (XAS) 

Microcrystalline [Ni(P2
PhN2

CH2Pyrene)2](BF4)2, as-prepared Ni-CNT material, as-prepared microcrystalline 

Co-N-C material, LiCoIIIO2 and [CoII(OH2)6](NO3)2 were thoroughly mixed with boron nitride to obtain 

homogeneous samples of appropriate optical thickness. Ni(OH2)6]2+ was prepared by solving NiCl2 in 

deionized water (10 mM) and freezing the solution in liquid nitrogen. The anode catalyst (Ni-CNT) was 

deposited onto gas-diffusion layers (same preparation as previously described but without application 

of the Nafion® membrane). These electrodes were characterized as-prepared and after 

electrochemical equilibration in 0.5 M H2SO4 aqueous solution (by repeating 5 potential cycles 

(potential scan rate of 2 mV/s) from –0.3 V to +0.5 V vs. reversible hydrogen electrode (RHE)) or 

extended turnover for H2 oxidation (at +0.25 V vs. RHE) or evolution (at –0.3 V vs. RHE). Then the 

sample was taken out from the gas-diffusion layer and mixed with boron nitride as described above 

for XAS measurement. The electrochemical conditioning of the XAS samples was performed by co-

workers (Tran, Morozan et al. 2015). 
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RESULTS AND DISCUSSION 

 

Ni CATALYST FOR H2 OXIDATION 

X-ray absorption spectroscopy (XAS) investigations on the Ni-CNT material directly embedded in the 

fuel-cell turned out to be impossible, hence the Ni-CNT material (CNT = carbon nanotubes) was 

characterised in a better accessible half-cell configuration. 

The X-ray absorption near-edge structure (XANES) of the catalytic Ni-CNT material (Ni K-edge, see 

Figure 57) can be interpreted as a combination of the spectra from two separate NiII species present 

on the CNTs. One possesses a planar-tetrahedral P4 ligand environment as in the original molecular Ni 

catalyst, a [Ni(P2
PhN2

CH2Pyrene)2]2+ complex (= “NiP4”), and the other an octahedral coordination to six 

light ligands (O or N) similar in structure to [Ni(OH2)6]2+  (= “NiO6”) (see Figure 65). In the as-prepared 

Ni-CNT material, the NiP4 species represents the majority of the Ni species on the CNTs (about 2/3rd). 

The XAS analysis of the as-prepared material is discussed in detail in the chapter Molecular Ni catalyst 

grafted on a carbon-nanotube cathode and is also reported in (Tran, Le Goff et al. 2011). During H2 

oxidation, the features in the spectrum of the Ni-CNT material corresponding to the Ni(O/N)6 species 
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Figure 57 

XANES/EXAFS spectra collected at the Ni K-edge for the Ni–CNT material as prepared (black solid line), and 
after 1 h of H2 oxidation (red solid line). The spectra of pristine [Ni(P2

PhN2
CH2Pyrene)2]2+ (blue dotted line) and of 

[Ni(OH2)6]2+ (orange dotted line) are shown for comparison. 
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diminish and the ones of the 

NiP4 species become more 

prominent. This can be deduced 

from a comparison with the 

XANES spectra of 

[Ni(P2
PhN2

CH2Pyrene)2]2+ and 

[Ni(OH2)6]2+ (see Figure 57). The 

comparison shows that, in the 

Ni-CNT spectrum, the 

pronounced summit of the Ni 

absorption edge, which is a 

characteristic of the NiO6 

spectrum, vanishes after 1h of 

H2 oxidation while the pre-edge, 

a characteristic of the NiP4 

spectrum, becomes more 

prominent. Furthermore, the 

EXAFS oscillations of the Ni-CNT 

material after 1 h of H2 oxidation 

(starting at ≈8360 eV and 

extending to higher energies) 

are close to the NiP4 spectrum 

while before H2 oxidation they 

tend to contour the NiO6 

spectrum. Altogether, it seems 

that, during H2 oxidation, the Ni(O/N)6 species is removed from the Ni-CNT material. 

The extended X-ray absorption fine-structure (EXFAS) of the Ni-CNT material (Ni K-edge) confirms the 

deductions from the XANES analysis. The Fourier transform of the Ni-CNT spectrum (see Figure 58) 

shows a prominent peak located between the Ni-P peak of the NiP4 reference and the Ni-O peak of the 

NiO6 reference. This indicates that the Ni-CNT peak contains contributions of both reference peaks 

and, hence, two Ni species are present on the CNTs, one with a P4 and the other with (O/N)6 ligand 

environment similar to the references. After 1 h of H2 oxidation, the peak of the Ni-CNT shifts to the 

position of the Ni-P and exhibits a comparable amplitude, indicating the exclusive presence of the NiP4 

species on the CNTs after H2 oxidation. Corresponding EXAFS simulations (see Figure 61) of the Ni-CNT 

peak lead to the same conclusions. Before H2 oxidation, the Ni-CNT peak can be simulated with a Ni-P 

and a Ni-O coordination yielding the same Ni-P and Ni-O distances as in the NiP4 and NiO6 references 

(see Table 18). The simulated P and O coordination numbers are lower than in the references, 

indicating that the Ni species on the CNTs is split into a NiP4 and a Ni(O/N)6 fraction. The fractional P 

coordination number is closer to the complete number in the reference than the fractional O 

coordination number, suggesting that the NiP4 fraction is more abundant on the CNTs than the NiO6 

fraction. After H2 oxidation, the Ni-CNT peak can only be simulated with a Ni-P coordination, indicating 
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Figure 58 

Fourier-transformed EXAFS spectra (k3 weighted, k range = 2 - 13 Å-1) 
collected at the Ni K-edge for the Ni-CNT material as prepared (black 
solid line), and after 1 h of H2 oxidation (red solid line). The spectra of 
pristine [Ni(P2

PhN2
CH2Pyrene)2]2+ (blue dotted line) and of [Ni(OH2)6]2+ 

(orange dotted line) are shown for comparison. Their main peaks are 
labelled with the corresponding Ni-ligand distance. 
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the exclusive presence of the NiP4 species on the CNTs. The structure of the NiP4 catalysts seems to 

withstand an extended operation, as after 1 h of H2 oxidation the simulated Ni-P distance and 

coordination number are close to the values of the NiP4 reference (see Table 18). 

In summary, the XANES and EXAFS analysis indicate that the Ni-CNT material consists of a planar-

tetrahedral NiIIP4 species similar to the original NiP4 catalyst and an octahedral NiII(O/N)6 species similar 

to Ni(OH2)6. During H2 oxidation, the NiP4 species maintains its P4 ligand environment and the Ni(O/N)6 

species is removed from the CNTs. Analogous effects for the Ni-CNT material can be also observed 

after 1 h of H2 evolution (see Figure 59 and Table 18) or after equilibration with a few cyclic 
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Figure 59 

XANES spectra (A) and Fourier-transformed EXAFS spectra (k³ weighted, k range = 2 - 13 Å-1) (B) collected at 
the Ni K-edge. Black solid line: Ni-CNT material as prepared. Magenta solid line: Ni-CNT coated onto a Nafion 
membrane after 1 h of H2 evolution. Green solid line: Ni-CNT in direct contact with the electrolyte (aqueous 
0.5 M H2SO4) after 1 h of H2 evolution. Blue dotted line: pristine [Ni(PPh

2NCH2Pyrene
2)2]2+. Orange dotted line: 

[Ni(OH2)6]2+. In B, the main peaks of [Ni(PPh
2NCH2Pyrene

2)2]2+ and [Ni(OH2)6]2+ are labelled with the corresponding 
Ni-ligand distance. 
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voltammograms (see Figure 60 and Table 18). The catalytic activity of the Ni-CNT material, however, 

does not decrease by the removal of the Ni(O/N)6 species as shown by co-workers in (Tran, Morozan 

et al. 2015). This confirms that the NiP4 species is the catalytic species of the Ni-CNT material. 

In an advanced half-cell configuration, the Ni-CNT material was coated with a Nafion membrane as in 

the fuel-cell. In contrast to the previous configurations, the Ni-CNT material is not anymore in direct 

contact with the electrolyte, aqueous 0.5 M H2SO4. The Ni XANES and EXAFS of the Ni-CNT material 

with Nafion do not exhibit a removal of the Ni(O/N)6 species after 1 h of H2 evolution as observed for 

the other half-cell configurations. In the XANES (see Figure 59), the increased amplitude of the Ni 

absorption edge, indicative for a Ni-O/N coordination, remains after H2 evolution. In the EXAFS (see 

Fourier transform in Figure 59), the Ni-CNT peak stays in a position close to the Ni-O peak after H2 

evolution and the simulated coordination number of O is not diminished (see Table 18). The Nafion 

membrane seems to prevent a removal of the Ni(O/N)6 species, indicating that a direct contact of the 

Ni-CNT material with the H2SO4 electrolyte might be necessary for this process. In the fuel-cell, the 

removal of the Ni(O/N)6 species is possibly inhibited, since the used Ni-CNT material is coated with a 

Nafion membrane as well.  
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Figure 60 

XANES spectra (A) and Fourier-transformed EXAFS spectra (k3 weighted, k range = 2 - 13 Å-1) (B) collected at 
the Ni K-edge. Black solid line: Ni-CNT as prepared. Green solid line: Ni-CNT after equilibration with a few 
cyclic voltammograms. Blue dotted line: pristine [Ni(P2

PhN2
CH2Pyrene)2]2+. Orange dotted line: [Ni(OH2)6]2+. In B, 

the main peaks of [Ni(P2
PhN2

CH2Pyrene)2]2+ and [Ni(OH2)6]2+ are labelled with the corresponding Ni-ligand distance. 
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 mean Ni-ligand distance [Å] 

 

mean coordination number  

 Ni-O Ni-P Ni-O Ni-P 

[Ni(OH2)6]2+ 2.03 ± 0.01  6  

[Ni(PPh
2NCH2Pyrene

2)2]2+  2.22 ± 0.01  4 

     

Ni-CNT as prepared 2.04 ± 0.01 2.23 ± 0.01 2.0 ± 0.2 1.9 ± 0.2 

Ni-CNT in direct contact with the electrolyte (aqueous 0.5M H2SO4) 

after electrochemical 

equilibration 

 2.18 ± 0.01  3.5 ± 0.4 

after 1h H2 oxidation  2.19 ± 0.01  3.6 ± 0.2 

after 1h H2 evolution  2.19 ± 0.01  3.9 ± 0.3 

Ni-CNT coated with a Nafion membrane 

after 1h H2 evolution 2.00 ± 0.01 2.25 ± 0.01 2.5 ± 0.2 1.6 ± 0.2 

E0=1.6 eV 

S0
2=0.76 

Ni-O 2σ2=0.009 Å2 

Ni-P 2σ2=0.004 Å2 

 

 

Table 18 

Overview of the Ni-P distances and coordination P numbers of the [Ni(PPh
2NCH2Pyrene

2)2]2+ catalyst (“NiP4”) in its 
pristine state, grafted on CNT (= Ni-CNT material), after electrochemical equilibration, after H2 oxidation and 
after H2 evolution. It is differentiated between conditions where the Ni-CNT material was in direct contact with 
the electrolyte or coated with a Nafion® membrane. If a Ni-O/N species is significantly present besides the NiP4 
catalyst, then its Ni-O distance and O coordination number is given. The Ni-P/O distances and coordination 
numbers were determined by fitting the corresponding EXAFS spectra with two phase-functions: one for P and 
one for O. The functions were calculated from crystal structures similar to [Ni(PPh

2NCH2Pyrene
2)2]2+ or [Ni(OH2)6]2+, 

respectively. For all fits, the energy offset, E0, the amplitude reduction factor, S0, and the Debye-Waller 
parameters, σ, of P and O were fixed at values determined from fits of the corresponding references, 
[Ni(PPh

2NCH2Pyrene
2)2]2+ or [Ni(OH2)6]2+. For E0 and S0, the averages of the yielded values from the reference fits 

were applied. The use of an average but suboptimal S0 leads to erroneous coordination numbers due to a 
correlation between those two fit parameters. In this case, the coordination numbers of P are suppressed and 
the ones of O are amplified. For compensation, all coordination numbers were multiplied by specific scale 
factors for P and O. These factors were determined via fitting the references with the average values for E0 and 
S0 and dividing the correct coordination numbers for P (N=4) and O (N=6) by the yielded coordination numbers. 
The simulated EXAFS spectra are presented in Figure 61. 
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Figure 61 

EXAFS simulations (black line) of the experimental spectra of the [Ni(PPh
2NCH2Pyrene

2)2]2+ catalyst in its pristine 
state (red line), grafted on CNT (= Ni-CNT as-prepared) (light green line), after electrochemical equilibration 
(magenta line), after H2 oxidation (orange line) and after H2 evolution (dark green line and, with Nafion 
membrane, light blue line); and of the [Ni(OH2)6]2+ reference (dark blue line). Left side: the EXAFS represented 
as χ spectra. Right side: Fourier transforms (FT) of the k³ weighted EXAFS spectra. The EXAFS simulations 
correspond to the structural parameters presented in Table 18. Only the first coordination sphere of the Ni-
ligand environment is simulated. 
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Co CATALYST FOR O2 REDUCTION 

The X-ray absorption near-edge structure (XANES) of the catalytic Co-N-C material (Co K-edge, see 

Figure 62) exhibit a mixture of features from a Co-O/N coordination similar to [CoII(OH2)6]2+, and from 

a contribution of metallic Co0. During O2 reduction in 1 h of fuel-cell operation, the Co-O/N 

coordination becomes more prominent and the metallic contribution diminishes. This can be deduced 

from a comparison with the XANES spectra of [CoII(OH2)6](NO3)2 and Co0 metal (see Figure 62). Before 

O2 reduction, the position and the shape of the Co absorption edge of the Co-N-C spectrum are closer 

to the metal than to the Co(OH2)6 spectrum, in particular the prominent pre-edge. The amplitude of 

the absorption edge, however, is higher than in the metal spectrum, indicating the presence of a Co-

O/N coordination similar to Co(OH2)6. After O2 reduction, the Co-N-C spectrum tends to contour the 

Co(OH2)6 spectrum: the metallic pre-edge is significantly diminished, the amplitude of the edge is 

further increased and the oscillations after the edge show a similar frequency as in Co(OH2)6. During 

O2 reduction, the Co of the Co-N-C material is oxidized, indicated by a shift in the edge position towards 

higher excitation energies. The new position of the edge is located between the edges of the 

[CoII(OH2)6](NO3)2 and LiCoIIIO2 references, indicating a mean oxidation state of Co between II and III in 
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Figure 62 

XANES/EXAFS spectra collected at the Co K-edge for the Co–N–C material as-prepared (black solid line) and 
after 1 h of O2-reduction (red solid line). The spectra of metallic Co (blue dotted line), [CoII(H2O)6](NO3)2 
(orange dotted line) and LiCoIIIO2 (green dotted line) references are also shown for comparison. 
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the Co-N-C material after O2 reduction. It seems that, during O2 reduction, the metallic Co contribution 

is removed from the Co-N-C material. Whether the Co-N-C material itself experiences modifications is 

unclear, since the metallic contribution in the XANES before O2 reduction obscures the actual spectrum 

of the Co-N-C material. XAS emphasizes metallic contributions, as they consist of heavy back-scatterers 

and exhibit a significant long-range order. 

The extended X-ray absorption fine-structure (EXAFS) of the Co-N-C material (Co K-edge) support the 

deductions from the XANES analysis. The Fourier transformed spectra of the Co-N-C material as-

prepared and after 1 h of O2 reduction (see Figure 63) exhibit significant peaks of metallic Co-Co 

distances (see structure scheme of Co metal in Figure 48). The amplitude of the peaks, however, is 

diminished by ≈50 - 70 % in comparison to the Co metal reference. This damping indicates the presence 

of a non-metallic Co contribution that possibly can be assigned to the catalytic Co-N-C species. The 
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Figure 63 

Fourier-transformed Co EXAFS (k3 weighted, k range = 2 - 13 Å-1) of the Co-N-C material as-prepared (black 
line) and after 1 h of O2 reduction (red line), compared to metallic Co0 (blue line) and [CoII(OH2)6](NO3)2 (orange 
line). The magenta line was obtained by subtraction of the appropriately weighted metal spectrum from the 
spectrum of the Co-N-C material after catalytic operation. The resulting difference spectrum was renormalized 
and Fourier-transformed. The optimal weighting factor was determined by minimizing the oscillations in the 
metallic energy range of the Co-N-C spectrum. The peaks in the EXAFS spectra are labelled with the 
corresponding Co-ligand distances. 
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Co-N-C material after O2 reduction shows a 

stronger damping than the as-prepared 

material, indicating a diminishment of the 

metal contribution during the catalytic 

reaction. To gain more insight into the 

structure of the Co-N-C species, the 

obscuring metallic contribution is 

artificially removed from the EXAFS 

spectrum of the Co-N-C material. This was 

achieved by subtracting a weighted Co 

metal spectrum from the XANES/EXAFS of 

the Co-N-C material (after O2 reduction) 

and renormalizing the difference spectrum 

(see Equation 5). The optimal weighting 

factor was determined by minimizing the 

metallic EXAFS oscillations in the higher 

energy range (from 7900 to 8750 eV) of the 

difference spectrum (for a more detailed 

description of the metal-subtraction 

method, see section Subtraction of metal 

contribution from spectrum in chapter 

Methods). The resulting weighting factor of 

0.28 ± 0.15 indicates that on third of the 

Co-N-C material consists of metallic Co. The 

difference spectrum represents the non-

metallic contribution of the Co–N-C 

material. The Fourier transform of the 

spectrum (see Figure 63) exhibits a 

prominent peak at short distances that, 

compared to the Co(OH2)6 reference, can 

be assigned to a Co-O coordination. EXAFS 

simulations indicate a Co-O distance of 

2.08 ± 0.01 Å that falls into the range of O 

distances present in Co(OH2)6. This indicates that, in line with the XANES analysis, the Co-N-C species 

consists of Co ions coordinated to O and N atom in their first coordination sphere similar to Co(OH2)6. 

A deeper analysis with EXAFS simulations is prevented by the high noise level of the difference 

spectrum and the uncertainties of the method for artificially removing the metal contribution from the 

spectrum. 

The oxidative transformation of the Co-N-C material during catalytic O2-reduction from metallic Co to 

CoII, III ions with O/N coordination is similar to the behaviour of the cobalt-polypyrrole composite 

material reported by (Bashyam and Zelenay 2006) (see Figure 64), a O2-reduction catalyst for polymer 

electrolyte fuel cells. The transformation does not lower the catalytic activity of the Co-N-C material 

as shown by co-workers in (Tran, Morozan et al. 2015). 

 

 

 

Figure 64 

Schematic representation of the Co-polypyrrole composite 
catalyst reported by (Bashyam and Zelenay 2006). In a, 
polypyrrole structure. In b, presumed configuration of the 
catalyst after the entrapment and reduction of the cobalt 
precursor, Co(NO3)2·6H2O, into polypyrrole. Schemes in a 
and b based on illustration in (Bashyam and Zelenay 2006). 
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CONCLUSIONS 

The noble metal-free PEM fuel cell of Tran et al. consists of a layer of Ni-CNT material (CNT = carbon 

nanotube) catalytic for H2 oxidation attached to a layer of Co-N-C material catalytic for O2 reduction 

via an interfacing Nafion membrane only permeable for protons (Tran, Morozan et al. 2015). Our X-

ray absorption spectroscopy (XAS) investigation give insight into the atomic structure of the catalytic 

 

Figure 65 

Schematic representation of the fuel cell before and during operation. The Ni-CNT material is the catalyst for 
the H2 oxidation and the Co-N-C material for the O2 reduction. The composition of both materials changes 
during operation. In the Ni-CNT material, the fraction of the NiII(O/N)6 species (orange) diminishes and the 
catalytic “NiP4” complexes (yellow) remain. In the Co-N-C material, the metallic Co0 contribution (violet) 
decreases in favour of the catalytic CoII, III(O/N)x species (blue). 
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materials and address the question whether the structure is modified under conditions of fuel-cell 

operation. 

Our X-ray absorption spectroscopy (XAS) analysis shows that the Ni-CNT material consists of two NiII 

species (see Figure 57). One possesses a planar-tetrahedral P4 ligand environment as in the original 

molecular Ni catalyst, a [Ni(P2
PhN2

CH2Pyrene)2]2+ complex (= “NiP4”), and the other an octahedral 

coordination to six light ligands (O or N) similar in structure to [Ni(OH2)6]2+  (= “NiO6”) (see Figure 65). 

The proportion between the NiP4 and NiO6 species in the Ni-CNT material is about 2 : 1 (see detailed 

analysis in chapter Molecular Ni catalyst grafted on a carbon-nanotube cathode). After 1 h of H2 

oxidation under fuel-cell conditions (half-cell measurements), the Ni-CNT material exhibits a significant 

diminishment in the amount of NiO6 species while the structure of the NiP4 species remains 

unmodified. The catalytic activity of the Ni-CNT material, however, does not decrease, as shown by 

our co-workers (Tran, Morozan et al. 2015), confirming that the NiP4 species is the catalytic species. 

For the Co-N-C material, our XAS analysis indicates a mixture of a non-metallic CoII, III species with a 

metallic Co0 contribution (see Figure 62 and Figure 65). The non-metallic Co species consists of Co ions 

coordinated to O or N atoms (distance 2.08 Å) in their first coordination sphere similar to [Co(OH2)6]2+. 

After 1 h of O2 reduction in a fuel-cell, the previously major metallic contribution is significantly 

diminished. The new molar ratio between the non-metallic and metallic Co contributions is about 2 : 1. 

The diminishment of the metallic Co contribution, however, does not lead to a decrease in catalytic 

activity as shown by our co-workers (Tran, Morozan et al. 2015). The oxidative transformation of the 

Co-N-C material during catalysis, from metallic Co to CoII, III ions with O/N coordination, is similar to the 

behaviour of the cobalt-polypyrrole composite material (Bashyam and Zelenay 2006) (see Figure 64), 

an O2-reduction catalyst for polymer electrolyte fuel cells. Possible alterations in the structure of the 

non-metallic Co-N-C material during catalysis could not be determined, since the state of the non-

metallic material before O2 reduction was obscured in XAS by a significant Co-metal contribution. 
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5. Catalytic Cu electrode for CO2 

reduction 
 

 

The X-ray absorption spectroscopy (XAS) data and analysis shown in this chapter are published in 

(Huan, Andreiadis et al. 2015): 

 

“From molecular copper complexes to composite electro-catalytic materials for selective reduction 

of CO2 to formic acid” 

Tran Ngoc Huan, Eugen. S. Andreiadis, Jonathan Heidkamp, Philippe Simon, Etienne Derat, Saioa Cobo, 

Guy Royal, Arno Bergmann, Peter Strasser, Holger Dau, Vincent Artero and Marc Fontecave 

Journal of Materials Chemistry A 2015, Vol 3, 3901-3907 

http://dx.doi.org/10.1039/c4ta07022d 

 

Reproduced by permission of The Royal Society of Chemistry. 

http://www.rsc.org/ 

 

 

 

Contributions: 

• J. Heidkamp – X-ray absorption spectroscopy: entire data analysis and all measurements 

(samples were provided by co-workers) 

• Co-workers – synthesis of the catalytic Cu electrode (development and execution); sample 

preparation, measurement and data analysis for all other used techniques aside from XAS 
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INTRODUCTION 

Renewable energy sources as solar or wind are subject to temporal fluctuations. A possible approach 

is to store excess energy as chemical energy. The conversion of CO2 into energy dense compounds 

(fuels) via solar or wind power is a potential storage technology (Morris, Meyer et al. 2009, Appel, 

Bercaw et al. 2013, Centi, Quadrelli et al. 2013, Costentin, Robert et al. 2013, Kondratenko, Mul et al. 

2013, Reske, Duca et al. 2013, Mistry, Reske et al. 2014, Qiao, Liu et al. 2014, Reske, Mistry et al. 2014). 

The implementation of this technology could enable a global carbon-neutral and circular energy 

system and a slow-down of the accumulation of CO2 (a greenhouse gas) in the atmosphere. A way to 

convert CO2 is via electro-reduction in an electrochemical cell (Wu, Risalvato et al. 2013). However, the 

method requires an electro-catalyst that overcomes the very low kinetics of this multiple-electron 

reaction and exhibits a high selectivity. The reduction of CO2 can form a variety of CO2-derived products 

(CO, HCOOH, oxalate and, to lower extents, methanol or hydrocarbons) and, at the same time, 

molecular hydrogen (parallel reduction of the protons required for CO2 activation) (Qiao, Liu et al. 

2014). In the optimal case, an electro-catalyst for CO2 reduction exclusively promotes the formation of 

liquid fuels as formic acid (Agarwal, Zhai et al. 2011) and methanol (Summers, Leach et al. 1986), which 

are compatible with the existing infrastructure for fuel transportation and distribution. 

In recent studies, electro-catalytic material for CO2 reduction has been investigated in non-aqueous 

media like organic solvents or ionic liquids (DiMeglio and Rosenthal 2013, Asadi, Kumar et al. 2014, 

Medina-Ramos, DiMeglio et al. 2014, Nakata, Ozaki et al. 2014, Oh, Vrubel et al. 2014). Non-aqueous 

media enables a higher solubility of CO2 and a convenient control of H2 evolution via adjusting the 

water concentration. Novel catalytic materials were developed based on MoO2 (Oh, Vrubel et al. 2014), 

Bi (DiMeglio and Rosenthal 2013, Medina-Ramos, DiMeglio et al. 2014) and B-doped diamond (Nakata, 

Ozaki et al. 2014) or consist of molecular metal complexes (Morris, Meyer et al. 2009, Appel, Bercaw 

et al. 2013, Costentin, Robert et al. 2013, Qiao, Liu et al. 2014) whose activity is adjustable via ligand 

variations. So far, only one copper coordination compound has been reported as an electro-catalyst 

for CO2 reduction (Angamuthu, Byers et al. 2010). 

Huan et al. report a novel Cu material that is electro-catalytic for the reduction of CO2 into formic acid 

(liquid fuel), showing remarkable activity, selectivity and stability (Huan, Andreiadis et al. 2015). The 

material is prepared via electro-deposition and operates in a non-aqueous medium 

(dimethylformamide). The organic ligand from the copper precursor (Cu cyclam) is preserved in the 

final catalyst material. 

We perform X-ray absorption spectroscopy on the catalytic Cu material to gain insights in the atomic 

structure of the catalytic species. 

This introduction text is based on a co-authored article (Huan, Andreiadis et al. 2015) 

.
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PREPARATION 

Preparation of Cu electrode for XAS measurement 

For the X-ray absorption spectroscopy (XAS) measurements, the Cu material was electro-deposited at 

-1.29 V vs. normal hydrogen electrode (NHE) on a glass substrate coated with fluorine-doped tin-oxide 

(FTO) (7 Ω sheet resistance) until 1 C/cm2 of deposited charge was reached. The deposition solution 

consisted of dimethylformamide (DMF) (40 ml) containing the pre-cursor [Cu(cyclam)](ClO4)2 (cyclam 

= 1,4,8,11-tetraazacyclotetradecane) (1.3 mM), a supporting electrolyte of n-Bu4NBF4 (0.1 M) and 3 % 

of bi-distilled water. The DMF solution was saturated with CO2 gas before and during deposition via 

permanent sparging with a flow of CO2 gas. After deposition, the resulting electrode was immediately 

dipped in a Cu-free DMF solution, then attached to a XAS sample holder and finally stored in liquid N2. 

The electro-deposition was performed in a three-electrode system with an Ag/AgCl reference 

electrode (3 M KCl, +0.21 V vs. NHE) and a shielded counter electrode of Pt mesh. The used 

potentiostat was a Biologic SP200 or SP300. The deposition of the Cu material was developed and 

performed by co-workers in (Huan, Andreiadis et al. 2015) 

.
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RESULTS AND DISCUSSION 

The X-ray absorption near-edge structure (XANES) of the Cu material on the electrode exhibit a mixture 

of features from Cu0 metal, CuI oxide and from various CuII compounds as Cu malachite, Cu oxalate and 

CuII oxide. This suggests that the Cu material contains, besides the metallic contribution, a species of 

CuI ions most likely coordinated to two light atoms (O or N) in the first coordination sphere as in 
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Figure 66 

XANES spectra recorded at the Cu K-edge. (A) (red trace) catalytic Cu material, (black trace) metallic Cu0, 
(green trace) CuI oxide and (blue trace) CuII oxalate. (B) (red trace) catalytic Cu material, (green trace) CuII 
oxide, (blue trace) CuII malachite and (black trace) the pre-cursor [Cu(cyclam)](ClO4)2. 
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CuI oxide (see structure in Figure 70), and another species of CuII ions possibly with four light ligands 

(O, N or C) in the first sphere as in the mentioned CuII references (see structures in Figure 67). The 

possible ligand geometries for the CuI and CuII species in the first coordination sphere are, according 

to the references, linear or planar-tetrahedral planar, respectively. A XANES comparison with CuI oxide 

and CuII oxalate (see Figure 66A) suggests that the pre-edge of the Cu electrode spectrum (at higher 

energies than in Cu metal) is indicative for a CuI species, and that the increased amplitude of the main 

edge (at higher energies than in CuI oxide) is indicative for another CuII species. This is further 

confirmed by a comparison with other CuII references (see Figure 66B). Compared to Cu metal (see 

Figure 66A), the upper part of the edge of the Cu material (from 0.5 to 1 normalized intensity) seems 

to be of metallic nature. 

 

Figure 67 

Schematic structures of CuII malachite, CuII oxalate, CuII oxide (CuO) and CuII cyclam with denoted Cu-O and 
Cu-Cu distances. O/N and Cu atoms with the same distance to the central Cu atom are marked with circles of 
the same colour. In the case of the Cu atoms, only the atoms with the shortest distance to the Cu centre are 
indicated. Images based on crystal data published for Cu malachite in (Zigan, Joswig et al. 1977), for Cu oxalate 
in (Gajapathy, Govindarajan et al. 1983, Schonfeld, Huang et al. 1983), for CuII oxide in (Niggli 1922) and for 
Cu cyclam in (Choi, Ryoo et al. 2007). 
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Figure 68 

Fourier transforms (FT) of EXAFS spectra (k3 weighted, k range = 2 - 16 Å-1) recorded at the Cu K-edge. (A) 
(red trace) catalytic Cu material, (orange trace) after artificial removal of the metal contribution of 20 % and 
(black trace) metallic Cu0. The FT amplitudes of the metal reference were multiplied by 0.5. The metal peaks 
are labelled by the corresponding Cu–Cu distances. The non-metallic peaks of the Cu material are marked by 
orange arrows. (B) (orange trace) catalytic Cu material after artificial removal of the metallic contribution of 20 
% and (blue trace) CuI oxide. The peaks of CuI oxide are labelled with the corresponding Cu-O and Cu-Cu 
distances. The first and second main peak in the Cu-material spectrum are labelled with 1 and 2. 
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The XANES of the Cu material are well reassembled by a linear combination of weighted spectra of Cu 

metal, CuI oxide and CuII oxalate. This supports the proposed presence of the corresponding Cu0, CuI 

and CuII species. The weighting factors of the optimal linear combination (see Equation 6) suggest that 

24 ± 8 % of the Cu material on the electrode are metal, 48 ± 8 % CuI oxide and 28 ± 8 % CuII oxalate. For a 

more detailed description of the linear-combination method see section Linear combination of spectra 

in chapter Methods. 

A XANES comparison with the pre-cursor of the Cu material, Cu cyclam, (see Figure 66B and Figure 67) 

suggests that the structure of the pre-cursor is modified in the CuII species of the material. The 

spectrum of the pre-cursor exhibits a unique edge with two summits that is not shared by the Cu 

material and by the other CuII references. The edge position of the Cu material in the XANES lies 

between the edges of the Cu0, CuI and CuII references (see Figure 66A), indicating a mean oxidation 

state for Cu in the electrode between zero and II. 

The extended X-ray absorption fine-structure (EXAFS) of the Cu material exhibits, as the XANES, a 

mixture of metallic and non-metallic features, indicating the presence of a Cu metal contribution and 

a non-metallic Cu species. An EXAFS comparison with Cu0 metal (see Fourier-transforms in Figure 68A 

and Figure 69) shows that the spectrum of the Cu material contains all peaks of the metal reference 

(Cu-Cu coordinations) but with a ≈80 % lower amplitude. This damping indicates the presence of a non-

metallic contribution in the Cu material. Furthermore, the spectrum of the Cu material exhibits two 

peaks at 1.5 Å and at 2.8 Å (see Figure 68A) that are not part of the metal spectrum and, hence, can 

be assigned to a non-metallic Cu species. To gain an unobscured view on the non-metallic contribution, 

 

Figure 69 

Schematic structure of metallic Cu0 in the face-centred cubic phase with denoted Cu-Cu distances. Image 
based on crystal data of Cu metal published in (Otte 1961). 
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the metallic part of the spectrum was removed artificially. This was achieved by subtracting the EXAFS 

of the Cu material (not Fourier transformed) with a weighted Cu metal spectrum and subsequently re-

normalizing the difference spectrum (see Equation 5). The optimal weighting factor was determined 

by minimizing the metallic EXAFS oscillations in the higher energy range (from 9170 to 10010 eV) of 

the Cu-material spectrum. The resulting weighting factor suggests that 20 ± 14 % of the Cu material are 

metallic. After the artificial removal of the metallic contribution, the spectrum of the Cu material (see 

Fourier transform in Figure 68B) lacks the metal peaks and exhibits magnified peaks of the non-metallic 

contribution. For more a detailed description of the metal-removal method see section Subtraction of 

metal contribution from spectrum in chapter Methods. 

An EXAFS comparison with CuI oxide (see Fourier transform in Figure 68B and Figure 70) suggests that 

the non-metallic peak 1 of the Cu material can be assigned to a Cu-O coordination and peak 2 to a Cu-

Cu coordination. EXAFS simulations (see Figure 71) of these peaks yield a Cu-O distance of 1.85 ± 0.01 Å 

and a Cu-Cu distance of 2.97 ± 0.02 Å that are close to the distances of CuI oxide as well as the simulated 

O coordination number of 2.4 ± 0.5 (see Table 19). Compared to the CuI-oxide spectrum, the low 

amplitude of peak 2 in the Cu-material spectrum and, at longer distances, the missing of prominent 

peaks (see Figure 68B) indicate that, at longer distances than 1.85 Å, the CuI species of the Cu material 

is very disordered and does not show a prominent long-range structure as in CuI oxide. The possible 

presence of an additional CuII species in the Cu material is indicated by the slightly higher O 

coordination number than in CuI oxide (see Table 19). 

Compared to the molecular precursor, the Cu material shows a significantly shorter Cu-O distance than 

Cu cyclam and a Cu-Cu coordination not present in the pre-cursor (see Table 19). This indicates that 

the inner structure of the Cu cyclam is modified during the electro-deposition of the Cu material. 

 

Figure 70 

Schematic structure of CuI oxide (Cu2O) with denoted Cu-O and Cu-Cu distances. Left side: first O (green 
circles) and Cu (blue circles) coordination sphere. Right side: Cu-Cu long-range structure. Images based on 
crystal data published in (Kirfel and Eichhorn 1990). 
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Cu compound Cu-O/N coordination 

1st coordination sphere 

Cu-Cu coordination 

with the shortest distance 

Distance [Å] Coordination 

number 

Distance [Å] Coordination 

number 

Catalytic Cu 

material // non-

metallic Cu species 

1.85 ± 0.01 2.4 ± 0.5 2.97 ± 0.02 2.4 ± 0.8 

EXAFS simulation 

 

CuI oxide 1.84 – 1.85 2 3.01 – 3.02 12 

CuII malachite 1.91 – 1.92 

2.04 – 2.12 

2 

2 

3.06 1 

CuII oxalate 1.93 – 1.94 4   

CuII oxide 1.95 – 1.97 4 2.88 - 2.90 4 

[Cu(cyclam)]2+ 2.01 – 2.05 4   

Crystal structure (X-ray diffraction) 

 

Table 19 

Structural parameters of the Cu-O/N and Cu-Cu coordination in the non-metallic Cu species of the catalytic Cu 
material. The stated distances and coordination numbers for Cu-O/N and Cu-Cu were determined by EXAFS 
simulations of peak 1 (Cu-O/N) and 2 (Cu-Cu) in the Cu-material spectrum after the artificial removal of the 
metallic contribution of 20 % (see Figure 68B). The distances and coordination numbers of the Cu material are 
compared to the first Cu-O/N coordination sphere and the shortest Cu-Cu coordination (if present) of CuI oxide, 
CuII malachite, CuII oxalate, CuII oxide and the pre-cursor [Cu(cyclam)]2+. The denoted values of these 
compounds were taken from the corresponding crystal structures. For the EXAFS simulations of the Cu 
material, the Debye-Waller factors of O and Cu (2σO

2 = 0.002 Å2 and 2σCu
2 = 0.011 Å2), the amplitude reduction 

factor (S0
2 = 0.6) and the energy offset (E0 = 2.6 eV) were fixed at values determined from simulations of the 

CuI-oxide spectrum. The used phase functions were calculated from the crystal structure of CuI oxide. The 
simulated EXAFS spectra are presented in Figure 71. 

Crystal structure data for CuI oxide was obtained from (Neuburger 1930, Kirfel and Eichhorn 1990), for CuII malachite from (Süsse 1967, Zigan, Joswig 
et al. 1977), for CuII oxalate from (Gajapathy, Govindarajan et al. 1983), for CuII oxide from (Niggli 1922, Tunell, Posnjak et al. 1935, Smura, Parker et 
al. 2011) and for [Cu(cyclam)]2+ from (Choi, Ryoo et al. 2007). 
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Figure 71 

EXAFS simulations (black line) of the experimental spectrum of the non-metallic Cu species in the catalytic Cu 
material (magenta line). Top: the EXAFS represented as χ spectra. Bottom: Fourier transforms (FT) of the k³ 
weighted EXAFS spectra. The EXAFS simulations correspond to the structural parameters presented in Table 

19. Only the first Cu-O/N coordination sphere and the shortest Cu-Cu coordination are simulated. 



 

143 
 

CONCLUSIONS 

The Cu material is a novel catalyst for CO2 reduction and is prepared by simple electro-deposition from 

a dimethylformamide (DMF) solution of the precursor, [Cu(cyclam)](ClO4)2 (cyclam = 1,4,8,11-

tetraazacyclotetradecane). Our X-ray absorption spectroscopy (XAS) investigations provide insight into 

the atomic structure of the Cu-based material. 

The XAS analysis suggests that about one quarter of the Cu material (see Figure 72) consist of metallic 

Cu0 and three quarter of a prominent non-metallic CuI, II contribution. In the latter, the CuI ions are 

most likely coordinated to two light atoms (O or N) in the first coordination sphere and, at longer 

distances, to other Cu ions. The atomic structure of the CuI species is similar to CuI oxide (see extended 

X-ray absorption fine-structure (EXAFS) in Figure 68B) but does not exhibit a comparable long-range 

order. The CuII ions of the non-metallic contribution are possibly coordinated to four light ligands (O, 

N or C) as in Cu malachite, Cu oxalate or CuII oxide (see X-ray absorption near-edge structure (XANES) 

in Figure 66B). The CuII species is less abundant in the Cu material than the CuI species. The Cu material 

exhibits a higher selectivity for CO2-derived products than pure Cu-metal or CuI-oxide electrodes, as 

shown by co-workers in (Huan, Andreiadis et al. 2015). The inner structure (Cu-O/N coordination) of 

the pre-cursor, Cu cyclam, is modified during electro-deposition of the Cu material. 

  

Figure 72 

Schematic structure of the catalytic Cu material for CO2 reduction. The material consists of metallic Cu0 and a 
non-metallic contribution containing CuI and CuII ions coordinated to light atoms (O, N or C) in their first 
coordination sphere. The CuI ions also possess a Cu-Cu coordination and exhibit structural similarities to CuI 

oxide. 
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IV. SUMMARY 
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ELECTRO-DEPOSITED MoSX AND Co/Ni:MoSX ELECTRODES 

The amorphous MoSx electrodes (x = 2 or 3) established by Merki et al. can be prepared by electro-

deposition under ambient conditions and exhibit a high activity for the hydrogen-evolution reaction 

(HER) (Merki, Fierro et al. 2011, Merki, Vrubel et al. 2012). Merki et al. report that the doping of the 

electrodes with Co or Ni increases their catalytic activity for HER, as the dopants promote the catalytic 

load, the surface area and, at pH 7, the intrinsic activity of the electrodes (Merki, Vrubel et al. 2012). 

We investigated the Co doped, Ni doped and undoped Merki-type MoSx electrodes with X-ray 

absorption spectroscopy (XAS) at the Mo K-edge to gain insight into the atomic structure of their Mo 

sites. For the doped electrodes, additional XAS measurements were performed at the Co or Ni K-edge 

to obtain information about the atomic structure of the Co and Ni sites. The XAS spectra were recorded 

at electrode potentials of -0.80 V, -0.35 V and +1.40 V vs. normal hydrogen electrode (NHE) under 

neutral conditions (pH 7), to study structural differences between Mo, Co and Ni sites in a state of 

catalytic hydrogen-evolution reaction (HER) (-0.80 V), in a non-catalytic state (-0.35 V) and under 

conditions of water-oxidation (+1.40 V) (standard electrode potential of hydrogen reduction E0
H2 

= -0.41 V and of water-oxidation E0
O2 = +0.82 V at pH 7). 

Our XAS analysis indicates that the bulk of the Co/Ni doped and undoped Merki electrodes at pH 7 

(Merki, Vrubel et al. 2012) comprises an amorphous MoSx species (x = 2 or 3). For all electrodes, the 

atomic structure of the species is composed of MoIV ions coordinated to presumably five S atoms in 

the first coordination sphere and to a proximate Mo atom in the second sphere (see Figure 35). The 

Mo sites of the electrodes combine structural features of MoIVS2 and MoS3, as the mean Mo-S distance 

of 2.37 – 2.38 Å is typical for MoIVS2 while the mean Mo-Mo distance of 2.79 – 2.81 Å as well as the 

low Mo coordination number are characteristic for MoS3. The Mo-S coordination in the Merki 

electrodes exhibits a higher spatial disorder of the S coordination sphere (Debye-Waller parameter σS 

= ±0.08 Å) than in crystalline MoIVS2 (σS = ±0.03 Å), suggesting a higher abundance of coordinatively 

unsaturated S sites. Furthermore, the Mo sites in the Merki electrodes seem to possess less S ligands 

(mean S coordination number NS = 4.7 – 5.3) than in crystalline MoIVS2 (NS = 6), suggesting the presence 

of coordinatively unsaturated Mo sites. A six-fold S coordination of the Mo sites is not favoured by 

EXAFS simulations (EXAFS = extended X-ray absorption fine structure) (see Table 2) but cannot be 

excluded. The unsaturated S and Mo sites are possible adsorption sites for atomic hydrogen and, 

therefore, potential catalytic sites for HER. The higher density of unsaturated S and Mo sites in the 

Merki electrodes compared to bulk crystalline MoIVS2 could explain the higher catalytic activity of the 

electrodes (Merki, Fierro et al. 2011, Merki, Vrubel et al. 2012). The presence of these unsaturated 

sites throughout the bulk of the Merki electrodes suggests that the bulk participates in the HER 

catalysis. This could be enabled via proton diffusion into the bulk (proposed by Casalongue et al.) 

supported by the porosity of the electrodes (Merki, Vrubel et al. 2012, Casalongue, Benck et al. 2014).  

Our electrochemical studies on the Merki electrodes under neutral conditions (pH 7) also suggest a 

participation of the MoSx bulk in HER catalysis. Cyclic voltammetry of the undoped Merki electrode (= 

pure MoSx) under HER conditions shows redox currents (see Figure 33) that indicate the occurrence of 

redox equivalents approximately equal (order of magnitude estimate) in number to Mo and S atoms 

present in the electrode (see Table 12). Rather than the Mo ions itself, S sites appear to be crucial for 

the redox chemistry, since XAS analysis indicates only a minor change in mean oxidation state for the 

Mo ions when comparing non-catalytic and catalytic potentials (see arrow in Figure 36). This sub-
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stoichiometric reduction of MoIV ions to MoIII could be related to HER catalysis at the electrode surface 

as previously suggested by Lassalle et al. (Lassalle-Kaiser, Merki et al. 2015). 

In the Co/Ni doped Merki electrodes, the MoSx bulk is permeated by Co or Ni sites. Our XAS analysis 

indicates that the Co sites consist of CoII,III ions coordinated to six S atoms in the first coordination 

sphere while the Ni sites consist of NiI,II ions coordinated to four S atoms (see Figure 35). The majority 

of the Co and Ni sites is directly coordinated to a neighbouring Mo atom, suggesting an incorporation 

of the sites in the MoSx bulk. During HER catalysis at pH 7, the Co and Ni sites exhibit a decrease in S 

coordination number (see Table 14) and/or spatial order of the S coordination sphere, suggesting the 

formation of coordinatively unsaturated dopant sites and/or S sites. These sites are potential catalytic 

sites for HER, in analogy to the unsaturated S and Mo sites of the MoSx bulk. This is especially evident 

for the Co sites, as their atomic structure likely is similar to the catalytic site of CoMoS2 catalysts for 

hydrodesulphurisation. A direct involvement of the Co and Ni sites in HER catalysis is also supported 

by our electrochemical studies on the doped Merki electrodes, since cyclic voltammetry suggests (i) an 

influence of the dopant ions (Ni or Co) on the number of reducing equivalents accumulated when 

comparing catalytic with non-catalytic potentials (see Table 12), and (ii) a clear shift in the midpoint 

potential of the corresponding redox transition to less negative value by doping with Co or Ni ions (see 

Figure 33). The Co and Ni sites may be directly involved in active-site formation at catalytic potentials, 

since our XAS analysis suggests more significant structural modifications and oxidation state changes 

for the dopant sites than for the Mo sites (see Figure 36 and Figure 37). The effect of the Co/Ni doping 

on the atomic structure of the MoSx bulk material is small, leading only to a slight diminishment in 

density of unsaturated Mo or S sites for the doped Merki electrodes.  

The intrinsic HER activity of the Merki electrodes under neutral conditions (pH 7) can be promoted by 

the doping with Co or Ni (Merki, Vrubel et al. 2012). The promotion effect in the doped electrodes 

could arise from the additional presence of unsaturated dopant and/or S sites and from the superior 

reactivity of the dopant sites in comparison to the Mo sites. The Merki electrodes possibly form a S-

bound hydride whose reactivity and/or formation is promoted by the doping with Co or Ni. The HER 

mechanism of the electrodes most likely involves coordinatively unsaturated metal ions (Mo, Co and 

Ni) and S sites and could be analogous to the one in hydrogenases where molecular hydrogen is formed 

by the interplay between a hydride-binding metal site and a proton-binding pendant base in close 

proximity (Lubitz, Ogata et al. 2014).  

Under conditions for water-oxidation (at pH 7), our electrochemical studies show only for the Co doped 

Merki electrode catalytic activity, indicated by a rise in anodic catalytic current at +1.25 V in cyclic 

voltammetry (see Figure 46). The Ni doped electrode does not exhibit significant catalytic currents 

under these conditions. Our XAS analysis (see Figure 42 and Figure 43) indicates that, in the Co doped 

electrode, the CoCat is formed, which is a well-known Co-oxide catalyst for water oxidation (Kanan and 

Nocera 2008, Risch, Khare et al. 2009) while, in the Ni doped electrode, analogous Ni oxide cannot be 

formed due to the dissolution of Ni ions. The XAS analysis of the Mo sites (see Figure 38 and Figure 40) 

indicates that in all electrodes, undoped and doped, the Mo sites experience a partial transformation 

of the original Mo-S species into a Mo-O species (MoVIO6 octahedra coordinated to SOx groups). 

However, both Mo species seem to be inactive under water-oxidation conditions, since the undoped 

electrode does not exhibit any significant catalytic current wave at potentials above +1.25 V (see Figure 

46). The formation of the new Mo-O species can be assigned to an anodic current wave around +0.5 V 

(see Figure 46 and Figure 47) that originates from a partial oxidation of the sulphur presumably via the 
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following reaction: MoS2 + 7H2O � MoO3 + SO4
2- + ½ S2

2- + 14H+ + 11e- (Bonde, Moses et al. 2008). The 

oxidation of the Mo-S species is irreversible and leads to a dissolving of the Mo film on the electrodes 

when the electrode potential is cycled repeatedly between -0.8 V and +1.4 V (see Figure 47). 

 

CATALYTIC Co ELECTRODE ELECTRO-DEPOSITED UNDER REDUCTIVE CONDITIONS 

The H2-CoCat is a Co-based material electro-deposited under reductive conditions (deposition 

potential of -0.79 V vs. normal hydrogen electrode (NHE)) and exhibits a catalytic evolution of H2 

at -0.79 V and of O2 at +1.37 V as verified by gas chromatography measurements (performed and 

analysed by our co-workers in France (Cobo, Heidkamp et al. 2012)). Our XAS investigation show that, 

in the state of H2 evolution, about 60 % of the H2-CoCat consists of a hexagonal close-packed phase of 

metallic Co0 (see Figure 48) and about 40 % of a non-metallic species with Co ions coordinated to O, N 

or C ligands in their first coordination sphere (see Figure 53). The non-metallic contribution is crucial 

for the catalytic activity of the H2-CoCat, since its electrochemical performance is much higher than of 

a pure metallic electrode (Cobo, Heidkamp et al. 2012). Together with evidence from X-ray 

photoelectron spectroscopy (XPS) measurements (performed and analysed by our co-workers (Cobo, 

Heidkamp et al. 2012)), it can be assumed that the H2-CoCat is a combination of a CoII phosphate with 

a Co oxo/hydroxo species formed on the surface of metallic Co. In the state of O2 evolution, our XAS 

analysis shows that the H2-CoCat (partly) transforms into a Co species similar to the O2-CoCat (see 

Figure 52), an amorphous Co oxide catalyst for water oxidation (Kanan and Nocera 2008, Risch, Khare 

et al. 2009). The O2-CoCat-like Co species consists of clusters of edge-sharing CoIIIO6 octahedra. 

 

MOLECULAR Ni CATALYST GRAFTED ON A CARBON-NANOTUBE CATHODE 

The [Ni(P2
PhN2

CH2Pyrene)2]2+ complex (“NiP4”) is a molecular catalyst for H2 formation (see Figure 56). Its 

structure is bioinspired by the active sites of hydrogenases, enzymes for H2 oxidation and reduction. 

The NiP4 complex is grafted on the multi-walled carbon-nanotubes (MWCNTs) surface of a gas diffusion 

layer (GDL) via noncovalent π-π stacking (Tran, Le Goff et al. 2011). Our X-ray absorption spectroscopy 

(XAS) investigation monitor the structure of the NiP4 complex during the grafting on the MWCNTs/GDL 

electrode (see Figure 54a and c). Our XAS analysis indicates that one third of the complexes 

incorporates O/N ligands or transforms into an octahedral Ni2+ species with a coordination to six light 

atoms (O, N or C) similar to [NiII(OH2)6]2+ (see Figure 56). The other two third maintain their original 

planar-tetrahedral P4 ligand system. Simulations of the X-ray absorption near-edge structure (XANES) 

(see Figure 55) suggest that separate Ni-P and Ni-O species are formed on the MWCNTs without mixed 

P/O ligand environments. The Ni-O/N coordination could arise from a fraction of the NiP4 complexes 

binding to water molecules, carboxylate, or hydroxo defects present at the surface of MWCNTs. 

Furthermore, the oxidation of a diphosphine ligand in the NiP4 complex, either through the phosphine 

oxide function or through the amine function, could also lead to a Ni-O/N coordination as recently 

shown in a similar system (Yang, Bullock et al. 2010). 
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NOBLE METAL-FREE FUEL CELL 

The noble metal-free fuel cell of Tran et al. utilizes a novel cobalt/nitrogen/Vulcan (Co-N-C) material 

as catalyst for O2 reduction, and a previously studied carbon-nanotube material functionalized with 

biomimetic Ni complexes (Ni-CNT) as catalyst for H2 oxidation (see chapter Molecular Ni catalyst on a 

carbon-nanotube cathode) (Tran, Le Goff et al. 2011). The fuel cell is based on proton exchange 

membrane (PEM) technology, using a Nafion membrane only permeable for protons as interface 

between the layer of Co-N-C material and the layer of Ni-CNT material (Tran, Morozan et al. 2015) (see 

Figure 65). Our X-ray absorption spectroscopy (XAS) investigation give insight into the atomic structure 

of the catalytic materials and address the question whether the structure is modified under conditions 

of fuel-cell operation. 

Our X-ray absorption spectroscopy (XAS) analysis shows that the Ni-CNT material consists of two NiII 

species (see Figure 57 and Figure 58). One possesses a planar-tetrahedral P4 ligand environment as in 

the original molecular Ni catalyst, a [Ni(P2
PhN2

CH2Pyrene)2]2+ complex (= “NiP4”), and the other an 

octahedral coordination to six light ligands (O or N) similar in structure to [Ni(OH2)6]2+  (= “NiO6”). The 

proportion between the NiP4 and NiO6 species in the Ni-CNT material is about 2 : 1 (see detailed 

analysis in chapter Molecular Ni catalyst grafted on a carbon-nanotube cathode). After 1 h of H2 

oxidation under fuel-cell conditions (in half-cell measurements), the Ni-CNT material exhibits a 

significant diminishment in the amount of NiO6 species while the structure of the NiP4 species remains 

unmodified. The catalytic activity of the Ni-CNT material, however, does not decrease, as shown by 

our co-workers (Tran, Morozan et al. 2015), confirming that the NiP4 species is the catalytic species. 

For the Co-N-C material, our XAS analysis indicates a mixture of a non-metallic CoII, III species with a 

metallic Co0 contribution (see Figure 62 and Figure 63). The non-metallic Co species consists of Co ions 

coordinated to O or N atoms (distance 2.08 Å) in their first coordination sphere similar to [Co(OH2)6]2+. 

After 1 h of O2 reduction in a fuel-cell, the previously major metallic contribution is significantly 

diminished. The new molar ratio between the non-metallic and metallic Co contributions is about 2 : 1. 

The diminishment of the metallic Co contribution, however, does not lead to a decrease in catalytic 

activity as shown by our co-workers (Tran, Morozan et al. 2015). The oxidative transformation of the 

Co-N-C material during catalysis, from metallic Co0 to CoII, III ions with O/N coordination, is similar to 

the behaviour of the cobalt-polypyrrole composite material (Bashyam and Zelenay 2006) (see Figure 

64), an O2-reduction catalyst for polymer electrolyte fuel cells. Possible alterations in the structure of 

the non-metallic Co-N-C material during catalysis could not be determined, since the state of the non-

metallic material before O2 reduction was obscured in XAS by a significant Co-metal contribution. 

 

CATALYTIC Cu ELECTRODE FOR CO2 REDUCTION 

The Cu material is a novel catalyst for CO2 reduction and is prepared by simple electro-deposition from 

a dimethylformamide (DMF) solution of the precursor, [Cu(cyclam)](ClO4)2 (cyclam = 1,4,8,11-

tetraazacyclotetradecane) (Huan, Andreiadis et al. 2015). Our X-ray absorption spectroscopy (XAS) 

investigations provide insight into the atomic structure of the Cu-based material. The XAS analysis 

suggests that about one quarter of the Cu material consist of metallic Cu0 and three quarter of a 

prominent non-metallic CuI, II contribution (see Figure 72). In the latter, the CuI ions are most likely 

coordinated to two light atoms (O or N) in the first coordination sphere and, at longer distances, to 
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other Cu ions. The atomic structure of the CuI-species is similar to CuI oxide (see extended X-ray 

absorption fine-structure (EXAFS) in Figure 68B) but does not exhibit a comparable long-range order. 

The CuII ions of the non-metallic contribution are possibly coordinated to four light ligands (O, N or C) 

as in Cu malachite, Cu oxalate or CuII oxide (see X-ray absorption near-edge structure (XANES) in Figure 

66B). The CuII species is less abundant in the Cu material than the CuI species. The Cu material exhibits 

a higher selectivity for CO2-derived products than pure Cu-metal or CuI-oxide electrodes, as shown by 

co-workers in (Huan, Andreiadis et al. 2015). The inner structure (Cu-O/N coordination) of the pre-

cursor, Cu cyclam, is modified during electro-deposition of the Cu material. 
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V. ABSTRACT 
 

The amorphous MoSx electrodes (x = 2 or 3) of Merki et al. are electro-deposited catalysts for the 
hydrogen-evolution reaction (HER) (Merki, Vrubel et al. 2012). The HER activity of the electrodes can 
be promoted by the doping with Co or Ni. Our X-ray absorption spectroscopy (XAS) investigations 
indicate that the MoSx bulk of the Merki electrodes consists of directly interconnected MoIV ions 
coordinated to presumably five S atoms in the first coordination sphere. In the Co/Ni doped electrodes, 
the Co sites consist of CoII,III ions coordinated to six S atoms in the first coordination sphere while the 
Ni sites consist of NiI,II ions coordinated to four S atoms. The dopant sites are incorporated into the 
MoSx bulk via direct coordination to Mo atoms. The MoSx bulk presumably participates in HER catalysis, 
suggested by the abundance of coordinatively unsaturated S and Mo sites (= potential adsorption sites 
for atomic hydrogen) throughout the bulk and the bulk-scale occurrence of redox equivalents during 
catalysis. The S sites appear to be more crucial for the redox chemistry than the Mo sites, since the 
latter exhibits only a minor change in mean oxidation state during HER. The promotion of the intrinsic 
HER activity by doping with Co or Ni presumably arises from the additional presence of unsaturated 
dopant and/or S sites and from the superior reactivity of the dopant sites in comparison to the Mo 
sites. The dopant ions (Ni or Co) have an influence on the number of reducing equivalents during HER, 
and shift the midpoint potential of the corresponding redox transition to less negative values. The HER 
mechanism of the Merki electrodes could be analogous to the one in hydrogenases where molecular 
hydrogen is formed by the interplay between a hydride-binding metal site (Mo, Co and/or Ni) and a 
proton-binding pendant base (S site) in close proximity. Under conditions for water-oxidation, only the 
Co doped Merki electrode exhibits catalytic activity, enabled by the formation of the CoCat, a well-
known Co-oxide catalyst for water oxidation. 

The H2-CoCat of Cobo et al. is a Co-based catalyst for HER and OER (oxygen-evolution reaction) electro-
deposited under reductive conditions (Cobo, Heidkamp et al. 2012). Our XAS investigations show that, 
in the state of HER, the H2-CoCat consists of bulk metallic Co0 and a catalytic non-metallic Co species 
on the surface that is presumably a CoII phosphate mixed with a Co oxo/hydroxo species. In the state 
of OER, the H2-CoCat (partly) transforms into the O2-CoCat (= CoCat), a well-known Co-oxide catalyst 
for water oxidation. 

The noble metal-free fuel cell of Tran et al. utilizes a novel cobalt/nitrogen/Vulcan (Co-N-C) material 
as catalyst for O2 reduction, and a carbon-nanotube material functionalized with biomimetic Ni 
complexes (Ni-CNT) as catalyst for H2 oxidation (Tran, Le Goff et al. 2011). Our XAS analysis shows that 
the Ni-CNT material consists of two NiII species. One possesses a planar-tetrahedral P4 ligand 
environment as in the original molecular Ni catalyst, a [Ni(P2

PhN2
CH2Pyrene)2]2+ complex (= “NiP4”), and the 

other an octahedral coordination to six light ligands (O or N) similar in structure to [Ni(OH2)6]2+ (= 
“NiO6”). After fuel cell operation, the amount of NiO6 species in the Ni-CNT material is diminished while 
the catalytic activity remains unmodified. For the Co-N-C material, our XAS analysis indicates a mixture 
of a non-metallic CoII, III species with a metallic Co0 contribution. The non-metallic species consists of 
Co ions coordinated to O or N atoms in their first coordination sphere similar to [Co(OH2)6]2+. After fuel 
cell operation, the previously major metallic contribution is significantly diminished. 

The Cu material of Huan et al. is a novel catalyst for CO2 reduction and is prepared by simple electro-
deposition (Huan, Andreiadis et al. 2015). Our XAS investigation indicates that the Cu material consist 
of metallic Cu0 and a prominent non-metallic CuI, II contribution. The atomic structure of the CuI species 
is similar to CuI oxide but does not exhibit a comparable long-range order. The less abundant CuII ions 
of the non-metallic contribution are possibly coordinated to four light ligands (O, N or C) as in Cu 
malachite, Cu oxalate or CuII oxide.



 

151 
 

VI. ZUSAMMENFASSUNG 
 

Die amorphen MoSx-Elektroden (x = 2 or 3) von Merki et al. sind elektrodeponierte Katalysatoren für die 
Wasserstoffentwicklung (HER) (Merki, Vrubel et al. 2012). Die katalytische Aktivität der Elektroden kann durch 
das Dotieren mit Co oder Ni verbessert werden. Unsere Röntgenabsorptionsspektroskopie-Untersuchungen 
(XAS) ergeben, dass der MoSx-Film der Merki-Elektroden aus direkt miteinander verbundenen MoIV-Ionen 
besteht, die in der ersten Koordinationsschale vermutlich fünf S-Liganden besitzen. In den Co/Ni-dotierten 
Elektroden bestehen die Dotierungsstellen entsprechend aus CoII,III-Ionen mit sechs S-Liganden in der ersten 
Koordinationsschale oder aus NiI,II-Ionen mit vier S-Liganden. Die Dotierungsstellen sind durch eine direkte 
Koordination mit Mo-Atomen in den MoSx-Film integriert. Die HER-Katalyse involviert vermutlich einen Großteil 
des MoSx-Filmvolumens, da während der Katalyse eine dem Filmvolumen entsprechende Anzahl an Redox-
Äquivalenten beobachtet werden kann und das Filmvolumen mit koordinativ ungesättigten S- und Mo-Atomen 
durchzogen ist (potenzielle Adsorptionsstellen für atomaren Wasserstoff). Die S-Atome scheinen eine stärkere 
Bedeutung für die Redox-Chemie zu haben als die Mo-Atome, da Letztere nur eine geringe Änderung des 
Oxidationszustandes während der HER-Katalyse zeigen. Die Erhöhung der intrinsischen HER-Aktivität durch das 
Dotieren der Merki-Elektroden mit Co oder Ni wird vermutlich durch das zusätzliche Vorhandensein von 
ungesättigten Co-, Ni- und/oder S-Atomen verursacht sowie der höheren Reaktivität der Dotierungsstellen im 
Vergleich zu den Mo-Atomen. Des Weiteren beeinflussen die Dotierungsatome (Co oder Ni) die Zahl an 
Reduktionsäquivalenten, die während der HER-Katalyse auftreten, und verschieben das Elektrodenpotential für 
die entsprechenden Redox-Übergänge zu weniger negativen Werten. Der katalytische Mechanismus der Merki-
Elektroden für HER könnte analog zu dem HER-Mechanismus in Hydrogenasen sein. Dort wird molekularer 
Wasserstoff durch das Zusammenspiel von hydrid-bindenden Metall-Atomen (Mo, Co und/oder Ni) und proton-
bindenden Basen (S-Ligand), die sich in der Nähe der Metall-Atome befinden, gebildet. Unter Bedingungen für 
Wasseroxidation zeigen nur die Co-dotierten Merki-Elektroden katalytische Aktivität. Diese wird durch die 
Bildung eines bekannten Kobaltoxid-Katalysators (= CoCat) in den Elektroden ermöglicht.  

Der H2-CoCat von Cobo et al. ist ein auf Kobalt basierender Katalysator für HER (Wasserstoffentwicklung) und 
OER (Sauerstoffentwicklung), welcher durch Elektrodeponierung unter reduktiven Bedingungen hergestellt wird 
(Cobo, Heidkamp et al. 2012). Unsere XAS-Untersuchungen zeigen, dass im HER-Zustand der H2-CoCat aus einem 
metallischen Co0-Film mit einem bedeutenden nicht-metallischen Co-Beitrag besteht. Letzterer ist vermutlich ein 
Kobalt(II)-Phosphat mit Kobalt-Oxo/Hydroxo-Beiträgen in den Oberflächenschichten des Films. Im OER-Zustand 
wandelt sich der H2-CoCat teilweise in den O2-CoCat (= CoCat) um, einem bekannten Kobaltoxid-Katalysator für 
Wasseroxidation. 

Die edelmetall-freie Brennstoffzelle von Tran et al. verwendet als Katalysator für die Sauerstoffreduktion ein 
neuartiges Kobalt/Stickstoff/Vulcan-Material (Co-N-C) und für die Wasserstoffoxidation ein katalytisches 
Kohlenstoffnanoröhrchen-Material, welches mit einem biomimetischen Ni-Komplex (Ni-CNT) funktionalisiert ist 
(Tran, Le Goff et al. 2011). Unsere XAS-Analyse ergibt, dass das Ni-CNT-Material aus zwei NiII-Spezies besteht. 
Eine der NiII-Spezies besitzt eine planar-tetrahedrale P4-Ligandenumgebung wie in dem biomimetischen Ni-
Komplex, [Ni(P2

PhN2
CH2Pyrene)2]2+ (= “NiP4”), und die andere Spezies zeigt eine oktahedrale Koordinierung zu sechs 

leichten Liganden (O oder N) ähnlich wie in [Ni(OH2)6]2+ (= “NiO6”). Nach einer Operation der Brennstoffzelle zeigt 
das Ni-CNT-Material einen verringerten Anteil der NiO6-Spezies wodurch die katalytische Aktivität des Materials 
aber nicht beeinflusst wird. Unsere XAS-Analyse des Co-N-C-Materials ergibt, dass das Material aus einer nicht-
metallischen CoII,III-Spezies besteht, die mit einem metallischen Co0-Beitrag gemischt ist. Die nicht-metallische 
Spezies besteht aus Co-Ionen mit einer Koordination zu O- oder N-Atomen in der ersten Koordinationssphäre 
ähnlich wie in [Co(OH2)6]2+. Nach einer Operation der Brennstoffzelle verringert sich im Co-N-C-Material der zuvor 
dominierende Metallbeitrag deutlich. 

Das Cu-Material von Huan et al. ist ein neuartiger Katalysator für die CO2-Reduktion und wird durch einfache 
Elektrodeponierung hergestellt. Unsere XAS-Untersuchungen zeigen, dass das Cu-Material aus einem 
metallischen Cu0- und einem bedeutendem nicht-metallischen CuI,II-Beitrag besteht. Die atomare Struktur der 
CuI-Spezies ist ähnlich zu Kupfer(I)-Oxid, zeigt aber keine vergleichbare Fernordnung der Struktur. Die weniger 
vorkommenden CuII-Ionen im nicht-metallischen Beitrag sind möglicherweise zu vier leichten Liganden (O, N oder 
C) koordiniert wie in Kupfermalachit, Kupferoxalat oder Kupfer(II)-Oxid. 
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