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Chapter 2 Method 

Protonation reactions comprise the energetics of loss or addition of a proton, whereas redox 
reactions describe the loss or addition of an electron. The equilibria of protonation and redox 

reactions are governed by the pKa and the 0
redoxE  values of participating molecules, respectively. 

The derivation of pKa and 0
redoxE  values from corresponding equilibria is documented in section 

2.1.1 and 2.1.2. 

In the present study pKa and redocxE  values were computed from an indirect rather than from a 

direct evaluation of the reaction free energy ( GR). The underlying basis to obtain GR in that 
way is provided by two thermodynamic cycles (see Scheme 2.1 and 2.1). Along these cycles 
educts were transferred from the condensed phase into the gas phase ( Gsolv (educts)). There, 
either of the two considered chemical reactions were triggered ( Ggas). Finally, the products were 
released into the solution ( Gsolv(products)). Thus, thermodynamic cycles split the overall 
reaction into three steps. Chapter 2.1.1 and 2.1.2 explain thermodynamic cycles for protonation 
and redox reactions, respectively and provide equations that define the quantitative relationship 
between GR and Gsolv (products/educts) and Ggas.

Neither the solvation free energy of the proton Gsolv(H
+) nor the potential of the normal 

hydrogen electrode, which contribute to computed pKa and E° values, respectively, were 
estimated in the scope of the present study. Due to inconsistent experimental data I[40, 42, 43, 45, 46, 

49, 54, 84, 85, 87-90] used a proton solvation free energy, within the experimental error range, which 
then minimized the root-mean-square value between experimental and computed pKa values. 
Section 2.5 conveys the framework of two experimental[84, 85] and one theoretical studies[89] to 
determine Gsolv(H

+) in detail. One-electron reduction potentials were estimated using the 
recommended literature value of the standard (normal) hydrogen electrode. The derivation of this 
potential by Reiss and Heller is explained in chapter 2.6.  

Throughout the present work gas phase free energies were determined by means of ab initio

quantum chemical (QC) methods. The employment of QC methods required the breakage of 
Ggas into the electronic energy, the vibrational energy and the thermal correction. These energy 

terms were estimated in so called single point computations on optimized geometries. Proton 
affinity (PA) and electron affinity (EA) describe the enthalpic contributions to Ggas of a 
protonation and a redox reaction, respectively. PA and EA values were computed because they 
can be directly compared to experimental results. The definitions of PA and EA are given in 
chapter 2.1.1 and 2.1.2, respectively. Equations to convert the enthalpic values into reaction free 
energies are also provided therein. 

PA values for closed shell systems were estimated by means of QC computations with DFT 
functionals. Molecules considered for one- electron reduction potentials commute between an 
open shell radical and a closed shell non-radical state. I tested the performance of the DFT 
functional B3LYP and of the post Hartree-Fock method G3MP2 to yield accurate EA values for 
organic compounds. Chemical reactions, with the concomitant occurrence of proton and electron 
transfer were also modeled by means of the G3MP2 method. Chapter 2.2 conveys the basics of 
DFT and G3MP2. Therein, a showcase for the importance of exchange-correlation expressions 
within a quantum chemical method is given for the DFT approach.  
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To obtain pKa and 0
redoxE  values gas phase free energies were to be combined with solvation free 

energies. In the present study solvation free energies were estimated in a two-step computational 
approach. First, atomic partial charges were determined in the vacuum by the QC method 
B3LYP/6-31G**. Second, solvation free energies were determined solving the Poisson-
Boltzmann equation with these atomic partial charges. This procedure covers only the 
electrostatic part instead of the total solvation free energy. It will be shown in section 2.3 that in 
cases where the continuum is simulated with ionic strength equal to 0, this equation is reduced to 
the much simpler Poisson equation (see chapter 2.4). Using the above procedure to estimate 
electrostatic solvation free energies requires three sets of molecule dependent parameters to be 
determined: optimized atomic coordinates, partial atomic charges and vdW radii of solvation. 
Chapter 2.3 introduces methods to derive partial atomic charges form quantum mechanical 
computations. Chapter 2.4 documents the derivation of the Poisson and the Poisson-Boltzmann 
equation. The chosen set of vdW radii is documented in the result part in section 2.7.  
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2.1 Reaction free energies

2.1.1 Computation of acid-base equilibria  

A titratable molecule or group is defined to have a certain potential to donate a proton into or 
uptake a proton from the surrounding environment. The protonation state of a titratable group in 
solution or within an ensemble of other titratable groups is quantitatively described by the pKa

value. The relationship between the pKa value and the reaction free energy is derived in the 

following section. Subsequently I will explain how RG  can be expressed through computable 

terms. 

The equations below illustrate two types of protonation reactions: 

B + H

Ka
AH + HA-

BH
Kb

(2.1a and 2.1b) 

From the above equations the equilibrium constant Ka and Kb are derived by the law of mass 
action:  

Kb =
[B] [H ]

[BH ]
Ka=

[A ] [H ]

[AH]

(2.2.a and 2.2b) 

The pH value is defined as the negative decadic logarithms of the proton concentration in 
solution : 

pH = log [ H ] (2.3) 

The pKa of an acid is defined as the negative decadic logarithm of the equilibrium constant Ka

pKa = log Ka   (2.4) 

Taking the equilibrium of eq 2.2a and using the definitions of eqs. 2.3 and 2.4 we obtain the 
Henderson-Hasselbalch equation: 

AH

A
pKpH a log    (2.5)

Eq. 2.6 (see below) links the standard reaction free energy RG of an acid-base equilibrium with 

the pKa value, where R is the gas constant, T the absolute temperature in Kelvin and 2.303 
converts the decadic logarithm into the natural logarithm. 

RT

G
KpK R

aa 303.2
)log(    (2.6) 
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Gsolv(AH) Gsolv(H )Gsolv(A )

Ggas

GR

A (g) + H (gas)

+ H (solv)A (solv) +

AH(gas)

AH(solv)

Scheme 2.1. Thermodynamic cycle connecting gas (g) and solvent (solv) phase for the 
computation of absolute pKa values of the titratable group AH.

The above thermodynamic cycle (scheme 2.1) illustrates the derivation of GR in a 
protonation/deprotonation reaction from three components: the solvation free energy of educts 
( Gsolv(AH), the reaction free energy in the vacuum ( Ggas) and the solvation free energy of 
products ( Gsolv(AH). If we follow the thermodynamic cycle in the indicated manner (see scheme 
2.1) we can derive the following expression for GR.

)()()( AHGHGAGGG solvsolvsolvgasR    (2.7) 

Ggas can be expressed from three components as displayed in the next equation:  

)()()( AHGHGAGG gasgasgasgas    (2.8) 

Ggas(AH) and Ggas(A
–) in equation (2.2.8) are now expressed as a sum of three computable 

contributions.  
K

vib

KK

gas GEEVEZPVEEG 298
0

298
0

298    (2.9) 

To obtain accurate pKa values I computed for both protonation states in the gas phase the zero 
point electronic energy E0, the zero point vibrational energy ZPVE and the excess vibrational free 
energy EVE298K at 298 K. Modeling pKa values along the thermodynamic cycle given in the 
above scheme requires the accurate evaluation of Ggas and Gsolv. To establish a reliable 
computational protocol to predict pKa values for a broad range of acid-base equilibria we 
analyzed the performance of different QC methods to model accurately gas phase energetics. 
Therefore we compared for a number of compounds (see 3.1 and 3.3) experimental and computed 
data. Experimental results in vacuum are expressed in proton affinities (PA), which are the 
enthalpic contributions to the reaction free energies. The PA is defined as: 

)()()( AHGHEAGPA gasgasgas    (2.10) 

I used for Egas(H
+) = 2.5 RT (with R*298 K = 1.48 kcal/mol). 1.5 RT is the enthalpy contribution 

of the three translational degrees of freedom of H+ and 1 RT = pV is the excess mechanical 
energy required to generate two particles (A–, H+) out of one (AH) as estimated from the ideal 
gas model. To obtain the gas phase free energy Ggas entering equation (2.8), which is employed 
to calculate absolute pKa values, the entropy contribution –T S(H+) of the free proton estimated 
from the ideal gas model must be added to the enthalpy term Egas(H

+) in equation (3). Hence, we 
have  
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11 *28.6*76.72985.2)(298)()( molkcalmolkcalKRTHSKHEHG gasgas

(2.11) 
Note that in some publications the measured PA may refer to free energies. According to Eq. 
(2.11) and (2.10) the corresponding PA value is than lower by 7.76 kcal/mol. In the present study 
PA values were exclusively used in terms of enthalpies as defined by Eq. (2.10). 

Gsolv(A ) and Gsolv(AH) can be summarized into GSolv, as shown by the following two 
equations: 

)(*)( HGAHGGG solvsolvgasR    (2.12) 

with *)()(*)( # AHGAGAHG solvsolvsolv    (2.13) 

Note that for titratable compounds that are neutral (carboxylic acids, benzoic acids, imides, 
phenols) we have AH*  AH and A#  A . For compounds that are cationic (imidazoles and 
pyridines) in the protonated state we have AH*  AH+ and A#  A. Using the above definitions 
and equations from 2.6 to 2.13 the pKa value of an organic compound can now be calculated. 

2.1.2 Computation of redox equilibria  

In analogy to a titratable group one defines a redox-active molecule or group by the ability to 
uptake an electron from or deliver an electron into the surrounding environment. The 
fundamental quantity to describe the redox behavior of a molecule is the standard redox potential 

0
redoxE . In the current thesis one-electron reduction of molecules between a neutral and an anionic 

state were estimated. In redox-reactions molecules commute between a closed shell (non-radical) 
and an open shell (radical) state. The current study provides examples with neutral radical states 
(phenoxides) and anionic radical states (quinones) (see section 3.2). The two cases are illustrated 
by the subsequent equations: 

A + e-Kredox
A-

   (2.14a) 

B + e-Kredox
B-

    (2.14b) 
From the above equations the equilibrium constant Ka and Kb for a redox reaction can be derived 
by the law of mass action:  

Ka=
[A ]

[A] [e ]
Kb =

[B ]

[B] [e ]

(2.15a and 2.15b) 
In analogy to the definition of the pH value and the pKa value one defines the solution redox 

potential Esolv and the standard redox potential 0
redoxE  of the redox couple Aoxd/Ared, as: 

e
F

RT
Esolv ln    (2.16) 

aredox K
F

RT
E ln0    (2.17) 
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Using the above two equations expression we now derive the Nernst law, which is the analog to 
the Henderson-Hasselbalch equation (see eq. 2.5) for titratable groups: 

A

A

F

RT
EEsol    (2.18) 

0
redoxE is related to the standard reaction free energy of a one-electron reduction potential via the 

following equation:  

00
redoxR FEG    (2.19) 

Gredox (solv) represents the reaction free energy of the electron transfer reaction A + e–  A  in 
solution. F is the Faraday constant, which is equal to 23.06 kcal mol–1 V–1 and E°redox the redox 
potential under standard conditions.  

Ggas A-(g)

A-(solv)

A (g)

GR

Gsolv(A
-)Gsolv(A)

1/2 H2 (g) H+ (solv) + e
( )

GR = 4.43 eV

A (solv)

Scheme 2.2: Thermodynamic cycle connecting gas (g) and solvent (solv) phase for the 
computation of redox potentials in solution of the redox-active group A.

To calculate Gredox (solv) and E° the above thermodynamic cycle was employed. It shows the 
transfer of a molecule of interest from the oxidized state into the reduced state via the vacuum, so 
that GR can be formulated as a sum of three components:  

Gredox = G(A ) – G(A) – GNHE    (2.20) 

Substitution of eq. 2.20 into eq. 2.19 leads then to a modified expression for the standard redox 
potential:

F E°redox = Ggas – Gsolv GNHE   (2.21) 
Gsolv is the free energy difference in the solvation free energy between the reduced and 

oxidized state and GNHE the potential of the normal hydrogen electrode (NHE). As mentioned in 
the introduction 0

redoxE  values are relative values that are referred to as the potential of the 

standard hydrogen electrode. In the present work all computed 0
redoxE  values are given relative to 

the potential of the standard hydrogen electrode. A potential of –4.43 eV has been determined 
experimentally for the NHE. This value is commonly used in connection with 0

redoxE  values. To 

compare E° values vs. NHE to data measured against the standard calomel electrode (SCE) 0.241 
eV have to be subtracted. The NHE donates the electrons necessary to transfer a substance from 
the oxidized state to the reduced state. The solvation enegy of the electron equals zero and is 
therefore not included in eq. 2.21. Ggas and Gsolv in the above equation are expressed as 
indicated by the two subsequent equations:  

Ggas(A /A) = Ggas(A ) – Ggas(A)   (2.22) 
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Gsolv(A /A) = Gsolv(A ) – Gsolv(A)   (2.23) 

Modeling 0
redoxE  values via the thermodynamic cycle given above requires an accurate evaluation 

of Ggas and Gsolv. To establish a reliable computational protocol to predict 0
redoxE  values for 

yet unknown one-electron reduction potentials we used in the present applications QC methods 
that fit to a broad spectrum of experimental gas phase results. Experimental results in vacuum are 
expressed in EA values. A conventional definition of EA (adiabatic EA) is in terms of zero 
temperature enthalpic gas phase energies T=0K

gasH  between the two charge states A /A yielding.  

EA(A /A) = – T=0K
gasH (A /A)  = T=0K

gasH (A)  – T=0K
gasH (A ) .   (2.24) 

The enthalpy is composed of electronic energy E0, zero-point vibration energy ZPVE and for 
non-vanishing temperature also of translational rotational vibrational (TRV) contributions 

T=298K
TRVH  according to  

T=298K
gasH  = E0 + ZPVE + T=298K

TRVH    (2.25) 

Similarly the gas phase free energy needed to compute the redox potential is given as sum of 
electronic energy E0, zero-point vibrational energy ZPVE and the temperature dependent TRV 
contributions to free energy according to  

T=298K
gasG  = E0 + T=298K

non-electronicG  = E0 + ZPVE + T=298K
TRVG    (2.26) 

In agreement with other theoretical groups that evaluated one-electron reduction potentials and 
pKa values I applied a thermodynamic cycle (scheme 2.2). High- level QC methods were used to 
estimate gas phase EA and Ggas. Using equations 2.19 to 2.26 the 0

redoxE  value of an organic 

compound can now be calculated. 
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2.2 Quantum chemical methods 

As stated in the general introduction gas phase free energies were computed by means of suitable 
QC methods. QC methods were applied because the breaking and forming of a covalent bond 
(computation of pKa values) and the release and uptake of an access electron (computation of 
one-electron reduction potentials) cannot be described by means of molecular mechanics.  

The definitions of PA and EA values (see equation 2.10 and 2.24) comprise electronic and 
vibrational energy differences between different protonation or redox states of a considered 
molecule, which are the enthalpic contribution to Ggas (pKa) and Ggas (redox), respectively. For 
the estimation of reaction free energies thermal correction are added as an additional term (see 
eqs. 2.9 and 2.26). The computation of the electronic energies is the demanding part and requires 
the usage of more elaborated QC methods than the estimation of vibrational energies or thermal 
corrections. 

The current thesis documents accurately computed PA values for a spectrum of organic 
molecules based on the DFT functionals B3LYP[75, 77] functional, Becke-half&half (Becke1/2),

[76]

which is a mixture between pure Hartree-Fock and DFT and the post Hartree-Fock method 
Gaussian-3-Møller-Plesset –2 (G3MP2).[78] Even for modern computational quantum chemistry 
the quantitative description of EA values is especially demanding.[79, 80] The correlation energy of 
the unpaired electron in the radical state exceeds the correlation energy of the paired electrons. 
As a result, sophisticated QC methods are required to obtain a balanced description of both 
electronic states. Hence, major research attempts were carried out in the past to find improved 
expressions for the correlation energy. The complete failure of the DFT functional Becke(1/2) (see 
chapter 2.2.4) and the partial failure of B3LYP (see chapter 2.2.4) to reproduce quantitatively 
experimental EA values (see section 3.2) support the above statement. For the chosen set of 
compounds only G3MP2 (see section 2.2.5) was able to estimate EA values in the experimental 
error range (see section 3.2).  
This section intends to convey the basics of quantum mechanics and quantum chemistry, which 
are necessary to understand general aspects and ideas (not mathematical details) in scientific 
studies that have the potential to lead to improved results on PA and EA values. It will be shown 
that difficulties in modern computational quantum chemistry have their origin in the structure of 
the Schrödinger equation, which is the base of quantum mechanics and quantum chemistry. The 
basic problem, which confronts quantum chemists is summarized in a statement by Szabo and 
Oslund: “Finding and describing approximate solutions to the electronic Schrödinger equation 
has been a major preoccupation of quantum chemists since the birth of quantum mechanics”.[91]

According to the previous statement only approximate solutions of the Schrödinger equation can 
be found for many electron systems by means of QC methods. Consequently a compromise 
between the demands of accurateness and the technical and computational feasibility has to be 
found.  
The infeasibility of theoretical approaches to solve the Schrödinger equation directly for many-
particle systems launched the development of theoretical approaches, which describe the 
characteristics of many-particle systems by the antisymmetrized product of single interacting 
particles (electrons). A major attempt of these theories is the search for expressions that describe 
the interaction energy between those particles. In a mean field approximation like Hartree Fock 
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(see chapter 2.2.2) the electron-electron interaction is described by an averaged potential i.e. one 
electron moves in an averaged potential created by the other electrons. The deviation in energy of 
a N-particle system from the energy obtained using a mean field approximation is termed 
correlation energy.[91]

The structure of the Schrödinger equation renders impossible straightforward QC solutions for 
many-electron systems. Most QC methods were tested for anorganic molecules only, thus a major 
attempt of this thesis was to do similar tests for organic molecules, which were considered here. 
The considered systems of the current thesis are small compared to macro molecular biological 
systems as for example heme. Hence, even CPU time and memory demanding QC methods were 
tested.  

2.2.1 The basics to understand quantum chemical methods:  

The time independent, non-relativistic Schrödinger equation for a many electron system can be 
written as:[91]

   (2.27) 

 is the Hamiltonian operator for a system of nuclei and electrons described by position vectors 
R A and r i, respectively.  is the wave function of the many particle system and E is the energy 
of the eigenfunction. In SI units the Schrödinger equation of the hydrogen atom can be written as: 

)()(
4

)(
2 0

2
2

2

rEr
r

e
r

m
r    (2.28) 

In eq. 2.28 
2

2

2
r

m
 is the kinetic energy of the electron system, 

r

e

0

2

4
 is the potential 

energy and E the energy of the system. In QC computations the Schrödinger equation is 
expressed in atomic units. In chapter 2.1.1 of “Modern Quantum Chemistry” Szabo and Oslund 
convert explicitly the Schrödinger of the hydrogen atom from SI units to atomic units. Expressed 
in atomic units equation 2.28 looks like:[91]

)()(
1

2

1 2 rEr
r

r    (2.29) 

Equation 2.29 can be converted to equation 2.27. The Hamiltonian for N electrons and M nuclei 
of equation 2.27 can be expressed as: 
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 (2.30) 

In eq. 2.30 the distance between the i-th electron and A-th nucleus is iAiiA Rrr , the distance 

between the i-th and the j-th electron is jiij rrr  and the distance between the A-th and the B-

th nucleus is jiij RRR . MA is the ratio of the mass of nucleus A to the mass of an electron 

and Za is the atomic number of nucleus A. The Laplacian operators 2
i  and 2

A  involve 

differentiation with respect to the coordinates of the i-th electron and A-th nucleus, respectively. 
The first term in the above equation is the operator for the kinetic energy of the electrons; the 
second is the operator for the kinetic energy of the nucleus; the third term represents the Coloumb 
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attraction between electrons and nuclei; the fourth and fifth term represents the repulsion between 
electrons and between nuclei, respectively.  
The Born-Oppenheimer approximation considers electrons as moving particles in the field of 
fixed nuclei. Due to significant differences in mass between electron (mel ~ 10-31 kg) and nucleus 
(mnuc ~ 10-27 kg), the electronic degrees of freedom can be considered to respond instantaneously 
to any change in the nuclear configuration i.e their wave functions correspond always to a 
stationary state.[92, 93] Hence, the interaction between nuclei and electrons is modified due to the 
motion of the nuclei only adiabatically and does not cause transitions between different stationary 
states.[93] Application of the Born-Oppenheimer approximation enables one to formulate the 
electronic Hamiltonian. The time independent electronic Schrödinger equation describing the 
motion of electrons in the electrostatic field of the stationary nuclei comprises only term one, 
three and four of eq. 2.30, where the electronic Hamiltonian and the electronic wave functions 
depend only parametrically on the coordinates of the nuclei:[91]

}){,()(}){,()( , nucanucelecanucanucelec RrRERrRH    (2.31) 

with the electronic Hamiltonian: 
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The three terms on the right side of eq. 2.32 were already introduced in eq. 2.30. The total energy 
for fixed nuclei includes also the mutual nuclear repulsion. Therefore,  
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ZZ
EE    (2.33) 

Solutions to a nuclear Schrödinger equation describe the vibration, rotation and translation of a 
molecule. The nuclear Schrödinger equation describes the motion of the nuclei in the mean field 
of the electrons, which is obtained by averaging over the electronic wave functions: 

}){,(}){,()( elecnucnucnucelecnucnucelecnuc RrERrR    (2.34) 

The nuclear Hamiltonian (see equation below) describes the kinetic potential of the nuclei 
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interaction of the nuclei with the electronic charge distribution corresponding to the actual 
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To cover the full energetics of a system the electronic and nuclar eigenfunctions have to be 
calculated. Hence in the current study on pKa and one-electron reduction potentials electronic 
energies were computed independently from vibrational energies and their results were summed 
to obtain reaction free energies in the vacuum. 

Antisymmetry Principle and Spin Orbitals. The square of the wave function but not the 
function itself is a physical observable. For a two-electron system the quantity 

( 21

2

21 ,),( xdxdxx ) expresses the probability of finding electron 1 in volume 111, xdxx  and 

simultaneously electron 2 in volume 222 , xdxx . Of course the meaning of the square of the 
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wave function can be generalized to a many electron system, so that the probability of finding N 
electrons in the respective space elements between a and b is given as:  

nn

b

a

b

a

b
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xdxdxdxxx
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n
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.21

2

2

1

1

  (2.36) 

To describe a many-electron system the wave function must not distinguish between different 
electrons, because they are indistinguishable particles. That means that if we consider a two-
electron system than the probability of finding electron 1 or 2 at some point in space must be 
identical. Both of the following two equations fulfill this condition: 

),,,',','()',',',,,( zyxzyxzyxzyx    (2.37) 

),,,',','()',',',,,( zyxzyxzyxzyx    (2.38) 

In the first case we say that the wave function is symmetric with respect to an exchange of 
electrons. In the second case, we say the wave function is antisymmetric. Both symmetric and 
antisymmetric wave functions lead to probabilities ( 2

xd ) that are symmetrical. This means 

that the probabilities are unchanged when the electrons exchange their positions. For electrons 

wave functions are antisymmetric. This statement cannot be derived from any other law of 
nature and therefore it is itself a law of nature. This principle is also known as the Pauli

exclusion principle or the antisymmetry principle. It holds for two-electron systems as well as 
for many-electron systems. Eq. 2.39 is the generalization of eq. 2.38: [91, 92, 94]

,...),,,,...,,,(...,,...),,,...,,,(..., kkkmmmmmmkkk zyxzyxzyxzyx    (2.39) 

The electronic Hamiltonian (see eq. 2.32) depends only on the spatial coordinates of the electron. 
To completely describe the motion and the occupied phase space of the electron the spin of the 
electron needs to be introduced. In the context of the non-relativistic Schrödinger equation this 
can be accomplished with the introduction of the two spin functions ( ) and ( ), which 
correspond to the spin up and spin down state, respectively, which are functions of the 
unspecified spin variable . It only has to be ensured that two spin functions are complete and 
othonormal with respect to each other. (For further information see also: Szabo and Oslund 
“Modern Quantum Chemistry” chapter 2.1.3.).[91]

After introducing the spin function the electron will depend on the three spatial coordinates and 
one spin variable . The coordinate x  is used in the following as the abbreviation for three 
spatial coordinates and one spin degree of orbital one: 

},{rx    (2.40) 

A spin orbital is defined as a wave function for a single electron. A spatial orbital depends only 

on three spatial coordinates and its square 
2

)(ri describes the probability to find the electron in 

a small volume element rdrr ,  surrounding r . Spin orbitals of single-particles include the 

description of the spin of the electron. Hence, spin orbitals depend on three coordinates and have 
either  or  spin.

)()(

)()(
)(

r

r
x    (2.41) 

As the wave function of spatial orbitals the wave function of spin orbitals fulfills the Pauli 
antisymmetry principle: 

....),,,,,(,....),,,,,( 223311332211 rrrwrrr    (2.42) 
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Quantum Mechanic and Quantum Chemistry. Even the reduced form of the Schrödinger 
equation, the electronic Schrödinger equation, cannot be solved for many-electron systems 
without further assumptions. Additional approximations make the Schrödinger equation 
applicable for many-electron systems, which is a prerequisite to perform quantum chemical 
calculations: Wave function based theories (based on the Hartree-Fock approach) and density 
functional theory (DFT) evaluate the properties of molecular systems from antisymmetrized 
products of N single electrons. [91, 94]

In 1929 Slater introduced a mathematical tool to obtain a correctly antisymmetrized wave 
function of a many-electron system from a antisymmetrized linear combination of the wave 
functions of N one-electron spin orbitals. This expression is referred to in the scientific literature 
as the Slater determinant. The Slater determinant for a two-electron system can be written as 
follows: 
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2/12  is the normalization factor. The minus sign in  

)()()()(
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1
2121 xxxx jiji  insures that the linear combination yields a ),( 21 xx

that is antisymmetric with respect to the interchange of the coordinates of electron one and 
two. For a system of N-electrons the normalization factor has the form 2/1)!(N . A many-

electron wave function can be obtained from the following Slater determinant. 
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Interchanging the coordinates of any two electrons corresponds to an interchange of two rows of 
the Slater determinant, which changes the sign of the determinant. Hence the Slater determinant 
fulfills the requirements of the Pauli exclusion or antisymmetry principle. Many electron- wave 
functions can approximately be described from a many-electron Slater determinant.  

2.2.2 Hartree-Fock theory: 

Within Hartree-Fock theory a systematical mathematical approach is given to compute the 
lowest energy wave function. According to the variation principle the ground state wave 
function is the one with the lowest energy. The wave function obtained within the Hartree-Fock 
scheme is antisymmetric, because of the use of a Slater determinant. The following two equations 
are the basic equations in the Hartree-Fock theory: [91]
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where f(i) is an effective one-electron operator the so-called Fock operator, which can be written 
as:
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Comparison of the Fock operator (eq. 2.46) with the electronic Hamiltonian (eq. 2.32) reveals 
that the expressions for the kinetic energy and the electron-nuclear attraction are identical. The 
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electron-electron repulsion in the electronic Hamiltonian is replaced by an average potential 
HF(i). The Hartree-Fock theory assumes that single electrons of an atomic or molecular system 

are moving in an averaged potential of other electrons. 
A systematic variation of the spin orbitals reveals the wave function with the lowest energy. 
From the variation of the spin orbitals constraining them to be orthonormal the following integro-
differential equation, with an explicit expression of the Fock operator is obtained: 
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The second term in the above equation is the Coulomb term, the third one is the exchange term. 
The Coulomb term represents the electrostatic repulsion between electron 1 in orbital ( a) and 
electron 2 in orbital ( b) and replaces the instantaneous potential between electron 1 and 2 by an 
average potential because of the integration over the coordinate of electron 2. This integration 
reduces the two-electron Coulomb potential to a one-electron potential. From eq. 2.47 the 
Coulomb operator is )1(bJ  defined as: 
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Since the operator Jb(1) depends solely on the coordinates of electron 1; it is a local operator, that 
describes the Coloumb coupling of the electron in orbital a with the remaining electrons. From 
the second term in eq. 2.47 the exchange operator )1(bK  is defined as:  
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The exchange term in eq. 2.47 is a direct mathematical consequence of the antisymmetric nature 
of the Slater determinant. Unlike for the Coulomb term there is no obvious physical interpretation 
for the exchange term. Kb(2) exchanges the coordinates of the electrons in the two spin orbitals a

and b. Unlike the local Coulomb operator the exchange operator is a nonlocal operator, because 

the operating of Kb(1) on ),( 1ra depends on the value of a  not only at 1r  but at all other 

points in space r 2r . The Hartree-Fock potential can now be written explicitly as: 
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and the corresponding Hartree-Fock operator is then defined as: 
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where h(1) is a core-Hamiltonian operator: 
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, which describes the kinetic potential (first term) and the electron-nuclei attraction (second term). 
The Hartree Fock potential HF(i) depends on the spin orbitals of the other electrons. Hence, the 
HF equation is nonlinear and must be solved iteratively. The procedure for solving the Hartree-
Fock equation is called the self-consistent-field (SCF) method. The solution of the Hartree-Fock 
eigenvalue problem (see eq. 2.45) yields a set of orthonormal Hartree-Fock spin orbitals { k}
with orbital energies { k}. The N spin orbitals with lowest energies are called the occupied or 
hole spin orbitals, whereas the remaining orbitals obtained from the SCF calculation are called 
virtual or unoccupied orbitals. The Slater determinant formed from the occupied orbitals is the 
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HF ground state wave function and is the best variational approximation to the ground state of the 
system, of the single determinant form. 

A single Slater determinant formed from the set { } of occupied orbitals is the variational HF 
ground state. The larger and more complete the set of basis functions { } the greater is the 
degree of flexibility in the expansion for the spin orbitals and the lower will be the energy of the 
expectation value E0 = < 0 | H | 0 >. Larger basis sets lower the HF energy E0 until a limit is 
reached, called the Hartree-Fock limit. In practice any finite value of the number of basis set 
functions K will lead to an energy above the Hartree-Fock limit. [91]

In a computational QC approach the HF equation for spin orbitals is transformed into an equation 
of spatial orbitals by performing suitable traces over the spin variables: 

)()()( iiii rErrf    (2.52) 

The Fock operator with its local and non-local operator, is also converted from spin to spatial 
orbitals. The complete mathematical procedure is shown in Szabo and Oslund : “Modern 
Quantum Chemistry”.[91] No mathematical procedure exists at the moment to solve the above 
equation exactly. Roothaan introduced a mathematical tool to convert the above integro-
differential equation into a set of algebraic equations, which can be solved by standard matrix 
techniques. Thereby the unknown spatial orbitals i ( r i) are expanded into a set of K known 
basis function { }:
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To make the task computational feasible { } has to be incomplete, which implies that a finite 
expansion only approximates the “true” spatial orbitals. The quality of the solution depends on 
the completeness of the basis. With the above set of basis functions the HF equation for spatial 
orbitals can now be written as: 
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This integro-differential equation is converted into a matrix equation by multiplying the left side 
by )1(* and integrating over the electronic coordinates. In this way the overlap matrix S and the 

Fock matrix F are obtained: 
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Using the above definitions of the overlap matrix S and the Fock operator F the integrated form 
of the Hartree-Fock equation can be expressed as: 

iii
CSCF  i = 1,2,...,K  (2.57)  

Eq. 2.57 can be turned into a compact single matrix equation and solved using the laws of matrix 
calculations: 

FC = SC    (2.58)
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In the Hartree-Fock scheme each electron is influenced by the attractive electron-nuclei and 
repulsive electron-electron potential. The one-electron spatial part of the spin orbital is an atomic 
orbital (AO). These AOs are described as hydrogen like orbitals for whom the assumption holds 
that the electron distribution is spherically symmetric around the nucleus. Consequently the 
potential that the electron i experiences in the field of other electrons is also spherically 
symmetric. The angular parts of the potential and of the AOs will be described by spherical 
harmonics. Molecular orbitals (MOs) are then obtained as a linear combination of the atomic 
orbitals (LCAO). Because of the antisymmetry principle each molecular orbital can hold no more 
than two electrons. Two different types of basis sets are currently in use in QC calculations. 
Slater type orbitals (STO) are exponential function with clear physical meaning, because they 
mimic the exact eigenfunction of the hydrogen atom. Slater type orbitals describe correctly the 
behavior in the proximity of the nuclei, which is known as the cusp behavior and also the 
exponential decay in the tail regions, when r approaches infinity. The general form of Slater type 
orbitals is given in the following equation: 
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In eq. 2.59 NSTO is the normalization factor for Slater type orbitals, n is the principal quantum 
number,  is the orbital exponent and lm is the spherical harmonic that describes the angular part 
of the orbital function. For the 1s hydrogen AO the spherical harmonic ),(lm  = 1. 

Therefore, the exact 1s STO for the hydrogen atom centered in the origin of the coordinate 
system R has the form: 
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Beside STOs Gaussian type orbitals (GTO) are frequently used in quantum chemical calculations. 
Using Roothaan’s method to formulate the spatial Hartree-Fock equation we have to make a 
choice at the beginning of the computation about the applied basis set, which is used to express 
the molecular orbitals of the system. GTOs are used because they lead to simpler integral 
expressions than the STOs. The general form of a GTO has the following form: 
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N is the Normalization factor, which ensures that < µ | µ > = 1.  represents the orbital 

exponent, which determines how compact (  large) or diffuse (  small) the resulting function is. l 
= 1 + m + n is used to specify if the AO is a s-function (l = 0), p-function (l = 1) d-function (l = 3) 
etc. For l > 1 the number of cartesian functions of a GTO exceeds the number of (2l + 1) physical 
functions of angular momentum l. For example among the six cartesian functions with l = 2, one 
is spherically symmetric and is therefore not a d-type, but an s-function. Similarly the ten 
cartesian l = 3 functions include an unwanted set of three p-type functions. GTOs have a slope in 
the proximity of the nuclei and do not cover the proper cusp behavior. When r approaches infinity 
GTOs decay too rapidly in contrast STOs. The Cartesian-Gaussian normalization constant is: 
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If we have i+j+k = 0 then the GTO is a s-type orbital. If i+j+k = 1 then the GTO is a p-type 
orbital. If we have i+j+k = 2 then the GTO is a d-type orbital. If i+j+k = 0 then the Cartesian-
Gaussian normalization constant is (2 / )3/4 and therefore the 1s hydrogen atom expressed as a 
GTO has the following form: 
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To circumvent the difficulties with single GTO’s the AOs are expressed as contracted Gaussian 
functions (CGF): 
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The contraction coefficients d  can be chosen in that way that a linear combination of CGFs 
approximate a single STO. The current practice is to take a linear combination between three and 
six so-called primitive Gaussians in a single CGF. Anions, compounds with lone pairs, have 
significant electron density at large distances from the nuclei. To improve the accuracy of 
quantum chemical computations, basis sets with diffuse functions are constructed. A highly 
diffuse function is one with very small orbital exponents (see eq. 2.59-2.64). The 6-31G basis set, 
which was used in the present thesis adds four highly diffuse functions (s,px,py,pz) on each non-
hydrogen atom. To invoke the diffuse function in a quantum chemical computation the following 
notation is used: 6-31+G. [91, 92, 94]

2.2.3 Density functional theory  

The Hohenberg-Kohn theorem. As stated in eq. 2.32 the electronic Hamiltonian depends on the 
spatial coordinates of the electrons and the coordinates of the stationary nuclei. To completely 
describe electrons their spin was introduced. Since the Hamiltonian operator contains only one- 
and two-electron spatial terms the molecular energy can be written in terms of integrals involving 
only six spatial coordinates. As stated in I. N. Levine “Quantum Chemistry” the wave functions 
contains more information than needed but also lacks direct physical significance. One approach 
to solve this problem led to the discovery of the Hartree-Fock theory. The other approach, which 
is also a direct outcome of this problem is the establishment of Density Functional Theory. The 
probability density is obtained from the following multiple integral over spin coordinates of all 
electrons and over all but one of the spatial coordinates:[92]
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)(r  determines the probability of finding any of the N-electrons within the volume element 

1rd but with arbitrary spin while the other N-1 electrons have arbitrary positions and spins 

according to the wave function. However since the electrons are indistinguishable the probability 
of finding any electron at this position is just N times the probability for one particular electron. 
Clearly )(r  is a non-negative function of only three spatial variables, which vanishes at infinity 

and integrates to the total number of electrons:[94]
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The Hohenberg-Kohn theorem says that the molecular energy, the wave function and all other 

molecular properties can be computed from the ground state electron probability density 0

(x,y,z). The Hohenberg-Kohn theorem starts with a reformulation of equation 2.32: [92]
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)( ir in eq. 2.68 is the so called external potential. The potential energy of )( ir  depends on the 

coordinates xi,yi,zi of the electron and on the nuclear coordinates.  
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Eq. 2.68 exhibits the identical form than the Hartree-Fock equation (eq 2.32). Whereas in the 
Hartree-Fock theory the electron-electron repulsion was exchanged by an external, it is now the 
electron nuclei attraction that is replaced by the external field )( ir . From the external potential 

)( ir  and the number of electrons in the considered systems molecular wave functions and 

molecular energies can be determined as solutions of the Schrödinger equation. Hohenberg and 
Kohn showed in their seminal work that the external potential and the number of electrons are a 

function of the electron density 0 only. Hence the molecular wave function and molecular 

energies, which are computed from the external potential are also a function of the electron 
density. [92]

The first Hohenberg-Kohn theorem is not sufficient to serve as a practical tool for the 
computation of ground state energies of molecular systems and chemical reactions. It was shown 
that the ground state electronic energy is a functional of the ground state electronic density 0.
The electronic Hamiltonian (see eq. 2.32) itself is a sum of three terms: the kinetic energy, the 
energy of electron nuclear attractions and the electron-electron repulsion energy. The ground 
state electronic energy is therefore the sum of the average of these three energy terms. The 
averaged energy terms can be expressed as a functional of the ground state electronic density 0.

00000 eeNev VVTEE    (2.70) 

The subscript  in eq. 2.70 indicates the dependence of the ground state energy of the external 

potential )( ir . In eq. 2.70 0 is the electron density of the ground state, T  the averaged kinetic 

energy, NeV  the averaged electron-nuclear attraction energy and eeV  the averaged electron-

electron repulsion energy. The potential energy of the interaction between the nuclei and the 
electrons can be determined from the electron density 0 and the external potential )( ir . But the 

energy contribution of the additional two energy functionals of eq. 2.70 remains unknown. 
Hence, one can write the ground state electronic energy E0 as: 
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The second Hohenberg-Kohn theorem is the variational theorem. The variational theorem states 
that for every trial density function tr( r ) that satisfies Ndrrtr )(  and tr( r )  0 the 

following inequality holds:  

E0  E  [ tr ].   (2.72) 
Using the statement of the variational theorem and exchange of the ground state electron density 

0 with a trial electron density tr in eq.2.71 leads to the following expression: 
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The Kohn-Sham approach: the reference system. From the Hohenberg-Kohn theorem we know 
that in principle the wave function and all molecular properties can be derived from the electronic 
density of the ground state. The Hohenberg-Kohn theorem does not give practical advise as it 
cannot answer how to derive E0 without knowing the wave function of the ground state. It also 
does not provide an answer how to obtain the kinetic energies and the electron-electron repulsion. 
In 1965 Kohn and Sham offered a practical solution to these questions. Kohn and Sham 
considered a reference system of non-interacting electrons that each experience the same external 
field or external potential )( ir . The external potential is chosen to make the ground state 

electronic density of the reference system equal to the exact ground state density. Hohenberg and 
Kohn showed that the ground state probability density matrix determines the external potential 
and one can derive from the electron density of the reference system the external potential of the 
reference system. Therefore one can write the electronic Hamiltonian of the non-interacting 
reference system as follows: [92, 94]
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In equation 2.74 KS

ih  is the one-electron Kohn-Sham Hamiltonian.  

The wave function of the reference system is the antisymmetrized product of the Slater 
determinant with the lowest Kohn-Sham spin orbitals of this reference system. The spatial part of 
each spin orbital is an eigenfunction of the one-electron Kohn-Sham Hamiltonian. The Kohn-
Sham approach included a reformulation of the kinetic energy and the electron-electron repulsion 
that is given by the first Hohenberg-Kohn theorem. The kinetic energy T is now expressed as 
follows: 

000 refTTT    (2.75) 

In eq. 2.75 0T  is the difference in the averaged ground-state electronic kinetic energy 

between the molecule and the reference system. In the Kohn-Sham approach the electron-electron 
repulsion is defined as stated by the next equation: 
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r 12 is the distance between two interacting electrons and 0elelV the electron-electron 

repulsion in the real system. The second term in equation 2.76 is the classical expression for the 
interelectronic repulsion energy. Using the definition of the kinetic energy and electron-electron 
repulsion a new expression of the ground-state electronic energy can be derived:  
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)()(0 rr  is the potential energy of the interaction between the nuclei and the electrons (see 

eq. 2.71). The exchange-correlation energy is now defined from eq.2.77 as: 
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From eq 2.77 the Kohn-Sham potential can be explicitly written as: 
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Using the above formulation we can now write the Kohn-Sham equation: 
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Preliminary for the evaluation of equation 2.80 is the determination of the ground state electron 
density. As Kohn-Sham defined the electron density of the reference system to be identical to the 
electron density of the real system, the electron density of the real system can be derived from the 
one-electron Kohn-Sham spin-orbitals, which are the exact eigenfunctions of the reference 
system of non-interacting particles.   
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We have to transform the above equation into a matrix form, so that the energy of a molecular 
system using for KS

i  linear combinations of STOs or CGTOs, can be derived from a Slater 

determinant. Eq. 2.81 will be transformed first into a matrix equation and the basis set within the 
DFT theory is introduced.  
The one-electron Kohn-Sham orbitals are derived using the Hohenberg-Kohn variational 
theorem. The Kohn-Sham orbitals that minimize the molecular ground state energy satisfy the 
following eigenfunction: [92, 94]
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, which is written in a more compact form as:  
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with vs(1) given in eq. 2.79 and even more compact as: 
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In Hartree-Fock theory a similar set of integro-differential equations was  
It was shown that the integro-differential equation could be transformed into a set of algebraic 
equations using the set of known basis function and solved by standard matrix techniques. Within 
the DFT approach the one-electron Kohn-Sham orbitals instead of the wave functions are 
expanded into a set of known basis functions: 
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The expression for the Kohn-Sham orbitals is now pasted into eq. 2.84,  
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In complete analogy to the Hartree-Fock scheme the left side is multiplied by a basis function 

)( 1
* r  and then integrated over 1r  leading to the Kohn-Sham matrix Fµ  and the overlap matrix 

Sµ :[94]
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The matrix equation for the one-electron Kohn-Sham orbitals is then: 
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F
KS

C = SC    (2.89)
Basis set. During the past decades many different basis sets were developed for wave function 
based approaches. In the Kohn-Sham approach the one-electron orbitals play an indirect role, 
since they are used as a tool to construct the charge density. Consequently the usage of particular 
basis sets should be less important in the framework of DFT than in the Hartree-Fock scheme. 
The studies of Bauschlicher[95] and Martin[96], for example, support this assumption. This result 
would also explain why the electronic energies needed to evaluate PA (see eq. 2.10) values for 
closed shell organic molecules (see chapter 3.1) converged for the anionic states with DFT, 
although diffuse terms were not applied. [94]

Raymond and Wheeler[97] suggested in 1999 to use the correlation-consistent basis sets with triple 
zeta or better in connection with the B3LYP functional (see below). In the present thesis I 
computed accurate PA and optimal EA values with cc-pVXZ basis set developed by Dunning and 
coworkers.[79, 80] The abbreviation of cc means correlation-consistent. pV stands for polarized 
valence, the XZ for the size of the basis, which can be double zeta, triple zeta, quadruple zeta, 
etc. To compute EA values quantitatively (see 2.24) diffuse functions were added to all atoms 
(the difference between PA and EA is explained in chapter 2.1). For the computation of PA 
values I used the quadruple cc-pVXZ version, without additional diffuse functions. It turned out 
that the use of diffuse functions significantly improved the qualitity of the DFT results for one-
electron reduction potentials. The applied basis set used GTOs to describe the spatial orbitals. 
Polarization functions were included into the basis set, which is indicated by the label pV.  
The major problem to be solved to make DFT a practical and accurate tool in computational 
chemistry is to find computable and sufficiently exact approximations for Exc. To derive 
reasonable expressions for the exchange-correlation term of eq. 2.82 and 2.77 we need the 
adiabatic-connection formula, which connects the real system with the non-interacting reference 
system through an interelectronic coupling parameter:  
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where F is given as  
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 and trJ as: 
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where  is the interelectronic coupling strength parameter that switches on the 1/r12 Coloumb 

repulsion between electrons and XCE  is the potential energy of exchange-correlation at 

intermediate coupling strength. This formula connects the non-interacting Kohn-Sham reference 
system (defined by  = 0) with the fully interacting real system (defined by  = 1) through a 
continuum of partially interacting systems (0  1), all of which share a common density ,
which is the density of the real and fully interacting system. Although the integrand of the 
“adiabatic connection formula (eq. 2.90) refers explicitly to potential energy only, the kinetic part 
of the exchange-correlation part is generated also by integration over .

The uniform electron gas: Hohenberg-Kohn derived an expression for the exchange correlation 
that is called the local-density approximation (LDA). In this approach the electron density of a 
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fictitious electron system  is varied extremely slowly. Then the exchange correlation can be 
expressed as: [92]

rdrE XC
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xc is the exchange plus correlation energy per electron in a homogenous electron gas with 
electron density p. The electron gas is called Jellium, which is an infinite volume-system 
consisting of an infinite number of electrons moving in a space where the positive charge is 
continuously and uniformly distributed. The number of electrons per unit volume has a non-
vanishing constant value . The electrons inside Jellium constitute a homogenous (or uniform) 

electron gas. Taking the functional derivative of LDA

XCE , one finds the following relations: 
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Kohn and Sham suggested the above relation as a good approximation to Exc in eq. 2.83. In the 
LDA approach xc can be expressed as a sum of the exchange and the correlation part.  

)()( cxXC    (2.94) 

In the LDA approach of Kohn and Sham the exchange part has the form: 
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The c( ) has been explicitly calculated for example by Vosko, Wilk and Nusair (VWN).[98]

2.2.4 Hybrid functionals  

The above introduction on the basics of DFT with the Kohn-Sham extensions revealed that 
improved expressions for electron exchange and correlation lead to exacter wave functions and 
electronic energies. Therefore, a complete expression for electron exchange and correlation 
would lead to exact wave functions and electronic energies. Therefore major attempts were 
carried out in the past to find new and better electron exchange and correlation expressions. Since 
their creation in the early nineties hybrid functionals, with explicit exchange and correlation 
expressions were applied with success. [94]

Correlation functionals are part of modern hybrid functionals. Frequently used in QC 
calculations are the correlation functionals of Colle and Salvetti (CS),[99] which comprise the 
basis for the construction of the LYP functional (see below).[77], the Perdew-Wang correlation 
functional PW91[100] and Perdews own correlation functional P86.[101] A. Becke derived a 
dynamical correlation functional in 1988,[102] which will be marked as Bc88 and must not be 
confused with the exchange functional,[76] which is referred as B in the B3LYP[76, 77] functional. 
Becke introduced a new correlation functional, referred to as Bc95,[103] which fulfills all four 
criteria in 1995. Each of the above mentioned functionals is based on its own model. In 1995 
Becke[103] analyzed the above five correlation functionals on the basis of four criteria: 
(1) attainment of the exact uniform electron gas limit  
(2) distinct treatment of opposite-spin and parallel-spin correlations 
(3) perfectly self-interacting free (i.e. exactly zero correlation energy in any one-electron 

system), 
(4) good fit to exact correlation energies of atomic systems 
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Table 2.1. The following table is taken from from Becke’s work, where he introduced a new 
functional Bc95:[103] which fullfills all of the above 4 criteria.  

Criteria CS LYP Bc88 P86 PW91 Bc95 
(1) no no no yes yes yes 
(2) no no no yes Yes yes 
(3) yes yes yes no No yes 
(4) yes yes yes yes yes yes 

Hohenberg and Kohn proposed the electron gas model so-called Jellium when they introduced 
LDA as an exchange-correlation functional (see section above). In contradiction to Becke many 
chemists argue that the electron gas assumption is of little relevance if atomic and molecular 
systems are treated. Consequently many do not agree that a good correlation functional has to 
obey criteria one. Table 2.1 reveals that the CS, LYP and Bc88 do not meet criteria one. 
The correct treatment of parallel and antiparallel spin correlation is physically relevant. Therefore 
dynamical correlation functionals gauged on the Helium, which has zero parallel spin correlation 
energy cannot be expected to correctly reproduce the correlation energy of systems with parallel 
spin contributions. Therefore the LYP functional gives incorrectly zero correlation energy in any 
ferromagnetic system, which means that all spins are aligned.[103] In the Hartree-Fock the self-
interaction of an electron cancels, because the local – non-local Fock operator equals zero when a 
= b. It was shown in many works that DFT lacks this elegant treatment of the self-interaction.[94]

Within the Kohn-Sham scheme (see eq. 2.76) the electrostatic repulsion term is: 
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This term does not exactly vanishes for a one electron system, where there must not be any self-
interaction. Correction of eq. 2.69 so that Exc[p] – Exc[p] = 0 hardens the development of 
correlation functionals. Table 2.1 shows the CS, LYP and Bc88 to be deficient of criteria two.[94,

103]

Requirement three is of utmost importance if chemical reactions that include hydrogen atoms are 
considered. The PW91[100] correlation functional gives small but nonzero correlation energy for 
the hydrogen. These errors are too large if the goal of density functional theory is to predict 
thermochemical data, PA or EA values that are accurate up to a few kcal/mol. 

Criteria four recommends to include a good fit to exact correlation energies of atomic systems. 
Dynamical correlation is an implicitly short-range phenomenon. Hence dynamical correlation 
functionals should be calibrated only on atomic and never on molecular systems.[103]

The Becke(
1
/2) functional, which was applied in computation of pKa values for closed shell 

organic molecules expresses the exchange–correlation behavior as follows:[75, 94]
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Becke(1/2) uses the LDA exchange-correlation functional to express the adiabatic connection 
formula. It is a combination of exact exchange and density functional exchange-correlation as 
introduced by Becke in 1993.  
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The Becke 3 Lee, Yang and Parr (B3LYP) hybrid-functional
[76, 77, 94] is frequently used in 

quantum chemical computations. The DFT functional B3LYP comprises three different units: B 
stands for the exchange functional developed by A. Becke. The 3 indicates the usage of a hybrid-
functional, which includes a mixture of Hartree-Fock exchange with DFT exchange-correlation. 
LYP is the correlation functional that was developed by Lee, Yang and Parr in the beginning of 
the nineties. The structure of the hybrid functional B3LYP was originally suggested by Stephens 
et al. in 1994:[94, 104]
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   (2.98) 

In the above expression LSD

XE  and LSD

CE  are the hybrid functionals with the local exchange and 

correlation terms, respectively. 0
XCE  is the exchange-correlation energy of the non-interacting 

reference system. The remaining two terms are the exchange functional 
88B

X
bE and the correlation 

functional 
LYP

CcE . The relative weight difference between the exchange, correlation and 

hybridization is given by the parameters a,b and c. Becke derived from 56 atomization energies, 
42 ionizations potentials and 10 first–row total atomic energies the following values for the three 
parameters: a = 0.20; b = 0.72 and c = 0.81. The next section will convey the general ingredients 
needed to construct an exchange functional. Then the essential parts of the correlation functional 
LYP will be explained. Finally I will explain briefly Becke’s attempts to construct an additional 
dynamical exchange-correlation functional.  
The exchange functional proposed by Becke in 1988

[76] is a gradient corrected exchange 
functional. The LDA functional suggested by Kohn and Sham was insufficient to model chemical 
reactions. The situation changed significantly with the outcome of gradient-corrected LDA 
functionals. One of the first gradient-corrected functionals was the lowest-order gradient 
correction to the LDA by Herman et al.[105] [102]
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LDA

XE  denotes the Kohn-Sham LDA exchange-correlation functional.  denotes either spin up or 

spin down. The value of the constant  was determined empirically. To understand the 
deficiencies of this equation let us follow Becke’s analysis of it. A widely accepted DFT 
exchange functional must obey the following three constraints. First, the exact asymptotic 
behavior of the exchange-energy is given by: 
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where 
XU  is the Coulomb potential of the exchange charge. The Coulomb potential XU is

connected to the total exchange energy Ex by: 
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The asymptotic behavior of the spin density is given by  
r

r
e

)(
lim    (2.102) 

In contradiction to previous gradient-corrected exchange functionals the following equation by 
Becke in 1988 fulfills the above three requirements:  
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It is also important to notice that the exchange functional is expressible as Taylor series in even 
powers of X , which is due to the antisymmetry of the function sinh-1x .  x  is a dimensionless 

non-uniformity parameter defined by 
3/4p

x . Eq. 2.100 is an improvement of the local spin-

density approximation (LSDA), which is a simple exchange-correlation approximation. The 
major advantage of the EXC correlation term given by eq. 2.101 is the exactness of the 
asymptotical behavior of the exponential tails of atomic and molecular charge distribution. 
Incorporation of this EXC term into the Kohn-Sham equation (2.77) significantly improved the 
quality of computed atomization energies for atoms of the G1 data set. In the next step Becke 
included correlation corrections to the LSDA. For this purpose Becke used the PW91 correlation 
functional.  
Eq. 2.103 introduces an exchange-only gradient corrected exchange correlation term. This 
application yielded a drastically improvement of the quality of the computed atomization 
energies. While DFT computation with non-corrected LSDA yielded atomization energies of 36.2 
kcal/mol the modified exchange corrected LSDA yielded an average value of 3.7 kcal/mol. The 
uncorrected non-correlated LSDA were able to reproduce atomization energies but did to 
reproduce experimental ionization energies accurately. The next logical step was to introduce 
correlation correction to the exchange correlation term.  
The correlation-functional by Lee, Yang and Parr

[77] was derived from the correlation energy 
formula of Colle and Salvetti. The latter two derived the correlation energy in terms of electron 
density and a Laplacian of the second-order Hartree-Fock density matrix. The authors of the LYP 
functional converted the Hartree-Fock second order density matrix into a “true” density-
functional formula. The expression is based on the assumption (not mathematical proven) that the 
individual density orbitals in the Colle Salvetti[99] formula are Kohn-Sham orbitals. For closed 
shell systems the correlation functional LYP has the following form: 
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for open shell systems the correlation functional becomes:  
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The correlation potential is the functional derivative of EC. In the above equation CF is defined as 

CF = 3

2
2 )3(

10

3
 and tw is a local Weizsaecker kinetic-energy density. )(r is the Hartree-Fock 

electron density. The parameters a = 0.049, b = 0.132, c = 0.2533 and d = 0.349 were already 
defined in the originally Colle and Salvetti formula.  and  denote spin down and spin up states 
of electrons. 
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Non-B3LYP functionals. An additional exchange-correlation functional was introduced by 
Becke. Becke merged the exchange-only gradient corrected part, which is part of the B3lYP 
functional and the correlation corrected generalized gradient approximation with the exact-
exchange-local DFT approach. This procedure yielded results for the G1 data set that were 
superior to previous results on all three fields: thermochemical data, atomic energies, ionization 
energies. An additional feature was the achievement of the uniform electron gas limit. The 
following formula expresses this hybrid functional:  

9188
0 )( PW

Cc

B

Xx

LSDA

X

exact

X

LSDA

XCXC EaEaEEaEE  (2.106) 

where ao, ax, ac are semiempirical coefficients, which were determined by a fitting to 
experimental data. These coefficients are identical to three parameters of the B3LYP functional. 
Becke determined the semiempirical coefficients for 56 atomization energies, 42 ionization 
potentials and 8 proton affinities and 10 first-row total atomic energies. The values he obtained 
are : a0 = 0.20, aX = 0.72 and ac = 0.81. exact

xE  is the exact exchange energy, 88B

XE  is Becke’s 

1988 gradient correction to the LSDA for exchange and 91PW

CE  is the gradient corrections. An 

exact ab initio expression of the exchange-correlation energy can be derived in the framework of 
the Kohn-Sham DFT approach.  
The exchange correlation functional of Perdew and Wang is a generalized gradient 
approximation (GGA). Local exchange-correlation functionals depend explicitly on local spin 
densities and local spin-density gradients as follows:  
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In equation 2.107  and  denote up and down electron spins. This exchange correlation 
functional of Perdew and Wang is referred to in the literature as PW91.[94, 100]

Let us now inspect Becke’s new correlation functional of 1995, which obeys the four minimal 
requirements (see paragraph above). The total correlation energy is expressed as a sum of the 
correlation energy of electrons of opposite spins and of the correlation of electrons with  spin 
and with electrons with  spin.  
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CC EEEE    (2.108) 

The opposite spin correlation energy is expressed as : 
UEG

oppopp

opp

C EcE 122 )(1    (2.109) 

The component UEG

oppE  is the correlation energy of opposite spin electrons in the framework of the 

uniform electron gas assumption, which was presented above. The term UEG

oppE  was originally 

derived by Stoll, Pavlidou and Preuss. The correlation energy for electrons of parallel spin is 
expressed with equation 2.110: 

UEG

CUEGC E
D

D
cE 221    (2.110) 

The correlation energy E expresses the correlation energy between  and  spin electrons. 

The terms D  and UEG

CD are taken from the correlation model derived by Becke in 1988. Each of 

two equations (eq. 2.109 and eq. 2.110) comprise one fitting parameter copp. These parameters 
were fitted to Helium (copp) and Neon (c ). Becke derived values of copp = 0.0031 and c =
0.038. 
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2.3.5 Gaussian-3(MP2) 

The G3MP2 method was applied to compute EA values for the considered redox-active 
compounds. G3MP2 is a variation of Gaussian-3 (G3) theory,[106] which itself is an improvement 
of the Gaussian-2 (G2) theory.[107]

G2 and G3 are composite techniques in which sequences of ab initio molecular orbital 
calculations are performed.[106, 107]In G2 and G3 calculations optimized geometries are first 
obtained at the Hartree-Fock level with a 6-31G* basis set. The optimized coordinates are then 
used to compute the harmonic frequencies at the same level of theory. Obtained zero-point 
energies are finally scaled by a factor of 0.89. Both approaches refine the Hartree-Fock optimized 
geometries at the MP2 (full)/6-31G(d) level of theory, using all electrons for the calculation. A 
series of high-level QC calculations is then carried out differently in both theories. In step 4 of 
G3 theory a complete computation at the fourth-order Moller–Plesset perturbation theory with the 
6-31G(d) basis set (MP4/6-31G(d)) is carried out. In G2 theory the complete MP4 calculations 
are performed at the with the 6-311G(d) basis set. In both theories a series of corrections is then 
performed after the MP4 calculations. First, G3 corrects the energy to account for the influence of 
diffuse functions:  

E (diffuse) = E [MP4/6-31+G (d)]  E [MP4/6-31G (d)]   (2.111) 

In G2 theory this E (diffuse) is computed at the MP4/6-311+(d). Subsequently G3 corrects 
the energy for the influence of higher polarization functions at the MP4 level with the 6-31+G 
(2df, p ) basis set, so that E (2df, p): 

E (2df, p) = E [MP4/6-31G (2df, p)]  E [MP4/6-31G (d)]   (2.112) 

The 2d assigns two sets of uncontracted d-primitives with exponents twice and half the standard 
values. Again G2 theory employs the 6-311 variant of the 6-31G basis set. Therefore G2 
calculates E (2df, p) with MP4/6-311G (2df, p). A correction of correlation effects beyond 
fourth order perturbation theory is performed in G3 calculations using the method of quadratic 
con-figuration interaction, E (QCI), according to: 

E (QCI) = E [QCISD(T)/6-31G(d) ]  E [MP4/6-31G (d)]   (2.113) 

A correction for larger basis set effects and for the nonadditivity caused by the assumption of 
separate basis set extensions for diffuse functions and higher polarization functions, E(G3large):  

E (G3 large) = E [MP2(full)/G3large]  E [MP2/6-31G (2df,p)] 

 E [MP2/6-31+G (d)] +  E [MP2/6-31G (d)]   (2.114) 

The MP2(full) calculation is calculated in G2 theory with the 6-311G (3df, 2p) basis set instead 
of the G3large that is applied in G3 computations. The 6-311G(3d f ,2p) assigns 3d f polarization 
functions on first and second row atoms and 2p polarization functions on hydrogen atoms. 
Because of limitations of this basis the G3large basis set was developed. The G3large includes 
2df polarization functions on second row atoms and additional core polarization functions for all 
atoms. The total electronic energy in finally calculated according to eq. 2.115: 
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E0 = E [MP4/6-31G (d)] E (diffuse) + E (6-311G/2df, p) + E (QCI) + E (G3 large) 

+ E(SO)   (2.115)

The spin–orbit correction E (SO) is taken from experiments when available or from accurate 
theoretical calculations in other cases. According to explanation given in the above paragraph one 
can formulate the electronic energy in G2 theory: 

E0 = E [MP4/6-31G (d, p)] E (diffuse) + E (2df, p) + E (QCI) + E (6-

311G(3df,2p) + E(SO)   (2.116)

G3MP2[78] is a reduced variant of G3 theory that replaces the QC MP4 method with MP2 for the 
calculations of the basis set extensions. Therefore in a QC computation with G3MP2 the E
(QCISD(T) is the most demanding part. The G3MP2large basis set is the same as the G3large 
basis set used in G3 theory, except that the core polarization functions are not included. In 
addition, the MP2/G3MP2large calculation in G3(MP2) theory is done with a frozen core (fc) 
approximation, whereas the MP2/G3large calculation in G3 theory includes all electrons in the 
correlation treatment. In a G3MP2 calculation the final energies are computed according to: 

E0 [G3(MP2)] = QCISD(T)/6-31G(d) + EMP2 + E (SO) + E(HLC) + E(ZPE)   (2.117) 

The correction to the second-order MP2 level is given in G3MP2 theory as:  

EMP2 = E [MP2/G3MP2large] - E [MP2/6-31G]   (2.118) 
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2.3 Atomic partial charges 

The present work evaluates solvation energies within a two-step procedure. In the two-step

procedure first a QC computation in vacuum is performed to compute the electron density 
distribution and the wave function. Subsequently, the electron density is transformed into atomic 
partial charges. In the second step the electrostatic free energies of solvation are evaluated from 
this point charge distribution separately without inclusion of any QC method by solving the 
Poisson-Boltzmann equation. Unfortunately, atomic charges are not observables; i.e., they cannot 
be determined by experiments or quantum chemical calculations. A variety of methods exist to 
compute atomic partial charges from the molecular wave function.  

In the Mulliken population analysis, atomic partial charges are calculated according to the electron 
distribution inside atomic orbitals. Electrons in overlap regions of different orbitals are distributed 
evenly to each atom, independently of the characteristics of the participating atom types, which 
build up that region. Hence, this method does not separate electron density in overlap regions 
according to the electronegativity of atoms. The starting point of the Mulliken analysis is eq. 
2.119, which relates the total number of electrons to the density matrix and the overlap 
integrals.[108]
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   (2.119) 

In eq. 2.119 Pµµ is the electron density in an orbital that can be allocated to the atom on which the 
considered orbital  is centered. The remaining electron density Pµ  is associated with the 

overlap region  which is expressed by the overlap matrix Sµ . The advantage of the Mulliken 

analysis is that the computation is trivial once the elements of the density matrix are known. It is 
so simple that most QC programs output Mulliken charges by default at the end of the 
computation. The method proposed by Mulliken is crucially dependent on a balanced basis set on 
each atom. The quality of Mulliken charges suffers from the inexact assignment of p, d and f 
functions to different atoms. These orbitals extend considerably into space and overlap with 
orbitals of other atoms. The electron density of p, d and f orbitals is now sometimes assigned to 
other atoms that build up the overlap region. In the Mulliken approach the charges are therefore 
dependent on the applied basis set. According to Wiberg and Rablen the charges on the central 
carbon of isobutene increase from +0.1 to +1.0 when the 6-311++G** is used instead of the 6-
31G** basis set. Other orbital-based methods are the Löwdin population analysis or the natural 
population analysis. In the Löwdin approach the atomic orbitals are transformed into an 
orthogonal set, along with the molecular coefficients. Thereby reduces the basis set dependence of 
the calculated charges. Calculated Löwdin charges are deprived of the problem of negative 
population or population greater than two.[108]

The theory atom-in-molecule was originally formulated by Baader in 1985.[108] In the atom-in-

molecule method each point in the molecular space is assigned to one of the atoms that build up 
the molecule. After the molecular space was divided into volumes occupied by atoms, the electron 
density in each volume is assigned to the corresponding atom. Wiber and Reblan showed that this 
method is relatively invariant to the applied basis set. For methane and ethyne the computed atom-
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in-molecule charges reproduced measured dipoles accurately. The disadvantage of the method is 
that the partition of the electron density into the volumes is CPU expensive, because the electron 
population that is assigned to each atom is calculated by numerical integration.[108]

2.3.1 Potential based methods 

Widely distributed methods to generate atomic partial charges from QC computations are so called 
potential-based methods as CHELP,[72] CHELPG,[109] the Merz-Kollmann procedure[71] and the 
restrained electrostatic potential method (RESP).[69, 70] Charges are calculated by matching the 
electrostatic potential (ESP)[109] from the instantaneous atomic partial charge distribution with the 
QC ESP, computed on optimized geometries in the vacuum. These methods have in common that 
they use values of the electrostatic potential on spatial positions that are distributed around the 
atoms of the molecule. All potential-based methods take into account only potential points outside 
the vdW radii of the atoms to generate charges. As they cannot be determined undoubtedly 
effective vdW radii are a matter of debate in the literature and are treated differently in the 
potential-based methods. Different schemes are currently in use to select the points outside the 
vdW radii of the atoms of the molecule. The CHELP method selects points spherically around 
each atom, with 14 points per shell. Spheres are considered only, when they are 2.5 Å, 3.5 Å, 4.5 
Å, 5.5 Å and 6.5 Å away from the center of the atom. CHELPG picks the potential points from a 
regular cubic grid placed around the atoms of the substance. Points that lie between 0 and 2.8 Å 
plus the vdW radius from the atomic center are included into the computation. The Merz-
Kollmann method takes into account only potential points, which lie on nested Connolly surfaces 
and are 1.4, 1.6, 1.8 and 2.0 times the vdW radius of the atom. It is clear from the above 
explanations that a certain grade of arbitrariness remains in each potential-based method. Four 
methods for deriving atomic partial charges from the QC electrostatic potential CHELP, 
CHELPG, Merz-Kollman and RESP have been compared and critically evaluated. It was shown 
the charges strongly depend on the selection scheme of potential points around the atoms.[74, 110]

Modified version of the potential based methods have been developed. Whereas the conventional 
potential methods as CHELP and Merz-Kollman fit by means of the sum of  atomic partial charges 
directly to the QC ESP, modified versions carry out the fitting process with constrains or restrains. 
In the matrix form of the Merz-Kollmann approach the atomic partial charge are given as 

q  = A 1B   (2.120) 

In the modified version the constraints or restrains can be included into eq. 2.120, which leads to: 

wcqwB    (2.121) 

where qi are the partial charges, ck are the constraints or restraints, and wk are weight factors. All 
restraints or constraints that are linear in the charges can be expressed in this way, e.g., the total 
charge, electrostatic moments, electrostatic potential, or equality of certain charges resulting from 
symmetry. A modified version of CHELP the CHELP-BOW method was introduced recently by 
Sigfridsson and Ryde.[74, 110] Description of long-range electrostatic interaction properly forces to 
include potential points even far away from the atom. Naturally, all points up to infinity cannot 
be included; at some finite distance, the point selection has to stop. A solution to the problem 
would be to make a more sparse sampling of points at larger distances from the molecule and 
compensate for this by a higher weight in the fit. Potential points are picked randomly outside the 
vdW radii of the atoms with a density of 2.500 points per atom and are weighted with Boltzmann 
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factor ( RT

E

ew ). Potential points are picked up to a distance of 8 Å away from the center of the 
atom. The potential points are Boltzmann-weighted after their occurrence in actual simulations 
using the energy function of the program in which the charges will be used. E is part of the 
Boltzmann factor in the Lennard-Jones potential. 
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Here, r is the distance between the electrostatic potential point i and atom i, and Ai and Bi are the 
Lennard-Jones constants obtained from the force field of the simulation package to be used in the 
simulations. E i,min is the minimum energy of the Lennard-Jones potential, and it is the energy 
assumed at the distance ri = ri,min. Thus, only the repulsive part of the Lennard-Jones potential is 
considered.[74, 110]

2.3.2 The RESP method 

In this work I used the Merz–Kollman RESP[69, 70] procedure to fit atomic partial charges from the 
molecular ESP[109] generated by QC computations at different level of QC theory. It will be shown 
in chapter 3 that the most valuable charges were computed at the Becke(1/2)/6-31G** and 
B3LYP/6-31G** level. The RESP procedure determines the atomic partial charges of a molecule 
by matching the ESP calculated on grid points in the neighborhood of the considered molecule 
with the ESP generated by the atomic partial charges, while constraining the net charge of the 
molecule. The ESP was defined on grid points outside of the vdW spheres (with radius RvdW) of 
each atom up to a maximum radius Rmax placed equidistantly on a system of rays emerging from 
each atom center. The corresponding RvdW values are 1.95 Å, 1.6 Å, 1.7 Å, 1.8 Å, 1.96 Å, the Rmax

values are 9.0 Å, 8.3 Å, 8.5 Å, 8.7 Å, 9.0 Å for C, H, O, N, Cl atoms, respectively. With a direct 
least square fit of atomic partial charges molecular dipole and quadrupole moments are often not 
well reproduced. This is due to charges of buried atoms whose influence on ESP may be poorly 
defined, since all ESP grid points lie outside of the vdW volume of all atoms of the molecule. A 
two-step RESP fitting procedure with different constraints can overcome this caveat without 
significant influence to reproduce the quantum chemically defined ESP. In the first step a weak 
hyperbolic penalty function (strength parameter a = 0.0005 au) was applied on all atoms except 
hydrogens. In the second step a stronger hyperbolic penalty function (strength parameter a = 0.001 
au) was applied to all atoms except hydrogens, methyl and methylene carbons.  

H =E
QCESP

optimized

coordinates
RESP

atomic partial charges

all computations are performed without involvment of the solvent

Figure 2.1. Flowchart to generate atomic partial charges.
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The following paragraph shows how the RESP[69, 70] method has incorporated the penalty 
function into the fitting process of atomic partial charges to the QC ESP. The ESP of the 
computed atomic partial charges is computed by: 

ij ij

i
i

r

q
V̂     (2.123) 

In eq. 2.4.1 iV̂  is the molecular mechanic ESP, iq  the charge point distributed on a cubic grid in 

distinct distant ijr  to the atomic center. The charge point iq  is found between the vdW volume of 

the atom and the maximum distance given above for each atom. In a least-square fit the function 
2
esp  has to be minimized to maximize the agreement between iV and iV̂ for each charge point. 
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To minimize the function the first derivative has to be found: 
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to arrive to eq. 2.126 the expression 
ij ij

i

r

q  was substituted into eq.2.4.2; then the first derivative 

was formed and finally iV̂  could be substituted back into the equation. With the addition of a 

penalty function to the charge fitting procedure an additional term is added to 2
esp  so that the 

function to be minimized becomes: 
222
rstresp     (2.127) 

and the least square minimum is now defined as : 
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Different penalty function were tried to optimize solvation energies for model compounds. 
Finally Kollmann and coworkers have chosen a hyperbolic function as the one of choice:  

bbqa
j

jrstr
2

1
222 )(    (2.129) 

where a is a scale factor, which defines the asymptotic limits of the strength of the restraint and b 
determines the tightness of the hyperbola around its minimum. The second term in eq. 2.4.6 
becomes now: 
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The system of equations is now transformed into a matrix form, with the following matrix 
elements:  
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yielding the matrix equation: 
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the matrix can be formulated as Aq=B which leads to q = A-1B. The quality of the fit is analyzed, 

computing the relative root-mean-square value of iV̂  to Vi
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   (2.133) 
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2.4 The Poisson and Poisson Boltzmann equation 

2.4.1 Derivation 

The Poisson-Boltzmann equation is fundamental to compute electrostatic interaction energies 
between a titratable or a redox-active group and the environment. If the ionic strength of the 
medium is zero the Poisson-Boltzmann equation is truncated to the Poisson equation. Because of 
its importance in the present thesis I will give the derivation of this equation in following 
paragraph. 
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i
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r )(    (2.134) 

The derivation of the Poisson-Boltzmann equation starts with the Coulomb potential (eq. 2.134). 
The sum runs over all point charges qi at the position ri.  is the dielectric constant. The Coulomb 
potential can be reformulated to express the electrostatic potential with respect to charge density 
instead of point charges qi.
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Applying the Laplace operator to both sides of this equation results after a few transformation in 
the Poisson equation. In cases when the ionic strength equals zero, the solvation process is 
described correctly using the Poisson equation. 

)(
4)(

r
r    (2.136) 

If is not constant but depends on the position r , the Poisson equation adopts the following 
form: 

)(4)()( rrr    

To describe the effect of mobile ions in the solvent the Debye-Hückel theory is needed. The 
derivation of it continues under the assumption that mobile ions that are distributed in the solvent 
behave as the atoms of an ideal gas. The charge density of ions pion )(r is added to the charge 

density of eq. 2.137, which yields eq. 2.138: 

)()()( rsq
s

s

sion eqrcr    (2.138) 

The sum runs over all mobile ions s. cs is the original concentration of ions s and q is the charge 
of the ions s.  is equal to (kBT) 1. Adding the ionic strength to the Poisson equation leads to the 
Poisson-Boltzmann equation (PBE).  

)(4)(4)()( )( rpeqrcrre rsq
s

s

s    (2.139) 
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The Debye-Hückel theory requires overall electroneutrality:  

s

ss qrc 0)(    (2.140) 

In the special case of only monovalent ions and overall electroneutrality, the PBE can be written 
elegantly as: 

)(4)(sinh)(8)()( rrercrr s     (2.141) 

In this equation e is the unit elementary charge. To ease the solution of the PBE, it can be 
linearized by expanding the exponentials.  

)()()()( 2)( rqrcsqrceqrc s

s

s

s

s
rsq

s

s

s    (2.142) 

s

ss qrc )(  is zero due to the requirement of the electroneutrality. 
s

s
s

qrc 2)(  is twice the ionic 

strength 2)(
2

1
)( s

s

qrcsrI . Together with eq. 2.142 the linearized PBE (LPBE) can be written 

as:

)(4)()(8)()( rrrIrr    (2.143) 

For a more detailed description of the derivation of the linearized PBE and the Debye-Hückel 
theory, see chapter 15-1 (pp-328-340) of McQuarrie (1976)[111] and chapter 18 (pp-321-339) of 
Hill (1986).[112]

2.4.2 Numerical solution of the linearized PBE and finite difference method 

Analytical solutions of the LBPE can be achieved only for simple geometries. For complex 
geometries a numerical solution of the LPBE must be carried out. In the present thesis the finite 
difference method was applied as the method of choice for numerical solutions of the LPBE. A 
Widely distributed program to compute electrostatic solvation free energies is SOLVATE from 
the Macroscopic electrostatic with atomic details (MEAD) suite.[58, 113, 114] This program solves 
the LPBE and is accessible free of charge. It was applied in the current thesis to compute 
solvation free energies. 

The linearized PBE is integrated over a small volume V = l3 of one cubic grid element: 

rdrrdrrIrdrr
VVV

)(4)()(8)()(    (2.144) 

While the second and third integrals are easy to compute, the first one is difficult. In a first step, it 
is transformed into a surface integral using Gauß’theorem: 

0
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00 48)()( qlIpdArr
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   (2.145) 
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Figure 2.2: It shows the physical relevant quantities of LPBE mapped on a cubic grid

The surface integral is now calculated separately for all six sides of the cubic grid element. In 
doing so, the gradient of the electrostatic potential  is substituted by its finite difference form 

in the respective direction: 
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Eq. 2.146 is simplified and rearranged to yield a finite difference expression for 0 :
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   (2.147) 

Starting from arbitrary values, the electrostatic potential is iteratively calculated for each grid 
point according to eq. 2.147 until a convergence criterion is met. For details of this procedure see 
Nicholis and Honig (1991)[115] and chapter (pp 762-768) of Press et al. (1992).[116]

Grid points at the edges of the cubic grid have less than six neighbor points for the cubic grid 
elements. To overcome the problem one starts the calculation with a grid that is much larger than 
the molecule to be solvated. Then 0  outside the grid is set to zero or to a value according to the 

Debye-Hückel sum. To reduce the CPU time the grid resolution in the initial step is low. In a 
second step, a focussing step, the grid resolution is enhanced but it is only applied in a small 
volume around the molecule. In the application, where small organic molecules are transferred 
from the gas phase into the condensed phase a two-step focusing procedure was sufficient. 
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2.4.3 Grid artefact and electrostatic self energy 

The electrostatic energy is calculated from the electrostatic energy potential 

i

iiel qG
2

1
(2.148)

The sums run over all atoms i. qi is the atomic partial charge of atom i and i the electrostatic 
potential at the position of atom i.  
The electrostatic energy of a classical point charge of atom i in its own electrostatic potential is 
the self-energy. For point charges these self-charges are infinity. These singularities are avoided 
if the PBE is solved on a grid, since a point charge is smeared over the cubic grid element, where 
it is localized. However, arbitrary values, depending on grid resolution and position, remain from 
the inifinite self-energy of the singularities. This gird artefact is called grid energy. There are 
several possibilities to get rid of the grid energy. The easiest way is to compute only relative 
electrostatic energies between systems with equal grid energy. This requires that the coordinates 
of the molecule are placed identically relative to the grid points in both phases. To make the 
Poisson-Boltzmann electrostatics suitable for larger systems mathematical concepts to 
approximate the potential of the LPBE had to be developed. One such method is the analytical 
continuum electrostatic method (ACS) founded by Schaefer and Karplus in second half of the 
nineties.[117, 118] Consistent with other approaches ACS the self-energy part od ACE is based on 
the integrated field concept. It combines the self-energy potential with the generalized Born 
equation for charge-charge interaction. The basic ideas of this concept date back to the theory 
founded by Born in the twentieth of the last century. Adding non-polar free energy to the 
solvation energy, the method of Born was generalized to the ACS. The following is an 
introduction of the basic ideas of ACS according to Schaefer and Karplus (1996,1998).[117, 118]

In the ACS approach the electrostatic energy Gel is expressed in terms of the energy density 
)(ru instead of the electrostatic potential formulated by the Poisson equation. )(ru of an 

electrostatic field generated by a charge distribution )(r  is expressed in terms of the electric 

displacement vector.  

)()()( rErrD    (2.149) 

and therefore:  

)(
)(8

1
)( 2 rD

r
ru    (2.150) 

By integrating the energy density over the full space, Born (1920) obtained the electrostatic 
energy Gel.

rdrD
re

rdruG
VV

el )(
)(

1

8

1
)( 2    (2.151) 

This expression can be derived from the well known expression for the electrostatic energy of a 
charge distribution p )(r in the electrostatic potential )(r :
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rdrrG
V

el )()(
2

1
   (2.152) 

The discrete form of eq. 2.152 is eq. 2.148. With the Poisson equation 2.137 the charge density 

)(r is substituted by )()(
4

1
rr , so that Gel can be expressed as: 

rdrrrG
V

el )()()(
8

1
(2.153) 

Intergration leads to: 

rdrrrrrG
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   (2.154) 

The first term vanishes due to the vanishing electrostatic potential )(r at the boundaries of the 

volume V. Using eq. 2.149 and the relationship )()( rrE the following expression is 

obtained: 
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with s and p, which define the reduced dielectric constant  : 

sp

111
   (2.157) 

Since p < s, the reduced dielectric constant  is always positive. Using the reduced dielectric 
constant , eq. 2.157 can be written extending the integral over the full space V: 

pVVs

el rdrDrdrDG )(
8

1
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8

1 22
   (2.158) 

It is now assumed that the first term in eq. 2.158 corresponds to the situation in a homogeneous 
dielectric medium, where the dielectric displacement vector is described, by a simple Coulomb 
field. The field lines at the dielectric boundary, which is the interface between solute and solvent 
are somewhat smeared and that is not properly accounted for with the Coulomb field 
approximation. According to Schaefer and Frömmel 1990,[119] the error introduced by this 
assumption is not more than a few percent. Such a simplifying approximation is not possible for 
the second integral, which is harder to evaluate. Because we have discrete atoms with atomic 
partial charges, the interaction energy of the atoms with themselves self

iG  can be distinguished 

from the interaction energy between different atoms self

jiG :

i ij

ij

self

iel GGG )( int
   (2.159) 
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Both sums run over all atoms. self

iG  and int
jiG  can be calculated according to eq. 2.159 with the 

approximation that the displacement of the first integral is expressed by the Coulomb field: 

rdrDrD
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   (2.161) 

The self energy self

iG  of a point charge yields a diverging energy contribution. To avoid this 

singularity, a trick is applied in eq.2. 161: The atom is no longer considered as a point, but as a 
sphere with radius Ri, which is the van-der Waals radius. The point charge qi is distributed over 
the surface of this sphere. The first term in eq.2.161 is obtained for this special distribution of 
charge qi and is called the Born energy term.  

In the presented continuum approach the solvation energy is computed as the electrostatic free 
energy that arises, when a molecule is placed from a homogeneous medium, where solute and 
solvent have identical dielectric constants, into a heterogeneous medium, where solute and 
solvent are represented by different dielectric constants. This energy is identical to the 
electrostatic part of the solvation energy, if e for the solute is unity. Gel is calculated by taking 
the difference between the electrostatic energy in the heterogeneous dielectric medium Gel and 
the electrostatic energy in the homogeneous medium Ghom : 

homGGG elel    (2.162) 

The Born formula is applied for the calculation of the self-energy in the homogeneous dielectric 
field: 
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The energy is splitted into a self energy term and an interaction term: 

i ij

ij

self

i

self

el GGGGG intint (    (2.164) 

Taking into account eq.2.161 and 2.162, self

iG  and int
jiG  can be expressed as follows: 
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With the expression for the reduced dielectric constant eq.2.157, these expressions can be 
truncated:



52

pV

ji

ij

ji

ij rdrDrD
r

qq
G )()(

8

1int
   (2.167) 

pV

i

i

iself

i rdrD
R

q
G )(

8

1

2
2

2

   (2.168) 

2.4.4 Generalized Born approximation 

The Born term self

iG  can be formally written as an analogous Born energy term with an unknown 

effective Born radius bi, which accounts for the volume covered by the solute surrounding atom i: 
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q
G
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   (2.169) 

If self

iG  is already calculated (e.g by solving the PBE or by applying the analytical 

approximation, the effective Born radius bi is given as: 
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In analogy int
jiG  can be formulated with an effective interaction distance solv

ijR  accounting for the 

influcence of the solute volume: 

solv

ij

ji

ij
R

qq
G int

    (2.171) 

The generalized Born equation can now be formulated as from eq.2.170, eq.2.171 and eq.2.164. 
The generalized Born equation was first formulated by Still et al. 1990:[68]
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To evaluate the integral in eq.2.172. Schaefer and Karplus introduced a molecular density 
function )(rPs

, with )(rPs
= 1(if r is inside the solute volume) or )(rPs

= 0 (if r is not inside the 

solute volume). Then they expressed eq.2.173: 
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Eq.2.173 is now divided into two parts )(rPs
 is expressed as the sum of atomic density functions. 

For each atom k, there is one atomic density function )(rPk
, which describes the volume 

distribution of the atom: 
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)()( rPrP
k

ks    (2.174) 

The contribution of atom k to the self energy of atom i, self

ikG , is given by : 

rdrPrDG k

V

i

self

ik )()(
8

1 2
   (2.175) 

The sum of self

ikG  for all atoms k leads to the second term in eq.2.175, so that this equation can 

be reformulated as: 
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2.5 Proton solvation free energy 

Computation of relative pKa values does not depend on the proton solvation free energy 
( Gsolv(H

+). The following equation documents that Gsolv(H
+) vanishes if the relative pKa value 

between compound A and B is considered:[51]

RT
BAG

RT
BApK Ra

303.2

1
)/(

303.2

1
)/(

)()()()()()( BsolvAsolvsolvsolvgasgas HGHGBGAGBGAG

(2.177)

In eq. 2.177 GR (A/B) is the reaction free energy difference between two deprotonation 
reactions and Ggas is the free energy of a deprotonation reaction in the vacuum for compound A 
and B. Gsolv describes the solvation free energy difference between the deprotonated and 
protonated states for A and B. Eq 2.177 was employed by MacKerell Jr. and coworkers[51] to 
evaluate relative pKa values of substituted pyridines. In this study the experimental pKa value of 
unsubstituted pyridine served as the basis for all computed relative pKa values. To avoid the 
dependence on a reference compound absolute instead of relative pKa values were computed in 
the present study. Let us recall the definition of the absolute pKa value, which reveals its 
dependence on the proton solvation free energy ( Gsolv (H

+):

)()()(
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1
)( HGAGAG
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RT
ApK solvsolvgasRa

(2.178)

GR is the reaction free energy in solution and Ggas is the reaction free energy of the 
deprotonation reaction in the vacuum. Gsolv is the solvation free energy between the 
deprotonated and protonated states of compound A. The spectrum of experimental data on the 
free proton solvation energy comprises an energy range between –252.5 kcal/mol and –266.00 
kcal/mol.[47, 54, 84-90, 120, 121]Therefore, computed pKa values can be influenced by the choice of 

Gsolv(H
+) by more than 11 pKa units. As indicated by these numbers principle experimental 

difficulties to determine Gsolv(H
+) are expectable. In the following paragraph I will give an 

overview of the usage of Gsolv values in recent studies on absolute pKa values. Subsequently I 
will explain more elaborately three different methods to determine Gsolv(H

+). 

2.5.1 General overview on the usage of Gsolv(H
+
)

Noyes determined Gsolv (H+) to be equal to –260.5 kcal/mol.[84] This proton solvation free 
energy was employed for instance by Richardson et al.[46] in a study on absolute acidities of 
organic molecules and by Quennville et al.[42] to determine the pKa value of a histidine in the 
catalytic center of cytochrome c oxidase. Wilson et al.[122] measured enthalpic solvation energies 
of aliphatic carboxylic acids using an enthalpic proton solvation energy ( Hsolv(H

+)) equal to –
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271.6 kcal/mol. The corresponding free energy measured by Klots in the beginning of the 
eighties equals –262.4 kcal/mol.[87] This value was actually a refinement of the experimental 
studies performed by Randless and Trasatti.[Randless, 1956 #49][Klots, 1981 #51] From 
electrochemical experiments of the potassium ion Randles derived a proton solvation free energy 
of –259.4 kcal/mol.[123] The refined value of Trasatti accounted for the surface potential of the 
surrounding water.[88] The average value of –259.5 kcal/mol derived from five independent 
measurements of the standard hydrogen electrode was applied in pKa computations of Lim et 
al.[47] The 4.44 V measured by Reiss and Heller,[90] the 4.43 V published by Gurevich and 
Pieskov,[124] the 4.48 V proposed by Lohman[125] and the 4.44 V recommended by Trasatti[88] are 
in close proximity, whereas the 4.73 V suggested by by Gomer and Tryson[121] deviates 
significantly from the other four measurements. Reiss and Heller explained the deviation of the 
latter value as they showed that additional potentials of materials inside the electrode were 
included into the measurement. Measured and calculated solvation energies combined with 
measured PA values of organic molecules enabled Florian and Warshel[86] to deduce Gsolv(H

+)
equal to –259.5 ± 2.5 kcal/mol. The cluster-base-pair approximation by Tissandier et al.[85]

yielded Gsolv(H
+) = 263.96 kcal/mol.[85] This procedure is based on the evaluation of the 

energy balance of a large number of protonation reactions, whose energetics involve uncertainties 
of about 2 kcal/mol, while the procedure itself is connected with a negligible statistical error of 
only 0.07 kcal/mol. This Gsolv(H

+) value is closed to the 264.64 kcal/mol employed by Liptak 
et al.[40, 43] to estimate absolute pKa values for aliphatic carboxylic acids and substituted phenols. 
Recent computations on water clusters by Tawa et al.[89] suggested 262.23 kcal/mol for 

Gsolv(H
+),which is consistent with similar computations from Zhan and Dixon[126] who 

estimated Gsolv(H
+) to be -262.40 kcal/mol.[126] These values are nearly identical to the one 

determined by Klots (see above). To compute the acidities of substituted imidazoles Topol et 
al.[45] employed a Gsolv(H

+) value of –262.50 kcal/mol.  

The experimental spectrum of Gsolv(H
+) values is considerably narrowed if the measurement of 

Gomer and Tryson would be dismissed.[121] It would assume values between 258.5 kcal/mol 
proposed by Lohman[125] and 266.00 kcal/mol suggested by Kallies and Mitzner.[54] All studies 
in the last 25 years except the one by Florian and Warshel[86, 127] and Kallies and Mitzner 
determined Gsolv(H

+) in the range between –262.00 kcal/mol and 264.00.kcal/mol.  

2.5.2 Thermodynamic measurements of ion hydration 

Thermodynamic measurements by Noyes[84] in the sixties of the last century determined an 
electrostatic contribution of –260.5 kcal/mol to the total free proton solvation energy. The central 
equation of that study describes the solvation of any cation or anion as a three-step process: First 
the considered ion is discharged in the vacuum, then the obtained neutral form is hydrated and 
finally recharged in solution. Eq. 2.179 describes this process quantitatively: 

)()()/( HGHGHHG solvsolvsolv    (2.179) 

Inspection of the thermodynamic cycle depicted below shows that the sum of )(HGsolv  and  

)(HGsolv accounts for )/( HHGsolv . In the scaffold of the cycle the corresponding 

chemical reactions are represented by )(gasGion
and )(solvGion

.
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Scheme 2.3: Thermodynamic cycle describes the solvation process of any cation or anion as 
contributions of 

neutG  and 
elG . The corresponding chemical reactions in the vacuum and in 

solution are covered by )(gasGion
 and )(solvGion

.

To solve eq. 2.179 for )(HGsolv  we need alternative expressions for )/( HHGsolv and 

)(HGsolv . The derivation of these expressions are explained in the following paragraphs. 

The quantity )(HGsolv  refers to the process when 1 mole of neutral gaseous species at 1 

atmosphere fugacity is dissolved in water to an ideal 1 molal solution under a pressure of 1 
atmosphere. The zero point assumption applies if there is no energy of hydration so that the 
enthalpy and entropy changes are just those calculable from the change in volume associated with 
the change of state. The ideal gas law gives the volume of 24.47 liters for 1 molar gas. The above 

two assumptions yield a final value of 1.325 kcal/mol for neutG .

The following paragraph shows the derivation of an alternative expression for )/( HHGsolv .

The free energy change ( aqG ) that refers to the formation of an aqueous ion (cation or anion) 

from the corresponding element in the standard state can be expressed as:  

)(
2

1
)()( 2 gasHaqMHssM      (= aqG )   (2.180) 

M can be any cationic molecule in the standard state (ss) and aqG  can easily be formulated for 

anions. ionG describes the free energy change for the formation of an gaseous ion (cation or 

anion) from the corresponding element in the standard state.:  

)()()( gasegasMssM    (= ionG )   (2.181) 

HH
G

/
 accounts quantitatively for the free energy change of the charge donating reaction: 

)()()(
2

1
2 gasegasMgasH    (= 

HH
G

/
)   (2.182) 

From the above three equation we can now formulate the alternative expression of: 

HHionaqsolv GGGHHG
/

)/(    (2.183) 
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Values for aqG , are tabulated in various standard reference books. ionG  was determined 

according to the following equation: 

atom

ion
atomionatomion

Q

Q
RTHHGG ln    (2.184) 

Values for atomG , ionH , atomH  are also provided by standard reference books. The last term in 

eq. 2.184 is the electronic partition function for the considered ion. A final value of –363.985 

kcal/mol is obtained for aqG ionG , when the hydrogen proton is considered. If reliable 

values for aqG and ionG  can be derived only 
HH

G
/

 needs to be determined.  

Here and in the following the subscript -th indicates that the quantity is derived from theoretical 
considerations. According to theoretical considerations the free energy change to transfer 
reversibly a charge q from a conducting sphere of radius r in a vacuum to an identical sphere in a 
medium of dielectric constant , is expressed by eq. 2.185:  
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r

q
G thel    (2.185) 

The corresponding entropy change to the above equation is expressed as follows: 
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el
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From the theoretically derived equations above the following two values for thelG  and 

thelS can be deduced: 
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The observed discrepancy between the theoretical derived and the measured values for thelG

and thelS  should vanish if an additional term is added to eq. 2.187 and eq.2.188 
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The above procedure was also applied to derive modified expressions for thelG (anion) and 

thelS (anion), so that finally four equations were obtained. Using the modified expressions 

together with eq. 2.179, 2.183 and 2.184 a system of four equations, which depends on three 
parameters is derived. 

HH
G

/
 can now be calculated with the mathematical procedure of a three 
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parameter least square technique. The described procedure yields 
HH

G
/

 equal to 104.81 

kcal/mol. According to eq 2.184 )/( HHGsolv  equals then –259.175 kcal/mol. 

Eq. 2.179 can now be solved for )(HGsolv :

259.175 kcal/mol = 1.325 kcal/mol + )(HGsolv    (2.191) 

)(HGsolv  = 260.5 kcal/mol   (2.192)  

To study absolute pKa values in solution Lim et al. used a proton free solvation energy that was 
the average value derived from five independent measurements of the standard (normal) 
hydrogen electrode. Instead of using the least square fit technique suggested by Noyes one can 

use the experimental value for 
HH

G
/

derived from measurements of the absolute potential of 

the standard hydrogen electrode (SHE). Table 2.2 explicitly converts measured potentials of the 
SHE into the proton solvation free energy.  

Table 2.2: measured potentials of the standard hydrogen electrode are converted into the 
proton solvation free energy using eq. 2.197: 

Experiment: 
SHE

(eV)

HH
G

/

(kcal/mol) 

)/( HHGsolv

(kcal/mol) 

)(HGsolv

(kcal/mol) 

Reis-Heller 4.43 V 102.156 261.829 263.15 

Gurevich-
Pieskov 

4.43 V 102.156 261.829 263.15 

Trasatti 4.44 V 102.386 261.60 2.62.93 

Lohman 4.48 V 103.309 260.676 262.00 

Gomer-Tryson 4.73 V 109.074 254.912 256.24 

2.5.3 The cluster-pair-based approximation 

It was shown above that the derivation of the proton solvation free energy from measurements of 
the standard hydrogen electrode still depends on the thermodynamical framework established by 
Noyes in the sixties of the last century. The next paragraphs will explain a method called the 
cluster-pair-base approximation, which was used by Tissandier et al.[85] to deduce the solvation 
free energy and enthalpy of the proton without additional thermodynamic assumptions. Within 
the cluster-pair-base assumption the values of 263.98 kcal/mol and 274.88 kcal/mol were 
determined for )(HGsol  and )(HH sol , respectively.  

Tissandier et al. derived )(HGsol  (2.193) and )(HH sol  (2.194) directly from the next two 

equations: 
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where cn,n of eq. 2.193 is defined according to: 
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Proton solvation free energy and enthalpy were estimated for the case that cn,n(A
+,B ) = cn (A

+) = 
cn (B ), because then the above two expressions become exact relations. aqG  and aqH are the 

conventional solvation free energy and enthalpy of an ion, respectively, which are defined for Z* 
which can be A+ or B  as: 

con

aqG , [Z*] = con

aqG , [ Z* ] )(HGformation + )(HGsolv    (2.196) 
con

aqH , [Z*] = con

aqH , [ Z* ] )(HH formation + )(HHsolv    (2.197) 

In eq. 2.198 Gn(Z
±) accounts for the free energy change to place any arbitrary ion ((Z±) (A+ or 

B )) into a water cluster of n water molecules. This free energy change is quantitatively expressed 
as follows and can also be formulated for Hn(Z

±):

)()()( 2
1

,1
1

,1 OHGZGZG
n

i

ii

n

i

iin    (2.198) 

The three energy terms in the above expression are explained below:  

nn OHZOHZ )()( 22    (= )(ZGn )   (2.199) 

ii OHZOHOHZ )()( 2212    (= )(,1 ZG ii )   (2.200) 

ii OHOHOH )()( 2212    (= )( 2,1 OHG ii )   (2.201) 

The summations of stepwise free energies and enthalpies, )(ZGn , which enter the final 

expression needed to derive )(HGsol  and )(HH sol  are obtained from averaging over 

literature data. Inspection of the literature reveals that these publications were made over a period 
of more than twenty years by several independent groups. In the cluster-pair-based approximation 
the constant k(Z±) expresses the absolute bulk single-ion free energies of various ions in terms of 
the unknown absolute solvation free energy or enthalpy of the proton. 

)()()( ZkHGZG solsol    (2.203) 

k(Z±) between two arbitrary ions (A ) and B+) can be computed from gas phase hydration data 
performed on water clusters and ion-water clusters. Because k(Z±) can be determined 
experimentally the only unknown quantity in eqs. 2.193 and 2.194 are the free proton solvation 

energy ( )(HGsol ) and enthalpy ( )(HGsol ).
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2.5.4 A computational method to derive the proton solvation free enegy 

The theoretical approach[89] derived )(HGsolv  without additional experimental information, but 

with thermodynamic assumptions. It is clear from the above paragraphs that being totally 
independent of such assumptions would have been a major improvement in the evaluation of the 

real proton solvation energy. To estimate )(HGsol  the free energy change that arises when the 

proton is transferred from the vacuum into a water-cluster embedded in bulk water was 
calculated. The bulk water was described through a continuum model and a dielectric constant 
equal to 80.0. The computational approach, which was performed by Tawa et al.[89] determined a 
proton solvation free energy equal to 262.23 kcal/mol.  

As explicit water molecules only accounted for the first solvation shell, four to six molecules 

were assumed to be enough to derive )(HGsol . The subsequent equation (eq. 2.204) and 

Figure 2.3 describe the experimental approach: 

)()()()()()( 22 HGsolvOHHsolvOHgasH solvnn    (2.204) 

GHsolv
+

(H2O)nH+(gas) + H+(H2O)n

bulk =  epsilon (80.0)

first solvation shell
is explicitly modeled

Figure 2.3 Illustrates the theoretical approach to derive the proton solvation free energy. 

In the study of Tawa et al. solvation free energies were obtained using a self-consistent reaction 
field (SCRF) cycle that couples the dielectric continuum with the supermolecule, which is treated 
at several correlated electronic structure levels. The authors employed DFT as well as second and 
fourth order Møller perturbation theory and couple-cluster with single, double and triple 
excitation theory [CCSD(T)]. The calculation of the hydration free energy of the proton, was 
derived as the free energy difference between the right and left side of eq. 2.204, so that the 
subsequent expression is justified: 

)())(()()( 122 HGOHGOHHGHG gasnsolnsolsol    (2.205) 

The total free energies of the protonated water cluster and the neutral water cluster, which are 
displayed in the above equation were then separated based on thermodynamic assumptions into 
gas phase and solvent phase contribution as shown in the subsequent expression:  

)(HGsolv

nsolvnsolvgasngasngas OHGOHHGHGOHGOHHG )())(()())(())(( 2222    

(2.206)
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Figure 2.4 Water cluster considered in the described study to estimate the proton solvation free 
energy.

Having separated the free energy expressions for the protonated and neutral water cluster gasG

and solG  were expressed in computable terms: 

)()()()()()()( MpVMTSMEMEMEMEMG TRVgas    (2.207) 

In the above equation (M) indicates the protonated and neutral water cluster. The translational 
ET(M) and rotational corrections ER(M) to the electronic energy were approximated in the ideal 
gas assumption with 1.5 RT for each term. TS and pV are the entropic and translational energy 
contribution of the proton. The entropic energy contribution was derived from statistical 
thermodynamics. In fact, authors were using exactly the same expressions as the one explained in 
chapter 2.2.1. Thus, the free energy of the proton in the vacuum was taken to be 6.28 kcal/mol. 
E(M), the electronic energy of the protonated or neutral water clusters and the vibrational 
corrections EV(M)were computed explicitly.  

The solvation energy in the SCRF approach is dissected into three components: the electrostatic 
solvation part ( Gel); the solute-solvent dispersion interaction ( Gdisp) and the entropy change 
due the ordering of the solute (T Shydr).

hydrdispelsol STGGG    (2.208) 

Here another adjustable parameter of the SCRF approach came into play. The adjustable size of 
the cavity radii.  



62

2.6 Standard hydrogen electrode 

The dissociation of a molecule of molecular hydrogen H2 to 2H+ and 2e  is the half-cell reaction 
of the normal (or standard) hydrogen electrode (NHE or SHE). Five independent measurements 
of the absolute half cell potential yielded values between 4.48 eV and 4.73 eV.[87, 88, 90, 124, 125]

Latest measurements processed in the mid 80th by Reiss and Heller[90] and Trasatti[88] converged 
to 4.43 eV and 4.44 eV, respectively. In the present work the value determined by Reiss and 
Heller was taken when computed redox -potentials were referred relative to the SHE (see chapter 
3.2 and 3.3). This value is commonly used in theoretical studies on redox-potentials. Latest 
examples are the computational works of Friesner and coworkers[5] and Truhlar and 
coworkers.[50]

vacuum

vacuum
hydrogen saturated platin

H2O saturated with hydrogen ions

vapor phase with H2 and H2O molecules

semiconductor

aH3O
+=1

°
°°

°

°

°
°

°

°H2

H2

Figure:2.5. A schematic drawing of the standard hydrogen electrode and of the open 
thermodynamic cycle used by Reiss and Heller to estimate the absolute half-cell potential (for 
explanations see text). The arrow in the right picture indicates the phases that the electron 
transfers in the open thermodynamic cycle.  

When redox potentials are measured against the potential of a standard electrode, the potential of 
the standard electrode is set to zero, so that measured redox potentials are indeed relative 
potentials. The precision to which G°solv(H

+) can be known is limited as the potential cannot be 
determined from measurements alone, rather additional theoretical knowledge is required to 
derive the absolute half-cell potential of the standard hydrogen electrode. The following chapter 
summarizes how Reiss and Heller[90] approximated the potential with the help of theoretical 
knowledge.  
Figure 2.5 gives a schematic drawing of the SHE and the different phases that are involved. The 
aqueous solution filled with hydronium ions is drawn in blue in the right sketch of Figure 2.5. 
The vapor phase next to the aqueous phase is filled with molecular hydrogen and H2O molecules 
(depicted in green). Then the second vacuum of the SHE (drawn in cyan ) occurs. The absolute 
half-cell potential of the SHE is defined as the difference between the electrochemical potential 
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of the electron, in the aqueous solution of the SHE, and the vacuum level just outside of the vapor 
phase (H, and H20) of the SHE. Clearly two interface potentials are bridged by this difference.  
To estimate the absolute half-cell potential the “work function” was employed to describe the 
potential of an electron between two phases.  

e
a         (2.209) 

In eq. 209 e is the electronic charge and a is the electrostatic potential in the vacuum just 
outside of an electronic conductor. is the electrochemical potential of the electron in the bulk 

of the conductor. Both a and must be measured with respect to the same reference level of 

energy. This means that the energy component of , that differs from the entropic component, 

must be measured relative to this reference energy level.  
The choice of the reference point is the improvement in the work of Reiss and Heller and 
distinguishes this study from previous ones. Here, the electrochemical potential of the electron, 

, just outside of the semiconductor is considered as the reference point. Just outside of the 

semiconductor a  is equal to zero and therefore eq. 2.209 can be reformulated, so that the redox 
potential of the half-cell is expressed through , which is not anymore dependent on a. 

e
    (2.210) 

The authors name this method the vacuum scale method, because the potential of the electron, 
which is equivalent to the fermi level of the electron is referred to this vacuum reference point. 
Albeit the work function and therefore is a free energy it can only be measured under none 
reversible conditions, whereas generally thermodynamic quantities are measured under reversible 
conditions. In fact, this means that the work function is measured in an open thermodynamic 
cycle, which prevents the electron from being in a true vacuum. The contact potential between 
two contacting phases is known as the Calvani potential. An open thermodynamic cycle is 
defined, which allows the measurement of the potential of the electron between the two phases 
that comprise the absolute half-cell potential. In an open thermodynamic cycle the electron is 
moved from the semiconductor vacuum interface (“vacuum just outside the semiconductor” = 
reference point) through a layer of platinum, encompassed with hydrogen and the aqueous 
solution, which contains hydrogen ions (H+) into the neighboring vapor phase that contains H2

and H2O molecules and finally into the vacuum. The electron is not brought back through the 
semiconductor into the initial vacuum and therefore it is named open cycle. From the above 
thermodynamic considerations  is now expressed as:

110ZCDPFB VVV        (2.211) 

110 is the potential at the semiconductor vacuum interface. In the present study the 
experimentalists considered indium phosphide as the semiconductor of choice. Its potential was 
measured from an isolated single crystal of p-indium phosphide with 110 points in contact with 
the surface. A Schottky diode is constructed by a layer of platinum, saturated with hydrogen at 1 
atm, which is deposited onto a 110 surface of the same p-type indium phosphide. At the Schottky 
diode a flat-band potential (VFB) and a dipole potential (VDP) is measured. VFB is determined by a 
Mott Schottky plot. This plot is a considerable source of error as it is based on an approximated 
theory. VZC is the level bending in solution at the platinum water interface. A diffuse space 
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charge layer and a fixed dipole layer contribute to VZC. Measurements of this quantity cause 
problems and the necessary values for the hydrogen electrode had to be derived by extrapolation.  

Measurements yielded 110=5.78 V, VFB = 1.05 V, VDP  0 V and VZC = 0.3 V. Substitution of 
these values into eq.2.211 yields :

V
HHredox 43.4

2/
     (2.212) 

The 4.43 V can also be considered has absolute half-cell potential of the standard hydrogen 
electrode.  

2.7 Computational procedure to compute pKa values and one-

electron reduction potentials for organic molecules: 

In the following three chapters I give the computational details to estimate pKa values and one-
electron reduction potentials in solution. Computation of absolute pKa values and one-electron 
reduction potentials for organic molecules requires the determination of the reaction free energy 
in the condensed phase ( GR) (see definition in chapter 2.1). Using suitable thermodynamic 
cycles (see 2.1.1 and 2.1.2) I computed the reaction free energy from contributions of Ggas and 

Gsolv,.  

Ggas was determined using adequate QC methods. For the determination of solvation energies, a 
one-step and a two-step procedure are in use. In the one-step procedure the solvation energy is 
evaluated directly within a suitable QC method using a reaction field or the Poisson equation 
selfconsistently. In the two-step procedure first a QC computation in vacuum is performed to 
determine the atomic partial charges. These charges are calculated by matching the electrostatic 
potential (ESP) based on the QC wave function with the ESP generated by the atomic point 
charges using the RESP procedure (see below and chapter 2.3). In the second step the 
electrostatic energies of solvation are evaluated from this point charge distribution separately by 
solving the Poisson equation. This two-step procedure is the method of choice to calculate the 
pKa shift between solvent and protein environment, since modeling the detailed charge 
distribution of a protein in a QC computation is a formidable task (see introduction). 
Interestingly, while the two-step procedure was successfully applied to compute pKa values in a 
protein the one-step procedure was generally used to evaluate solution pKa. However, a two-step 
method was also used to evaluate solvation energies of different organic molecules. 

2.7.1 Computation of pKa values for closed-shell organic molecules: 

Computation of gas phase free energies and enthalpic energies (PA values) 

All QC calculations, which were necessary to calculate absolute pKa values for closed-shell 
systems (for results see chapter 3.1) were performed with the quantum chemistry software 
JAGUAR V4.2.[128] According to eq. 2.8 Ggas was estimated from contributions of Ggas (A*) and 

Ggas (H+). Ggas (A*) is expressed through the electronic energy E0, the zero point vibrational 

energy ZPVE and the thermal correction KKG 2980 . To obtain pKa values for the compounds 
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considered in chapter 3.1 *)(298 AG K

gas was computed for all protonated (A* = AH or AH+) and all 

deprotonated states (A* = A  or A). All energy computations are based on individual geometry 

optimizations, which were performed using the DFT functional B3LYP with the 6-31G** basis 
sets. The E0 contributions to *)(298 AG K

gas  were estimated either with the DFT functional B3LYP or 

Becke1/2 using the basis set cc-pVQZ. ZPVE and KKG 2980 values were estimated with B3LYP 

or Becke1/2 using the smaller basis set 6-31G**. 

The free energy contribution of the proton to Ggas was described using the following relation: 
Ggas (H

+) = Egas(H
+) – 298K S(H+), here Egas(H

+) = 2.5 RT (with RM298 K=1.48 kcal/mol), 
where 1.5 RT is the enthalpy contribution of the three translational degrees of freedom of H+ and 
1 RT = pV is the excess mechanical energy required to generate two particles (A , H+) out of one 
(AH) as estimated from the ideal gas model. T S is the entropic contribution, which is 
estimated from the ideal gas model.  

PA values are defined as the enthalpic energy differences between deprotonated and protonated 
forms and the contribution of the enthalpic energy of the proton in the gas phase (2.10). For 
computational details of E0 and ZPVE see the above paragraph. For Egas(H

+) I used Egas(H
+) = 2.5 

RT (with RM298 K=1.48 kcal/mol (see explanation in the previous paragraph). Note that in some 
publications instead of PA, which are enthalpic quantities, gas-phase acidities/basicities are given 
that refer to Gibbs free energies. The corresponding PA value is then lower by 7.76 kcal/mol.  

Computation of electrostatic solvation free energies: 

Determination of atomic partial charges. Unless otherwise stated partial atomic charges were 
derived from the molecular ESP generated by QC computations on optimized geometries 
(B3LYP/6-31G**) at the Becke(1/2)/6-31G** or B3LYP/6-31G**. I used the RESP[69, 70]

procedure to determine the atomic partial charges of a solute molecule. RESP matches the solute 
ESP[109] calculated with a QC method on grid points in the neighborhood of the considered 
molecule with the ESP generated by the atomic partial charges to be determined, while 
constraining the total charge of the molecule at the appropriate value. Thereby the ESP is defined 
on grid points outside of the vdW spheres (defined by radius RvdW) of each atom up to a 
maximum radius Rmax placed equidistantly on a system of rays emerging from each atom center. 
The corresponding RvdW values are 1.95 Å, 1.6 Å, 1.7 Å, 1.8 Å, 1.96 Å, the Rmax values are 9.0 Å, 
8.3 Å, 8.5 Å, 8.7 Å, 9.0 Å for C, H, O, N, Cl atoms, respectively. With a direct least square fit of 
atomic partial charges molecular dipole and quadrupole moments are often not well reproduced. 
This is due to charges of buried atoms whose influence on ESP may be poorly defined, since all 
ESP grid points lie outside of the vdW volume of all atoms of the molecule. To circumvent these 
effects I applied the RESP procedure with a hyperbolic penalty function applied to all atoms 
except hydrogens with strength parameter a = 0.001 au.  

Solvation energies. Electrostatic solvation free energies were computed according to the eq 2.13. 
Note that for titratable compounds that are neutral (carboxylic acids, benzoic acids, imides, 
phenols) or cationic (imidazoles and pyridines) in the protonated state we have AH*  AH and A#

 A  or AH*  AH+ and A#  A, respectively.  

From solvation energies of a titratable compound I determined the electrostatic energy 
contributions only and ignored contributions from van-der-Waals (vdW) interactions and 
reorganization of the solvent in the presence of a solute molecule, i.e. the hydrophobic effect, 
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which is particularly difficult to evaluate. Unless there are charge specific solvent structures the 
influence of these interactions cancels in the difference between protonated and deprotonated 
species.  

The program SOLVATE from the electrostatic energy program suite MEAD (macroscopic 
electrostatics with atomic detail) was employed to calculate the electrostatic energies generated if 
a solute molecule with its atomic partial charges is placed from vacuum (  = 1) in a dielectric 
continuum of vanishing ionic strength with dielectric constant  = 80 while  = 1 is kept in the 
vdW volume of the solute. Unless explicitly specified (see chapter 3.1.5) all computed pKa and 

Gsolv values were computed with a solute dielectric constant  = 1 in vacuum and solvent. The 
solute/solvent boundary was defined through a solvent probe radius of 1.4 Å. A focusing 
procedure was used to solve the Poisson equation with an initial low resolution grid of 1013

points and 1.0 Å step size and a second high resolution grid of 1013 points and 0.25 Å step size 
centered at the solute molecule. To estimate free energies of solvation we used the following 
vdW radii: for carbon in CH3 and CH2 groups RCHn = 2.0 Å, else RC = 1.5 Å, RCl = 1.9 Å, RO = 
1.4 Å, RN = 1.4 Å and RH = 1.2 Å, except for the vdW radii of the titratable proton, where we 
used RP = 1.0 Å. The vdW radii are close to the values of Richardson et al.,[46] who recommended 
the usage of small vdW radii according to suggestions from Bondi[129] to estimate solvation 
energies of organic molecules. As in the study of Richardson I also used an oxygen vdW radius 
of 1.4 Å, which is the Pauling radius also applied by Tunon et al.[130] These radii are also used 
within the quantum chemical software package Gaussian[131] to compute Merz and Kollman 
charges, except for CHn, N, and Cl, where they used 1.5 Å, 1.5 Å, and 1.7 Å, respectively.  

A balanced combination of the QC method applied to compute the ESP and the vdW radii is 
crucial to obtain accurate free solvation energies. The distinction between RC = 1.5 Å and RCH2 = 
RCH3 = 2.0 Å has only a moderate impact on the computed solvation energies. Note that the vdW 
radii used for the RESP fitting procedure have an influence on the atomic partial charges and thus 
indirectly also on the electrostatic energies, while the choice of vdW radii used to define the solute 
solvent boundary have a direct impact on the electrostatic energies. For the protonated imidazole 
and its substituents we have two equivalent deprotonation sides, but only one leaving proton. For 
imidazoles we assigned a vdW radius of 1.0 Å to the titratable proton and 1.2 Å to the hydrogen 
atom bound to the second nitrogen atom, which is consistent with the values used above.  

2.7.2 Computation of one-electron reduction potentials in protic and aprotic 

solvents:

All redox-active substances considered in chapter 3.2 refer to single electron-transfer equilibria 
between a neutral and anionic charge state. Except for p-benzoquinone and p-benzodithiyl, which 
are radicals in the anionic charge state, all redox-active substances are radicals in the neutral 
charge state. Radicals are open shell systems that bear an unpaired electron. The accurateness of 
the post Hartree-Fock method G3MP2 and the DFT functional B3LYP was evaluated in terms of 
EA values, which are the enthalpic contribution to Ggas for electron-transfer equilibria. The 
contributions of the free solvation energies were calculated using the two-step procedure. To 
compute free solvation energies in different solvent types (protic and aprotic) two sets of vdW 
radii of solvation were used. 
Computation of gas phase free energies and enthalpic energies (EA values):  
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T=298K
gasG (A*) (see eq. 2.26) was computed for all radicals (A* = A• or A •) and non-radicals (A* = 

A or A ).  The enthalpic quantity, KT

gasH 298 (A*), was used to derive adiabatic EA values, 

according to the conventional definition (see eq.2.24). KT

gasH 298 contains only term one and two of 

eq. 2.26. The QC method G3MP2[78] computes electronic energies at the MP2(full)/6-31G(d) 
level of theory. A series of single point calculation at different level of theory is carried out to 
obtain the electronic energy (see chapter 2.2.5 for more details). The zero point corrections are 
obtained from scaled HF frequencies.  

Calculated redoxE  values based on DFT theory were obtained using the B3LYP functional with 

the aug-cc-pvTZ basis set, which assigns diffuse function to all atoms. These computations 
employed optimized geometries from the B3LYP/6-31G** of theory for each redox state. The 
thermal corrections and the zero point vibrational energies were computed at the same level of 
theory than the geometry optimization. 

Computation of electrostatic solvation free energies:  

To compute the electrostatic solvation free energies I used the atomic partial charges obtained 
with the Merz–Kollman RESP[69, 70] procedure for molecular geometries optimized with G3MP2 
or B3LYP/6-31G**, respectively (for more details see chapter 2.7.1 “computation of free 
electrostatic solvation energies”). The Poisson equations for these molecular charge distributions 
were solved with the program SOLVATE from the electrostatic energy program suite MEAD 
(macroscopic electrostatics with atomic detail).[58, 113, 114] In the present work, I estimated one-
electron reduction potentials in water, AcN and DMAc using H2O = 80, AcN = 37.5 and DMAc = 
37.8 to compute solvation from electrostatic energies. Note that the values of the dielectric 
constants for AcN and DMAc found in the “Dielectric Constant Reference Guide”[132] are 
virtually identical. The solute/solvent boundary was defined through a solvent probe radius of 1.4 
Å for water and 2.0 Å for AcN and DMAc. Although dependencies on solvent probe radii are 
weak and therefore not critical. A focusing procedure was used to solve the Poisson equation 
with an initial low resolution grid of 1013 points and 1.0 Å step size and a second high resolution 
grid of 1013 points and 0.25 Å step size centered at the solute molecule.  

In combination with the G3MP2 QC method a single set of vdW radii for solute atoms was 
sufficient to estimate the electrostatic solvation free energies in water for all considered redox-
active compounds. These are the same vdW radii used for pKa computations,[Busch, 2004 #34] 
with the exception that the somehow artificial discrimination between aliphatic and none-
aliphatic carbons was dropped in the present work. The solute vdW radii used for water are: 1.5 
Å, 1.9 Å, 1.4 Å, 1.4 Å, 1.2 Å, 2.025 Å for C, Cl, O, N, H and S, respectively. The adiabatic EA 
values computed with B3LYP for sulfur-centered radicals were by more than 200 meV lower 
than the corresponding experimental values (see Table 3.15). To regain agreement between 
measured computed E°redox values for B3LYP of sulfur-centered radicals in water the deviations 
in EA was compensated by using a smaller sulfur radius of 1.80 Å for the evaluation of the 
solvation energies.  

In AcN and DMAc redox-active compounds with G3MP2 geometries were solvated with the 
following set of vdW radii: 1.725 Å, 2.1 Å, 1.7 Å, 1.7 Å 1.2 Å and 2.3 Å for C, Cl, O, N, H, and 
S, respectively. Except for the hydrogen atom these vdW radii for solvation were enhanced by 
about 15% for the aprotic solvents relative to the values used for protic solvents like water. 
Again, to obtain agreement between computed and measured E°redox values for sulfur-centered 
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radicals in AcN/DMAc we decreased the sulfur vdW radius from 2.3 Å used for G3MP2 to 2.0 Å 
for B3LYP geometries. 

2.7.3 Computation of pKa values for open-shell organic molecules: 

Estimated pKa values of semiquinones (Q • and QH•) and hydroquinones (Q2 , QH , QH2) are 
based on Ggas values, which were obtained with the QC method G3MP2 (see chapter 3.3). The 
QC method G3MP2 was applied because semiquinones are open–shell systems. Hence, I 
calculated the individual free energies for Q •, QH•, Q2 , QH , QH2 and in the same way than the 
individual free energies for redox equilibria (see chapter 2.7.2). Free electrostatic solvation 
energies were computed as described in chapter 2.7.1, with the only exception that instead of 
B3LYP/6-31G** optimized geometries were taken from the G3MP2 computation.  


