Appendix

Appendix A

Table A.1a: Atomic partial charges for propionic acid in both protonation states were derived from different QC ESP (Hartree-Fock (HF), $Becke(^{1}/_{2})$ and B3LYP) using the RESP procedure as described in Chapter 2.7. For each of the three QC methods I applied the 6-31G** and 6-31++G** basis set.

H_{22} H_{11} H_{12} H_{22}	H_{22} H_{11} H_{12} $//^{2}$
$H_{23} \begin{array}{c} C_{2} - C_{1} - C_{0} \\ H_{11} \\ O_{1} - H \end{array}$	H_{23} H_{11} O^{-12} H_{11} O^{-12}

	propionic acid			propionic acid (anion)		
basis		6-31G**			6-31G**	
method	HF	$Becke^{1/2}$	B3LYP	HF	$Becke^{1/2}$	B3LYP
Н	0.4502	0.4301	0.4114			
O_1	-0.6413	-0.5846	-0.5514	-0.8411	-0.7780	-0.7459
O_2	-0.6251	-0.5618	-0.5321	-0.8071	-0.7455	-0.7162
C_0	0.7445	0.6476	0.6059	0.8055	0.6969	0.6484
C_1	0.0042	-0.0102	-0.0108	0.0170	-0.0317	-0.0349
H_{11}	0.0319	0.0402	0.0383	-0.0348	0.0175	0.0190
H_{12}	0.0372	0.0456	0.0435	-0.0299	0.0377	-0.0445
C_2	-0.1592	-0.1883	-0.1670	-0.1327	-0.1505	-0.1207
H_{21}	0.0538	0.0620	0.0556	0.0209	0.0242	0.0145
H_{22}	0.0551	0.0631	0.0567	0.0263	0.0287	0.0182
H ₂₃	0.0488	0.0563	0.0499	-0.0241	0.0239	-0.0349
basis		6-31++G**			6-31++G**	
method	HF	$Becke^{1}/_{2}$	B3LYP	HF	$Becke^{1/2}$	B3LYP
Н	0.4552	0.4402	0.4232			
О	-0.6588	-0.6198	-0.5928	-0.9026	-0.8665	-0.8462
О	-0.6501	-0.6036	-0.5820	-0.8633	-0.8277	-0.8099
C_0	0.7773	0.7107	0.6815	0.9075	0.8458	0.8165
C_1	0.0152	0.0014	-0.0002	0.0676	0.1054	0.1218
H_{11}	0.0271	0.0328	0.0309	-0.0535	-0.0712	-0.0827
H_{12}	0.0313	0.0371	0.0353	-0.0508	-0.0676	-0.0785
C_2	-0.1273	-0.1340	-0.1082	-0.0614	-0.0437	-0.0117
H_{21}	0.0441	0.0452	0.0376	-0.0021	-0.0120	-0.0232
H ₂₂	0.0455	0.0467	0.0391	0.0046	0.0052	-0.0165
H ₂₃	0.0407	0.0432	0.0357	-0.0459	-0.0574	-0.0697

Table A.1b: Atomic partial charges for benzoic acid in both protonation states were derived from different QC ESP (Hartree-Fock (HF), $Becke(^{1}/_{2})$ and B3LYP) using the RESP procedure as described in Chapter 2.7. For each of the three QC methods I applied the 6-31G** and 6-31++G** basis set.

	benzoic acid			ben	zoic acid (ani	on)
basis		6-31G**			6-31G**	
method	HF	Becke ¹ / ₂	B3LYP	HF	Becke ¹ / ₂	B3LYP
Н	0.4450	0.4270	0.4073			
0	-0.6255	-0.5728	-0.5398	-0.7794	-0.7182	-0.6849
Ο	-0.5908	-0.5298	-0.5096	-0.7796	-0.7183	-0.6846
C_0	0.7102	0.6137	0.5777	0.7543	0.6559	0.6148
C_1	0.0024	0.0147	0.0130	0.0132	0.0097	0.0040
C_2	-0.1513	-0.1370	-0.1151	-0.1476	-0.1287	-0.1087
H_2	0.1544	0.1373	0.1207	0.1227	0.1018	0.0832
C_3	-0.1221	-0.1087	-0.0976	-0.1487	-0.1419	-0.1371
H_3	0.1309	0.1215	0.1090	0.0957	0.0845	0.0732
C_4	-0.0971	-0.0986	-0.0868	0.1521	-0.1479	-0.1471
H_4	0.1307	0.1208	0.1074	0.1002	0.0881	0.0770
C_5	-0.1397	-0.1183	-0.1027	-0.1485	-0.1417	-0.1367
H_5	0.1333	0.1221	0.1087	0.0959	0.0847	0.0734
C_6	-0.1348	-0.1319	-0.1157	-0.1483	-0.1294	-0.1097
H_6	0.1543	0.1340	0.1235	0.1222	0.1015	0.0830
basis		6-31++G**			6-31++G**	
method	HF	Becke ¹ / ₂	B3LYP	HF	Becke ¹ / ₂	B3LYP
Н	0.4513	0.4368	0.4195			
Ο	-0.6428	-0.6051	-0.5805	-0.8254	-0.7865	-0.7683
Ο	-0.6048	-0.5567	-0.5390	-0.8256	-0.7864	-0.7684
C_0	0.7245	0.6527	0.6275	0.8272	0.7658	0.7437
C_1	0.0223	0.0369	0.0302	0.0578	0.0641	0.0564
C_2	-0.1564	-0.1474	-0.1266	-0.1690	-0.1590	-0.1415
H_2	0.1615	0.1455	0.1298	0.1379	0.1209	0.1045
C_3	-0.1346	-0.1156	-0.1040	-0.1542	-0.1411	-0.1309
H_3	0.1351	0.1257	0.1140	0.0997	0.0864	0.0726
C_4	-0.0944	-0.1018	-0.0913	-0.1674	-0.1625	-0.1498
H_4	0.1342	0.1247	0.1123	0.1057	0.0921	0.0780
C_5	-0.1492	-0.1209	-0.1055	-0.1541	-0.1412	-0.1309
H_5	0.1342	0.1257	0.1133	0.1000	0.0868	0.0730
C_6	-0.1458	-0.1499	-0.1341	-0.1697	-0.1594	-0.1419
H	0.16215	0.1496	0.1346	0.1371	0.1200	0.1036

Table A.1c: Atomic partial charges for phenol in both protonation states were derived from different QC ESP (Hartree-Fock (HF), $Becke(^{1}/_{2})$ and B3LYP) using the RESP procedure as described in Chapter 2.7. For each of the three QC methods I applied the 6-31G** and 6-31++G** basis set.

		phenol			phenoxyl	
basis		6-31G**			6-31G**	
method	HF	Becke ¹ / ₂	B3LYP	HF	Becke ¹ / ₂	B3LYP
Н	0.4219	0.4059	0.3949		_	
О	-0.6211	-0.5709	-0.5419	-0.8215	-0.7492	-0.7162
C_1	0.4757	0.4073	0.3704	0.7206	0.6074	0.5503
C_2	-0.3930	-0.3374	-0.3062	-0.4851	-0.4129	-0.3682
H_2	0.1698	0.1494	0.1349	0.1193	0.0990	0.0811
C_3	-0.0342	-0.0490	-0.0542	-0.0134	-0.0558	-0.0690
H_3	0.1272	0.1168	0.1091	0.0802	0.0684	0.0558
C_4	-0.2178	-0.1844	-0.1635	-0.4071	-0.3465	-0.3099
H_4	0.1366	0.1223	0.1122	0.1069	0.0914	0.0766
C_5	-0.0805	-0.0914	-0.0929	-0.0105	-0.0529	-0.0661
H_5	0.1323	0.1215	0.1131	0.0794	0.0676	0.0550
C_6	-0.2985	-0.2521	-0.2247	-0.4889	-0.4163	-0.3715
H_6	0.1815	0.1620	0.1488	0.1200	0.0998	0.0819
basis		6-31++G**			6-31++G**	
method	HF	Becke ¹ / ₂	B3LYP	HF	Becke ¹ / ₂	B3LYP
Н	0.4314	0.4221	0.4080			
Ο	-0.6532	-0.6216	-0.5962	-0.8947	-0.8516	-0.8278
C_1	0.5221	0.4714	0.4384	0.8470	0.7735	0.7176
C_2	-0.4227	-0.3755	-0.3382	-0.5309	-0.4658	-0.4176
H_2	0.4314	0.1629	0.1464	0.1287	0.1079	0.0900
C_3	-0.0277	-0.0462	-0.0512	0.0121	-0.0259	-0.0423
H_3	0.1788	0.1233	0.1127	0.0840	0.0723	0.0597
C_4	-0.2336	-0.1994	-0.1722	-0.4543	-0.3988	-0.3545
H_4	0.1366	0.1299	0.1163	0.1148	0.1004	0.0854
C_5	-0.0763	-0.0926	-0.0944	0.0178	-0.0194	-0.0359
H_5	0.1904	0.1282	0.1173	0.0824	0.0704	0.0578
C_6	-0.3193	-0.2776	-0.2460	-0.5370	-0.4723	-0.4238
<u>H</u> ₆	0.1314	0.1751	0.1590	0.1300	0.1093	0.0913

Table A.1d: Atomic partial charges for glutarimide in both protonation states were derived from different QC ESP (Hartree-Fock (HF), $Becke(^{1}/_{2})$ and B3LYP) using the RESP procedure as described in Chapter 2.7. For each of the three QC methods I applied the 6-31G** and 6-31++G** basis set.

$ \begin{array}{c} H \\ O \\ C_{1} \\ H_{22} \\ H_{22} \\ H_{21} \\ H_{21}$	$\begin{array}{c} O \\ C_{1} \\ H_{22} \\ H_{22} \\ H_{21} \\ H_$
$H_{21} \mid H_{41} \mid H_{31}$	H_{21} H_{41} H_{31}

	glutarimide			glutarimide anion		
basis		6-31G**			6-31G**	
method	HF	Becke ¹ / ₂	B3LYP	HF	Becke ¹ / ₂	B3LYP
Н	0.3709	0.3541	0.3348	-0.9611	-0.8848	-0.8392
Ν	-0.6562	-0.5933	-0.5460	0.8900	0.8035	0.7536
C_1	0.7127	0.6364	0.5950	-0.7521	-0.6892	-0.6600
O_1	-0.5823	-0.5212	-0.4937	-0.3163	-0.3162	-0.2889
C_2	-0.2296	-0.2484	-0.2303	0.0543	0.0547	0.0442
H_{21}	0.0894	0.0964	0.0895	0.0378	0.0349	0.0232
H ₂₂	0.0798	0.0853	0.0786	0.2162	-0.3104	-0.2818
C_3	0.1150	0.1029	0.1001	-0.0358	-0.0548	-0.0356
H_{31}	0.0143	0.0197	0.0167	-0.0563	-0.0559	-0.0614
H ₃₂	0.0162	0.0194	0.0161	-0.3129	0.1955	0.1906
C_4	-0.2301	-0.2481	-0.2295	0.0554	0.0548	0.0439
H_{41}	0.0898	0.0965	0.0894	0.0343	0.0305	0.0185
H_{42}	0.0795	0.0848	0.0779	0.8944	0.7996	0.7500
C_5	0.7116	0.6356	0.5942	-0.7479	-0.6856	-0.6570
O_5	-0.5810	-0.5201	-0.4928	-0.9611	-0.8848	-0.8392
basis		6-31++G**			6-31++G**	
method	HF	Becke ¹ / ₂	B3LYP	HF	Becke ¹ / ₂	B3LYP
Н	0.3750	0.3627	0.3446			
Ν	-0.6628	-0.6236	-0.5858	-1.0041	-0.9678	-0.9349
C_1	0.7334	0.6872	0.6589	0.9534	0.9088	0.8784
O_1	-0.6095	-0.5661	-0.5449	-0.8000	-0.7607	-0.7427
C_2	0.1347	-0.2406	-0.2294	-0.2931	-0.2889	-0.2676
H_{21}	0.0832	0.0880	0.0814	0.0396	0.0312	0.0215
H_{22}	0.0772	0.0818	0.0752	0.0286	0.0189	0.0076
C_3	-0.2163	0.1517	0.1614	0.2846	0.3144	-0.2584
H_{31}	0.0057	0.0008	-0.0059	-0.0645	-0.0798	-0.0878
H ₃₂	0.0116	0.0089	0.0030	-0.0744	-0.0876	-0.0961
C_4	-0.2167	-0.2412	-0.2282	-0.2883	-0.2811	0.3223
H_{41}	0.0835	0.0880	0.0812	0.04010	0.0304	0.0199
H_{42}	0.0769	0.0812	0.0744	0.0251	0.0144	0.0028
C_5	0.7324	0.6863	0.6580	0.94902	0.9052	0.8752
O_5	-0.6082	-0.5650	-0.5439	-0.7960	-0.7575	-0.7401

Table A.1e: Atomic partial charges for pyridine in both protonation states were derived from different QC ESP (Hartree-Fock (HF), $Becke(^{1}/_{2})$ and B3LYP) using the RESP procedure as described in Chapter 2.7. For each of the three QC methods I applied the 6-31G** and 6-31++G** basis set.

	p	yridine cation	1		pyridine	
basis		6-31G**			6-31G**	
method	HF	Becke ¹ / ₂	B3LYP	HF	Becke ¹ / ₂	B3LYP
Н	0.3572	0.3453	0.3322			
Ν	-0.2004	-0.1227	-0.0963	-0.6911	-0.6483	-0.6253
C_1	0.0935	0.0443	0.0342	0.4997	0.4707	0.4557
H_1	0.1881	0.1824	0.1729	0.0201	0.0120	0.0043
C_2	-0.1885	-0.1186	-0.0878	-0.5274	-0.4833	-0.4468
H_2	0.1914	0.1793	0.1676	0.1848	0.1717	0.1560
C_3	0.1082	0.0446	0.0372	0.2548	0.2311	0.2215
H_3	0.1647	0.1616	0.1524	0.0816	0.0746	0.0650
C_4	-0.1898	-0.1193	-0.0884	-0.5279	-0.4838	-0.4473
H_4	0.1911	0.1790	0.1673	0.1849	0.1718	0.1561
C_5	0.0968	0.0420	0.0361	0.5009	0.4718	0.4568
H_5	0.1876	0.1821	0.1727	0.0197	0.0117	0.0040
basis		6-31++G**			6-31++G**	
method	HF	Becke ¹ / ₂	B3LYP	HF	Becke ¹ / ₂	B3LYP
Н	0.3552	0.3436	0.3436			
Ν	-0.1957	-0.1259	-0.1259	-0.7320	-0.7053	-0.6891
C_1	0.0975	0.0454	0.0454	0.5409	0.5247	0.5135
H_1	0.1858	0.1822	0.1822	0.0155	0.0042	-0.0038
C_2	-0.1949	-0.1238	-0.1238	-0.5643	-0.5236	-0.4876
H_2	0.1919	0.1804	0.1804	0.1927	0.1806	0.1655
C_3	0.1150	0.0512	0.0512	0.2809	0.2596	0.2489
H_3	0.1634	0.1617	0.1617	0.0813	0.0736	0.0645
C_4	-0.1962	-0.1246	-0.1246	-0.5651	-0.5242	-0.4882
H_4	0.1916	0.1800	0.1800	0.1928	0.1807	0.1656
C_5	0.1011	0.0481	0.0481	0.5424	0.5261	0.5148
He	0 1853	0 1818	0 1818	0.0150	0.0038	-0.0041

Table A.1f: Atomic partial charges for imidazole in both protonation states were derived from different QC ESP (Hartree-Fock (HF), $Becke(^{1}/_{2})$ and B3LYP) using the RESP procedure as described in Chapter 2.7. For each of the three QC methods I applied the 6-31G** and 6-31++G** basis set.

	in	nidazole catio	n		imidazole	
		6-31G**			6-31++G**	
	HF	Becke ¹ / ₂	B3LYP	HF	Becke ¹ / ₂	B3LYP
H _{N1}	0.3701	0.3629	0.3510			
Ν	-0.1557	-0.1215	-0.1035	0.3171	0.3070	0.2907
C_1	0.0751	0.0333	0.0243	-0.2492	-0.2171	-0.1951
H_{C1}	0.2371	0.2284	0.2184	0.2246	0.1954	0.1861
N_2	-0.1561	-0.1219	-0.1039	0.1054	0.0937	0.0839
H _{N2}	0.3701	0.3629	0.3511	-0.5442	-0.5088	-0.4914
C_3	-0.1123	-0.1019	-0.0863	0.1631	0.1547	0.1572
H_{C3}	0.2422	0.2301	0.2177	0.0938	0.0829	0.0722
C_4	-0.1127	-0.1023	-0.0867	-0.3179	-0.2978	-0.2771
H _{C4}	0.2422	0.2301	0.2178	0.2072	0.1890	0.1736
		6-31++G**			6-31++G**	
	HF	Becke ¹ / ₂	B3LYP	HF	Becke ¹ / ₂	B3LYP
H _{N1}	0.3666	0.3608	0.3493			
Ν	-0.1441	-0.1169	-0.1018	0.3118	0.3021	0.2868
C_1	0.0692	0.0290	0.0235	-0.2302	-0.2033	-0.1877
H_{C1}	0.2359	0.2292	0.2188	0.2335	0.2170	0.2147
N_2	-0.1445	-0.1172	-0.1022	0.1031	0.0898	0.0792
H_{N2}	0.3666	0.3608	0.3494	-0.5653	-0.5471	-0.5362
C_3	-0.1162	-0.1043	-0.0872	0.1871	0.1937	0.0663
H _{C3}	0.2416	0.2316	0.2189	0.08991	0.0774	0.2004
C_4	-0.1167	-0.1047	-0.0876	-0.3430	-0.3279	-0.3052
H_{C4}	0.2416	0.2316	0.2189	0.2129	0.1983	0.1817

Appendix B

Abbreviations used in the text:

AcN, acetonitrile

AcN/DMAc, aprotic solvents AcN and DMAc

bc1,

b6f,

B3LYP functional, Becke 3 Lee, Yang and Parr functional

Becke(¹/₂), Becke-half&half

CBS, complete basis set

CHARMM, Chemistry at Harvard macromolecular mechanics

CPCM, cosmo polarized continuum model

CPU, central processor unit

DFT, density functional theory

DNA, desoxyribonucleic acid

B3LYP, density functional theory used in combination with the B3LYP functional

DMAc, N,N-dimethylacetamide

EA, electron affinity

ESP, electrostatic potential

 $E^{\circ}_{redox,}$ standard redox potential

G3MP2, Gaussian3-MP2

His, histidine

LPBE, linearized Poisson-Boltzmann equation

MEAD, macroscopic electrostatics with atomic detail

MP2, second-order Møller Plesset

MP4, forth-order Møller Plesset

NHE, normal hydrogen electrode

NIST, National Institute of Standards and Technology

PA, proton affinity

PBE, Poisson-Boltzmann equation

p-benzoquinones, para-benzoquinone

PCM, polarized continuum model

PSII,

PSI,

QC, quantum chemical

QCISD, quadratic configuration interaction

RESP, restrained electrostatic potential

RMS deviation, root mean square deviation

SCE, standard calomel electrode

SHE, standard hydrogen electrode

TVR contribution, translational rotational vibrational contribution

vdW, van-der-Waals

ZPVE, zero point vibrational energy

List of Figures

Scheme 1.1: Thermodynamic cycle to analyze the pK_a shifts	11
Scheme 2.1: Thermodynamic cycle to compute pK _a values	17
Scheme 2.2: Thermodynamic cycle to compute one-electron reduction potentials	19
Figure 2.1: Flowchart to generate atomic partial charges.	43
Figure 2.2: LPBE mapped on a cubic grid	48
Scheme 2.3: Thermodynamic cycle to derive $\Delta G_{solv}(H^+)$	56
Figure 2.3: Computational approach to derive $\Delta G_{solv}(H^+)$	60
Figure 2.4: Water cluster considered to compute $\Delta G_{solv}(H^+)$	61
Figure 2.5: Schematic drawing of the standard hydrogen electrode	62
Figure 3.1a,b: Compounds considered for pK_a computations	70
Figure 3.2a: Correlation diagram of measured and computed pK_a values (Becke($^{1}/_{2}$))	74
Figure 3.2b: Comparison of measured and computed pK_a values (Becke($^{1}/_{2}$))	74
Figure 3.3a: Correlation diagram of measured and computed pK _a values (B3LYP)	75
Figure 3.3b: Comparison of measured and computed pK _a values (B3LYP)	75
Figure 3.4: Correlation diagram of measured and computed PA values with $Becke(1/2)$	77
Figure 3.5: Correlation diagram of measured and computed PA values with B3LYP	79
Figure 3.6: Comparison of measured and computed PA values	79
Figure 3.7: Computation of a QC ESP with diffuse functions (Becke $(1/2)$)	84
Figure 3.8: Computation of a QC ESP with diffuse functions (B3LYP)	84
Figure 3.9: Influence of the solute dielectric constant on $\Delta\Delta G_{solv}$	87
Figure 3.10: Compounds for the computation of E_{redox}^0	94
Figure 3.11: Correlation diagram measured and computed E_{redox}^0 with G3MP2	99
Figure 3.12: Comparison of computed E_{redox}^0 with G3MP2 and B3LYP	100
Figure 3.13: Correlation diagram measured and computed E_{redox}^0 with B3LYP	101
Figure 3.14: Comparison of computed E_{redox}^0 with G3MP2 and B3LYPP	102
Figure 3.15: Correlation diagram measured and computed E_{redox}^0 with B3LYP	103
Figure 3.16: Correlation diagram measured and computed EA values	104
Figure 3.17: Redox Potentials in H_2O and EA values	106
Figure 3.18:Redox Potentials in ACN/DMAc and EA values	107

Figure 3.19:Dependence of $\Delta\Delta G_{solv}$ on the oxygen (sulfur) van-der-Waals radius	110
Figure 3.20: Computed PA values obtained with G3MP2	112
Figure 3.21:Calculated pK _a values using the QC method G3MP2	113
Figure 3.22: Correlation diagram of experimental and calculated pK _a values	114
Scheme 3.1: The reduction cascade of p-benzoquinone	115

Publications

Journal articles:

- 1. M. Schmidt am Busch and E.W. Knapp (2004). Accurate pK_a determination for a heterogeneous group of organic molecules. *ChemPhysChem*, 5, 1513-1522.
- 2. M. Schmidt am Busch and E.W. Knapp (2005). One-electron reduction potential for oxygen- and sulfur centered organic radicals in protic and aprotic solvents. J. Am Chem. Soc., 127, 15730-15737.
- H. Kress, A. Jarrin, E. Thuroff, R. Saunders, C. Weise, M. Schmidt am Busch, E.W. Knapp, M. Wedde and A. Vilcinskas (2004). A Kunitz type protease inhibitor related protein is synthesized in Drosophila prepupal salivary glands and released into the moulting fluid during pupation. *Insect Biochemistry and Molecular Biology*, 34, 855-869.

Acknowledgements

This thesis was prepared in the group of Professor Ernst-Walter Knapp at the Freie Universität Berlin. I would like to express my thanks to all people who helped and supported me during my PhD work. Especially I would like to thank my supervisor Professor Ernst-Walter Knapp for giving me the opportunity to work as a PhD student in his group. Also I would like to express my thanks for his constant interest and ongoing support for my research efforts.

Special thanks to Professor Dr. Matthias Ullmann, whom I met in Heidelberg in the year 2001 and who recommended me to my advisor Professor Ernst-Walter Knapp.

I would like to thank Artur Galstjan and Björn Kolbeck for their efforts to keep the computer in the laboratory running.

I would like to thank Dr. Thomas Renger and Julia Adolphs who carefully read parts of this thesis.

Special thanks to my parents for their constant support.