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Chapter 2 
Basic Principles 

2.1 The Scanning Tunnelling Microscope 

 
The Scanning Tunnelling Microscope (STM) was invented in 1981 by G. Binnig 

and H. Rohrer33-35 and within a few years it emerged to one of the most widely 

used tools in surface science. The STM makes use of the quantum mechanical 

tunnel effect: A sharp metallic tip is positioned a few Angstrom (Å) over a 

conductive surface and a voltage in the order of 1 V is applied. The potential 

barrier between tip and surface is larger than the electrons energy, thus forbidding 

a current flow in the classical picture. Nevertheless, the electronic wave functions 

of tip and surface, decaying into the junction gap, overlap each other, leading to a 

finite probability of tunnelling for the electrons. The tunnel current is usually in 

the order of pico to nano Ampere and depends exponentially on the distance 

between tip and sample, changing about one order of magnitude with 1 Å change 

in the tip-sample distance.  

In the typical working mode (called constant-current-mode) the tip is scanned line 

wise over a region of the surface and the tunnelling current is kept constant by 

regulating the tip height (z) through a feedback loop. A map of the surface is 

obtained by assigning to each lateral x/y-position of the scanned region the tip 
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height z(x,y). In this mode the tip follows roughly the corrugation of the surface, 

creating a nearly topological map. However, the STM image is also influenced by 

electronic effects. More precisely the tip moves on a surface of constant local 

density of states (LDOS) close to the Fermi energy. In general it is not trivial to 

distinguish between topologic and electronic effects.  

In order to achieve high spatial resolution, the demands on stability and precision 

of the tip movement are extreme. For the tip positioning, piezoelectric crystals, 

called piezos in the following, are employed. These are materials which deform in 

dependence on the applied voltage. For the used piezos at temperatures of about 

7 K, the elongation is in the order of 10 Å/V and the maximum voltage that can be 

transformed into an elongation is about 100 V. Therefore the maximal scan area is 

in the order of 1 µm². The spatial resolution is not limited by the piezos, but by 

electronic and mechanic noise. Much effort has to be done to decouple the STM 

against mechanical oscillations: Our STM hangs at springs and is damped by an 

eddy current break. Furthermore, the whole STM chamber rests on pneumatically 

damped feet. Typically the lateral resolution of a Low Temperature-STM (LT-

STM) is in the order of 1 Å and the vertical resolution is in the order of 

1 pm = 0.01 Å.  

There are several benefits of working at low temperatures, which are important 

for this work. Due to decreased thermal drift, the STM is very stable and due to 

lower thermal noise, the energy resolution is increased. The latter property is 

important for Scanning Tunnelling Spectroscopy (STS). Moreover, due to the 

cold environment surrounding the sample (the cold shields are working as cryo-

pumps), the vacuum conditions are improved. Furthermore, adsorbates with low 

diffusion barriers can only be imaged at low temperatures, when their surface 

diffusion is frozen in. 
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2.2 Theoretical Description of the Tunnelling 

Process 

A variety of theories have been developed to describe the tunnelling process 

taking place in STM. The fundamental works will be briefly reviewed in the 

following. In a first schematic approach, the tunnel-effect is treated one-

dimensionally and time-independent. In this approximation, the problem can be 

solved analytically. The elastic tunnelling of an electron of energy E through a 

constant potential barrier V0 can be described by a stationary Schrödinger 

equation:  
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Inside the metal, the electron is treated as a free particle, while in the tunnelling 

region (barrier of length s) the potential is higher than the energy of the electron: 

V(x) = 0   for  x∉[0,s]    (inside the metal), 

V(x) = V0  for  x∈[0,s]    (inside the barrier). 
(2-2) 

The solutions have the form: 
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An incident wave is partly reflected and partly transmitted by the barrier and the 

transmission coefficient T can be determined by wave-matching of the amplitude 

and the first derivative. Energy diagram and wave functions are shown schemati-

cally in Fig. 2.1. For the transmission coefficient one obtains: 
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Fig. 2.1. Schematic Energy diagram and wave functions in one dimension, in case 
of electrons tunnelling from the tip to the sample. EF

T/S are the tip/sample Fermi 
energies, EV

T/S are the tip/sample vacuum levels, and ΦT/S are the tip/sample work 
functions, respectively. VTunnel is the tunnelling bias. For simplicity only the real 
part of the wave functions is shown. 

For a large barrier (sκ>> 1), T can be approximated36 as 
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This result shows the exponential relation between transmission coefficient and 

tunnelling distance s and yields to the exponential dependence of the tunnelling 

current, which is proportional to the transmission coefficient, on the tip-sample 

distance. This exponential dependence is the fundament for the high spatial 

resolution of the scanning tunnelling microscope. 



Chapter 2: Basic Principles 

 9 

In the WKB approximation (Wentzel, Kramers, Brillouin, 1926) the solution can 

be expanded to a non-constant potential V(x), yielding the transmission coeffi-

cient 
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. (2-7) 

However, a three-dimensional treatment is required to describe the tunnelling 

geometry, as shown by Bardeen37, who treated the problem as a time-dependent 

perturbation. The transmission probability from an unperturbed state on one side 

of the barrier to an unperturbed state on the other side, considering the tunnelling 

region as a perturbation, is calculated in analogy to Fermis Golden rule. The 

transition probability from the tip state Ψt to the sample state Ψs is called the 

tunnelling matrix element tsM : 

∫ Ψ∇Ψ−Ψ∇Ψ⋅
−

= )(
2

² **
tsstts dS

m
M h . (2-8) 

The integration is done over a surface S between tip and sample, through which 

the entire tunnelling current flows. The transition rate is 2
tsM . For the tunnelling 

current one obtains: 

( ) ( )( ) ( ) ( )( ){ }∑ −+−+−=
st

tsst EfeVEfeVEfEfeI
,

112
h

π  

( )( )eVEEM stts −−× δ2   , 

(2-9) 

where f (E) are the Fermi functions and Et and Es are the energies of the unper-

turbed wave functions of tip and sample, respectively. The Fermi functions enter 

here because only tunnelling from an occupied to an unoccupied state is allowed. 

As electrons can tunnel in both directions, from tip to sample and from sample to 

tip, partly compensating each other, the tunnelling matrix element has to be 

summed over all possible tip and sample states. The delta function is expression 

of energy conservation during the tunnelling process. 
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Starting from Bardeens theory, Tersoff and Hamann38, 39 calculated the tunnelling 

current in case of STM and allowed the theoretical interpretation of STM images. 

They assumed the relatively simple geometry of a spherical tip and a plane 

substrate (Fig. 2.2), therefore using s-like wave-functions (angular momentum 

quantum number l = 0) for the tip. 

d

R
r0

  
Fig. 2.2. Schematic picture of tunnelling geometry in the Tersoff-Hamann model. 
The probe tip has arbitrary shape but is assumed locally spherical with a radius of 
curvature R, where it approaches nearest the surface. The distance of nearest ap-
proach is d. The centre of curvature of tip is 0r

r
.38 

In the limit of small voltage ( )0→V  and low temperature ( )0→T  Eq. (2-9) 

reduces to: 
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where EF is the Fermi energy. However, to calculate the tunnelling matrix 

element, the wave-functions of sample and tip have to be defined. The sample 

wave-function is assumed to decay exponentially outside the metal and to 

propagate freely parallel to the surface: 
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m2κ , (2-12) 
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where sΩ  is the volume of the sample and G
r

 is the reciprocal lattice vector. The 

decay rate κ outside the metal depends on the work function of the metalΦ . 

The s-like wave function of the spherical tip with radius R at position 0r
r  (for the 

definition of R and 0r
r  see Fig. 2.2) is: 
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⋅
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, (2-13) 

where tc  is a normalisation parameter in the order of 1. Now the matrix element 

according to Eq. (2-8) can be calculated: 

( ) ( ) ( ) .exp²2 2
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Using expression (2-10) the tunnelling current is evaluated. One obtains: 
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h
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where ( )Ft ED  is the density of states per unit volume of the tip at the Fermi 

energy EF. The sum in (2-15) is identified as the local density of states at EF of the 

sample at the position of the tip. This is often referred to as Local Density Of 

States (LDOS): 

( ) ( ) ( )∑ −Ψ≡
s

tssF EErEr δρ 2
00 , rr . (2-16) 

Substituting typical values in (2-15) one obtains  

( )FErRVRI ,2exp1.0 0
2 rρκ ⎟

⎠
⎞

⎜
⎝
⎛= , (2-17) 

where the distance is in a. u. and energy in eV. This result means that the STM is 

measuring the contour of constant LDOS of the sample. Since  
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one obtains once again the exponential distance dependence for the tunnelling 

conductance σ, i.e. 
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with 
h

Φ
=

m2κ . (2-20) 

Substituting a typical metal work function of Φ = 4.5 eV, one can estimate the 

tunnelling resistance as 

( )sAR ⋅∝ exp , (2-21) 

With A = 2.18 and s in Å, showing that R increases approximately one order in 

magnitude, when s increases 1 Å. In combination with the contact resistance R0  

(corresponding to s = 0), which can be experimentally measured, the tip height 

can be approximately estimated for a given tunnelling resistance, obtaining  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈

0

log
R
Rs , (2-22) 

with s in Å, where the contact resistance on metal surfaces is typically 

R0 ≈ 10 kΩ.40 

 

2.3 Scanning Tunnelling Spectroscopy 

By means of Scanning Tunnelling Spectroscopy (STS) it is possible to study the 

electronic properties of the surface locally. The idea is to measure the LDOS not 

only at the Fermi level, but at any given energy.  
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The problem of STS can be discussed in an abstract form to avoid the complica-

tions of the specific forms of the wave functions in equation (2-8).41 The sum over 

participating states in equation (2-10) implies an energy integral. Thus the 

tunnelling current will be the sum over terms each of them has the form 

 ( ) ( ) ( )∫ −∝
eV

st dEEDeVEDeVI
0

, (2-23) 

where Dt and Ds are the tip and sample density of states, respectively. In an one-

dimensional model42, 43 dI/dV is given by 
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0 . (2-24) 

The first term is a counting term that arises because a variation in the bias voltage 

V changes the interval over which tunnelling can occur, i.e. the number of states 

which are involved. The integral term considers that the two functions are pinned 

to their respective Fermi energies, so that they are shifted relative to each other 

when the voltage is changed. Under the common assumption of a featureless tip, 

i.e. constant Dt, the integral vanishes and dI/dV can be interpreted as a good 

measure of Ds(eV), i.e. the density of states of the sample at E = eV.44  

The first derivative of I with respect to V can be directly measured with the STM 

using lock-in technique. A small AC signal of amplitude Vmod and frequency ω is 

superposed to the tunnelling bias V0 and the lock-in amplifier works as a band 

pass filter, measuring the amplitude of the tunnelling current that is oscillating 

with ω. The amplitude of the first harmonic is proportional to the differential 

conductance dI/dV for small modulation signals Vmod, as can be seen from the 

Taylor expansion of the current with tunnelling bias V(t) = V0 + Vmod × cos(ωt) : 

( )( ) =+ tVVI ωcosmod0  

( ) ( ) ( ) ( ) ...coscos 22
mod2

0
2
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0

0 +⋅⋅+⋅⋅+ tV
dV

VId
tV

dV
VdI

I ωω  
(2-25) 
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The lock-in signal ( )
mod

0 V
dV

VdI
⋅ can be measured at a chosen point of the sample, 

ramping the voltage V0 with the feedback loop switched off, yielding the spectral 

density of states at this point. On the other hand, the surface can be scanned at a 

certain voltage V0 and, by recording the lock-in signal at each point, one yields a 

so called dI/dV-map of the surface, i.e. a map of the LDOS of the surface at 

energy E = eV0. 

The amplitude of the second harmonic in (2-25), which oscillates with ω², is used 

for inelastic tunnelling spectroscopy (IETS). In this case, processes where the 

tunnelling electrons loose energy (e.g. by exciting vibrational45-47 or rotational48 

modes) can be investigated. 

2.4 STM induced Manipulation 

Soon after the first STM experiments it was realized that the tip often modifies the 

substrate because of the close proximity to the surface atoms. This obvious 

disadvantage for imaging turned into a positive prospect by realizing that the 

modifications can be performed in a controlled way4, 20. At low temperature, the 

tip of the STM can be used to build atomically precise structures and to investi-

gate the motion of single atoms and molecules.  

There are two basic techniques which allow the transport of atoms and small 

molecules with the STM tip in order to build nanostructures. Either single 

particles are moved by the tip on the surface, without loosing contact to it (lateral 

manipulation), or single particles are picked up by the tip and are deposited at the 

desired location (vertical manipulation).  

The tip-sample interactions used for this purpose can be divided into two broad 

categories: Forces that act on the sample because of the proximity of the tip even 

in absence of bias voltage and effects caused by the applied bias voltage, i.e. 

electric field and tunnelling current through the gap region.49 For the lateral 

manipulation at atomic scale, the interaction forces between tip and atom, i.e. van 
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der Waals or chemical forces, are sufficient to move atoms and no electric field or 

tunnelling current has to be applied. For vertical manipulation, however, field and 

current effects play a major role. Both types of manipulation were used for the 

first time by the group of Eigler at IBM-Almaden4, 19 and then by Meyer et al. at 

the FU-Berlin21, 50 to build nanostructures from single atoms and molecules. 

An example of an atomically defined nanostructure, which has been built by 

lateral manipulation by Crommie et al. 51, is shown in Fig. 2.3. In this case single 

Fe atoms have been arranged in the shape of a circle on Cu(111) in order to study 

the confinement and scattering of the surface state electrons inside the so called 

quantum corral.51 

 
Fig. 2.3. Different stages during the construction of a quantum corral built from 48 
Fe adatoms on Cu(111) by means of lateral STM manipulation. Confined electron 
states give rise to standing wave patterns. Tunnelling parameters: V = 10 mV, 
I = 1.0 nA, T = 4 K. The diameter of the corral is 143 Å. From ref. 51 

In order to laterally manipulate an atom, the tip is first positioned above the atom 

and the tip-sample distance is reduced to typically 1-3 Å. Therefore the tunnelling 

resistance R is lowered from typical scanning parameters (R in the range of 
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107 - 1011 Ω) into the regime of 104 - 106 Ω. The relation between tip-sample 

distance and R is approximately determined by Eq. (2-22). The tip is moved from 

the initial position of the adsorbate to the desired final position with the chosen 

manipulation parameters. The area is subsequently scanned again with imaging 

parameters to observe the outcome of the manipulation attempt. 

During manipulation, the tip height is recorded as a function of lateral movement 

and called the manipulation signal. Different forms of lateral manipulation can be 

recognized by the typical shape of the manipulation signal.52 It can be distin-

guished between three modes, corresponding to different lateral motion of the 

particle. Typical manipulation signals are shown schematically in Fig. 2.4 and the 

manipulation modes are explained in the following: 
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Fig. 2.4. Schematic representation of the different manipulation modes and their 
characteristic manipulation signals: (a) pulling, (b) pushing, (c) sliding. The Lattice 
parameter is a0. The dashed arrows indicated the direction of manipulation. 
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• Pulling mode (Fig. 2.4(a)): Attractive forces, usually addressed to van der 

Waals interaction, between adsorbate and tip force the adsorbate to follow 

the motion of the tip. When the tip approaches the molecule, the tip height 

immediately rises because the adsorbate jumps under the tip due to the at-

tractive forces. Then the tip height drops with finite slope when the tip 

moves away from the adsorption site of the molecule, following the con-

tour of constant LDOS of the adsorbate and surface, until the molecule 

jumps again to an adsorption position underneath the tip (and the tip again 

retracts). The periodicity of the signal corresponds to the adsorption posi-

tions along the path of the adsorbate. In this mode the adsorbate stays be-

hind the tip with respect to the manipulation direction. 

• Pushing mode (Fig. 2.4(b)): Repulsive interaction between STM tip and 

adsorbate forces the molecule to jump away from the tip if the tip-

adsorbate distance decreases below a critical value. In this case the typical 

manipulation signal has typically the form of a saw-tooth, but inverted 

with respect to the case of manipulation in pulling mode. The tip height 

rises with finite slope, when the tip is approaching the molecule. Then it 

suddenly drops, when the molecule jumps away from the tip, explaining 

the manipulation signal of Fig. 2.4(b). In this mode the adsorbate is posi-

tioned in front of the tip with respect to the manipulation direction.  

• Sliding mode (Fig. 2.4(c)): An adsorbate is moved in sliding mode when 

the tip-particle interaction is so strong that tip and particle move together 

on the surface. In this case the adsorbate-tip distance remains nearly con-

stant during the manipulation process. The manipulation signal is smooth 

and reflects the corrugation of the surface, which is scanned by the adsor-

bate at the tip apex. To manipulate single atoms in sliding mode, the tip to 

sample distance has normally to be further decreased with respect to the 

parameters used for pulling the molecule.  

Specially designed large organic molecules have been successfully manipulated at 

room temperature by Jung et al.53, but to obtain quantitative information about the 

manipulation process, the stability and the low noise level achievable by LT-STM 
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are necessary. Moresco et al. have shown that the manipulation signal of a large 

organic molecule with internal degrees of freedom can be influenced by the 

deformation of the molecule, e.g. by the bending or the rotation of internal 

chemical bonds.54 Large molecules have been successfully manipulated in the so 

called “constant height manipulation mode”, recording manipulation signals.55 In 

this mode the feedback loop is switched off during the manipulation process, 

hence the tip-sample distance is kept constant, avoiding instabilities in the vertical 

position of the tip. In this case, the tunnelling current is recorded during the 

manipulation process, serving as manipulation signal. By comparison with 

calculated manipulation signals, the contributions of different molecular parts can 

be distinguished and the internal deformation of the molecule during manipulation 

can be determined.54, 56 

Another form of STM induced manipulation is the change of internal conforma-

tions of a molecule. In this case the tip is moved above the adsorbate with 

imaging parameters and then the tip-sample distance, bias voltage, and tunnelling 

current are altered in order to perform the manipulation. The manipulation can 

result not only in a molecular motion4, 45, but furthermore chemical reactions57-59, 

molecular desorption60, 61, the charging of an adatom62 or the change of the 

internal molecular conformation7, 63, 64 have been reported. 

STM induced manipulation is a central technique in this work for two reasons: On 

the one hand manipulation of molecules is used to form artificial structures 

necessary for further investigation, like the contact of a Lander molecule to a 

mono-atomic step edge described in chapter 5. On the other hand, manipulation 

experiments are performed to reveal information about the mechanical deforma-

tion of the molecule, the movement path, the molecular-substrate interaction, and 

the tip-molecular interaction. 
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2.5  Elastic Scattering Quantum Chemistry 

Different theoretical approaches for the calculation of STM images of organic 

molecules on conducting surfaces have been presented within the last years. 

Contour maps of constant probability density of the HOMO (Highest Occupied 

Molecular Orbital) and the LUMO (Lowest Unoccupied Molecular Orbital) of 

molecules have been extensively used to interpret STM images of adsorbates.65, 66 

However, this interpretation does not take into account the shifting of molecular 

orbitals in the presence of the metallic surface. More sophisticated models use 

either the Tersoff-Hamann approximation, valid however only for large tip-

molecule separation38, 39, or more generally the Bardeen approach37, modelling the 

surface by the jellium model67, 68. However, none of these methods takes into 

account the mechanical deformation of the molecule under the influence of the 

STM tip. 

The image calculations shown in this work are based on the Elastic Scattering 

Quantum Chemistry (ESQC) method, developed by Sautet and Joachim.69, 70 This 

approach takes into account the full geometry of tip, adsorbate, and sample. The 

tunnelling of an electron is treated as a scattering event. The tunnelling gap 

represents a defect which breaks the translational invariance of the tip-bulk and 

the substrate-bulk, and therefore scatters the incoming tunnelling electron. 

Electron-electron and electron-phonon coupling are both ignored and the scatter-

ing event is assumed to be elastic.  

Electron reservoir

tip apex
+

adsorbate
+

substrate

Electron reservoir

 
Fig. 2.5. Schematic representation of the junction “tip-apex-adsorbate-substrate” 
(TAS) and the connection to the electron reservoirs of the bulk of the tip and the 
sample as considered for the ESQC method. 
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A matrix representation of the Hamiltonian is constructed, which takes into 

account the complete chemical description of tip, adsorbate, and substrate. The 

Hamiltonian can be constructed using tight-binding approximation, extended 

Hückel, Hartree-Fock, and density functional theory (DFT). In the case of the 

Lander molecules, requiring a large unit cell and a large amount of orbitals that 

must be taken into account, extended Hückel calculations are mainly used. The 

whole system can be represented by a model system of the form ...PPPDPPP..., 

where P symbolizes a periodically repeated cell and D a defect cell. In this case D 

contains the whole scattering region called TAS (tip apex, adsorbate, and the first 

atom layers of the substrate). Tip apex and substrate surface are connected each to 

an electron reservoir, which is the metal bulk. Tip and sample are both assumed to 

be of the same material in this approach (both are modelled by cell P). Due to 

lateral cyclic boundary conditions the band structure of tip and substrate is 

obtained. 

A

B

C

D

Defect
(TAS)

 
Fig. 2.6. Schematic picture of the scattering process at the tip-apex-adsorbate-
substrate (TAS). Incoming (A,D) and outgoing (B,C) wave amplitudes in case of 
the matrix representation. 

 

An useful tool to extract the electronic transmission is the scattering matrix S(E), 

which relates the amplitudes of the outgoing waves to those which are incoming 

on the defect (Fig. 2.6): 
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The transfer matrix T(E) relates the amplitudes on the far left side to those on the 

far right side (corresponding to Fig. 2.6) 
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For the one-dimensional single impurity problem (i.e. only one channel) the T 

matrix has the following structure70: 
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The transfer matrix is related to the scattering matrix by 
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then the transmission coefficient t(E) of an electron of energy E is   
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EFA
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Et ==    . (2-30) 

For more then one channel S and T are 2N×2N matrices and the problem has to 

be treated as shown in 71. A general review of random-matrix theory on quantum 

transport is given in72. 

At low bias voltage the conductance is related to the transmission coefficient by 

the generalized Landauer formula73: 

)(
2

FEte
V
I

hπ
= , (2-31) 

where t(EF) is the transmission coefficient for an electron at Fermi energy EF 

when no bias voltage is applied. The tunnelling current I at voltage V can now be 

calculated at any tip position (x,y,z), and from the three-dimensional map of 

I(x,y,z), a two-dimensional map of constant current or constant height can be 

calculated, simulating an STM image. 

The ESQC calculations shown in this work have been performed in the group of 

C. Joachim at the Nanoscience Group, CEMES-CNRS, Toulouse. In this case the 
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tip apex and the sample in the TAS are modelled by five layers of Cu atoms, 

which are arranged in a pyramidal shape in case of the STM tip. In case of a 

Lander molecule several hundred molecular orbitals are taken into account for the 

calculation of the transfer matrix. 

To study the deformation of the molecule in the presence of the tip, Molecular 

Mechanics (MM) calculations have been employed.74 MM calculations are a 

semi-empirical standard method of modelling a molecular geometry using 

Newtonian mechanics. Potential functions are used, which are optimised to fit a 

range of physical properties of a set of molecules. The geometry of the system is 

calculated by finding the energy minimum. Contrary to the ESQC method, MM 

calculations are conceptually simple and computationally inexpensive. The MM 

and ESQC methods have been combined making it possible to optimise the 

geometry of the molecule in the presence of sample and tip at each point of an 

ESQC simulated image. Therefore the images, which are calculated with this 

combined MM+ESQC technique, do take into account the deformation of the 

molecule due to the STM tip. Moreover, with the MM+ESQC technique it is 

possible to simulate the manipulation signal in case of STM induced lateral 

manipulation. The latter, however, is computationally very expensive: The 

calculation of a manipulation signal of a molecule in the size of a Lander takes 

about one week, using state of the art computing facilities.  


