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FREIE UNIVERSITÄT BERLIN

Fachbereich Physik

Zusammenfassung

Plasmonic enhancement in graphene: A resonance Raman study

von Christian Lehmann

Diese Arbeit untersucht die Interaktion zwischen Graphen und plasmonischen Antennen

mittels wellenlängenabhängiger Raman-Streuung. Zunächst wurden die optischen Eigen-

schaften von plasmonischen Dimerantennen mittels der Finite-Differenzen-Methode im

Zeitbereich berechnet. Das Streuverhalten im Nah- und Fernfeld wurde numerisch

bestimmt und experimentell mittels Dunkelfeldspektroskopie untersucht. Zusätzlich

wurde die Feldverteilung simuliert, der ein Analyt in der Nähe einer plasmonischen

Dimerantenne ausgesetzt ist. In dieser Arbeit wurde durchgehend Graphen als An-

alyt benutzt, um die Verstärkungseigenschaften von dreieckigen und runden Dimer-

antennen zu analysieren. Bei allen Proben befand sich Graphen auf der Oberfläche

der Antennen. Durch die ortsabhängige Abbildung der Intensität des Raman-Signals

bei verschiedenen Wellenlängen wurde nachgewiesen, dass plasmonische Antennen eine

Verstärkung nur nahe der lokalisierten Oberflächenplasmonenresonanz zeigen. Plas-

monische Hotspots wurden mittels wellenlängenabhängiger Raman-Streuung des 2D-

Signals von Graphen untersucht. Diese Messungen ergaben scharfe Resonanzen, die

durch die etablierte Theorie der oberflächenverstärkten Raman-Streuung nicht erklärt

werden konnten. Daher wurde eine neue Theorie der plasmonisch verstärkten Raman-

Streuung entwickelt. Diese nutzt eine quantenmechanische Beschreibung des Raman-

Prozesses unter Einbeziehung einer plasmonischen Antenne. Die Theorie wurde mittels

wellenlängenabhängiger Raman-Streuung an einzelnen Dimerantennen verifiziert. Die

Messungen bestätigten die Vorhersagen der neuen Theorie der plasmonisch verstärkten

Raman-Streuung. Die beobachtete Verstärkung wird durch das Nahfeld einer plas-

monischen Antenne hervorgerufen. Zusätzlich wurden Hinweise darauf gefunden, dass

die plasmonische Verstärkung die elektronische Bandstruktur und Phononendispersion

von Graphen verändert. Diese Erkenntnisse geben neue Einsichten in die physikalis-

chen Prozesse, die zur Verstärkung des Raman-Signals durch plasmonische Antennen

beitragen. Die Erkenntnisse in dieser Arbeit werden langfristig zur Entwicklung extrem

sensitiver Sensoren beitragen.

http://www.fu-berlin.de
http://www.physik.fu-berlin.de
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Abstract

Plasmonic enhancement in graphene: A resonance Raman study

by Christian Lehmann

This thesis investigates the interaction between graphene and plasmonic antennas by

wavelength-scanned Raman scattering. The optical properties of plasmonic dimer an-

tennas are investigated using numerical simulations with the finite difference time do-

main method. The scattering behavior of the near and far field was calculated and

experimentally verified using dark field spectroscopy. Additionally, the field distribution

around a plasmonic dimer antenna was studied to assess the field distribution an ana-

lyte is exposed to. Throughout this thesis graphene was used as an analyte to measure

the enhancement properties of triangular and cylindrical dimer antennas. All samples

were designed with graphene lying on top of the antennas. Using spatial Raman map-

ping at different wavelengths it was found that plasmonic antennas show enhancement

only in the energetic region of their localized surface plasmon resonance (LSPR). Plas-

monic hotspots were investigated by wavelength-scanned Raman measurements of the

2D mode of graphene. These measurements revealed sharp resonances that could not

be explained by the conventional theory of surface-enhanced Raman scattering. Thus,

a new theory of plasmon-enhanced Raman scattering was developed using a quantum

mechanical treatment of the Raman process adding a plasmonic antenna. To verify

this theory, single dimer antennas were investigated using wavelength-scanned Raman

spectroscopy. These measurements confirmed the predictions made by the new theory

of plasmon-enhanced Raman scattering. The observed Raman enhancement is caused

by the near field around a plasmonic antenna. Additionally, evidence was found that

plasmonic enhancement may alter the electronic band structure and phonon dispersion

of graphene. All these findings give new insight into the processes involved in the Ra-

man enhancement caused by plasmonic antennas. In the long run they may lead to the

development of extremely sensitive sensors.

http://www.fu-berlin.de
http://www.physik.fu-berlin.de
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The history of science shows that theories are perishable. With

every new truth that is revealed we get a better understanding of

Nature and our conceptions and views are modified.

Nikola Tesla





Chapter 1

Introduction

Many centuries ago painters used small metal particles for their amazing scattering

properties, creating the stunning glow which is often found in church window paint-

ings. Metal nanoparticles were being used for this purpose since Roman times [1]. An

understanding of the physics involved was given by Gustav Mie in 1908 [2], explaining

the extinction spectra and polarization behavior of small spherical metal nanoparticles.

Thereafter, interest in the physics of small metal nanoparticles was quite low due to

a lack of useful applications. In 1974 Fleischmann et al. [3] observed enhancement

of the Raman scattering cross section of pyridine adsorbed on a rough silver surface.

This observation was called surface-enhanced Raman scattering (SERS) and through it

the detection of small amounts of molecules using Raman spectroscopy became possible

[4, 5]. Later on even the detection of a single molecule was demonstrated [6, 7]. All

this was achieved without knowing the physics behind this remarkable Raman signal

enhancement. For more than 30 years a lot of effort has been put into understanding

the physical process boosting the scattering cross section by up to 12 orders of mag-

nitude [5, 8–11]. A theoretical understanding was established which consisted of an

electromagnetic part (cf. Ref. [12, 13]) and a chemical part (cf. Ref. [14, 15]) causing

the enhancement. The chemical contribution to the amplified signal proved to be small

[16]. Thus, research mainly focused on understanding the electromagnetic contribution

to SERS. Within the last decade huge advances have been made in understanding the

design of nanoantennas (cf. Ref. [17]). This became possible by new developments in

the finite difference time domain (FDTD) method. It is used to compute electromag-

netic boundary problems [18, 19] and thus the optical properties of arbitrarily shaped

nanoantennas. Simultaneously, high-performance computers became available, making

such computations possible.

1
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Figure 1.1: Schematic representation of the plasmonic system consisting of a cylin-
drical dimer antenna covered with graphene.

Recent developments in electron beam-lithography allowed the precise manufacturing

of antennas down to sizes in the 5 nm range [20, 21]. This made it possible to create

arbitrary antenna shapes and to characterize their optical properties [22, 23]. Addition-

ally, these antennas could now be used to assess their SERS enhancement properties.

However, until today there are many unanswered questions regarding SERS:

• Why do some scattering configurations show Raman modes that are forbidden by

the Raman selection rules (cf. Ref.[9, 24])?

• At which excitation energy does the maximum Raman enhancement occur for a

given configuration of antenna and analyte?

• Which parameters determine the total enhancement of an antenna analyte system?

In order to address these questions, the focus of this thesis is to investigate a well defined

plasmonic system. Initially, our approach was to do wavelength-scanned Raman scat-

tering using bowtie antennas manufactured by nanosphere lithography (NSL) (cf. Ref.

[25]) covered with graphene. This proved to be difficult due to the high variance in the

antenna dimensions and the fact that NSL produces arrays of closely spaced antennas.

As a result the measured signals were an average of the contribution from many anten-

nas. In later experiments we used dimer antennas consisting of two cylindrical antennas

covered with graphene. This plasmonic system is schematically shown in Fig. 1.1. Most

of the results presented in this thesis were obtained from this plasmonic system. The
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system was designed to specifically probe the optical properties of free-standing plas-

monic dimer antennas [26]. We used them for their polarization behavior i.e. to switch

the plasmonic hotspot on and off by simply changing the polarization of the incident

laser beam. In comparison to the literature a novelty of our measurements was to use

only single dimer antennas instead of averaging over multiple antennas. This was done

for the first time parallel to another group that published their work in October 2014

(cf. Ref. [27]). They used also dimer antennas but with another analyte and in respect

to another research question.

There has only been a small amount of publications treating wavelength-scanned Raman

measurements on a plasmonic system [27–29]. One reason may be that microscopic

wavelength-scanned Raman measurements require a triple grating monochromator and

tunable laser systems that are very expensive. The main reason however is that a

triple monochromator system is much less sensitive than common notch filter Raman

systems resulting in very long integration times. This leads to very demanding and time

consuming measurements. Van Duyne et al. [4, 5, 29] conducted wavelength-scanned

Raman measurements on a plasmonic system. They used silver NSL surfaces covered

by benzenethiol with results averaged over multiple antennas. As will be shown later,

NSL surfaces are inhomogeneous. Thus, one obtains a broad distribution of different

resonance wavelengths. Therefore, the plasmonic resonances reported in Ref. [29] are

broadened.

Our approach has some significant improvements. By using graphene we exclude any

intrinsic Raman resonances from the analyte that could alter the plasmonic resonance

(cf. Refs. [4, 30]). Furthermore, graphene is an inert solid. Thus, we did not expect any

chemical reactions to occur that might alter the graphene in the vicinity of the antenna

which is otherwise a common problem (cf. Refs. [10, 16]). Additionally, graphene is

extensively characterized and has a well known band structure and phonon dispersion. It

needs to be emphasized that we measured single dimer antennas having enough distance

to adjacent dimer antennas to exclude interactions (cf. Fig. 1.1). Additionally, by using

a dimer antenna it was possible to investigate the influence of the cavity that forms

in between the cylindrical antennas forming the dimer that produces a very high field

enhancement. This enhancement is higher than the enhancement created by a single

antenna (cf. Refs. [17, 31]). By changing the polarization of the incoming light we were

able to switch the cavity on and off which will also be shown by simulations.

Finally, our approach allows a more complete analysis of the basic processes involved in

surface enhanced Raman scattering due to the following reasons:

1. We used an analyte having no intrinsic Raman resonances (cf. Sec. 3.4.4).
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2. The Raman spectra of a single dimer antenna were obtained.

3. The strain induced Raman shift and mode splitting (cf. Sec. 3.4.3) was used to

determine the microscopic origin of the Raman signal.

4. The excitation was done using ring lasers having a mode separation of ∆λ = 0.8 nm.

This made it possible to observe spectrally narrow features in wavelength-scanned

Raman scattering.

The scattering behavior of the dimer antennas was simulated using the finite difference

time domain method (FDTD). The field distribution around the dimer antenna was ana-

lyzed to assess the area where the enhanced Raman signal is being created. Additionally,

the size of the single antennas and the size of the gap in between them were varied within

a reasonable range. Hence, the influence of these parameters on the scattering properties

was calculated and analyzed.

The overall goal of this thesis is to further elucidate the fundamental physics involved

in plasmonic enhanced Raman scattering. This is necessary to improve the knowledge

about the process causing the signal enhancement. This work is a first step towards a

fundamental understanding. Successive work may enable the specific design of anten-

nas capable to detect single molecules approaching a plasmonic antenna using optical

spectroscopy. This may lead to incredibly sensitive gas detectors. Additionally, it may

be possible to create plasmonic surfaces that control chemical reactions. This may be

achieved by specific antenna designs that excite chemical reactions in a surfactant due to

their high near field intensity when they are illuminated. In such a design the plasmonic

antenna may act as a kind of photo-active catalyst.

This thesis is divided into two parts. The first part gives an introduction to plasmonics

and the physics of metallic nanoantennas. As it is not possible to give an analytical

solution of the scattering behavior of cylindrical dimer antennas it will be calculated

using the FDTD method. For the calculations an open source simulation environment

called Meep will be used. After testing the simulation environment for its reliability,

the influence of the diameter, gap size and the substrate on dimer antennas will be

presented. The second part will start by introducing the physical properties of graphene

and its Raman modes with a focus on the effects of strain to the Raman spectrum

of graphene. Subsequently, the theory of double resonant Raman scattering will be

introduced as it describes the 2D mode of graphene, recorded in the measurements.

This will be continued by the derivation of a new theory of plasmon-enhanced Raman

scattering. Eventually, wavelength-scanned Raman measurements will be shown and

analyzed using the new theory of plasmon-enhanced Raman scattering.



Chapter 2

Plasmonics

A brief introduction about plasmons and their properties will be given. Despite the

nanoscale dimensions of plasmonic antennas, a classical approach using Maxwell’s equa-

tions (MWE’s) is sufficient. This may be done as the differences in energy levels are

small compared to thermal excitation levels at room temperature [1].

After derivation of the most important properties of plasmons, Mie theory will be in-

troduced. Subsequently, the finite difference time domain (FDTD) method employed

to calculate the scattering properties of plasmonic antennas will be described. The

calculations were done using an open source simulation environment called Meep1.

The numerical calculations will be verified by analytical test cases before using Meep

to derive the scattering behavior of cylindrical dimer antennas. This type of dimer

antenna was utilized to carry out the Raman experiments presented in Chap. 3. The

plasmonic properties of this antenna type will be simulated and analyzed before finishing

the chapter.

1Meep stands for MIT electromagnetic equation propagation [32]. It is available as Open Source
software under http://ab-initio.mit.edu/wiki/index.php/Meep

5
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2.1 Fundamentals

2.1.1 Maxwell’s equations and basic assumptions

Maxwell’s equations completely describe the scattering behavior of arbitrary objects. In

differential form they are written as (cf. Ref. [33])

~∇ · ~D = ρext (2.1a)

~∇ · ~B = 0 (2.1b)

~∇× ~E = −∂
~B

∂t
(2.1c)

~∇× ~H = ~Jext +
∂ ~D

∂t
. (2.1d)

The macroscopic fields are linked to their microscopic counterparts by the polarization

~P and magnetization ~M

~D = ε0 ~E + ~P (2.2a)

~H =
1

µ0

~B − ~M (2.2b)

The rapidly varying microscopic fields are averaged over distances much larger than the

underlying atomic structure as the antennas have dimensions in the tens of nanometers.

This is called quasistatic approximation. Thus, we do not need to consider the micro-

scopic fields [1] which will become more clear in Sec. 2.3.4. Furthermore, only linear,

isotropic and nonmagnetic media without residual polarization ~P or magnetization ~M

will be considered. Thus, we obtain

~D = ε0ε ~E (2.3a)

~B = µ0µ ~H (2.3b)

with ε being the relative dielectric constant and µ being the relative permittivity. Setting

µ = 1 for simplification is justified as we treat antennas made of nonmagnetic metals.

2.1.2 The dielectric function

The Drude model is used to describe electrical conduction in a solid [33]. It may also

be extended to describe optical properties. Here, a short introduction will be given. A

more elaborate derivation will be found in Ref. [33].
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The equation of motion of an electron of charge e bound by a harmonic force will be

used. Additionally, an external electrical field ~E(x, t) is applied. Thus, we find

~̈x+ γ~̇x+ ω2
0~x = −e ~E(~x, t) (2.4)

with γ being a damping constant. It is reasonable to assume that the excitation of

the electron is small. As such it is possible to evaluate the electrical field at the mean

location of the electron. Using a harmonic excitation ~E(~x, t) = exp(−iωt), we are able to

find a solution that constitutes the contribution from one electron to the dipole moment

− e~x = ~p =
e2

m

1

ω2
0 − ω2 − iωγ

~E. (2.5)

By multiplying ~p with the amount of oscillators N we describe the ensemble of oscillators

as an effective medium. This approach is well justified for structure sizes a� λ [34].

Now that we constructed an effective medium, it is reasonable to assume that there

are N · fi electrons at resonance frequency ωi and damping constant γi. This may be

used as a description of interband transitions in noble metals [1]. Using the relation

ε/ε0 = 1 + χe we find

ε(ω) = 1 +
Ne2

ε0m

∑
j

fj
ω2
j − ω2 − iωγj

. (2.6)

This equation contains the plasma frequency ωp of the free electron gas

ω2
p =

Ne2

ε0m
. (2.7)

For high excitation frequencies we find negligible damping, approaching ωp. At these

frequencies ε(ω) in Eq. (2.6) becomes predominantly real with ε(ω) = 1 − ω2
p/ω

2 and

thus the metal transparent.

Until now, an ideal free-electron metal was assumed. In a real metal, the positive ion

cores cause a residual polarization, expressed by the dielectric constant ε∞ for ω � ωp.

In this regime the optical response is dominated by free s-electrons [1]. Thus, Eq. (2.6)

may be rewritten in the Lorentz-Drude (LD) form [34] commonly found in textbooks

such as Refs. [1, 33, 34]

ε(ω) = ε∞ +
∑
j

ω2
pfj

ω2
j − ω2 − iωγj

. (2.8)

Using Eq. (2.8) we are able to describe the optical properties of a metal using only a

set of individual constants {fi, ωi, γi}. Later on this will be employed for the FDTD
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simulations in Sec. 2.3.

2.1.3 Plasmons

Plasmons are collective oscillations of an electron plasma [1]. They are the quantized

version of Langmuir waves2. As plasmons are a quantization of classical plasma oscilla-

tions, the macroscopic Maxwell equations (Eqns. (2.1)) are sufficient to derive the basic

equations for their description.

As already mentioned, a large density of free electrons is required to sustain plasmons

[34]. Thus, plasmons only occur in metals and solids having a high density of electrons

such as graphene or highly doped semiconductors [36]. Having a spatially confined free-

electron gas, we may assume a surface charge density ρs = ne∆x with n being the

electron density, e being the electron charge and ∆x representing the displacement of

the electron gas in x-direction. Inside the medium this induces an E-field

Ex =
ne

εε0
∆x, (2.9)

neglecting boundary effects in the y- and z-direction. The induced E-field acts back on

the electrons and we obtain an equation of motion

eEx =
e2n

εε0
∆x = me

∂2

∂t2
∆x. (2.10)

We find that Eq. (2.10) describes a harmonic oscillation with the bulk plasmon frequency

ωPl =

√
e2n

meεε0
=

√
ω2
p

ε
. (2.11)

So the assumption of a free-electron gas led to the description of induced electron-plasma

oscillations within a solid. The quantization of this oscillation leads to quasiparticles

called plasmons, obeying Bose statistics [34].

For normal electron densities, ωPl is situated in the energy range of 10 meV to 100 meV

(IR) for typical semiconductors [34] and in the VIS or UV part of the spectrum for

metals, due to their high electron density (cf. Eq. (2.11)) [34].

As plasmons are oscillations of free electrons, their contribution to the dielectric function

is considered via the motion of free electrons. It is derived using Eq. (2.4), setting ω0 = 0

as we are now dealing with unbound carriers. The solution is obtained analogously to

2Langmuir waves are rapid oscillations of the electron density in conducting media such as plasmas
or metals (cf. Ref. [35]).
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Eq. (2.8) and we find

ε(ω) = ε∞ +
ω2
p

−ω2 − iωγe
(2.12)

with n in ωp now being the density of free electrons and γe = 1/τe being their damping

constant. τe is the lifetime of the corresponding excitation. This result may also be

found assuming an equation of motion for free carriers with an incident electric field

oscillating at the frequency ω. The derivation is analogous to the one presented in Sec.

2.1.2.

Referring to the description above, the LD model considers bound and unbound charges

separately [34], we find a total dielectric function according to

ε(ω) = εfree carrier(ω) + εbound carrier(ω). (2.13)

The bound carrier term represents Lorentz oscillations as treated in Sec. 2.1.2, Eq. (2.8).

The free carrier term includes the contribution from the bulk plasmon, Eq. (2.12). As

we write the total dielectric function, we need to be careful, considering ε∞ only once.

Eventually, we obtain

ε(ω) = ε∞ −
ω2
p

ω2 + iωγe
+
∑
j

ω2
pfj

ω2
j − ω2 − iωγj

, (2.14)

which is the general Lorentz-Drude model [34, 37] which will be used below to describe

the optical properties of metals within the FDTD simulations. Equation (2.14) may also

be found having the free carrier term incorporated into the sum [34].

The free carrier term in Eq. (2.14) describes the contribution of bulk plasmons to the

dielectric function. This should not be mixed up with surface plasmon polaritons (SPP’s)

which are responsible for the resonances investigated in Sec. 2.3 and below.

2.1.4 The wave equation at a planar interface

We will now use Maxwell’s equations (Eq. (2.1)) at a flat interface between a dielectric

and a conductor in order to find propagating solutions at the interface. These are called

surface plasmon polaritons (SPP’s), in contrast to bulk plasmons which were treated in

the previous section. A very detailed derivation will be found in [1].
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x

y

z Ex

ε1

ε2

Figure 2.1: Interface between a metal with dielectric constant ε1 and a dielectric with
ε2. The red wave represents a possible TM polarized wave.

Assuming there are no surface charges (ρext = 0), the curl (~∇×) equations from (2.1)

may be combined with the aid of some differential identities3. This leads to

~∇
(
−1

ε
~E · ~∇ε

)
−∇2 ~E = −µ0ε0ε

∂2 ~E

∂t2
(2.15)

Assuming a constant dielectric profile ε(~r) at the interface over at least one wavelength,

we obtain ε(~r) = ε and the first term of Eq. (2.15) becomes 0. Additionally, a harmonic

time dependence of the electric field ~E(~r, t) = ~E(~r)exp(−iωt) is assumed. Thus, Eq.

(2.15) simplifies to the Helmholtz equation

∇2 ~E − k2
0ε
~E = 0 (2.16)

with k0 = ω/c. For simplicity, let us assume that the described waves propagate along

the x-direction. Thus, ε only varies in z-direction. Furthermore, the interface is put at

z = 0. A solution is a propagating wave in x-direction ~E(x, y, z) = ~E(z)exp(iβx) with

the complex paramter β = kx, called the propagation constant (cf. Fig. 2.1). Inserting

this into Eq. (2.16) we find

∂2 ~E(z)

∂t2
+ (k2

0ε− β2) ~E = 0. (2.17)

Similarly, a wave equation for the magnetic field ~H can be found.

Using the curl equations from (2.1), inserting a harmonic time dependence of ∂/∂t =

−iω, propagation in x-direction ∂/∂x = iβ and assuming homogeneity in y-direction by

3~∇× ~∇ ~E = ~∇(~∇ · ~E)−∇2 ~E and ~∇ · (ε ~E) = ~E · ~∇α+ α~∇ · ~E with α ∈ C being a constant
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∂/∂y = 0, we find the following set of equations

∂Ey
∂z

= −iωµ0Hx (2.18a)

∂Ex
∂z
− iβEz = iωµ0Hy (2.18b)

iβEy = iωµ0Hz (2.18c)

∂Hy

∂z
= iωε0εEx (2.18d)

∂Hx

∂z
− iβHz = −iωε0εEy (2.18e)

iβHy = −iωε0εEz. (2.18f)

This system allows two sets of solutions with different polarization properties. A trans-

verse magnetic (TM) solution with Ex, Ez and Hy being nonzero and a transverse electric

(TE) one with Hx, Hz and Ey being nonzero [1].

For TM polarization the set of governing equations is

Ex = −i 1

ωε0ε

∂Hy

∂z
(2.19a)

Ez = − β

ωε0ε
Hy (2.19b)

0 =
∂2Hy

∂z2
+ (k2

0ε− β2)Hy (2.19c)

and for TE polarization we find

Hx = i
1

ωµ0

∂Ey
∂z

(2.20a)

Hz =
β

ωε0
Ey (2.20b)

0 =
∂2Ey
∂z2

+ (k2
0ε− β2)Ey (2.20c)

2.1.5 Surface plasmon polaritons

SPP’s are electromagnetic excitations propagating at the interface between a dielectric

and a conductor (cf. Fig. 2.1) [1]. They are confined to the interface plane having an

evanescent field4 reaching into the insulator and the conductor.

4Evanescent fields (or waves) are solutions to the wave equation at the boundary between two media
with different wave motion properties ε and/or µ. They decay exponentially into both media but are
neither absorbed nor propagate into the media (cf. Ref. [38]).
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In order to have a better understanding of SPP’s, their dispersion relation will be calcu-

lated. Therefore, we need propagating wave solutions at the interface between a metal

(Re(ε1) < 0) and a dielectric (ε2 ∈ R).

Using Eqns. (2.19) for TM polarization we find the following solutions for z > 0

Hy(z) = A2e
iβxe−k2z (2.21a)

Ex(z) = iA2
k2

ωε0ε2
eiβxe−k2z (2.21b)

Ez(z) = −A1
β

ωε0ε2
eiβxe−k2z. (2.21c)

And for z < 0

Hy(z) = A1e
iβxe−k1z (2.22a)

Ex(z) = −iA1
k1

ωε0ε1
eiβxe−k1z (2.22b)

Ez(z) = −A1
β

ωε0ε1
eiβxe−k1z (2.22c)

with k1 and k2 being the propagation constant in z-direction for the respective half-

space. The reciprocal value z̃ = 1/|kz| represents the decay length of the evanescent

fields into the media.

As Hy and εiEz need to be continuous and Hy needs to fulfill the wave equation, we

find that the interface requires

A1 = A2 (2.23a)

k2

k1
= −ε2

ε1
(2.23b)

k2
1 = β2 − k2

0ε1 (2.23c)

k2
2 = β2 − k2

0ε2. (2.23d)

Combining all previous equations, the dispersion relation of SPP’s propagating at the

interface between a dielectric and a metal calculates to

β = k0

√
ε1ε2
ε1 + ε2

. (2.24)

Considering TE polarized surface modes, we use the same approach as above for TM

polarization and find

A1(k1 + k2) = 0 (2.25)

with the requirement of Re(k1) > 0 and Re(k2) > 0 in order to get a confinement of

the wave to the interface [1]. Thus Eq. (2.25) will only be fulfilled when A1 = 0, which
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implies A1 = A2 = 0. Therefore, no TE polarized SPP exists.

We will now have a look into the dispersion relation of an SPP. Figure 2.2 (a) shows

the dispersion relation (Eq. (2.24)) of a metal having negligible damping at an interface

between air (grey) and fused silica (black). For small k, the plasmon dispersion behaves

like that of a photon but starts to bend over for higher values of k, until it approaches

the surface plasmon frequency

ωsp =
ωp√

1 + ε2
, (2.26)

called ωsp,air or ωsp,silica in Fig. 2.2 (a). The light line ω = kc is situated to the left of

the SPP dispersion relation. Thus, a SPP always has a shorter wavelength compared

to free-space radiation with the out-of-plane component of the SPP wavevector being

purely imaginary. This means that the SPP decays evanescently out of the plane [1]. It

is not possible for a photon to excite a SPP as their respective dispersion curves do not

intersect. Thus, the excitation of a SPP by direct light irradiation is not possible.

(a) (b)

Figure 2.2: Dispersion relation without damping (a) and with damping (b) at a
silver/air and silver/silica interface for SPP’s. In (a) the frequency ω was normalized
to the plasma frequency ωp. Taken from Ref. [1].

For negligible damping we find that β converges to ∞ as ω approaches ωsp and the

group velocity vg approaches 0. Thus, the SPP acquires electrostatic character [1]. This

limiting case is called a surface plasmon as it does not couple to a photon.

In a real metal, interband transitions and electron damping result in Im(ε1) 6= 0. There-

fore, β becomes complex and the SPP’s are damped with an energy attenuation length

of L = 1/2 · Im(β) [1]. This case is shown in Fig. 2.2 (b) for silver. In reality, the bound

SPP’s maintain a finite wave vector at ωsp.
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2.1.6 Excitation of surface plasmon polaritons

As described in the previous section, light is not able to couple directly to SPP’s as

the wave vector of an incident photon is always smaller than the wave vector needed

to excite a SPP (cf. Fig. 2.2). Thus, phase matching is required for the excitation of

SPP’s.

When a wave is incident onto a surface, the projection to the interface is kx = k sin θ with

θ being the angle to the surface normal. Thus, phase matching may never be achieved.

However, using a medium with a higher optical density provides additional momentum

to kx as it changes the projection to kx = k
√
ε sin θ with ε being the dielectric constant

of the medium. This principle is shown in Fig. 2.3 using prisms as medium of higher

optical density. With these setups it is possible to acquire phase matching and optically

excite SPP’s along a metal/dielectric interface.

++ - - ++ - - ++ - - ++

++ - - ++ - - ++ - - ++

(a) (b)

Figure 2.3: Prism coupling using attenuated total internal reflection using
Kretschmann configuration (a) and Otto configuration (b). The plasmon is depicted
by the alternating charge distribution (+ +−−).

Another way to acquire phase matching is to use the additional momentum provided by

a grating. Incident radiation, incoming at an angle θ will be scattered by the grating and

therefore the kx component of the wave vector will be increased or decreased, depending

on the order of diffraction. Thus, we find a wave vector kx = k sin θ ± νg with g = 2π/l

being the reciprocal vector of the grating and ν ∈ N+ being the diffraction order [1]. This

is the reason why SPP’s are observable on rough surfaces, as the surface corrugations

act as grating and enable the coupling of light to SPP’s. However, for a rough surface

the phase matching condition changes to kx = k sin θ±∆k as no grating order exists [1].

Small antennas can be considered a grating. This is the reason why we observe SPP’s

on plasmonic antennas by direct illumination.

2.1.7 The Lorentz-Drude model

The dielectric function of gold will be modeled using Eq. (2.14) as described in Sec. 2.1.2.

There are better models like the Brendel-Borman model (cf. Ref. [37]), however the LD

model is widely used within many FDTD packages as it provides easy implementation
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and numerical stability. As such we will use the LD model to describe the optical

properties of gold in the simulations below.

i 0 1 2 3 4 5

fj 0.760 0.024 0.010 0.071 0.601 4.384
Γj 0.053 0.241 0.345 0.870 2.494 2.214
ωj - 0.415 0.830 2.969 4.304 13.32

Table 2.1: The full set of parameters for the Lorentz-Drude model of gold. All values
are given in eV and were extracted from Tab. 2 in Ref. [37]. The plasma frequency of
gold is ωp = 9.03 eV [37].

Reference [37] provides a full set of parameters for all noble metals. As all plasmonic

antennas, used for the measurements presented later on, were manufactured from gold,

its parameters are given in Tab. 2.1.

In order to obtain the correct values for the dielectric function we may use Eq. (2.14)

with a slightly different notation

ε(ω) = ε∞ −
f0ω

2
p

ω2 + iωΓ0
+

k∑
j=1

ω2
pfj

ω2
j − ω2 + iωΓj

. (2.27)

Here k represents the amount of Lorentz oscillators, f0 and Γ0 the strength and damping

of the free electron part. ε∞ will be set to 1 as metals become transparent for infinite

frequencies [37]. Figure 2.4 compares measured data to the LD model using the values

of Tab. 2.1 and Eq. 2.27. In conclusion, the LD model fits the dielectric function of

gold quite well using the data from Ref. [37].

Figure 2.4: Comparison of experimental data to the calculated values from the
Lorentz-Drude (LD) and Brendel-Borman model (BB). Taken from Ref. [37].
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2.1.8 Mie scattering

Gustav Mie introduced the analytical solution of light scattering by a homogeneous

sphere in 1908 [2]. His approach was to use an incident plane wave and to describe

the scattered field by a sum of waves, weighting each one with a scattering coefficient.

Additionally, he separated the external scattered fields from the fields inside the sphere.

Below, only external fields are treated as internal fields are of no interest for the focus

of this thesis. A very exhaustive description of Mie theory is given in Ref. [2]. Other

descriptions will be found in Refs. [39, 40].

We will start using Maxwell’s equations (2.1) without any charges present and combine

them in the same way as already shown in Sec. 2.1.4. Thus, wave equations in ~H and

~E (cf. Eq. (2.16)) are obtained. They are

∆ ~E − k2
0
~E = 0 (2.28a)

∆ ~H − k2
0
~H = 0. (2.28b)

As we are considering a sphere it is obvious to use the spherical solutions to the Helmholtz

equations above. The interested reader may find a detailed derivation in Ref. [33] and

a more mathematical treatment in Ref. [41]. Here, equations will only be introduced as

they are required to understand the derivation of the scattering coefficients of a sphere

in vacuum. The following formulas were taken from Ref. [39] but may also be found in

Ref. [2].

At the boundary between sphere and vacuum the fields need to be continuous in order

to fulfill Eqns. (2.1c) and (2.1d). Thus, we obtain the following conditions

[
~Es(~r)− ~Ev(~r)

] ∣∣∣∣
|~r|= d

2

× ~n = ~0 (2.29a)

[
~Hs(~r)− ~Hv(~r)

] ∣∣∣∣
|~r|= d

2

× ~n = ~0. (2.29b)

With ~n being a unit vector, standing radially on the surface of the sphere. The indices

s and v are referring to the sphere and vacuum, respectively. In order to write the

scattering coefficients we will define the following functions, being a solution to the

Helmholtz equation in spherical coordinates

ψn(x) =

√
πx

2
In+ 1

2
(x) (2.30a)

ζn(x) =

√
πx

2
Hn+ 1

2
(x) (2.30b)
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with In+ 1
2
(x) being the Bessel function of the first kind and Hn+ 1

2
(x) being the Hankel

function of the first kind. Using these definitions we are able to write the scattering

coefficients in a convenient way [39]

an =
ψn(x)ψ′n(mx)−mψn(mx)ψ′n(x)

ζn(x)ψ′n(mx)−mψn(mx)ζ ′n(x)
(2.31a)

bn =
mψn(x)ψ′n(mx)− ψn(mx)ψ′n(x)

mζn(x)ψ′n(mx)− ψn(mx)ζ ′n(x)
. (2.31b)

Here, m is the complex refractive index of the sphere. In the equations it was already

considered that the sphere is surrounded by vacuum (nvac = 1). Another important

parameter is the size parameter x used above. It relates the circumference of the sphere

to the incident wavelength λ

x =
πd

λ
. (2.32)

We are interested in the scattering properties of the sphere, depending on its size. As

such we need to evaluate the following series [2]

Qext(x) =
2

x2

∞∑
n=1

(2n+ 1)<(an + bn) (2.33a)

Qsca(x) =
2

x2

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2) (2.33b)

with <() being the real part of a complex number. Qext describes the extinction proper-

ties of the sphere and Qsca = Qext+Qabs the scattering properties, including absorption.

Therefore, we find the absolute value being considered in Eq. (2.33b) as the complex

part of the scattering coefficients describes absorption.

Using Eqns. (2.33a) and (2.33b) we will calculate the scattering spectra of a sphere in

vacuum. For comparison reasons the LD model (cf. Sec. 2.1.2) was used with values

obtained from Rakic et al. (Ref. [37]) as the same values will be used later on for the

FDTD simulations. The calculations were done using Wolfram Mathematica.

The result for a sphere having a diameter of 100 nm is shown in Fig. 2.5 (a). The scat-

tering spectra differ in intensity, which may be understood investigating the refractive

index of gold. We find k > 1 for the wavelength range considered (cf. Fig. 2.5 (b)),

resulting in absorption of the incident wave which is the reason for Qsca(λ) < Qext(λ)

within the wavelength range shown in Fig. 2.5 (a). Additionally, we find a shift of the

maximum scattering peak to higher wavelengths. This may be understood by increased

absorption of the sphere for higher wavelengths. Figure 2.5 (b) shows the real and imag-

inary part of the refractive index of gold. The imaginary part k increases approximately
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Figure 2.5: (a) scattering efficiency of a homogeneous golden sphere considering only
the scattered field Qext(λ) and the scattered field including absorption Qsca(λ). The
diameter of the sphere was d = 100 nm. (b) the complex refractive index m = n + ik
of gold calculated using Eq. (2.14) and the values of Tab. 2.1.

linear from 500 nm on, resulting in higher absorption by the sphere. This causes Qsca(λ)

to shift to higher wavelengths.

Later on the scattering intensity of plasmonic antennas will be investigated experimen-

tally using dark field spectroscopy which relates to Qsca(λ).

2.2 The finite difference time domain method

As there are no analytical solutions to MWE’s for arbitrary shaped objects it is necessary

to use a numerical approach in order to obtain the scattering properties of arbitrary

plasmonic structures. Therefore, the FDTD algorithm was used and will be introduced

below. The description will be quite general and not very detailed as a full treatment

of the FDTD method is far beyond the scope of this work. A focus will be put on

understanding the basic properties of the FDTD algorithm, including its advantages

and disadvantages.

After introducing the FDTD algorithm the reliability and accuracy of the Meep FDTD

code will be shown. For this purpose the FDTD calculation of a golden sphere sur-

rounded by vacuum will be compared to the analytical solution obtained by Mie scat-

tering.



Chapter 2. Plasmons 19

2.2.1 Methods to solve Maxwell’s equations numerically

Maxwell’s equations contain continuous derivatives, being only analytically solvable for

special boundary problems. In order to calculate the scattering properties and field

distribution around arbitrary antennas it is necessary to use numerical methods in order

to find a solution. There are different approaches, divided into two main categories5.

Category one uses the integral form of MWE’s. One often finds the direct dipole ap-

proximation (DDA), where a grid of polarizable points is used to approximate an object.

The dipole moment of each point reacts to a local external field and to the field of each

dipole in the grid. The resulting system of equations is commonly solved using conjugate

gradient iterations6. Another common method is the boundary element method where

MWE’s are only solved at boundaries.

Category two uses the differential form of MWE’s. Very widely used is the finite element

method (FEM). It subdivides a problem into smaller elements and solves them according

to a set of partial differential equations (PDE’s), defined at each element. Thus, FEM

is normally used in engineering and adaptable to complex calculations combining many

PDE’s, like heat conductivity and mechanical stress. FDTD uses a discretization of

MWE’s to solve a boundary problem by doing several time steps as will be explained later

in detail. It is much easier to implement on a computer compared to FEM. Therefore, it

is easier to understand the code and the numerical solution. Due to this reason FDTD

was chosen to investigate the scattering properties of the antennas used for the Raman

measurements. It is a very delicate procedure to write FDTD code without errors.

Therefore, an open source FDTD implementation called Meep was used. It was written

at the Massachusetts Institute of Technology (MIT) and was released in 2006 [44]. As

it is open source software it is widely used and well tested. Especially in the field of

plasmonics and photonics. Furthermore, it was adapted for parallel computation using

the Open MPI7 interface enabling parallel computing on the computer cluster of the

university.

2.2.2 Discretization of Maxwell’s equations

When solving a mathematical problem on a computer it is not possible to have a contin-

uous computation. A discrete mesh, holding all values is needed. FDTD uses a simple

5This overview uses the Wikipedia article on computational electrodynamics (Ref. [42]) as a reference
to present only methods that are currently in use. This was done as computational physics is a very fast
evolving field in modern physics.

6The conjugate gradient method is an algorithm to solve particular systems of linear equations
numerically [43].

7www.open-mpi.org

http://www.open-mpi.org/
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two-point centered difference method to evaluate the derivative of a field component ξ,

for example in z-direction we get

∂ξ

∂z

∣∣∣∣n
i,j,k

=
ξni,j,k+1/2 − ξ

n
i,j,k−1/2

∆z
+O[(∆z)2]. (2.34)

The indices {i, j, k} ∈ N3
+ describe the index of the grid point. ξ is the field component

and n ∈ N+ the time step.

The numerical grid needs to be structured. Following the suggestion initially made

by Yee et al. [45], a mesh having the electric field components aligned along the grid

lines and the magnetic field components centered between them is employed. This

grid is shown in Fig. 2.6 with Tab. 2.2 showing the respective coordinate for each

component. Please note that this alignment is a choice as it is possible to distribute

the field components differently. We follow the description given in the Book written by

Inan and Marshall [18] closely for the description of the FDTD algorithm.

x

y

z

(i,j+1,k)

(i-1,j+1,k)

(i-1,j+1,k+1)

(i,j,k)

Hy

Ez

Ez

Ex

Ex

Hx

Hz

Ez

Ey

Ey

Ex

Ey

Figure 2.6: Position of the ~E and ~H field components within the Yee cell.

As MWE’s include time derivatives we also need to express the time dependence using

a two-point centered difference method. Thus, we obtain

∂ ~E

∂t

∣∣∣∣n+ 1
2

=
~En+1 − ~En

∆t
=

1

ε

[
~∇× ~H

]n+ 1
2

(2.35a)

∂ ~H

∂t

∣∣∣∣n+1

=
~Hn+ 3

2 − ~Hn+ 1
2

∆t
= − 1

µ

[
~∇× ~E

]n+1
. (2.35b)
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Rearrangement gives an update procedure in time

~En+1 = ~En +
∆t

ε

[
~∇× ~H

]n+ 1
2

(2.36a)

~Hn+ 3
2 = ~Hn+ 1

2 − ∆t

µ

[
~∇× ~E

]n+1
. (2.36b)

With Eqns. (2.34) and (2.36) we have everything we need to express MWE’s using two-

point centered differences in space and time. Assuming no external currents ~Jext = 0 we

may now write down the time derivative of each component of ∂ ~E/∂t and ∂ ~H/∂t using

the curl equations of Eqns. (2.1)

∂Ex
∂t

=
1

ε

(
∂Hz

∂y
− ∂Hy

∂z

)
∂Hx

∂t
= − 1

µ

(
∂Ez
∂y
− ∂Ey

∂z

)
∂Ey
∂t

=
1

ε

(
∂Hx

∂z
− ∂Hz

∂x

)
∂Hy

∂t
= − 1

µ

(
∂Ex
∂z
− ∂Ez

∂x

)
∂Ez
∂t

=
1

ε

(
∂Hy

∂x
− ∂Hx

∂y

)
∂Hz

∂t
= − 1

µ

(
∂Ey
∂x
− ∂Ex

∂y

) (2.37)

In order to show the basic approach on how to derive numerically friendly equations

that allow the computation of electromagnetic boundary problems it is not necessary

to deduce the full set of equations. Instead, the derivation will be done for the one

dimensional case where the basic principle already becomes clear.

The x-direction is chosen for propagation. Therefore, we have no variations in y- and

z-direction with all the respective derivatives in Eqns. (2.37) set to 0. Thus, we end up

having two pairs that are completely independent of each other

TM-mode
∂Hy

∂t
=

1

µ

∂Ez
∂x

∂Ez
∂t

=
1

ε

∂Hy

∂x
(2.38a)

TE-mode
∂Ey
∂t

= −1

ε

∂Hz

∂x

∂Hz

∂t
= − 1

µ

∂Ey
∂x

(2.38b)

As Eqns. (2.38a) only contain the Ez and Hy field components they are called transverse

magnetic (TM) modes. Accordingly, Eqns. (2.38b) are called transverse electric (TE)

as they contain only the Ey and Hz components. This should not be confused with the

common notation of TE and TM waves in electromagnetic theory. Here, it is just a way

of naming both independent sets of equations.

We will combine and apply centered differences in space (Eq. (2.34)) and time (Eqns.

(2.35)). According to the Yee cell in Fig. 2.6 we place the components of ~E at full-

integer points and the components of ~H at half-integer points in space and time. Thus,
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Field component x location y location z location

Ex i+ 1
2 j k

Ey i j + 1
2 k

Ez i j k + 1
2

Hx i j + 1
2 k + 1

2
Hy i+ 1

2 j k + 1
2

Hz i+ 1
2 j + 1

2 k

Table 2.2: Locations of the field components of the Yee cell depicted in Fig. 2.6.

we find the update equations for the TE-mode

Ey

∣∣∣∣n+1

i

= Ey

∣∣∣∣n
i

− ∆t

εi∆x

[
Hz

∣∣∣∣n+ 1
2

i+ 1
2

−Hz

∣∣∣∣n+ 1
2

i− 1
2

]
(2.39a)

Hz

∣∣∣∣n+ 1
2

i+ 1
2

= Hz

∣∣∣∣n− 1
2

i+ 1
2

− ∆t

µi+ 1
2
∆x

[
Ey

∣∣∣∣n
i+1

− Ey
∣∣∣∣n
i

]
(2.39b)

and for the TM-mode

Ez

∣∣∣∣n+1

i

= Ez

∣∣∣∣n
i

+
∆t

εi∆x

[
Hy

∣∣∣∣n+ 1
2

i+ 1
2

−Hy

∣∣∣∣n+ 1
2

i− 1
2

]
(2.40a)

Hy

∣∣∣∣n+ 1
2

i+ 1
2

= Hy

∣∣∣∣n− 1
2

i+ 1
2

+
∆t

µi+ 1
2
∆x

[
Ez

∣∣∣∣n
i+1

− Ez
∣∣∣∣n
i

]
. (2.40b)

Within these equations we find the material properties εi and µi+1/2 which we may use

to describe media within the numerical grid. However, they need to be isotropic i.e.

they do not vary with direction.

Using the same approach we are able to derive the discretized form of MWE’s (Eq.

(2.37)) by applying centered differences in three dimensions. Therefore, we need to

know the location of the field components as they will be found in Fig. 2.6. Their

coordinates are listed in Tab. 2.2. The full set of equations is quite lengthy8. They are

not given here as we will not get any new insight from writing them down.

As a short reminder, we are still assuming no losses or external currents and an isotropic

medium. To incorporate these, external currents may be discretized directly. Losses are

incorporated using centered differences as shown for the derivatives in MWE’s. As we

do not require external currents or losses within our medium the derivation of these

discretizations is omitted. The interested reader will find them in Ref. [18].

8The interested reader will find them on page 85 in Ref. [18].
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2.2.3 Stability criterion

We have already seen that the update equations (cf. Eqns. (2.39) & (2.40)) contain

the fraction ∆t/∆x. Varying this ratio, we find that only for ∆t ≤ ∆x, the solution

of a simulation is stable as time progresses [18]. This condition is called the Courant-

Friedrich-Lewy (CFL) condition (cf. Ref. [46]). Reference [18] does a von Neumann

stability analysis (cf. Ref. [47]) on the FDTD algorithm and derives

∆t ≤ ∆x√
Dvp

(2.41)

with D being the dimension (1,2 or 3) and vp being the highest phase velocity of a wave

inside of the numerical cell. This may be reformulated to

∆t

∆x
= S ≤ n√

Dc
(2.42)

with S being called the Courant factor or CFL number and n being the smallest index

of refraction within a simulation (usually 1).

2.2.4 Sources

A simulation may be driven from one or more points within the numerical cell. One way

to directly apply a source is to include it into the desired points. This is done by adding

the fields to the respective point source. E.g. we may use the Ey-field component (Eq.

(2.39a))

Ey

∣∣∣∣n+1

i

= Ey

∣∣∣∣n
i

− ∆t

εi∆x

[
Hz

∣∣∣∣n+ 1
2

i+ 1
2

−Hz

∣∣∣∣n+ 1
2

i− 1
2

]
+ Ey,source

∣∣∣∣n+1

i

. (2.43)

With Ey,source|n+1
i being the source field at time n+ 1 applied to the grid point i. Con-

sequently, Ey,source|n+1
i will only be nonzero at grid points where the source is situated.

A sinusoidal source for single frequency excitation may be applied by setting

Ey,source

∣∣∣∣n
i

= E0 sin(2πf0n∆t) (2.44)

with E0 being the field amplitude and f0 being the frequency of the source. For broad-

band excitation we may apply a Gaussian source by setting

Ey,source

∣∣∣∣n
i

= E0 sin(2πf0(n− ns)∆t)e
− (n∆t−ns∆t)2

(n1/2∆t)2 (2.45)

with ns being the time delay of the source and n1/2∆t being the full width at half

maximum time of the pulse. In order to ensure numerical stability the first derivative
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in time of Eq. (2.45) is being used in Meep [48]. This does only negligible changes to

the results of a simulation but ensures a smooth transition of the fields when turning

the source on and off [44]. Doing so, numerical instabilities due to high field gradients

will not occur at the source boundary and increase the overall numerical stability for a

simulation.

Another way of implementing sources is to use currents [18]. These are typically required

when an object like an antenna excites the fields. A current excites a field through the

curl equation in (2.35a)

∂ ~E

∂t

∣∣∣∣n+ 1
2

=
1

ε

[
~∇× ~H

]n+ 1
2 − 1

ε
~Jsource

∣∣∣∣n+ 1
2

(2.46)

with the source being located at the same grid location as the E-field. However, having

the same point in time as the H-field.

2.2.5 Absorbing boundary conditions

Every numerical cell has a finite cell size. Thus, propagating fields will at some point

hit the cell boundary. At this point the update equations (Eqns. (2.36)) are missing

a value for the field component lying outside of the numerical cell. We may set the

missing component to zero and thus create a perfect electrical conductor. However, this

will cause the fields to be reflected at the boundary, which is not the desired behavior as

we want to simulate an “infinite” space. Therefore, it is necessary to create a boundary

at the numerical cell which absorbs all incident fields.

There have been several approaches to create an absorbing boundary [18, 19]. The main

difficulty was to create a small layer that absorbs all frequencies, independent on the

angle of incidence of a wave. Many absorbing boundary conditions (ABC’s) have been

developed but had the problem of bad absorption for high angles of incidence. The

interested reader may find some approaches like the Mur boundary in Ref. [18]. An

overview of different ABC’s may be found in Ref. [19].

In 1994 Bérenger (cf. Ref. [49]) addressed the problem, described above, by splitting

the fields in MWE’s and selectively choosing different values for the conductivities in

different directions. Splitting means he divided each component of the vector fields into

two orthogonal components9. Thus, he obtained a set of 12 coupled partial differen-

tial equations. By choosing conductivities, consistent with a dispersionless medium he

created a planar interface without reflection.

9These components do not have a physical interpretation. They are purely mathematical.
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The basic principle will be shown by investigating a TE mode in two dimensions (xy-

plane). Using Maxwell’s equations including magnetic currents and dividing Ez accord-

ing to Ez = Ezx + Ezy results in the following set of differential equations

µ2
∂Hx

∂t
+ σm,yHx = −∂Ez

∂y
(2.47a)

µ2
∂Hy

∂t
+ σm,xHy =

∂Ez
∂x

(2.47b)

ε2
∂Ezx
∂t

+ σxEzx =
∂Hy

∂x
(2.47c)

ε2
∂Ezy
∂t

+ σyEzy = −∂Hx

∂y
. (2.47d)

The index 2 refers to the absorbing medium. Now that σm and Ez were divided into

two parts it is possible to selectively attenuate the waves in the respective direction. In

the equations above we obtain attenuation in x-direction for σm,x 6= 0 and σx 6= 0 and

in y-direction when setting σm,y 6= 0 and σy 6= 0. In order to obtain the wave equation

we may write Eqns. (2.47) conveniently in time-harmonic form

iωµ2

(
1 +

σm,y
iωµ2

)
︸ ︷︷ ︸

sm,y

Hx = − ∂

∂y
(Ezx + Ezy) (2.48a)

iωµ2

(
1 +

σm,x
iωµ2

)
︸ ︷︷ ︸

sm,x

Hy =
∂

∂x
(Ezx + Ezy) (2.48b)

iωε2

(
1 +

σx
iωε2

)
︸ ︷︷ ︸

sx

Ezx =
∂

∂x
Hy (2.48c)

iωε2

(
1 +

σy
iωε2

)
︸ ︷︷ ︸

sy

Ezy = − ∂

∂y
Hx. (2.48d)

After differentiation of the first two equations in x and y and insertion of the last two

equations we find

0 =
1

sysm,y

∂2

∂y2
(Ezx + Ezy) + ω2ε2µ2Ezy (2.49a)

0 =
1

sxsm,x

∂2

∂x2
(Ezx + Ezy) + ω2ε2µ2Ezx (2.49b)

Now let us assume there is no Ezx component. By subsequently adding the equations

above we find

ω2ε2µ2Ezy +
1

sxsm,x

∂2Ezy
∂x2

+
1

sysm,y

∂2Ezy
∂y2

= 0 (2.50)
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which is a wave equation with the solution

Ezy = TE0e
−i√sxsm,xk2xx−i

√
sysm,yk2yy. (2.51)

With T being the amount of the field transmitted into the absorbing medium. The wave

vectors need to follow the condition

k2
2x + k2

2y = ω2ε2µ2. (2.52)

Using Eqns. (2.48a) and (2.48b) we find the corresponding solutions for Hx and Hy

Hx = TE0
k2y

ωµ2

√
sy
sm,y

e−i
√
sxsm,xk2xx−i

√
sysm,yk2yy (2.53a)

Hy = −TE0
k2x

ωµ2

√
sx
sm,x

e−i
√
sxsm,xk2xx−i

√
sysm,yk2yy. (2.53b)

Now that we have the solutions for all wave components we are able to derive the

reflection coefficient R by applying continuity of the tangential electric and magnetic

fields across the interface between region 1 (simulation space) and region 2 (absorber).

We obtain

R =

k1x
ωε1
− k2x

ωε2

√
sm,x
sx

k1x
ωε1

+ k2x
ωε2

√
sm,x
sx

. (2.54)

As we want zero reflection (R = 0) it is a good choice to assume ε1 = ε2, µ1 = µ2 and

sm,x = sx. Thus, we find k1x = k2x and also obtain k1y = k2y from Eq. (2.52). This

results in R = 0 for all angles of incidence.

Now we may derive the fields passing the boundary between region 1 and 2 by using

Eqns. (2.51) and (2.53), inserting the assumptions and the relation k1x = ω
√
ε2µ2 cos θ

with θ being the angle of incidence of the incoming wave.

Ezy = E0e
−sxk1xx−ik1yy

= E0e
−k1xx−ik1yye−σxηx cos θ (2.55a)

Hx = E0η
−1 sin θe−k1xx−ik1yye−σxηx cos θ (2.55b)

Hy = −E0η
−1 cos θe−k1xx−ik1yye−σxηx cos θ (2.55c)

with η =
√
µ2/ε2. In Eqns. (2.55) we find the wave in region 2 propagating in the same

direction as in region 1 (from e−k1xx−ik1yy). But more importantly the transmitted wave

decays exponentially (e−σxηx cos θ). We also find that the attenuation is independent of

the frequency. This makes the Bérenger perfectly matched layer (PML) a very good

ABC with no reflection as long as there is enough space to fully attenuate the wave in
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the PML region. However, due to numerical discretization some frequency-dependent

reflections may be observed within the simulation.

2.2.6 Reflection and transmission spectra

The most frequent task done using an FDTD simulation is to compute the frequency

response of a structure to an excitation of interest. Using a spectrally broad source

(normally a Gaussian source) a structure is probed for all frequencies present at once.

The first question that needs to be answered is which quantity needs to be evaluated.

Generally, one is interested in the transmitted or reflected power which is expressed by

the Pointing vector, giving us the direction of the energy flowing through an area of

interest

P (ω) = < ~n ·
∫

~E(x, ω)∗ · ~H(x, ω)d2x (2.56)

with ~n being the normalized vector in the direction of the energy flux and d2x being the

area investigated.

As time-dependent field values ~E(x, t) are obtained from an FDTD simulation, Fourier

transformation of the fields F(x, t) = { ~E, ~H} is required

F̃(x, ω) =
1√
2π

∫
F(x, t)eiωtdt ≈ 1√

2π

∑
n

F(x, n∆t)eiωn∆t (2.57)

in order to calculate the frequency-dependent energy spectrum.

The computation of the transmission and reflection spectra is a bit more tricky than just

computing P (ω) at the respective area. This is a consequence of P (ω) containing the

spectrum of the source, the spectrum of the scatterer and eventually also the spectrum

of adjacent structures. In order to separate the contribution of the source and adjacent

structures the simulation needs to be calculated twice. Once without and once with the

scatterer and subsequent subtraction of the fields. However, as interference may occur it

would be a mistake to subtract the power calculated using Eq. (2.56) with and without

the structure. It is necessary to subtract the fields before adding them up by evaluating

Ps(ω) = < ~n ·
∫ (

~E(x, ω)− ~E0(x, ω)
)∗
·
(
~H(x, ω)− ~H0(x, ω)

)
d2x (2.58)

with ~E0 and ~H0 being the Fourier transformed fields from the simulation without the

structure. This approach prevents interferences that would occur when using only P (ω).

Initially, this is obvious only for the reflectance as we find the field coming from the

source and the fields being reflected by the structure. However, in transmission we

also find that there are different contributions to the energy flux. For example, when
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investigating an antenna situated on a substrate with a SiO2 layer, reflections within that

layer are observed. Additionally, there are often reflections coming from the boundary

of the numerical cell. This is the case as the absorbing boundary layer is not perfect (cf.

Sec. 2.2.5). Therefore, it is also necessary to use Eq. (2.58) also for the transmission

spectrum.

In order to correct for the excitation spectrum, the scattered spectrum Ps(ω) has to be

corrected by the unscattered one P (ω) using

[R, T ] =
Ps(ω)

P (ω)
(2.59)

2.2.7 Materials

To model a material in FDTD the approach already presented in Sec. 2.1.2 will be used.

The basic idea is to model a material response via

~D = ε∞ ~E + ~P (2.60)

and use ε∞ ~E for an instantaneous response as it was already modeled in the update

equations and ~P to modify the fields for the frequency-dependent polarization response

of the material. Therefore, Eq. (2.4) is being used and rewritten to account for every

resonance j and the time dependence of the incident fields ∂E/∂t at the spatial point ~x

∂2~x

∂t2
+ γj

∂~x

∂t
+ ω2

0j~x = ε0ω
2
pfj

∂E

∂t
. (2.61)

This equation may be discretized and rearranged in order to be incorporated into Eq.

(2.35a) via its ∂E/∂t term. The details may be found in chapter 10.2.3 of Ref. [18].

They will not be presented here as the full derivation is quite long and does not give

new insight into the FDTD algorithm or its properties.

An important outcome of the discretization of Eq. (2.61) is that the final update equation

requires En−1 and En. Meaning an additional storage requirement to model dispersive

media. Additionally, it has to be considered that a high frequency Lorentzian resonance

ωj may require time stepping to be increased as the condition (ωj/2π)∆t > 2 needs to

be fulfilled [50].
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2.3 Meep

Before calculating the scattering spectra of dimer antennas, it is necessary to verify

that Meep is a reliable FDTD code, capable of calculating the scattering properties of

plasmonic antennas. This will be done by comparing simulations done using Meep to

analytical solutions.

Subsequently, the scattering spectra and field distributions of gold dimer antennas will

be shown and the dependence on antenna size and influence of the gap will be calculated.

The section will close with a brief introduction of the scattering spectra of gold bowtie

antennas.

Before investigating the test cases we need to make some general considerations about

Meep and its properties.

As MWE’s are scale invariant, it is not required to use real field strengths to obtain

correct results. As already described in Sec. 2.2.6, the quotient of the fields with and

without the antenna present will be evaluated. Thus, units do not matter as they cancel

out. Concerning the field distribution, the relation of the fields with and without antenna

are of interest, also canceling out the unit.

However, we need to choose a characteristic length scale a10. A reasonable value a =

100 nm was chosen as it is convenient since the antenna dimension and wavelength are

in the 100 nm scale. Due to MWE’s being scale invariant, Meep was written setting

{ε0, µ0, c} = 1 [44]. Thus, we find that a is also the time unit (as c = λf). The

frequency ω is defined as usual by ω = 2πc/a = 2πf .

As Meep does not provide adaptive meshing11 we need to deal with a static mesh, i.e.

Meep provides a rectangular mesh of uniform size. Therefore, every object that we

create will be approximated by cubes (in 3D) or rectangles (in 2D). Thus we will never

encounter round corners (cf. Fig. 2.7). Every object will be fitted to the simulation

grid, resulting in sharp corners. This has some fundamental consequences

• Round objects will show a different curvature, depending on the size of the mesh.

• Field hotspots may be encountered at edges when the curvature becomes too high

due to discretization.

• A certain minimum mesh size is required to sufficiently let discretized objects look

like their continuous counterparts. This is especially important when investigating

problems where the results depend on the curvature of an object.

10The length scale is not to be confused with the resolution of the simulation.
11e.g. supporting a variable spatial distance between grid points
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continuous discretized

Figure 2.7: Demonstration of spatial discretization as it occurs when simulating a
round object like a circle.

Meep uses a clever way of discretizing objects according to their dielectric function

ε(~r, ω) [51]. However, it is required to check if the resolution is sufficient every time

before running a simulation.

Meep supports dispersive materials via the LD model [50]. Thus, gold will be defined

using the LD model described in Sec. 2.1.2. However, we need to recalculate the

parameters of Tab. 2.1, adapting them to Meep units with a = 100 nm.

The LD implementation within Meep also considers electric conductivity σD by an al-

ternative formulation of Eq. (2.14) [50]

εω,~x =

(
1 +

iσD(~x)

ω

)[
ε∞(~x) +

∑
n

σn(~x)ω2
n

ω2
n − ω2 − iωγn

]
. (2.62)

Comparing this equation to Eq. (2.14), we immediately find σD(~x) = 0. Additionally,

the free carrier part was incorporated into the sum for convenience. Comparing the

coefficients we find σn = fnω
2
p/ωn. It is obvious that Eq. (2.62) expects units of

angular frequency. Thus, the energy values of Tab. 2.1 will be multiplied by the factor

n = ω/~ = 2πc/a~. The adapted values of various metals may be found in the source

code used for the simulations presented below.

2.3.1 Testing the simulation environment

Before doing calculations on antennas it is necessary to test the simulation on its reliabil-

ity. Therefore, two test scenarios were employed. The first test calculates the reflection

spectrum of a gold plane in two dimensions. Thus, the LD gold model in Meep will

be verified and the LD parameters will be checked for their correctness. After verifying

the gold model, the second test case is the scattering spectrum of a gold sphere. It will

be compared to the analytical solution obtained using Mie scattering (cf. Sec. 2.1.8).

As the LD model of gold was used with the same parameters, any differences between

simulation and analytical solution may originate from the simulation.
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2.3.1.1 Reflection spectrum of gold

The values found in Ref. [37] were implemented into Meep as described in Sec. 2.3.

The reflection of a gold plane under normal incidence was calculated analytically using

Wolfram Research Mathematica.

The analytical solution of the reflection coefficient was obtained using Fresnel’s equations

at an angle of incidence of θ = π/2. Using the formula

R(ω) =
(n0 − n1(ω))2 + k1(ω)2

(n0 + n1(ω))2 + k1(ω)2
(2.63)

with n0 = 1. The complex refractive index n1(ω) + ik1(ω) for gold was calculated using

the LD-model with the parameters tabulated in Tab. 2.1.

Figure 2.8 (a) shows the numerical cell used for simulating the reflectance of a gold

plane under normal incidence. A Gaussian source is situated 400 nm above the gold

surface and a fluxplane is situated 4.5 µm above the gold surface. The numerical cell is

terminated by a PML.

Figure 2.8 (b) compares the obtained spectra. They are very similar with the Meep

solution being slightly higher. This may be attributed to the finite size of the numerical

cell and the discretization of the LD model as described in Sec. 2.2.7. Additionally, the

simulation was done in 2D. Thus, we find the fields of the source e.g. not to impinge

perpendicular on the surface (i.e. θ 6= π/2). Numerical inaccuracies could occur for

Lorentz oscillators having a small linewidth as it is the case for the ωj = 2.969 eV

oscillator. These deviations are avoidable by adjusting the Courant factor (cf. Sec. 2.2.3)

at the cost of a massive increase in computation time. The error is strongly dependent

of the resolution of the simulation but will be kept below 5% within the simulations

presented here as all simulations were checked for convergence and the resolution was

chosen as high as possible.

Additionally, Fig. 2.8 (b) shows that the FDTD simulation systematically overestimates

reflectance. The reason is the Fourier transformation of a finite amount of field points.

This causes oscillations at high and low frequencies and has influence on the intensity of

the spectrum. The oscillations are avoided by decreasing the frequency width of both the

source and the fluxregions such that any oscillation occurs outside of the spectral region

shown. This was already considered in Fig. 2.8 (b). Increasing the amount of points

in the fluxplane and the simulation time would lead to convergence of the simulation

to the analytical solution in case such oscillations are observed. In conclusion, Meep

is able to model gold via the LD model and calculate the reflection properties of a

Gold block in good agreement with the analytical solution. Any deviations originate
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Figure 2.8: (a) 2D numerical cell used to calculate the Reflection of a vacuum/gold
interface with the green mesh indicating the numerical grid. (b) comparison of analyti-
cal and simulated spectrum of the reflectance at a vacuum gold interface under normal
incidence.

from the finite size of the computational cell and the limited amount of CPU time and

memory available. To be sure, a commercial software, FDTD solutions from Lumerical

solutions12 was used to independently verify the simulations. This software was only

available on one computer and could not be used on the university cluster to calculate

the more sophisticated simulations on dimer antennas. However, the results of both

simulation packages were in very good agreement for the test cases presented here.

2.3.1.2 Scattering spectrum of a gold sphere in vacuum

The scattering spectrum of a gold sphere in vacuum was calculated using Meep and

compared to the analytical solution obtained by Mie scattering (cf. Sec. 2.1.8). As

the LD model also considers absorption, Qsca (Eq. (2.33b)) was used as an analytical

reference.

The scattering properties of a gold sphere were calculated in three dimensions, showing

the stability of the simulation later on. This was also done as all consecutive simulations

were calculated in three dimensions. In general, a calculation in 2D is also possible as

the problem has spherical symmetry. Because Qsca describes the scattered radiation in

all directions, a fluxregion was created that forms a cube around the sphere. This is

seen in Fig. 2.9 (a) via the light blue region. The entire cell is surrounded by a PML

layer indicated by the gray planes. In general, only the upper and lower planes are

shown for clarity. This scheme will also be used later on. The fluxplanes were 400 nm

12www.lumerical.com

https://www.lumerical.com/
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away from the sphere in order to let the fields propagate before performing a Fourier

transformation of the fields. This way, interferences with the sphere and the source were

avoided. Additionally, it is required to verify if the near field or far field is investigated.

From antenna theory it is known that the distance of transition between near and far field

is given by df = 2D2/λ [18, 33], where D is the largest dimension of the antenna. Thus,

we find df ≈ 33 nm for a 100 nm sphere and 600 nm irradiation. Therefore, the fluxplanes

were placed 450 nm away from the center of the sphere, ensuring the calculation of far

field spectra for spheres of up to 300 nm. The source was placed 470 nm away from

the sphere, just outside of the fluxregions. As all spectra are corrected by a blank run

(without the sphere) as described in Sec. 2.2.6, the position of the source does not

matter as long as it is not touching a PML region or is too close to the scatterer. Doing

so would alter the spectrum of the fields and lead to incorrect results.
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Figure 2.9: Scattering spectra of a golden sphere surrounded by vacuum. (a) 3D nu-
merical cell. Comparisons of the scattering spectra obtained by Meep and the analytical
solution for spheres with a diameter of (b) 50 nm, (c) 100 nm and (d) 200 nm.



Chapter 2. Plasmons 34

In Figs. 2.9 (b) through 2.9 (d) we find that FDTD is very well able to reproduce the

scattering behavior of a sphere. The main resonance was reproduced correctly for each

diameter. However, we also find features originating from the FDTD simulation. In Figs.

2.9 (c) and 2.9 (d) we find quadrupole resonances at 390 nm and 400 nm, respectively.

As the size of the sphere is being increased we find that the dominant dipole moment is

redshifted and broadened. Additionally, higher-order dipole moments start contributing.

The general increase in scattering efficiency towards the UV is a result of high oscillator

strength in the dielectric function of gold in the UV region.

In conclusion, Meep is able to reproduce the scattering behavior of nanoparticles suf-

ficiently. Deviations may arise due to the discretization of the sphere which may be

circumvented by increasing the mesh resolution.

2.3.2 Scattering spectra of gold dimer antennas

Now, we calculate the plasmonic properties of gold dimer antennas. These antennas

were used for Raman measurements that will be presented in Chapter 5. Therefore, it

is important to understand their plasmonic properties. There are two main parameters

determining the plasmonic resonance, the diameter of the cylindrical antennas and the

size of the gap in between them. The diameter was varied within a range of 50 nm

to 200 nm and the gap within a range of 10 nm to 150 nm. Throughout the remainder

of this chapter we will only investigate single dimer antennas consisting of two single

cylindrical or triangular antennas. We will sometimes refer to a dimer antenna having

a certain diameter referring to the diameter of the two cylindrical antennas forming the

dimer antenna.

2.3.2.1 Far field scattering behavior

Figure 2.10 shows the simulation setup used to calculate the reflected far field. The goal

is to develop an understanding of the plasmonic behavior of the dimer antennas used.

Thus, no substrate is included as a SiO2 layer alters the resonance. The influence of

a SiO2 layer will be treated later in this chapter in Sec. 2.3.3. The dimer antenna is

situated in the center of the numerical cell, having at least 500 nm of free space in every

direction. Thus, an interaction between the near field of the dimer antenna and the PML

is excluded. The fluxregion is placed 310 nm above the dimer antenna to let the fields

propagate. This way, the far field spectrum is collected which is also seen in dark field

spectroscopy (cf. Sec. 5.1). 210 nm above the fluxregion, a Gaussian source is placed.

This is far enough to ensure a smooth calculation of the fields within the fluxplane. The

entire simulation space is surrounded by a PML layer, absorbing all incident fields.
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Figure 2.10: 3D numerical cell used to calculate the scattering spectrum of a dimer
antenna in the center of the numerical grid.

(a)

400 600 800 1000 1200

100 nm
150 nm

Wavelength (nm)

N
o
rm

.
sc

at
te

ri
n

g
effi

ci
en

cy

0.1

0.2

0.3

0.4

0.5

0.6

200 nm

0.0

(b)

400 600 800 1000 1200
Wavelength (nm)

N
or

m
.

sc
at

te
ri

n
g

effi
ci

en
cy

0.00

0.05

0.10

0.15

0.20 10 nm
50 nm
100 nm
150 nm

Figure 2.11: Far field scattering spectra for dimer antennas with a constant gap size of
30 nm and different diameters (a) and with a constant diameter of 100 nm and different
gap sizes (b).

Figure 2.11 (a) shows the influence of the diameter on the reflection spectrum of the

dimer antenna. We find a strong redshift of the resonance wavelength as described in

Refs. [25, 52–55]. Additionally, the dipole mode broadens for increasing diameters of

the dimer antenna. This is a well known behavior [1, 25, 55] that is caused by increased

damping of the plasmon by intraband and interband transitions [56] due to the higher

area of the two cylindrical antennas. Below 2.3 eV (540 nm) radiative damping becomes

dominant for antennas made of gold [56]. This is observable in the increase of the

scattering efficiency in Fig. 2.11 for wavelengths below 500 nm. For the 200 nm dimer

antenna we find an additional mode around 550 nm which is the quadrupole mode. This

mode is being excited for dimer antennas with a diameter above 200 nm.

Figure 2.11 (b) shows the influence of the size of the gap in between the cylindrical

antennas. We find a redshift for decreasing gap size. This effect was described in Refs.
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[31, 57]. For decreasing gap size, the evanescent fields of the cylindrical antennas start

to couple and we find a coupled plasmon mode to cause the redshift. This happens as

the effective propagation length of the surface plasmon becomes longer and damping

increases. As Ref. [31] explains, this effect is important until the gap size approaches

twice the diameter of the cylindrical antennas13. Additionally, we find broadening,

originating from increased damping as described above.

Figure 2.12 shows a detailed analysis of the far field scattering behavior of a gold dimer

antenna. Figs. 2.12 (a), 2.12 (c) and 2.12 (e) show 2D plots of the dipole amplitude,

position and width, respectively. All values were obtained by fitting simulated spectra to

a single Lorentzian model. As the quadrupole mode is being excited for dimer antennas

with a diameter above 200 nm, the analysis was restricted to diameters up to 200 nm.

The gap size was varied from 10 nm to 150 nm as this is the plasmonic coupling region

of the cylindrical antennas where the highest amplification is expected.

In Fig. 2.12 (a) we find that the scattering amplitude of the dipole mode is increased for

decreasing gap size and increasing antenna size. It is obvious that bigger antennas have

an increased reflectance due to their larger scattering area. However, smaller gaps also

increase the reflectance due to plasmon coupling. This causes an exponential decay of

the scattering amplitude as the evanescent waves from each dimer show an exponential

amplitude decay over the distance to the dimer [38]. This causes the exponential distance

dependence shown in Fig. 2.12 (b).

Plasmon coupling is also the reason for the exponential change in position of the dipole

mode (cf. Fig. 2.12 (d)). As the coupling between the cylindrical antennas becomes

stronger, the dipole mode starts to redshift as already described for the scattering am-

plitude.

The width of the dipole mode follows also an exponential decay (cf. Fig. 2.12 (f)) for

constant diameters and decreasing gap size. This is caused by broadening of the dipole

mode when the cylindrical antennas start to couple. Figure 2.12 (e) indicates that a

minimum width of the dipole mode is reached for antennas smaller than 100 nm in

diameter. This is due to minimal damping of the plasmon. However, the mode starts to

broaden up again for diameters below 75 nm due to increased radiation damping below

75 nm [52, 56]. This is recognizable at the bottom of Fig. 2.12 (e).

The reader may have observed oscillations in the contour lines of Figs. 2.15 (a), 2.15

(c) & 2.15 (e). They are caused by approximating the antennas within a discrete mesh

as described in Sec. 2.3. This leads to an error in the diameter and gap size and

subsequently to the oscillations observed.

13In Fig. 2.11 (b) this happens for a gap size larger than 200 nm as the cylindrical antennas have a
diameter of 100 nm.
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Figure 2.12: Far field scattering of dimer antennas. The 2D plots show the amplitude
(a), position (b) and width (c) of the dipole mode. Plots (b), (c) and (d) show line cuts
at a constant diameter of 175 nm from the 2D plot next to them. The line cuts were
fitted using an exponential fitting function. The obtained values are given in Tab. 2.3.
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2.3.2.2 Near field scattering behavior

In order to obtain a proper SERS enhancement, an analyte needs to be very close to

the dimer antenna, still within the near field region [10]. Thus, the Raman signal is

being excited by the near field of the dimer antenna. It is necessary to find correlations

between the far field that is accessible by dark field spectroscopy and the near field

which is only accessible using elaborate techniques, such as scanning near field optical

microscopy (SNOM).

To numerically measure the near field spectrum, a fluxplane is placed inside the gap

between the cylindrical antennas (cf. Fig. 2.13). It is kept at minimum two grid cells

away from each cylindrical antenna to prevent numerical interference effects. The spectra

only show a small dependence on the distance to each cylindrical antenna which is mainly

caused by the field transformation from near to far field. These effects are negligible

as the gap size is very small. Therefore, only one fluxregion was used throughout the

calculations. Figure 2.13 shows the computational cell used.

fluxregion

PML

Gaussian
source

gold
cylinders

gap

Figure 2.13: 3D numerical cell used to calculate the near field spectrum of a dimer
antenna in the center of the numerical grid. The cell is terminated by a PML, shown
only at the top and bottom plane.

In Fig. 2.14 (a) the influence of the diameter on the near field spectrum is shown. Again,

we find that the peak of the dipole mode shifts to higher wavelengths as the size of the

dimer antenna increases. Since the spectra are normalized to the total intensity of the

source we find that light is focused in between the cylindrical antennas, explaining values

higher than one in the normalized scattering efficiency. Additionally, we find that the

amplitude of the near field scattering cross section reaches a maximum for a diameter of

150 nm and then starts to decrease again. This happens due to higher radiation damping.

Additionally, the field strength is enhanced due to the high curvature of the cylindrical

antennas [33]. When the diameter increases, the curvature effect decreases and the area

of the cylindrical antennas increases. Therefore, the plasmon experiences more and more
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Figure 2.14: Near field scattering spectra for dimer antennas of constant gap size of
30 nm and different diameters (a) and of constant diameter of 100 nm and different gap
sizes (b).

damping from interband transitions. Additionally, this causes broadening of the dipole

mode which is well observable in Fig. 2.14 (a) (cf. Sec. 2.3.2.1). The quadrupole mode

is not observable in the near field spectra since its field does not touch the fluxregion

(cf. Fig. 2.20 (b)).

Figure 2.14 (b) shows the dependence of the spectra on the gap size. Again, we find

that the dipole mode shifts to the blue for increasing gap size and is slightly broadened

(cf. Sec. 2.3.2.1). However, the increase in amplitude is much higher by a factor of nine

for the near field (cf. Fig. 2.14 (b)) compared to four in the far field (cf. Fig. 2.11 (b)),

between the 10 nm and 150 nm gaps. This is expected as the dimer antenna channels

the incoming radiation into the cavity formed inside of the gap.

It has to be emphasized that the normalized scattering efficiency, shown here does not

relate to the field enhancement. It is a measure of how much power penetrates the

fluxregion compared to the case when no antenna is present. Thus, the fluxspectrum

is a good measure for the spectral distribution but the magnitude depends strongly on

the area of the fluxregion. Nevertheless, the intensity scales approximately with the

amplitude of the fields inside the cavity. Therefore, a rising amplitude implies a higher

amplification. Absolute values will be discussed later in Sec. 2.3.4.

The line cuts for a constant diameter of 175 nm are shown in Figs. 2.12 and 2.15. The

data was fitted using an exponential decay function

y = A · exp
(
−x
t

)
+ y0. (2.64)

The obtained fitting values are shown in Tab. 2.3. Comparing the near and far field

values we find that A of the amplitude increases by four times in the near field and the
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Figure 2.15: Near field scattering of dimer antennas. The 2D plots show the amplitude
(a), position (b) and width (c) of the dipole mode. Plots (b), (c) and (d) show line cuts
at a constant diameter of 175 nm from the 2D plot next to them. The line cuts were
fitted using an exponential fitting function. The obtained values are given in Tab. 2.3.
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far field

A t y0

Amplitude 0.39± 0.01 76± 6 nm 0.23± 0.01
Position 211± 5 nm 35± 2 nm 678± 2 nm
Width 77± 5 nm 190± 20 nm 72± 5 nm

near field

A t y0

Amplitude 1.75± 0.03 48± 3 nm 0.28± 0.02
Position 205± 5 nm 34± 2 nm 680± 2 nm
Width 100± 20 nm 270± 80 nm 40± 20 nm

Table 2.3: Comparison of the fitting values obtained in Figs. 2.12 & 2.15 plots (b),
(d) and (f) using a single exponential decay function.

decay length t is about 30 nm shorter. The faster decay is attributed to the coupled

plasmon mode in the gap. The fitting value A of the width of the dipole mode increases

by 23 nm in the near field due to broadening caused by the coupled plasmon mode. The

decay length t of the width is 80 nm higher compared to the far field also due to the

coupled plasmon. The position of the dipole mode shows only a small difference in A of

6 nm and 1 nm in the decay length t.

To show more general differences between the near and far field scattering behavior, the

corresponding contour plots were subtracted and are shown in Figs. 2.16. Thus, we also

consider different diameters of the cylindrical antennas. The contour plots were obtained

by subtracting the far field values from the near field values for amplitude, position and

width using the data shown in Figs. 2.12 and 2.15. We find that for small gap sizes

(below 50 nm) the field enhancement, loosely represented by the amplitude increases

(cf. Fig. 2.16 (a)). This is caused as the coupling of the cylindrical antennas increases

and therefore the coupled plasmon mode becomes more pronounced. The dipole mode

is blue shifted in the near field. This is shown in Fig. 2.16 (b) where it is observable

that the gap size has a stronger influence on the shift than the diameter. The same is

observable in Fig. 2.16 (c) for the width of the dipole mode. In both images we find

small features that are caused by the finite mesh size that alters the dimensions of the

cylindrical antennas and the gap size when Meep discretizes them. This effect is more

pronounced for small gap sizes and diameters as already stated in Sec. 2.3. The highest

amplification is found at a gap size of 10 nm with a diameter of the cylindrical antennas

of 150 nm. This configuration shows a resonance around 780 nm.
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Figure 2.16: 2D contour plots showing the difference between near and far field
scattering cross sections. All data was obtained by subtracting the near field values by
the far field values for (a) amplitude, (b) position and (c) width of the respective 2D
contour plots shown in Figs. 2.15 & 2.12.

2.3.3 Influence of a substrate

When the dimer antenna is placed on a SiO2 substrate (n=1.46 [58]), the dipole mode

shifts to the IR region. This happens for the near and far field. However, the near field

experiences a stronger shift. The difference in the near field is shown in a 2D plot in Fig.

2.17 (b). The computational cell is shown in Fig. 2.17 (a). It is the same as in Fig. 2.13

but with SiO2 underneath the dimer antenna. As the spectral features follow the same

trends, no dedicated 2D plots are shown. The most prominent feature is the position

of the dipole mode. Figure 2.17 (b) shows the difference of the dipole mode position in

the near field for the simulation including a SiO2 substrate and without any substrate.

We find a minimal shift of 41 nm for a dimer antenna with a diameter of 75 nm and a

gap size of 100 nm. The spectra are shown in Fig. 2.17 (c). We find a maximum shift

of 132 nm for dimer antennas having a diameter of 175 nm and a gap size of 150 nm.

The corresponding spectra are shown in Fig. 2.17 (d). The maximum is the result of

different shift rates of the dipole mode for dimer antennas with and without a substrate

underneath. We find the substrate to always redshift the dipole mode in the near field.
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Figure 2.17: (a) Simulation environment for the simulation of the dimer antenna
placed on a SiO2 substrate. (b) 2D plot of the difference in position in the near field of
the dipole mode between simulations with and without a SiO2 substrate. (c) spectra
for the lowest shift of the near field occurring at a gap size of 100 nm and an antenna
diameter of 75 nm. (d) spectra of the highest shift of the near field occurring at a gap
size of 175 nm and an antenna diameter of 150 nm.

2.3.4 Field distribution around gold dimer antennas

After investigating the spectral behavior of dimer antennas made of gold, the distribution

of the electric field |E|2/|E0|2 will be considered. For the calculations a gap size of 30 nm

with cylindrical antennas of 100 nm in diameter was chosen. The substrate was SiO2.

This is the dimer antenna used later for the wavelength-scanned Raman measurements

presented in Sec. 5.3. As the simulations required a significant amount of computation

power and time, only one dimer antenna was investigated.

As described in Ref. [52], the field distribution around a dimer antenna is wavelength

dependent. The subsequent computations were done using a plane wave source instead

of the Gaussian source utilized beforehand. Thus, the field distribution at the frequency
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of the plane wave was measured. Another approach would be to use a Gaussian source

with subsequent Fourier transformation of the time-dependent fields. We decided to use

the single-frequency plane-wave excitation to avoid numerical instabilities at the corner

of the antennas that are likely to cause systematic errors in the Fourier transformation.

The plane wave source was slowly switched on and off over four oscillations in order to

keep its frequency width short and the computational time reasonable.

Additionally, the mesh size was lowered to 4 nm, resulting in a memory requirement

of approximately 200 GiB with a computation time of about 10 h on 768 CPU’s. The

E-field at each grid point around the dimer antenna in a volume of 440 nm x 440 nm

x 128 nm was recorded. This was done without the dimer antenna (for background

correction) and with the dimer antenna (to obtain the scattered fields).
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Figure 2.18: (a) computational cell used to calculate the field distribution around a
gold dimer antenna. (b) near field scattering spectrum of the respective dimer antenna
having a diameter of 100 nm and a gap size of 30 nm.

The computational cell is shown in Fig. 2.18 (a). Within the field storage region all

directional components of the E-field are stored for every spatial and temporal point.

The total intensity at each spatial point was obtained by calculating

|E|2nlm =
∑
i

|Ex|2nlmi + |Ey|2nlmi + |Ez|2nlmi . (2.65)

Eα represents the magnitude of the electric field in α = {x, y, z}-direction. The index

nlmi indicates that this was done at every spatial point nlm over all time slices i.

Thus, the total electric field was obtained. The total fields at every spatial point with

and without antenna were divided yielding the |E|2/|E0|2 enhancement for each spatial

point.
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Figure 2.19: Field distribution around a dimer antenna with a diameter of 100 nm
and a gap size of 30 nm in between. In the left column (plots (a), (c) & (e)) the field
distribution for 500 nm excitation is shown. The field amplification was multiplied by
7.2 in order to account for the weaker amplification out of plasmonic resonance. In
the right column (plots (b), (d) & (f)) the field distribution in plasmonic resonance for
700 nm is shown. The scales are equal for each column. Plots (a) and (b) show the
fields on top of the dimer antenna. Plots (c) and (d) a cut through the center at y = 0.
Plots (e) and (f) show the interface between the dimer antenna and the substrate.
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Figure 2.18 (b) shows the near field spectrum of the simulated dimer antenna. We find

the dipole resonance at 700 nm with a smaller quadrupole resonance around 570 nm.

The field distribution was calculated for two wavelengths. Figure 2.19 shows |E|2/|E0|2

around the dimer antenna out of resonance (500 nm excitation, left column) and in

resonance (700 nm excitation, right column). Figures 2.19 (c) & 2.19 (d) show a cut

through the center of the dimer antenna in x-direction. We observe that the fields show

a different distribution on the top and bottom planes with higher enhancement at the

interface to the substrate at the bottom. This was also observed in Refs. [17, 26]. As

the field distributions around the dimer are different at each interface, they are given at

the top (Figs. 2.19 (a) & 2.19 (b)) and bottom (Figs. 2.19 (e) & 2.19 (f)).

The maximum field intensity is found at the edges of the cylindrical antennas due to the

lightning rod effect with the strongest enhancements occurring at the interface between

the substrate and the cylindrical antennas (cf. Fig. 2.19). This is a consequence of

the higher phase shift, the fields experience between the substrate and the cylindrical

antennas.

Out of resonance (500 nm excitation) the maximum field intensity is 7.2 times weaker

compared to resonant excitation (700 nm). Furthermore, the field distribution changes

which is observable in Figs. 2.19. For 500 nm excitation the fields on top of the cylindrical

antennas are 1.7 times weaker than at the bottom. For 700 nm excitation the fields on

the top are 6.6 times weaker than at the bottom. The fields inside of the gap get pushed

out as the coupled plasmon mode is not in resonance (cf. Fig. 2.19 (c) and 2.19 (d)).

For 700 nm excitation we find that the fields are stronger inside of the gap as the coupled

plasmon mode is in resonance. The ratio between maximum field intensity inside of the

gap and the maximum field intensity outside of the dimer antenna is 0.3 for 500 nm

excitation and 1.2 for 700 nm excitation.

It is instructive to analyze the field amplification and its distribution at the top of the

dimer antenna because this is where the graphene will be situated. All components

|Ex,y,z|2/|E0|2 were plotted for an excitation wavelength of 700 nm in Fig. 2.20. The

source was polarized along the dimer axis, i.e. only Ex-field components were exciting

the dimer antenna. This is observable in Fig. 2.20 (a) having a paler background as the

amplification around the dimer antenna is one due to Eq. (2.65). It is zero in Figs. 2.20

(b) & 2.20 (c) as the source does not emit any Ey- or Ez-field components.

The dimer antenna irradiates mainly Ex- and Ez-fields. This is expected as we excite

a localized surface plasmon resonance (LSPR) created by free electrons confined within

each single antenna. The excitation of additional E-field components is called depo-

larization and is explained by the high spatial localization of the LSPR that results in
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Figure 2.20: Field amplification at the top of a dimer antenna with a diameter of
100 nm and a gap size of 30 nm. The dimer antenna was excited at a wavelength of
700 nm in x-direction. The total amplification was separated into the single components
(a) Ex, (b) Ey and (c) Ez.

the excitation of the additional components of the E-field [59–61]. The effect was ex-

perimentally demonstrated by Hubert et al. [62]. Surprisingly, the strength of the field

intensity is similar for the Ex- and Ez-fields (cf. Figs. 2.20 (a) & 2.20 (a)). Additionally,

a weak quadrupole field is being irradiated along the y-direction. The field enhancement

of the quadrupole mode is only 26% of the x- and z-direction.

Figure 2.21 shows the amplification of the E-field components along the height of the

gap. Ez is only enhanced at the top and bottom of the dimer antenna. Ex has a local

maximum at the top of the dimer antenna and a more intense maximum at the bottom.

Along the dimer height we find an increasing amplification of Ex in the direction of the

substrate.

Maximum amplification occurs at the edges of the cylindrical antennas. The Ex-field

has its absolute maximum at the boundary of the cylindrical antennas. The Ez-field

extends about 4 nm into the vacuum. The field enhancement at the interface to the

SiO2 layer is about six times as high as the field enhancement at the interface to the

vacuum. This ratio is the same for the amplification of the Ex- and Ez-components.
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Figure 2.21: Amplification of the field components Ex, Ey and Ez inside the gap of
a dimer antenna. The antenna is indicated by the light green region.

By exciting the dimer antenna along the y-direction instead of the x-direction we un-

couple both cylindrical antennas. Thus, the field intensity in the gap vanishes which

can be seen in the plots of Fig. 2.22 showing the enhancement of every field component

for illumination in y-direction. We find that the maximum amplification is about 32%

lower when the excitation is done in the y-direction. Again, we find a quadrupole mode

irradiating perpendicular to the excitation direction and depolarization occurring for the

Ez component. Comparing Figs. 2.20 & 2.22 we observe that the cavity creates more

localized fields. This is well observable by comparing the field distribution in Figs. 2.20

(c) & 2.22 (c). Additionally, the depolarization ratio changes from |Êx|2/|Êz|2 = 1.05 for

an excitation along the dimer axis to |Êy|2/|Êz|2 = 0.80 for an excitation perpendicular

to it. This is attributed to the coupled plasmon mode in parallel illumination.

We found that the diameter and gap distance of a dimer antenna have a huge influence

on its plasmonic resonance. The near field requires special attention as it interacts with

a molecule and excites the Raman process. Thus, the design of a dimer antenna is crucial

in order to obtain the desired resonance wavelength and field amplification. We showed

that the field distribution around a dimer antenna is changed by the substrate and that

the highest field amplifications occur at the interface to the substrate. However, the

fields at the upper side of an antenna are also enhanced. An analyte will experience a

high field strength when placed at the top of the gap. Yet, placing an analyte inside

of the gap will expose it to even higher field strengths. It is important to note that

depolarization takes place, exposing the analyte to field polarizations not emitted by

the source.



Chapter 2. Plasmons 49

(a)

-200

-200

x-position (nm)

y
-p

os
it

io
n

(n
m

) 0

-100 0 100 200

-100

0

100

200 |Ex|2
|E0|2

8.5

2.8

5.7

(b)

-200

-200

x-position (nm)

y
-p

os
it

io
n

(n
m

) 0

-100 0 100 200

-100

0

100

200 |Ey|2
|E0|2

8.5

2.8

5.7

(c)

-200

-200

x-position (nm)

y
-p

os
it

io
n

(n
m

) 0

-100 0 100 200

-100

0

100

200 |Ez|2
|E0|2

8.5

2.8

5.7

Figure 2.22: Field amplification at the top of a dimer antenna with a diameter of
100 nm and a gap size of 30 nm. The dimer antenna was excited at a wavelength of
700 nm in y-direction. The total amplification was separated into the single components
(a) Ex, (b) Ey and (c) Ez.

2.3.5 Field enhancement by a dimer antenna

In the previous section we found that a dimer antenna creates a field amplification

around it with the highest amplification in the cavity between the cylindrical antennas.

In Sec. 4.3.2 the measured system is introduced. It consists of a graphene sheet being

pulled into the cavity of the gap. According to Fig. 4.8 (a) the graphene sheet in being

pulled into the cavity by about 4 nm. Thus, the following calculation was done using

the field distribution found 4 nm beneath the top of the antenna.

As Raman scattering is proportional to the E-field intensity (cf. Eq. (3.12)) the ma-

jority of the Raman signal will be excited mainly in areas where we find a huge E-field

amplification. These areas are indicated in Fig. 2.23 by the dotted lines. They include

all points having an amplification of more than |E|2/|E0|2 = 46 which is 33% of the

maximum amplification. These areas include 93% of the total field intensity and cover

an area of 0.0026 µm2. It is reasonable to compare this area to the one illuminated by a

laser incident on the dimer. The diameter of the laser spot is assumed to be 0.95 µm (cf.
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Figure 2.23: Area of field amplification 4 nm below the top of a dimer antenna. The
areas having a field amplification above 46 are indicated by dashed lines.

Sec. 4.2) and therefore covers a total area of 0.71 µm2. In Sec. 5.3 we will find that the

measured Raman signal originates almost exclusively from the area shown in Fig. 2.23.

Therefore, we will relate the area of the field amplification to the one illuminated by the

laser to calculate the enhancement factor EF . This factor is a measure of how much

the antenna amplifies the Raman signal intensity in comparison to the Raman signal

intensity of the same analyte without amplification by a plasmonic antenna14. For the

system investigated it is calculated according to

EF =
Alas
Aant

· Ires
Iout

(2.66)

with Alas being the area illuminated by the incident laser and Aant being the area of

the enhanced field by the antenna. This is multiplied by the ratio of the Raman inten-

sities in resonance Ires and out of resonance Iout. The ratio of the spatial amplification

calculates to Alas/Aant = 270. In Chap. 5 we will use this finding to calculate the total

enhancement factor EF of the system under investigation.

2.3.6 Scattering spectra of gold bowtie antennas

In this section we will briefly examine the scattering spectra of gold bowtie antennas.

Far field scattering spectra were simulated to compare them to measured data, presented

in Sec. 5.2.

Shadow nanosphere lithography (SNL) was used to produce bowtie antenna samples

(cf. Sec. 4.3.1). This method produces unequally shaped bowtie antennas. Thus,

14An overview of different definitions of the enhancement factor EF was prepared by Le Ru et al. in
Ref. [8].
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we find a broad distribution of bowtie antenna and gap sizes. We also find varying

curvatures of the tip apexes. This will be observed by looking at Fig. 4.6. Thus, the

insight obtained by a detailed analysis of the scattering behavior of bowtie antennas is

limited. Since the measurements shown in Sec. 5.2 average over many bowtie antennas

the scattering spectrum will be broadened due to inhomogeneous shapes of the bowtie

antennas. However, it is interesting to compare a simulation using the average size of

the bowtie antennas and the average gap length with measured data obtained by dark

field spectroscopy (cf. Sec. 4.1).
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Figure 2.24: (a) 3D numerical cell used to calculate the field distribution of a bowtie
dimer antenna, situated on a glass layer. The inset shows the naming convention for a
triangle. (b) normalized near field and far field spectra of a bowtie antenna having a
length of 106 nm, a height of 110 nm and a thickness of 20 nm.

The far field and near field spectrum for the bowtie antennas used in Sec. 5.2 was

calculated using the average dimension of the bowtie antennas found in Fig. 4.6. They

are on average 106 nm in length, 110 nm in height and have a thickness of 20 nm. The

naming convention is shown in the inset of Fig. 2.24 (a).

Figure 2.24 (b) shows the near and far field spectra of bowtie antennas having the

average dimensions given above. We find a resonance of 660 nm in the near field and

far field scattering efficiency. The quadrupole mode is observable in the near field due

to the high area of curvature of the tip apex. The high curvature increases the field

strength due to the lightning rod effect [33]. Thus, the quadrupole mode reaches the

fluxregion and is observable in the near field scattering cross section at a wavelength of

580 nm.

In order to calculate the enhancement factor of the bowtie antennas used in Chapter 5

we use the same ratio of Alas/Aant = 270 as obtained in the previous section for a dimer
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antenna. This is a reasonable assumption as bowtie antennas show a similar scattering

behavior as dimer antennas with a comparable diameter and gap size. Additionally, it is

not possible to calculate the exact field distribution for the bowtie antennas measured in

Sec. 5.2 as their exact dimensions could not be measured due to the graphene deposited

on top of them. The reason was that before deposition of the graphene it was not

possible to measure the position of the plasmonic hotspots.

2.4 Electromagnetic SERS resonance theory

This section will be concluded by presenting the existing theory of SERS. The amplifica-

tion of the Raman cross section according to this theory is caused by the near field of an

antenna an analyte is being exposed to. Although the enhancement of the Raman signal

is being described, no detailed knowledge of Raman scattering is required to understand

the theory.

In Sec. 2.3.4 it was shown that plasmonic antennas channel light into small fractions

of space. The first attempts to describe the electromagnetic contribution to the en-

hancement of the Raman signal were carried out in Refs. [12] and [13]. Both used Mie

theory to describe the scattering behavior of a particle being much smaller than the

wavelength of the electromagnetic field using a quasistatic approximation of the field

inside the particle.

Contrary to the theory worked out in Sec. 3.5 they assume an enhancement purely re-

sulting from the amplification of the electromagnetic fields in the vicinity of the particle.

Thus, they predict a single resonance resembling the extinction spectrum of the antennas

for an analyte with no intrinsic resonances as graphene. In Chapter 5 we will see that

this is not the case and the theory described here is not applicable for the measurements

presented later on.

According to Ref. [13] a small particle behaves like it is a polarized dipole and the

enhancement factor EF is estimated using

EF =

∣∣∣∣(1 + 2
n2
s − 1

n2
s + 2

)(
1 + 2

n2
0 − 1

n2
0 + 2

)∣∣∣∣ . (2.67)

From this equation we learn that a part of the resonance is given by the refractive index

of the particle. Mainly caused by the requirement that a plasmon has to be excitable

within the particle. Based on this finding, several authors used a dipole approximation

to calculate the enhancement of rough metal surfaces [63, 64]. Moskovits et al. (Ref.

[9]) extended this theory by including shape effects.
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Within the context of this theory, the field enhancement of a metal nanoantenna is

calculated and used to obtain the SERS enhancement assuming a conventional Raman

process with I ∝ |EL|2 with EL being the local near field the analyte is exposed to. This

resulted in the formulation of the SERS enhancement factor G (cf. Ref. [9])

G =

∣∣∣∣ αRαR0

∣∣∣∣ ∣∣gg′∣∣2 (2.68)

with g being the field enhancement averaged over the surface of the particle for the

excitation wavelength and g′ being the same for the Raman scattered wavelength. αR0

is the Raman polarisability of the isolated molecule and αR the Raman polarisability of

the molecule near the metal particle.

Assuming a small Raman shift we find g ≈ g′. We obtain g ∝ ~EL and thus |g2|2 ∝ |EL|4

according to Ref. [9]. This is sometimes referred to as the fourth power law.

A different formulation is given in Ref. [4] by

EFSERS =

∣∣Ep(ωL)2
∣∣ ∣∣Ep(ωL − ωph)2

∣∣
E4

0

. (2.69)

With Ep being the field strength at the surface of the particle for the laser frequency ωL

and the scattered frequency ω − ωph. E0 is the strength of the incident electromagnetic

field.

A quadratic enhancement of the Raman intensity for small Raman shifts is obtained.

For higher Raman shifts the enhancement depends on the resonance properties of the

metal particle.

Using the findings of Sec. 2.3.2.2 we conclude that no spectrally narrow resonances are

to be expected for plasmonic enhancement. According to the theory described above,

the amplification is mainly determined by the plasmonic near field resonance of the

antenna. Specifically, the width of the resonance is equal to the width of the near field

resonance from the antenna which was calculated in Sec. 2.3.2.2.

Wavelength-scanned SERS measurements have been carried out before but only to a

very small extend due to the difficulty of the measurements. Some papers were published

by the group of van Duyne on homogeneous lattices consisting of bowtie antennas [4,

29]. These measurements established the wavelength of highest amplification to be at

(λLSPR + λphonon)/2, averaging over an area of about 1.5 µm2 [4]. Thus, the measured

Raman signal was likely to contain the contribution of many antennas deviating in shape

due to their manufacturing process15. However, in Sec. 2.3.2.2 we found that the shape

15Reference [4] used nanosphere lithography (NSL) to create a surface covered with a hexagonal bowtie
structure. Section 4.3.1 describes NSL and the inhomogeneity in shape of the obtained bowtie antennas.
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strongly influences the plasmonic near field maximum. Narrow spectral features are

likely to be broadened due to averaging over many different antennas.



Chapter 3

Raman scattering

In this chapter the classical theory of Raman scattering will be introduced. It will be

presented using quantum mechanics and perturbation theory.

A description of the resonant Raman process of the 2D mode in graphene will be given

and expanded to include metallic antennas. This theory will allow very narrow Raman

resonances originating from the plasmonic antenna that enhances the Raman signal

of graphene. These narrow resonances were observed in wavelength-scanned Raman

experiments presented in Sec. 5.3.

3.1 Physical properties of graphene

A brief introduction into the physical properties of graphene will be given in order

to understand its Raman modes. Considering the real space alignment of the atoms,

graphene has 2 atoms in its unit cell (Fig. 3.1). Ideally, it forms a perfect honey-

comb structure and therefore has D6h symmetry. When we have a look at the first

Brillouin zone we find four high-symmetry points. According to Ref. [65], they are

Γ(D6h),M(D2h),K(D3h),K ′(D3h) with their equivalent point group given in parenthe-

ses.

Figure 3.2 (a) shows the electronic band structure of graphene. A nearest-neighbor

tight-binding approach was used. It considers interactions between an atom A and its

nearest neighbors B1, B2 and B3 (Fig. 3.1). By using the tight-binding Hamiltonian

H and considering the overlap of the wave functions S we need to solve the eigenvalue

problem ∣∣∣∣∣∣HAA(~k)− E(~k)SAA(~k) HAB(~k)− E(~k)SAB(~k)

H∗AB(~k)− E(~k)S∗AB(~k) HAA(~k)− E(~k)SAA(~k)

∣∣∣∣∣∣ = 0. (3.1)

55
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Figure 3.1: (a) real space unit cell of graphene with the unit vectors ~a1 and ~a2. The
atomic basis consists of 2 atoms A (red) and B (blue). (b) 1st Brillouin zone of graphene
with the high symmetry points Γ,M,K and K ′. K and K ′ are inequivalent points.
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Figure 3.2: (a) electronic dispersion of graphene obtained by ab initio and nearest-
neighbor tight-binding calculations. (i) shows the dispersion for both calculations. (ii)
shows the difference between the dispersions. Taken from Ref. [66]. (b) calculated
phonon dispersion of graphene showing the iLo, iTo, oTo, iLa, iTa and oTa phonon
branches. Taken from Ref. [65], calculated by Ref. [67].

Reference [66] shows the full derivation. Here, the resulting nearest-neighbor tight-

binding energy dispersion will directly be written

E±(~k) =
ε2p ∓ γ0

√
f(~k)

1∓ s0

√
f(~k)

(3.2)

with

f(~k) = 3 + 2 cos~k · ~a1 + 2 cos~k · ~a2 + 2 cos~k · (~a1 − ~a2). (3.3)

The dispersion was plotted in Fig. 3.2 (a) using ε2p = 0 eV, s0 = 0 eV and γ0 = −2.7 eV.

The parameters were found by fitting ab initio calculations. The differences between

both approaches are shown in the lower part of Fig. 3.2 (a).

In Fig. 3.2 (a) we find that the dispersion around the K point is linear. This may also

be found using Eq. 3.2 and inserting the Taylor expansion of Eq. 3.3 for |~k| � 1. Thus
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it is a good approximation to use a linear band dispersion for small excitation energies

of up to 2.7 eV [66]. In Sec. 3.4.2 this finding will be used. The linear approximation

of the band structure of graphene around the K point is commonly referred to as Dirac

cone.

A Kohn anomaly is an anomaly in the phonon dispersion of metals. It occurs for wave

vectors where the screening of lattice vibrations by ions changes rapidly. The energy

of a phonon is considerably lowered and a discontinuity in the derivative of the phonon

dispersion occurs (∇~qω(~q) =∞) [68]. Kohn anomalies happen for all phonon vectors ~q,

where one can find two electronic states ~k1 and ~k2 = ~k1 +~q, that are located at the Fermi

surface [68]. In graphene we find that the electronic band gap is zero at the equivalent K

and K’ high symmetry points (cf. Fig. 3.1 (b) and 3.2 (a)). These points are connected

by the wavevector ~K, resulting in two Kohn anomalies at the high symmetry points

~k = Γ and ~k = K [69] of graphene, shown in Fig. 3.3. Reference [69] points out that

the phonon dispersion is linear around the two Kohn anomalies for small wave vectors.

This is the reason why we observe linear dispersions for the D and 2D modes which will

be treated later in Sec. 3.4.1.

Figure 3.3: Phonon dispersion of graphene calculated by density functional theory
(DFT). The Kohn anomalies are indicated by the red straight lines in the upper panel
with experimental values (points and squares). The lower panel shows the dotted
regions from the upper panel with calculated values indicated by triangles. From Ref.
[69].

Figure 3.2 (b) shows the phonon dispersion of graphene, calculated using density func-

tional theory (DFT), taken from Ref. [67]. Because of the twinatomic base we observe

six bands having three acoustic and three optical branches. In Fig. 3.2 (b) we find

in-plane (i) modes and out-of-plane (o) modes that refer to the movement of the carbon

atoms with respect to the graphene lattice plane. The primary interest is in the iTo and

iLo modes which are Raman active due to their E2g symmetry at the Γ point [65]. As

described above, we find a linear phonon dispersion at the Γ and K point [70]. This is
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caused by a Kohn anomaly at these high symmetry points resulting in a renormalization

of the phonon energy according to Refs. [68, 69]. An easier calculation, neglecting the

Kohn Anomaly but having a reasonable agreement with measurements may be found in

Ref. [66].

Trigonal warping refers to the triangular distortion of the equi-energy contours of the

electronic band structure and phonon dispersion of graphene near the K point [71, 72].

It is found in materials with a threefold symmetry axis [71]. Figure 3.4 shows the

influence of the trigonal warping effect to the phonon dispersion and electronic band

structure of graphene. Figure 3.4 (b) depicts the equi-energy contours for 2.41 eV

and 2.54 eV of the electronic band structure of graphene (dotted lines) and phonon

equi-frequency contours (solid lines). The dots show experimental data measured using

resonant Raman scattering. They are situated on the equi-energy contours since resonant

Raman scattering is resonant in energy but not in phonon frequency. It is observable

that the electronic equi-energy contours and the phonon equi-frequency contours have

slightly different shapes. Albeit both are trigonally distorted. Additionally, Fig. 3.4

(b) shows that the distortion is less pronounced for small values of |~k|, allowing the

assumption of circular equi-energy and equi-frequency contours called Dirac cone for

small values of |~k|. This reasonable assumption will be used later on.

Figure 3.4: (a) phonon dispersion relations around the K point of the 2D BZ of
graphite, including experimental points shown by dots. (b) Phonon equi-frequency
contours (solid lines), experimental q points (dots) and electronic equi-energy contours
(dotted lines). (c) dependence of the phonon dispersion on the direction of the q-vector.
From Ref. [71]
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3.2 Macroscopic theory of Raman scattering

A short introduction into the classical theory of Raman scattering following Refs. [73, 74]

will be given.

When an electromagnetic (EM) wave encounters a solid it interacts by inducing a polar-

ization in the solid. This is expressed by ~P = χ~E [33]. χ is the dielectric susceptibility

and accounts for the polarisability of a solid. ~E is the incident electromagnetic field

and ~P the resulting polarization. This results in the absorption and transmission of an

incident EM wave by the solid.

In 1928 C.V. Raman showed experimental evidence that light interacts inelastically with

solids [75]. This interaction is called Raman scattering and has become a widely used

method of the non-invasive analysis of molecules and solids [73]. It also has become a

versatile tool for the investigation of graphene [65] and carbon nanotubes due to their

informative Raman features [76].

Let us assume an incident planar EM wave ~E(~r, t) with amplitude ~E0(~ki, ωi)

~E(~r, t) = ~E0(~ki, ωi) cos(~ki~r − ωit) (3.4)

induces a polarization

~P (~r, t) = ~P0(~ki, ωi) cos(~ki~r − ωit) (3.5)

= χ(~ki, ωi) ~E0(~ki, ωi) cos(~ki~r − ωit), (3.6)

where the scalar constant χ(~ki, ωi) represents the susceptibility of the solid. χ(~ki, ωi)

depends on the atomic displacement ~Q(~r, t). As the amplitude of ~Q(~r, t) is small com-

pared to the lattice constant at room temperature, χ(~ki, ωi) can be approximated using

a Taylor series in ~Q(~r, t)

χ(~ki, ωi, ~Q) ≈ χ0(~ki, ωi) +
δχ

δ ~Q

∣∣∣∣
0

~Q(~r, t) + . . . (3.7)

Inserting Eq. (3.7) into Eq. (3.6) we get two terms

~P (~r, t, ~Q) ≈ ~P0(~r, t) + ~Pind(~r, t, ~Q) + . . . . (3.8)

Thus, we obtain an induced polarization Pind(~r, t, ~Q) and an intrinsic polarization P0(~r, t)

within the solid under illumination. A plane wave will be introduced to describe the
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quantized atomic displacement ~Q(~r, t), referred to as phonon [77, 78]

~Q(~r, t) = ~Q(~q, ω0) cos(~q ~r − ω0t). (3.9)

Inserting Eq. (3.9) into ~Pind(~r, t, ~Q) from Eq. (3.8) and rearranging the cosine terms,

results in

~Pind(~r, t, ~Q) =
1

2

∂χ

∂ ~Q

∣∣∣∣
0

~Q(~q, ω0) ~E0(~ki, ωi)·

·
{

cos
(

(~ki + ~q)~r − (ωi + ω0)t
)

︸ ︷︷ ︸
Anti-Stokes

+ cos
(

(~ki − ~q)~r − (ωi − ω0)t
)

︸ ︷︷ ︸
Stokes

}
(3.10)

Thus, we get two waves shifted in wavevector and frequency, known as Stokes and

anti-Stokes. In other words the incoming light of frequency ω0 is inelastically scattered

resulting in two emitted waves that appear next to the laser line. One is shifted to

lower frequencies with ~ki − ~q and ωi − ω0 and is called Stokes. The other one is shifted

to higher frequencies with ~ki + ~q and ωi + ω0 and is called anti-Stokes. An exemplary

spectrum is shown in Fig. 3.5.

ωi + ω0ωiωi − ω0

anti - Stokes

Rayleigh

Stokes

Energy

In
te

n
si

ty

·10−6

Figure 3.5: Spectrum of Rayleigh, Stokes and anti-Stokes Raman scattering. ~ω0 is
the energy of the phonon and ~ωi the energy of the laser.

We will use Eq. (3.10) to learn more about the properties of Raman scattering. Ne-

glecting the cosine terms we find a vector product which may be zero under certain
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conditions. Using Einsteins notation we rewrite ~Pind(~r, t, ~Q)

~Pind(~r, t, ~Q) ∝
(
∂χ

∂ ~Q

)
~Q(~q, ω0) ~E0(~ki, ωi)

=

(
∂χij
∂Qk

)
Qk(~q, ω0) ~E0(~ki, ωi)

= (χij,k)Qk · (E0)j

= Rkij · E0j

= R ~E0. (3.11)

This relation indicates that a polarization is induced when the susceptibility does not

vanish for displacements along the direction of the incident wave. Using the same argu-

ment, the scattered wave, ~Es · ~Pind also needs to have nonvanishing components. This

way we obtain the intensity of the Raman scattered light

Is ∝
∣∣∣ ~Es ·R · ~E0

∣∣∣2 ≡ ∣∣∣ ~Ei ·R · ~Es∣∣∣2 . (3.12)

R is called the Raman tensor. From Eq. (3.12) we conclude that only certain polar-

izer/analyzer combinations ( ~Ei, ~Es) contribute to the Raman intensity. Namely those

resulting in a non-zero vector product in Eq. (3.12).

R depends on the atomic structure of the solid under investigation (cf. Eq. (3.11)).

The non-zero elements of the Raman tensor are obtained using group theory and the

symmetry characteristics of the atomic lattice of the solid. We are able to decompose

R according to its irreducible representation and rewrite Eq. (3.12) as

Is ∝
∑
n

∣∣∣ ~Ei ·Rn · ~Es
∣∣∣2 . (3.13)

Every phonon is represented by its irreducible representation Rn and we get the total

Raman intensity by summing over all phonons.

3.3 Microscopic theory of Raman scattering

Until now, Raman scattering was described without the consideration of microscopic

processes taking place in the solid. In the description above any resonance effects,

where the Raman intensity Is is a function of ωi are included in χ(~ki, ωi). The following

section will further elucidate this behavior. Again, we will follow Refs. [73, 74] for the

presentation.
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The Hamiltonian used is

H = H0 +HeR +HeL. (3.14)

H0 = He +Hl is the contribution from the electron and lattice vibrations. HeR is the

contribution from electrons interacting with incoming radiation and HeL describes the

interaction involving the lattice of the solid (electron-phonon-interaction).

Basically, Raman scattering involving one phonon requires the following steps:

1. An incident photon excites the solid, creating an electron-hole pair into a virtual

state |a〉 (described by HeR)

2. The electron-hole pair is scattered into another state |b〉 (by HeL)

3. The electron-hole pair recombines radiatively back to the ground state (by HeR)

A thorough description of this process requires us to use quantum electrodynamics

(QED) which is beyond the scope of this work. Here, the semiclassical treatment from

Ref. [73] will be given as it is sufficient to describe the observations made in Sec. 5.3.

In order to describe the microscopic processes involved, Feynman diagrams will be used.

They follow some simple rules:

• Excitations like photons, phonons, etc. are drawn by lines. They are called prop-

agators.

• Interactions between two excitations are represented by intersections of their prop-

agators. They are called vertices.

• Propagators have an arrow indicating whether their excitations are created or

annihilated. An arrow pointing towards a vertex means annihilation and an arrow

pointing away from a vertex means creation.

• The sequence of the interactions taking place is from left to right.

• Once a process has been drawn, other equivalent processes can be derived by

permutation of the time order of the initial process.

Figure 3.6 shows a representative Feynman diagram in the upper section (a) and an

overview of the symbols used in the lower section (b).

In Fig. 3.7 all possible scattering paths for a one-phonon Stokes scattered photon are

shown. These scattering paths will be translated into their respective contribution to

the expansion of the scattering probability Pph. The contribution from Fig. 3.7 (a) will
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photon

electron-hole pair

phonon

(a)

(b)

(1) (2) (3)

electron-radiation
interaction Hamiltonian

electron-phonon
interaction Hamiltonian

Figure 3.6: Explanation of the usage of Feynman diagrams. (a) a Feynman diagram
for one-phonon stokes Raman scattering (described in this chapter). (b) explanation of
the symbols used. From Ref. [73].

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.7: Feynman diagrams of the scattering processes contributing to a one-
phonon stokes Raman process (a-f). (b-f) are permutations of (a). From Ref. [73]

be used as an example. The first vertex describes how the incident state |i〉 interacts

with an incoming photon of energy Ei = ~ωi and thus creates an electron-hole pair |1〉
via HeR. This electron-hole pair is scattered via HeL and a phonon of energy ~ω0 is

created. Thus, the system enters the state |2〉. Finally, a new photon is released by HeR
and the system returns to its initial state |i〉 by emitting the scattered photon of energy

~ωs.

A mathematical formulation will be derived using Fermi’s golden rule that gives us the

probability for a transition from the state |k2〉 to |k1〉

P (~k1,~k2) =
2Π

~

∣∣∣〈~k1|Hscatt |~k2〉
∣∣∣2 ρf

=
2Π

~

∣∣∣∣∣ 〈~k1|Hscatt |~k2〉
E(k1)− E(k2)

∣∣∣∣∣
2

. (3.15)
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The density of final states ρf was rewritten, assuming there is an infinite amount of

final states when approaching a Van Hove singularity1 for the transition between |~k1〉
and |~k2〉.

Using Eq. (3.15) we may write the contribution from Fig. 3.6 (a) to the scattering

probability Pph according to

Pph(ωs) =

(
2Π

~

) ∣∣∣∣∣∣∣∣∣
∑
1,2

(3)︷ ︸︸ ︷
〈i|HeR(ωs) |2〉

(2)︷ ︸︸ ︷
〈2|HeL |1〉

(1)︷ ︸︸ ︷
〈1|HeR(ωi) |i〉

[~ωi − (E1 − Ei)]︸ ︷︷ ︸
(1)

[~ωi − ~ω0 − (E2 − Ei)]︸ ︷︷ ︸
(2)

∣∣∣∣∣∣∣∣∣
2

·

· δ [~ωi − ~ω0 − ~ωs]︸ ︷︷ ︸
(3)

.

(3.16)

The states |1〉 and |2〉 with their corresponding energies E1 and E2 are virtual states.

We have a continuum of possible states that needs to be summed over. The curly

braces in Eq. (3.16) show the contributions from each vertex in Fig. 3.6 (a). The

denominator from vertex (3) in Fig. 3.6 (a) leaves us with a term for the total change in

energy, reformulated using a delta function. Therefore, Raman scattering obeys energy

conservation as expected. However, it is important to state that energy is conserved in

total but not for the individual scattering processes.

From Eq. (3.16) we find that every vertex has a resonance condition creating a singu-

larity when the denominator becomes zero. This is a result of implicitly assuming an

infinite lifetime for every state involved in Eq. (3.15). In order to avoid this detrimental

situation we make the transition Ex → Ex + iΓx. Thus, a finite lifetime for each state

|x〉 with the usual definition Γx = ~/τx is being introduced (cf. Ref. [73]).

For the sake of completeness this section will be concluded by writing down the scattering

probability for all contributions in Fig. 3.7. For the classical derivation the reader is

advised to refer to Ref. [73]. In the following formula a finite lifetime of the states |1〉
1A van Hove singularity is a singularity in the density of states of a solid (cf. Ref. [79]).
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and |2〉 was considered and the ground state was set to zero, i.e. Ei = 0.

Pph(ωs) =

(
2Π

~

) ∣∣∣∣∑
1,2

〈i|HeR(ωi) |1〉 〈1|HeL |2〉 〈2|HeR(ωs) |i〉
[~ωi − (E1 + iΓ1)] [~ωi − ~ω0 − (E2 + iΓ2)]

+

∑
1,2

〈i|HeR(ωi) |1〉 〈1|HeR(ωs) |2〉 〈2|HeL |i〉
[~ωi − (E1 + iΓ1)] [~ωi − ~ωs − (E2 + iΓ2)]

+

∑
1,2

〈i|HeR(ωs) |1〉 〈1|HeL |2〉 〈2|HeR(ωs) |i〉
[−~ωs − (E1 + iΓ1)] [−~ωs − ~ω0 − (E2 + iΓ2)]

+

∑
1,2

〈i|HeR(ωs) |1〉 〈1|HeR(ωi) |2〉 〈2|HeL |i〉
[−~ωs − (E1 + iΓ1)] [−~ωs + ~ωi − (E2 + iΓ2)]

+

∑
1,2

〈i|HeL |1〉 〈1|HeR(ωi) |2〉 〈2|HeR(ωs) |i〉
[−~ω0 − (E1 + iΓ1)] [−~ω0 + ~ωi − (E2 + iΓ2)]

+

∑
1,2

〈i|HeL |1〉 〈1|HeR(ωs) |2〉 〈2|HeR(ωi) |i〉
[−~ω0 − (E1 + iΓ1)] [−~ω0 + ~ωs − (E2 + iΓ2)]

∣∣∣∣2·
· δ [~ωi − ~ω0 − ~ωs]

(3.17)

For certain energies ~ωi in Eq. (3.17), Pph(ωs) shows a maximum. However, these

resonances are dominated by the first sum as both of its denominators become resonant

at the same ~ωi. For an excitation energy ~ωi when no resonance condition is met other

sums may have a greater contribution but the overall scattering maximum is being

determined by the first term.

3.4 Raman scattering in graphene

3.4.1 Raman modes of graphene

The Raman spectrum of graphene is shown in Fig. 3.8. The G mode, known from

graphite at a Raman shift of 1570 cm−1 has E2g symmetry and is polarization indepen-

dent [80]. It is the result of a single phonon Raman scattering process as described in

Sec. 3.2 and Sec. 3.3.

Additionally, we find the D and 2D modes. They show a dispersive behavior as their

Raman shift depends on excitation energy. It is caused by the unique electronic band

structure of graphene and other materials having sp2 bonds [81]. The origin of these

modes is double resonant Raman scattering [82] which will be described in Sec. 3.4.2.

The 2D mode is the overtone of the D mode. Therefore, it shows a dispersion twice as

high, 100 cm−1/eV instead of 50 cm−1/eV.

Contrary to the 2D mode, the double resonance process of the D mode involves scattering

by a defect. Consequently, the D mode does not appear in defect-free graphene and has
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Figure 3.8: Raman spectrum of graphene for 532 nm excitation.

an increasing intensity with increasing defect density [82]. The 2D mode is always

observable and does not depend on the defect density in the scattering region.

The G* mode originates from a double resonant scattering process involving a TO and

a LA phonon. The 2D’ mode is also created by double resonant Raman scattering

according to Ref. [83] and is the overtone of the D’ mode which is not shown in Fig.

3.8.

3.4.2 Double resonant Raman scattering

The easiest Raman mode of graphene to describe theoretically is the G mode, which

originates from a conventional one-phonon Raman process as described in Sec. 3.3.

The D and 2D modes are described by a double resonant Raman process (cf. Refs.

[82, 84, 85]) involving the following steps

1. A photon gets absorbed and an electron-hole pair is being created.

2. The carriers are scattered twice by a phonon with wavevector ~q.

3. Radiative recombination and emission of the scattered photon.

This process is the origin of the D, D’, 2D and 2D’ modes. In the case of the D and

D’ modes backscattering is caused by a defect. The difference between them is that

scattering in case of the D mode happens across the Brillouin zone from K to K’ and

back (inter-valley scattering). However, scattering for the D’ mode occurs at the same

K point (intra-valley scattering).
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The 2D mode is also caused by double resonant Raman scattering but the backscattering

involves a second phonon which is the reason why this mode is always visible, even in

totally defect-free graphene. The dispersion of 100 cm−1/eV is twice that of the D mode

(50 cm−1/eV) indicating that it is caused involving the same phonon of the D mode,

scattered twice.

Figure 3.9 shows the double resonant Raman process for the D and D’ mode and their

overtones 2D and 2D’. As mentioned in Sec. 3.1 we find a linear dispersion at the K

point, indicated by the blue lines in Fig. 3.9. It is commonly known as Dirac cone

and a good assumption for excitation energies in the visible light range and across the

Fermi energy [84]. Subsequently, we find a resonant excitation (emission) for every

mode described. Thus, graphene is an ideal marker solid as it does not involve intrinsic

resonances2. In figure 3.9 only the process for a resonant excitation is shown. Resonant

emission is also possible and will be treated later in Sec. 3.4.4.

~k
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K ~k

E

K’

ω(D)

~ωL

~q(D)

~k

E
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E
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~q(D)
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E

K

~ωL

ω(D′)
~q(D′)
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E
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~ωL

ω(2D′)
~q(D′)

D D’

2D 2D’

Figure 3.9: Double resonance processes occurring in graphene for electron scattering
only. The K and K’ points are not equivalent. The D and 2D modes are inter-valley
modes meaning the electron-hole pair is scattered from K to K’ and back. The D’ and
2D’ modes are intra-valley modes so the electron-hole pair does not leave the K point.

3.4.3 Effects of strain on the Raman modes of graphene

In the following section we need to abandon the simple assumption of a 1D Dirac cone as

recent theoretical investigations show [86–89]. In Fig. 3.10 we find a thorough calculation

of the transitions leading to the 2D mode of graphene. From the underlying contours

we find that there are different phonon wave vectors possible. Not exclusively along the

2A detailed explanation will be given in Sec. 3.4.4
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Figure 3.10: Phonon mediated electronic transitions in graphene. The black arrows
are the transitions resulting in maximum intensity. The red-brown contours in (a)-(c)
are the product of optical absorption and emission matrix elements for different ori-
entations: (a) x:x, (b) y:y and (c) x:y. Where x is the zigzag and y is the armchair
orientation of graphene. The green lines are the energy contours for fixed laser excita-
tion. (d) shows that the addition of a reciprocal lattice vector ~b2 (gray) to ~k∗i causes
an outer transition (black arrows) to become an inner transition (blue arrows). Taken
from Ref. [86].

high symmetry K-M direction. We also observe that the polarization has an influence

on the scattering path (cf. Fig. 3.10 (a) and (b)).

Figure 3.11: Dominant phonon wave vectors ~k∗i for scattering of the 2D mode in
unstrained graphene (blue-green regions). The underlying orange contours show the
dispersion of the iTO phonon branch. As in Fig. 3.10 the scattering directions are: (a)
x:x, (b) y:y and (c) x:y. Taken from Ref. [86].

Figure 3.11 shows the dominant phonon wave vectors for a fixed excitation energy.

Depending on the direction of the polarizer and analyzer the angular location of the

wavevector ~k∗i changes (blue-green contours in Fig. 3.11). Initially it was believed that

strain results mainly in the shift of the Dirac cones with respect to the strain direction

[90–92]. In Ref. [86] it was found that strain also results in a distortion of the trigonal

warping effect at the K point (cf. Sec. 3.1). Comparing Fig. 3.11 and Fig. 3.12 we find

the effect of strain on the iTO phonon dispersion around the K point. This results in

a shift and splitting of the 2D mode, observable in Fig. 3.12 (a-c). In this figure the

left-hand mode is called 2D− and the right-hand one 2D+. The shift is proportional

to the strain as Refs. [86, 90, 93] report. In Ref. [90] the shift rate of a graphene
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Figure 3.12: (a-c) Experimental Raman spectra of strained graphene from Ref. [90].
(d-f) calculated Raman spectra of strained graphene. (g-f) shows dominant phonon
wavevectors (blue-green contours) with the iTO phonon dispersion (orange contours).
The dominant phonon wavevectors along with the iTO phonon dispersion were calcu-
lated for 1.5% strain in the zigzag direction (g,h) and 1.0% in the armchair direction
(i). (a,d,g) show spectra for parallel and (b,e,h) for perpendicular polarization with
respect to the zigzag orientation of graphene. (c,f,i) show perpendicular polarization to
the armchair orientation. Taken from Ref. [86].

sheet supported by Polydimethylsiloxan (PDMS) with 2.6% strain was shown to be 99

cm−1/eV and 106 cm−1/eV for the 2D− and 2D+ mode, respectively.

Popov et al. (Ref. [88]) estimate a split into 3 modes, named 2D1, 2D2 and 2D3. They

attribute this to the 3 possible scattering paths in the Brillouin zone to the nearest

neighbor K points, depending on the strain direction (cf. Fig. 3.1).

The observed shift can be used to measure strain imposed on a graphene sheet. In Fig.

3.13 we find two parameters which are used to quantify strain. The parameter εll quan-

tifies strain applied along the longitudinal direction of a graphene sheet. The parameter

εtt quantifies strain along the transverse direction perpendicular to the longitudinal one.

The chiral angle of the graphene sheet is given by Θ.

The strain tensor will be written according to Ref. [94] as

ε =

(
εtt cos2 Θ + εll sin

2 Θ 1
2 sin(2Θ)(εll − εtt)

1
2 sin(2Θ)(εll − εtt) εtt sin2 Θ + εll cos2 Θ

)
(3.18)
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εll

εtt

Θ

Figure 3.13: Parameters εll and εtt used to quantify strain imposed on a graphene
sheet with chiral angle Θ.

We may now write the dynamical equation for the phonon modes in the presence of

strain

müi = −
(

mω2
0ui︸ ︷︷ ︸

unstrained motion

+
∑
klm

K
(1)
ikmlεlmuk︸ ︷︷ ︸

change due to strain

)
(3.19)

with u being the displacement of the atoms, m being their mass and ω0 being the

unstrained phonon frequency.

The tensor K(1) has only three nonzero components (cf. Ref. [94]) due to the hexagonal

symmetry of the graphene sheet (E2g for Raman active phonons). Thus, we find (cf.

Ref. [94])

K1111 = K2222 = mK̄11 (3.20a)

K1122 = mK̄12 (3.20b)

K1212 =
1

2
m(K̄11 − K̄12). (3.20c)

The solutions to Eq. (3.19) are found by inserting Eqns. (3.20) and solving for the

eigenvalues. Subsequent insertion of Eq. (3.18) gives

∆ω

ω0
=
K̄11 + K̄12

4ω2
0︸ ︷︷ ︸

γ

(εll + εtt)︸ ︷︷ ︸
εh

±1

2

K̄11 − K̄12

2ω2
0︸ ︷︷ ︸

β

(εll − εtt)︸ ︷︷ ︸
εs

. (3.21)

The Grüneisen parameter γ was introduced. It describes the frequency shift under

hydrostatic strain εh = εll + εtt. Additionally, the shear strain deformation potential

β was introduced. It gives rise to the splitting of phonon modes under shear strain

εs = εll − εtt. Equation (3.21) is mostly written in a shorter form, i.e.

∆ω = γω0εh ±
1

2
βω0εs (3.22)

which is also found in Ref. [95].
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3.4.4 Double resonance theory of the 2D mode in graphene

In this section we will use the Raman theory presented in Sec. 3.3 and apply it to double

resonant Raman scattering of the 2D mode in graphene. The following calculations are

based mainly on Refs. [82, 85, 96].

We will use the processes described in Sec. 3.4.2 to elaborate the details of double

resonant Raman scattering in graphene. Figure 3.14 uses the same notation as Fig. 3.7

but considers individual scattering paths for the electron and hole involved.

ee1

−~qν ~qµ

ee2

~qµ −~qν

hh1

−~qν ~qµ

hh2

~qµ −~qν

eh1

−~qν

~qµ

eh2

~qµ

−~qν

he1

~qµ

−~qν

he2

−~qν

~qµ

Figure 3.14: Feynman diagrams of the processes involved in double resonant Raman
scattering of the 2D mode in graphene. It distinguishes scattering electrons (upper
path) and holes (lower path) individually. The left-hand side shows scattering involving
only one particle: ee1 & ee2 the electron and hh1 & hh2 the hole. On the right-hand
side processes involving both particles are shown (eh1, eh2, he1 and he2). After Ref.
[85].

The watchful reader might miss the permutation of the vertices as shown in Fig. 3.7. The

reason is simple as will be explained by example: considering only electron scattering

there are 4! = 12 possible sequences. From these we will neglect all sequences that

involve a time order having the emission of a phonon before (after) absorbing (emitting)

a photon since these have a negligible contribution to the scattering probability Pph(ωs)

due to their denominator (cf. Eq. (3.17)). So we end up having two sequences ee1

and ee2 contributing dominantly to Pph(ωs). Using the same argument for hole and

combined electron hole scattering, only the sequences shown in Fig. 3.14 remain.
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We are able to simplify even farther by considering interference effects. In Ref. [85]

Venezuela et. al. found that processes involving only a single particle (ee1, ee2, hh1 and

hh2) have a small contribution to Pph(ωs). To illustrate this a more general reformulation

of Eq. (3.16) will be used. It is based on Ref. [85].

I~q,µ,ν ∝

∣∣∣∣∣∣
∑
~k,α

Kα(~k, ~q, µ, ν)

∣∣∣∣∣∣
2

(3.23)

Here Kα(~k, ~q, µ, ν) is the contributing term of the respective scattering sequence given

below. Before continuing we will complete the reformulation of Eq. (3.16) by giving not

only the scattering probability but the intensity of the processes considered. Thus, we

need to multiply the scattering probability Pph(ωs) with the respective Bose-Einstein

statistics. This is done as we implicitly assume thermal equilibrium and the phonons to

occupy discrete energy states.

I(ω) ∝
∑
~q,µ,ν

I~q,µ,νδ(ωL − ωs − ων−~q − ω
µ
~q )

︸ ︷︷ ︸
PPh(ωs)

·[n(ων−~q) + 1][n(ωµ~q ) + 1] (3.24)

With n(ω) being the Bose-Einstein statistics. In the formulation above ~ = 1 was set

for simplicity reasons. The 2D phonon has a shift of about 2650 cm−1 and therefore an

energy of about ~ω~q ≈ 329 meV, which is much higher than kBT ≈ 26 meV. So that

n(ωµ,ν~q ) ≈ 0.

Now we need to formulate the scattering terms in order to calculate the intensity. Be-

ginning with the eh1 term from Fig. 3.14. Using the explicit and informative notation

from Ref. [85]. |~k, π〉 represents a state with the vector ~k in the Brillouin zone and

the energy of the π band. π∗ corresponds to the excited state in the Dirac cone (upper

branch). The Hamiltonian H−~q,µeL means scattering by a vector −~q via the phonon of the

branch µ.

Keh1 =
〈~k+~q,π|HeR|~k+~q,π∗〉〈~k,π|H−~q,µ

eL |~k+~q,π〉〈~k+~q,π∗|H~q,νeL |~k,π
∗〉〈~k,π∗|HeR|~k,π〉

(EL−Eπ
∗

~k+~q
+Eπ

~k+~q
−~ων−~q−~ω

µ
~q
−iΓ3)(EL−Eπ

∗
~k+~q

+Eπ
~k
−~ων−~q−iΓ2)(EL−Eπ

∗
~k

+Eπ
~k
−iΓ1)

(3.25)

This quite lengthy term will be simplified a lot. In principle we need to calculate each

matrix element by using the irreducible representation of its elements and calculate the

matrix product. Doing so we end up having the polarization dependence of the term

under investigation. To simplify the derivation a fully symmetric scattering condition

is being assumed and each matrix element was set to 1. Thus, we end up with the

nominator being 1.

Now let us consider the denominator of Eq. (3.25). We find the lifetimes τi of the states
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involved by Γi = 1/τi. Energies are written as Eπ~k
where ~k gives the point in the Brillouin

zone and π the respective band, the particle is scattered to (cf. Fig. 3.9). Considering

a Dirac cone as a good approximation for the band structuce of graphene around the

K point3 (cf. Ref. [70] and Sec. 3.1). This is reasonable since Raman scattering takes

place near the K point [82, 85]. Additionally, we switch from two dimensions to one

dimension since the problem has rotational symmetry to a reasonable degree (cf. Sec.

3.1). Thus, we are now able to rewrite these energies using Eπ
∗,π

~k
= ±~vF |~k| with vF

being the Fermi velocity of graphene. The values used for the calculations are ~vf =

6.49 eV and γ = 84 meV (taken from Ref. [85]). The phonon energy ~ωµ,ν~q is assumed to

be the same for every phonon scattered. Having a linear band structure we find the same

dispersion for both phonons µ, ν with the same energy. Additionally, it is reasonable to

assume that the lifetime of the transitions is equal and we find Γ1 = Γ2 = Γ3 = Γ.

Inserting these simplifications we find that the scattering processes from Fig. 3.14 are

identical for the ee1, ee2, hh1 and hh2 processes. Therefore, we call them Kaa. The

same happens to the processes involving electrons and holes (eh1, eh2, he1 and he2).

Thus, we call them Kab respectively and find

Kaa =
1

(EL − 2~vF~k − 2~ω~q − iΓ)(EL − ~vF ~q − ~ω~q − iΓ)(EL − 2~vF~k − iΓ)
(3.26)

Kab =
1

(EL − 2~vF (~k − ~q)− 2~ω~q − iΓ)(EL − ~vF ~q − ~ω~q − iΓ)(EL − 2~vF~k − iΓ)
.

Using Eq. (3.23) we are able to transform the sum into an integral
∫∞

0 Kdk as we are

dealing with a continuum of states. The intensity I~q in Eq. (3.23) will be derived using

I~q ∝
∣∣∣∣∫ ∞

0

θdk

(k + α)(k + β)

∣∣∣∣2 =

∣∣∣∣θ lnβ − lnα

α− β

∣∣∣∣2 . (3.27)

Thus, we obtain a general solution applicable to both cases. By using the following

convenient substitutions in Kaa and Kab

θ = (2~vF )−2(EL − ~vF q − ~ω~q − iΓ)−1

α =
EL − 2~ω~q − iΓ

2~vF
(3.28)

β = −EL − iΓ

2~vF
3A more general description may be found using equation (6) in Ref. [66].
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we obtain

Iq(Kaa) =

∣∣∣∣ θ

α+ β
[lnβ − ln(−α)]

∣∣∣∣2 (3.29)

Iq(Kab) =

∣∣∣∣ θ

α− β − q
[lnβ − ln(α− q)]

∣∣∣∣2 . (3.30)

In Iq(Kaa) we see that only θ depends on q and has a resonance condition for

q =
EL − ~ω~q − iΓ

~vF
. (3.31)

In Iq(Kab) we find that there is a second resonance α− β − q = 0 which adds up to the

same resonance condition as in Eq. (3.31). So we find the same resonance for both Kaa

and Kab with the latter being the dominant contribution due to two terms becoming

resonant at the same time. The logarithmic part in Eq. (3.30) is a slow varying function

of q and therefore does not alter the resonance condition. The contribution from Kaa

and Kab to the intensity is shown in Fig. 3.15 using Eqns. (3.29) and (3.30). We find

that Kaa has a negligible intensity compared to Kab. Thus, Kaa will be neglected in

further derivations.
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Figure 3.15: Numerical calculation of the contribution from Eqns. (3.29) and (3.30)
to the intensity. q̂ = 2q~vf/EL is the normalized momentum ~q. Therefore q̂ = 2
corresponds to a two phonon resonance.

The last but most important point to learn from the calculations above is the energy

dependence of the intensity of the 2D mode. Figure 3.16 shows the calculated intensity

using Eq. (3.24). The decline should not be mixed up with the normal ω4 increase in

intensity for Raman scattering (cf. Ref. [73]). It is caused by the broadening parameter

γ which was kept constant in the calculations (cf. Ref. [85]). In Fig. 3.16 no resonance

features are present. Thus, we should not see any enhancement effects originating from
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Figure 3.16: Calculated intensity of the 2D Mode of graphene using Eq. (3.24).
The decline is not the expected ω4 dependence of the intensity of an arbitrary Raman
process on excitation energy. It is caused by a constant broadening parameter γ. No
intrinsic resonance is observable.

the graphene itself. This is the reason why graphene was chosen as an analyte in the

first place.

3.5 Plasmon-enhanced resonance Raman theory

After analyzing the properties of the standard double resonant Raman process in the

preceding section, it is now time to extend our treatment and incorporate a plasmonic

antenna into the system. Since we do not know the coupling mechanism between gold

and graphene, a general approach will be used, not specifying the details of the mi-

croscopic coupling effect. In order to determine the details of the coupling, further

experiments need to be conducted.

In Sec. 3.4.4 we deduced that only the scattering term Kab of Eq. (3.26) has a major

contribution to the total scattering intensity. Hence, only this Term will be used in the

further treatment. Figure 3.17 shows the eh1 process of Fig. 3.14 as a representation

for all scattering processes possible (indicated by the dashed frame). The scattering

processes are once again shown using Feynman diagrams. We end up having four possible

cases in which the gold antenna is either interacting with the incoming and outgoing

photon, only the incoming photon, only the outgoing one or none.
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−~qν

~qµ
−~qν

~qµ

−~qν

~qµ
−~qν

~qµ

gg

go

og
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gold interaction Hamiltonian

Figure 3.17: Feynman diagrams of the processes involved in surface-enhanced Ra-
man scattering. The diagrams are named according to the interaction between gold
and graphene. “gg” means interaction of the incoming and outgoing photons with
gold, “go” only for incoming interaction, “og” only for outgoing and “oo” for no in-
teraction resulting in the scattering term Kab from Sec. 3.4.4. The dashed box means
all the processes of Fig. 3.14 need to be inserted. Thus, every diagram represents four
scattering events. The interaction Hamiltonian of gold and graphene is represented by
a red hexagon.

Before writing down the scattering terms it is useful to define the incoming and outgoing

contribution of the gold antenna using Eq. (3.15)

Λin =
〈ϕin,2|HAu |ϕin,1〉
EL − EAu − iΓAu

=
κ

EL − EAu − iΓAu
(3.32a)

Λout =
〈ϕout,2|HAu |ϕout,1〉

EL − EAu − 2~ω~q − iΓAu
=

κ

EL − EAu − 2~ω~q − iΓAu
. (3.32b)

A fully symmetric gold interaction Hamiltonian is being assumed as the precise mech-

anism of the gold interaction is not known. Thus, only a constant contribution κ from

the matrix elements of the gold Hamiltonian is left. The overall scattering intensity is

different for gold and graphene.

The scattering terms will now be rewritten as

Kgg = Λin ·Kab · Λout (3.33a)

Kog = Kab · Λout (3.33b)

Kgo = Λin ·Kab (3.33c)

Koo = Kab. (3.33d)

EAu represents the extinction maximum of the plasmon and ΓAu its width. Λin is

the amplification term for the incoming radiation and Λout the term for the emitted

radiation. Using Eqns. (3.23) and (3.33) we are now able to calculate the resonance

behavior of the system graphene on gold.

In Fig. 3.18 the scattering intensity obtained using Eqns. (3.33) is shown for different
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Figure 3.18: Calculated intensity using Eq. (3.33) for EAu= 1.97 eV, ΓAu= 0.01 eV
and ~ωq= 165 meV for different scattering contributions. (a) shows the intensity con-
sidering only the Kgg and Kgo + Kog terms. (b) shows the intensity considering all
terms and shows the influence of the variables EAu, ΓAu, 2~ωq and κ. The intensity
scale is equal in (a) and (b).

cases. Figure 3.18 (a) shows the enhancement considering ingoing and outgoing gold

antenna interaction during one scattering event in the black curve (Kgg). The ingoing

and outgoing gold antenna interaction was considered separately within one scattering

event in the red curve (Kgo + Kog). For all scattering events κ = 1 was assumed. We

find the amplification of the combined term (Kgg) being one order of magnitude larger.

Considering all terms (Fig. 3.18 (b)) we observe that the amplitude of the ingoing and

outgoing resonance depends on κ. For κ > 0 the outgoing resonance at EAu + 2~ωq
becomes dominant. For κ < 0 the ingoing resonance at EAu becomes dominant.

The intensity of the SERS amplification does not depend on Kab in the end. It is a

slowly varying function in excitation energy and does not show any resonances (cf. Fig.

3.16). Therefore, it does not alter the shape of the scattering intensity. Thus, we are

able to obtain an analytic expression for the intensity of the SERS process.

ISERS =

∫ ∞
0

∫ ∞
0
|Kgg +Kgo +Kog +Koo|2dk dq

= |ΛinΛout + Λin + Λout + 1|2
∫ ∞

0

∫ ∞
0
|Kab|2dk dq (3.34)

Simplifying
∫ ∫
|Kab|2dkdq ≈ C is possible since Kab is a slowly varying function in k

and q. Thus, we obtain a simple analytical solution

ISERS ≈ C · |ΛinΛout + Λin + Λout + 1|2. (3.35)
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Inserting Eqns. (3.32) we find

ISERS ≈ C ·
[(EL − EAu + κ)2 + Γ2

Au)][(EL − EAu − 2~ωq + κ)2 + Γ2
Au]

[(EL − EAu)2 + Γ2
Au][(EL − EAu − 2~ωq)2 + Γ2

Au]
. (3.36)

This gives us insight into the properties of the SERS amplification. As already shown

in Fig. 3.18 (b), we find two resonances, one at EAu and one at EAu + 2~ωq, both

having the width ΓAu. The amplitude of these resonances is determined by interference

of the term (EL − EAu + κ) and (EL − EAu − 2~ωq + κ) in the nominator. Thus, we

get a quadratic increase in the difference of the amplitudes of the resonances over the

excitation energy. For higher phonon energies ~ωq the overall intensity decreases, caused

by the denominator. The ratio between the incoming resonance Iin and the outgoing

resonance Iout for constant κ increases according to Iin/Iout ∝ (2~ωq)2.

Summing up the previous findings we discovered that the gold antennas create two res-

onance conditions, amplifying the 2D mode of graphene. These resonances are purely

caused by the gold antennas and do not originate from the graphene but from the inter-

play of the graphene with the gold antennas. We have four parameters that determine

the resonance properties of the graphene gold system: EAu, which is assumed to cor-

respond to the near field scattering maximum of the gold antennas, ~ωq which is the

energy of the phonon involved, ΓAu = 1/τAu is the lifetime of the plasmonic state created

and κ is the strength of the coupling of the Raman process to the plasmonic antenna.

Thus, κ determines the strength of the amplification and the intensity ratio between

ingoing and outgoing resonance.

It needs to be emphasized that the overall amplification Iout+Iin and the intensity ratio

Iout/Iin depend strongly on the phonon energy ~ωq and on κ. Additionally, we find that

the full width at half maximum (FWHM) of the resonances is solely defined by ΓAU .

In retrospective, choosing graphene as an analyte was a very good choice as it has no

intrinsic resonances. Assuming we had chosen an analyte having intrinsic resonances Eq.

(3.34) would result in a complicated resonance behavior making it difficult to separate

the contributions from the antenna and the analyte. By choosing graphene we end up

having only the contribution from the antenna, enabling us to probe only the antenna.
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Experimental methods

4.1 Dark field spectroscopy

In order to measure the plasmonic properties of the dimer antennas involved a dark field

spectrometer was built. In dark field spectroscopy a sample area is illuminated at an

oblique angle so that only scattered light will be collected by the objective.

The beam path is illustrated in Fig. 4.1. A commercially available dark field microscope

lamp

condenser

lens

polarizer

mirror

dark field objective

focal plane of the
objective

fiber to
spectrometer

sample with
antennas

antennas covered by graphene

Figure 4.1: Design of a dark field spectrometer. Unpolarized light from a standard
microscopy lamp illuminates the sample surface. Only the scattered light (dark-red) is
collected by the dark field objective. In the focal plane of the objective a small fraction
of the area is collected by a fiber and analyzed by the spectrometer.
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(Nikon LV100ND) was extended using a Horiba iHr 320 monochromator with a back-

thinned silicon CCD detector. The microscope was already equipped with a dark field

condenser (as shown in Fig. 4.1) that only allowed an outer ring of the illuminating light

to pass the objective. Additionally, the incident light was polarized using a polarizer in

the illumination beam path.

As backscattering illumination was used, special dark field objectives were required.

These objectives have an outer shell guiding the illuminating light at an oblique angle

to the surface. Thus, it will not be collected by the objective under normal reflection.

Figure 4.2 shows the scattering path in higher detail. A scatterer situated under the

scatterer

unscattered light

outer light guiding shell

scattered light

obejctive lens

sample

objective beam path

Figure 4.2: Principle of dark field microscopy in backscattering geometry. The yellow
beam represents light incident by a standard microscope lamp. The red beam represents
the scattered light coming from the scatterers on the surface.

objective will scatter the light uniformly to all solid angles. Thus, only scattered light

enters the objective and will be imaged to the focal plane of the objective shown in Fig.

4.1. In this plane a small surface area is being collected by a fiber. The collected light is

transmitted to a Horiba iHr 320 spectro monochromator equipped with a back thinned

CCD. The intensity of the scattered light is extremely weak, requiring a very sensitive

detector, a strong light source, or ideally both.

4.2 Raman spectroscopy

A Horiba Scientific XploRA Raman system was used for Raman mapping measurements

where the laser was scanned over the surface, recording a spectrum for each point. The

XploRA is a single grating notch filter system equipped with 514 nm, 638 nm and 785 nm

laser lines. The notch filter rejects Rayleigh scattered light while transmitting Raman

scattered light. Due to the usage of only one grating and the adaptation of all optical

coatings to the wavelengths used, the XploRA has an about 130 times higher sensitivity

than the T64000 system described below. Thus, this system was used to record the
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spectra of the antenna samples before doing wavelength-scanned measurements and to

conduct Raman mappings.

In order to carry out the wavelength-scanned Raman measurements a Horiba Scientific

T64000 Raman system was used. The system is designed as a triple monochromator

system having two gratings to spatially split up the incoming light and block the Rayleigh

scattered light. It was used in subtractive mode for higher signal intensities.

BS

FR

Mono

Verdi

Ti:Sa

Dye

BS

CCD

direct path

notch
filter

grating

mirror

polarizer

var. mirror

T64000

slit

Figure 4.3: Experimental setup of the T64000 triple monochromator Raman spec-
trometer. The major optical elements are shown, including beamsplitters (BS), Fresnel
rhomb (FR) and the premonochromator (Mono).

The Raman setup had two lasers available, a Coherent MBR-110 actively stabilized

Ti:Al2O3 ring cavity laser with an available wavelength range of 690 nm - 1050 nm and

an output power of up to 4 W CW1. The second laser was a Radiant Dyes passively

stabilized dye ring cavity laser with DCM and R6G dyes available. Thus, it covered

the wavelength range of 570 nm - 690 nm CW. Both lasers were pumped by a Verdi-V18

532 nm CW laser individually switchable by a polarizing beamsplitter as shown in Fig.

4.3.

The laser beams pass a premonochromator, filtering weak luminescence exiting the laser

cavity of the systems. Afterwards, the laser beam polarization was adjusted using a

Fresnel rhomb. The polarization component of the Raman scattered light was selected

via the polarizers before entering the spectrometer.

The original setup of the T64000 was as triple monochromator in subtractive mode.

However, due to weak signal intensity the direct path option was utilized. Bypassing

the two monochromator gratings shown in the lower half of the T64000 sketch (Fig.

4.3), the sensitivity was increased by roughly an order of magnitude. Thus, Rayleigh

1CW - continuous wave operation
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scattered light was suppressed using long pass edge filters (Semrock Razor edge) with

an optical density (OD) of 7 in the rejection region. The Raman scattered light was

spectrally decomposed using a 900 l/mm grating and detected by a peltier cooled back

thinned silicon CCD (Horiba Synapse).

Due to the high spatial confinement of the SERS hotspot a PI P-562.3CD piezoelectric

scanning stage with a repeatability of 1 nm in x-, y- and z-direction was used for all

measurements. The spectra were acquired using an Olympus 100x objective with a

numerical aperture (NA) of 0.9. Thus, an area with a diameter of about 950 nm (at

700 nm)2 was illuminated.

As plasmonic antennas expose the analyte to very high EM fields, the power of the laser,

incident onto the surface of the sample was kept below 300 µW and the sample was held

under constant N2 flow to prevent surface oxidation.

In order to calibrate the sensitivity of the spectrometer usually the samples are put onto a

CaF2 substrate to measure the wavelength-independent 322 cm−1 mode simultaneously

as a gauge standard. This could not be done as the deposition of a graphene flake

required the usage of a SiO2 covered Si substrate for adhesion and to be able to see the

graphene flake3. Thus, the calibration curve was recorded in a separate measurement

using the 1330 cm−1 Raman mode of diamond. This Raman mode is independent of

excitation energy and polarization. Fig. 4.4 shows the sensitivity of the T64000 for s-

and p-polarizations, respectively. The calibration curve in Fig. 4.4 was used to measure

antenna 290 nm-24 with the T64000 in triple monochromator mode. All other antennas

were measured using the direct path option and filters. The filters produced spectrally

sharp absorption features, requiring the usage of a standard spectral calibration lamp

(Thorlabs SLS201 stabilized Tungsten-Halogen light source). Thus, the calibration curve

could be acquired with high spectral density. Additionally, it was necessary to acquire

a calibration curve for each filter used as they had different transmission values and

absorption peaks at various wavelengths. Figure 4.5 shows exemplary calibration curves

for the 633 nm and the 715 nm filter. They were obtained by dividing the acquired

spectrum through the lamp spectrum and division by ω3 to account for the excitation

energy dependence of Raman scattering. The absorption peaks are observable as small

bumps in the curve.

All wavelength-scanned Raman measurements were corrected by a calibration curve to

eliminate the wavelength dependence of the spectrometer and optical elements used.

The Raman shift of all spectra (including the laser line) was calibrated using the lines

2Calculated using the diameter of the Airy disc d = 1.22λ/NA (cf. Ref. [97])
3Due to its weak absorption graphene is only observable by constructive interference occurring at a

300 nm thick SiO2 layer with a back reflector like Si (cf. Ref. [98]).
4Please refer to Sec. 5.3 for the naming convention of the dimer antennas used.
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Figure 4.4: Calibration curve measured using the 1330 cm−1 Raman mode of diamond
for s- and p-polarization including fits. Experimental data around 750 nm could not be
acquired due to the measurement setup.
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Figure 4.5: Calibration curves measured for the 715 nm and 633 nm filters using a
Tungsten-Halogen light source for p-polarization.

of a Ne lamp. To obtain comparable intensities the spectra were divided by the re-

spective calibration curve and laser power. Finally, they were fitted using a model

with three Lorentzian peaks and a linear background. For wavelength-scanned Raman

measurements, the areas of the Lorentzian peaks were added together when necessary.

Additionally, the position of each peak was extracted from the fitting parameters and

used to calculate the dispersion.
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4.3 Sample design

4.3.1 Nanosphere lithography samples

Nanosphere lithography (NSL) is a well established technique to create plasmonic sur-

faces. A self-assembled layer of hexagonally close packed nanospheres was deposited

on top of a substrate. Subsequent metal evaporation created a triangular structure as

the spheres did not cover small triangular areas. Finally, the spheres were removed by

decomposing them in a solvent. The resulting antennas are shown in Fig. 4.6. The

remaining round shape of the nanospheres is still observable. A detailed description of

the technique may be found in Ref. [99]. The plasmonic properties are described in

Ref. [25] and Sec. 2.3.6. Comparing the triangular antennas in Fig. 4.6 we find a high

Figure 4.6: AFM topography of the antennas obtained by nanosphere lithography.

variation of the triangular shape of the single antennas, resulting in a broad plasmonic

resonance, shown in Fig. 5.2. The average length of the triangles is 106 nm and the

average height is 110 nm with a thickness of 20 nm5.

Graphene was prepared by mechanical cleavage and transferred to the structure. Addi-

tionally, the antennas were removed from a small area. Thus, it was possible to compare

the signal intensities for graphene lying on areas with and without antennas.

4.3.2 Dimer antenna samples

The samples under investigation consist of a silicon wafer covered by 290 nm of SiO2

grown using plasma enhanced chemical vapor deposition (PECVD). Plasmonic antennas

5See Fig. 2.24 (a) for the definition of the triangle length and height.
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made of gold were deposited using electron beam lithography. They are cylindrical

dimer antennas with a diameter of ≈ 100 nm, a gap spacing of ≈ 30 nm and a height

of ≈ 30 nm (cf. Figs. 4.7 (b) & 4.8 (a)). Each antenna is slightly different due to

deposition inhomogeneities inherent to the electron beam lithography process. After

antenna deposition, graphene was prepared by mechanical cleavage and transferred onto

the structure. Due to adhesion, graphene was pulled to the SiO2 surface, resulting in

strained graphene in the vicinity of the antennas and inside of the gap between them.

(a)

Si SiO2 (300 nm)

graphene

EM hotspot

Cr (5 nm)
Au40 nm

100 nm

30 nm

100 nm

Au

(b)

Figure 4.7: Structure of the dimer antennas with graphene lying on top of them.
Scattering cross section (a) and AFM topography image showing the top of the dimer
antenna (b).

Reference [26] estimated the strain acting on the graphene being pulled inside of the

cavity. They found the hydrostatic strain component to be ≈ 0.8% and the shear strain

to be < 0.4%6. Figure 4.7 (a) depicts a cross section of the system under investigation.

Figure 4.8 (a) shows a trace across the center of a dimer antenna in horizontal direction.

The trace shows that the graphene sheet is being pulled into the gap in between the

antennas.

According to Fig. 4.7 (b) it seems to be obvious to use height traces of the antenna

to estimate the strain from AFM topography images. This approach has been tried in

Ref. [26] but resulted in a systematic overestimation of the strain, explainable by the

deposition process. When a graphene flake is transferred to the substrate supported

by polymethyl methacrylate (PMMA), it is able to bend and relax during deposition.

Additionally, graphene forms ripples and wrinkles when suspended and when being

deposited on a surface [100]. Thus, graphene has an intrinsic mechanism of strain

relaxation making this approach of strain measurement not feasible.

6Please refer to Sec. 3.4.3 for definitions.
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Figure 4.8: AFM traces across the center of dimer antennas covered by graphene.
(a) AFM trace including the dimer antennas (yellow rectangles) spanning the graphene
sheet. (b) AFM trace of antennas covered by graphene showing the height difference
between an etched and a non-etched SiO2 layer.

Two samples with identical antennas were produced. However, one of them was etched

to reduce the SiO2 layer thickness before graphene deposition. This was done in order

to change the plasmonic resonance of the dimer antennas on this sample. The height

difference is observable in Fig. 4.8 (b) and yields to 20 nm. As the antennas did not react

to the etchant only the SiO2 layer was etched. Therefore, the height of the antennas

remained constant with the height difference to the surrounding SiO2 surface becoming

larger.
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Raman measurements

This chapter presents the findings from Raman measurements of a NSL substrate and

dimer antennas, both covered with graphene. Dark field spectroscopy was used to de-

termine the plasmonic properties of the structure under investigation. It will be used

to show that NSL samples and dimer antennas have a signal enhancement coinciding

roughly with the spectral region of the active plasmon measured in the far field. It will

also be shown that dark field spectroscopy is capable of measuring the coupled plasmon

mode probed later in wavelength-scanned Raman measurements.

The consecutive sections will introduce findings of plasmonic enhancement of the Raman

signal caused by NSL surfaces and dimer antennas. These measurements will be analyzed

using the theory elaborated in Sec. 2.4 and Sec. 3.5.

5.1 Dark field spectroscopy

Experimental details of a dark field spectrometer were described in Sec. 4.1. This section

will give details on how to calculate dark field spectra and correct them for the spectrum

of the illuminating lamp.

As described above, plasmonic antennas emit light uniformly into all spatial directions.

As the antennas are situated on a substrate the acquired spectra include contributions

from several origins:

1. The lamp spectrum reflected by surface corrugations.

2. Scattering from the surface by roughnesses or scatterers (dirt, etc.).

3. Scattering from the scatterers under investigation.
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4. Stray light from the environment.

5. The transfer function of the optical elements used.

Point 4 will be eliminated by the subtraction of a dark spectrum (i.e. a spectrum without

illumination). The other points need to be removed by taking reference spectra. In order

to see this the different contributions to the intensity are expressed in the following way

Isurf (λ) = Ssurf (λ)I0(λ) intensity from the surface

Iant(λ) = Sant(λ)I0(λ) intensity from the antennas

I0,R(λ) = R(λ)I0(λ) reference of the lamp spectrum.

Ssurf,ant(λ) ∈ [0, 1] is the wavelength-dependent scattering amplitude of the respective

scatterer. It represents the amount of light being scattered at all angles collected by

the objective. I0(λ) is the spectrum of the light source being used for illumination.

I0,R(λ) is the lamp spectrum collected by the objective obtained using an ideal scatterer,

thus R(λ) = 1 for an ideal scattering reference. For a non-ideal scattering reference

R(λ) ∈ [0, 1] it is similar to the scattering amplitude Ssurf,ant(λ).

When a signal IR on an area with plasmonic antennas and a signal I0
R on an area without

plasmonic antennas are collected by the dark field objective they contain the following

contributions

IR = Isurf + Iant = (Ssurf + Sant)I0

I0
R = I0

surf = S0
surfI0.

In order to obtain only the scattering amplitude Sant(λ) we use the following formula.

By which we are removing all influences on the spectrum except the ones from the

scatterer of interest. Assuming Ssurf ≈ S0
surf we obtain

IR − I0
R

I0,R
=

(Ssurf − S0
surf + Sant)I0

RI0
≈ Sant(λ)

R(λ)
(5.1)

Using Eq. (5.1) we are able to calculate the scattering amplitude of the antenna(s) under

investigation. In order to do so the assumption Ssurf ≈ S0
surf needs to be valid. This

will be ensured, using a reference spectrum I0
R from the surface next to the antennas. In

practice this is tricky as surface corrugations or other scatterers might not be visible but

contribute significantly to S0
surf . Therefore, it is advisable to take and compare several

reference spectra from different areas. Additionally, a polished Polytetrafluorethylen
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(PTFE)1 sample was used as an ideal reference for I0,R because of its uniform reflectivity

in the visible, thus R(λ) = 1 is justifiable to a reasonable extend.

Let us consider having two antennas at a distance where they form a coupled plasmon

mode when being illuminated by light along their axis. Using linear polarized light we

are able to measure the contribution of the coupled plasmon (cf. Sec. 2.3.2.2). As

there is no excitation of the coupled plasmon mode Icp for perpendicular illumination

(cf. Refs. [5, 9] and sec. 2.3.4) we will write the contributions for each polarization as

I
‖
R = 2Iant + Icp + Isurf

I⊥R = 2Iant + Isurf .

Using Eq. (5.1) we will calculate the scattering efficiency of the coupled plasmon Scp

I
‖
R − I⊥R
I0,R

=
Scp(λ)

R(λ)
. (5.2)

The antennas described in Sec. 4.3.1 and Sec. 4.3.2 were investigated. The spectra

were analyzed using Eqns. (5.1) and (5.2). Figure 5.1 shows the resulting spectra.

The perpendicular case equals twice the extinction spectrum of the cylindrical antennas
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Figure 5.1: Dark field spectra of a dimer antenna acquired using the setup described
in Sec. 4.1

(cf. Sec. 2.3.4). The parallel case additionally includes the contribution from the

coupled plasmon. We see the dipole resonance around 600 nm. The peak around 460 nm

originates from the scattering reference and is not a plasmonic mode. Reference [101]

investigated a similar case calculating the extinction spectra for spherical particles using

1also known as Teflon
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FEM in 2D. The results are comparable, considering the smaller diameter and smaller

gap used in Ref. [101]. Reference [26] calculated the polarization dependence for the

dipole mode and obtained similar results including broadening of the dipole mode in

parallel polarization.

5.2 Raman measurements on a hexagonal antenna array

A NSL substrate with graphene deposited on its surface (cf. Sec. 4.3.1) was used for the

measurements in this section. Figure 5.2 shows dark field scattering spectra of the NSL
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Figure 5.2: Comparison of a dark field scattering spectrum of the NSL surface (red
curve) and the NSL surface covered with graphene (black curve). A simulated spectrum
of the uncovered NSL surface is shown in the blue curve. The available laser wavelengths
for excitation are indicated by brown bars. 532 nm is not visible as it is outside of the
region plotted.

surface with and without graphene on top. A simulation of the dark field response of the

antennas is shown by the blue curve. Without graphene the scattering maximum is at

1.80 eV (690 nm). With graphene on top, the maximum is shifted to 1.85 eV (670 nm).

This is a result of the graphene changing the dielectric environment of the antennas

(cf. Sec. 2.3.3). The simulation is blue shifted by 30 nm and is therefore still in good

agreement with the dark field measurement shown in the red curve. Deviations are likely

caused by uncertainties in the dimensions of the antennas and the chromium layer that

was not included in the simulation.

Figure 5.3 (a) shows the surface area investigated using Raman mapping by three laser

lines (532 nm, 638 nm and 785 nm). The entire area is covered by a graphene sheet.

Several different areas are observable in the optical image. On the green surface in
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Figure 5.3: 2D mode intensity maps for (b) 532 nm, (c) 638 nm and (d) 785 nm
excitation wavelengths, all taken on the same area shown in (a) with a resolution of
1 µm. The intensities were normalized for better comparison (cf. (b) for scale). Spot
A and B were measured using wavelength-scanned Raman spectroscopy.

the upper half, the graphene sheet is directly lying on top of 290 nm SiO2. The dark

green area is totally covered with a hexagonal lattice of bowtie antennas as described in

Sec. 4.3.1. In the light green areas, the graphene sheet was bent upwards, likely by gas

accumulation. The graphene is not touching the surface in these areas as will be shown

below.

Each map in Fig. 5.3 shows the intensity of the 2D mode of graphene fitted by a single

Lorentzian peak as a function of position. All maps were normalized to the maximum

intensity.

Figure 5.2 indicates that the resonance condition of the structure is expected to be

around 670 nm. Therefore, the occurrence of plasmonic hotspots2 is expected to be ob-

servable at an excitation wavelength of 638 nm. This is close to the scattering maximum

2Areas having a much higher Raman scattering cross section as the surrounding areas due to plasmonic
enhancement.
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(∆E = 96 meV, cf. the brown line in Fig. 5.2). An area without plasmonic antennas was

included, providing a reference Raman signal of graphene not influenced by antennas.

Comparing Figs. 5.3 (b) - 5.3 (d) we find that no amplification occurs for 532 nm

excitation. There are only small variations of the 2D mode intensity on areas where

graphene touches the surface. The antennas show only a small influence on the signal

intensity as the color is nearly identical for areas with and without antennas (cf. Fig.

5.3 (b)). We also find that the intensity is lower on graphene bubbles. This is expected

as the focal depth of the 100x objective used was small (1 µm). This is less than the

expected height of the observed graphene bubbles which is assumed to be in the order

of a few µm.

In Figs. 5.3 (c) and 5.3 (d) the signal intensity for graphene on SiO2 is minimal compared

to areas covered with antennas. We observe various hotspots, whose distribution depends

on the excitation wavelength. Furthermore, we find that amplification occurs all over

the areas covered with antennas, excluding the regions of the graphene bubbles.

All these findings indicate that plasmonic amplification is sensitive to the excitation

wavelength, showing no amplification for wavelengths outside of the plasmonic reso-

nance. We find hotspots having a different resonance wavelength. This is mainly caused

by shape inhomogeneities of the bowtie antennas (cf. Fig. 4.6 and Sec. 2.3.6). Thus,

the resonance wavelength is expected to vary. We also find that amplification requires

the graphene sheet to be close to the plasmonic antennas as we do not observe any

enhancement at the areas without antennas or at the areas with graphene bubbles.

Two hotspots were selected for wavelength-scanned Raman spectroscopy. They are

marked spot A (Fig. 5.4 (a)) and spot B (Fig. 5.4 (b)). Plotting the intensity of the

2D mode over excitation energy we find a resonance at 1.68 eV (739 nm) for spot A and

1.65 eV (750 nm) for spot B. Equation (3.36) was used to fit the experimental data. The

measurement shown in Fig. 5.4 (a) was acquired using the entire range of available

excitation wavelengths. Spot A shows a maximum enhancement of 1.4× 103 and spot

B 4.3× 104. Equation (3.36) predicts an outgoing resonance. However, due to a high

variance in the measured data, the existence of the outgoing resonance is only weakly

observable and may be argued upon. Thus, the value of κ is unreliable due to the lack of

measured data for the outgoing resonance. The obtained fitting parameters are listed in

Tab. 5.1 with the uncertainty of κ indicated by a question mark. The resonance energy

EAu obtained from the Raman measurements is shifted by about 0.2 eV in comparison

to the maximum of the scattering cross section (cf. Fig. 5.2). The spectral width ΓAu
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Figure 5.4: Wavelength-scanned Raman measurements of (a) spot A (found in Fig.
5.3 (c)) and (b) spot B (found in Fig. 5.3 (d)). The fits were obtained by fitting the
measured data to Eq. (3.36).

Hotspot EAu ΓAu κ EF ∆E

A 1.68 eV (739 nm) 130 meV −0.1 ? 1.4× 103 0.17
B 1.65 eV (750 nm) 40 meV −1.0 ? 4.3× 104 0.20

Table 5.1: Fitting parameters for spot A and B. The fits are shown in Figs. 5.4
(a) and 5.4 (b). The values of κ, extracted from the fits, are uncertain and therefore
questionable which is indicated by the question mark. The enhancement factor EF
and the energetic shift ∆E = EDF − EAu to the measured dark field maximum EDF

is also given.

is found to be smaller than the spectral width of the plasmon being 261 meV3. This is

in contradiction to the conventional EM SERS theory presented in Sec. 2.4.

The position of the 2D mode and the enhanced 2D mode as a function of excitation

energy is shown in Fig. 5.5 for graphene on SiO2 and graphene located on antennas.

Besides a slight upshift in the position of the enhanced 2D mode for graphene on antennas

the shift rates are very similar. They are 116± 3 cm−1 for graphene on top of SiO2 and

109± 6 cm−1 for graphene on top of the antennas. The small difference in their position

may be attributed to doping of the graphene, induced by the environment (cf. Ref.

[87, 102]).

We find that the enhancement properties of a plasmonic NSL surface vary strongly in

terms of resonance wavelength and broadness of the resonance due to inhomogeneities

of the antennas. We also find that the ingoing resonance is shifted to lower energies

compared to the scattering maximum of the antennas, shown in Fig. 5.2. The values

3This value was obtained from the simulation shown in Fig. 5.2 using the full width at half maximum
value.
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Figure 5.5: Position of the 2D mode as a function of excitation energy for graphene
lying on SiO2 and graphene lying on antennas.

are given in Tab. 5.1. This indicates that the Raman signal is enhanced by the near

field of the antennas as the near field is shifted to lower energies (cf. Sec. 2.3.2.2). The

amplification of the graphene 2D mode intensity due to plasmonic enhancement could

be observed. The enhancement factor of the Raman signal is 5 for spot A and 13 for spot

B. As described in Sec. 2.3.5 we find an area enhancement factor of 270, resulting in the

enhancements given in Figs. 5.4 (a) & 5.4 (b). As the given area enhancement factor

was calculated for a cylindrical dimer antenna the value is just an estimate. However, as

bowtie dimer antennas and cylindrical dimer antennas show similar plasmonic behavior

their area enhancement factor is expected to be similar (cf. Sec. 2.3.6). Additionally,

the shift rates of the position of the 2D mode and the plasmon-enhanced 2D mode were

measured. Besides the amplification of the 2D mode intensity and a spectrally small

resonance no further influence of the antennas was observed.

5.3 Raman measurements on dimer antennas

Dimer antenna samples were produced as described in Sec. 4.3.2. Two sample de-

signs were investigated. One having a SiO2 thickness of 290 nm and one having a SiO2

thickness of 270 nm. The intention of a reduced SiO2 layer thickness was to shift the

plasmonic resonance to lower wavelengths by changing the dielectric environment (cf.

Sec. 2.3.3).

This section will start by introducing the plasmonic properties of the cylindrical dimer

antennas measured by dark field spectroscopy. The influence of the SiO2 layer thickness
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will be shown and the measurements will be compared to simulated spectra. Sub-

sequently, wavelength-scanned Raman measurements of dimer antennas covered with

graphene will be shown and analyzed using the theory of plasmon-enhanced Raman

scattering presented in Sec. 3.5.

5.3.1 Dark field spectra
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Figure 5.6: Dark field spectra of two dimer antenna samples with different SiO2 layer
thicknesses. (a) plots the spectra obtained on a sample with 270 nm SiO2 layer. (b)
plots the spectra of the sample having a 290 nm SiO2 layer. The name of each dimer
antenna is given in the respective color of the spectrum. As a guide to the eye, the
ingoing and outgoing resonances and their respective photon energy are indicated using
dotted lines.

Figure 5.6 shows dark field scattering spectra of the cavity mode (cf. Sec. 5.1) obtained

on three dimer antennas for each SiO2 thickness. The scattering spectra were calculated

using Eq. (5.2). Figure 5.6 (a) shows the cavity modes from the sample having a 270 nm

SiO2 layer and Fig. 5.6 (b) shows the cavity modes of the sample with a 290 nm SiO2

layer. The naming convention presented in the figures will also be used throughout the

text below. Figure 5.6 (b) includes a simulated far field spectrum of the dimer antenna
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under investigation. As all dimer antennas measured have a diameter of 100 nm and a

gap spacing of 30 nm (cf. Sec. 4.3.2) only one simulation was included. The thickness

of the SiO2 layer could not be varied in the simulations.

The most intense resonance for the sample having a 270 nm thick SiO2 layer is 2.03 eV

(610 nm) (cf. Fig. 5.6 (a)). Thus, a plasmonic resonance around 2.03 eV is expected.

The sample having a 290 nm SiO2 layer thickness (cf. Fig. 5.6 (b)) has its most in-

tense resonance at 1.66 eV (750 nm). Hence, it was possible to tune the intensity of

the dominant resonance of the dimer antennas by changing the SiO2 layer thickness.

However, the resonances below 1.7 eV were are not within the measurable range of our

laser systems.

5.3.2 Raman spectra
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Figure 5.7: Influence of the dimer antennas on the Raman signal. (a) amplification
and additional Raman modes appear when measuring on top of the dimer antenna in
parallel polarization. (b) different Raman modes observed when changing the polariza-
tion from parallel (active cavity) to perpendicular (inactive cavity) while measuring on
top of the dimer antenna. The 2D mode is not observable hence its position is being
indicated by the rightmost dotted line.
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A typical Raman spectrum obtained when measuring on a dimer antenna contains Ra-

man modes softened4 in comparison to the 2D mode. Figures 5.7 (a) and 5.7 (b) show

the influence of the dimer antenna on the Raman signal.

Figure 5.7 (a) compares spectra measured directly on top of the dimer antenna and

spectra measured next to it. In the latter case we observe the G and 2D modes of

graphene. When measuring on top of the dimer antenna with a polarization parallel

to the dimer antenna axis we observe the G and 2D modes but also additional modes

at lower Raman shifts next to them. On top of the dimer antenna we also observe hot

luminescence5 originating from the dimer antenna.

Figure 5.7 (b) compares Raman modes obtained for parallel (active cavity) and perpen-

dicular (inactive cavity) polarizations with respect to the dimer antenna axis at 1.99 eV

(624 nm). For the cavity being active we observe three Raman modes, called left, middle

and right cavity modes (cf. Fig. 5.7 (b)). They have a higher intensity compared to the

2D mode which is not observable in the spectrum as the cavity modes outshine the 2D

mode.

In the case of an inactive cavity, the signal contains only contributions from the un-

coupled EM fields of the cylindrical antennas (cf. Sec. 2.3.4). In the resulting Raman

spectrum we observe that the overall intensity of the spectrum is strongly reduced. Ad-

ditionally, we find the left cavity mode to disappear and the middle and right cavity

modes to become significantly weaker. It is obvious to attribute the enhancement of the

cavity modes to the EM field in the cavity. As the graphene inside the cavity is strained,

the strain is likely to cause mode softening and splitting (cf. Refs. [26, 87, 104, 105]).

The middle and right cavity modes are still observable for an inactive cavity. So we

conclude that they are originating from the strained regions next to the dimer antenna.

This conclusion has also been drawn in Ref. [26].

In Fig. 5.7 (a) we find three Raman modes for an active cavity. As the graphene is

being pulled into the gap between the cylindrical antennas we find that the graphene is

strained (cf. Sec. 4.3.2) at the region of the highest field amplification (cf. Sec. 2.3.4).

Hence, we may attribute the appearance of the three modes to strain in graphene. Ref.

[88] does predict the appearance of three Raman modes in strained graphene for some

scattering configurations (cf. Fig. 5 in [88]). However, it is not possible to conclusively

determine if the observation of three Raman modes for an active cavity originates from

plasmonic enhancement or strain (or both). There are two possible explanations.

4Mode softening in Raman scattering means that a Raman mode is being shifted to lower energies
(Raman shifts) as a result of a lowered phonon energy.

5Inelastic light scattering by excited state relaxation in heavily doped semiconductors or metals (cf.
Refs. [73, 103]).
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1. The Raman signal of the strained graphene inside of the gap outshines all other

Raman contributions due to the high field intensity inside of the gap.

2. Due to the high strength and localization of the fields inside of the gap, the Raman

process is being altered, leading to the excitation of additional Raman modes.

Yet, three Raman modes were not observed for every dimer antenna investigated. Some

dimer antennas showed only two Raman modes. However, no parameter showing a

systematic influence on the appearance of two or three Raman modes was found.

To account for the possibility of different processes leading to the standard Raman

spectra of graphene and the plasmon-enhanced Raman spectra shown here the enhanced

Raman modes were named cavity modes. The non-amplified 2D mode will be called 2D

mode as usual. In the amplified spectra we find the three cavity modes to outshine the

2D mode.
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Figure 5.8: Raman spectra recorded on dimer antenna 290 nm-2 with the laser po-
larized parallel to the dimer antenna axis for different excitation wavelengths.

Figure 5.8 shows spectra obtained on dimer antenna 290 nm-2 for the laser polarization

being parallel to the dimer antenna axis. Different excitation energies are shown, close

to the resonance energy of 630 nm. The resonance is clearly seen and the cavity modes
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become more intense around the resonance energy. All Raman modes become more and

more softened for decreasing excitation energies. Thus, we observe a dispersive behavior

anticipated for the 2D mode and the cavity modes as they originate from the 2D mode.

The dispersion will be investigated further below.

5.3.3 Raman mapping of a dimer antenna

This section will investigate the spatial Raman properties of dimer antenna 290 nm-3.

The corresponding scattering cross section is shown in Fig. 5.6 (a).

(a)

graphene
covered surface

clean surface

dimer antenna

gold alignment
marker

5 µm

(b)

0
0

Position (µm)

P
os

it
io

n
(µ

m
)

1 2 3 4 5 6

1

2

3

4

5

1.00

0.75

0.50

0.25

0.00

Norm.
inten-
sity

(c)

0
0

Position (µm)

P
os

it
io

n
(µ

m
)

1 2 3 4 5 6

1

2

3

4

5

(d)

0
0

Position (µm)

P
os

it
io

n
(µ

m
)

1 2 3 4 5 6

1

2

3

4

5

Figure 5.9: 2D mode intensity maps of a dimer antenna sample for 532 nm and 638 nm
excitation wavelengths. Raman mapping was done on the blue area shown in (a) with a
resolution of 0.5 µm. (b) shows the intensity of the non-amplified 2D mode of graphene
for 532 nm excitation. (c) shows the intensity of the 2D mode for 638 nm excitation.
(d) shows the intensity of the 2D cavity modes for 638 nm excitation. All maps use the
same scale as (b).

The dark field scattering cross section implies that we will observe a maximum amplifica-

tion around 2.03 eV (610 nm). Thus, Raman maps were recorded for 638 nm (resonant)

and 532 nm (non-resonant) excitation.
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Figure 5.9 (a) shows an optical microscope image of the surface of a dimer antenna

sample. The size of the dimer antennas is below the diffraction limit. Thus, they are

only observable as small black dots. Graphene is covering the entire surface except of

an area at the bottom right edge. The space between the dimer antennas is 5 µm. Thus,

each dimer antenna was measured individually using a 100x objective. The Raman maps

were acquired for dimer antenna 290 nm-3, indicated by the blue area.

Figure 5.9 (b) shows the intensity of the 2D mode for 532 nm excitation. No amplification

is observed. The intensity varies only slightly by a total amount of 28%. This may

be attributed to height differences of the graphene as it is lying like a blanket over

the dimer antenna and the surface. Because of this the focal point was chosen by

maximizing the intensity on the dimer antenna. On the left hand side we observe a

small graphene bubble, increasing the intensity. We also find the intensity of the 2D

mode being lower around the dimer antenna. This is a result of the dimer antenna not

having any significant field intensity inside of the cavity (cf. Fig. 2.19 (a)). As an

excitation wavelength of 532 nm is out of resonance, the fields get scattered around the

dimer and are not focused into the cavity (cf. Sec. 2.3.4).

In Fig. 5.9 (c) we observe an intensity variation of 32% for the 2D mode. The strained

region is observable to the right hand side of the map. It is elongated as graphene shows

ripples, reaching as far as 2 µm away from the dimer antenna. The strain mode intensity

is shown in Fig. 5.9 (d). Comparing Maps 5.9 (b), 5.9 (c) and 5.9 (d) we find that the

dimer antenna amplifies the 2D mode of graphene by ≈ 67% and causes the appearance

of strain modes having an intensity of ≈ 340% of the intensity of the 2D mode next to

the dimer antenna. Thus, we obtain an enhancement factor of 9× 102.

As already pointed out in Ref. [26] we also find a very high spatial confinement of the

hotspot, making the wavelength-scanned measurements very demanding.

In conclusion, we find that the dimer antenna is causing the appearance of additional

Raman modes and the concurrent amplification of all Raman modes originating from

the vicinity of the dimer antenna. Polarization measurements indicate that the Raman

strain modes emanate from the cavity in between the dimer antenna (cf. Sec. 5.3.2).

Amplification occurs as already observed for the NSL sample (cf. Sec. 5.2) as a function

of excitation wavelength.

5.3.4 Wavelength-scanned Raman spectroscopy

Figure 5.10 shows wavelength-scanned Raman measurements for four dimer antennas.

The enhancement factor was calculated as described in Sec. 2.3.5 and the data was
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fitted using Eq. (3.36).
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Figure 5.10: Wavelength-scanned Raman spectra of different dimer antennas. The
plots show the following dimer antennas: (a) 290 nm-2, (b) 290 nm-1, (c) 270 nm-2 and
(d) 270 nm-1 & 290 nm-3. The fitting values are given in Tab. 5.2. The data shown in
(d) was not completed as the dimer antennas were damaged during the measurements.

The plots in Figs. 5.10 (a), 5.10 (b) and 5.10 (c) show spectrally sharp peaks at the

ingoing resonance around 1.99 eV (620 nm). The resonance curves of dimer antennas

270 nm-1 and 290 nm-3 in Fig. 5.10 (d) could not be completed as they were damaged

when the excitation energy approached the resonance energy. However, the data indi-

cates that these dimer antennas had a resonance energy in the same region as the other

dimer antennas.

Table 5.2 shows the fitting values from Eq. (3.36) for the dimer antennas in Fig. 5.10.

Additionally, the difference ∆E to the respective dark field resonance (cf. Fig. 5.6) is

given. As in Sec. 5.2, we find that the Raman resonance is redshifted compared to the

dark field resonance with a maximum shift of 90 meV. Additionally, Fig. 5.6 indicates
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Antenna 270 nm-2 290 nm-1 290 nm-2

EF 5.0× 103 1.9× 103 1.7× 103

EAu 1.94 eV (638 nm) 1.92 eV (644 nm) 1.97 eV (630 nm)
~ω 0.17 eV 0.09 eV 0.17 eV
ΓAu 0.03 eV 0.07 eV 0.02 eV
κ 1 ? 400 ? 0 ?
∆E 0.09 eV ? 0.07 eV 0.02 eV

Table 5.2: Fitting parameters for the resonance curves shown in Fig. 5.10. ∆E =
EDF −EAu is the shift between the dark field resonance and the Raman resonance. The
questionmark behind a value indicates that this parameter could not be fitted reliably.

a second resonance peak around 1.65 eV which could not be measured as the sensitivity

of the Raman spectrometer was not sufficient for measurements below 1.7 eV.

By changing the thickness of the SiO2 layer we changed the dielectric environment of

the dimer antenna. This resulted in different scattering cross sections that are shown

in Figs. 5.6 (a) & 5.6 (b). The idea was to shift the resonance energy of the plasmonic

amplification by changing the dielectric environment of the dimer antenna. Comparing

the values given in Tab. 5.2 we find that the thickness of the SiO2 does not influence EAu.

However, we found that the SiO2 layer thickness has an influence on the enhancement

factor EF which is higher for the 270 nm dimer antenna. This is well observable in Fig.

5.10 (d). Figure 5.6 also suggests this finding as the scattering cross section around 2.0 eV

is higher for the 270 nm dimer antenna. The reason of this increase in the enhancement

factor is attributed to the change in the local dielectric environment of the dimer antenna

(cf. Sec. 2.3.3). Additionally, higher strain of the graphene created by the etched SiO2

layer could contribute to the larger enhancement. The strain is expected to increase for

the 270 nm sample as the height difference between the dimer antenna and the surface

is 20 nm larger compared to the 290 nm sample (cf. Sec. 4.3.2). Due to higher strain

the graphene may be pulled in further into the gap and is therefore exposed to higher

field amplitudes (cf. Fig. 2.21) resulting in a larger enhancement of the Raman signal.

Simulations (cf. Sec. 2.3.2.2 and Fig. 5.6 (b)) show a spectral width of the plasmonic

dimer antenna mode of 460 meV6 for the dimer antenna used. Comparing this to the

values obtained for ΓAu in Tab. 5.2 we find that the measured Raman resonance is not

explainable by the established EM SERS theory (cf. Sec. 2.4) as it predicts a resonance

as broad as the width of the plasmonic dimer antenna mode in the near field.

Antenna 290 nm-1 shows a resonance width of ΓAu = 0.07 eV. Additionally, the separa-

tion of ingoing and outgoing resonance peaks was reduced to 0.09 eV for this spectrum

only. The reason is unknown and we find no correlation to the scattering cross section.

6Obtained using the FWHM of the simulation shown in Fig. 5.6.



Chapter 5. Raman measurements 103

Antenna 290 nm-1 290 nm-2
A (nm) B (nm/eV) A (nm) B (nm/eV)

l. cav. mode 2251± 5 127± 3 2296± 14 131± 7
m. cav. mode 2291± 8 127± 4 2250± 39 162± 19
r. cav. mode 2391± 8 113± 4 2272± 31 162± 15
Antenna 270 nm-1 270 nm-2

A (nm) B (nm/eV) A (nm) B (nm/eV)
l. cav. mode 2106± 18 169± 9 2223± 9 119± 5
m. cav. mode 2149± 46 156± 24 2286± 12 116± 6
r. cav. mode 2158± 25 175± 13

Table 5.3: Fitting parameters obtained by linear regression of the fits shown in Fig.
5.11. A linear model ω = A + B · EL was used. A and B are fitting values and EL is
the excitation energy of the laser.

The value of κ was not evaluated as the available wavelength range did not cover ingoing

and outgoing resonances due to their large separation of 330 meV and the lack of laser

lines below 2.25 eV (550 nm) and a lack of sensitivity of the detector for wavelengths

above 1.70 eV (730 nm). Therefore, the values found in Tab. 5.2 are not reliable, which

is indicated by a question mark.

In conclusion, we found that the Raman resonance is spectrally much smaller than the

plasmon resonance contradicting conventional EM SERS theory. We also found the

Raman resonance redshifted to the resonance of the scattering cross section indicating

that the Raman amplification originates from the near field around the dimer antenna

(cf. Sec. 2.3.2.2). It was also shown that the thickness of the SiO2 layer influences the

enhancement factor observed in wavelength-scanned Raman measurements.

5.3.5 Dispersion of the graphene Raman modes

Figure 5.11 show the positions of Raman modes measured over excitation energy for

various dimer antennas. In each diagram we find the positions of the three different

modes introduced in Fig. 5.7 (b). In Fig. 5.11, the left cavity mode is always marked

in black, the middle cavity mode in blue and the right cavity mode in red. We find a

linear dispersion for all modes. Antenna 290 nm-3 is not shown as the calibration failed

for this measurement.

Table 5.3 shows the obtained fitting values for a linear dispersion model ω = A+B ·EL
with A and B being fitting values and EL being the excitation energy of the laser. We

find that all Raman modes have a significantly higher dispersion than the unstrained

2D mode of graphene, which shifts by 100 cm−1/eV. The maximum shift rate observed
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Figure 5.11: Position of the Raman modes observed for different dimer antennas. The
following dimer antennas are shown (a) 290 nm-1, (b) 290 nm-2, (c) 270 nm-1 and (d)
270 nm-2. The left cavity mode is marked in black, the middle cavity mode is marked
in blue and the right cavity mode is marked in red. All modes were fitted using a linear
fit. The obtained fitting values are shown in Tab. 5.3.

is 175 cm−1/eV. This is an increase of 75% and cannot be explained by measurement

inaccuracies.

Reference [81] recently investigated the behavior of the 2D mode of graphene as a func-

tion of excitation energy EL theoretically, using various screening conditions in graphene.

As described in Sec. 3.1, screening influences the energy of a phonon via the Kohn

anomaly and therefore the gradient of the phonon dispersion. They assume freestanding

graphene with no additional screening by a supporting surface and find a linear dis-

persion ∂ω2D/∂EL of the 2D mode depending on the gradient of the electronic band
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structure and phonon dispersion of the graphene investigated

∂ω2D

∂EL
= 2
|~∇ω2TO(EL)|
|~∇Eg(EL)|

. (5.3)

With ~∇ω2TO(EL) being the gradient of the phonon dispersion and ~∇Eg(EL) being the

gradient of the electronic band structure. ∂ω2D/∂EL corresponds to the fitting param-

eter B in Tab. 5.3. From Eq. (5.3) we find that the dispersion of the 2D mode is

proportional to the slope of the phonon dispersion and has inverse proportionality to

the slope of the electronic dispersion.

Reference [90] measured dispersion values from graphene exposed to an uniaxial strain

of ε = 2.3% to 106 cm−1/eV for the left 2D mode and to 99 cm−1/eV for the right 2D

mode (cf. Sec. 3.4.3). Reference [104] calculated dispersion values of graphene exposed

to various uniaxial strains. Their calculated dispersions are ranging from 79 cm−1/eV

for ε = −1% and 113 cm−1/eV for ε = 3%.

Comparing the shifts found in the literature to the ones obtained in Tab. 5.3, the dis-

persion of the cavity modes is significantly increased. This is especially interesting as

Ref. [26] estimates the strain imposed on a very similar system to 0.8% hydrostatic and

< 0.4% shear strain. Thus, the shift rate is expected to be in the oder of 100 cm−1/eV.

It is known from theory (cf. Eq. (3.21)) and experiment7 that hydrostatic strain pre-

dominantly changes the shift rate of the 2D mode. Thus, shear strain only has a minor

influence on ∂ω/∂EL.

It has to be emphasized that the graphene within the cavity is not uniaxially strained

and therefore the values given in Ref. [104] may not be used for a rigorous comparison.

However, they may be used to assess the order of the shift rate as uniaxial strain is

always smaller than the corresponding hydrostatic strain (cf. Sec. 3.4.3). Therefore, the

difference between the values found in Refs. [90, 104] and Tab. 5.3 is not explainable

by strain alone.

The shift rate of the 2D mode follows the phonon dispersion as described in Sec. 3.4.3

and Eq. (5.3). It is reasonable to assume an increase in ∂ω/∂EL for higher strains

imposed on graphene, as found in Ref. [104]. The shift found on uniaxial strain may

be used as an upper bound for the change in the phonon dispersion. The values found

in Table III of Ref. [104] indicate a saturation of the shift rate at 120 cm−1/eV for

increasing strain. Additionally, strain values higher than 3% are very unlikely as they

would result in damaging the graphene sheet as pointed out in Ref. [26].

7Unpublished results from private communication with S. Heeg
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The reasoning above seems to exclude strain as the only origin of the high shift rate of

the cavity modes in comparison to measurements of graphene exposed to higher strains

but without plasmonic amplification.

We may assume that the dimer antenna distorts the electronic band structure of graphene

lying on top of it due to the high field amplification. Thus, we would also obtain a distor-

tion of the phonon dispersion as the Kohn anomalies in graphene couple the electronic

band structure and the phonon dispersion. Considering Eq. (5.3) we would find an

influence on the Raman shift of the 2D mode. This could explain the higher shift rates

found in Tab. 5.3.

Additionally, the shift rates show a high variation among each dimer antenna which is

unlikely if strain was the sole cause for the shift rates observed. It is therefore likely

that the plasmonic interaction between the dimer antenna and the graphene induces a

distortion of the phonon dispersion and electronic band structure. This may explain the

different Raman shift rates observed. However, the exact origin of the increased shift

rate needs to be investigated further.
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Conclusions

The aim of this thesis was to deepen the knowledge of the fundamental physics involved

in the plasmonic enhancement of the Raman signal of graphene. Our approach was

to use wavelength-scanned Raman scattering which was never done on a single dimer

antenna covered by graphene. We found spectrally sharp resonances that could not be

explained by the conventional theory of SERS. Therefore, we developed with the help

of my supervisor Stephanie Reich a new theory of plasmon-enhanced Raman scattering

that considers the enhancement as a quantum mechanical process. It is in contradic-

tion to the conventional theory that considers the enhancement a result of the strong

fields found near a plasmonic antenna. Our theory predicts two resonances that could

not be observed in this thesis. However, successive work1 found both resonances while

investigating the G mode of graphene, providing proof for the theory. Furthermore, we

observed an increased shift rate of the plasmon-enhanced Raman modes. This finding

suggests that the dimer antenna is influencing the electronic band structure and phonon

dispersion of graphene. However, this needs further investigation in future measure-

ments. The findings of spectrally small resonances and an increased shift rate are new

to the community investigating surface-enhanced Raman scattering and led to a better

understanding of the physics behind SERS. The theory proposed in this thesis is a first

step to the explanation of plasmon-enhanced Raman scattering.

We used FDTD simulations and dark field spectroscopy to investigate the scattering

behavior of dimer antennas that consisted of two cylindrical antennas with various di-

ameters and gap sizes. We found that the diameter, gap size and dielectric environment

strongly influence the near field scattering cross section and field distribution of a dimer

antenna. Via the simulations we observed that the field amplification in the gap of the

dimer antenna is highest at the bottom. Additionally, the incoming fields are strongly

1Publication under review. A preprint will be found at http://arxiv.org/abs/1503.03835

107

http://arxiv.org/abs/1503.03835


Chapter 6. conclusions 108

depolarized and highly localized by the antenna. This has to be considered when investi-

gating the appearance of Raman modes not allowed under the incident laser polarization.

We found that the enhanced signal is generated exclusively in the cavity of the dimer

antennas. Additionally, we observed three Raman modes where, according to measure-

ments on strained graphene, only two modes were expected. This observation may be

caused by the strain configuration of the graphene inside of the cavity. However, we also

observe a dispersion rate that is significantly higher than the dispersion rate expected for

strained graphene. These interesting findings need to be investigated in future measure-

ments to clarify their origin. The realization of additional measurements is important

as they may give more insight into the physical origins of the enhanced Raman signal.

Our observations show that a careful design of the plasmonic antenna is required. This

means that it is advisable to simulate the scattering behavior and field distribution of

the antennas used. The comparison of such simulations with dark field measurements

gives a better understanding of the scattering behavior of the manufactured antennas.

We observed that the Raman scattering maximum is always redshifted to the far field

scattering maximum obtained by dark field measurements. As the shift varied from

antenna to antenna this is another observation that needs clarification as it contradicts

the findings of van Duyne et. al. in Ref. [29] who predict a higher redshift.

The new findings described above indicate that the effect of surface-enhanced Raman

scattering needs more clarification. Wavelength-scanned Raman scattering is a versatile

tool for this purpose. Our observations may be extended by more exact simulations.

For example, the Cr bonding layer situated between the antenna and the SiO2 may

be incorporated into the simulations. Additionally, the graphene lying on top of the

antenna may be incorporated. Both change the dielectric environment of the antenna

and therefore its scattering cross section and field distribution.

Investigating other antenna designs will show the influence of the near field localiza-

tion and field distribution around the antenna. For example it would be interesting to

measure the effect of different gap sizes on the wavelength-scanned Raman profile. Ad-

ditionally, it would be interesting to use different analytes such as carbon nanotubes as a

one dimensional probe or two dimensional materials having an intrinsic Raman resonance

energetically close to the plasmonic resonance of the antenna used. Such measurements

will make it possible to determine the coupling mechanism between the antenna and the

analyte and therefore allow a much more complete picture of the enhancement process.

This thesis showed that the effect of plasmon enhancement is a quantum effect not fully

understood yet. The findings presented here are a first step to a complete understand-

ing of the physics involved in plasmon-enhanced Raman scattering. This understanding
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will make it possible to use the enhancement effect for reliable and repeatable detection

of various analytes up to the single molecule level. Plasmonic antennas can be manu-

factured using the production techniques of the semiconductor industry enabling cheap

production and making them available to a wide amount of sensing applications.
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[39] H. Vortisch. Beobachtung von Phasenübergängen in einzelnen levitierten Schwe-
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splitting, Grüneisen parameters, and sample orientation. Physical Review B, 79

(20), May 2009. ISSN 1098-0121. doi: 10.1103/physrevb.79.205433.

[96] R.M Martin and L.M. Falicov. Light Scattering in Solids I, volume 1, chapter 3,

pages 79–145. Springer-Verlag, 1983.

[97] E. Hecht. Optik. Oldenbourg, 2009.

[98] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber,

N. M. R. Peres, and A. K. Geim. Fine structure constant defines visual trans-

parency of graphene. Science, 320(5881):1308, Jun 2008. ISSN 0036-8075. doi:

10.1126/science.1156965.



Bibliography 122

[99] A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, and M. Giersig. Shadow

nanosphere lithography: Simulation and experiment. Nano Letters, 4(7):1359–

1363, Jul 2004. ISSN 1530-6984. doi: 10.1021/nl049361t.

[100] V. Geringer, M. Liebmann, T. Echtermeyer, S. Runte, M. Schmidt, R. Rueckamp,

M. C. Lemme, and M. Morgenstern. Intrinsic and extrinsic corrugation of mono-

layer graphene deposited on SiO2. Physical Review Letters, 102(7), Feb 2009. ISSN

0031-9007. doi: 10.1103/physrevlett.102.076102.

[101] J. M. McMahon, A.-I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P.

Van Duyne, and G. C. Schatz. Gold nanoparticle dimer plasmonics: finite element

method calculations of the electromagnetic enhancement to surface-enhanced Ra-

man spectroscopy. Analytical and Bioanalytical Chemistry, 394(7):1819–1825, Aug

2009. ISSN 1618-2642. doi: 10.1007/s00216-009-2738-4.

[102] A. Das, B. Chakraborty, and A. K. Sood. Raman spectroscopy of graphene on

different substrates and influence of defects. Bulletin of Materials Science, 31(3):

579–584, Jun 2008. doi: 10.1007/s12034-008-0090-5.

[103] C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl,

M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang. Controlling inelastic

light scattering quantum pathways in graphene. Nature, 471(7340):617–620, Mar

2011. ISSN 0028-0836. doi: 10.1038/nature09866.

[104] V. N. Popov and P. Lambin. Theoretical 2D Raman band of strained graphene.

Physical Review B, 87(15), Apr 2013. ISSN 1098-0121. doi: 10.1103/physrevb.87.

155425.

[105] J. Zabel, R. R. Nair, A. Ott, T. Georgiou, A. K. Geim, K. S. Noyoselov, and

C. Casiraghi. Raman spectroscopy of graphene and bilayer under biaxial strain:

Bubbles and balloons. Nano Letters, 12(2):617–621, Feb 2012. ISSN 1530-6984.

doi: 10.1021/nl203359n.



The End . . .


	Abstract
	Contents
	Abbreviations
	Symbols
	1 Introduction
	2 Plasmonics
	2.1 Fundamentals
	2.1.1 Maxwell's equations and basic assumptions
	2.1.2 The dielectric function
	2.1.3 Plasmons
	2.1.4 The wave equation at a planar interface
	2.1.5 Surface plasmon polaritons
	2.1.6 Excitation of surface plasmon polaritons
	2.1.7 The Lorentz-Drude model
	2.1.8 Mie scattering

	2.2 The finite difference time domain method
	2.2.1 Methods to solve Maxwell's equations numerically
	2.2.2 Discretization of Maxwell's equations
	2.2.3 Stability criterion
	2.2.4 Sources
	2.2.5 Absorbing boundary conditions
	2.2.6 Reflection and transmission spectra
	2.2.7 Materials

	2.3 Meep
	2.3.1 Testing the simulation environment
	2.3.1.1 Reflection spectrum of gold
	2.3.1.2 Scattering spectrum of a gold sphere in vacuum

	2.3.2 Scattering spectra of gold dimer antennas
	2.3.2.1 Far field scattering behavior
	2.3.2.2 Near field scattering behavior

	2.3.3 Influence of a substrate
	2.3.4 Field distribution around gold dimer antennas
	2.3.5 Field enhancement by a dimer antenna
	2.3.6 Scattering spectra of gold bowtie antennas

	2.4 Electromagnetic SERS resonance theory

	3 Raman scattering
	3.1 Physical properties of graphene
	3.2 Macroscopic theory of Raman scattering
	3.3 Microscopic theory of Raman scattering
	3.4 Raman scattering in graphene
	3.4.1 Raman modes of graphene
	3.4.2 Double resonant Raman scattering
	3.4.3 Effects of strain on the Raman modes of graphene
	3.4.4 Double resonance theory of the 2D mode in graphene

	3.5 Plasmon-enhanced resonance Raman theory

	4 Experimental methods
	4.1 Dark field spectroscopy
	4.2 Raman spectroscopy
	4.3 Sample design
	4.3.1 Nanosphere lithography samples
	4.3.2 Dimer antenna samples


	5 Raman measurements
	5.1 Dark field spectroscopy
	5.2 Raman measurements on a hexagonal antenna array
	5.3 Raman measurements on dimer antennas
	5.3.1 Dark field spectra
	5.3.2 Raman spectra
	5.3.3 Raman mapping of a dimer antenna
	5.3.4 Wavelength-scanned Raman spectroscopy
	5.3.5 Dispersion of the graphene Raman modes


	6 Conclusions
	Acknowledgements
	Bibliography

