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Abstract

The transcriptome plays an important role in the life of a cell. Detailed analy-
sis of the transcriptome enables interpretation of its structure and functionality.
High throughput sequencing technology signi�cantly enhanced the understand-
ing of transcriptome activity. The RNA-sequencing process currently provides
the most accurate estimation of gene expression levels. Moreover, RNA-seq al-
lows detection of isoform structure and novel RNA types along with transcription
process details such as strand-speci�city and much more. The �rst chapter of this
thesis describes the history of transcriptome exploration and e�ective methods of
RNA-seq application.

Nevertheless, all steps of RNA-seq process can produce a number of biases
that in�uence the investigation results. Some typical errors appearing during
ligation and ampli�cation procedures might be present in any high throughput
sequencing experiment, while other biases occur only in cDNA synthesis or are
speci�c for transcriptome activity. Quality control of sequencing data is impor-
tant to verify and correct the analysis results. The second chapter of this thesis
is devoted to the explanation of these issues and introduces a novel tool, Qual-
imap2. This instrument computes detailed statistics and presents a number of
plots based on RNA-seq alignment and counts data processing. The generated
results enable detection of problems that are speci�c to RNA-seq experiments.
Notably, the tool supports analysis of multiple samples in various conditions.
Qualimap2 was faithfully compared to other available tools and demonstrated
superior functionality in multi-sample quality control.

Importantly, RNA-seq can be applied in a relatively novel research area: de-
tection of chimeric transcripts and fusion genes occurring due to genomic rear-
rangement. Since fusions are related to cancer, their discovery is important not
only for science, but also allows medical use of RNA-seq. The third chapter
is devoted to the current status of this approach and illustrates a novel toolkit
called InFusion, which provides a number of novelties in chimera discovery from
RNA-seq data such as detection of fusions arising from the combination of a gene
and an intronic or intergenic region. Moreover, strand-speci�city of expressed
fusion transcripts can be detected and reported. InFusion was compared in detail
to a number of other existing tools based on simulated and real datasets and
demonstrated higher precision and recall.

Overall, RNA-sequencing technology goes further and more specialized anal-
ysis abilities are becoming available. New applications of RNA sequencing and
future directions of research are discussed in the last chapter.
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Zusammenfassung

Die Transkription ist ein wichtiger Prozess in biologischen Zellen. Eine genaue
Analyse des Transkriptomes erö�net die Möglichkeit seine Struktur und Funk-
tionen auf neue Weise zu interpretieren. Hochdurchsatzsequenzierunsmethoden
haben das Verständnis der Veränderungen im Transkriptom signi�kant erhöht.
Die RNA-Sequenzierung ist im Moment die akkurateste Methode zur Bestim-
mung von Genexpressionsniveaus. Weiterhin erlaubt RNA-Seq die Bestimmung
von Transkriptisoformen sowie neuen RNA-Formen zusammen mit notwendigen
Details, wie unter anderem Strandspezi�tät. Das erste Kapitel der Dissertation
beschreibt die Geschichte der Erforschung des Transkriptoms und e�ektive Me-
thoden für die Anwendung von RNA-Seq.

In allen Abschnitten des RNA-Seq Prozesses kann es zur Verzerrung der wis-
senschaftlichen Ergebnisse durch verschiedene Störfaktoren kommen. Einige typi-
sche Fehler, z.B. während der Ligation und Ampli�zierung sind dabei allen Hoch-
durchsatzsequenzierungsmethoden gemein, während andere spezi�sch bei der Er-
stellung der RNA-Bibliotheken auftreten oder durch die Eigenschaften des Tran-
skriptoms bedingt sind. Eine entsprechende Qualitätskontrolle ist daher wichtig
um Analyseergebnisse zu kontrollieren und zu korrigieren. Das zweite Kapitel
dieser Arbeit widmet sich der Beschreibung relevanter Parameter der Qualitäts-
kontrolle und führt als neues Werkzeug Qualimap2 ein. Diese Software berechnet
detaillierte Statistiken und generiert eine Anzahl von aussagekräftigen Diagram-
men auf der Basis von RNA-Seq Alignments, wodurch für diese Anwendung typi-
sche Probleme erkannt werden können. Insbesondere erlaubt das Programm den
Vergleich mehrerer Proben aus verschiedenen Bedingungen. Qualimap2 wurde
ausgiebig mit ähnlicher Software verglichen und zeigt eine bessere Funktionalität
für die Qualitätskontrolle mehrerer Proben.

RNA-Seq kann zur Detektion von bisher unbekannten Transkripten benutzt
werden, so z.B. zur Detektion von Transkriptchimären und Fusionsgenen, die bei
genomischen Rearrangements entstehen. Da Fusionen häu�g in Tumorzellen auf-
treten, ist ihre Bestimmung nicht nur aus wissenschaftlichen Gründen relevant
sondern zeigt auch die medizinische Relevanz von RNA-Seq. Das dritte Kapi-
tel widmet sich der Beschreibung des derzeitigen Kenntnisstands dieses Gebietes
und beschreibt mit InFusion ein neue Softwaremethode, die eine Reihe von neu-
en Ansätzen für die Detektion von chimärischen Transkripten auf der Basis von
RNA-Seq Daten wie zum Beispiel die Erkennung von Fusionen mit intronischen
und intergenischen Regionen. Weiterhin kann die Strand-Spezi�zität der expri-
mierten Fusionstranskripte erkannt und ausgegeben werden. InFusion wurde mit
mehreren existierenden Tools auf der Basis von simulierten und realen Datensät-
zen verglichen und dabei zeigt eine bessere Präzision und Sensitivität.

Mit dem Fortschritt der RNA-Sequezierungsmethoden werden zunehmend
spezialisiertere Analysen möglich. Diese Entwicklungen der RNA-Seq Technologie
und neue Forschungsrichtungen werden im letzten Kapitel besprochen.
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�Nature is a harmonious mechanism where all parts, including
those appearing to play a secondary role, cooperate in the functional
whole. In contemplating this mechanism, shallow men arbitrarily
divide its parts into essential and secondary, whereas the insightful
thinker is content with classifying them as understood and poorly un-
derstood, ignoring for the moment their size and immediately useful
properties. No one can predict their importance in the future.�

Santiago Ramón y Cajal, "Advice for a Young Investigator"
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Chapter

1
Introduction

1.1 Overview

In this chapter an introduction to the theoretical bases of biology and bioinfor-
matics are given. The chapter starts with a description of important molecular
biology aspects and explains the need for speci�c analysis algorithms to produce
accurate insights into biological processes. Further, it focuses on transcriptome
investigation, de�ning accomplished blocks of this work and current research pro-
cedures. A detailed explanation of high-throughput sequencing technology and
RNA-seq analysis procedure are given. Finally, an overview of active research
projects and explanation of further chapters are provided.

1.2 Molecular biology and bioinformatics

1.2.1 Central dogma of molecular biology

Biology is a sophisticated science that ranges from the chemical construction of
molecules that create biological processes to investigation of complex activity of
all living creatures. Organisms have large di�erences in classi�cation: bacteria,
fungi, plants, animals. However, each organism starts with the development from
a cell. For example, the human body includes several hundreds of distinct cell
types and in total it consists of approximately 3.72 ∗ 1013 cells [Bianconi et al.,
2013]. Even though there are many di�erent types of cells with various activity in
the human body, cells are packed in blocks of the same type and work together to
perform certain functions of the organism. Detailed investigation of cell structure
and activity is a main aspect of molecular biology.

There are special chemical rules that control each cell life cycle. The process
starts from deoxyribonucleic acid (DNA), which can be detected in all cells of
all organisms. DNA is the "holder" of all information of cell activity. From
the DNA the activity instructions are transfered with ribonucleic acid (RNA).
Finally RNAs are converted to proteins. Proteins along with several types of
RNAs perform all cellular functions. The theory of activity between DNA, RNA
and proteins was �rst introduced by Francis Crick [Crick, 1958] and called central
dogma of molecular biology. After the initiation of the dogma, further research
works allowed to qualify the cell system in more detail.
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Figure 1.1: Central dogma of molecular biology

Main processes of cell activity are the following:

1. DNA maintains all the cell information via the replication process, where
DNA sequence is copied to produce a nearly identical molecule

2. Transcription of speci�c DNA fragments to RNA is a temporary copy
of DNA used to create proteins and also play distinct functional roles in
translational apparatus

3. RNAs are translated to proteins, which perform all structural functions
and play regulatory roles.

4. Reverse transcription of RNA is a template for the synthesis of DNA
applied for pseudogene replication and other types of transposition.

The �rst publication that reported identi�cation of DNA structure and activ-
ity [Watson et al., 1953] led to an acceleration of research progress in all aspects
of the cell system and its activity in connection to organism. The research pro-
duced a detailed understanding of various biological processes beginning with
DNA. The organization of DNA in cells is currently considered at speci�c struc-
tural levels: nucleotides, sequences, chromosomes and genome. A nucleotide is
composed of a monosaccharide sugar called deoxyribose, a 5'phosphate group and
a speci�c nucleobase: cytosine , guanine , adenine or thymine. Each nucleotide
(also called base) is connected to a speci�c partner,forming a double strand: ade-
nine to thymine, cytosine to guanine. The DNA information is collected in a
sequence of nucleotides. Chromosomes are physical blocks, containing DNA. The
genome is a full collection of all DNA in a cell.

In RNA molecules the thymine nucleobase is replaced with uracil and an
oxygen atom is added to the sugar component during the transcription process.



3

These two small di�erences have a major impact on the biological role of the
molecule. RNA is more chemically active and it usually consists of a single
strand of DNA. There are two types of its initial genomic location: forward or
reverse strand. An easy way to maintain information about DNA or RNA is with
a string of four symbols:

{A,C,G, T}

with left-to-right orientation corresponding to 5' to 3' polarity in case of DNA
and correct strand of transcription in case of RNA. Using this technique it is
possible to keep information about fragments of DNA chromosomes or expressed
RNA sequences to perform further investigations.

From the start molecular biology had a requirement for detailed analysis of
cell processes and functions. The �rst experiments that allowed detection of se-
quences of DNA and RNA required approaches to understand the translation of
DNA to proteins, discovery of similarity between sequences, and much more. To
accomplish these tasks, special computational algorithms were required. Addi-
tionally, the quantity of novel scienti�c results was growing and special data col-
lection systems were important. Because of these reasons bioinformatics started
its progress. Good examples of the initial computational approaches were conver-
sion of DNA sequences to protein or the Smith-Waterman algorithm for detection
of similar DNA/RNA sequences [Smith and Waterman, 1981].

1.2.2 Intricacy of transcriptome

RNA forms a connecting block between DNA and protein in a cell life, however
it plays a huge role in the data transfer to perform functional processes of a
cell. DNA segments that contain information about cell functions - genes - are
expressed as RNA molecules - transcripts. Additionally there are special RNAs
that participate in the translational apparatus and have speci�c functions. The
transcriptome is a complete set of transcripts in a cell or tissue. The detailed
spectrum of transcriptome functionality regulates the selection of expressed genes
in di�erent cell types and changes the activity according to external conditions.
[Maniatis and Reed, 2002]. Moreover, transcriptome functions are important for
health and incorrect RNA process might lead to disease [Mitelman et al., 2007].

There is a number of RNA types with di�erent functionality forming the tran-
scriptome. Best known are the elements participating in the protein synthesis:

• Messenger RNA (mRNA)

mRNA is transcribed from genes and used to construct a protein. It carries
genetic information speci�c for the activity of a cell type. Even though the
transcripts are crucial, they make up only 5%of the total transcriptome.
During the transcription process a precursor mRNA molecule is synthesized
and a poly-A tail of about 200 bp is added to the 3' end. It is worth noting
that mRNA in higher eukaryotes (including Homo sapiens) contains non-
coding segments of mRNA called introns. These blocks are extracted and
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Figure 1.2: Transcription process in high eukaryotes

only the remaining segments - exons - are applied to construct the protein.
The whole process is called splicing (Figure 1.2). Importantly, genes might
have several combinations of selected exons (so called alternative splicing)
and this leads to several di�erent isoforms of a gene. For example, in human
cells there are around six transcripts per protein-coding gene on average
[Consortium et al., 2012].

• Ribosomal RNA (rRNA)

rRNA is located in the cytoplasm of a cell, where ribosomes are found.
rRNA directs the translation of mRNA into proteins. This is the largest
part of the transcriptome and essential for protein synthesis in all living
organisms.

• Transfer RNA (tRNA)

tRNA is located in the cellular cytoplasm and also involved in protein syn-
thesis. tRNA brings or transfers amino acids to the ribosome that corre-
spond to each of the three-nucleotide codon of rRNA. The amino acids then
can be joined together and processed to make polypeptides and proteins.

Additionally, a number of speci�c RNA types are present in eukaryotes. Even
though these RNAs form less than 1% of total RNA, they might perform im-
portant cell regulatory operations. Several distinct RNAs such as small nuclear
RNA together with ribonuclease participate in post-transcription modi�cation
and processing of pre-mRNA [Mamatis, 1987]. Long non-coding RNAs regulate
gene transcription [Rinn and Chang, 2012]. Small interfering RNA and microRNA
are responsible for regulation of gene expression [Ambros, 2004]. Antisense RNA
block mRNA translation and expression [Brantl, 2007].
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1.2.3 Analysis of transcriptome

The �rst experiments to analyze the transcriptome were performed using meth-
ods similar to DNA analysis. The extraction of RNA from a cell followed by
ampli�cation and conversion of RNA to complementary DNA (cDNA) allowed
the application of a standard method called reverse transcription polymerase
chain reaction (RT-PCR), that has become one of the fundamental technologies
in molecular biology [Mullis et al., 1992]. Such experiments provide con�rmation
of the presence of a certain expressed transcript or other RNA. The analysis can
be performed only if a speci�c primer pair with sequence blocks appropriate to the
target are available. The next important step was the development of the quan-
titative RT-PCR technique [Becker-Andre and Hahlbrock, 1989], which allows
measurement of the gene expression level with high sensitivity. The limitation of
this method lay in a restricted number of genes to test and labor-intensive work.

A big advance in DNA and RNA analysis was Sanger sequencing [Sanger et al.,
1977]. This method is based on the selective incorporation of chain-terminating
nucleotides by the enzyme DNA polymerase during DNA replication. To apply
this method for RNA, it also has to be converted to cDNA. Generally, this ap-
proach allowed correct detection of a detailed sequence of analyzed transcript.
For a long time this technology was regarded as the "gold" standard due to its
low error rate.

A certain improvement in transcriptome analysis was the microarray approach
[Harrington et al., 2000]. This technique applies a collection of microscopic DNA
spots attached to a solid surface and allowed measurement of the expression levels
of thousands of genes simultaneously. Due to the speed, RNA microarray analysis
has become an essential component of biology and biomedical research.

Even though a number of RNA experimental analysis methods were avail-
able, certain limitations were hindering the detailed investigation of transcrip-
tome structure and activity, which required novel approaches.

1.3 High-throughput sequencing

1.3.1 Initial approaches

A huge step forward in transcriptome analysis was taken when Next Generation
Sequencing (NGS) technologies entered the �eld of molecular biology. NGS, also
called high-throughput sequencing (HTS) technology, outputs sequences of mil-
lions of DNA strands in parallel, providing substantially higher throughput than
the Sanger approach in a short time period and minimizing the need for the frag-
ment cloning methods. The �rst NGS approach called pyrosequencing allowed
the creation of reads: fragments of DNA providing whole genome segments of
a certain size [Ronaghi et al., 1998]. Initial NGS experiments also adapted the
cDNA approach to detect the transcriptome activity from a cell [Morin et al.,
2008].



6

The development of HTS quickly went further. Technology was improving in
the increased read length and process quality. At the same time, costs were falling.
Currently there are three benchtop companies that provide HTS instruments: Il-
lumina (www.illumina.com), Roche 454 (www.454.com) and Life Technologies
(www. lifetechnologies.com). Notably, Illumina has presently the highest usage
percentage - around 75% of sequencing applications. Importantly, the generated
sequencing data has a complex structure and large size. Therefore, to achieve
correct results from the data, detailed algorithmic approaches are required. Be-
cause of this, the importance of bioinformatics in molecular biology has increased
signi�cantly.

1.3.2 RNA sequencing

The initial RNA sequencing process was introduced quite fast [Mortazavi et al.,
2008; Nagalakshmi et al., 2008]. Once again, the main change in the sequenc-
ing method was extraction of RNA from the cell and conversion to cDNA. The
typical mRNA sequencing approach is demonstrated in Figure 1.3. The process
starts with extraction of total RNA from a cell. Then, either polyA enrichment
or reduction of ribosomal RNA is applied to increase the proportion of mRNA
and other elements of transcriptome. Next, the conversion of processed RNA to
double-strand cDNA is performed applying random primer hybridization. The
generated cDNAs are broken into fragments of a certain size (typically 200-500
bp). These fragments are marked by adapter ligation from one or both ends,
resulting in single-end reads or in paired-end reads. The sequencing process is
performed after PCR ampli�cation. A single Illumina sequencing run can produce
up to hundred of millions of reads with a size of 100 bp. Importantly, each step
of the sequencing procedure might introduce biases and errors [van Dijk et al.,
2014].

RNA-sequencing has signi�cant advantages in comparison to previous tech-
nologies. For example, RNA-seq outperforms microarray approaches with higher
accuracy and detection rate in expression analysis [Fu et al., 2009]. The main
goals of RNA-seq application are currently:

1. Quanti�cation of gene expression of each transcript based on the cell type

2. Comparison of expression levels of cells between various biological condi-
tions

3. Annotation of all expressed genes including their splice junctions (breaks
between introns)

Additionally during past years RNA-seq introduced a number of speci�c issues
that enabled discovery of novel events in the transcriptome. However, RNA-seq
data analysis requires a lot of data processing along with specialized algorithms
solving these tasks correctly and e�ciently. There are typical analysis pipelines
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Figure 1.3: RNA-sequencing process. 1) Total RNA is extracted from cells
and separated from rRNA 2) Transcripts are converted to cDNA,
multiplied and broken into fragments 3) Reads are generated from
cDNA fragment ends 4) Analysis of reads is performed through
alignment to reference (a) or assembly (b)

applied frequently to solve these tasks, even though certain questions still remain
unanswered.

1.4 Transcriptome analysis using

RNA-sequencing

1.4.1 Data processing overview

Figure 1.4 illustrates the process of RNA-sequencing data analysis, including typ-
ical steps such as initial quality control of reads in FASTQ format, further pro-
cessing techniques (alignment and assembly), and �nally gene expression analysis
and comparison. Additionally, certain novel approaches of RNA-seq application
are usually applied after performing alignment or assembly. Detailed explanations
of each step are provided further.
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Figure 1.4: RNA-sequencing data analysis overview

1.4.2 Quality control of sequencing data

High-throughput sequencing is a powerful technology, however it has a complex
structure and processing steps, therefore a careful design of data analysis is re-
quired. Moreover, due to the multilevel structure of the full experiment a number
of problematic issues might occur. The process can su�er from inconsistent sam-
ple and library preparation, speci�c biases related to the sequencing platform
and poor sample quality. Additionally HTS also su�ers from inherent di�culties
such as PCR-ampli�cation bias and uneven fragment distribution [Ross et al.,
2013].Therefore, quality control is one of the requirements during the analysis
procedure.

Several tools are available to check the quality of a sequencing experiment.The
most widely used tool applied for the initial quality check is FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc). It analyzes sequencing data and
provides certain statistics, including per-base sequence quality, GC-content, read
length distribution, non-detected nucleotide quantity, duplication level and adapter
types. Each statistics value allows detection of certain problems in the sequencing
experiment. Moreover, warnings are reported based on default expected values.

It is worth noting that certain problems, such as coverage bias or issues with
insert size of paired-end reads can be detected only after further RNA-seq analysis
steps are performed. Therefore, there are special quality control tools focused on
processing of the results of the subsequent analysis operations. For example,
we developed one such tool called Qualimap [García-Alcalde et al., 2012], that
analyzes alignment data in BAM format and characterizes its quality.
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Importantly, there are technical and algorithmic errors speci�c only to RNA-
seq analysis. Despite the smaller size of the transcriptome compared to the
genome, RNA-seq data analysis is challenged by the existence of complex regula-
tory mechanisms like alternative splicing, transcription of processed pseudogenes,
dynamic concentration range of isoform expression, etc. Thus, additional rigorous
quality control measures are required for processing of RNA-seq data. There are
issues, such as 5'-3' bias or over-expression level of a distinct RNA type, which
occur only in RNA-seq data. The detailed quality control of RNA-seq will be
described carefully in the next chapter. Here, we will continue with the following
data processing steps.

1.4.3 Primary analysis

There are two typical analysis types of sequencing reads:

• Alignment

Most of RNA-seq experiments are performed on organisms whose genomes
or even transcriptomes are already known; therefore, alignment of reads
can be applied to perform the analysis. Basically, alignment is a compu-
tational operation to detect the position where the read is mapped to the
reference sequence. However alignment to the transcriptome can be more
complicated. Since there are exons and introns in higher eukaryotes, there
are additional di�culties with accomplishing the RNA-seq data alignment.

There are two ways to perform this task:

1. Alignment is performed to already known transcriptome sequences
available in databases such as Ensembl. This method is similar to
whole genome sequencing data alignment and there is a number of
e�ective tools available for this task such as Bowtie [Langmead et al.,
2009] and BWA [Li and Durbin, 2009].

2. Alignment is performed directly to the genome, taking into account
reads breaking within introns. In this case an additional algorithmic
approach is required to align reads that cover exon breaks. To detect
these events, reads are separated into small segments that are used to
reconstruct the isoform structure. The most frequently applied tools
for this task are currently Tophat [Trapnell et al., 2009], GSNAP [Wu
and Nacu, 2010] and STAR [Dobin et al., 2013].

It is worth mentioning that results of alignment procedure are provided in a
standard �le format called Sequence Alignment/Map Speci�cation (SAM).
This format keeps the read alignment positions, along with speci�c prop-
erties such as pair type, mutations, insertions, deletions, duplications, etc.
Additionally, data in SAM format can be easily packed to binary archive
(BAM), which allows a signi�cant reduce in the �le size.
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• Assembly

The alignment process can be performed only if the reference sequence is
available. However, in certain organisms this is not possible due to lack of
existing information and the sequences must be reconstructed from reads.
Popular tools to apply this technique are Trinity [Grabherr et al., 2011] and
Oases [Schulz et al., 2012].

Additionally, the exon-intron model highlights the importance of a detailed
reconstruction of isoforms. In this case assembly can be combined with alignment
to verify the isoform evidence. The widely used approaches that combine these
techniques to detect isoforms are described further.

1.4.4 Gene expression analysis

After the alignment or assembly of reads is performed, it is possible to detect
the expression of a particular gene based on the computation of coverage - the
number of aligned reads covering a certain fragment.

It is assumed that if the number of reads mapping to a certain biological
feature of interest, such as a gene or a transcript, is su�cient, then it can be used
as an estimation of the abundance of that feature in the sample and interpreted
as the quanti�cation of the expression level of the corresponding region. To
apply this approach the number of reads aligned to a certain gene is counted to
measure expression level. There are several methods based on this technology
such as edgeR [Robinson et al., 2010a] or DESeq [Anders and Huber, 2010].

Additionally, a more advanced type of analysis performs assembly of reads into
full-length transcripts, and coverage estimation is based on the number of reads
covering the breakpoints between exons and accurate distribution of reads located
in exons. One of the most popular tools based on this approach is Cu�inks
[Trapnell et al., 2010].

An important step in computation of gene expression level is the consideration
of the impact of noise and the systematic variation between samples. Therefore
there are speci�c normalization techniques available. The most commonly used
method normalizes the counts for exon length, assuming that read count dis-
tribution is the same in all samples [Mortazavi et al., 2008]. The computed
expression computation is reported in Reads Per Kilobase of exon per Million
reads sequenced (RPKM) calculated in the following way:

RPKM =
R ∗ 109

L ∗M
In this function R - reads mapped to the gene, L - length of the gene, M -
the total number of mapped reads in the experiment. There is also a variation
of RPKM value that takes into account paired-end reads called Fragments Per
Kilobase of exon per Million mapped fragments [Trapnell et al., 2010]. It is worth
noting that the RPKM value might introduce problems, since certain genes have
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very high expression values, and in�uence expression comparison results. To �x
this issue additional methods have been developed to improve the normaliza-
tion, such as upper quartile scaling [Bullard et al., 2010] or trimmed mean of M
values[Robinson et al., 2010b]. Additionally, there could be a number of non-
speci�c transformations that in�uence the results, including genetic background,
time point and cell type heterogeneity. One such novel method was introduced
to validate a variety of biological conditions [Risso et al., 2014] and demonstrated
appropriate results in comparison to other normalization methods [Peixoto et al.,
2015].

One of the main points of RNA-seq data analysis is the comparison between
biological conditions. Detailed observation of gene expression di�erence is a com-
plicated task due to several reasons: number of genes and samples, statistical sig-
ni�cance of the event, systematic variation noise. The normalization, described
previously, partly solves the noise problem, however additional estimations should
be performed to validate the correctness of the results. Detection of di�erentially
expressed genes is performed by comparing the expression thresholds of sam-
ples in di�erent conditions by taking into account statistical modulations such as
p-values. The toolkits performing computation of gene expression including Cuf-
�inks and DEseq also enable detection of di�erentially expressed genes, applying
various statistical veri�cations.

Notably, the best practice for gene expression analysis has not been de�ned
yet. Due to complicated sequencing issues such as GC-content, paired-end read
size and gene body coverage structure, current tools still have limitations in cor-
rect detection of di�erential gene expression [Rapaport et al., 2013] and more
novel methods are being developed to improve the status ( for example, Cu�d-
i�2 [Trapnell et al., 2013], DESeq2 [Love et al., 2014] and PennSeq [Hu et al.,
2014]). Interestingly, a recent detailed comparison of current gene expression
analysis methods based on simulation data demonstrated that inaccurate results
are computed for hundreds of genes in Homo Sapiens transcriptome even by most
popular and e�ective tools [Robert and Watson, 2015]. This investigation con-
�rms that gene expression determination from RNA-seq data requires further
speci�c improvements.

1.5 Additional aspects of RNA-seq data analysis

1.5.1 Isoform detection

A lot of genes in higher eukariotic organisms have numerous splice variants, pro-
moters and protein products. Understanding of the isoform structures allows
correct measurement of changes in expression of individual transcripts and their
in�uence on cellular processes.

However, detection of isoforms is complex, because in most genes alternative
isoforms share large amounts of sequences and di�erences in isoforms rely on exon
extraction or intron region inclusion. Moreover, the read coverage distribution
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inside transcripts is biased due to polyA selection or rRNA depletion [Lahens
et al., 2014]. Additionally, a lot of genes have high sequence similarity and as
a result sequencing reads align to a number of genes (so called multi-mapped
reads). Therefore, counts for gene transcripts must be estimated carefully.

Early computational methods to detect isoform expression performed statis-
tical normalization for isoform-level [Katz et al., 2010]. Later developed methods
provided accurate reconstruction of isoforms followed by statistical representation
of the coverage [Trapnell et al., 2012; Mezlini et al., 2013] or focused only on exon
blocks that perform the construction of various isoforms [Anders et al., 2012]. In-
terestingly, di�erent existing methods can report completely di�erent results for
the same dataset. A recent study compared existing tools for isoform detection
on simulated and real datasets [Hayer et al., 2014]. The research demonstrated
high error rate for certain tools along with lower recall and precision speci�c to
analysis of real data, concluding that advancement of algorithmic approaches and
technology improvements should continue.

1.5.2 Strand-speci�city

One of the interesting aspects of transcriptome activity is that certain genes might
have both sense and anti-sense transcription. In several situations anti-sense
transcription of a gene reduces its own expression level or controls translation
[Li et al., 2013]. Standard RNA-seq libraries based on RNA to cDNA conversion
did not support strand-speci�city detection, because during sequencing process
the synthesis of double-stranded cDNA was followed by a random addition of
adapters to 5' and 3' ends.

Of course, was possible to identify the strand of a certain gene using algorith-
mic approaches such as open reading frame information, biases in coverage of 5'
and 3' ends or splice orientation. However, the technical validation of the strand
would help to discover antisense transcripts, distinguish the strand of non-coding
RNAs and correctly resolve expression levels of intersecting genes in di�erent
strands.

Therefore certain methods were developed to control strand-speci�city during
sequencing process [Levin et al., 2010]. The techniques are based on attaching
di�erent adapters to 5' and 3' ends (for example, Illumina RNA, NSR or SMART-
RNA ligation) or on marking one strand by chemical modi�cation (most common
is dUTP ). All existing methods are integrated into a standard sequencing proce-
dure. Even though the techniques also introduce speci�c errors, in general such
approaches lead to novel detection of antisense transcripts along with detailed
speci�cation of intersecting genes and non-coding RNAs belonging to regions of
known mRNAs [Core et al., 2008].
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1.5.3 Gene fusion detection

DNA damage events such as mutations, insertions, deletions and others might
have dangerous consequences. The most well-known result is the generation of
mutated cells that lead to cancer. Quick and correct detection of these events in
cells will allow design of medical approaches to disable cancer progression.

One well-known example of such an event is a fusion gene detected in chronic
myeloid leukemia (CML). A fusion gene is a combination of blocks of genes due
to a break in the genome, such as insertion, deletion or translocation. Transcrip-
tion and translation of a fusion gene can lead to the creation of a protein with
dangerous unexpected activity. Detection of events such as the BCR-ABL fusion
in CML led to the development of a treatment for this type of cancer by blocking
the novel protein [Lugo et al., 1990].

Studying gene fusions in the transcriptome enables detection of the rearrange-
ments that might be translated into novel functional proteins. One of the most
promising approaches is the detection of fusion genes from RNA sequencing data.
It was shown that the detection of fusions from RNA-seq data is more convenient
than from genome sequencing. For example, based on RNA-seq data analysis
around 8000 fusions were detected in 4000 samples from various cancers, leading
to potential medical aspects [Yoshihara et al., 2014]. However, the methodology
of fusion detection from transcriptome sequencing data is rather complex due to
the homology of the genome and sequencing technology limitations. Some as-
pects of the topic, such as precision and recall properties of available methods,
still require additional research. The third chapter of this thesis describes the
current status in detail.

1.6 Research goals

RNA-sequencing analysis enables detailed detection of gene expression in a cell.
In this aspect it demonstrates higher quality and con�dence in comparison to
other methods (i.e microarray analysis). Additionally, RNA-sequencing provides
a number of important novel analysis approaches to investigate the transcriptome
activity.

Certainly, the main goals of RNA-seq data analysis already have quite ac-
ceptable solutions. However, the existing methods are not completely correct
and there is a number of di�erent approaches to reach improved solutions for
such problems as transcriptome assembly, gene expression analysis, isoform and
strand-speci�city detection.

Moreover, certain aspects of RNA-seq still require novel resolutions. For ex-
ample, the RNA-seq process can introduce a number of characteristic biases and
problems, that can lead to incorrect analysis results. There is a number of ele-
ments that should be taken into account before the results of an experiment can
be trusted. Therefore, detailed quality control of RNA-seq data is an important
task. Chapter 2 focuses on solutions of these problems and describes a novel tool,
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Qualimap2, which we developed to clarify this task. The manuscript character-
izing this tool was published in the journal Bioinformatics [Okonechnikov et al.,
2015].

Additionally, the ability to detect certain dramatic events such as fusion genes
is an important topic, since it will permit the application of RNA-seq not only in
scienti�c research, but also in clinical care. However, due to the complex structure
of the transcriptome in higher eukaryotic organisms, detection of fusions is a com-
plicated task. Moreover, certain aspects, such as for example strand-speci�city,
are currently not yet taken into account during the fusion detection. Chapter 3
describes a novel toolkit for fusion detection from RNA-seq data called InFusion,
which we developed to solve existing problems and advance abilities of transcrip-
tome sequencing application. The paper describing InFusion was submitted to
PLOS Computational Biology.

Importantly, RNA sequencing technology continues to improve. Speci�c as-
pects, such as increase of read size and RNA processing without cDNA trans-
formation provide appreciable improvements. Fruitful novel techniques such as
single cell RNA-sequencing grant a lot of opportunities, but require redesigned
analysis approaches. Moreover, the increase in number of samples and experi-
ments in the analysis present additional statistics demands. Chapter 4 provides
a discussion about the novelties and focuses on future research targets.



Chapter

2
Quality control of RNA-seq

alignment and expression

data

2.1 Overview

This chapter characterizes the quality control requirements for correct processing
of RNA-seq data. It starts with a description of existing technical problems
and outlines possible ways to detect and validate them. Further, the design
and functionality of a novel approach to accomplish RNA-seq quality control are
described and comparison to other existing tools is performed. Finally, future
research plans in this area are presented.

2.2 Reasons and approaches

RNA-seq is a powerful technology that provides a full determination of the tran-
scriptome functionality. However, due to a complex technological structure of
high-throughput sequencing, it includes a number of biases that in�ltrate the
analysis process. Moreover, cDNA synthesis, which is currently the most fre-
quent RNA-seq approach root, introduces a number of speci�c errors, occurring
only in RNA sequencing [Hansen et al., 2010].

There is a number of additional sources of a bias. First of all, RNA-seq
demonstrates a non-uniform distribution of read coverage in a transcript because
of particular errors occurring during RNA extraction [Kim et al., 2012], rRNA
depletion [He et al., 2010], adapter ligation [Faulhammer et al., 2000] and PCR
ampli�cation [Kozarewa et al., 2009]. Second, both read length and insert size of
sequencing fragments limit the detection of a whole scope of the transcriptome
[Oshlack et al., 2009]. Third, read mapping and assembly operations might intro-
duce certain limitations and biases due to read errors and algorithmic problems
[Li et al., 2010]. Also, the normalization of gene expression levels based on the
processing of homologous reads leads to incorrect expression pro�ling.

Additionally, during the process of reverse transcription, the generated cDNA
can dissociate from the correct RNA sequences and connect to a di�erent RNA.
This event leads to the generation of chimeric transcripts, that do not exist in
reality. Also, the generated second strand of cDNA blocks the detection of strand-
speci�city of the transcript. Strand-speci�c libraries that solve this problem can
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also have some limitations, in�uencing the computed anti-sense transcription level
results [Levin et al., 2010].

Finally, experiments applying RNA sequencing can include a number of sam-
ples in di�erent conditions. Even though the technology has the highest level
of reproducibility in comparison to microarray approach, the analysis of genes
with low expression level is limited and requires replicates. Unfortunately, a
large number of samples might provide additional problems when a subgroup of
outliers changes the total results of the analysis.

The detection of occurring errors and mistakes is quite important to be sure
that the results of the analysis are correct. Therefore, specialized tools are re-
quired to perform detailed quality control (QC). A number of problems can be
detected by general approaches for analysis of HTS data (for example, FastQC
tool), however problems, speci�c only for RNA-seq data, need additional anal-
ysis operations for the generated datasets such as alignment of reads or gene
expression counts.

To solve this task several tools were developed. One of the �rst approaches
was RSeQC tool [Wang et al., 2012], which is actually a list of Python scripts
that provide statistics computed from the alignment data. The performed anal-
ysis results include such aspects as accurate properties of mapped reads, insert
size distribution for paired-end reads, gene body coverage, proportion of reads
mapping to gene structure (5' UTR, coding, 3' UTR), estimation of sequencing
depth in RPKM and junction saturation. The results for each analysis type are
generated separately and each script has various options and requirements.

Other similar method is RNA-seq QC [DeLuca et al., 2012], a functional
pipeline with a serial number of steps. Except of QC control of BAM �les it also
produces read counts and performs additional QC operations, including detailed
coverage analysis, detection of rRNA reads, expression pro�le e�ciency exami-
nation and strand-speci�city validation. Moreover, a limited coverage correlation
analysis can be performed for a number of samples.

We also developed Qualimap [García-Alcalde et al., 2012] tool, that allowed
precise general quality control analysis of BAM �les along with counts data.
Qualimap was able to detect a number of problems particular to any type of
a sequencing experiment including whole-genome sequencing, exome sequencing
and RNA-sequencing, while the counts QC mode was providing a solution for
detection of QC issues related only to gene expression analysis.

However, additional biases occurring only in RNA-seq experiments were not
supported by Qualimap. Also, comprehensive RNA-seq alignment statistics, such
as for example, exon coverage proportion and strand-speci�city validation, were
not available. Moreover, a frequently applied multi-sample RNA-seq analysis can
be biased by outliers, thus their detection should be veri�ed in detail. Finally,
the performance of the existing tools was not compared so far.
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2.3 Qualimap2: advanced RNA-seq and counts

quality control

2.3.1 Tool description

The second version of Qualimap tool was developed to handle the described lim-
itations. One of the most important reasons to update the tool was a list of QC
requirements speci�c only to RNA-seq data analysis, which were not supported
by the �rst version. Therefore, Qualimap2 includes a novel mode focused on
RNA-seq alignment data quality control. Moreover, the read counts QC mode,
introduced in the �rst version, was redesigned to support global analysis of mul-
tiple samples and comparison of sample groups.

In general Qualimap2 is a multiplatform user-friendly application with both
graphical user (GUI) and command line interfaces. It includes four analysis
modes: BAM QC, Counts QC, RNA-seq QC and Multi-sample BAM
QC. The latter two modes are �rst introduced in the second version.

Based on the selected type of the analysis, users provide input data in the form
of a BAM/SAM alignment, GTF/GFF/BED annotation and/or read counts ta-
ble. The results of the QC analysis are presented as an interactive report from
GUI, as a static report in HTML or PDF format and as a plain text �le suit-
able for parsing and further processing. Typically, the report contains summary
statistics of the dataset, description of the input data, exploratory plots and
histograms that visualize multiple properties of the processed data and help to
detect potential problems.

The mode BAM QC is an initial mode that performs detailed analysis of the
alignment data in SAM/BAM format. As it was mentioned previously, it allows
detection of a number of problematic issues related to any type of a sequencing
experiment. For example, it provides extensive alignment statistics along with
coverage plots and histograms. Importantly, certain aspects such as number of
marked mutations, insertions, deletions, insert size qualities and other properties
that can be detected only from the alignment data are reported.

Multiple BAM QC mode is a novel mode, which is also focused on analysis
of BAM �les in general. It takes into account and combines results created by
BAM QC mode to create plots combining statistics from a number of samples.
Moreover, principal component analysis (PCA) is applied to detect outliers based
on the selected statistics.

The two modes designed for RNA sequencing data QC analysis are further
described in detail.

2.3.2 RNA-seq QC mode

A novel mode RNA-seq QC reports quality control metrics and bias estimations
speci�c only for the whole transcriptome sequencing, including reads genomic
origin, junction analysis, per-transcript coverage, consistency of library protocol
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and 5'-3' bias estimation. This mode can be applied as a complementary tool
together with BAM QC mode.

The RNA-seq QC mode is designed as an algorithmic pipeline that ana-
lyzes alignments from an input BAM �le. Each alignment is processed to collect
de�ned statistics such as number of mapped reads, pair construction, etc. The
transcriptome annotations are also required. Based on the annotation data, read
alignments are analyzed to detect intersections with exon, intron or intergenic re-
gions. During this operation analysis of the coverage of transcripts is performed;
read counts and other important statistics are computed.

After the analysis is �nished the following results are reported:

• Summary

The summary contains several sections describing in detail statistics speci�c
for RNA-seq alignment, including :

� The assignment of read counts per-category
The total number of mapped reads and the distribution of alignments
belonging to a selected type are reported. The types include unique
alignments, secondary alignments (duplicates marked by SAM �ag),
non-unique alignments (SAM format NH tag of a read is more than
one), reads aligned to genes or without any feature (intronic and in-
tergenic), ambiguous alignments and a number of unmapped reads.

� Transcript coverage pro�le
The ratios between mean coverage at 5' region, 3' region and the whole
transcript are reported. To compute this value for each transcript
mean coverage along with mean coverage in the �rst 100 bp (5' region)
and the last 100 bp (3'region) are calculated and collected. Afterwards,
the collected values are sorted and median is selected from each array
to compute the ratios.

� Reads genomic origin
The report shows how many alignments fall into exonic, intronic and
intergenic regions. Exonic region includes 5'UTR, protein coding re-
gion and 3'UTR region. To detect alignment positions, annotations
data is used to generate all exonic and intronic intervals. A read align-
ment is checked if it intersects with an exon or an intron. In case
intersection is not detected, it is considered as intergenic.

� Junction analysis
The total number of reads with splice junctions and 10 most frequent
junction types are reported. The junctions are detected by analyzing
SAM format CIGAR �eld. The N operation detects the skipped region
from the reference and represents read alignment covering an exon.
Additionally, a pair of nucleotides from left and right side of a skipped
region are analyzed to detect the junction rate.
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Figure 2.1: RNA-seq QC plot examples. (A) Coverage pro�le of highly ex-
pressed genes (B) Coverage histogram (from 0 to 50X)

• Pie chart

The plot shows how many read alignments fall into exonic, intronic and
intergenic regions. Results computed and reported in the Summary are
demonstrated in the plot.

• Coverage Pro�le (Total)

The plot shows mean coverage pro�le of the transcripts. All genes with
non-zero coverage are used to generate this plot. From each gene only one
transcript, having the highest expression, is selected.

• Coverage Pro�le (High)

The plot shows mean coverage pro�le of 500 highest-expressed genes (Figure
2.1A). Transcript selection is similar to the total Coverage Pro�le.

• Coverage Pro�le (Low)

The plot shows mean coverage pro�le of 500 lowest-expressed genes. Tran-
script selection is similar to the total Coverage Pro�le.

• Coverage Histogram

The histogram demonstrates the coverage of transcripts from 0 to 50X (Fig-
ure 2.1B). The genes that have coverage higher than 50X are collected in
the last column.

• Junction Analysis

The pie chart is focused on the types of junction positions in spliced align-
ments. Known category represents percentage of alignments where both
junction sides are known from the annotation. Partly known value repre-
sents alignments where only one junction side is known. All other align-
ments with unknown junctions are marked as Novel.
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Importantly, during the RNA-seq QC procedure the read counts are also
computed. By default, a read alignment is considered supporting the gene and
counted, only if it lies exactly inside of exon region. In case of paired-end reads,
both pair mates should support the same gene or transcript. Counts computation
includes a number of optional parameters. For example, the strand-speci�city can
be taken into account based on the selected protocol, i.e. if a mapped read doesn't
fall the correct strand of a gene, it is not counted. Additionally, if a read is mapped
to multiple locations, it is ignored by default. However, there is also an option to
count a multi-aligned read as separated proportionally between targets. If this
option is activated then, for example, a read mapped to 4 di�erent locations will
add 0.25 to the counts at each location. After the analysis is �nished, the �nal
counts value is converted to integer.

2.3.3 Counts QC mode

The counts data, generated during the RNA-seq QC procedure or computed
using some other tool such as HTSeq [Anders et al., 2014], can be utilized to assess
di�erential expression between two or more experimental conditions. However,
before performing di�erential expression analysis, researchers should be aware
of some potential limitations of RNA-seq data, as for example the saturation
level in�uence on sequencing depth or feature types detected in the experiment.
These and other properties can be analyzed by interpreting the plots generated
by Counts QC mode.

In the second version of QualimapCounts QCmodule has been redesigned to
work with multiple samples under di�erent conditions. The new functionality is
mostly based on NOISeq package [Tarazona et al., 2012], therefore to use Counts
QC it is required to have R language along with certain packages installed.

To perform the analysis it is also necessary to provide a special table that
contains information about input sample datasets. Each sample has a name
and a condition, which describes the group. Therefore, biological di�erences can
be easily mentioned by setting group conditions. Additionally, it is possible to
perform not only a default analysis of all samples, but also compare the conditions.

In result, after the processing of input data Counts QC mode generates three
groups of plots.

1. Global Plots

Plots from this group present a global overview of the counts data and
include all samples. These plots allow to compare all samples without taking
into account experimental conditions.

• Counts Density
The plot shows density of counts computed from the histogram of log-
transformed counts. In order to avoid in�nite values in case of zero
counts, the transformation log2(expr + 0.5) is applied, where expr is
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Figure 2.2: Counts QC Global Plot examples. (A) Saturation of expression
(B) Scatterplot matrix

a number of read counts for a given feature. Only log-transformed
counts having value greater than 1 are plotted.

• Saturation
The plot provides information about the level of saturation in the
samples and helps to decide if more sequencing is required (Figure
2.2A). The sequencing depth of the sample is represented at the x-axis.
Smaller depths correspond to samples randomly generated from the
original sample.The curves are associated to the left y-axis represent
the number of detected features at each of the sequencing depths in
the x-axis. They show the number of newly detected features, when
the sequencing depth increases in one million of reads.

• Scatterplot Matrix
The panel shows for each pair of samples a scatter plot along with
a smoothed line in the lower panel and Pearson correlation coe�-
cients in the upper panel (Figure 2.2B). Plots are generated using
log-transformed counts.

• Counts Distribution
The boxplot shows the global distribution of counts in each sample.
For each sample the mean value surrounded by quartiles is demon-
strated. Additionally, detected outliers are marked.

• Features With Low Counts
The plot shows the proportion of features with low counts in the sam-
ples. Such features are usually less reliable and could be �ltered out.
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Figure 2.3: Counts QC Individual Sample plots examples (A) Saturation with
two y-axis demonstrating number of detected fusions along with
number of novel detections per million of reads (B) Counts per
biotype

In this plot, the bars show the percentage of features within each sam-
ple having more than 0 counts per million (CPM), or more than 1, 2,
5 and 10 CPM. The detection of outliers is possible by comparison of
CPM proportions.

2. Individual Sample Plots

Apart from the global overview, there are plots generated individually for
each sample. When an annotation �le describing biotype, length and GC-
content of each transcript is provided by the user, additional series of plots
is generated.

• Saturation
For each sample, a saturation plot is generated like the one described
in Global Saturation (Figure 2.3A). Additionally, the right side of the
plot demonstrates the total number of detected features per million of
reads.

• Bio Type Detection
Since RNA-seq experiments might be designed to detect speci�c RNA
types (i.e. microRNA or long non-coding RNAs) it is important to
verify the count distribution across bio types. The barplot visual-
izes features that are detected in the sample. The x-axis shows all
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the groups provided in the annotations �le such as for example pro-
tein coding, miRNA, lincRNA, pseudogene etc. The grey bars are the
percentage of features of each group within the reference genome (or
transcriptome, etc.). The striped color bars are the percentages of fea-
tures of each group detected in the sample with regard to the genome.
The solid color bars are the percentages that each group represents in
the total detected features in the sample.

• Counts Per Biotype
The boxplot per each group describes the counts distribution in the
given biotype (Figure 2.3B). For each biotype the mean value sur-
rounded by quartiles is demonstrated, additionally certain outliers are
shown. The generated plot allows to compare the expression levels
among biotypes and detect possible contamination.

• Length Bias
The plot describes the relationship between the length of the features
and the expression values. The length is divided into bins. Mean ex-
pression of features falling into a particular length interval is computed
and plotted. A cubic spline regression model is �tted to explain the
relation between length and expression. Coe�cient of determination
R2 and p-value are shown together with regression curve.

• GC Bias
The plot describes the relationship between the GC-content of the fea-
tures and the expression values. The data for the plot is generated
similar to Length Bias plot. The GC content divided into beans and
then mean expression features corresponding to given GC interval are
computed. The relation between GC-content and expression is inves-
tigated using a cubic spline regression model.

3. Comparison Plots

When an option to compare conditions is activated, additional plots com-
paring data in groups of samples having the same biological condition or
treatment are generated. The samples belonging to a group are combined
and mean values for each comparison are computed. Currently only two
types of a group are supported.

• Counts Distribution
The plot is similar to the one in the Global Plots report. It compares
distributions of mean counts across conditions.

• Features With Low Counts
The plot is similar to the one in the Global Plots report. It compares
proportions of features with low counts by computing mean counts
across conditions.
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Figure 2.4: Counts QC Comparison Plots example. Bio detection plot demon-
strates the expression levels of various RNA types among selected
groups.

• Bio Detection

The plot is similar to the one in the Individual Sample Plots report
(Figure 2.4C). It compares distribution of the detected features for the
given biotype by computing mean counts across conditions.

• Length Bias

The plot is similar to the one in Individual Sample Plots report. It
analyzes relation between feature length and expression across condi-
tions.

• GC Bias

The plot is similar to the one in the Individual Sample Plots report.
It analyzes relation between GC-content and expression across condi-
tions.

All the described plots are designed to demonstrate biases or problems that
can be detected only from the counts distribution. Moreover the Comparison
Plots group allows to compare two biological conditions. This is a frequent re-
quirement in the transcriptome related research.

It is worth noting that there are additional options that allow to control the
counts QC analysis. For example, in order to remove the in�uence of spurious
reads, counts threshold is applied to consider a transcript as detected only if its
corresponding number of counts is greater than this threshold. By default, the
threshold value is set to 5 counts.
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A B

Figure 2.5: Detection of biases from Counts QC report (A) Global satura-
tion demonstrates low coverage context of samples VCaP500 and
LNCaP500 in comparison to samplse VCaP200 and LNCaP200 (B)
The in�uence of the read length on expression: normalization is
required

2.3.4 Insight from quality control analysis

The statistics values computed from RNA-sequencing alignment and counts data
allow to detect problematic issues that can not be discovered directly from the
reads data. The most of the technological biases, including transcript length and
coverage uneven distribution or contamination by non-required transcripts can be
detected only from a processed dataset, therefore data investigation performed
by Qualimap is required to con�rm su�cient quality of the processed data.

The quality control process should start from the examination of RNA-seq
QC report. The �rst statistics of the mapped data provides the status of the se-
quencing process in general. The low proportion of aligned reads reported in the
summary can demonstrate ligation and ampli�cation biases. The typical majority
of aligned reads should belong to known exonic regions. For example, comparing
the proportion of aligned reads falling to exon region in case of well-known or-
ganisms such as Mus Musculus or Homo Sapiens should be up to 90%. Smaller
proportion can indicate sequencing biases or some mistakes in the mapping pro-
cess. The same conclusions can be derived from "Junction analysis" plot: known
junctions should dominate novel.

Some speci�c issues occurring during rRNA depletion and polyA selection can
lead to biases in 5' region and 3' region. For example, it is quite well-known that
polyA selection can lead to high expression in 3' region. The 5'-3' bias allows to
detect such events. In correct experiments this bias should be close to one.



26

The plots focused on transcriptome coverage analysis such as "Coverage His-
togram" and "Coverage pro�le along genes" give an overview of available level
of expressed genes. Importantly, low level coverage in RNA-seq data in�uences
signi�cantly on di�erential gene expression analysis [�abaj et al., 2011], therefore
demonstration of high and low coverage level is quite useful to detect biases and
apply suitable gene expression normalization approach.

After the quality control of the BAM �le is performed, the computed counts
will allow to investigate further properties of the experiment. Most importantly,
Counts QC analysis can be performed with taking into account the experimental
design, such as biological conditions and the number of samples.

The analysis of expression contamination allows to verify if the total number
of reads in the experiment is enough to detect all expressed genes. The plot
"Saturation" demonstrates the in�uence of the number of sequencing reads on
expression distribution. Basically, the angle of the line plot shows how the in-
crease in number of reads controls the proportion of novel detected genes (Figure
2.5A). If more reads do not lead to the growth of a number of detected genes
(line angle is close to zero), additional sequencing is not required. Notably, there
is also a speci�c customizable limitation for a minimum number of read counts
required for a transcript to be added to the plot.

The biotype analysis of counts performed for each sample allows to detect the
types of expressed features. This is especially important if the RNA-seq experi-
ment is focused on long RNA or other type of RNA. Abnormal contamination can
be detected from the plots "Biotype detection" and "Counts per biotype". Typ-
ically, in mRNA-seq experiments protein coding proportion should dominate in
counts. Additionally, the plots detect the suitability level of a selected sequencing
protocol.

For correct normalization of counts in gene expression analysis it is important
to take into account the length and GC content of expressed transcripts. The
requirements for such normalization can be checked from "Length bias" and "GC
bias" plots (Figure 2.5B). Cubic spline regression model is applied to detect
if length and GC proportion �t the gene expression. Generally, the computed
coe�cient of determination greater than 70% or a large p-value indicates an e�ect
on expression level and importance of normalization [Tarazona et al., 2015].

The computed global plots demonstrating all samples together such as scat-
terplot matrix, counts density and distribution allow to detect outliers. For ex-
ample, despite di�erent biological conditions the global expression levels among
analyzed samples should match su�ciently. Importantly, di�erent biological con-
ditions should in�uence on gene expression. Therefore, all the plots related to
expression analysis and normalized to a speci�c condition also allow to detect
outliers.
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2.3.5 Comparison to other tools

Except of Qualimap there are other tools that are available to perform the quality
control task. The most highly-used applications are RSeqQC and RNA-seq QC.
We performed a detailed comparison of Qualimap RNA-seq QC and Counts
QCmodes to these methods. The results are provided in the table 2.1. It is worth
noting that RSeQC and Qualimap also support general sequencing data analysis
methods (including GC-content, number of mismatches and indels, insert size,
mapping quality etc.). However, in this table these elements are not included,
since it is focused on RNA-sequencing data analysis.

Table 2.1: Comparison of RNA-seq quality control tools.

Analysis type RSeQC RNA-SeQC Qualimap

Aligned reads
statistics types

Non-splice

Total, unique,
duplicate and

alternative; Vendor
Failed Reads.

Total, secondary,
aligned to genes,
non-unique,

no-feature and
ambiguous

Read pairs statistics
Pairs aligned,
left/right

Pairs aligned,
unpaired reads;
pair mismatch

rate; chimeric pairs

Pairs aligned,
left/right

Strand-speci�cty
detection

Available Available Available

Alignments
location analysis

Exonic (5'UTR,
3'UTR, CDS),

intronic

Exonic (5'UTR,
3'UTR, CDS),
intronic, TSS

Exonic, in-
tronic, intergenic

Gene cover-
age analysis

Gene coverage over
gene body plot

Coverage gaps
(count, length);
coverage plots

Coverage pro�le
along genes

(total, low, high);
coverage histogram

5'- 3' bias analysis - Available Available

Gene expression
computation

Available (RPKM)
Available (read
counts, RPKM)

Available (read
counts, RPKM)

Expression pro�ling -

E�ciency (ratio
of exon-derived
reads to total

reads sequenced);
rRNA reads

Detailed percentage
of expressed
exon type; low
counts detection

Multisample
analysis

Coverage of several
samples together

Correlation between
each sample pair

Coverage density,
scatterplot matrix,
saturation, counts

distribution

Group comparison - -
Counts distribution,

bio detection,
length bias, GC bias

Comparison of existing RNA-seq quality control tools: RSeQC v2.6, RNA-SeQC v1.1.8

and Qualimap v2.1.
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According to this table, quality control tools have some similar functions.
However, as it can be seen, Qualimap outperforms other programs in multi-
sample analysis and group comparison blocks, providing a number of plots that
allow to compare samples and detect outliers. The novelties of Qualimap are
mostly focused on comparison of various conditions.

Moreover, Qualimap2 demonstrated superior performance in comparison to
other tools. It showed twice work speed increase in typical H. sapiens RNA-seq
data analysis. Moreover, the analysis performed by RSeQC requires to launch
and control a number of di�erent scripts, thus additional work is necessary to
design an appropriate pipeline.

2.3.6 Results and future plans

Qualimap2 application performs an important task: detection of errors and limi-
tations speci�c to RNA sequencing. Overall, the second version of Qualimap was
downloaded more than 4000 times since the initial release in September 2014. Im-
portantly, some of the detected QC biases can be �xed during analysis applying
normalization techniques, however certain issues can not be improved, therefore
novel experiments might be required. There are already examples of publications
where Qualimap reports were contributing to relaunch of sequencing experiments
[Koeppel et al., 2015].

One interesting subject to mention: Qualimap2 is an open-source tool, which
has a public repository. After the second version was released, a number of sug-
gestions to improve required aspects of quality control came from user community.
Additionally, speci�c bugs were reported and �xed by users.

However, some elements of RNA-seq data analysis should be interpreted in
more detail. For example, in�uence of read size and insert size can be processed
to verify speci�c RNA-seq limitations for gene expression analysis. Novel compa-
nies such as PacBio (www.paci�cbiosciences.com) provide rather long read size
resulting in a number of speci�c errors, which detection is quite important. Re-
cently created single cell RNA-seq process introduces even more biases and issues
that in�uence the analysis results [Stegle et al., 2015]. Moreover, currently ex-
periments might include a number of di�erent conditions, while Qualimap2 sup-
ports in Comparison mode only two conditions. Therefore, adaption of Qualimap
should continue in these directions.

2.4 Summary

As it was described in previous sections, RNA-sequencing might provide various
technical biases and errors that can in�uence the results of the analysis. To de-
tect these events we developed the second version of Qualimap, an application
for exploratory analysis and quality control of HTS alignment data written in
Java and R. Qualimap2 introduces a novel analysis mode called RNA-seq QC.
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This mode allows computation of metrics speci�c for RNA-seq data, including
per-transcript coverage, junction sequence distribution and reads genomic local-
ization. Furthermore RNA-seq QC estimates 5'-3' bias and consistency of the
library protocol.

The mode Counts QC, created in the �rst version to estimate the quality
of the read counts, was completely redesigned to allow processing of multiple
samples. Having multiple biological replicates per condition is quite common in
RNA-seq experiments; therefore it is bene�cial to be able to analyze counts data
from all generated datasets simultaneously. Multi-sample analysis allows inspec-
tion of grouping of the samples, as well as discovery of outliers and batch e�ects.
Similar to the previous version, the Counts QC mode estimates the saturation
of sequencing depth, counts density, correlation of samples and distribution of
counts among classes of selected features. Additionally there are new plots that
explore the relationship between expression values and GC-content or transcript
length are available for users. The analysis results include a combined overview
of the datasets along with a QC report for each individual sample. Moreover
the analyzed samples can include two di�erent conditions, e.g. treated and un-
treated. In this case, separate plots comparing groups of samples corresponding
to a particular condition are generated.

Overall, Qualimap2 has become an important tool for quality control of RNA-
seq experiments. The number of downloads and citations of the initial manuscript
increased signi�cantly after the release of the second version. It is worth noting
that Qualimap has gathered a community of users who frequently report existing
problems, suggest new features and contribute their code.
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Chapter

3
Fusion gene and chimeric

transcript detection

3.1 Overview

This chapter focuses on the detection of fusion genes and chimeric transcripts
from RNA-seq data. It describes existing approaches in this area and outlines
their limitations. The aim of this chapter: present a novel RNA-seq based toolkit,
which introduces a number of improvements. The description of the algorithm,
comparison to other tools, experimental validation and possible future research
plans are provided.

3.2 Fusion discovery approaches

3.2.1 History

Genomic translocations, insertions and inversions can lead to the appearance of
fusion genes, which are formed from sequences of several genes. Gene fusions and
other genomic translocations are closely related to cancer progression and play a
driver role in particular types of cancer [Mitelman et al., 2007]. Examples include
TMPRSS2-ERG fusion in a large family of prostate cancers [Tomlins et al., 2005],
EML4-ALK in non-small-cell lung cancer [Sheng et al., 2001] and ETV-NTRK3
in several cancers [Rubin et al., 1998; Tognon et al., 2002]

Chimeric transcripts can occur in normal cells due to trans-splicing, cis-
backsplicing or errors of the transcription machinery, and in certain cases they
have been reported to be active in mammalian genomes [Frenkel-Morgenstern
et al., 2012]. Additionally, genes might yield a joined RNA product, which is
called a read-through transcript. Both chimeras and read-through transcripts
might have speci�c functions and play a role in a cell process.

The �rst fusion event was detected due to the search of structural rearrange-
ments in cancer. In 1970 cytogenetic analysis through specialized chemical band-
ing technique allowed to �nd a genomic translocation in chronic myeloid leukemia
(CML) [Lugo et al., 1990]. The chromosome banding technique was further ap-
plied to discover a number of fusion events in several cancers. The next step
in the improvement of fusion discovery was a technology called Fluorescence in
situ hybridization (FISH). It provided an opportunity to detect fusions by apply-
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Figure 3.1: Detection of fusion events via RNA-seq reads

ing a careful visualization of chromosome blocks based on the color distribution.
Further, fusion detection process was improved with array-based analysis that
allowed detailed gene expression and copy number pro�ling. The �rst fusions val-
idated in prostate, lung and other cancers were detected based on this approach.

However, as it was mentioned in the �rst chapter, RNA sequencing contributed
to the progress in fusion discovery: it allowed detailed and global detection of
transcribed fusion genes and chimeric transcripts. Maher et al. [Maher et al.,
2009] were one of the �rst groups to apply RNA-seq for gene fusion discovery in
several cancer cell lines. They were able to not only con�rm previously described
fusions and chimeric transcripts, but also detect and validate a number of novel
events. In result this was a �rst step of upcoming frequent and high resulting ap-
plication of RNA-seq technology for detection of fusions and chimeric transcripts
in various organisms.

3.2.2 Detailed RNA-seq approach explanation

The detection of fusion genes and chimeric transcripts from RNA-seq data is pos-
sible due to the properties of the sequencing procedure: the breakpoint position
and the region between genes forming the fusion can be covered by reads. There
are two types of reads that allow to discover fusions: SPLIT and BRIDGE reads.

The SPLIT and BRIDGE read events is easy to demonstrate using a hypo-
thetical fusion of two genes (Figure 3.1). The �rst event occurs when the read
spans the fusion junction, termed a SPLIT read. The second event requires the
reads to be paired-end. In this case a pair of reads from the same fragment spans
the fusion within the non-sequenced part of the insert, termed a BRIDGE read
pair. The detection of SPLIT and BRIDGE reads can be performed by applying
an adapted alignment approach.
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Additionally, it is possible to apply assembly of reads to reconstruct fusion
transcripts. However, to detect fusion events, the assembled transcripts should
be also aligned in a SPLIT manner to the known transcriptome. Even though
assembly-based methods have several useful abilities and properties, they should
be combined with SPLIT- and BRIDGE-read approaches.

3.2.3 Existing tools and their limitations

After the pioneering studies demonstrated the e�ciency and positive results, ef-
forts intensi�ed to develop e�cient computational methods for the detection of
fusion genes from RNA-seq data.

FusionSeq was one of the �rst published computational pipelines for fusion
gene discovery from RNA-seq data [Sboner et al., 2010]. The method is based on
the detection of discordantly aligned read pairs (BRIDGE reads), which are used
to construct a junction library of possible fused exon pairs. The sequencing reads
are then realigned to the constructed library to �nd the exact fusion junctions.
Further methods that adapted and improved this approach were MapSplice [Hu
et al., 2010] and ShortFuse [Kinsella et al., 2011].

Although the basis for organizing a pipeline for fusion gene detection was es-
tablished, a practical application of FusionSeq on a variety of datasets revealed
that the approach is not equally sensitive in all cases [Li et al., 2011]. Fur-
ther developed methods such as TopHat-Fusion [Kim and Salzberg, 2011] and
ChimeraScan [Iyer et al., 2011] were based on detecting reads that cover the
junction of genes involved in a putative fusion event (SPLIT-reads). However,
due to the small size of the sequencing reads and the repetitive nature of the
genome, this approach requires intensive �ltering to remove the large number of
false positives.

The next step in fusion detection from RNA-seq data was focused on the
integration of both BRIDGE-read and SPLIT-read approaches. One of the �rst
examples was deFuse [McPherson et al., 2011]. It employs discordantly aligned
pairs for initial fusion discovery, followed by the application of the SPLIT-read
approach to �nd the exact fusion breakpoint location. Additionally, it improves
speci�city of the discovery by utilizing machine learning techniques to better
distinguish between true and false positive predictions.

Further developed methods such as SOAPfuse [Jia et al., 2013] and fusion-
Catcher [Nicorici et al., 2014] were focusing on constructive �ltering of false pos-
itive results and advanced various aspects of fusion gene discovery, e.g. fusion
isoform detection, prediction accuracy, computational resource usage.

Additionally, attempts were made to discover fusions using a reference-guided
assembly of chimeric transcripts [Chen et al., 2012; Fernandez-Cuesta et al., 2015].
A major drawback of such approach is that it relies on the detection of possible
discordant read alignments and also requires as much �ltering as SPLIT-read
based methods
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3.3 InFusion: novel fusion discovery toolkit

3.3.1 Introduction

Although a number of state-of-the-art fusion discovery methods are currently
available, a recent analysis [Carrara et al., 2013] as well as our own investiga-
tions showed up di�erences in results between commonly used methods applied
to the same validated datasets. Reliable discovery of the whole spectrum of dif-
ferent fusion events from RNA-seq data is a challenging task [Mertens et al., 2015]
and systematic assessment of this feature among available methods has not been
performed so far. It is worth noting that antisense transcription can also occur
in fusions [Frenkel-Morgenstern et al., 2014]. Up to now, only TopHat-Fusion
and ChimeraScan take the strand speci�city provided by the library prepara-
tion protocol into account, but they do not mark whether a detected fusion was
transcribed in sense or antisense direction .

Additionally, there is occasional evidence of functional fusion events with a
breakpoint inside an exon [Robinson et al., 2013] or involving non-coding [Shah
et al., 2013], intronic [Kangaspeska et al., 2012; Steidl et al., 2011] or even inter-
genic regions[Kleinman et al., 2014]. Several studies have reported alternatively
spliced isoforms of fusion genes [Kangaspeska et al., 2012; Panagopoulos et al.,
2013]. A number of existing tools, including TopHat-Fusion, deFuse, SOAPfuse
and fusionCatcher, are capable of detecting fusion isoforms. Likewise, deFuse and
TopHat-Fusion can also discover fusions that involve intronic regions.

To improve certain aspects of fusion detection from RNA-seq a novel com-
putational method called InFusion was developed. This toolkit for the discovery
of chimeric transcripts from RNA-seq data is capable of detecting alternatively
spliced chimeric transcripts and fusion genes involving non-coding regions. Specif-
ically, InFusion allows detection of fusions that involve intergenic regions, which
to our knowledge has not been addressed previously. The method applies a novel
algorithmic approach to cluster and reconstruct fusions from SPLIT and BRIDGE
reads. Additionally, it analyzes and �lters putative fusion events based on cover-
age depth, genomic context and strand speci�city. We found that InFusion shows
improved accuracy on simulated and a number of public datasets. We experimen-
tally validated our method by performing strand-speci�c deep RNA-sequencing
of two well-characterized prostate cancer cell lines. Overall, InFusion discovered
more than 400 fusions for each cell line (from 80M RNA-seq reads each), and
from 40 tested fusions we con�rmed 10 known and 26 previously unreported fu-
sion transcripts using qPCR. Among these validated transcripts are several novel
alternatively spliced isoforms of well-known fusions and some that involve fusion
of an intergenic region with a coding one.

The InFusion pipeline was developed in C++ and Python. It is capable of
working with both single-end and paired-end sequencing reads. It is free for aca-
demic use and can be downloaded from http://bitbucket.org/kokonech/infusion.
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to transcriptome

Figure 3.2: InFusion pipeline structure

3.3.2 Pipeline description

The InFusion pipeline consists of several independent steps each of which is con-
trolled by a number of con�guration parameters. The typical input for the
pipeline are the reads from an RNA-seq experiment. The pipeline is capable
of working with both single-end and paired-end reads. Most of the pipeline com-
ponents in C++ are implemented using SeqAn bioinformatics library for e�cient
computations [Döring et al., 2008]. InFusion relies on the genome and tran-
scriptome information from the organism of interest in an indexed format. The
pipeline provides functionality to automatically download required annotation
and sequence �les and perform indexing of genome and transcriptome sequences.
The index has to be constructed only once for the target organism and the index
database can be reused for further analysis.

The InFusion analysis pipeline is outlined in Figure 3.2. The pipeline starts
with the mapping of reads to the transcriptome and optionally the genome (Step
1) while keeping track of the unmapped reads. In Step 2, the unmapped reads
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from the previous step are aligned locally to the genome. The resulting local
alignments are used to detect potential SPLIT reads in Step 3. Next, the reads
aligned to transcriptome and genome are analyzed to collect paired-end read
alignment statistics (Step 4a) and detect discordantly mapped read pairs that
form BRIDGE read pairs (Step 4b). This step is skipped for single-end sequencing
experiments. Next, SPLIT and BRIDGE reads that potentially belong to the
same fusion are clustered (Step 5). During this step, the pipeline tries to rescue
SPLIT reads that were not detected during initial analysis of local alignments.
Finally, putative fusions are analyzed to �lter false positive events (Step 6) and
discovered chimeric transcripts are reported (Step 7). The �rst four analysis steps
were introduced previously and being used by existing tools such as chimeraScan,
deFuse, SOAPfuse and others. However InFusion provides several improvements
to these steps and there are a number of novelties in following analysis procedures:
clustering of detected SPLIT and BRIDGE reads, advanced �ltering and recovery
along with special statistics computation for fusion reports. Below, each step of
the pipeline is described in detail.

1. Alignment of the short reads

The main task of the read alignment is to �nd short reads that could reveal a
putative fusion event and separate them from those originating from "normal"
genes. In addition, the alignment of reads is used to collect statistical informa-
tion about the sequencing experiment, such as insert size distribution and gene
expression levels, which is used later in the analysis and the �ltering of putative
fusion events. Firstly, the given short-reads are mapped to the transcriptome
(Figure 3.2, step 1). To reduce the pipeline running time, reads that were not
mapped to the transcriptome can optionally be mapped to the genome. For the
alignment of the reads InFusion uses Bowtie2 [Langmead and Salzberg, 2012] by
default, however, any modern short read aligner could potentially be used.

2. Local alignment of the short reads

In order to search for possible SPLIT candidates, unmapped reads reported during
the initial alignment are further aligned locally to the genome (Figure 3.2, step
2). Local alignment of short reads to the genome is performed using Bowtie2
in local mode. Similar to the previous step, InFusion can potentially be used
with other aligners that support local mapping. The most crucial parameter of
the local alignment is the minimal score to consider a valid mapping. InFusion
is designed to accept mappings with a score greater than Scoremax/3, where
Scoremax denotes the maximum alignment score within a given scoring scheme.
The following scoring scheme is used by default: 2 for match, -2 for mismatch, -6
for gap open, -3 for gap extension.
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3. Analysis of local alignments

All local alignments of a read are analyzed in order to detect if it is possible
to form a SPLIT candidate from it. We de�ne the following conditions. Let us
assume that there are n local alignments of a read:

{A1, A2, .., An},

Each alignment Ai is represented by reference sequence (chromosome) c, starting
position in the reference sequence coordinates p , starting position q in the read
coordinates and length l:

Ai : {ci, pi, qi, li}
We consider that 2 local alignments Ai and Aj form a SPLIT read if 2 conditions
apply:

1. Either ci 6= cj or pi > pj, pi − pj − lj > Imax

The alignments are coming from di�erent chromosomes or the distance be-
tween alignments is larger than maximum intron size. Maximum intron
size Imax depends on the studied genome. The default value refers to the
human genome with a maximum intron size of 20000. This value is selected
since there are validated chimeras having rather small distance between
connected exons [Edgren et al., 2011].

2. Tinner < abs(qi + li − qj) < Touter
The alignments are concordant in the read coordinates based on given
thresholds: maximum intersection size Tinner and maximum distance be-
tween alignments Touter in the coordinates of the read. By default we set
these thresholds to 2 and 10 bp respectively.

To increase the sensitivity of discovery we allow multiple local alignments
of a single read. The multimappings are resolved in later steps of the pipeline.
InFusion accounts only for SPLIT reads which are formed by two local mappings
and by default allows up to 20 possible SPLIT con�gurations to be formed from
the same read.

4. Analysis of end-to-end alignments

Paired-end sequencing experiments make it possible to search for BRIDGE reads.
To perform this task, we analyze the correctly aligned short reads from Step 1.
Firstly, the transcriptomic alignments are converted into genomic coordinates.
Two mate alignments of the same read M1 and M2 are considered concordant
if they are aligned within a distance of the de�ned maximum intron size Imax,
otherwise they form a possible BRIDGE read pair. We record all discovered
BRIDGE read pairs for further analysis. In addition, we compute the insert size
distribution from concordant alignments and estimate expression level for each
gene.
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5. Clustering and forming putative fusions

A chimeric transcript can be described by a pair of genomic coordinates, which
represent the fusion breakpoint. For example, the fusion gene shown in Figure
3.1 has a breakpoint formed by the last base pair of exon 2 of gene A and the �rst
base pair of exon 3 of gene B. We refer to the SPLIT reads and BRIDGE reads
detected in previous steps as breakpoint candidates (BPCs). It should be noted
that a SPLIT read implies an exact breakpoint, while a BRIDGE pair implies
an approximate breakpoint within the corresponding insert size distance. Thus,
each BPC is described by 2 alignments, which are the local alignments of the
read if the BPC is formed by a SPLIT read, and the end-to-end alignments of a
pair of reads if the BPC is formed by a BRIGDE pair.

A clustering procedure groups the alignments forming the BPCs into clusters
based on their genomic coordinates. Thus, alignments of each BPC are iteratively
analyzed: i) the alignment constitutes a new cluster if there is no intersection with
other existing clusters; ii) if the alignment intersects with one existing cluster, it
is added to this cluster; iii) if the alignment belongs to two or more clusters simul-
taneously, the clusters are �rst merged into one single cluster and the alignment
is then added to it.

As a result of the initial clustering procedure (Figure 3.3a), clusters can con-
tain multiple possible breakpoints represented by di�erent groups of alignments.
Therefore we further separate the clusters based on their directionality: the align-
ment strand and the order of the alignment in the BPC, de�ned by location in the
read coordinates in case of a SPLIT read or mate identi�er in case of a BRIDGE
read, predict if the breakpoint position is situated either upstream or downstream
of it. (Figure 3.3b)

We next analyze if the coordinates of the breakpoint positions implied by local
alignments in a cluster are compatible within a con�gurable tolerance (10 bp by
default). If this is not the case, the cluster is separated into 2 new clusters. (Fig-
ure 3.3c) The process continues until there are no more clusters with signi�cant
di�erence in the coordinates of the breakpoint position left.

We further re�ne the clusters by assigning to them the compatible unused lo-
cal alignments of reads from Step 2 of the pipeline that have an alignment score
greater than 50% of the maximum score and an edit distance less than 2 (both
options are con�gurable). Using an interval tree data structure we intersect the
read alignments with the existing clusters. For each found intersecting cluster
(which we call host cluster) we make sure that the alignment is concordant with
the putative breakpoint position as it is dictated by the directionality and align-
ments from SPLIT reads in the cluster. We then select the remaining unmapped
part of the read sequence and try to realign it to each potential fusion partner of
the host cluster, again in concordance with cluster directionality and the fusion
breakpoint.

Clusters formed solely from BRIDGE pairs constitute a special case in the
rescue procedure described above. For this type of cluster the exact breakpoint
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Figure 3.3: Clustering of fusions. (A) Initial clusters are created from inter-
secting SPLIT and BRIDGE alignments. (B) Cluster 4 is separated
from cluster 1 based on the directionality, which is inferred from the
alignment strand and order. (C) Cluster 5 is separated from cluster
2 based on the putative breakpoint position. Alignments belonging
to the same breakpoint candidate have the same color. BRIDGE
reads are marked with b, SPLIT reads are marked with s. A SPLIT
read assumes an exact breakpoint, while a BRIDGE read assumes
an approximate breakpoint within allowed insert size distance.

position cannot be computed, therefore we allow additional tolerance (computed
from insert size distribution) in the genomic region upstream to the breakpoint
position as dictated by the pair con�guration. The rescued reads found in this
case undergo an additional cleanup procedure, which selects the most probable
breakpoint based on the amount of evidence for a particular position.

Finally we go through the list of BPCs to form putative fusions. For every
BPC we check to which cluster each of its alignments belongs to. Then we assign
the BPC to a putative fusion event described by two unique cluster identi�ers.
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During the creation of putative fusions we also take into account the strand-
speci�city of the sequencing library to reconstruct the correct 5'-3' order of the
fusion transcript.

6. Re�ning and �ltering fusions

We make use of the paired-end information by discarding SPLIT reads from
putative fusions which do not have their mate-pair located within the maximum
intron size. Additionally, clusters which consist uniquely of BRIDGE reads are
merged with clusters that are located within maximum intron size in order to
avoid reporting two fusions associated with the same event.

We resolve multimapped reads by assigning iteratively each read with sev-
eral mappings to one putative fusion with the largest score among other fusions,
similar to the deFuse algorithm. The fusion score is calculated by counting the
number of supporting reads, taking into account their alignment score and the
presence of mate pairs for BPCs originating from SPLIT reads.

After resolving multimapped reads we further calculate features associated
with each fusion which are used to �lter and analyze the fusions. There is a num-
ber of �ltering algorithms, each of which can be con�gured with speci�c options.
Default thresholds aim to provide a compromise between recall and precision
based on our experience in analyzing human RNA-seq datasets.

The following �lters are applied:

• Minimal supporting reads

The number of supporting BRIDGE and SPLIT reads demonstrate the con-
trolling evidence of a discovered fusion. By default at least four supporting
reads of any type and one SPLIT read covering the breakpoint should be
detected. Notably, in case of paired-end reads data the SPLIT reads are
veri�ed to have a correct pair. Additionally, the number of rescued SPLIT
reads can be controlled.

• Unique split read alignment

We reconstruct in detail the fusion structure and analyze the coverage of
the supporting SPLIT reads. For each fusion we compute the proportion
of unique alignments based on the their genomic coordinates and estimate
if the mean breakpoint position in the read coordinates follows a uniform
distribution. Both computed features are used for �ltering. Additionally,
if the fusion is supported only with SPLIT reads we require at least one
SPLIT-read that does not have any multimappings in order to accept the
predicted event.

• Homology

We construct the fusion sequences bounded by the read evidence and align
it to the genome and transcriptome. By adapting alignment score, we can
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�lter out false positive predictions arising from parologs or highly homolo-
gous genes. To detect false positives the fusion sequences forming fusions are
aligned to transcriptome and genome allowing multiple alignments. If both
fusion blocks detected belonging to the same transcript or same genome
region, then the fusion cluster is marked as homologous.

• Metacluster homogeneity

By analyzing the genomic intervals forming the putative fusion, it was no-
ticed that clusters of false positive fusions arising from local homology (se-
quence similarity) are usually found intersecting or close to each other in
a small region. By contrast, true fusions are formed from rather unique
sequences and dominate over other events in the selected region. We de-
�ned intersecting cluster blocks belonging to di�erent fusions as metaclus-
ter. Avoiding false positive fusions reported due to homology is possible
by �ltering SPLIT-read and BRIDGE-read alignments from repeat regions.
However, if the repeat regions are not provided for the genome or not de-
tailed enough, then it is important to perform metacluster homogeneity
analysis. We apply this observation by calculating the proportion of each
fusion cluster in the metacluster and �ltering out those fusions that have
low weight.

• Insert size

The reconstructed fusion is used to calculate the insert size for each of the
supporting BRIDGE reads. The insert size is considered valid if it lies
within 3σ interval as de�ned by the insert size distribution, computed in
Step 4. The ratio of valid insert sizes is calculated and used as �ltering
parameter.

• Genome coverage

Additional analysis of coverage in the genes forming the fusion is performed.
By default at least one additional read should be supporting each transcript
forming the fusion.

The �nal �ltering of fusions is performed by applying con�gurable thresholds
to the computed features. Additionally, InFusion allows repeated �ltering of
fusions with adjusted thresholds without running the whole pipeline again.

Strand-speci�c protocols are preferable for fusion discovery since they make
it possible to detect antisense transcription in fusions and infer the direction
of transcription in fusions involving unannotated and intergenic regions. If the
strand speci�city is enabled we calculate the proportion of supporting reads which
are aligned according to the protocol and annotated strand of the gene. The
computed metrics allows analysis of anti-sense transcription in the fusion. If
the fusion involves an unannotated segment we infer and report the probable
transcription strand of the corresponding fusion part.
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7. Reporting fusions

For each predicted fusion event, InFusion reports corresponding genomic regions,
the coordinates of the breakpoint, as well as the number of supporting SPLIT
and BRIDGE reads together with the features computed during putative fusion
analysis and used in the �ltering process. Additionally, the genomic regions in-
volved are characterized by annotating implicated transcripts/exons, determining
the type of fusion event (e.g. inter-chromosomal, read-through), etc. Optionally,
InFusion reports the fusion junction sequence which can be useful for PCR primer
design, as well as the original alignments of reads supporting the predicted events
in BAM format.

3.3.3 Comparison to other existing tools: simulation

To check the quality of fusion detection we developed an advanced fusion sim-
ulation pipeline. The simulation pipeline uses gene annotations and genome as
input for constructing fusion gene annotations with given properties.

We de�ned 5 classes of fusion events:

1. With both fusion partner(s) having a breakpoint close to a known exon
boundary;

2. With one or both fusion partner(s) having a breakpodgint inside an exon;

3. With one or both fusion partner(s) forming a novel exon boundary inside
intron;

4. With one fusion partner originating from an intergenic region;

5. With several alternatively spliced isoforms having breakpoints close to known
exon boundaries.

Using the simulation pipeline, it is possible to create a required number of
random fusion gene pairs of each class. After the gene pairs and break posi-
tions are created, the fusion transcript sequences are produced. Based on the
transcripts the sequencing paired-reads are generated using the Mason software
package [Holtgrewe, 2010]. There are certain options to control the simulation
datasets: read length, insert size and strand-speci�city. The pipeline is designed
to make every run reproducible and is available as a part of the InFusion source
code package.

For our simulation experiments we generated 50 sets of fusion annotations,
each consisting of 100 gene pairs. Each set was including 40 events of the �rst
class, 10 events of the second class, 10 events of the third class, 20 events of the
fourth class and 20 events of the �fth class. The second and the third classes
were selected to form less fusions since such events have rather low frequency.
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Next, for each set of the generated annotations we recreated fusion transcript
sequences and randomly assigned coverage ranging from 1X to 60X. For read sim-
ulation we used the Illumina error model which includes mismatches, insertions
and deletions. The length of the read was chosen as 75 bp with a fragment mean
length of 300 bp and a standard deviation of 80 bp.

Overall the generated 50 RNA-seq datasets were containing the evidence for
5,000 fusion genes. Additionally, based on the expression pro�le from BT474
sample from public RNA-seq data [Edgren et al., 2011] we generated 30 millions
of background reads using the same read simulation settings as for the fusion
transcripts. These background reads were added to each dataset.

We ran InFusion along with �ve widely used tools for fusion detection -
TopHat-Fusion, deFuse, ChimeraScan, SOAPfuse and fusionCatcher - on the
generated RNA-seq datasets. We selected the �rst three tools for the assess-
ment since they were reported to have the highest sensitivity and speci�city
in comparison to other tools [Frenkel-Morgenstern et al., 2014], while the last
two are quite novel and capable of detecting various classes of chimeras. For
each program we measured the number of true positive (TP) and false positive
(FP) predictions among all discovered events, as well as recall (TP/(TP+FN))
and precision (TP/(TP + FP)). We considered a prediction as true positive if
for each fusion partner the breakpoint position was reported within 20 bp up-
stream or downstream of the exact junction point de�ned by the simulation
design. The number of false negative predictions was computed by analyzing
how many simulated fusions were not detected in the dataset. In order to en-
able the discovery of larger spectrum of fusion events and apply equal thresh-
olds for fusion �ltering, we con�gured the parameters of each tool accordingly.
The results of the analysis are summarized in table 3.1. InFusion demonstrated
the best recall and as well as a high level of precision, similar to SOAPfuse.

Figure 3.4: Fusion detection from simulation data.
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Table 3.1: Comparison of fusion detection tools on simulated data.

Tool N TP FP Recall Precision

InFusion 76 ± 4 70 ± 4 5 ± 1 0.7 ± 0.04 0.92 ± 0.02
SOAPFuse 60 ± 4 55 ± 3 4 ± 2 0.56 ± 0.04 0.92 ± 0.04
ChimeraScan 639 ± 4 21 ± 3 618 ± 6 0.21 ± 0.03 0.03 ± 0.01
TopHat-Fusion 70 ± 5 50 ± 4 20 ± 1 0.50 ± 0.05 0.71 ± 0.02
FusionCatcher 68 ± 6 51 ± 4 17 ± 4 0.52 ± 0.04 0.75 ± 0.05

deFuse 92 ± 7 61 ± 6 30 ± 4 0.61 ± 0.06 0.66 ± 0.04

Based on in silico data from 50 simulated RNA-seq datasets with 100 fusion genes

each (5,000 fusions, 10 million read pairs in total). N = total number of predictions

reported by each tool, TP = true positives, FP = false positives. Each dataset was

analyzed independently, and then mean value and standard deviation were computed

for comparison

To enable the discovery of a larger spectrum of fusion events and apply equal
thresholds for fusion �ltering, we con�gured the parameters of each tool accord-
ingly. The detailed tool con�gurations are available in appendix sections A.1 and
A.2.

In order to investigate the e�ect of read coverage we further analyzed the
recall and precision based on the number of reads supporting the fusion (Figure
3.4). InFusion demonstrated superior recall and high precision independent of
the number of reads supporting the fusion event.

Since the simulated transcripts consisted of �ve distinct classes, we also in-
vestigated the prediction accuracy for each fusion class independently (Figure
3.5). In result we detected that InFusion provided the highest recall and rather
high precision in all fusion types except the break inside exon. However, the
problem is related the detection of correct breakpoint position. The check of the
correctness of breakpoint position in simulation was performed by setting certain
thresholds to settings. By default the breakpoint position threshold was set only
to 5 bp. However the increase of threshold InFusion demonstrated improvement
of sensitivity.

Importantly, InFusion provided the highest recall and precision in detection of
fusions within intergenic regions. Among other tools only deFuse demonstrated
the ability to detect such events. The structural changes in genome can lead to
appearance of novel genes in previously uncovered regions, therefore this subject
can play a signi�cant role.

Additionally we performed special simulation experiments to validate the
strand-spec�city detection by InFusion. For this purpose certain reads simulat-
ing fusions were generated using three strand-speci�c protocols: forward-strand-
speci�c, non-strand-speci�c and reverse-strand speci�c. Additionally for each
simulation run we provided background read data in non-strand speci�c mode.
Each simulation was performed 3 times. Then we applied InFusion and checked if
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Figure 3.5: Comparison of recall and precision on simulation data per fusion
class. Simulated fusions and corresponding datasets were analyzed
per fusion class: (A) with both fusion partner(s) having a break-
point close to a known exon boundary (B) with one or both fusion
partner(s) having a breakpoint inside an exon (C) with one or both
fusion partner(s) forming a novel exon boundary inside intron (D)
with several alternatively spliced isoforms (E) with one fusion part-
ner originating from an intergenic region.

the resulting fusion transcript strand-speci�city was detected correctly according
to the protocol. The results are provided in Table 3.2.

Table 3.2: Mean strand speci�city proportion detected by InFusion

Simulated fusion
strand speci�city type

Computed SSP value with-
out/with background

Reverse-strand-speci�c 0.035475 / 0.035477
Non-strand-speci�c 0.499587 / 0.499436

Forward-strand-speci�c 0.970641 / 0.970969

InFusion reports strand-speci�city proportion (SSP) for each fusion. SSP validates

from 0 (reverse-strand spe�cic) to 1 (forward-strand-speci�c). For each dataset mean

detected SSP among all fusions was computed.



46

The simulation results demonstrated that InFusion provided correct strand-
speci�city estimations for detected fusions despite the type of background reads
strand-speci�city. This ability will allow to check the functionality of chimeras
and their activity. As it was demonstrated, in certain cases antisense chimeras
might play a signi�cant role [Frenkel-Morgenstern et al., 2014], therefore detec-
tion of these events might be important. However, it is worth noting that the
main requirement for this analysis is the application of strand-speci�c sequencing
protocol during the experiment.

3.3.4 Comparison to other existing tools: public datasets

The performance of the InFusion pipeline was further tested by analyzing three
public RNA-seq datasets from cancer studies: Edgren et al describes the tran-
scriptome of cells originating from breast cancer, Berger et al from melanoma
and Wu et al from prostate cancer. Each study provides evidence for fusion
genes that were �rst detected from RNA-seq data and then experimentally val-
idated using RT-PCR or Sanger sequencing. Reanalysis of the Edgren et al
dataset performed by Kangapeska et al enabled detection and validation of an
additional 13 fusions events, which we also included in our test. We assessed
the performance of the analyzed tools by comparing the number of rediscovered
known fusions and the total number of fusions reported by each algorithm. For
this comparison we used gene annotations from Ensembl version 68 and spec-
i�ed default settings for each evaluated tool (more details in appendix section
A.3). In most cases no exact genomic locations for fusions were reported in these
studies, therefore we considered a fusion event as rediscovered if both fusion
partner genes were reported correctly. Results are summarized in Table 3.3.

Table 3.3: Fusion events detected in public RNA-seq datasets.

Dataset Sample
Num.

reads
Valid. InFusion

Chimera

Scan

TopHat

Fusion

SOAP

Fuse

Fusion

Catcher
deFuse

Edgren et al KPL4 8.41M 3 3|5 3|29 3|11 3|6 3|3 2|8
Edgren et al MCF7 6.8M 6 5|31 5|71 3|13 4|12 5|8 2|12
Edgren et al SKBR3 21.43M 10 9|24 9|126 8|27 9|20 6|9 6|32
Edgren et al BT474 18.15M 21 20|55 16|185 19|60 19|32 18|24 15|39
Berger et al 501Mel 14.86M 4 4|27 4|192 3|7 4|28 0|4 3|43
Berger et al K562 31.35M 3 3|180 1|535 3|6 2|81 1|1 3|116
Berger et al M000216 13.87M 1 1|32 1|129 0|1 1|10 0|0 1|20
Berger et al M000921 14.47M 2 2|46 2|194 0|1 2|5 1|1 1|24
Berger et al M010403 8.17M 1 1|23 1|84 0|0 1|12 0|0 1|17
Berger et al M980409 15.77M 1 1|11 1|195 0|1 1|12 0|0 1|33
Berger et al M990802 16.07M 2 1|20 1|198 0|1 2|11 0|0 1|24
Wu et al LNCAP 85.39M 11 10|146 6|514 4|13 8|79 5|6 7|274
Wu et al LTL313H 167.99M 15 11|223 5|733 7|26 5|173 4|88 8|324

"Valid." refers to the number of fusions qPCR-validated in the dataset as reported in

the manuscript. For each fusion tool two values are provided, separted by column

symbol. First value the number of previously validated fusions from the dataset, while

second is the total number of fusions reported by the tool.
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Overall, InFusion rediscovered the largest number of fusions reporting 71
events out of 80 previously described. In the dataset by Edgren et al InFu-
sion achieved the highest detection rate, however, it missed three fusion events.
One of them was not detected by any other tool, while two other fusions, re-
ported by SOAPfuse and fusionCatcher, did not have enough reads to pass the
�ltering limits applied by InFusion. In the Berger et al dataset ChimeraScan
demonstrated a higher detection rate than InFusion. It detected one additional
fusion that was not discovered by the other algorithms. In this case the fusion
was �ltered out by InFusion due to its lack of reads spanning the corresponding
junction. In the Wu et al dataset InFusion rediscovered the largest number of
fusions. However InFusion �ltered out �ve events while no unique reads covering
the fusion junction were detected. These �ve fusions were also not detected by
any other tool. The detailed list of fusion genes present in the datasets and their
detection status can be found in appendix sections B.1,B.2 and B.3.

It is also noteworthy that in the Edgren et al dataset InFusion along with
fusionCatcher and TopHat-Fusion, reported isoforms of several known fusions
that have been experimentally validated and described in detail [Kangaspeska
et al., 2012]. Likewise in the Berger et al dataset InFusion detected the two
distinct isoforms of fusion AXL-REC, reported by the authors [Berger et al.,
2010]. Both isoforms were also discovered by deFuse and fusionCatcher.

3.3.5 Experimental validation

To further investigate the power of the InFusion pipeline to detect chimeric
transcripts from deep sequencing data, we sequenced the mRNA of two well-
established prostate cancer cell lines, VCaP and LNCaP. Both cell lines are known
to harbour genomic translocations and well-studied fusion genes [Maher et al.,
2009]. Using the strand-speci�c SENSE mRNA library preparation kit (Lexo-
gen GmbH, Vienna, Austria), we constructed for each cell line two libraries with
average insert sizes of 176 bp (referred to as VCap200 and LNCaP200) and 457
bp (referred to as VCap500 and LNCaP500). Sample allocation and detailed
sequencing statistics are shown in Table 3.4.

Table 3.4: RNA-Seq sample details.

Cell line Sample Insert size (bp) Total read pairs
VCaP VCaP200 176 71,229,410
VCaP VCaP500 457 7,653,307
VCaP LNCaP200 176 74,575,800
VCaP LNCaP500 457 4,521,899

List of samples with associated number of reads obtained and lane share from the

deep sequencing of VCaP and LNCaP cell lines

We ran the InFusion pipeline on the datasets VCaP200 and LNCaP200 and
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detected 336 and 338 putative fusion events, respectively. The applied toolkit
con�guration is provided in appendix section A.4. After analysis we computed
the exact number of detected fusions of a certain class as described previously,
including isoforms and fusions with a breakpoint inside an exon, intron or an
intergenic region (Table 3.5).

Table 3.5: Fusion types detected in VCap and LNCaP cell lines.

Fusion type VCaP200 VCaP500 LNCaP200 LNCaP500

Total 336 151 338 87

Exon boundary break 36 6 31 4

With isoforms 10 1 1 1

Break inside exon 122 125 113 64

Break inside intron 84 8 99 4

Within Intergenic 94 12 95 15

Total is the total number of fusions detected. Exon boundary break is the

number of fusions where both 5' and 3' fusion breaks are on the exon boundary. With

isoforms is the number of fusions of the same type that have several isoforms. Break

inside exon is the number of fusions where one or both breaks are inside an exon.

Break inside intron is the number of fusions where one or both breaks are inside an

intron. Within intergenic is the number of fusions where one of the breaks is inside

an intergenic region.

For the experimental validation, aiming to cover the whole spectrum of fusion
events, 21 candidates from VCaP and 19 from LNCaP were selected and subjected
to qPCR. Ten out of these 40 were known fusions [Maher et al., 2009] that we used
as controls, while the others were novel and to the best of our knowledge have
not been reported previously. Four events were selected as indicating anti-sense
transcription and nine events as fusions of a coding with an intergenic or intronic
region. Four selected events were isoforms of known fusions. The remaining 13
novel events were chosen randomly for validation.

The qPCR con�rmed 36 out of the 40 selected chimeric transcripts, including
all ten control fusions (Table 3.6). Five out of 26 novel events were validated in
both cell lines, while the remaining 21 were speci�c for one cell line only. Only
two fusions from 13 randomly chosen were not validated.

Interestingly, all the events veri�ed in both cell lines appear to be intra-
chromosomal with the exception of a single chimeric transcript that involves gene
NBEA on chromosome 15 and an intergenic region on chromosome 13. A fur-
ther four validated predictions (involving genes DIRC2, SPOCK1, SH3D19 and
AMZ2) with an intergenic region as a second fusion partner were detected only
in one cell line. Fusions INSL6 - JAK2 and two isoforms of ZDHHC7 - UNK
present in the VCaP cell line have a breakpoint inside the intron of the 5' fusion
gene partner. Notably, four con�rmed events (POLR1D - LNX2, CTA-221G9.11
- KIAA1671, CTC-340A15.2 - PPIP5K2, RP11-534G20.3 - SVIL) indicate anti-
sense transcription, emphasizing the value of a strand-speci�c library preparation.
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To investigate the e�ect of the NGS library insert size on fusion detection,
we analyzed datasets VCaP500 and LNCap500. These samples received only 9%
and 5% of the reads of their VCaP200 and LNCap200 counterparts, respectively.

Table 3.6: Fusions validated using qPCR from VCap and LNCaP cell lines.

Name Chr1 Pos1 Break1 Chr2 Pos2 Break2
Split
reads

Bridge
reads

Cell
line

TMPRSS2 - ERG I1 21 42879876 Exon 21 39817547 Exon 20 0 VCaP
TMPRSS2 - ERG I2 21 42879876 Exon 21 39846047 Exon 11 0 VCaP
TMPRSS2 - ERG I3 21 42880007 Exon 21 39817547 Exon 5 0 VCaP
RC3H2-RGS3 I1 9 125622199 Exon 9 116299073 Exon 32 2 VCaP
RC3H2-RGS3 I2 9 125621318 In exon 9 116299074 Exon 8 1 VCaP
TIA1 - DIRC2 3 122552164 Exon 2 70475537 Exon 12 0 VCaP

LMAN2 - AP3S1 5 176778447 In exon 5 115202365 Exon 2 1 VCaP
HJURP - EIF4E2 2 234749255 Exon 2 233421124 Exon 59 12 VCaP
AAK1 - AC114772.1 2 69732701 Exon 2 69693684 In exon 33 0 Both

INSL6 - JAK2 9 51641179 Exon 9 49992434 Intron 87 3 VCaP
PPIP5K2 -

CTC-340A15.2
5 102465407 Exon 5 164598384 Exon 11 26 VCaP

ZNF577 - ZNF841 19 52380532 Exon 19 52570866 Exon 24 1 VCaP
VWA2 - PRKCH 10 116008524 Exon 14 61909827 Exon 109 0 VCaP
CNNM4 - PARD3B 2 97474487 In exon 2 205829873 Exon 11 0 VCaP
ZDHHC7 - UNK I1 16 85029528 Exon 17 73782537 Intron 53 27 VCaP
ZDHHC7 - UNK I2 16 85027706 Intron 17 73782537 Intron 26 0 VCaP
ZDHHC7 - H3F3B 16 85029526 Exon 17 73775267 Exon 45 36 VCaP

SPOCK1 - Intergenic 5 136602698 Exon 5 180144798 Intergenic 15 3 VCaP
Intergenic - NBEA 13 35692611 Intergenic 15 20851765 Exon 44 0 Both
DIRC2 - Intergenic 3 122545912 Exon 2 64697744 Intergenic 3 2 VCaP

HSF1-RERE 8 145515556 Exon 1 8716501 Exon 16 0 VCaP
POLR1D - LNX2 13 28195176 In exon 13 28155942 Exon 18 0 Both

Intergenic - SH3D19 4 152246392 Intergenic 4 152147395 Exon 15 0 VCaP
AC024940.1 - FAM60A 12 31477418 In exon 12 31451159 Exon 9 0 VCaP
MIPOL1 - DGKB 14 37969347 In exon 7 14188860 Exon 16 0 LNCaP
RERE - PIK3CD 1 8482786 Exon 1 9770482 Exon 9 0 LNCaP

SLC45A3 - ELK4 I1 1 205630992 Exon 1 205593020 Exon 41 0 LNCaP
SLC45A3 - ELK4 I2 1 205628618 In exon 1 205593020 Exon 10 1 LNCaP
FAM117B - BMPR2 2 203500510 Exon 2 203329530 Exon 56 0 LNCap

GPS2 - MPP2 17 7218278 Exon 17 419757748 Exon 51 5 LNCaP
SREBF2 - XRCC6 22 42271728 Exon 22 42032115 Exon 587 0 LNCaP
CTA-221G9.11
- KIAA1671

22 25508430 In exon 22 25566787 Exon 22 0 Both

RP11-534G20.3 - SVIL 10 29704341 Exon 10 29746577
Inside
exon

20 0 LNCaP

Intergenic - AMZ2 17 66202379 Intergenic 17 66246327 Exon 6 0 LNCap
RP11-180P8.1 - TANC2 17 61044108 In exon 17 61086895 In exon 9 0 Both

CASZ1 - KAZN 1 10820755 Exon 1 15070470
Inside
exon

5 0 LNCap

Fusions in bold were previously reported, others are novel. In column Cell line

"Both" indicates that the fusion was con�rmed both in VCaP and LNCaP.

Strikingly, InFusion revealed 151 putative fusions in the VCaP500 sample
and 87 in the LNCaP500 sample and moreover, we observed that only 15 and 9
fusions, respectively, were shared between the libraries with short and long inserts
(Figure 3.6). The majority of fusion predictions are exclusive to either small or
large insert size libraries.

Fourteen PCR-validated fusions were also found in datasets with larger insert
size and lower coverage , and by qPCR we additionally con�rmed one novel iso-
form of fusion SLC45A3 - ELK4, which was found only in the sample LNCaP500.

Interestingly, we detected and veri�ed several novel splice variants of the
known fusions TMPRSS2 - ERG, RC3H2 - RGS3 and SLC45A3 - ELK4. Three
isoforms of TMPRSS2 - ERG were also tested by RT-PCR in the non-cancerous
prostate cell lines RWPE-1 and PrEC, but there was no evidence of these tran-
scripts in cell lines other than VCaP. Overall, the qPCR measurements of these
three isoforms correlate with expression estimated from sequencing data . Sur-
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Figure 3.6: E�ect of insert size on fusion discovery. The �gure shows compar-
ison of fusion predictions for samples with di�erent insert sizes in
the same cell line. The lower number of fusions discovered re�ects
the lower sequencing depth in VCaP500 (9.2% of VCap200) and
LNCaP500 (5.2% of LNCaP200)

prisingly, isoform 3, which is the best described isoform, has the lowest expression
level, as measured by qPCR, and the least support from the sequencing data com-
pared to other isoforms.

Another intriguing observation concerns fusions that involve intergenic re-
gions, which are typically ignored by other fusion detection tools. We discovered
that they constitute a large proportion of the predictions. For example 94 out of
336 predictions in VCaP200 sample and 95 out of 338 predictions in LNCaP200
sample have an intergenic region as one part of a fusion. A curios example of
such an event is a validated inter-chromosomal fusion that connects the DIRC2
gene and an intergenic region of chromosome 2, a fusion that is supported by a
large clustering of reads downstream of the predicted breakpoint.

Additionally, we analyzed the cohort of experimentally validated fusions with
TopHat-Fusion, deFuse, ChimeraScan SOAPfuse and fusionCatcher, as we did in
previous comparisons (detailed results in appendix section B.4). While a number
of novel fusion events was also detected by other tools, 15 novel fusions including
several isoforms and events involving intronic and intergenic regions were detected
only by InFusion. Certain isoforms of TMPRSS2 - ERG and RC3H2 - RGS3 were
also detected by fusionCatcher and SOAPfuse, and two intronic fusions ZDHHC7
- UNK by TopHat-Fusion and deFuse. However, InFusion outperformed these
tools in the total detection of these classes.



51

A B

Figure 3.7: Fusion simulation was performed for read size from 75bp to 200 bp
(10 samples each experiment). Then fusion detection was applied
by InFusion along with SOAPfuse and fusionCatcher. Recall (A)
and precision (B) in fusion detection were computed for the tool
results.

3.3.6 Unanswered questions

Even though such e�ective detailed fusion discovery tools from RNA-seq as In-
Fusion are available currently, there are several directions for future work.

Firstly, how exactly the read size bene�ts fusion detection remains to be deter-
mined. We performed additional simulation experiments to check the in�uence of
read size (Figure 3.7). We found that InFusion maintains high precision in com-
parison to existing tools SOAPfuse and fusionCatcher, however, recall decreases
with increase of the read size in all tools due to a growing number of breakpoints
in SPLIT reads. We plan to improve the recall for larger read size in future
versions of the program.

Second, estimating fusion gene expression remains an open problem. InFusion
partly solves this issue by allowing output of possible fusion transcript sequences,
which can be added to the transcriptome library so that expression can be quan-
ti�ed by applying methods such as RSEM [Li and Dewey, 2011] . However, we
believe more robust solutions might be possible.

Third, the discovery of the fusion origin cannot be addressed using RNA-
seq short reads alone. To determine if the chimeric transcript originates from a
genomic translocation, from trans-splicing or from an experimental artifact, tran-
scriptome sequencing should be combined with other experimental technologies.
There are methods that combine long and short RNA-seq reads[Weirather et al.,
2015] or whole genome sequencing and transcriptome sequencing data to detect
gene fusions [McPherson et al., 2012], but more research work can be performed
in this area.
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Figure 3.8: The subsamples are generated from (A) VCaP200 and (B)
LNCaP200 RNA-seq datasets. Each subsample is created randomly
from the dataset based on the required size. The sample size changes
from 5M reads to 70M with a step of 5M.

3.4 Summary

We have designed and implemented a novel method for chimeric transcript dis-
covery from RNA-seq data. Our method combines and improves ideas proposed
by other researchers, such as assignment of reads that map to multiple loci and
advanced fusion �ltering. Additionally, it introduces several novel algorithmic
aspects of chimeric RNA discovery, including intergenic region analysis, fusion
cluster homogeneity estimation and consideration of protocol strand speci�city.
Our comparative analysis demonstrates that InFusion outperforms existing ap-
proaches for chimeric transcript discovery in detection accuracy.

Using simulation data we show that InFusion is able to discover a wide spec-
trum of fusion events that can occur in the transcriptome. Importantly, from our
experimental data we discovered in-silico and veri�ed in-vitro alternatively spliced
fusion isoforms and chimeric RNAs involving non-exonic regions. In concordance
with recent studies [Gonzàlez-Porta et al., 2013] we observed that in most cases
of fusion genes one transcript isoform is dominant and highly expressed, while the
other isoforms are transcribed at signi�cantly lower levels. However, this expres-
sion pattern may be completely di�erent at a di�erent time point or in another
cell type, and isoforms might encode for RNAs or proteins of di�erent function-
ality, which makes isoform detection important for di�erential gene expression
analysis.

Remarkably, in our predictions from cancer data we observed a large number of
fusions that involve intergenic regions , four of which were con�rmed in vitro. To
our knowledge, discovery of such events has not been addressed previously, despite
their potential to encode functional proteins or regulate gene transcription.

An important factor in�uencing the detection of fusions from RNA-seq data
is the depth of coverage of the sequencing experiment. Similar to novel transcript
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discovery and alternative splicing studies, fusion gene discovery bene�ts from
higher coverage depth and longer reads [Sims et al., 2014]. Our analysis shows
that highly expressed fusions could be revealed even with relatively low coverage,
however a gain in sequencing throughput increases the sensitivity of discovery
(Figure 3.8).

Additionally, it is advantageous to use sequencing libraries with various in-
sert sizes, since the fragment length a�ects the range of detectable fusion events
in paired-end sequencing. A notable example of this e�ect is the additional vali-
dated isoform of fusion SLC45A3 - ELK4 detected only in the low-covered sample
LNCaP500. Furthermore, strand-speci�c protocols are preferable for fusion dis-
covery since they allow analysis of antisense transcription [Mills et al., 2013].
InFusion uses information from strand speci�city of the library to report anti-
sense transcription in chimeric RNAs and also infers the transcription strand in
case of a non-annotated region.

The computational e�ciency of InFusion allows it to process large RNA-seq
datasets comparatively quickly, e.g. it took approximately 10 h to analyze 74
million 100 bp paired reads on a machine with eight 2.4 GHz CPUs and the
memory requirements did not exceed 30 GB.

Correlating fusions with cancer will continue to provide new insights into
this disease and inform personalized therapy. Chimeric transcripts, on the other
hand, have also been shown to occur in non-cancerous cells due to trans-splicing
or transcriptome machinery failure, but the underlying mechanisms have yet to
be studied in depth [Mertens et al., 2015]. InFusion may prove to be a useful
tool with high software quality in furthering our understanding in this area by
detecting the whole scope of possible events
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Chapter

4
Discussion

The transcriptome, as the connecting block between the genome and the pro-
teome in a cell, has a number of interesting functions and properties. Deep
understanding of transcriptome activity can provide progressive results in many
possible research directions. And, as described in the previous chapters, RNA-seq
has become an established method for the investigation of detailed transcriptome
structure and functionality. Due to the progress in RNA-seq data analysis there
are currently established concepts [Gri�th et al., 2015] along with detailed exist-
ing pipeline descriptions [Trapnell et al., 2012; Anders et al., 2013] available.

Moreover, the substantial novelties of RNA-seq technology opened the doors to
explore additional elements of cell structure and activity. The method allowed de-
tailed detection of isoforms, chimeric transcripts, fusion genes, strand-speci�city
and special types of RNA. Remarkably, correct design of RNA-seq experiment is
quite important, since there is a number of parameters that in�uence experiment
results and it is rather di�cult to rerun the sequencing. Therefore, once the
goal of research is established, the planning process should be performed rather
carefully.

Notably, the advanced abilities of RNA sequencing technology continue the
growth. Despite the large number of already well-known and established blocks
of RNA-seq data analysis, some novelties require additional work. For example,
the read length in�uences the transcriptome analysis signi�cantly. As demon-
strated previously, increasing the read size from 75bp to 200bp provides a lower
mapping bias, reduces the ambiguity of alignment and advances the detection
of splice variants [Cho et al., 2014]. Also, research companies such as PacBio
(www.paci�cbiosciences.com) and Oxford Nanopore (www.nanoporetech.com) pro-
vide a novel sequencing approach in which the reads can have lengths up to 30
Kbp and cover a whole transcript. Long reads allow more precise detection of
the transcript isoforms [Bolisetty et al., 2015]. Also, as it was mentioned in the
third chapter, application of longer reads might improve the detection of fusion
genes and there are already approaches con�rming this assumption [Davidson
et al., 2015; Weirather et al., 2015]. However, longer reads require an update of
algorithms to improve the alignment of fragments covering exon boundaries [Kim
et al., 2013]. Additionally, except of the long read sizes, such sequencing methods
as PacBio have a rather high error rate (around 15%) and innovative algorithms
are required for correct data processing and quality control.
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Even though RNA-sequencing has become an advanced and important ap-
proach in the analysis of the transcriptome, there are still some poorly known
biases that in�uence the results. Most of the errors can be detected and taken
into account, however additional aspects need more investigation. For example, it
was shown that the biases occurring during rRNA depletion and polyA selection
can result in a 2-fold change in read coverage within over 50% of the expressed
transcripts [Lahens et al., 2014]. These biases require novel quality control and
normalization approaches to provide correct gene expression analysis results.

Luckily, there are new technologies that are designed to improve the RNA
sequencing process. As described earlier, a typical Illumina RNA-seq process is
based on the cDNA conversion, which leads to a number of biases and errors, for
example template switching and chimeric cDNA creation. Therefore, sequencing
technologies that allow direct RNA sequencing (DRS) can become more e�ective
and accurate. The �rst developed DRS approach was based on the Helicos se-
quencing platform [Ozsolak et al., 2009]. It applies polyA RNA selection from
total RNA and direct further processing without cDNA synthesis. The research
in this area continues and DRS technologies will be useful for careful analysis
of the transcriptome along with detection of short RNA blocks that cannot be
converted to cDNA.

A perfect example of an advantageous RNA-seq innovation is single cell tech-
nology (scRNA-seq). Initial sequencing experiments required up to millions of
cells, and the computed results such as gene expression levels were average val-
ues describing the groups of cells. Unfortunately, speci�c biological questions
remained unanswered. For example, neuron cell groups were di�cult to dissect
and it was impossible to detect all cell types. Additionally during early embryonic
development there is only a small number of cells with di�erent functions, and
the measures of gene expression were insu�cient to �gure out their functionality.
To solve these issues, the single-cell method was introduced [Tang et al., 2009].
This technique led to a number of discoveries including identi�cation of novel cell
types [Jaitin et al., 2014], highly variable genes [Grün et al., 2014] and global
patterns of stochastic (per-cell) gene expression [Deng et al., 2014]. However, to
guarantee the correct results of the analysis, particular computational algorithms
speci�ed for single-cell data processing were required to be developed. There are
currently a number of tasks in this process, for which speci�c tools and methods
are still not available [Stegle et al., 2015]. Especially, the quality control task is
rather substantial and requires appropriate solutions.

It's also important to remember that a high number of samples in the ex-
periment improves the reality of research results signi�cantly. It was even shown
that array-based analysis can only be trusted if there are enough samples [Marioni
et al., 2008]. Previously it was not possible to perform a lot of sequencing exper-
iments, however currently the price of HTS falls down. This results in increase
of samples number, and advanced statistics processing is required to understand
the errors and collaboration of samples. Certain steps of this approach were al-
ready performed (for example, multi-sample analysis in the described Qualimap



57

project), however more should follow.
A number of large scale projects and databases were created to adapt RNA-

sequencing. One of these projects - Encyclopedia of the regulatory elements
(ENCODE, http://genome.ucsc.edu/ENCODE/). It collected information about
dozens of cells of various types. The goal of this project is to construct and vali-
date a list of functional elements in the human cells, most importantly including
the transcriptome and the proteome levels along with regulatory elements that
control and report cells activity. The discovery of RNA activity is performed
using RNA sequencing. Currently around 700 RNA-seq experiments datasets are
available and there are more than 50 publications based on this data processing.

Another interesting example is The Cancer Genome Atlas (TCGA, http://
cancergenome.nih.gov). The aim of this project is to collect and analyze patient's
samples from di�erent cancer tumor types in order to understand the underlying
mechanisms of malignant transformation and progression. The database was
found in 2008 and provided 25000 samples in 50 cancer types. At present it
continues the development, focused on the �nalization of a cell process in the
most common cancer types. Here RNA-seq provides a unique snapshot of the
gene expression status. Importantly, it makes possible accurate identi�cation of
novel isoforms of transcripts, fusion genes and non-coding RNAs that is quite
hard to detect using other technologies.

It is worth noting that the described databases along with a majority of cur-
rent molecular biology research projects require not only the transcriptome, but
also the genome and the epigenome data. The cell structure consists of compli-
cated mechanisms controlled by a number of elements. Therefore, precise com-
prehension of a cell process is not possible with analyzing only a single part and
synergy between various analysis technologies is quite important [Bock, 2014].
Transcriptome investigation should be performed in collaboration with genomic,
proteomic and epigenomic analysis. Only careful combination of the signals ob-
tained through the harmonization of the whole cell system will allow to answer
important questions [Kolker et al., 2014]. However, of course, these answers can
be trusted, only if each member of a full analysis pipeline is correct and detailed.
Consequently, accurate and advanced improvements in RNA-sequencing process-
ing along with adaption of the results to other existing methods will remain an
important task. Furthermore, there might be speci�c aspects of transcriptome
activity that are still unknown and the RNA-seq approach can help to propel
innovative discoveries.
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Appendix

A
Fusion discovery tools

options

This section describes parameters applied for the fusion discovery tools in com-
putational experiments.

A.1 General

In our comparison we analyzed output of the following fusion detection tools:

• InFusion v0.7.1: fusions.txt

• Chimerascan v.0.4.5 : chimeras.bedpe

• deFuse v0.6.0 : results.�ltered.tsv

• TophatFusion v2.0.6 �le: result.txt

• SOAPfuse v1.26 : soap_sample.�nal.Fusion.speci�c.for.genes

• fusionCatcher v0.99.4a,b : �nal-list_candidate-fusion-genes.GRCh37.txt

All described tools require genome and transcriptome sequences as well as gene
annotations. For each tool we used hg19 human genome build. We applied En-
sembl v.68 gene annotations for InFusion, SOAPfuse and deFuse, while Tophat-
Fusion, Chimerascan and fusionCatcher used an internal custom-formatted an-
notations based on Ensembl and UCSC RefSeq databases.

A.2 Simulated data analysis

In order to increase the spectrum of detected events we applied speci�c options
for analyzed tools. Additionally, we set the same thresholds for the numbers of
supporting SPLIT and BRIDGE reads where possible.

InFusion
We enabled the detection of non-coding and intergenic regions:
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infusion �allow-non-coding �allow-intronic �allow-intergenic $READS_1 -2
$READS_2 /data/fusions-data/infusion.ens68.cfg

ChimeraScan
ChimeraScan has high sensitivity by default and does not allow setting mini-

mum threshold for the number of supporting reads therefore we did not modify
any options for this tool.

deFuse
We changed the minimum required number of supporting split and span seg-

ments in the con�guration to 1 and 4 accordingly, which corresponds to the
default InFusion values:

#
# Con�guration �le for deFuse
#

span_count_threshold = 4
split_count_threshold = 1

TophatFusion
When running TopHat we set the minimum fusion distance 20000, which

corresponds to the default value of a similar InFusion parameter max-intron-size.
Other parameters have been set as recommended by the authors of the program
in the "Getting Started" tutorial:

tophat -o tophat_simulation -p 4 �fusion-search �keep-fasta-order
�bowtie1 �no-coverage-search -r 100 �mate-std-dev 300 �fusion-min-dist 20000
/data/tophatruns/index/hg19 $READS_1 $READS_2

In the tophat-fusion-post script we skipped the BLAST �ltering step in order
to increase sensitivity of the discovery and additionally set the thresholds for
supporting reads which correspond to the defaults in InFusion:

tophat-fusion-post -p 4 �num-fusion-both 4 �num-fusion-reads 1
�num-fusion-pairs 0 �skip-blast $TH_DATA/index/hg19

SOAPfuse
In main settings of SOAPfuse we did not change any requirements. However

the required correct insert size in con�guration �le for each experiment was pro-
vided.

fusionCatcher
We used default con�guration parameters for fusionCatcher since it adapts

correctly to the provided data without additional settings.



61

The pipeline depends on a certain number of tools with �xed version. Unfor-
tunately, certain bugs were introduced by STAR aligner as one of the included
tools; however automatic restart.sh script was used to rerun analysis of failed
experiments. Additionally the novel version of fusionCatcher (0.99.4b) relies on
a new version of STAR, and these problems were not seen again.

A.3 Public datasets

For InFusion we applied the following con�guration (options are designed based
on low coverage, small read size and types of reported fusions in publications):

infusion �allow-intronic �allow-non-coding �do-coverage-analysis
�req-homogeneity-weight 0.15 �min-unique-split-reads 0 -1 $READS_1 -2 $READS_2
/data/fusions-data/infusion.ens68.cfg

Additionally, due to di�erences in sizes of the datasets (from 6 millions of reads
up to 85 millions) certain options were con�gured. For example, parameters �
min-bckg-reads and �min-unique-split parameters were adapted in large datasets.

For other tools we used parameters provided in publications (when available)
or default parameters.

A.4 In-house datasets

We applied the following con�guration for analysis of deep sequencing data from
VCap and LNCap cell lines:

infusion �library RF �alow-intronic �allow-intergenic �allow-non-coding
�min-split-reads 2 �min-span-pairs 0 �min-fragments 3 �min-unique-split-reads 0
�min-unique-alignment-rate 0.04 -1 $READS_1 -2 $READS_2
/data/fusions-data/infusion.ens68.cfg



62



Appendix

B
Fusion discovery

supplementary tables

This section provides tables with results of fusion detection in various datasets.
Note: in each table the names of some tools are abbreviated (ChimeraScan =
CScan, TopHat-Fusion = TFusion, SOAPfuse = SFuse, fusionCatcher = fCatcher)

B.1 Edgren et al. dataset

Fusion genes in the Edgren et. al dataset. Additionally the table includes fusions
detected and validated by Kangapeska et al. (in bold).

Sample Fusion gene InFusion deFuse CScan TFusion SFuse fCatcher
KPL4 BSG-NFIX + + + + + +
KPL4 PPP1R12A-SEPT10 + - + + + +
KPL4 NOTCH1-NUP214 + + + + + +
MCF7 BCAS4-BCAS3 + + + + + +
MCF7 ARFGEF2-SULF2 + + + + + +
MCF7 RPS6KB1-TMEM49 + - + + + +
MCF7 GCN1L1-MSI1 + + + - - -
MCF7 AC099850.1-VMP1 + - - - - +
MCF7 SMARCA4-CARM1 - - + - + +
SKBR3 TATDN1-GSDMB + + - + + +
SKBR3 CSE1L-ENSG00000236127 - - - + - -
SKBR3 RARA-PKIA + + + + + +
SKBR3 ANKHD1-PCDH1 + + + + + +
SKBR3 CCDC85C-SETD3 + - - + + +
SKBR3 SUMF1-LRRFIP2 + + + + + +
SKBR3 WDR67-ZNF704 + - + + + +
SKBR3 CYTH1-EIF3H + + - + + +
SKBR3 DHX35-ITCH + - + - + -
SKBR3 NFS1-PREX1 + + + - + -
BT474 ACACA-STAC2 + + + + + +
BT474 RPS6KB1-SNF8 + + - + + +
BT474 VAPB-IKZF3 + + + + + +
BT474 ZMYND8-CEP250 + + + + + +
BT474 RAB22A-MYO9B + + + + + +
BT474 SKA2-MYO19 + + + + + +
BT474 DIDO1-TTI1 + + + + + -
BT474 STARD3-DOK5 + + + + + +
BT474 LAMP1-MCF2L + + + + + -
BT474 GLB1-CMTM7 + + + + + +
BT474 CPNE1-PI3 + - - + - +
BT474 THRA-AC090627.1 + - - + - +
BT474 TOB1-SYNRG + - + + + +
BT474 AHCTF1-NAAA + + - + + +
BT474 MED1-STXBP4 + + + + + +
BT474 MED13-BCAS3 + - + + + +
BT474 MED1-ACSF2 + + + + + +
BT474 TRPC4AP-MRPL45 + + + + + +
BT474 STX16-RAE1 + + + + + +
BT474 USP32-MED1 - - + - + +
BT474 PIP4K2B-RAD51C + - + - + -
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B.2 Berger et al. dataset

Fusion genes in the Berger et. al dataset.

Sample Fusion gene InFusion deFuse CScan TFusion Sfuse fCatcher
501Mel CCT3-C1orf61 + + + + + -
501Mel GNA12-SHANK2 + + + + + -
501Mel SLC12A7-C11orf67 + + + - + -
501Mel PARP1-MIXL1 + - + + + -
K562 BCR-ABL1 + + + + + +
K562 NUP214-XKR3 + + + + - -
K562 BAT3-SLC44A4 + + + + + -

M000216 KCTD2-ARHGEF12 + + + - + -
M000921 TMEM8B-TLN1 + - + - + -
M000921 RECK-ALX3 + + + - + +
M010403 SCAMP2-WDR72 + + + - + -
M980409 GCN1L1-PLA2G1B + + + - + -
M990802 ANKHD1-C5orf32 + - + - + -
M990802 RB1-ITM2B - + + - + -

B.3 Wu et al. dataset

Fusion genes in the Wu et. al dataset.

Sample Fusion gene InFusion deFuse CScan TFusion Sfuse fCatcher
LNCAP DLEU2-PSPC1 + - - - + -
LNCAP RERE-PIK3CD + + + + + +
LNCAP MIPOL1-DGKB + + + + + +
LNCAP MRPS10-HPR + - + - + -
LNCAP C19orf25-APC2 - - - - - -
LNCAP SLC45A3-ELK4 + + - - - +
LNCAP TFDP1-GRK1 + + + - + -
LNCAP FAM117B-BMPR2 + + + + + +
LNCAP GPS2-MPP2 + + + - + -
LNCAP ITPKC-PPFIA3 + + - + + +
LNCAP CCDC43-YBX2 + + + - - -
LTL313H SLC6A17-CA2 - - - - - -
LTL313H PACS1-PTEN + + + + + -
LTL313H TMPRSS2-ERG + + + + + +
LTL313H SSR1-RNF165 + + - + - -
LTL313H SLC35B1-PEMT + + + + + +
LTL313H USP34-C2orf74 - - - - - -
LTL313H TRAPPC9-SPRYD3 + - - - - -
LTL313H TENC1-TTLL9 + + - - - -
LTL313H KIAA1467-TTLL9 + - + - - -
LTL313H TTLL9-C12orf59 + - - - - -
LTL313H CA2-RUNX1T1 - - - - - -
LTL313H PDRG1-ARF3 - - - + - -
LTL313H PDRG1-RUNX1T1 + + - + - -
LTL313H EEF1D-SDC4 + - - + + +
LTL313H SPRYD3-PTDSS1 + + + - + +
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B.4 VCaP and LNCaP cell lines

The table indicates if a particular event detected by InFusion and validated using
qPCR was also reported by tools deFuse, TophatFusion, ChimeraScan, SOAPfuse
and fusionCatcher. Fusions in bold are detected and reported only by InFusion.

Fusion transcript deFuse TFusion CScan Sfuse fCatcher
TMPRSS2 - ERG I1 + - + + +
TMPRSS2 - ERG I2 - - - - +
TMPRSS2 - ERG I3 - - - - +
RC3H2 - RGS3 I1 + + + + +
RC3H2 - RGS3 I2 - - - + +
TIA1 - DIRC2 - - + - -
LMAN2 - AP3S1 - - + - -
HJURP - EIF4E2 + + + + +

AAK1 - AC114772.1 - - - - -
INSL6 - JAK2 (intronic) - - - - -
PPIP5K2 - CTC-340A15.2 + - - - -

ZNF577 - ZNF841 - - + - -
VWA2 - PRKCH + + + + -
CNNM4 - PARD3B - - + - -

ZDHHC7 - UNK I1 (intronic) + + - - -
ZDHHC7 - UNK I2 (intronic) + + - - -

ZDHHC7 - H3F3B + + + + -
SPOCK1 - INTERGENIC + - - - -
INTERGENIC - NBEA - - - - -
DIRC2 - intergenic - - - - -

HSF1 - RERE - + + + -
POLR1D - LNX2 - - - - -

INTERGENIC - SH3D19 - - - - -
AC024940.1 - FAM60A - - - - -

MIPOL1 - DGKB - - - - -
RERE-PIK3CD + - - - -

SLC45A3 - ELK4 I1 + - - + +
SLC45A3 - ELK4 I2 - - - - -
FAM117B - BMPR2 + - + + +

GPS2 - MPP2 + + + + +
SREBF2 - XRCC6 + + + + +

CTA-221G9.11 - KIAA1671 - - - - -
RP11-534G20.3 - SVIL - - - - -
INTERGENIC - AMZ2 - - - - -
RP11-180P8.1 - TANC2 - - - - -

CASZ1 - KAZN - - - - -
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Appendix

C
List of abbreviations

DNA: Deoxyribonucleic acid
RNA: Ribonucleic acid
bp: base pair, character of the alphabet { A,C,G,T }
NGS: Next Generation Sequencing
HTS: High-Throughput Sequencing
RPKM: Reads Per Kilobase per Million mapped reads
FPKM: Fragments Per Kilobase per Million mapped reads
PCR: polymerase chain reaction
RT-PCR: real-time PCR
FISH: �uorescent in situ hybridization
QC: quality control
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