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Zusammenfassung

Die vorliegende Arbeit befasst sich in der Hauptsache mit der Evolution von Graphen
unter dem mittleren Krümmungsfluss mit freien Rändern. Wir betrachten sowohl den
mittleren Krümmungsfluss von Graphen mit einem vorgeschriebenen Winkel an einer
festen glatten Hyperfläche Σ im Euklidischen Raum, als auch das gleiche Problem mit
einem zweiten Rand mit Dirichlet-Randbedingungen. Die Neumann-Randbedingung
erfordert, dass die Einheitsnormalenvektorfelder des Graphen und der Hyperflächen Σ
senkrecht bleiben.

Unsere ersten Resultate betreffen radialsymmetrische Graphen. In diesem Zusam-
menhang beweisen wir, dass bis auf Bedigungen an den Anfangsgraphen und Σ entweder
Langzeitexistenz und Konvergenz zu Minimlaflächen (in einigen Fällen Funktionen kon-
stanter Höhe) oder Entwicklung einer Typ I Krümmungs- (und Gradienten-) Singularität
erfolgt.

Die zweite Klasse von Ergebnissen, welche wir präsentieren, befasst sich mit einem
bestimmten Beispiel. Wir betrachten den Fall, wenn die Kontaktfläche Σ die Ein-
heitssphäre im R3 ist, und betrachten die Bewegung von Graphen senkrecht zu der
Sphäre und mit einer festen Höhe bei einem festen Radius von der Sphäre. In dem Fall
von spiegelsymmetrischen Graphen beweisen wir die Erhaltung der Grapheneigenschaft
für alle Zeit der Existenz.

Die nächsten Klasse von Ergebnissen betrifft allgemeine Graphen, die sich unter
dem mittleren Krümmungsfluss im R3 entwickeln, mit entweder einem freien Neumann-
Rand oder einem freien Neumann-Rand und einem zusätzlichen Dirichlet-Rand. Wir
präsentieren eine allgemeine Methode um Schranken an die Höhe zu erhalten und klas-
sifizieren das Verhalten des Gradienten am Rand.

Unter Benutzung dieser erhalten wir ein Ergebnis zur Langzeitexistenz für den mit-
tleren Krümmungsfluss mit einem freien Rand auerhalb eines Zylinders.

In höheren Dimensionen n ≥ 2 beweisen wir auch Langzeitexistenz von anfangs
konvexen (oder konkaven) Graphen über einem Halbraum senkrecht an einer Hyperfäche.
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Abstract. In this thesis the chief object of study is the evolution of graphs under
mean curvature flow with free boundaries. We study both the mean curvature flow of
graphs with a prescribed angle condition on a fixed smooth hypersurface Σ in Euclidean
space, and the same problem with a second boundary on which we prescribe a Dirichlet
condition. The Neumann boundary condition requires that the unit normal vector field
of the graph and that of the hypersurface Σ remain perpendicular.

Our first set of results are concerned with radially symmetric graphs and here we
prove, up to conditions imposed on the initial graph and Σ, either long time existence
and convergence to minimal surfaces (in some cases functions with constant height), or
development of a Type I curvature (and gradient) singularity.

The second class of results we present treats one specific example. We consider
the case where the contact surface Σ is the unit sphere in R3, and study the motion
of graphs perpendicular to the sphere and with zero height at a fixed radius from the
sphere. In the case of reflective symmetric graphs we prove that the graph property is
preserved for all times of existence.

The next class of results is concerned with general graphs evolving by mean cur-
vature flow in R3 with either one free Neumann boundary or both a free Neumann
boundary and an additional Dirichlet boundary. We present here a general method for
obtaining height bounds and classify the gradient behaviour on the boundary.

Using these, we obtain a long time existence result for the mean curvature flow
with a free boundary outside a cylinder.

In dimensions n ≥ 2, we also prove long time existence of initially convex (or
concave) graphs over a half space supported perpendicularly on a hyperplane.
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CHAPTER 1

Introduction

1. Background and results

A hypersurface Mt in Euclidean space is said to be evolving by mean curvature flow
if each point X of the surface moves, in time and space, in the direction of its unit
normal ν with speed equal to the mean curvature H at that point. That is

dX

dt
= −H(X) ν.

Equivalently if one considers the mean curvature flow of a smooth family of immersions
Ft = F (·, t) : Mn → Rn+1 this is given by

∂F

∂t
(p, t) = −H(F (p, t)) νMt(F (p, t)), ∀(p, t) ∈Mn × [0, T ).

Mean curvature flow has two major qualities. If we observe that H(X) = ∆MtX, where
we denoted by ∆Mt the Laplace-Beltrami operator on the manifold Mt, then it is easy to
consider mean curvature flow as a heat flow for manifolds. Mean curvature flow is also
the steepest descent flow for the area functional, evolving hypersurfaces towards minimal
surfaces. These properties have been extensively used throughout the literature. Mean
curvature flow has been studied for some time, at least since 1956, when Mullins [31]
considered a version of mean curvature flow in one dimension. In 1978 Brakke [3] studied
the mean curvature flow of surfaces from the point of view of geometric measure theory.

There are two approaches to the study of mean curvature flow. One may work
directly with the immersions or if the hypersurfaces obey a graph condition in some
fixed direction in Rn+1, one may study mean curvature flow with classical techniques by
considering it as a quasilinear parabolic partial differential equation. A detailed passage
from one to another can be found in [8] and [10].

There has been much work on the mean curvature flow problem for immersions and
graphs with or without boundary conditions. In the compact setting, one result of great
interest is that of Huisken [21]. There the author proves that under mean curvature flow,
compact, initially convex surfaces retain their convexity and converge to a spherical point
in finite time. The analogous result for the one dimensional case, the curve shortening
flow, was obtained by Gage and Hamilton [12, 13], where it was proved that initially
convex planar curves contract to points. This was later generalised by Grayson [15] for
all closed embedded planar curves.

The study of entire graphs by Ecker and Huisken [9, 10] provides a detailed expo-
sition including a long time existence theorem for locally Lipschitz initial data. The
non-parametric mean curvature flow of graphs with either a ninety degree contact angle
or Dirichlet boundary condition on cylindrical domains has been studied by Huisken

1



2 1. INTRODUCTION

[23] and there proves a long time existence and convergence to minimal surfaces theo-
rem. In the setting of non-parametric mean curvature flow, this was later generalised by
Altschuler and Wu [1], where they allow arbitrary contact angles at the fixed boundary
for two dimensional graphs. This in turn was also later generalised to arbitrary dimen-
sions by Guan [17]. From the point of view of immersions mean curvature flow with
Dirichlet boundary data has been studied by Stone [37, 38] in Euclidean space and
Priwitzer in [32] in the setting of Riemannian manifolds.

Given the above a natural next step is to study the mean curvature flow of immersions
satisfying a graph condition in time dependent domains with either Neumann or Dirichlet
boundary conditions.

This begins with a series of works on the mean curvature flow of immersions with
free boundary, where a restriction on the angle of contact with a fixed hypersurface in
Euclidean space is imposed. The free boundary is given by a ninety degrees contact
angle with the fixed hypersurface. Important works in this setting include Stahl [36]
and Buckland [4]. In the first, Stahl proves a short time existence result by writing
the evolving hypersurfaces as graphs over the initial hypersurface and then, following
Ecker and Huisken [10], he is able to obtain local gradient estimates in the case of
hypersurfaces with bounded curvature. This gives that either the solution exists for
all time or develops a curvature singularity. In the case of umbilic surfaces of contact
and initially convex data he proves that the flow will shrink the solution to a Type I
hemispherical point singularity in finite time. In [4], Buckland focused on the case of
finite time existence and the study of the nature of singularities which occur on the free
boundary. As a start he obtains the analogue of the monotonicity formula of Huisken
[24] for manifolds with a free boundary. The main tool used to obtain this result is
inspired by the work of Grüter and Jost [16], and that is the concept of reflection of
points across the free boundary. The main result is a classification of limit surfaces with
non-negative mean curvature near singular points obtained after a parabolic rescaling
of the flow. A Brakke regularity result for mean curvature flow with Neumann free
boundaries has been obtained by Koeller in [26].

We are concerned in this work not only with the study of the same problem treated
by Stahl and Buckland, but also with a variant of this. The problem is viewed as a
separate approach to mean curvature flow with a free boundary as well as a natural
continuation of works on the boundary value mean curvature flow of graphs. Here we
consider the non-parametric mean curvature flow defined on a time dependent domain,
which is a strict generalisation of the cylindrical setting previously considered.

There are two basic types of problems that we treat in this thesis. The first is the
setting of Stahl. We consider the mean curvature flow of graphs with a ninety degree
contact angle condition onto a fixed hypersurface. For the second problem we add a
disjoint boundary to the flow on which we will impose a Dirichlet boundary condition
independent of time. Both the problems are considered as a flow of immersions which
have also the property of being graphs in a fixed direction in Euclidean space. This will
allow us to transform the evolution equation for the immersion into that for a scalar
function. This equation is parabolic and quasilinear but defined on a time dependent
domain due to the free Neumann boundary. The time dependent domain will be a
challenge in obtaining a unified result of short time existence for both our problems and



1. BACKGROUND AND RESULTS 3

also for the application of the maximum principle. More details about the difficulties
with a time dependent domain will be presented in the following chapters. We are
interested in the conditions one must impose initially and on the fixed hypersurface of
contact such that long time existence is obtained.

The results of this thesis are divided into five chapters, in addition to the present
one. Each of the chapters treats a particular case in the sense of the evolving graphs,
the initial data or the contact hypersurface. We summarise the main contributions of
this thesis as follows.

(Ch. 2) Maximum principles. In this chapter maximum principles for mean curva-
ture flow in the scalar graph and immersion setting with free boundaries are
proved. The theorems following from the maximum principle are powerful tools
which are generally only enjoyed by solutions of second order differential equa-
tions.

The programme of obtaining the long time existence result consists of first
obtaining bounds on the height and then obtaining bounds on the gradient
of the solution of the associated scalar problem. Since these steps are highly
dependent on the applicability of the tools which come from the maximum
principle, we present here a collection of indispensable results following mostly
the work of either Lieberman [30] for the scalar setting or Ecker [8] for that of
the immersion.

Since our problems in the setting of scalar graphs are defined on a time
dependent domain, we must consider the possibility of a space time domain
which has a non-smooth boundary. That is to say, the space time boundary
could contain corners: points around which the boundary is no longer C1. These
points are difficult to handle when one is looking to obtain a Hopf lemma
argument, and we present here one way to overcome these difficulties.

(Ch. 3) Short time existence. We present arguments to prove that solutions of the
two basic types of problems we study exist at least for a short time. There
are two types of approaches which we use. The first, following for example
Stahl [35], is to write the evolving hypersurfaces as graphs in the direction of
the normal vector field to the initial hypersurface, suitably extended, and then
appeal to classical theory. The second is to write the surfaces as graphs in
a fixed arbitrary direction in Euclidean space, after which one appeals again
to standard theory. Both the arguments are required for our work, the first
because we can not include the second problem in the first setting and the
second reason since the second setting for the short time existence result is used
for the problem in Chapter 4 to prove preservation of the graph property.

(Ch. 4) Mean curvature flow of graphs with free boundary outside the sphere.
Here we discuss in detail the mean curvature flow of graphs outside a unit sphere
centred at the origin in R3 with a ninety degree contact angle on the sphere and
an additional zero height Dirichlet boundary condition on a fixed circle outside
the sphere.

We present this example in a chapter of its own since due to the perfect sym-
metry of the sphere we are able to prove that the reflectively symmetric mean
curvature flow solution preserves the graph property for all times of existence,
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in a completely different way compared with chapters 5 and 6. This is done
using the second setting of short time existence in which we write our graphs
in a fixed direction in R3, a direction which is always tangent to the sphere and
also perpendicular to one of Killing vector fields of rotation.

The way we prove gradient bounds is a new approach exploiting the linear
and antisymmetric nature of the Killing vector fields. The result excludes the
possibility that the graphs will obtain unbounded gradient on the free boundary.

(Ch. 5) Mean curvature flow of radially symmetric graphs with free bound-
aries. The results of this chapter are obtained regardless of dimension and
with the most general choice of hypersurfaces of contact for the free Neumann
boundary. We consider the evolution of a radially symmetric graph under mean
curvature flow with a free boundary on a fixed hypersurface in Euclidean space
and sometimes also with a fixed height on a separate disjoint Dirichlet boundary.

Up to conditions imposed on the initial graphs and on the fixed contact
hypersurface we prove long time existence and convergence to minimal hyper-
surfaces. Here there are two kinds of long time existence, one where the height
is bounded for all times by the initial values and the second where the height is
bounded by a constant depending on the hypersurface of contact for the Neu-
mann boundary. The main condition imposed on the hypersurface of contact is
rotational symmetry.

The second major result of this chapter is convergence for time to infinity
to constant functions. This complements the convergence to minimal surfaces
given by the long time existence theorem in some cases of initial graphs. It
is obtained by the use of an auxiliary function depending on the graphs for
which one can prove long time existence as well. Again in this chapter we make
extensive use of tools derived from the maximum principle.

The last major result we prove treats the problem which is defined on a set
with two distinct boundaries, a free Neumann boundary and a fixed Dirichlet
height on the second. For this type of problem we prove that for certain types
of hypersurfaces of contact and initial data the graph solution exists only for a
finite time and develops a Type I singularity on the axis of rotation. We use
again the comparison principle with a self similar torus to obtain this theorem,
and we give sufficient conditions on the initial graph for the existence of such a
torus.

(Ch. 6) Mean curvature flow of graphs with free boundaries in Euclidean
space. This chapter treats the most general problem, with no symmetries im-
posed on the evolving graphs and works exclusively with the immersion setting.

As in the case of the radially symmetric graphs the height bound can be
obtained in two different ways. For some hypersurfaces of contact the height is
bounded by initial values for all times. In the general case the height bound is
obtained by the use of rotationally symmetric barriers.

The gradient bound on the Dirichlet boundary, in case we have a problem
with two boundaries, is easily obtained by the usual barrier construction. The
maximum principle thus implies that the first bad behaviour that the gradient of
the graphs can have is on the Neumann boundary. We distinguish between two
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types of bad behaviour on the Neumann boundary, a ‘tilt’ and the movement
onto horizontal parts of the contact surface. A tilt appears when the graphs are
still smooth but the boundary curve turns in such a way that it loses the graph
property on the contact surface. For the case of the tilt we provide a complete
list of properties of the curvature and the derivatives of the curvature of the
graph in such a point. The second bad gradient behaviour on the Neumann
boundary is when the graphs evolve towards a point where the Σ surface is
horizontal. We can exclude such behaviour for the class of graphs defined on
sets in Rn topological equivalent to a disc.

For the mean curvature flow of graphs inside cylinders in R3 we present a
long time existence result and convergence to minimal surfaces. This is the
equivalent, in 3-dimensions of the result found in [23], but obtained without
the integral estimates.

In this chapter we also include a section on n-dimensional graphs in a half
spaces, with a ninety degrees angle condition on a hyperplane. We obtain
uniform bounds on height, gradient and the mean curvature. For initially convex
or concave hypersurfaces we uniformly bound the second fundamental form and
we prove long time existence, independent of the initial height. This is also
followed by the convergence to hyperplanes if the initial height is bounded.
This result is the natural next step for the result on entire graphs found in [9].

This work also contains two appendices. The first appendix presents some additional
results which characterise the tilt behaviour for the problem of Chapter 4, the mean
curvature flow of graphs outside the unit sphere. This showcases a new approach in
locally representing the surfaces generated by the graphs around a point of tilt on the
free boundary.

The second appendix is provided only for the convenience of the reader. It contains
a detailed exposition on how to obtain the well-known result of a gradient bound on
Dirichlet boundaries by the construction of barriers. We have chosen to follow Trudinger
[39] and add various comments on their applicability to our two problems.

There are a series of open questions related to the above results. Can one still obtain
long time existence when one does not impose the fixed Dirichlet boundary, and instead
considers graphs extending off to infinity? Can one exclude the tilt behaviour for general
hypersurfaces of contact Σ? Is there a general way to describe a tilt in higher dimensions
and what kind of conditions must one impose on the initial graphs such that the tilt
behaviour will be prevented? What happens when we replace the fixed hypersurface on
which there is the free boundary moving with a hypersurface generated by the evolution
of another flow? Is it possible to construct graphical hypersurfaces which tilt and lose the
graph property? The study of mean curvature flow with only free Neumann boundaries
is perhaps especially interesting since it represents a more truthful representation of
phenomenons found in nature, giving inspiration for other contact hypersurfaces for the
Neumann boundary.

2. The problems

Although the most general problems are treated in detail only in the last chapter,
since we study the special cases of radially and reflectively symmetric graphs, as well as
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state our short time existence of the problems before that, we include here for the ease
of the reader the definition of the general setting of our problem in n + 1 dimensional
Euclidean space.

Let Σ denote an n-dimensional hypersurface smoothly embedded in Rn+1. The first
type of problem we study is where the solutions possess only a free Neumann boundary
on the fixed hypersurface Σ. This is the problem studied earlier in [35], and we follow
the conventions there. Let Mn to be a smooth, orientable n-dimensional manifold with
smooth, compact boundary ∂Mn and set M0 := F0(Mn), where F0 : Mn → Rn+1 is a
smooth embedding satisfying

∂M0 ≡ F0(∂Mn) = M0 ∩ Σ,

〈νM0 , νΣ ◦ F0〉 (p) = 0 ∀p ∈ ∂Mn,

where we have denoted by νM0 the unit normal to M0.
Let I ⊂ R be an open interval and let Ft = F (·, t) : Mn → Rn+1, t ∈ I be

a one-parameter family of smooth embeddings. The family of hypersurfaces (Mt)t∈I ,
where Mt = Ft(M

n), is said to be evolving by mean curvature flow with free Neumann
boundary condition on Σ if

∂F

∂t
(p, t) = − H(p, t)νMt , ∀(p, t) ∈Mn × I,(1)

F (·, 0) = F0,

F (p, t) ⊂ Σ, ∀(p, t) ∈ ∂Mn × I,
〈νMt , νΣ ◦ F 〉 (p, t) = 0, ∀(p, t) ∈ ∂Mn × I,

where we have denoted by νMt the unit normal to Mt and by H the mean curvature of
Mt. Examples of this problem are the mean curvature flow inside the catenoid neck,
studied in chapters 5 and 6, and the mean curvature flow inside a sphere, studied in
[35].

The second type of problem is when the solutions possess a second boundary on
which we prescribe a fixed height over the plane of definition as a graph. This problem
includes the example we work on in Chapter 4 where the surface Σ is the unit sphere in
R3. We define it as follows.

Let Mn to be a smooth, orientable n-dimensional manifold with two smooth, com-
pact, disjoint boundaries which we denote by ∂NM

n for Neumann boundary and ∂DM
n

for Dirichlet boundary. Set M0 := F0(Mn), where F0 : Mn → Rn+1 is a smooth embed-
ding satisfying

∂NM0 ≡ F0(∂NM
n) = M0 ∩ Σ,

〈νM0 , νΣ ◦ F0〉 (p) = 0 ∀p ∈ ∂NMn,

∂DM0 ≡ F0(∂DM
n).

Let I ⊂ R be an open interval and let Ft = F (·, t) : Mn → Rn+1, t ∈ I be a one-
parameter family of smooth embeddings. The family of hypersurfaces (Mt)t∈I , where
Mt = Ft(M

n), are said to be evolving by mean curvature flow with free Neumann
boundary condition on Σ and an additional fixed Dirichlet boundary condition if it
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satisfies
∂F

∂t
(p, t) = − H(p, t)νMt , ∀(p, t) ∈Mn × I,(2)

F (·, 0) = F0,

F (p, t) ⊂ Σ, ∀(p, t) ∈ ∂NMn × I,
〈νMt , νΣ ◦ F 〉 (p, t) = 0, ∀(p, t) ∈ ∂NMn × I,
F (p, t) = F0(p), ∀(p, t) ∈ ∂DMn × I.

Furthermore in the setup section of every chapter we will define the particular case on
which we are working and impose additional constraints and compatibility conditions as
applicable.





CHAPTER 2

Maximum and comparison principles

1. Introduction

An important tool in the study of second order parabolic problems, in particular here
for the study of mean curvature flow, is the maximum principle. In general the maximum
principle states that the maximum of a solution of a homogeneous linear or quasilinear
parabolic equation in a domain must occur on the boundary of that domain. The part
of the boundary where the maximum will occur is called the parabolic boundary. We
will define and use the parabolic boundary also in the short time existence chapter. The
parabolic boundary includes the domain at initial time. The strong maximum principle
asserts that if the maximum occurs anywhere other than on the parabolic boundary,
then the solution must be constant. This argument can be used to obtain uniqueness
results and also has many other far-reaching consequences in boundary value problems
such as ours.

In this chapter we provide a collection of comparison and maximum principles. We
are particularly interested in two kinds of maximum principles. The first is applicable
to scalar functions, either general functions or radially symmetric one dimensional equa-
tions. Although these are well-known from the literature we believe that a collection of
them will be useful for the comprehension of this work. There is an extensive literature
with various approaches in this direction, however here we will follow Lieberman [30].

The second case is that of mean curvature flow of immersions. In this setting the
most well-known maximum and comparison principles are in the mean curvature flow
of a compact manifold or for the mean curvature flow of an entire graph. In Section
3, dedicated to the mean curvature flow of immersions, we modify these to include the
case of mean curvature flow of a manifold with boundary. Our main reference is Ecker
[10], and for the comparison principle some additional work done by Huisken [22] is also
relevant.

2. Mean curvature flow of graphs

Here we present a set of maximum principles for scalar functions which satisfy a
parabolic evolution equation on a domain in Rn. We follow Lieberman [30] and modify
his results as required. The comparison and maximum principles will be used to obtain
interior estimates, and since we have a boundary value problem, the estimates we give
here will depend upon the boundary values.

We now define the parabolic boundary of a space-time domain as

Ω̃ =
⋃

t∈[0,T )

Ω(t)× {t},

9



10 2. MAXIMUM PRINCIPLES

where Ω(t) ⊂ Rn depends on time. The parabolic boundary PΩ̃ is the set of all points
X = (x, t) in the topological boundary ∂Ω̃ such that for every ε > 0 the parabolic
cylinder Q(X, ε)

Q(X, ε) = {Y ∈ Rn+1 : |Y −X| < ε, t < t0},

where |X| = max{|x|Rn ,
√
|t|}, contains points which are not in Ω̃.

Let us define now the general quasilinear operator

Pu = −∂u
∂t

+ aij(X, u,Du)D2
iju + a(X, u,Du),

for some u defined on Ω̃ ⊂ Rn+1 as above such that u ∈ C2,1(Ω̃). The coefficients aij

and a are assumed to be defined for all values of their arguments, that is aij(X, z, p)
and a(X, z, p) are defined for all (X, z, p) ∈ Ω̃× R× Rn. We say that P is parabolic in
a subset S of Ω̃× R× Rn if the coefficient matrix aij(X, z, p) is positive definite for all
(X, z, p) ∈ S, and we use λ and Λ to denote the smallest and largest eigenvalues of the
matrix aij. Hence we have

λ(X, z, p) |ξ|2Rn ≤ aij(X, z, p)ξiξj ≤ Λ(X, z, p) |ξ|2Rn ,

for all ξ ∈ Rn, and P is parabolic in S if λ > 0 on S. If the ratio Λ
λ

is uniformly bounded

on S then we say that P is uniformly parabolic on S. If S = Ω̃×R×Rn we say that P
is (uniformly) parabolic in Ω̃ and if S = {(X, z, p) : z = u(X), p = Du(X)} for some C1

function u, we say that P is (uniformly) parabolic at u.
Before proving a maximum principle it is useful to prove first a comparison principle.

Therefore we start with the following result.

Theorem 2.1 (Lieberman [30], 1996, Comparison principle). Let P be the quasilin-
ear operator as above. Suppose that aij(X, z, p) is independent of z and that there is an
increasing positive constant k such that a(X, z, p) + k(M)z is a decreasing function of z

on Ω̃× [−M,M ]×Rn for any M > 0. If u and v are functions in C2,1(Ω̃ ∼ PΩ̃)∩C(Ω̃)

such that P is parabolic with respect to u or v, Pu ≥ Pv in Ω̃ ∼ PΩ̃, and u ≤ v in PΩ̃,

then u ≤ v in Ω̃.

Proof. Let M = max{sup |u|, sup |v|}, and define the function w = (u − v)eλt,
where we have λ a constant at our disposal to be chosen later. So we have w ≤ 0 on
the parabolic boundary PΩ̃. Assume there exists a point X0 = (x0, t0) where w takes
its first positive maximum. At this point we have

Dw = Du − Dv = 0,

D2w =
(

D2u−D2v
)
eλt ≤ 0, and

∂w

∂t
=
( ∂u
∂t
− ∂v

∂t

)
eλt + λ(u− v) eλt > 0.

Thus there exists an ε > 0 such that

Du = Dv,

D2u−D2v ≤ 0, and
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∂

∂t
(u− v) ≥ − λ(u− v − ε).

Let R =
(
X0, u(X0),Du(X0)

)
and S =

(
X0, v(X0),Du(X0)

)
. We compute

Pu(X0)− Pv(X0) = aij(R)D2
ij(u− v) +

(
a(R)− a(S)

)
− ∂

∂t
(u− v).

Now using the hypothesis on the existence of the constant k and the above properties
of w at the positive maximum X0 we obtain

Pu(X0)− Pv(X0) ≤
(
k(M) + λ

)
(u− v).

Choosing λ < −k(M) we have u > v and thus

Pu(X0)− Pv(X0) < 0

which contradicts the hypothesis that Pu ≥ Pv. So we cannot have an interior positive
maximum of w, which gives us u ≤ v in Ω̃. �

One result which comes directly from the comparison principle above is the unique-
ness of a solution for a parabolic boundary value problem such as ours. We only state
the result here and invite the reader to consult [30] for more details.

Corollary 2.2 (Lieberman [30], 1996, Uniqueness). Suppose that P is as in The-

orem 2.1 and that u and v belong to C2,1(Ω̃) ∩ C(Ω̃). If Pu = Pv in Ω̃ and u = v on
PΩ̃, then u = v in Ω̃.

One may wonder whether or not we may apply this result to our problem. The
two cases of problems which we must check are the radially symmetric graphs moving
by mean curvature flow and the general mean curvature flow of graphs. The evolution
equations will be defined and explained in the next two chapters. In Chapter 4 we work
with a particular case of graphs outside the unit sphere and in Chapter 5 we treat radially
symmetric graphs with Neumann condition on general rotationally symmetric surfaces.
Here we simply state the relevant evolution equations to determine the applicability of
the comparison principle above. The evolution equation for the general mean curvature
flow of graphs is

∂u

∂t
=
√

1 + |Du|2 div
( Du√

1 + |Du|2
)

(3)

and in case u is a radially symmetric graph function (3) reads

∂ω

∂t
=

d2ω

dy2

1

1 + (dω
dy

)2
+

dω

dy

n− 1

y
.(4)

We now show that the comparison principle above applies to solutions of (3) and (4).

Proposition 2.3 (Comparison principle for the mean curvature flow of radially
symmetric or general graphs). Theorem 2.1 applies to solutions of (3) and (4).

Proof. Let us examine the hypothesis of Theorem 2.1. We start by rewriting (3)
as

∂u

∂t
= δijD

2
iju−

1

1 + |Du|2
D2
iju Diu Dju =

(
δij −

Diu Dju

1 + |Du|2
)

D2
iju,
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where δij is the Kronecker symbol. The coefficients of our operator are aij(X, u,Du) =

δij − DiuDju

1+|Du|2 , which does not depend on u and a = 0. So the operator is parabolic in Ω̃

with λ = 1
1+|p|2 > 0. The result of Theorem 2.1 can be applied in this case.

For the radially symmetric case of mean curvature flow (4) the coefficients of the
operator P are a11(y, ω, dω

dy
) = 1

1+( dω
dy

)2 and a = dω
dy

n−1
y

, both not dependent on ω. Again

the operator is parabolic with λ = 1
1+p2 > 0. The coefficient a is not dependent on

the function ω but only on the point, time and first derivative, which means that the
comparison principle is also applicable for the radially symmetric evolution. This was
to be expected since the case of a radially symmetric graph function is just a particular
case of the general one. �

The next step is to develop a maximum principle using the comparison principle
above.

Theorem 2.4 (Maximum principle). Let P be a parabolic operator whose coefficients
aij(X, z, p) and a(X, z, p) do not depend on z. If Pu ≥ 0 in Ω̃ then

sup
Ω̃

u ≤ sup
PΩ̃

u.

Proof. We apply Theorem 2.1 to u and v = sup
P Ω̃

u. The function v is a constant

and thus trivially satisfies Pv = 0 which gives us Pu− Pv ≥ 0. This together with the
fact that on the parabolic boundary PΩ̃ the hypothesis u ≤ v is satisfied lets us use the
comparison principle. This completes the proof. �

Remark. Note that (3) and (4) satisfy the hypothesis of Theorem 2.4.

Another powerful tool in the study of partial differential equations is the boundary
point lemma of E. Hopf [20], which is normally called the Hopf Lemma. It is obvious
that at a maximum point of a scalar function on a domain the directional derivative
towards that point is non-negative. If this point is a boundary point and the scalar
function satisfies a parabolic inequality, then the following result gives us a strict sign
on the derivative in a direction away from the boundary. Here we prove a Hopf Lemma
where the parabolic boundary is assumed to be at least C1. This result can be found
throughout the literature, for example in [33].

Lemma 2.5 (Protter and Weinberger [33], 1984, Hopf Lemma). Let Ω̃ be a space-time
domain with C1-boundary in which u is a solution of the parabolic inequality

Pu ≥ 0

where P is a quasilinear parabolic operator with smooth coefficients. Suppose that X0 =
(x0, t0) is a point on the boundary ∂Ω̃ where the maximum value M of u occurs. Assume
that there exists a sphere through X0 whose interior lies entirely in Ω̃ and in which
u < M . Also suppose that the radial direction from the centre of the sphere to X is not
parallel to the time axis. Then if ∂

∂ν
denotes any directional derivative away from the

boundary, we have

∂u

∂ν
> 0 at X0.
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Proof. If we assume that X0 is a point where the solution u attains a maximum,
then any directional derivative of u in a direction pointing towards the point X0 will be
non-negative. To obtain the strict sign we have to work a little bit more by considering
a perturbation of the solution u to which we apply the maximum principle. So the proof
of the Hopf lemma is essentially an application of the maximum principle.

We proceed with some notations. Denote the sphere appearing in the hypothesis as
S ⊂ Ω̃ with boundary ∂S and centre at Xs = (xs, ts). Consider now another sphere K
centred at X0 and with boundary ∂K and with radius smaller than |X0 − Xs|Rn+1 =√
|x0 − xs|2Rn + |t0 − ts|2. Here we have denoted by | · |Rn the usual Euclidean norm in

Rn, so for a point x = (x1, . . . , xn) we have |x|Rn =

√
n∑
i

x2
i . We denote by C1 and

C2 the portion of ∂K which is included in S, respectively the portion of the boundary
∂S included in K. We also add the end points of the arcs C1, C2 to obtain a closed
lens-shaped domain which we denote by D. We thus have:

(i) u < M on C2 except at X0.

(ii) u = M at X0.

(iii) There exists a sufficiently small constant µ > 0 such that u ≤M − µ on C1.

If S does not satisfy the first of the relations then a slightly smaller sphere osculating
the boundary at X0 will be contained in the interior of S, and so the condition u < M
will be satisfied everywhere on the arc C2 except the point X0. The second relation is
simply a hypotheses, while third is satisfied since u < M everywhere in the interior of
S and the fact that C1 is a closed subset of S.

Define the following auxiliary function

v(x, t) = e−α|X−Xs|
2
Rn+1 − e−α|X0−Xs|2Rn+1 .

Pick α large enough such that

Pv(x, t) > 0 for all (x, t) on D ∪ ∂D.

Consider now the function

w = u+ εv

and observe that for every positive ε, Pw = Pu + εPv > 0 everywhere in D. From
relation (iii) there exists an ε so small that we have

w < M on C1.(5)

By its definition v = 0 on ∂S, thus also on the arc C2. This together with relation (i)
gives

w < M on C2 except at X0,(6)

and

w = M at X0.(7)
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Now apply the maximum principle for the function w and using (5), (6) and (7) we find
that the maximum of the function w occurs only at the boundary point X0. This gives

∂w

∂ν
=

∂u

∂ν
+ ε

∂v

∂ν
≥ 0(8)

for any outward pointing direction ν of the set D. Denote by n the outer pointing unit
normal to the boundary ∂Ω̃ at X0. Since the given vector ν is also outward pointing
then 〈ν, n〉 > 0. Choose a coordinate system such that Xs is the origin and let r(X) =

|X −Xs|Rn+1 . We may rewrite v as v(x, t) = e−αr
2 − e−α|X0−Xs|2Rn+1 , and we compute

∂v

∂xi
= −2αxie

−αr2

.

Then

∂v

∂ν
= −2αre−αr

2 〈n, ν〉 < 0.

This together with (8) gives us the desired result

∂u

∂ν
> 0 at X0.

�

Unfortunately Lemma 2.5 will not be enough for us since it does not include space-
time domains which have a non-smooth boundary. The fact that the boundary of the
domain of definition for the evolving graphs is time dependent allows the possibility of
space-time domains which have corners. A corner (see Figure 2.1) occurs when the graph
function will move upwards in the time direction and then at a certain time change and
move downwards or the other way around. The boundary of the space time domain
will then form, at the time of changing the direction of motion, a corner. And so the
hypothesis of the interior sphere condition of the above theorem is not satisfied for all
types of domains. Also at a corner of the space-time domain the normal to the boundary
of this domain is not well defined. But here we still have the outer normal to the space
set being well defined. This normal points out horizontally of the space-time set.

This will be sufficient for us to prove that we have a similar result using now the
directional derivative in this restricted normal direction. One may wonder why this is
sufficient. The answer is simple: the general result stated above gives a strict sign on
any directional derivative of the graph function as long as it is in the direction of an
outward pointing vector for the space-time domain Ω̃. When we will apply this result
in later chapters, we will only need to use an outward pointing vector to the boundary
of the space domain only. This boundary normal is just the projection onto the space
domain of the full normal to the boundary of the space-time domain.

Remark (Inner pointing corner points). There are two cases of corner boundary
points. If the corner develops from a movement of the graph decreasing the diameter
of the domain on which it is defined and then changing to either increasing at a certain
time or to becoming constant for some time, then the above interior sphere condition
is satisfied. All we have to do is to decide with what we will replace the unit outer
normal direction, which as discussed above is not well-defined at a corner point. It is
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Figure 2.1. Outer corner and inner corner in the case of radially sym-
metric graphs with a 1-dimensional domain.

sufficient to consider here the radial direction of the interior sphere and use this as the
outer normal. We call these points inner pointing corner points.

With the above observations, we are able to obtain Lemma 2.5 also for domains
with inner pointing corners. The proof is similar to that of Lemma 2.5, with the only
difference being that at an inner pointing corner we replace the unit normal with the
vector νs defined in Proposition 2.6.

Proposition 2.6 (Hopf Lemma in inner pointing corner points). Let Ω̃ be a space-
time domain in which u is a solution of the parabolic inequality

Pu ≥ 0

where P is a quasilinear parabolic operator with smooth coefficients. Suppose that X0 =
(x0, t0) is a point on the boundary ∂Ω̃ where the maximum value M of u occurs. Assume
that there exists a sphere through X0 whose interior lies entirely in Ω̃ and in which
u < M . Also suppose that the radial direction νs from the centre of the sphere to X0

is not parallel to the time axis. Then if ∂
∂ν

denotes any directional derivative satisfying
〈ν, νs〉 > 0, we have

∂u

∂ν
> 0 at X0.

When the corner arises from the domain growing and then shrinking or remaining
constant, we have an outer pointing corner. At these points the interior sphere condition
is no longer satisfied. Fortunately, instead of imposing the interior sphere condition we
may use a lower parabolic frustum around the point of boundary maxima. Following
Lieberman [30], we define

PF (R, µ, Y ) = {X = (x, t) ∈ Rn+1 : |x− y|2Rn + µ2(s− t) < R2, t < s},
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for some Y = Y (y, s) ∈ Rn+1. We also define the unit outer normal we shall use.
Suppose the centre of the frustum is at Y = (y, s). Then at any other point X = (x, s)
at the same time s, define

νX,Y =
x− y
|x− y|Rn

.

Note that this is a vector with n components.
The next result can be applied for any of the three cases of points on the boundary

of the space-time domain, points where the boundary is C1, inner pointing corners and
outer pointing corners.

Proposition 2.7 (Lieberman [30], Hopf Lemma for domains with corners). Let Ω̃
be a space-time domain in which u is a solution of the parabolic inequality

Pu ≥ 0

where P is a quasilinear parabolic operator with smooth coefficients. Suppose that X0 =
(x0, t0) is a point in the boundary ∂Ω̃ where the maximum value M of u occurs in the
following sense: there exists a lower parabolic frustum PF (R, µ, Y ) ⊂ Ω̃ centred at some
point Y = Y (y, t0) ∈ Ω̃ found in the same time slice as X0 and two positive constants,

µ > 0 and the radius R = |x0 − y|Rn such that for all points except X0 in PF (R, µ, Y )
we have u < M . Then for ν = (νX0,Y , 0) we have:

(9)
∂u

∂ν
> 0 at X0.

Proof. The proof follows similarly to that of Lemma 2.5 above. First let us define
r = r(X) =

√
|x− y|2Rn + µ2(t0 − t) everywhere in the parabolic frustum PF . We also

denote the domain where we apply the maximum principle to the auxiliary function as

D = {X ∈ PF (R, µ, Y )| |x−y| > R
2
} ⊂ Ω̃. The parabolic boundary of the domain D we

denote by PD = {X = X(x, t) ∈ D : r(X) = R, t ≤ t0}∪{X = X(x, t), |x−y| = R
2
, t ≤

t0}. Now notice that this boundary PD does not contain the “cap” of D, contained in
the t0 time slice. We are not concerned about this since Theorem 2.4 ensures that it
is sufficient to look at the values on the parabolic boundary only, not the topological
boundary.

We define the function v on D as

v(x, t) = e−αr
2 − e−αR2

,

and as before see that for sufficiently large α we have

Pv ≥ 0

everywhere in D. Let us now define w as

w(x, t) = u(x, t) + εv(x, t),

which satisfies the following parabolic evolution in D

Pw = Pu+ εPv ≥ 0.
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Thus we may apply the maximum principle and obtain that for the function w
any maximum in the space-time domain D appears only on the parabolic boundary
PD. We also know that the only maximum is attained at X0 ∈ PD. This is because,
just as in the previous proof, on the first part of the parabolic boundary PD the set
{X = X(x, t) ∈ D : r(X) = R, t ≤ t0} of the domain D, we have v = 0. Thus w is
equal to u there. On the second part of the parabolic boundary, since the values of u
are strictly smaller than M and away from the point X0 a choice of positive ε > 0 will
ensure that w is smaller than M . Thus w achieves its maximum at the point X0 of the
parabolic boundary of the frustum, just as the function u does.

As in the previous proofs we can now compute the directional derivative for w in
the direction of ν and find that it is positive, since the function w increases towards the
maxima X0:

∂w

∂ν
=
∂u

∂ν
+ ε

∂v

∂ν
≥ 0 at X0.

Again we compute the directional derivative for v:

∂v

∂ν
= νX0,Y ·

( ∂v
∂x1

, . . . ,
∂v

∂xn

)
=

x0 − y
|x0 − y|Rn

·De−α(|x−y|2Rn+µ2(t−s))

= − 2αe−α

|x0 − y|Rn
< 0 at X0,

which clearly gives the desired result

∂u

∂ν
> 0 at X0.

�

Remark (Use of lower parabolic frustum versus the interior sphere condition). As
we can see in the above proposition, the use of the lower parabolic frustum has allowed
the hypothesis on the subset where the maximum is attained to be relaxed, since now
we are able to obtain (9) when we only have information for times immediately prior to
t0. This is the setting which we will normally use, treating maxima which appear at a
certain time without knowing how the graph function will evolve past that time.

Note also that in all the variants of the Hopf Lemmas above the existence of a lower
parabolic frustum can replace the interior sphere condition.

Remark (Relation between the parabolic and topological boundary). Another issue
is the fact that each of the Hopf Lemmas use the topological boundary of the space-time
domain Ω̃ in which we have the parabolic evolution of the graphs, not the parabolic
boundary PΩ̃. The major application of the Hopf lemma is to obtain some information
on the derivative normal to the boundary at a boundary maxima. We know by the
maximum principle that the boundary values are greater than the interior values. The
parabolic boundary is in some cases a strict subset of the topological boundary. This
means that in some cases Proposition 2.7 provides information on more than just the
parabolic boundary.
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Remark. From now on when we refer to the ‘Hopf Lemma’, we invoke Proposition
2.7. Keep in mind however that things are simpler at some of the boundary points which
we shall consider.

3. Mean curvature flow of immersions

Here we present results for the mean curvature flow of immersions, which can of
course also be used in the particular case when the immersion satisfies a graph condition.
These results are used in Chapter 6, where we treat the mean curvature flow of general
graphs.

We start this section with a result used also in [10], a weak maximum principle for
the mean curvature flow of immersions. The proof of this maximum principle follows the
usual steps of a regular maximum principle but the required hypotheses are generalised
for immersions. We present here the compact version and an easy extension to the case of
compact hypersurfaces with boundary. We work first with functions defined intrinsically
on the evolving hypersurfaces.

Theorem 2.8 (Weak maximum principle, compact case). Let (Mt)t∈(t0,t1) be a so-
lution of mean curvature flow consisting of hypersurfaces Mt = Ft(M

n) where F (·, t) =
Ft : Mn → Rn+1 and Mn is compact. Suppose h : Mn × [t0, t1) → R is sufficiently
smooth for t > t0, continuous on Mn × [t0, t1], and satisfies an inequality of the form( ∂

∂t
−∆Mt

)
h ≤ a · ∇Mth.(10)

Then

(11) max
Mn

h(·, t) ≤ max
Mn

h(·, t0)

for all t ∈ [t0, t1]. For the vector a : Mn × [t0, t1) → Rn+1 we only require that it is
well-defined and bounded in a neighbourhood of all maximum points of h.

Proof. If we have h satisfying (10) then for any ε > 0 the function h̃ = h − εt,
which agrees with h at time 0, satisfies the strict inequality( ∂

∂t
−∆Mt − a · ∇Mt

)
h̃ < 0.(12)

At a point where for the first time max
Mt

h̃ reaches a value larger than max
M0

h the standard

derivative criteria at a local maxima says that

∂

∂t
h̃ ≥ 0,

∂ih̃ = 0,

∂i∂jh̃ ≤ 0,

for any 1 ≤ i, j ≤ n. Now we can compute the tangential derivative on Mt and the
Laplacian on Mt by using Appendix A of [10] and obtain

∇Mth̃ = gij∂ih̃∂jF = 0,

∆Mth̃ = divMt∇Mth̃ = gij
(
∂i∂jh̃− Γkij∂kh̃

)
≤ 0,
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where gij is the inverse metric on Mt with 1 ≤ i, j ≤ n, ∂iF are vectors tangent to Mt

taken with respect to a choice of local coordinates on Mn, and Γkij are the corresponding
Christoffel symbols on Mt. This, together with the above sign on the time derivative,
gives ( ∂

∂t
−∆Mt − a · ∇Mt

)
h̃ ≥ 0,

which contradicts (12). Hence h̃ is bounded by the initial values of h at all positive
times. Letting ε→ 0 we see that the same is true for h. �

It is easy to see that in the case of compact solutions of mean curvature flow with
boundary the same can be done and then (11) will depend upon the boundary values
also. Below we state this extension of Theorem 2.8.

Theorem 2.9 (Weak maximum principle, boundary case). Let (Mt)t∈(t0,t1) be a so-
lution of mean curvature flow consisting of hypersurfaces Mt = Ft(M

n) where F (·, t) =
Ft : Mn → Rn+1 and Mn has a smooth boundary ∂Mn. Suppose h : Mn × [t0, t1) → R
is sufficiently smooth for t > t0, continuous on Mn × [t0, t1] and satisfies an inequality
of the form (10). Then

sup
Mn

h(·, t) ≤ max
{

sup
Mn

h(·, t0), sup
∂Mn

h(·, t)
}

for all t ∈ [t0, t1]. For the vector a : Mn × [t0, t1) → Rn+1 we only require that it is
well-defined and bounded in a neighbourhood of all maxima of h.

The same may be shown for functions defined extrinsically. That is, where h(p, t) =
f(X, t) andX = F (p, t) is the position vector. The two types of arguments are equivalent
and the condition (10) is modified to include the full time derivative( d

dt
−∆Mt

)
f ≤ a · ∇Mtf.(13)

Following the work done by Huisken [22] we give now a comparison principle for two
solutions of mean curvature flow with free boundaries given by a fixed contact angle of
ninety degrees on a fixed surface Σ. The only modifications required are to deal with
possible contact of the evolving hypersurfaces on the boundary.

Theorem 2.10 (Comparison principle for solutions of mean curvature flow with
boundaries). Let M1 and M2 be two smooth solutions of mean curvature flow (1) or (2)
for time 0 ≤ t ≤ t1. If M1 and M2 are disjoint at time t = 0 then they remain disjoint
for the whole interval 0 ≤ t ≤ t1.

Proof. Suppose there exists a time t0 > 0 such that M1,t0 and M2,t0 touch for the
first time. There are two cases. Either the intersection point X is in the interior of the
hypersurfaces, or it is a boundary point.

The interior case may be dealt with exactly as in the proof for closed hypersurfaces
presented in [22]. For the convenience of the reader we present it below.

Let S be some fixed reference hyperplane which is tangent to the surfaces M1,t0 and
M2,t0 at the point X and take Gaussian coordinates in a neighbourhood of X ∈ S. Then
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locally around X we can write M1,t and M2,t for t ∈ (t0− ε, t0 + ε) as graphs of functions
u1(t) and u2(t) on S. The unit normal to Mi is given by

νi = (1 + |Dui|2)−
1
2 (−Dui, 1),

and ui satisfies the evolution

∂

∂t
ui = (1 + |Dui|2)

1
2Hi,

where Hi is the mean curvature of Mi. We also have that Du1 = Du2 = 0 at X since
either one of them attains an interior minimum and the other an interior maximum or
they both attain an interior maximum or minimum. Before time t0 we had u1− δ ≥ u2,
for some δ > 0 by assumption. Since u1 − δ and u2 satisfy the hypothesis of Theorem
2.1 in a neighbourhood of X, we obtain a contradiction to δ ≤ 0 at X.

The second case is when X is a boundary point, where the hypersurfaces meet on
Σ perpendicularly. Choose again a reference hyperplane S which is tangential to M1,t0

and M2,t0 at the boundary point X ∈ ∂S ⊂ Σ. Once again we use local Gaussian
coordinates around the point X and write our two surfaces as graphs u1 and u2 on S.
On the boundary of the two surfaces we have that 〈νMi

, νΣ〉 = 0. Let us choose our
coordinate system around X such that we have

νΣ|∂S =
(
ν∂S, 0

)
.

This transforms the boundary condition for the two graphs ui into 〈Dui, ν∂S〉 = 0. So
the two graphs satisfy the following evolution equation

∂

∂t
ui = (1 + |Dui|2)

1
2 Hi on the interior S

〈Dui, ν∂S〉 = 0 on the boundary ∂S.

This implies, using Proposition 2.7, that u1 and u2 have at the time of touching both
negative and positive values, since otherwise the boundary point X where u1 and u2 are
zero will be a maximum or minimum. This contradicts the previous argument which
excludes interior points where the hypersurfaces touch. This completes the two cases of
the proof. �

Finally we add a Hopf Lemma to our collection of maximum principles for hypersur-
faces moving by mean curvature flow. The proof follows similarly to that of Proposition
2.7, where instead of using the maximum principle Theorem 2.4 we invoke Theorem 2.9
above. Here we shall use the extrinsic definition for a function.

Lemma 2.11 (Hopf Lemma for mean curvature of hypersurfaces). Let (Mt)t∈(t0,t1)

be a smooth solution of mean curvature flow consisting of hypersurfaces Mt = Ft(M
n)

where F (·, t) = Ft : Mn → Rn+1 and Mn has a smooth boundary ∂Mn. Suppose

f :
⋃

t∈[t0,t1)

Mt×{t} → R is sufficiently smooth for t > t0, continuous on Mt and satisfies

an inequality of the form (13). Take p∗ ∈ ∂Mn and a time t∗ such that at the point
X∗ = F (p∗, t∗), f attains a first maximum. Then at this point we have

∇Mt∗
ν∂Mt∗

f |X∗ > 0,
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where ν∂Mt is the normal to the boundary ∂Mt. In case X∗ is a point where f attains a
first minimum then the sign of the inequality changes.

Remark. The smoothness of Mt together with the assumption that we work only in
a first maximum or minimum ensures that we have the existence of a parabolic frustum.





CHAPTER 3

Short time existence for the mean curvature flow of graphs
with a free boundary

1. Introduction

The first step in solving the graph problems (1) and (2) is to show that the solution
exists for a short time. Most importantly for us are the applications of short time
existence. In particular, later we investigate long time existence, either proving height
and gradient bounds which permit us to repeatedly and indefinitely apply the short time
existence theorem indefinitely, or showing that our graph will cease to exist after some
finite time.

The result of short time existence for hypersurfaces moving by mean curvature flow
with a free Neumann boundary on a fixed hypersurface Σ is known, at least, from the
work of Stahl [35]. The author writes the moving surfaces for a short time as graphs over
the initial surface and obtains short time existence for the linearised problem using the
results of Hamilton [18], and quoting regularity theory for parabolic problems (found in
[27] for example) he obtains the desired short time existence result. Due to the fact that
the problem (2) does not satisfy the conditions of the short time existence theorem found
in [35] we present in this chapter another approach to proving short time existence for
free boundary problems. We must choose a different reference for the ‘standard parabolic
theory’, and use the book of Lieberman [30].

There are two approaches which we use. In the first we write our problem as a graph
in a fixed direction over a fixed subset of Rn. This approach is new and it is used to
obtain preservation of the graph property in Chapter 4. The second is the well-known
technique of writing the evolving surfaces as graphs in the direction of the normal to the
initial hypersurface. Both of the settings can be used to obtain the short time existence
result for any of our problems in the next chapters, up to conditions on the initial data.
We have to mention here that the second setting, where we consider graphs over the
initial hypersurface, is not enough to provide us with a long time existence result since
the direction of the graph definition will change with the evolving surfaces; nevertheless
it is an important tool. In the next section we start by presenting in detail the first
approach. We then briefly summarise the setup of the second setting and invite the
reader to follow the details in [35]. Finally, we explain the way one is able to use the
standard parabolic theory found in [30] to obtain a short time existence result which
fits both of the settings and applies to each of the problems.

Some of our work is restricted to surfaces, that is n = 2, such as in Chapters 4 and
some sections in Chapter 6. But the existence results below are essentially independent
of the dimension of the evolving hypersurface. In the next section we use the definition

23
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of the problems (1) and (2), but when working in the 2-dimensional setting we refer to
the definitions in Chapter 6, that is (54) and (56).

2. Setup

Let us first note that writing our surfaces as graphs in the e3 = (0, 0, 1) ∈ R3 direction
gives rise to a problem defined on a domain with time dependent boundary. This makes
our short time existence results more complicated, especially in the case of combined
boundary conditions where the domain is an annulus with a changing width. Both of the
approaches in the settings we present overcome this problem. The difference between
them is the choice of direction for our graphs.

For the first setting we choose a vector field fixed in time which allows us to define
our graphs over a fixed domain in R2. (Here and in what follows we identify R2 with
the plane span{e1, e2} = {ae1 + be2 : a, b ∈ R} ⊂ R3.) The vector field is completely
determined by the surface Σ. The Neumann boundary moves freely on the fixed surface
Σ and we consider only surfaces Σ which are rotationally symmetric in the Killing vector
field direction K3 : R3 → R3 given by K3(x1, x2, x3) = (x2,−x1, 0). For the definition
and properties of the Killing vector fields we refer the reader to Chapter 4. We can
therefore find the perfect candidate for our graph direction as the vector field in R3

which is tangent to Σ and also perpendicular to K3:

ξ|Σ = K3 × νΣ ∈ TΣ,

where we denote by × the vectorial product. For example when Σ is a sphere we have

ξ(x1, x2, x3) =
(
− x1x3, −x2x3, x

2
1 + x2

2

)
= (−x1)

(
x3, 0, −x1

)
+ (−x2)

(
0, x3, −x2

)
= (−x1) K1(x1, x2, x3) + (−x2) K2(x1, x2, x3),

where K1 and K2 are the other two Killing vector fields of rotation in R3. Note that ξ
vanishes at some points on certain surfaces Σ but this will not cause a problem later.
Define ΩN = Br

(
(0, 0)

)
⊂ R2 and ΩDN = BR

(
(0, 0)

)
∼ Br

(
(0, 0)

)
⊂ R2. These sets

serve as the domain of definition for the graph function: the first for problem (54) and
the second for (56), in Chapter 6. We use R for the radius of the fixed boundary on
which we have the Dirichlet boundary condition and use r to denote the radius of the
ball obtained by the intersection of the rotational symmetric surface Σ with R2.

Examples include the mean curvature flow of graphs inside the catenoid neck where
r = 1, and mean curvature flow outside the unit sphere with a fixed Dirichlet boundary
condition on the circle of radius R. We denote the two choices of sets by a generic Ω
and in the future we differentiate between them explicitly only when it is not clear by
the context. The boundary of Ω consists of either one connected component or two
disjoint connected components. We denote by ∂ΩD the Dirichlet boundary and by ∂ΩN

the Neumann boundary.
If M0 = F0(M2) is the smooth initial immersion of M2 into R3 satisfying the initial

condition

〈ξ, νM0〉 > 0(14)
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and (x1, x2) are coordinates on Ω, let Φ be the flow associated with this vector field
ξ such that Φ(x1, x2, a) is the point in R3 which one obtains beginning at (x1, x2) and
travelling a distance |a| in the direction of the vector field ξ if a > 0 or in the direction
of the vector field −ξ if a < 0. That is

Φ(x1, x2, a) =

∫ a

0

∂Φ

∂µ
(x1, x2, µ)dµ =

∫ a

0

ξ
(
Φ(x1, x2, µ)

)
dµ.

Using this vector field we can write our initial surface as

M0 = {X ∈ R3 : X = Φ(x1, x2, w0(x1, x2)), (x1, x2) ∈ Ω},
where w0 : Ω→ R is the scalar function given by w0(x1, x2) = a, the unique a such that
Φ(x1, x2, a) is contained in M0. The uniqueness of a is guaranteed by the fact that ξ is
not singular. In the case ξ is singular we consider the second setting for the short time
existence argument.

Consider for ε > 0 small

U ε := {Φ(x1, x2, a) : (x1, x2) ∈ Ω and |Φ(x1, x2, a)− Φ(x1, x2, w0(x1, x2))|R3 < ε},
a tubular neighbourhood of M0. For X = (x1, x2, x3) = Φ(x1, x2, a), the coordinates
(x1, x2) represent the ‘foot point’ in Ω in which the flow starts and x3 = a is the signed
distance one travels from this foot point along the vector field ξ. We say that a is the
length of the flow line between the foot point in Ω and the point X ∈Mt. At each point
in U ε, the set {ẽ1 = e1, ẽ2 = e2, ẽ3 = ξ} defines a basis for TR3. This can be seen from the
fact that we consider initial graphs, which implies that for some neighbourhood around
the boundary of M0 the contact surface Σ is not horizontal, i.e. ξ cannot be represented
as a linear combination of e1 and e2. This basis induces a Riemannian metric on R3

with components

γαβ = 〈ẽα, ẽβ〉 ,
and corresponding Christoffel symbols

Γ̃ραβ =
1

2
γρσ
(
∂αγσβ + ∂βγσα − ∂σγαβ

)
,

where α, β = 1, 2, 3. In the above and in what follows we use the Einstein summation
convention, unless otherwise noted. In this basis we write the normal to the fixed surface
Σ as

νΣ = γαβναΣẽβ,

where ναΣ = ναΣ(x1, x2, s), for each α = 1, 2, 3 are the component functions of νΣ. For
a short time δ > 0 we can write in these coordinates the evolving surfaces Mt as the
graphs of scalar function w(·, t)

Mt = {X ∈ R3 : X = Φ(x1, x2, w(x1, x2, t)), (x1, x2) ∈ Ω}.

where w : Ω× [0, δ]→ R. In these coordinates our problem becomes

∂w

∂t
(x1, x2, t) = −1

s
H, ∀(x1, x2, t) ∈ Ω× [0, δ],(15)

2∑
i=1

νiΣDiw = ν3
Σ, ∀(x1, x2, t) ∈ ∂ΩN × [0, δ],
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w(x1, x2, t) = w0(x1, x2), ∀(x1, x2, t) ∈ ∂ΩD × [0, δ]

)
,

w(·, 0) = w0,

where we define s : Ω× [0, δ]→ R by

s(x1, x2, w(x1, x2, t)) = 〈νw, ξ〉(x1, x2, w(x1, x2, t)),

and H is the mean curvature of the graph function w. The last of the boundary condi-
tions only comes in for the combined boundary condition problem (56) and should be
ignored for the pure Neumann problem (54).

Remark. This setting is mostly utilised in the study of the mean curvature flow
of graphs outside a sphere, cf. Chapter 4. There it is used in the proofs of both short
and preservation of the graph property. Despite this, we note that if the initial surface
satisfies (14), then we can guarantee short time existence for any of the other problems
we consider also. This is not contained in nor supersedes the classical notion of graphs.

The second type setting we consider here can be found in [35], and is perhaps by
now a standard technique for obtaining short time existence for geometric flows of all
flavours. It is when we write our evolving surfaces Mt as graphs over the initial surface
M0 in the direction normal to M0. For us the situation is made slightly more complex
by the presence of Σ. To this end, in the notation of the previous section, we set ξ to
be the normal of the initial surface and further restrict it to be tangential to Σ. That is

ξ|M0 = νM0 , ξ|Σ ∈ TΣ, and |ξ|R3 = 1.

We omit the details since they are carefully explained in [35]. In this setting our problems
become equivalent to the evolution of a scalar function w : M2 × [0, δ]→ R given by

∂w

∂t
(x1, x2, t) = −1

s
H, ∀(x1, x2, t) ∈M2 × [0, δ],(16)

2∑
i=1

νiΣDiw = ν3
Σ, ∀(x1, x2, t) ∈ ∂M2

N × [0, δ],(
w(x1, x2, t) = 0, ∀(x1, x2, t) ∈ ∂M2

D × [0, δ]
)
,

w(·, 0) = 0,

where we have used the same conventions as above.
The following proposition from [35] computes in detail some important quantities

we use to define our graph evolution.

Proposition 3.1 (Stahl [35], 1994). Let F : Ω→ R3, F (x1, x2) := (x1, x2, w(x1, x2, t)).
Then we have the following properties for the surfaces defined by this immersion:

(1) The standard tangent vectors of F (Ω) are

Xk(x1, x2) =
(

0, . . . , 1, 0, . . . ,Dkw
)

(x1, x2) for k = 1, 2

(2) The unit normal vector field is given by

ν(x1, x2) = s(x1, x2, t)
(
γαβ(x1, x2, w(x1, x2, t))

)−1

1≤α,β≤3
·
(
− D1w,−D2w, 1

)T
,
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where T denotes the vector transpose operator, and also we have

s(x1, x2, w(x1, x2, t))
−1 =

√
γ3,3 − 2γk,3Dkw + γklDkw Dlw

(3) The following equalities hold

〈ν, ek〉 (x1, x2, w(x1, x2, t)) = −s(x1, x2, w(x1, x2, t))Dkw(x1, x2, t) for k = 1, 2,

s(x1, x2, w(x1, x2, t)) = 〈ν, ξ〉 (x1, x2, w(x1, x2, t)),

(4) The first and second fundamental forms of F (Ω) are given by

gij(x1, x2) = (γij + γi,3Djw + γ3,jDiw +DiwDjw)(x1, x2) for i, j = 1, 2,

hij(x1, x2) = s (−DiDjw + Γ̃kαβX
α
i X

β
j Dkw − Γ̃3

αβX
α
i X

β
j )(x1, x2) for i, j = 1, 2,

where in the above we have used the Einstein summation convention and the convention
that the Latin indices α, β range from 1 to 3.

The next proposition gives the aforementioned equivalence between the solutions of
(15) and (16) defined above and the mean curvature flow defined in (54) and (56).

Proposition 3.2 (Stahl [35], 1994). For every solution of (15) or (16) there exists
a solution of (54) or (56), such that the two solutions are equivalent up to tangential
diffeomorphisms.

3. Short time existence for Neumann and combined boundary problems

In this section we present one theorem which guarantees the existence of a solution
to (54) and (56) from Chapter 6, for a short time. In this section we again follow [30].
First we introduce some notation, then define the general problem for which we state
the short time existence theorem. Finally we show how one may apply the theorem to
the problems (15) and (16).

Let Ω̃ ⊂ Rn+1 with n ≥ 1 be a bounded, open, connected subset of Euclidean space.
Points in Ω̃ are denoted by X = (x, t) ∈ Ω̃, where x = (x1, · · · , xn) ∈ Rn. The norms in
Rn and Rn+1 for a point X = (x1, · · · , xn, t) = (x, t) are given by

|x|Rn =

√√√√ n∑
i=1

x2
i , and |X| = max

{
|x|Rn ,

√
t
}
.

For a point X0 = (x0
1, · · · , x0

n, t0) ∈ Ω̃ and a positive number ε > 0 we define the cylinder

Q(X0, R) = {X ∈ Rn+1 : |X −X0| < ε, t < t0}.

We define the parabolic boundary PΩ̃ to be the set of all points in X0 ∈ ∂Ω̃ such that
for any ε > 0 the cylinder Q(X0, ε) contains at least one point not in Ω̃. In the special
case that Ω̃ = Ω × [0, T ) for some Ω ⊂ Rn and T > 0, PΩ̃ is the union of the sets
BΩ̃ = Ω× 0 (which is the bottom of Ω̃), SΩ̃ = ∂Ω× (0, T ) (which is the side of Ω̃) and
CΩ̃ = ∂Ω× 0 (which is the corner of Ω̃).

We observe that our problems (15) and (16) are in fact defined on this type of
cylindrical domain, since after redefining the graphical immersions as graphs in the
ξ direction for (15), or in the direction of the initial normal for (16), the domain of



28 3. SHORT TIME EXISTENCE

definition is no longer time dependent. This contrasts directly with the case when we
write the initial surface as a graph in the e3 direction.

For completeness, we note that in the case where Ω̃ is a set in Rn+1 these special
sets are defined as follows. BΩ̃ is the set of all points X0 = X0(x0, t0) ∈ PΩ̃ such

that there is a positive R with Q
(
(x0, t0 + R2)

)
⊂ Ω̃, CΩ̃ =

(
BΩ̃ ∩ PΩ̃

)
∼ BΩ̃ and

SΩ̃ = PΩ̃ ∼
(
BΩ̃ ∪ CΩ̃

)
.

The proof of short time existence for quasilinear partial differential equations follows
in two steps. First we obtain the existence of a solution for the associated linear problem,
and then extend the existence to the quasilinear case through a fixed point argument.

So let us first define a linear operator L acting on functions u : Ω̃→ R by

Lu = − ∂

∂t
u + aij(X) D2

iju + bi(X) Diu + c(X) u,(17)

where we have kept the sign convention used in [30]. We also assume that L is a weakly
parabolic operator:

aij(X) ξi ξj ≥ 0 for all ξ ∈ Rn and all X ∈ Ω̃.

Our problems may be viewed as possessing an oblique derivative condition on the Neu-
mann boundary, and so we shall also define the boundary operator. For a point X0 ∈ PΩ̃

we say that an (n+1)−vector β points into Ω̃ if βn+1 ≤ 0 and there is a positive constant

ε such that X0 + hβ ∈ Ω̃ if 0 < h < ε. Denote the full space time derivative of u to as

∂u =
(

Du, ∂
∂t
u
)

. The boundary operator associated with L is defined as

Mu = 〈β, ∂u〉+ β0u,(18)

for some vector field β ∈ Rn+1 such that β points into Ω̃ for all X0 ∈ PΩ̃ and some

scalar function β0. One can guarantee that β points into Ω̃ by assuming that PΩ̃ ∈ Hδ

for some δ ∈ (1, 2) and that

〈β, γ〉 ≥ χ,(19)

for some positive constant χ, where γ(X0) is the unit inner normal to the boundary of
Ω̃(t0) = {x ∈ Rn : (x, t0) ∈ Ω̃} at X0.

We now define the above mentioned Hölder space Hδ, and other further spaces and
norms which we shall require. For α ∈ (0, 1], we say that the function f defined on
Ω̃ ⊂ Rn+1 is Hölder continuous at X0 with exponent α if the quantity

[f ]α;X0 = sup
X∈Ω̃∼{X0}

|f(X)− f(X0)|
|X −X0|α

is finite. If the quantity is finite for α = 1, we say that f is Lipschitz continuous at X0.
Also it is easy to see that if f is Holder continuous at a point, then it is also continuous
there. If the semi-norm

[f ]α;Ω̃ = sup
X0∈Ω̃

[f ]α;X0

is finite, we say that f is uniformly Hölder continuous in Ω̃.
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Remark. Since functions are Lipschitz at any point of differentiability, we see that
Hölder continuity can be viewed as a sort of fractional differentiability, as explained in
[30]. In addition, the above definition is in agreement with the basic “rule” from second
order parabolic partial differential equations, that “two space derivatives are equivalent
to one time derivative”, because the exponents with respect to x in the definition of [f ]
are twice those with respect to t. To see this simply recall the norms defined on Rn and
Rn+1 from above.

Let us now define some higher order Hölder semi-norms. For β ∈ (0, 2] let

< f >β;X0 = sup
{ |f(x0, t)− f(X0)|

|t− t0|
β
2

: (x0, t) ∈ Ω̃ ∼ {X0}
}

and

< f >β;Ω̃ = sup
X0∈Ω̃

< f >β;X0 .

Then for any a > 0, such that a = k+α, where k is a non-negative integer and α ∈ (0, 1]
we can define

< f >a;Ω̃ =
∑

|β|+2j=k−1

< Dβ
x Dj

tf >α+1,

[f ]a;Ω̃ =
∑

|β|+2j=k

[
Dβ
x Dj

tf
]
α
,

|f |a;Ω̃ =
∑

|β|+2j≤k

sup |Dβ
x Dj

tf | + [f ]a;Ω̃+ < f >a;Ω̃ .

We can verify that |f |a defines a norm on Ha(Ω̃) =
{
f : Ω̃ → R : |f |a < ∞

}
which

makes Ha(Ω̃) a Banach space.
We also define some weighted Hölder norms; all of these definitions can be found in

Chapter IV of [30]. We denote by d : Ω̃→ R the distance from the parabolic boundary,
defined as

d(X0) = inf
{
|X −X0| : X ∈ PΩ̃ and t < t0

}
,

and we set d(X, Y ) = min{d(X), d(Y )}. To simplify the notation we also make the
following definitions

[f ]0 = [f ]∗0 = osc
Ω̃
f,

|f |0 = |f |∗0 = sup
Ω̃

|f |.

For b ≥ 0, we define

|f |(b)0 = sup
Ω̃

db|f |,

and for b < 0 we define

|f |(b)0 = (diam Ω̃)b sup
Ω̃

|f |.
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If a > 0 and a+ b ≥ 0 and we have as before a = k + α, we define

[f ](b)a = sup
X 6=Y in Ω̃

∑
|β|+2j=k

d(X, Y )a+b |Dβ
xD

j
tf(X)−Dβ

xD
j
tf(Y )|

|X − Y |α
,

< f >(b)
a = sup

X 6=Y in Ω̃,x=y

∑
|β|+2j=k−1

d(X, Y )a+b |Dβ
xD

j
tf(X)−Dβ

xD
j
tf(Y )|

|X − Y |1+α
,

|f |(b)a =
∑

|β|+2j≤k

|Dβ
xD

j
tf |

(|β|+2j+b)
0 + [f ](b)a + < f >(b)

a

and if a + b < 0, we define [f ]
(b)
a and < f >

(b)
a by replacing d(X, Y ) with diam Ω̃. We

can also define |f |∗a = |f |(0)
a , and we note that using the above defined norms we have

H∗a and H
(b)
a (with the obvious definitions) to be also Banach spaces.

The next theorem is an interpolation inequality which is used in the proof of the
short time existence theorem. The proof and a generalised version of it can be found in
Lieberman [30], Chapter IV.

Theorem 3.3 (Lieberman [30], 1996). Let 0 ≤ a < b and let σ ∈ (0, 1). Then there
is a constant C depending only by b such that

|u|σa+(1−σ)b ≤ C |u|σa |u|1−σb .

We also need to explain what it means that our parabolic boundary is included in one
of the above Banach spaces, which is one of the hypotheses of the short time existence
theorem. For δ ≥ 1, we say that PΩ̃ ∈ Hδ if BΩ̃ ⊂ {t = t∗} for some t∗ and if there

is an ε > 0 such that for any X0 ∈ SΩ̃, there are a function f ∈ Hδ(Q
′
(X0, ε)) and a

coordinate system centred at X0 such that

Ω̃ ∩Q(X0, ε) = {Y ∈ Q(X0, ε) : yn > f(y
′
, s)}

in this coordinate system. Here we have denoted by Q′ the cylinder in Rn (following the
same definition of cylinders in Rn+1) and by y′ the first n − 1 components of the point
Y ∈ Rn+1. The following result found in [30], Chapter V, gives us a short time solution
for the linear problem.

Theorem 3.4 (Lieberman [30], 1996). Let PΩ̃ ∈ Hδ for some δ ∈ (1, 2), suppose
that there exist positive constants A, B, C, λ, Λ such that the coefficients of the operator
L satisfy

aijξiξj ≥ λ|ξ|Rn for all ξ ∈ Rn and all X ∈ Ω̃,
n∑
i=1

aii ≤ Λ,

|aij|α ≤ A,

|bi|α ≤ B,

|c|α ≤ C,
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for some α ∈ (0, 1) and that the coefficients of the boundary operator M satisfies (19)
and the following conditions

|βj|δ−1 ≤ B1 χ for j = 1, . . . , n+ 1,

|β| ≤ µ 〈β, γ〉 ,

for some positive constants µ and B1 and χ and γ as above. If f ∈ H2−δ
α , Ψ ∈ Hδ−1 and

φ is a continuous function on BΩ̃ ∪ CΩ̃, then there is a unique solution of the problem

Lu = f in Ω̃,

Mu = Ψ on SΩ̃,

u = φ on BΩ̃.

If also φ ∈ Hδ(BΩ̃) and Mφ = Ψ on CΩ̃, then u ∈ H−δ2+α and there is a constant C

determined only by A, B, B1, C, n, t, α, δ and Ω̃ such that

|u|−δ2+α ≤ C
(
|f |2−δα +

|Ψ|δ−1

χ
+ |φ|δ

)
.

After getting a solution for the linear boundary problem, we can go a bit further and
obtain a solution for quasilinear operators by a fixed point argument. Details of this
procedure can be found in Chapter VIII of [30].

For the convenience of the reader we also include here the definition of a general
quasilinear operator

Pu = −∂u
∂t

+ aij(X, u,Du)D2
iju + a(X, u,Du),(20)

for some u defined on Ω̃ ⊂ Rn+1 as above such that u ∈ C2,1(Ω̃). The coefficients aij

and a are assumed to be defined for all values of their arguments, that is aij(X, z, p) and
a(X, z, p) are defined for all (X, z, p) ∈ Ω̃× R× Rn.

Before discussing the existence result we give the relevant definitions for the work in
this chapter. We say that P is parabolic in a subset S of Ω̃ × R × Rn if the coefficient
matrix aij(X, z, p) is positive definite for all (X, z, p) ∈ S, and we use λ and Λ to denote
the smallest and largest eigenvalue of the matrix aij. Hence we have

λ(X, z, p) |ξ|2Rn ≤ aij(X, z, p)ξiξj ≤ Λ(X, z, p) |ξ|2Rn ,

for all ξ ∈ Rn, and P is parabolic in S if λ > 0 on S. If the ratio Λ
λ

is uniformly bounded
on S then we say that P is uniformly parabolic on S.

Also we require the above defined quasilinear operator P to have smooth coefficients
and be parabolic in the sense that for any bounded subset K ⊂ Ω̃×R×Rn we suppose
the existence of a positive constant λK such that

λK |ξ|2Rn ≤ aij(X, z, p)ξiξj,

for any (X, z, p) ∈ K and any ξ ∈ Rn. The maps X → aij(X, z, p) and X → a(X, z, p)
must be Hölder continuous if u is smooth enough. This is satisfied if there exists α ∈
(0, 1) such that we have aij and a are in Hα(K) for any bounded subset K of Ω̃×R×Rn.
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The following Brouwer fixed point theorem is used to pass from the linear results to
the quasilinear ones. We omit the proof of this theorem and invite the reader to follow
[30], Chapter VIII for details.

Theorem 3.5 (Lieberman [30], 1996). Let S be a compact, convex subset of a Banach
space B and let J be a continuous map of S into itself. Then J has a fixed point.

If the coefficients of the operator are independent of u and Du, as in the linear case,

then the result of Theorem 3.4 provides us with a H
(−δ)
2+α solution of the boundary value

problem for any δ ∈ (1, 2) for boundary data which are smooth enough. If we have that
the boundary data is in H2+α then the solution is in H2+α and the same results can be
obtained for the quasilinear Dirichlet boundary value problem if Ω̃ is small enough in
the time direction using the fixed point argument from above.

The situation is more complicated for the oblique derivative boundary value problem,
which is the case for our problems (15) and (16). The usual method for the Dirichlet
boundary value problem of getting existence of a solution for the quasilinear problem
from estimates on the linear problem solution by applying a simple fixed point argument
does not work for the oblique derivative boundary problem. The idea of the proof is
to construct a map defined on a convex set, which takes values in the same set and
then apply the fixed point theorem and obtained a fixed point which gives us a solution
of the quasilinear problem. Proving that the map takes values into its own domain is
the key goal. For the Dirichlet problem Lieberman [30], uses the fact that Lipschitz
functions with compact support are bounded by the diameter of the set of definition.
The compact support is obtained by subtracting the boundary values from the solution.
This argument does not work for an oblique derivative boundary value problem in a
general space time domain.

In this case one can use a more complicated version of a fixed point argument, as is
also found in Lieberman [30], called Caristi theorems. We will not follow this approach
since we notice that there is a simpler way for our class of problems. The issues arising
from the fact that we have an oblique boundary value problem can be overcame if the
problem can be transformed to one defined on a cylindrical space time domain. We
notice that in the setup section we have done just that. The problems (15) and (16) are
defined on cylindrical space time domains and we are able to obtain the analogue of the
linear result found in Lieberman for our quasilinear problems with oblique derivative
boundary conditions on cylindrical domains.

We begin by defining a domain smaller in the time variable, Ω̃ε as

Ω̃ε = {X ∈ Ω̃ : t < t0 + ε},

where we also assume that BΩ̃ ⊂ {t = t0}.
Now we can state the result of short time existence for quasilinear problems with

linear oblique derivative boundary conditions. The proof of the theorem is a modification
of the result found in Lieberman [30] for Dirichlet boundary value problems in Chapter
VIII.

Theorem 3.6 (Short time existence for quasilinear problems). Let Ω̃ be a cylindrical
space time domain, that is Ω̃ = D × [0, T ] for some open set D in Rn. Suppose that the
coefficients of P satisfy the hypotheses of Theorem 3.4 and f ∈ H2−δ

α , Ψ ∈ Hδ−1 and φ
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is a continuous function on BΩ̃ ∪ CΩ̃. Then there exists a positive constant ε > 0 such
that the problem

Pu = f in Ω̃ε,

Mu = Ψ on SΩ̃ε,

u = φ on BΩ̃ε,

has a solution u ∈ H(−δ)
2+α .

Proof. We first remark that one of the hypothesis of Theorem 3.4 was the regularity
of the parabolic boundary, PΩ̃ ∈ Hδ for some δ ∈ (1, 2). This is satisfied by the
assumption that the set Ω̃ is a cylindrical set. The proof follows the steps of the Dirichlet
quasilinear problems and it is based on the Schauder fixed point theorem. Let θ ∈ (1, δ)
and set B0 = 1 + |φ|θ and for ε > 0 to be chosen later and define the set

S = {v ∈ Hθ(Ω̃ε) : |v|θ ≤ B0}.

Define the map J : S → Hθ by Jv = u where u is a solution of the problem

−∂u
∂t

+ aij(X, v,Dv)D2
iju + a(X, v,Dv) = 0 in Ω̃ε,

Mu = Ψ on SΩ̃ε,

u = φ on BΩ̃ε,

which is the linear analogue of the quasilinear problem we are working with. The map
is well defined since for each v ∈ S there exists a unique solution of the above linear

problem by Theorem 3.4 and the solution is in H
(−δ)
2+α(θ−1). From the same linear existence

result we have the estimate

|u|1 ≤ |u|δ ≤ C |u|(−δ)2+α(θ−1) ≤ Clin,

where C comes from Theorem 3.4 and depends on all the initial data and boundary
coefficients and also Clin = Clin(A,B,B1, C, n, α, δ, Ω̃ε) <∞.

Now if we look at the definition of norm | · |1, we notice that in bounding this norm
we also bound the weaker one < · >1 by at least the same constant, since the most
powerful norm is a sum of all the others. Then we have by definition of < · >1,

sup
X0∈Ω̃

sup
{ |u(x0, t)− u(x0, t0)|

|t− t0|
1
2

: ∀(x0, t) ∈ Ω̃ε, t 6= t0

}
≤ Clin,

where we recall that space time points look like X0 = (x0, t0). Then for any X0 ∈ Ω̃ε we
have

sup
{ |u(x0, t)− u(x0, t0)|

|t− t0|
1
2

: ∀(x0, t) ∈ Ω̃, t 6= t0

}
≤ Clin,

and then for all times t ∈ [0, ε] we have

|u(x0, t)− u(x0, t0)|
|t− t0|

1
2

≤ Clin.
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Now since all our times are less than ε we obtain

|u(x0, t)− u(x0, t0)| ≤ Clin|t− t0|
1
2 ≤ Clin

√
ε.

Set now the point X0 to be part of BΩ̃, which means that X0 = (x, 0) where x ∈ D. So
now we can rewrite the above as

|u(x, t)− φ(x)| ≤ Clin
√
ε

for all points (x, t) ∈ D × [0, ε], which is the same as saying for all points in Ω̃ since
we are working only in cylindrical domains. Now we are ready to use the interpolation
inequality Theorem 3.3 by choosing σ = δ−θ

δ−1
, a = 1 and b = δ:

|u− φ|θ ≤ C(δ) |u− φ|
δ−θ
δ−1

1 |u− φ|1−
δ−θ
δ−1

δ .

We know that |u|δ ≤ Clin and also φ ∈ Hδ(PΩ̃). Thus the above estimate containing ε
for |u|1 gives

|u− φ|θ ≤ C(δ) (Clin
√
ε)

δ−θ
δ−1 (Clin)1− δ−θ

δ−1

≤ C(δ) C̃(Clin) C
δ−θ
δ−1

lin (
√
ε)

δ−θ
δ−1 ,

where C̃ = C̃(Clin) is the bound for the norm of u − φ in Hδ. Note that it is finite
by the conditions on the initial data. Now we can choose ε small enough such that

C(δ)C̃(Clin)C
δ−θ
δ−1

lin (
√
ε)

δ−θ
δ−1 ≤ 1 which gives us

|u− φ|θ ≤ 1.

This implies

|u|θ ≤ 1 + |φ|θ = B0.

Hence J maps S into itself. The set S is a ball in the function space Hθ(Ω̃ε), and so a
convex set. Therefore we can apply Theorem 3.5 to conclude that the map J has a fixed

point u, which is in H
(−δ)
2+α(θ−1) and which solves our quasilinear problem. This ends our

proof. �

And finally we can use all of the above to guarantee the existence of a short time
solution for the problems (15) and (16). The first thing we have to worry about is
the parabolicity of our operator, then if it is quasilinear and if it does fit into the above
developed program. For this, the next lemma is easily obtained from Stahl’s Proposition
3.1 for (15) and (16).

Lemma 3.7 (Parabolic quasilinear oblique derivative boundary value problems). The
evolution problems (15) and (16) belong to the category of quasilinear parabolic problems
with oblique derivative boundary conditions.

Proof. We have to check two things for (15) and (16). One is that the interior
evolution is parabolic and quasilinear and the second is that the boundary condition is
oblique. The interior evolution of the graphs is given by

∂w

∂t
(x1, x2, t) = −1

s
H.
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Using the results of Proposition 3.1 we can compute

H̃(x1, x2, t) = (gijhij)(x1, x2, t) = −s gijD2
ijw(x1, x2, t) + f(x1, x2, t, w,Dw),

where we have seen that the inverse of the first fundamental form depends upon the point,
time, the graph function and its first derivative: gij = gij(x1, x2, t, w,Dw). Since it is a
metric on the moving surfaces generated by the graphs evolution it is a positive definite
tensor. This together with the positivity of the quantity s gives us the parabolicity of
the evolution problem (15) and also for (16). The quasilinear property is easy to see
also, and comes from the dependence of the coefficients of the second derivatives of the
graph functions by only the time, point, the graph function and the first derivative as
we have seen from the first fundamental form definition.

The second condition to verify is that we have a oblique derivative boundary condi-
tion. In our evolution we have either one or two boundary conditions depending if we
are treating a purely Neumann problem or a combined Neumann and Dirichlet problem
with two separate boundaries. The two cases correspond as we have earlier seen to two
types of domains, either a topological disc or a topological annulus in R2.

The first case where Ω is topologically equivalent to a disc in R2 with only one
boundary and the evolution problem has only a Neumann boundary condition fits easily
into the oblique derivative problems defined by Lieberman. The boundary condition in
(15) or (16) is given by

2∑
i=1

νiΣDiw = ν3
Σ, ∀(x1, x2, t) ∈ ∂ΩN × [0, δ].

We only have to pick β to be the vector formed by the first 2 components of the unit
normal to Σ and have the last component equal to zero. We also pick the fixed function
β0 to be zero and the Ψ function to be the last component of the normal to Σ. That is

β =
(
ν1

Σ, ν
2
Σ, 0
)
,

β0 ≡ 0,

Ψ = ν3
Σ.

For the second type of domain, the one which is topologically equivalent to an annulus
with two boundaries, the inner circle on which we have a Neumann condition and the
outer one on which we will have a Dirichlet condition, the boundary conditions from
(15)

2∑
i=1

νiΣDiw = ν3
Σ, ∀(x1, x2, t) ∈ ∂ΩN × [0, δ],

w(x1, x2, t) = w0(x1, x2), ∀(x1, x2, t) ∈ ∂ΩD × [0, δ],

have to be put together in one boundary condition for the definition of the coefficients
of the operator M . The same is valid for the problem (16). This is done by defining
two cut-off functions such that one of them is 0 on one of the boundaries and 1 on the
other one and the second with the same property but with switched boundaries. Define
φ1, φ2 : Ω → R smooth functions such that φ1|∂ΩN = 1, φ1|∂ΩD = 0 and φ2|∂ΩD = 1,
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φ2|∂ΩN = 0. Using these two functions the two boundary conditions can be expressed in
the following way

φ1

2∑
i=1

νiΣDiw + φ2 w(x1, x2, t) = φ1 ν
3
Σ + φ2 w0(x1, x2),

∀(x1, x2, t) ∈ (∂ΩN ∪ ∂ΩD)× [0, δ].

So now the coefficients in the oblique derivative boundary operator M are

β = φ1

(
ν1

Σ, ν
2
Σ, 0
)
,

β0 = φ2,

Ψ = φ1 ν
3
Σ + φ2 w0(x1, x2).

Some of our functions, for example components of the unit normal to Σ, are only defined
on one of the boundaries. This can be easily solved if we consider Σ as being defined by
level sets. This ends our proof. �

Theorem 3.8 (Short time existence). For any α ∈ (0, 1) there exists a positive
time ε > 0 such that there exists a short time solution w satisfying the problem (15),

respectively (16) and w ∈ H(−δ)
2+α (Ω× [0, ε]) respectively w ∈ H(−δ)

2+α (M2 × [0, ε]), for some
δ ∈ (1, 2).

Proof. The proof is based on the results presented above and all we have to do
is show that our problem satisfies the conditions and hypotheses of the two existence
theorems, Theorem 3.4 and Theorem 3.6. This comes easily from Lemma 3.7 together
with the cylindrical setting discussed earlier. �



CHAPTER 4

Mean curvature flow of graphs with a free boundary outside
the sphere

1. Introduction

We consider in this chapter the mean curvature flow of graphs outside a sphere with
one free Neumann boundary and a fixed Dirichlet boundary. On the Neumann boundary
we require that the normal of the solution and the normal of the sphere always meet at
ninety degrees. The Dirichlet boundary is assumed to be a fixed circle with centre equal
to that of the sphere and radius strictly greater than that of the sphere. This problem,
up to some initial conditions, is equivalent to the scalar mean curvature flow of graphs
defined on an annular region of R2. The smaller radius of the annulus is given by the
radius of the fixed sphere used as a free boundary and the larger radius is the radius of
the circle used for the Dirichlet condition.

We begin with a short time existence result, explaining how the problem fits into the
structure of the general local existence theorem from Chapter 3. In the same section we
also give a list of conditions necessary for the preservation of the graph property.

After this we discuss the rotationally symmetric graphs setting. These results are
a subset of those from Chapter 5 where we treat the most general setting of radially
symmetric graphs moving outside or supported on a fixed radially symmetric surface
in Rn+1. The results highlight two of the behaviours of the radially symmetric graphs,
depending on the initial conditions. If we have an initial graph with height bounded
by the maximal height of the sphere then the solution exists for all time and converges
as time goes to infinity to the flat annulus of the domain of definition. In case the
initial graph satisfies an existence result for a self similar torus, then the mean curvature
flow solution pinches off above the North Pole or below the South Pole of the sphere,
developing a curvature and gradient singularity.

The final section treats general graphs in the setting of the chapter and uses the
initial conditions imposed in the setup and short time existence sections to prove that for
reflectively symmetric surfaces the graph property is preserved for all times of existence.
We rewrite our problem on a fixed domain by using a linear combination of Killing vector
fields in R3 which fits in the setting of short time existence chapter. The author wishes
to thank Prof. Dr. Ben Andrews from ANU for suggesting the usage of a Killing vector
field.

2. Setup

Let Σ be the two dimensional unit sphere centred at the origin (0, 0, 0) ∈ R3. The
problem treated in this chapter belongs to the category of problems in (56), with a
Neumann boundary moving freely on the sphere a fixed Dirichlet height on a circle of

37
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some radius outside the sphere. Let M2 be a smooth, orientable 2-dimensional mani-
fold with two smooth, compact, disjoint boundaries which we denote by ∂NM

2 for the
Neumann boundary and ∂DM

2 for the Dirichlet boundary. Set M0 := F0(M2), where
F0 : M2 → R3 is a smooth embedding satisfying

∂NM0 ≡ F0(∂NM
2) = M0 ∩ Σ,

〈ν0, νΣ ◦ F0〉 (p) = 0, ∀p ∈ ∂NM2,

∂DM0 ≡ F0(∂DM
2) = ∂BR

(
(0, 0)

)
,

for some positive R > 1. Here we have denoted by ∂BR

(
(0, 0)

)
the boundary of the

2-dimensional disc BR

(
(0, 0)

)
of radius R centred at the origin in R2. Let I ⊂ R be

an open interval and let Ft = F (·, t) : M2 → R3 be one-parameter family of smooth
embeddings for all t ∈ I. The family of surfaces (Mt)t∈I , where Mt = Ft(M

2), are said
to be evolving by mean curvature flow with Neumann free boundary condition on Σ and
a constant zero height on the Dirichlet boundary if it satisfies

∂F

∂t
(p, t) = − H(p, t)ν, ∀(p, t) ∈M2 × I,(21)

F (·, 0) = F0,

F (p, t) ⊂ Σ, ∀(p, t) ∈ ∂NM2 × I,
〈ν, νΣ ◦ F 〉 (p, t) = 0, ∀(p, t) ∈ ∂NM2 × I,
F (p, t) = F0(p), ∀(p, t) ∈ ∂DM2 × I.

The convention is, throughout this work and when not stated otherwise, that the unit
normal νΣ to Σ points outside the evolving surfaces. Here this means that is points into
the sphere. Also we assume the initial data satisfies the graph condition

〈νM0 , e3〉 > 0.(22)

This problem is equivalent to the non-parametric mean curvature flow of graphs over a
time dependent domain. We start by defining this domain. Let Ω(t) = BR

(
(0, 0)

)
∼

Br(t)

(
(0, 0)

)
⊂ R2. This set has two boundaries which we denote as done earlier by

∂ΩD = ∂BR

(
(0, 0)

)
for the Dirichlet boundary and ∂ΩN(t) = ∂Br(t)

(
(0, 0)

)
for the

Neumann boundary. These sets depends on time or to be more precise on the way the
solution slides up or down on the sphere. Using techniques as in Ecker [8] one can show
that the immersion problem (21) is equivalent (up to tangential diffeomorphisms) to
the evolution of a scalar function u : Ω(t) × [0, T ) → R satisfying the boundary value
problem:

∂u

∂t
=
√

1 + |Du|2 div
( Du√

1 + |Du|2
)

on Ω(t)× [0, T ),(23)

〈νu, νΣ〉 = 0 and u(x, t)2 + |x|2 = 1 on ∂ΩN(t)× [0, T ),

u(x, t) ≡ 0 on ∂ΩD × [0, T ),

u(x, 0) = u0 on Ω(0).
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Here we denoted by νu the unit normal to the graph. The Neumann boundary condition
u(x, t)2 + |x|2 = 1 ensures us that our free boundary remains on the sphere of radius
1.

3. Short time existence

In the short time existence chapter we have seen that for combined boundary condi-
tions, such as (21), where we have a Dirichlet boundary condition on one of the bound-
aries and a free Neumann boundary condition on the other, one may transform the
problem into one over a time independent domain through the use of an appropriate
coordinate transformation.

We wish to perform this transformation explicitly. We must find the vector field ξ
tangent to Σ which helps us to write our problem in a domain which is fixed in time.
In the case where Σ is a sphere, this vector field takes a special form involving Killing
vector fields.

Let us start by giving the definition of a Killing vector field and some properties
that are very useful in the rest of the chapter. For this we use as a reference Chapter 3
from [7]. A vector field X on Rn+1 is a map X : Rn+1 → Rn+1; we say that the field is
linear if X is a linear map. A linear field on Rn+1, defined by a matrix A, is a Killing
vector field if and only if A is anti-symmetric. The first property we want to mention is
equivalent to the definition.

Proposition 4.1 (Killing vector field equation). X is a Killing vector field on Rn+1

if and only if

〈DYX,Z〉 + 〈DZX, Y 〉 = 0,

for all Y and Z in Rn+1. Here we have denoted by D the covariant derivative on Rn+1.

The next property comes directly from the linearity of a Killing vector field as a map
between Euclidean spaces.

Proposition 4.2 (Linearity of a Killing vector field). If X is a Killing vector field
in Rn+1 then

DY DZX ≡ 0,

for any Y and Z vector fields in Rn+1.

We omit the proof of these propositions since they are explained in detail and in
greater generality in [7]. Let us now return to our sphere problem and see how can we
construct a vector field ξ which may be used for the short time existence theorem. What
makes the sphere such a special case is the fact that three of the six Killing vector fields
in R3 are completely tangent to the sphere in every point, since they are the rotations
of 3-dimensional Euclidean space. Using two of them we define

ξ(x1, x2, x3) =
(
− x1x3, −x2x3, x1

2 + x2
2
)

= (−x1)
(
x3, 0, −x1

)
+ (−x2)

(
0, x3, −x2

)
= (−x1) K1(x1, x2, x3) + (−x2) K2(x1, x2, x3),(24)
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Figure 4.1. The ξ vector field.

where K1(x1, x2, x3) =
(
x3, 0, −x1

)
and K2(x1, x2, x3) =

(
0, x3, −x2

)
are two of the

Killing vector fields of rotation tangent to the sphere. Note that ξ is singular along
the x3 axis. We denote the third Killing vector field of rotation by K3(x1, x2, x3) =(
x2, −x1, 0

)
. This is the direction to which the normal to the evolving graphs becomes

parallel in a tilt point, which is a point of infinite gradient for the graph function.
For details about the two kinds of ‘bad behaviour’ for the gradient on the Neumann
boundary, we invite the reader to follow our section on the gradient in Chapter 6. We
define now three very useful quantities s, s1, s2 : Mt → R by

s1(X) = s1

(
F (p, t)

)
:= 〈νMt |X , K1(X)〉 ,(25)

s2(X) = s2

(
F (p, t)

)
:= 〈νMt |X , K2(X)〉 ,

s(X) = s
(
F (p, t)

)
:= 〈νMt |X , ξ(X)〉 = (−x1)s1(X) + (−x2)s2(X),

where we do not distinguish between the image F (p, t) of a point p ∈ M2 and its
coordinate vector X = X(p, t). For a point in X ∈Mt ⊂ R3 we have X = (x1, x2, x3) =
F (p, t) for some p ∈M2 and t ∈ [0, T ).

If we have initially strict positivity of the quantity s

s
(
F0(p)

)
=
〈
νM0

(
F0(p)

)
, ξ
(
F0(p)

)〉
> 0(26)

everywhere on M0, then we can apply Theorem 3.8 from Chapter 2 and obtain a solution
of (21) for a short time. To apply the theorem first we write (21) as a graph in the ξ
direction over the set D := BR

(
(0, 0)

)
∼ B1

(
(0, 0)

)
⊂ R2 as w : D × [0, δ) → R, δ > 0

satisfying

∂w

∂t
(x1, x2, t) = −1

s
H, ∀(x1, x2, t) ∈ D × [0, δ],(27)
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2∑
i=1

νiΣDiw = ν3
Σ, ∀(x1, x2, t) ∈ ∂B1

(
(0, 0)

)
× [0, δ],

w(x1, x2, t) = w0(x1, x2), ∀(x1, x2, t) ∈ ∂BR

(
(0, 0)

)
× [0, δ]

w(·, 0) = w0,

where H is the mean curvature of Mt =
(
(x1, x2), w(x1, x2, t)

)
and w0 is such that

M0 =
(
(x1, x2), w0(x1, x2)

)
with w0

∣∣
∂BR((0,0))

≡ 0.

Theorem 4.3 (Short time existence for the motion outside the sphere). For any
α ∈ (0, 1) there exists a positive time δ such that we have a short time solution w for

the problem (27) and w ∈ H(−θ)
2+α (D × [0, δ]) for some θ ∈ (1, 2).

We discuss now the extra conditions imposed on the initial graphs which allow us to
prove preservation of the graph condition. Notice that (26) is implied by the following
more restrictive set of sign conditions:

〈νM0 , K1〉 < 0 when x1 > 0,(28)

〈νM0 , K1〉 > 0 when x1 < 0,(29)

〈νM0 , K2〉 < 0 when x2 > 0,(30)

〈νM0 , K2〉 > 0 when x2 < 0,(31)

where X0 = F0(p) ∈ M0 is X0 = (x1, x2, x3). Of course, for reasons of smoothness, on
the planes x1 = 0 and x2 = 0 the quantities s1 = 〈νM0 , K1〉 and s2 = 〈νM0 , K2〉 vanish:

s1(X0) = 〈νM0|X0 , K1(X0)〉 = 0 when X0 = (0, x2, x3),

s2(X0) = 〈νM0|X0 , K2(X0)〉 = 0 when X0 = (x1, 0, x3).(32)

These conditions are more restrictive than imposing a sign on s(X0) = 〈νM0|X0, ξ(X0)〉 =
(−x1)s1(X0) + (−x2)s2(X0), but in the process of preserving this sign for later times the
intermediate quantities s1 and s2 are of great help. These restrictions on our initial
surface are necessary since we are not able to preserve (26) directly, and must instead
preserve the more restrictive (28)–(31) and (32). For this the properties of Killing vector
fields are of paramount importance. The change of sign from the x1 positive coordinate
half space to the negative half space comes from the orientation we have chosen for the
Killing vector fields.

Here we must also discuss an additional condition we need to impose upon the initial
graph for the solution to be locally well-posed in time. This comes from the fact that
we have a fixed Dirichlet boundary, and it must be preserved. To do this we must
start with an initial graph for which mean curvature vanishes on the Dirichlet boundary.
Otherwise, the graph will dislodge itself and move away instantaneously from the fixed
Dirichlet boundary.

H
∣∣
∂DM0

≡ 0.

This condition and the reason why it is sufficient to state it only at initial time, is
well explained in Chapter 6, Proposition 6.29. The following proposition shows that
condition (22) is sufficient so that our problem is consistent with the above conditions
(28) to (32) on the Dirichlet boundary.



42 4. THE SPHERE PROBLEM

Proposition 4.4 (Initial conditions on the Dirichlet boundary). Let Mt satisfy (21).
On the Dirichlet boundary ∂DM

2 condition (22) implies

s1(X0) = 〈νM0|X0 , K1(X0)〉 < 0

for X0 = (x1, x2, x3) = F0(p) ∈ ∂DMt ⊂ R3 such that x1 > 0; and

s1(X0) = 〈νM0|X0 , K1(X0)〉 > 0

for X0 = (x1, x2, x3) = F0(p) ∈ ∂DMt ⊂ R3 such that x1 < 0.

Proof. We compute the desired inner product by writing it in the canonical basis
of R3:

〈νM0 |X0 , K1(X0)〉 = 〈νM0 |X0 , e1〉 〈e1, K1(X0)〉+ 〈νM0|X0 , e2〉 〈e2, K1(X0)〉
+ 〈νM0|X0 , e3〉 〈e3, K1(X0)〉 .

Notice that 〈e1, K1(X0)〉 = x3, 〈e3, K1(X0)〉 = −x1 and 〈e2, K1(X0)〉 = 0. Also since we
are on the Dirichlet boundary that means we are on the plane x3 = 0. This implies that

〈νM0 |X0 , K1(X0)〉 = −x1 〈νM0|X0 , e3〉 ,

which together with (22) implies the result. �

Remark. The same result can be obtained similarly for the second quantity s2, but
depending instead on the x2 coordinate.

4. Rotationally symmetric graphs moving outside the sphere

When we consider the rotationally symmetric problem (23) in n-dimensions, the
scalar evolution is

∂ω

∂t
=
d2ω

dy2

1

1 + (dω
dy

)2
+
dω

dy

n− 1

y
on

⋃
t∈[0,T )

(r(t), R)× {t},(33)

dω

dy
(r(t), t) =

√
1− r(t)2

r(t)
and ω2(r(t), t) + r2(t) = 1 for all t ∈ [0, T ),

ω(R, t) = 0 on [0, T ),

ω(y, 0) = ω0 on (r(0), R),

where ω : (r(t), R) × [0, T ) → R. Here we have used the notation of Chapter 5 on
rotationally symmetric graphs with ninety degree contact angle on general rotationally
symmetric surfaces Σ where y = |(x1, . . . , xn)|Rn . We have also used the fact that Σ

is a unit sphere centred at the origin of Rn+1, specifically that |ωΣ| =
√

1− y2 and

νΣ = −
√

1− y2( y√
1−y2

, 1).

It is easy to see that this evolution problem satisfies the hypotheses of the theorems
found in Chapter 5. Depending on the initial height of the graph, the solution could
either exist for all time and converge to the flat annulus around the sphere or it could
develop a Type I curvature singularity on the axis of rotation in finite time. Since the
proof follows along similar lines to that found in Chapter 5 we only state the result and
invite the reader to follow the details in that chapter.
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Theorem 4.5 (Rotationally symmetric graphs outside the sphere). If ω satisfies
(33) the following holds:

(a) If |ω0| ≤ 1, then T =∞ and the solution converges as t→∞ to zero, that is the
annulus around the sphere;

(b) If ω0 satisfies the conditions of Lemma 5.10 then the solution exists for only finite
time T < ∞ and the graphs ω(y, t) develop a Type I curvature singularity at y = 0 as
t→ T .

Remark. There is one thing here which needs to be explained in more detail. In
the part of the proof of long time existence for rotationally symmetric graphs, Theorem
5.2, which deals with gradient bounds one uses the fact that the horizontal parts of Σ
can not be reached by the flow. This is done by imposing a condition on the surface Σ
such that in the region between the maximum and minimum of the initial graph there
is no points where Σ is horizontal: that is condition (44).

Here one may notice that we do allow such ‘bad’ points, since we have taken the
initial height of the graph ω0 up to 1 or −1, so the North or South Pole of the sphere are
included. The next theorem and proposition explains why taking the initial graph up to
the maximal height 1 or minimal height −1 is still enough to prevent mean curvature flow
from evolving the graphs ω to the North or South Pole of the sphere. These points are
not desirable since there the gradient of the rotationally symmetric graphs will become
infinite on the Neumann boundary as well as developing a curvature singularity.

Even more the following results prove that we can weaken the conditions imposed on
the initial graph allowing a wider range of initial data. The improved condition requires
that the initial graph is below a piece of a catenoid touching the sphere somewhere below
the North Pole or above the South Pole, with a contact angle of ninety degrees or less.

Theorem 4.6 (Catenoid comparison and long time existence). Suppose ω satisfies
(33) with initial data ω0 : (r0, R) → R. If there exist constants di, Ci, εi ∈ [0, 1) and
yi ∈ (0, r0) for i = 1, 2 such that

−d1arccosh (C1y)− ε1 < ω0(y) < d2arccosh (C2y) + ε2, ∀y ∈ [r0, R],(34)

diarccosh (Ciyi) + εi =
√

1− y2
i ,(35)

and

0 ≤ (1− d2
i )c

2
i y

2
i − c2

i y
4
i − 1 + y2

i ,(36)

then there exists a solution ω : (r0, R)×[0,∞)→ R converging to the flat annulus around
the sphere Σ.

Proof. The proof follows the lines of Theorem 5.2, and here we only include the
details which differ from the proof found in Chapter 5. Long time existence for (33) is
obtained again from uniform height and gradient bounds. The latter follows from the
radial symmetry and the fact that we exclude behaviour in which the evolving graphs
reach points where the sphere has a horizontal point, so the North and South Pole. In
the proof of Theorem 5.2 this behaviour is prevented by beginning the flow with a graph
such that in the region between the maximal and minimal height value there is no point
where Σ is horizontal. Then we preserve the height of the graphs for all times between
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the initial values. The preservation part of the argument is still valid but here we allow
initial data which have a height above (or below) the critical value 1 (or −1).

To prove that the graphs do not move towards the North or South Pole of the sphere
we apply the comparison principle with two pieces of a minimal surface. These pieces
touch the sphere above and below the initial graph, as can be deduced from (34). These
two pieces of minimal surfaces are given as graphs over a domain [yi,∞) and they are
both pieces of catenoids. Here the points yi, i = 1 for the negative piece and i = 2 for
the positive piece, represent the circles at which the catenoids meet the sphere, as is
enforced by (35). The angle condition between the sphere as a graph over R and these
two pieces is given by (36) and one can easily see from this relation that the angle is less
than or equal to ninety degrees. The initial graph starts between these two catenoids
and due to the choice of angle at the intersection of the sphere with the two catenoids,
the comparison principle shows that for all times the graphs remain contained between
the two catenoid pieces. One can prove this by either using the comparison principle
Theorem 2.10 if we have an angle of ninety degrees or noticing that if the angle is strictly
less than ninety degrees the surfaces will meet for the first time in the interior, a case
excluded by the comparison principle found in [22]. �

This theorem can be used to allow the case where the initial graph attains heights
greater than that of the sphere. We modestly apply this to allow the initial graph to
reach 1 or −1.

Proposition 4.7 (Existence of catenoid for |ω0| ≤ 1 height bound). Let ω satisfy
(33) with |ω0| ≤ 1. Then Theorem 4.6 is applicable.

Proof. For the existence of the catenoids used as a barriers in the above theorem
we have to prove first that the Neumann boundary of the initial graph is not equal to
the North or the South Pole of the sphere. This is the same as proving that there exists
a strict positive constant εi for the choice of catenoid barriers. Once we have εi, it is
easy to choose the other constants Ci, di and yi.

Suppose that the initial graph satisfies ω0(r0) = 1, which also implies that r0 = 0.
Thus we find ourselves at the North Pole of the Sphere where dω0

dy
(r0) = 1

r0
= +∞. This

implies that there exists a y ∈ (r0, R) such that ω0(y) > 1, which is a contradiction
with the initial height bound. The same argument also contradicts the assumption that
ω0(r0) = −1.

Thus there exist positive constants εi ∈ [0, 1) for i = 1, 2. One is then easily able to
choose the rest of the constants which characterise the two catenoidal pieces found in
Theorem 4.6. �

5. Preservation of the graph property

Recall that we have considered the mean curvature flow of graphs with graph direc-
tion ξ, where ξ is determined by the initial values of the problem and by the surface Σ.
In the following we prove that for all times of existence an initial graph in the ξ direction
remains a graph. This is one of the steps required in the proof of long time existence.

This is similar to non-tilting arguments which can be found in Chapter 6. The main
difference here is that the ‘tilt’ (which is when s = 0) is taken with respect to the
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ξ direction and not to the usual en+1 direction. The result below states that for the
sphere, these two notions of tilt are equivalent. Note that this applies also for any other
rotationally symmetric surface of contact Σ.

Proposition 4.8 (Equivalence of boundary tilt points on the sphere). Let ν be an
arbitrary vector field in R3 tangential to the sphere, that is 〈ν, νs〉 = 0. Then away from
the x3 coordinate axis

〈ν, ξ〉 = 0 if and only if 〈ν, e3〉 = 0.

Here νs : R3 → R3 defined by νs(x1, x2, x3) = (x1, x2, x3) is the position vector corre-
sponding to the identity in R3.

Proof. The proof is very simple and comes down to the choice of two orthogonal
bases of R3. We already have the canonical Euclidean basis B1 = {e1, e2, e3} and we
define a new orthogonal (but not orthonormal) basis

B2 = {K3, νs, ξ}.

Now suppose that 〈ν, ξ〉 = 0. We write the ν vector in the B2 basis

ν = 〈ν, ξ〉 ξ

|ξ|2
+ 〈ν, νs〉

νs
|νs|2

+ 〈ν,K3〉
K3

|K3|2
.

Computing the other inner product 〈ν, e3〉 and using the assumption 〈ν, ξ〉 = 0 with the
fact that 〈K3, e3〉 = 0 we obtain

〈ν, e3〉 =
1

|νs|2
〈ν, νs〉 〈νs, e3〉 .

Using also 〈ν, νs〉 = 0 we get the desired result.
Suppose now that we have 〈ν, e3〉 = 0. Then in the same orthogonal basis B2 we

have

0 = 〈ν, e3〉 =
1

|ξ|2
〈ν, ξ〉 〈ξ, e3〉+

1

|νs|2
〈ν, νs〉 〈νs, e3〉+

1

|K3|2
〈ν,K3〉 〈K3, e3〉 .

Use again 〈K3, e3〉 = 0 and also 〈ν, νs〉 = 0 the above can be reduced to

0 = 〈ν, ξ〉 〈ξ, e3〉 .

Since ξ = (−x1x3,−x2x3, x1
2 + x2

2), we see that 〈ξ, e3〉 = x1
2 + x2

2 > 0 since we are
away from the x3 axis where ξ is not well defined. This implies that 〈ν, ξ〉 = 0 and thus
completes our proof. �

Remark. The condition ‘away from the x3 axis’ is imposed to ensure that the ξ
vector field is well-defined. The proposition works with a general vector field ν which is
perpendicular to the to the position vector νs. This also corresponds to our case, when
the normal to the graph is tangent to the unit sphere. The unit normal to a sphere is a
scaled version of the position vector νΣ = −νs/|νs|.

Before stating our theorem we need to include some additional results needed in the
proof. One of them is the evolution of the quantities si.
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Proposition 4.9 (Evolution of s quantities). Let Ft satisfy (21) (or any mean
curvature flow evolution). The quantities si = 〈νMt , Ki〉, i = 1, 2, 3 satisfy the following
evolution equations ( d

dt
−∆Mt

)
si = |AMt |2si,(37)

where we denoted by AMt the second fundamental form of Mt.

Proof. We carry through the proof for s1 and the other two work exactly the same.
First we compute the time derivative using the time derivative of the normal, as in [21]

d

dt
s1 =

d

dt
〈νMt , K1〉 = 〈∇H,K1〉 − H

〈
νMt ,DνMt

K1

〉
,

where we have used the evolution of the immersion with the chain rule, since K1 =
K1(Ft). Let {τi}i=1,2 be an orthonormal basis of TMt. This proof obviously works
in arbitrary dimension, but we keep to the 2-dimensional case. Next we compute the
Laplace-Beltrami operator applied to si:

∇τis1 = ∇τi 〈νMt , K1〉 =
2∑
p=1

hip 〈τp, K1〉+ 〈νMt ,DτiK1〉 ,

Dτj∇τis1 =
2∑
p=1

∇τjhip 〈τp, K1〉+
2∑
p=1

hip
〈
Dτjτp, K1

〉
+

2∑
p=1

hip
〈
τp,DτjK1

〉
+

2∑
p=1

hjp 〈τp,DτiK1〉+
〈
νMt ,D

2
τi,τj

K1

〉
+
〈
νMt ,DDτj τi

K1

〉
,

where we used the Weingarten equation (or the definition of the second fundamental
form) and denoted by hij the components of the second fundamental form AMt . We also
compute

Dτiτj = −hijνMt +
2∑

k=1

Γkijτk,

using again the definition of the second fundamental form AMt =
(
hij
)

1≤i,j≤2
and

Christoffel symbols. For the ease of computation we choose an orthonormal basis of
the tangent space such that the Christoffel symbols vanish at the point where the com-
putation is evaluated, that is Γkij = 0 for all i, j, k = 1, 2. The local linearity of a Killing
vector field, Proposition 4.2, causes the second derivative of the K3 term also to vanish.
These simplify the computation to:

∆Mts1 =
2∑
i=1

〈τi,Dτi∇s1〉 =
2∑
i=1

2∑
p=1

∇τihip 〈τp, K1〉 −
2∑
i=1

2∑
p=1

hiphip 〈νMt , K1〉

+
2∑
i=1

2∑
p=1

hip 〈τp,DτiK1〉+
2∑
i=1

2∑
p=1

hip 〈τp,DτiK1〉 −
2∑
i=1

hii
〈
νMt ,DνMt

K1

〉
.



5. PRESERVATION OF THE GRAPH PROPERTY 47

Using the Codazzi equation on the first term we obtain

2∑
i=1

2∑
p=1

∇τihip 〈τp, K1〉 = 〈∇H,K1〉 .

The antisymmetry of Killing vector fields (Proposition 4.1) implies that 〈DVK1, V 〉 = 0
for every vector field V . This makes the last term in the computation of the Laplace-
Beltrami vanish. To use this property on the rest of the terms we set pointwise a basis
in which the second fundamental form takes a diagonal form. This eliminates all the
first order terms containing DK1.

∆s1 = 〈∇H,K1〉 −
2∑
i=1

h2
ii 〈νMt , K1〉 = 〈∇H,K1〉 − |AMt |2 s1.

If we put this last result together with the time derivative computed above we finally
obtain the desired evolution for s1. �

Here we need to employ the following result from Stahl [35]. The problem treated
in [35] is the mean curvature flow of immersions with a ninety degree contact angle on
a fixed hypersurface in Rn+1. The result of the proposition is obtained on the Neumann
boundary, so it can be used for both our problems.

Proposition 4.10 (Stahl [35], 1994). Let Ft satisfy (21). Let X ∈ Σ∩Mt, v ∈ TXMt

and w := v − 〈v, νΣ〉 νΣ ∈ TX(Mt ∩ Σ) be the projection of v onto TXΣ. Then:

AMt(w, νΣ) = −AΣ(w, νMt),

AMt(v, νΣ) = −AΣ(w, νMt) + 〈v, νΣ〉AMt(νΣ, νΣ).

In a point of the Neumann boundary where we have si = 0 for some i = 1, 2, the
components of the second fundamental form satisfy certain relations.

Proposition 4.11 (Curvature property in a tilt point). Let Ft be a solution of
(21), with the initial immersion F0 satisfying conditions (28)–(32), (22) and the initial
Dirichlet boundary compatibility condition H|∂DM0 ≡ 0. Consider a point on the Neu-
mann boundary X = Ft(p) ∈ ∂NMt ⊂ Σ for some p ∈ ∂NM2 where for the first time we
have

si(X) = 0

for some i = 1, 2. Then, for an orthogonal basis {τ1, τ2} of TXMt such that

τ1|X = Ki(X) and τ2|X = νΣ|X = ν∂NMt|X ,
we have

AMt
∣∣
X

(τ1, νΣ) > 0,

if si was previously negative, or

AMt
∣∣
X

(τ1, νΣ) < 0,

if si was previously positive.
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Proof. From the conditions imposed on si at and around the point X, si has at-
tained a boundary maximum (or minimum) at this point, after being negative (or posi-
tive) everywhere in the interior. We work with the first case when we have a maximum.
The minimum argument works in the same way. Proposition 4.9 shows that si satisfies
a nice parabolic evolution and allows us to apply the Hopf Lemma, Lemma 2.7, at the
point X:

0 < ∇τ2si = ∇τ2 〈νMt , Ki〉 = AMt(τ1, τ2) 〈τ1, Ki〉+ AMt(τ2, τ2) 〈τ2, Ki〉+ 〈Dτ2Ki, νMt〉 ,
where we have used the Gauss-Weingarten equations to express derivatives of the normal
in tangential directions. Now we know that at X we have τ1 = Ki and τ2 = νΣ =
−νs/|νs|. Here we wish to remind the reader that νs(x1, x2, x3) = (x1, x2, x3) is the
position vector in R3 and it is always normal to the sphere Σ. Then

〈Dτ2Ki, νMt〉 |X = − 1

|νs|
〈DνsKi, νMt〉 = − 1

|νs|
〈Ki, νMt〉 = 0,

since si = 〈νMt , Ki〉 = 0 at X. Also

AMt(τ1, τ2) 〈τ1, Ki〉 |X = AMt(τ1, τ2) 〈Ki, Ki〉 = AMt(τ1, τ2)|Ki|2

and

AMt(τ2, τ2) 〈τ2, Ki〉 |X = AMt(τ2, τ2) 〈νΣ, Ki〉 = −AMt(τ2, τ2) 〈νs, Ki〉 = 0.

We have thus shown that

0 < AMt|X(τ1, νΣ)|Ki|2,
which gives us the desired result. �

The next result shows that we can preserve the sign of the si quantities with the use
of the extra conditions (28)–(32).

Proposition 4.12 (Preservation of sign for Killing vector fields directions). Let
Ft satisfy (21) and be reflectively symmetric over the planes {x1 = 0} and {x2 = 0}.
If the initial immersion M0 = F0(M2) satisfies conditions (28)–(32), the compatibility
condition on the Dirichlet boundary H|∂DM0 ≡ 0, the initial condition (22) and the
additional initial height bound | 〈F0, e3〉 | ≤ 1, then the flow preserves conditions (28)–
(32) for all time.

Proof. The proof is based on the application of the maximum principle for the two
quantities s1 and s2 on a quadrant Mt

+ := Mt ∩ {(x1, x2, x3) ∈ R3 : x1 > 0, x2 > 0}.
We carry through the case of s1 in detail, and the proof for s2 is identical. From the
initial condition (28) we have that on M0

+, s1(X0) < 0, with zero boundary values on
M0

x1=0 = M0 ∩
{

(0, x2, x3) ∈ R3
}

. There are three more boundaries of the domain, the

free boundary at the intersection with the sphere Σ which we denote by ∂NM0
+, the

fixed Dirichlet boundary on the fixed radius outside the unit sphere, which we denote
by ∂DM0

+, and M0
x2=0 = M0 ∩

{
(x1, 0, x3) ∈ R3

}
.

From Proposition 4.9 and Theorem 2.4 on Mt
+ we know that the sign of s1 can

be preserved for all times, if on the boundaries we do not get any “new” zero values

(which also are maximal values of s1 on Mt
+). The two boundaries which come from the

reflective symmetry can be ignored, since one can work ε-close to them, for any positive
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ε. So we turn our attention to the two boundaries which can make a difference in the
sign change of the s1 quantity.

First we need to exclude the possibility that s1 might take a zero value on the
Neumann boundary. Suppose that there is a point X = Ft(p) on ∂NMt

+ ⊂ Σ for some
p ∈ ∂NM2 where we have for the first time in the evolution of the graph that s1(X) = 0.
In this point of the boundary we consider an orthogonal basis {τ1, τ2} of TXMt, chosen
such that we have at X

τ1 = K1 and τ2 = νΣ = ν∂NMt
+ .

Now using the result of Proposition 4.11 we see that at X

AMt(τ1, νΣ) > 0,(38)

where AMt is the second fundamental form of the graph immersions. Using a result of
Stahl [35], which we quoted in Proposition 4.10, we know that

AMt(τ1, νΣ) = −AΣ(τ1, νMt).

This is helpful since at a boundary point the tangent space of Σ is spanned by {τ1, νMt}.
Since Σ is a sphere and τ1 = K1 at X and νMt is orthogonal to τ1, they are two principal
directions at the point X. Thus the second fundamental form of Σ is diagonal at X.
Using the relation between the off-diagonal elements of the second fundamental form of
Mt and Σ we can see that

AMt(τ1, νΣ) = −AΣ(τ1, νMt) = 0

which contradicts (38). Therefore there does not exists a point on the Neumann bound-
ary where s1 changes sign.

Now the other problem is if the s1 quantity changes sign on the Dirichlet boundary.
This cannot be the case since we started with an initial graph in the e3 condition by
condition (22). The standard construction of barriers shows that this relation preserved
for all times. Finally, using Proposition 4.4 we see that on the Dirichlet boundary
relation (22) is equivalent to s1 being negative.

This ends our proof of preserving condition (28) for the s1 quantity. Relation (29)
is implied by the reflective symmetry of the surfaces Mt. The same works for the s2

quantity. Thus we have shown that we can preserve conditions (28)–(32) for all time. �

Remark. The condition imposed on the initial height, that | 〈F0, e3〉 | ≤ 1 is there
to prevent the graphs from flowing to the North or South Pole of the sphere Σ, points
in which the vector field ξ is not defined. The height bound can be preserved in at least
two ways.

One of them is by constructing radially symmetric barriers which are above and
below the maximal height of the initial graph. Since the radially symmetric solutions
have a height bound from the results of the previous section, then our general reflective
symmetric graph also enjoys a height bound.

The second method is to use the same arguments as can be found in Chapter 6
developed for general graphs, Theorem 6.1. The Neumann boundary condition and the
convention that we take the unit normal to the sphere Σ to be pointing away from the
evolving surfaces implies 〈νΣ, e3〉 ≤ 0 above the R2 plane and the opposite sign below.
Using this one can prove that the height of the graphs remains bounded for all times by
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the initial bound. Using the result of Theorem 4.6 the initial height can be taken up to
and including the maximal height of the sphere.

Perhaps a little surprisingly, one can show that while the gradient is bounded the
mean curvature satisfies a uniform bound.

Proposition 4.13 (Uniform bound for the mean curvature). Let Ft satisfy (21) and
be reflectively symmetric over the planes {x1 = 0}, {x2 = 0}. If the initial immersion
M0 = F0(M2) satisfies conditions (28)–(32), the compatibility condition on the Dirichlet
boundary H|∂DM0 ≡ 0, initial condition (22) and the additional initial height bound
| 〈F0, e3〉 | ≤ 1, then there exists a global constant C <∞ such that

sup
Mt

|H| ≤ C sup
M0

|H|,

for all times t <∞.

Proof. The proof is based once again on the use of the maximum principle and the
Hopf lemma. In the following we modify the idea of Ecker and Huisken [9] of bounding
the curvatures after we have obtained a gradient bound. Proposition 4.12 gives us that
the quantities s1 and s2 preserve the strict negative sign on the quadrant Mt

+, which
is equivalent to a gradient bound. We use s1 in the following, although the argument
applies in all cases.

Consider the quantity X 7→ H2

s21
(X) : M+

t → R. Using the reflective symmetry we

see that it is enough to work on the quarter space M+
t . After the same computation

as in [9] and using the evolution of the mean curvature found in [22] we find that H2

s21
satisfies a parabolic evolution in the interior:( d

dt
−∆Mt

) H2

s2
1

≤ 2
∇s1

s1

· ∇H
2

s2
1

.

From the above evolution and the use of the maximum principle (Theorem 2.9) with the
bounded vector field a = ∇s1

s1
, we see that as long as we exclude maximums of the above

quantity on the boundaries we obtain the result.
Once again, as in the proof of Proposition 4.12, we can ignore the two boundaries

which come from the reflective symmetry. The Dirichlet boundary ∂DMt does not raise
any problems, since Proposition 6.29 implies the compatibility condition H|∂DM0 ≡ 0 is
preserved for all times.

On the Neumann boundary ∂NMt we apply a Hopf Lemma argument. Assume that
there is a point X = F (p, t) ∈ ∂NMt such that H2

s21
attains a maximum at X. At this point

choose an orthonormal basis {τ1, τ2} of the tangent space TMt such that τ1 ∈ T∂NMt

and τ2 = νΣ at X. Then Lemma 2.11 implies

0 < ∇νΣ

H2

s2
1

= 2
H

s2
1

∇νΣ
H − 2

1

s3
1

∇νΣ
s1.(39)

Using Proposition 6.14 we replace in the first term

∇νΣ
H = HAΣ(νMt , νMt) = −H,
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where we have used that Σ is a sphere and that the unit normal to Σ points away
from the evolving surfaces. We now turn our attention to the second term in (39), and
compute:

∇νΣ
s1 = ∇νΣ

〈νMt , K1〉
= AMt(τ1, νΣ) 〈τ1, K1〉 + AMt(νΣ, νΣ) 〈νΣ, K1〉 + 〈νMt ,DνΣ

K1〉
= 〈νMt ,DνΣ

K1〉 ,
where we have used, as in the proof of Proposition 4.12, the relation

AMt(τ1, νΣ) = − AΣ(τ1, νMt) = 0,

since τ1 ∈ T∂NMt ⊂ TΣ, τ1 is perpendicular to νMt ∈ TΣ, and Σ is a sphere. We have
also used the fact that 〈K1, νΣ〉 = 0. Noting that νΣ = −νs, where we remind the reader
that νs is the position vector, the last term in the above computation becomes

∇νΣ
s1 = 〈νMt ,DνΣ

K1〉 = − 〈K1, νMt〉 = −s1.

Returning to (39) we obtain a contradiction:

0 < ∇νΣ

H2

s2
1

= − 2
H2

s2
1

+ 2
H2

s2
1

= 0.

Therefore we do not have a Neumann boundary maximum for H2

s21
at any positive time.

Thus

sup
Mt

|H| ≤
supMt

|s1|
infM0 |s1|

sup
M0

|H|.

Noting that sup
Mt

|s1| ≤ sup
Mt

|K1| ≤ sup
Mt

|νs| ≤ sup
M0

|νs|, and using the fact that the height

is bounded by the initial bound gives us the existence of the global constant C <∞ as
desired. �

Remark (Bounds on half spaces). The quantities s1 and s2 become zero on the two
axes Ox2 and Ox1 respectively so the above argument has a problem on the axis Ox2.
This is easily overcome by noticing that we obtain the same result if we replace s1 with s2

in the above proposition. For the quantity H2

s2
the problem axis is Ox1. The intersection

of the two problem domains is only the origin, and this is never be part of the domain
M2 by the catenoid comparison result, or more restrictively by height estimates.

We obtain now as a corollary of Proposition 4.12 the fact that as long as the solution
of (21) exists it remains a graph.

Theorem 4.14 (Preservation of the graph property). Let Ft satisfy (21) for t ∈ [0, T )
and be reflectively symmetric over the planes {x1 = 0} and {x2 = 0}. If the initial
immersion M0 = F0(M2) satisfies conditions (28)–(32), the compatibility condition on
the Dirichlet boundary H|∂DM0 ≡ 0, initial condition (22) and the additional initial
height bound | 〈F0, e3〉 | ≤ 1 then

〈νMt , ξ〉 > 0

for all times t ∈ [0, T ). That is, (26) is preserved for all time and the solution is a graph.
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Proof. As long as the immersion exists the non-tilting result from Proposition 4.12
can be applied for both the quantities s1 and s2. This together with the discussion in
the short time existence section where we defined s1 and s2 gives that relation (26) is
preserved for all times. That is for all times we have s = 〈νMt , ξ〉 > 0. We can therefore
write our immersions as graphs in the ξ direction for all times. �

Remark (Time dependent gradient bounds). The sign preservation of the relation
(26) provides us with a bound for the gradient of the associated scalar function (27).
By preserving for all times the positivity of the quantity s we know that for all times of
existence the surfaces can be written as a graph in the ξ direction. The bound is not
uniform in time, hence for a long time existence result one would also require bounds
on the full second fundamental form of the evolving surfaces. The problem comes from
the fact that the result of Proposition 4.12 is strongly dependent on the smoothness of
the surface.

The usual proof of long time existence can take one of two paths. One either provides
bounds for all derivatives of the immersion for all times as done in [9], or refers to
standard parabolic theory applied to the associated scalar evolution. Bounding all the
derivatives of the immersion requires information about these on the Neumann boundary,
which at the moment we do not have.

In trying to apply the second approach we have encountered the following problem.
The associated scalar graph evolution (27) for the problem (21) is quasilinear parabolic
with an oblique derivative boundary condition on one of the boundaries and a Dirichlet
condition on the other. The long time existence theorems for these types of problems use,
as one can see from for example Corollary 8.10 and Theorem 8.3 in [30], require estimates
on the H1+α (for α ∈ (0, 1)) norm independent of time. Our gradient estimates are time
dependent (in a non-obvious way), so obtaining the H1+α estimates from bounds on the
height and gradient provides us with a time dependent bound, without any control on
how the bound grows in time. To our knowledge this can be overcome if we know that
for all times we have a smooth surface. Then, even at some finite final time we are able
to apply the non-tilting arguments and obtain bounds on the gradient and then restart
the flow.

Remark. The initial height restriction of one is related to the surface Σ, which in our
case is the radius of the sphere on which we have the free moving Neumann boundary.
Again here, due to Theorem 4.6 from the radially symmetric section of this chapter, we
are able to take heights up to the maximal value 1 and minimal value −1.

Remark (Graph in e3 direction). One can easily see that the above theorem also
states that an initial graph in e3 direction with the extra conditions imposed by the
theorem remains a graph in the e3 direction for all times of existence. This comes from
the parabolic evolution that the quantity 〈νMt , e3〉 satisfies on the interior (see Chapter 6
for details) and the fact that the bad behaviour on the two boundaries for this quantity is
equivalent to bad behaviour for the quantity 〈νMt , ξ〉, which is prevented by the theorem.
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6. Curvature singularity

In this section we state a result analogous to the results found in Chapter 5 on the
development of a curvature singularity for radially symmetric graphs. For this we use
the results of Angenent [2].

One can see from the previous section that one of the requirements of long time
existence is a height bound below that of the sphere. If one does not have such a bound,
and if also the graphs are ‘high’ and ‘wide’ enough, such that they contain a self-similar
Angenent torus in the region bounded by the plane at height 1 and the initial graph (or
−1 and the initial graph), then the evolving surfaces are forced towards the x3-axis and
become pinched. The immersions lose the graph property and will at best develop a
Type I curvature singularity in finite time. We invite the reader to follow Chapter 5 for
more details on what conditions can be imposed in a more general setting to ensure at
most finite existence time, and even guarantee the development of a Type I singularity.

Theorem 4.15 (Curvature singularity on the rotation axis). Let Ft satisfy (21)
with initial data F0 such that there exists a self-similar torus in the region bounded by
M0 and the plane {(x1, x2, 1) ∈ R3} or in the region bounded by M0 and the plane
{(x1, x2,−1) ∈ R3}. Then the solution exists only for finite time T <∞.
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Figure 4.2. The self similar torus causing (at best) a Type I singularity
for the motion of graphs outside the sphere.



CHAPTER 5

Mean curvature flow of radially symmetric graphs with a free
boundary

1. Introduction

This chapter treats the case of n-dimensional initially radially symmetric graphs for
the problems (1) and (2). The first is the mean curvature flow of radially symmetric
graphs with a ninety degree contact angle on a fixed hypersurface in Euclidean space.
This is a Neumann boundary value problem on a time dependent disc in Rn. The second
is defined on a time dependent annulus in Rn with a time dependent Neumann boundary
and a fixed Dirichlet height. For these two problems we present here three main results.
Specifically, we give sufficient conditions for long time existence, prove that the solutions
converge to minimal surfaces, and show that under certain initial conditions a curvature
singularity develops in finite time on the Neumann boundary.

2. Setup and short time existence

Let x = (x1, . . . , xn) be a point in Rn, with n ≥ 2 and denote by y =
√∑n

i=1 x
2
i

the length of the position vector corresponding to x. We denote by Σ an n-dimensional
smooth hypersurface without boundary smoothly embedded in Rn+1. The Neumann
boundary of the immersions generated by our graphs is included in Σ. We only consider
hypersurfaces Σ which are the union of two rotationally symmetric graphs ω+

Σ and ω−Σ
where

Dom ω+
Σ = Dom ω−Σ ,

ω+
Σ (y) ≥ 0,

ω−Σ (y) ≤ 0,

ω+
Σ (y) = 0⇔ ω−Σ (y) = 0,

for all y. Each point X ∈ Σ can be written as X = (x1, . . . , xn, ωΣ(y)), where ωΣ is
either ω+

Σ or ω−Σ . We also impose that the graphs meet vertically, that is

〈νΣ(X), en+1〉 = 0 when ωΣ = 0,

where we denote by νΣ the normal to ωΣ. A convention which we use in the following is
that the normal to the fixed hypersurface Σ is pointing away from the moving graphs.

We first consider a free Neumann boundary problem defined on an interval D(t) =
(0, r(t)) ⊂ R with the Neumann boundary given by the freely moving point ∂DN(t) =
{r(t)}. The other boundary point comes from the fact that the general graph over the
disc of radius r(t) centred at the origin associated with the radially symmetric graph is
of genus zero. Thus the origin is treated as a boundary point for the radially symmetric

55
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problem. This causes no issue in the later arguments however since by symmetry and
smoothness we have that at this point the radially symmetric graph is horizontal. The

mean curvature flow of a radially symmetric graph ω :
⋃

t∈[0,T )

(0, r(t))×{t} → R attached

to Σ at a ninety degree angle is then

∂ω

∂t
=
d2ω

dy2

1

1 + (dω
dy

)2
+
dω

dy

n− 1

y
on

⋃
t∈[0,T )

(0, r(t))× {t},(40)

〈νω, νΣ〉 (r(t)) = 0 and ω(r(t), t) = ωΣ(r(t)) for all t ∈ [0, T ),

∃ lim
y→0

1

y

dω

dy
(y)

ω(y, 0) = ω0 on (0, r(0)).

Examples for this problem include graphs evolving inside a catenoid neck, inside the
hole of a torus or inside a sphere in Rn+1.

The second case we consider is when besides the Neumann boundary condition we
also have a fixed Dirichlet boundary condition. In this setting the domain of the general
graph is homeomorphic to an annulus in Rn. The domain of the radially symmetric graph
is an interval away from the origin of the form D(t) = (r(t), R). We denote by ∂DN(t) =
{r(t)} and ∂DD = {R} the time dependent Neumann boundary and fixed Dirichlet
boundary respectively. In this case the graphs are moving outside the fixed hypersurface

Σ. The mean curvature flow of a radially symmetric graph ω :
⋃

t∈[0,T )

(r(t), R)×{t} → R

attached to Σ at a ninety degree angle and with height R0 on some fixed circle is given
by the evolution

∂ω

∂t
=
d2ω

dy2

1

1 + (dω
dy

)2
+
dω

dy

n− 1

y
on

⋃
t∈[0,T )

(r(t), R)× {t},(41)

〈νω, νΣ〉 (r(t)) = 0 and ω(r(t), t) = ωΣ(r(t)) for all t ∈ [0, T ),

ω(R, t) = R0 for all t ∈ [0, T ),

ω(y, 0) = ω0 on (r(0), R).

Examples of this include graphs evolving outside a sphere, ellipsoid, cylinder, or the
catenoid neck.

From now on we denote by D(t) the interval used in the definition of the domain
of the radially symmetric graphs and differentiate between the type of interval for the
two problems only if necessary. Before discussing short time existence results we wish to
simplify the form in which the Neumann condition is given. The ninety degree contact
angle condition on the fixed hypersurface Σ which appears in the Neumann condition,
〈νω, νΣ〉 = 0, can be written in a simpler way if we take into account that we are working
with two graph functions. We have the upper unit normal to ω,

νω =
1√

1 + (dω
dy

)

(
− dω

dy
, 1
)
,
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and

νΣ =
1√

1 + (dωΣ

dy
)

(
− dωΣ

dy
, 1
)
,

the upper unit normal to Σ. This transforms our Neumann boundary condition to

dω

dy
(r(t)) = − 1

dωΣ

dy
(r(t))

for all t ∈ [0, T ).(42)

The next step is to ensure that the two problems stated above at least exist for a
short time. The two problems fit into the general frame of the short time existence

theorems in Chapter 3, so we have the following result. Let Ω̃ =
⋃

t∈[0,T )

D(t)×{t}, where

D(t) = (0, r(t)) for (40) and D(t) = (r(t), R) for (41) respectively.

Theorem 5.1 (Short time existence). For any α ∈ (0, 1) there exists a T > 0 such

that we have a solution ω for the problems (40) and (41) with ω ∈ H(−δ)
2+α (Ω̃) for some

δ ∈ (1, 2).

3. Long time existence

The main results of this section are the long time existence theorems stated below.
The two theorems separate our problems into two major cases. Both of them obtain long
time existence through uniform bounds on the height and the gradient of the radially
symmetric graphs. The first theorem provides sufficient conditions for the height to be
bounded by the initial values and the second theorem provides just a bound for the
height function of the radially symmetric graphs. In the first theorem we also separate
two cases, depending on the type of problem and also on the conditions imposed on the
surface of contact Σ.

Theorem 5.2 (Long time existence with height bound by initial values). Let Σ and
the graph function ω0 be defined as above. Assume that there exists a constant C such
that sup |ω0| ≤ C and define the set S = {y ∈ Dom(ωΣ) : |ωΣ(y)| ≤ C}. The
following hold:
(a) If

ωΣ(y)
dωΣ

dy
(y) ≥ 0 ∀y ∈ S and(43)

dωΣ

dy
(y) 6= 0 ∀y ∈ S

then there exists a solution to the problem (40) for all times and it converges to a minimal
surface as t→∞;
(b) If the domain of the initial graph is D(0) = (r(0), R), R /∈ Dom(ωΣ), ωΣ(r) = 0 for
r(0) ≤ r < R,

ωΣ(y)
dωΣ

dy
(y) ≤ 0 ∀y ∈ S(44)

dωΣ

dy
(y) 6= 0 ∀y ∈ S,
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and finally also assuming that the initial graph satisfies the compatibility condition
H(ω0)|y=R = 0, there exists a solution to the problem (41) for all times converging
to a minimal surface as t→∞.

Remark. The conditions imposed on the first derivative of the graphs of Σ are
required to obtain a height bound for all times between the maximum and minimum of
the initial height.

Remark. This first theorem applies for example to radially symmetric graphs mov-
ing inside the catenoid neck (case (a)) and motion outside the unit sphere (case (b)).

Proof of Theorem 5.2. The proof of the theorem is based on the usual strategy
where one is tasked with obtaining uniform height and gradient bounds for the evolving
graphs and we obtain these in Lemmas 5.3 and 5.4. Following Huisken [23] for example
we see that uniform bounds on the height and gradient are sufficient for long time
existence of graphs evolving by mean curvature flow. The basic reason for this is that
with these estimates in hand we may recast our equation as a uniformly parabolic linear
problem with Hölder continuous coefficients. For completeness we present here the most
important steps in this well-known parabolic program of obtaining long time existence
from uniform bounds for the height and gradient of the graph function.

We work with a one dimensional evolution so our problem fits into the framework
found in [30], Theorem 12.2. The result states that from the uniform bounds of height
and gradient we obtain Hα estimates in the interior for the gradient, for any α ∈ (0, 1).
The estimate can be easily extended to the boundary by making use of Theorem 5.1 in
Chapter 6 of [27]. For n-dimensional graphs this theorem requires the extra condition
that there is a uniform bound on the time derivative of the graph, but in one dimension
this extra condition can be waved due to the fact that our one dimensional evolution
can be written in divergence form. Also uniform height and gradient bounds provide a
bound for the time derivative of the graph function, as in [27], Chapter 6. Having Hα

Hölder estimates on the gradient gives an H1+α estimate on the graph function. The
long time existence follows then from a similar argument as the one found in Theorem
8.3 of [30]. It is a completely standard application of the Arzelá-Ascoli Theorem and
Theorem 3.8.

Convergence to minimal surfaces is also quite standard and follows from simple ar-
guments whenever the surface area of the solution is uniformly bounded. We perform
this argument in a more general setting in Proposition 6.28 and refer the reader to that
proof. �

Next we provide the reader with a proof of how one may obtain the requisite height
and gradient bounds. We start with the height bounds. The following result is valid for
both case (a) and case (b).

Lemma 5.3 (Height bound). If ω satisfies (40) or (41) in the domain Ω̃ and the
hypotheses of Theorem 5.2, then we have sup

D(t)

|ω(y, t)| ≤ sup
D(0)

|ω0| for every t.
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Proof. The maximum principle Theorem 2.4 applied to the quasilinear parabolic
evolution of ω gives us:

sup
D(t)

|ω(y, t)| ≤ max
{

sup
D(0)

|ω0|, sup
∂DN (t)

|ω|, sup
∂DD

|ω|
}
,

for all t ∈ [0, T ). If we consider the first type of boundary problem, problem (40)
treated in case (a) of Theorem 5.2, the third term above does not appearing since there
is no Dirichlet boundary. If we consider the second boundary problem, problem (41),
treated in case (b) we know our Dirichlet boundary values are constant in time and
equal to R0 < ∞. Then the third term above can be estimated by the maximum of
the initial values. In the end the only term we need to worry about is the one on the
free Neumann boundary. Taking into account the way we have rewritten the Neumann
boundary condition (42),

dω

dy
= − 1

dωΣ

dy

,

we shall compute the derivative in the direction normal to the Neumann boundary by
taking the outer normal to the boundary in the two different cases of domain. First, let
us look at the problem (40) where D(t) = (0, r(t)). Here the choice of outer unit normal
to the Neumann boundary is ν∂DN (t) = y

|y| = 1 and then the directional derivative in the

direction of the outer unit normal to the Neumann boundary is

dω

dνDN (t)

= − 1
dωΣ

dy

.

If we find ourselves in the positive part of the Σ surface then we see that the condition
(43) says that dωΣ

dy
≥ 0, so we can put a sign on our directional derivative from above

(45)
dω

dνDN (t)

≤ 0.

If we assume there is a maximum on the Neumann boundary then the Hopf lemma tells
us that this directional derivative should be strictly positive, which contradicts (45). So
we have no maxima on the Neumann boundary where ω ≥ 0. The same argument can
also be done where ω ≤ 0, but applying a minimum principle and then the Hopf lemma
again. This tells us that the absolute value of ω can not attain a maximum on the
Neumann boundary. On the y = 0 boundary point found on the axis of rotation, the
same can be done since the 0 value of the directional derivative prevents both minima
and maxima from appearing at this boundary point.

In case (b) we have the domain defined using D(t) = (r(t), R), so the unit outer
normal to the Neumann boundary of this domain is of the opposite sign to the one in
the first problem. But here we have condition (44), where we also have an opposite sign
to that of problem (a), so the same argument applies.

Therefore we have demonstrated the required height bound in each case and com-
pletes our proof. �

We now turn our attention to gradient bounds.
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Lemma 5.4 (Gradient bound). If ω satisfies (40) or (41) on the domain Ω̃ and the
hypotheses of Theorem 5.2, then there exists a global constant C = C(ω0,Σ) < ∞ such
that we have

sup
D(t)

∣∣dω
dy

(y, t)
∣∣ ≤ C,

for every t.

Proof. Following [9] we consider the quantity v = 〈νMt , en+1〉−1 which is equal up to

tangential diffeomorphisms to
√

1 + (dω
dy

)2. The function v enjoys a parabolic evolution

on the hypersurfaces Mt generated by the graphs:( d
dt
−∆Mt

)
v ≤ 0,

and this allows us to apply the maximum principle. Since we are in a non-compact setting
we have that the maximum of the gradient is controlled by the maximum between the
initial values and the boundary values

sup
D(t)

v ≤ max
{

sup
D(0)

v, sup
∂DN (t)

v, sup
∂DD

v
}
,

for all t ∈ [0, T ). The two boundary maximums can be bounded as follows. Following the
work of Huisken [23] which we quote in Theorem 6.3 concerning the Dirichlet boundary,
a barrier construction provides us with the required bound on ∂DD in a standard way.

On the Neumann boundary, the rotational symmetry of the solution (and the fact
that this is preserved) prevents tilt behaviour. This occurs when the normal to the
graph becomes parallel to the vector field of rotation for Σ. This behaviour is explained
in much greater detail in Chapter 6.

Apart from this, we must argue why it is that our rotationally symmetric graph
does not reach points on the Neumann boundary where the surface Σ is horizontal. In
such points the boundary gradient becomes infinite simply by the Neumann condition
(42). To avoid such behaviour we combine Lemma 5.3 with the initial conditions from
the long time existence theorem: either condition (43) for the purely Neumann problem
(40) or condition (44) for the combined Dirichlet and Neumann problem (41). These
conditions say that on the Neumann boundary, in the area enclosed by the maximum
and minimum of the initial graph S, there is no point where Σ is horizontal. Now since
Lemma 5.3 implies that the height at later times remains bounded by the initial height,
this continues to hold and the graph is bounded away from these potentially troublesome
areas of Σ. This completes our proof. �

Remark. In general, one can not prevent a curvature singularity from occurring
on the free boundary without a condition such as (43) or (44). An example of such
behaviour is given in Theorem 5.7.

The next result gives long time existence for solutions of (41), but with a different
set of initial conditions. These conditions do not imply that the height remains bounded
by the initial height for all times.
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Theorem 5.5 (Long time existence without an optimal height bound). Let Σ and
the graph function ω0 : (r(0), R) → R be as above. Assume that there exists a global
constant C such that sup |ω0| ≤ C and suppose that ωΣ is taken such that R ∈ Dom(ωΣ)
and ωΣ(r) = 0 with r ≤ r(0) < R and C < |ωΣ(R)| < ∞. Define the set S = {y ∈
Dom(ωΣ) : |ωΣ(y)| ≤ |ωΣ(R)|}. If

ωΣ(y)
dωΣ

dy
(y) ≥ 0 for all y ∈ S,(46)

dωΣ

dy
(y) 6= 0 for all y ∈ S,

and ω0 satisfies the compatibility condition H(ω0)|y=R = 0, then there exists a solution
to the problem (41) for all times and it converges as t→∞ to a minimal surface.

Remark. This theorem applies to the motion of radially symmetric graphs outside
a catenoid neck with a fixed Dirichlet height on a circle of radius R. If we also suppose
that ω0(R) = 0 one can show that the surface generated by the rotationally symmetric
graphs converges as time goes to infinity to a piece of catenoid meeting the the fixed
catenoid Σ at right angle.

Proof of Theorem 5.5. We are again concerned with obtaining height and gra-
dient bounds. This time we are not able to prove that the height remains bounded by
initial values as before. But still we are able to obtain gradient bounds and then a height
bound. One should keep in mind the picture of a solution evolving outside a catenoid
neck with a fixed Dirichlet boundary at radius R. There it is intuitively obvious that
a gradient bound implies a height bound: if the height of the solution grows without
bound then it must ‘cross itself,’ thus losing the graph property on the interior.

As before we make use of the function v associated with our evolving graphs. The
maximum principle implies

sup
D(t)

v ≤ max
{

sup
D(0)

v, sup
∂DN (t)

v, sup
∂DD

v
}
,(47)

for all times t ∈ [0, T ). The term on the Dirichlet boundary is bounded again by the usual
construction of barriers, cf. Theorem 6.3. The rotational symmetry and the Neumann
boundary condition (42) implies also as before that the gradient does not become infinite
on the Neumann boundary so long as the graph does not evolve towards a point where
dωΣ

dy
= 0.

In the argument earlier it was easy to exclude such behaviour by assuming that Σ
does not contain such points in the region between the maximal and minimal initial
height, and then using the fact that the height remains bounded by initial values. Again
here we prove that the solution only moves in a region where there are no points with
dωΣ

dy
= 0. Condition (46) implies that such a region is S. We know that our graph is

initially defined on D(0) = (r(0), R) ⊂ S with r ≤ r(0) < R, and so our strategy is
to show that the graph is contained within this domain for all times and thus that the
gradient on the Neumann boundary remains bounded.

From condition (46) one observes that S = [r, R] where ωΣ(r) = 0. This tells us that
if there exists a time t∗ such that the domain D(t∗) is not included in S then there must
also exist a point y∗ ∈ D(t∗) in the domain such that y∗ > R and very close to R. This
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implies that the evolving graphs have tipped over in the interior, and so there exists an
interior point with infinite gradient. This contradicts the fact that the gradient remains
bounded by the maximum of the boundary values and the initial values. These are
in turn bounded by assumption (46) and the Dirichlet boundary barrier construction,
Theorem 6.3. So there is no such point y > R in D(t) for any t ∈ [0, T ). This tells
us that the domain of definition of the evolving graphs is always included in S, that is
D(t) ⊂ S, and gives us gradient estimates for the evolving graphs.

This argument also gives a height bound. The maximum principle implies

sup
D(t)

|ω(y, t)| ≤ max{sup
D(0)

|ω0|, sup
∂DN (t)

|ω|, sup
∂DD

|ω|},

for all times t ∈ [0, T ). The initial height and the Dirichlet boundary height are bounded
by C. From the discussion above we already know that the graphs never evolve outside
the height ωΣ(R) on the Neumann boundary. This implies

sup
D(t)

|ω(y, t)| ≤ max{C, ωΣ(R)} ≤ ωΣ(R) <∞

for all t ∈ [0, T ). Convergence to minimal surfaces follows from the long time existence
and the fact that we have a uniform area bound, exactly as before. This argument is
given in greater generality in Proposition 6.28, Chapter 6. �

4. Convergence

In this section we prove that in some cases long time existence implies that the graphs
approach a constant. In the case of a mixed Dirichlet and Neumann problem this can
obviously only hold if the height prescribed at the Dirichlet boundary is R0 = 0.

Theorem 5.6 (Convergence to a constant). Under the assumptions of Theorem 5.2:
(a) the solution of the problem (40) converges to a constant function as t→∞;
(b) if R0 = 0 the solution of the problem (41) converges to the annulus [r, R] as

t→∞, where r is such that ωΣ(r) = 0.

Proof. First we construct an auxiliary rotationally symmetric function and prove
that it also exists for all time. The same function is used to obtain both (a) and (b),
although the argument by necessity must differ slightly at some points. Let g : Ω̃ → R
be defined by

g(y, t) = t ω2(y, t) +
1

2
y2 sup

D(0)

|ω0|2.

We prove that this function exists for all times t < ∞ and from its height bound we
obtain the desired convergence as time approaches infinity. At t = 0 we have

g(y, 0) =
1

2
y2 sup

D(0)

|ω0|2,

and on the Dirichlet boundary

g(y, t) =
1

2
R2 sup

D(0)

|ω0|2,
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since ω ≡ 0 there by the condition R0 = 0. Consider the following quasilinear parabolic
operator

L =
∂

∂t
− d2

dy2

1

(dω
dy

)2 + 1
− n− 1

y

d

dy
.

By the gradient bound, Lemma 5.4, the coefficients of this operator remain bounded in
the interior of our domains. Using Lemma 5.3 we can verify that g is a supersolution
for this operator:

(Lg)(y, t) = 2t ω(y, t)(Lω)(y, t)−
sup
D(0)

|ω0|2

(dω
dy

)2 + 1

− 2t
(dω
dy

)2 1

(dω
dy

)2 + 1
− (n− 1) sup

D(0)

|ω0|2 + ω2(y, t)

≤ ω2(y, t)− sup
D(0)

|ω0|2

≤ 0.

Thus by the maximum principle

sup
D(t)

g(y, t) ≤ max
{

sup
D(0)

1

2
y2, sup

D(0)

|ω0|2, sup
∂DN (t)

g(y, t),

1

2
R2 sup

D(0)

|ω0|2
}
,(48)

for all times t ∈ [0, T ). To exclude boundary maxima we apply a similar argument as in
Lemma 5.3, by calculating the sign of the derivative of g in the direction normal to the
Neumann boundary. Let us first compute the derivative:

dg

dy
= 2t ω

dω

dy
+ y sup

D(0)

|ω0|2.(49)

Now using (42)

dg

dνDN (t)

= 2t ω|y=r(t)
dω

dy

∣∣
y=r(t)

νDN (t) + r(t) sup
D(0)

|ω0|2 νDN (t)

= −2t ωΣ
1
dωΣ

dy

νDN (t) + r(t) sup
D(0)

|ω0|2 νDN (t)

= −2t ω2
Σ

1

ωΣ
dωΣ

dy

νDN (t) + r(t) sup
D(0)

|ω0|2 νDN (t).(50)

Our argument must now differ for each of the cases (a) and (b). We begin with (a).
In the case of the Neumann problem (40), with D(t) = (0, r(t)) and boundary

∂DN(t) = {r(t)}. The 0 point on the rotation axis is here regarded as a boundary point
also. For a radially symmetric graph we have dω

dy

∣∣
y=0

= 0 by smoothness and symmetry

as explained before. The normal to the Neumann boundary ∂DN(t) is νDN (t) = y
|y| = 1.
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In this case we cannot exclude the appearance of a maximum for g on the Neumann
boundary by contradicting condition (43) with the Hopf Lemma. Instead we proceed in
a manner somewhat analogous to the proof of Theorem 5.5 above.

First we shall dismiss the appearance of maxima at the point y = 0 using a Hopf
Lemma argument. Since we have

dg

dy

∣∣
y=0

= 2t ω
dω

dy

∣∣
y=0

+ y sup
D(0)

|ω0|2
∣∣
y=0

= 0,

the height of the g function satisfies

sup
D(t)

g(y, t) ≤ max
{

sup
D(0)

1

2
y2 sup

D(0)

|ω0|2, sup
∂DN (t)

g(y, t)
}

(51)

for all times t ∈ [0, T ). Recall that we do not have a Dirichlet boundary term in the case
of the problem (40). Thus from Lemma 5.3 we obtain that the height of the function g
is finite at all times t <∞.

We also need a gradient bound for g. The same arguments as for the solution ω
imply the existence of a constant C = C(t) <∞ such that dg

dy
≤ C. Further, the growth

of C in time is at worst linear. This together with the height bound above and standard
parabolic theory gives that the function g exists for all times t <∞.

Returning to the height estimate (51), we compute

t ω2(y, t) +
1

2
y2 sup

D(0)

|ω0|2 ≤ max
{

sup
D(0)

1

2
y2 sup

D(0)

|ω0|2,

sup
∂DN (t)

{ t ω2(y, t) +
1

2
y2 sup

D(0)

|ω0|2}
}

≤ max
{1

2
r(0)2 sup

D(0)

|ω0|2,

sup
y=r(t)

{tω2(r(t), t) +
1

2
r(t)2 sup

D(0)

|ω0|2}
}

≤ max
{1

2
r(0)2 sup

D(0)

|ω0|2,

tω2(r(t), t) +
1

2
r(t)2 sup

D(0)

|ω0|2
}
.

Thus

tω2(y, t) +
1

2
y2 sup

D(0)

|ω0|2 ≤
1

2
r(0)2 sup

D(0)

|ω0|2 + tω2(r(t), t)

+
1

2
r(t)2 sup

D(0)

|ω0|2,

where for the last inequality we used the fact that both the quantities compared are
positive. Therefore

tω2(y, t) ≤1

2
r(0)2 sup

D(0)

|ω0|2 + tω2(r(t), t)
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+
1

2
r(t)2 sup

D(0)

|ω0|2 −
1

2
y2 sup

D(0)

|ω0|2,

and so

ω2(y, t) ≤ 1

2t
r(0)2 sup

D(0)

|ω0|2 + ω2(r(t), t) +
1

2t
r(t)2 sup

D(0)

|ω0|2

− 1

2t
y2 sup

D(0)

|ω0|2.

Now let t→∞ and using the fact that for any t <∞, r(t) and y ∈ [0, r(t)] are bounded
and Lemma 5.3 we obtain

ω2(y,∞) ≤ ω2(r(∞),∞) for all y ∈ [0, r(∞)].

One can see that r(t) < ∞ for all t ∈ [0, T ) by using the result of Theorem 5.2 that
is satisfied by the graphs and obtaining a uniform height bound. Due to the uniform
bound we also have r(∞) <∞. Another approach for proving this is to use the property
of the mean curvature flow of being an area minimising flow and notice that we have
started with a bounded area graph. If for some time t, r(t) = ∞ for D(t) = (0, r(t))
this implies that the area of the hypersurface generated by the graph is infinite at this
time and contradicts the initial bound.

The last estimate gives us a maximum of the height of the solution on the Neumann
boundary at time T = ∞. By the same argument as in the height bound Lemma 5.3,
this can not occur. This together with the above relation at T = ∞ tells us that the
graphs must have reached a constant height at T =∞.

We now turn our attention to case (b). For the problem (41) we have two boundary
conditions, a Neumann and a Dirichlet condition. Here we have D(t) = (r(t), R) with
the boundaries being ∂DD = {R} and ∂DN(t) = {r(t)}. The situation is easier than in
the previous case since on the Neumann boundary we can prove directly that we do not
have any maxima of the function g. This comes from (50) together with the fact that
the outer normal to the Neumann boundary is ν∂DN (t) = − y

|y| = −1:

dg

dνDN (t)

= 2tω2
Σ

1

ωΣ
dωΣ

dy

− r(t) sup
D(0)

|ω0|2 ≤ 0,

where the last inequality is implied by condition (44). This implies that, similar to case
(a) treated above, we have that g exists for all times t <∞.

The Hopf Lemma tells us then that there do not exist any maxima of g on the
Neumann boundary. The previous application of the maximum principle in (48) gives
us that the height of g is bounded by the maximum of the initial values and of the values
on the Dirichlet boundary. This implies

tω2(y, t) +
1

2
y2 sup

D(0)

|ω0|2 ≤ max
{1

2
R2 sup

D(0)

|ω0|2, sup
(r(0),R)

1

2
y2 sup

D(0)

|ω0|2
}
,

≤ 1

2
R2 sup

D(0)

|ω0|2
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which leads to

ω2(y, t) ≤ 1

2t
(R2 − y2) sup

D(0)

|ω0|2, for every t < ∞.

Taking t → ∞ in the last line gives us that ω2(y, t) ≤ 0 as t → ∞. This implies ω
converges to the zero function defined over an annulus. �

Remark (C∞ convergence). The convergence in the above theorem is only in the
C0 topology, since we have only explicitly shown that the height converges to a constant
as t → ∞. To obtain convergence in the C∞ topology, where all derivatives must also
converge, one must apply interior estimates (such as can be found in [6, 10]) after one
has already established long time existence.

Remark (Examples). Theorem 5.6 is applicable, for example, to the motion of
radially symmetric graphs inside the catenoid neck (case (a)) and to the motion of
radially symmetric graphs outside the sphere (case (b)). The first converges to the flat
disc inside the catenoid neck with zero height. The second example, flow by mean
curvature of radially symmetric graphs outside the sphere supported at ninety degrees
on the sphere and with a fixed zero height at some fixed radius outside the sphere, can be
applied to the graphs considered in the previous chapter as a barrier for the reflectively
symmetric graphs. By the result of the theorem the radially symmetric graphs converge
to the annulus around the sphere.

5. Curvature singularity on the free boundary in finite time

The results of this section only apply to (41). We use a self-similar solution of
mean curvature flow to show that for some specific initial data parts of the graphs
evolve towards the rotation axis y = 0 where the surface Σ is horizontal, developing a
curvature singularity by being pinched. We first state the most general form for this
result and then give sufficient conditions for the initial graph to observe such behaviour.

In Theorem 5.2 we gave sufficient conditions for which the height of the graphs for
both of our problems (40) and (41) remains bounded by the initial values. The initial
conditions also include a relation which states that between the maximum and minimum
of the initial height there is no point on which the surface Σ is horizontal. These two
conditions are enough to prevent the graphs ω from developing an infinite gradient on
the Neumann boundary.

When the surface Σ has a point in which it is horizontal in the above mentioned
region, that is there exists a point between the maximum and minimum of the height
of the initial graph such that | 〈νΣ, e3〉 | = 1, then there is essentially no obstruction to
the evolving graphs moving towards those points. When one of these points lies on the
axis of rotation for Σ, a curvature singularity can also develop. This is the case which
interests us in this section.

In the following consider rotationally symmetric surfaces Σ which are diffeomorphic
to spheres with rotation axis y = 0.
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Theorem 5.7 (Curvature singularity on the boundary). Suppose Σ is such that
Dom(ωΣ) = [0, r] with ωΣ(r) = 0 and satisfying in addition:

ωΣ(y)
dωΣ

dy
(y) ≤ 0 for all y ∈ Dom(ωΣ),

dωΣ

dy
(y) 6= 0 for all y ∈ Dom(ωΣ) ∼ {0},

dωΣ

dy
(0) = 0.

Let ω satisfy (41) for D(t) = (r(t), R) such that D(0) = (r(0), R), R /∈ Dom(ωΣ) and
r(0) ≤ r < R. If for the initial graph function ω0 there exists a self-similar torus in the
region bounded by the initial graph ω0 and the line z = ωΣ(0) if the graph ω0 has positive
values, or there exists a self-similar torus in the region bounded by the initial graph ω0

and the line z = −ωΣ(0) if the graph ω0 has negative values, then the solution for the
problem (41) exists for only a finite time T <∞ and the graphs ω(·, t) develop a Type I
curvature singularity at y = 0 as t→ T .

Proof. We apply the comparison principle to obtain that the moving graphs and
the enclosed evolving torus never touch. If we are careful in the choice of torus, then
this will force the desired pinching behaviour.

Despite the presence of boundaries in our problem, the compact case of the compari-
son principle, found for example in [22], is sufficient here. This tells us that the solutions
of our moving graphs and the evolving tori remain disjoint for all time. Note also that
our previous results imply that the solution ω continues to exist until the appearance of
the first gradient singularity on the boundary. Due to the rotational symmetry, this is
only possible on the Neumann boundary. This ensures that the solution exists at least
for as long as the torus beneath (or above) it exists. We are able to apply the compact
version of the comparison principle since, from the hypothesis of the theorem, the torus
is above the maximum of the height of Σ, so in particular above the Neumann boundary
also. By the choice of our initial torus we have that it exists for a finite quantum of time
T until it becomes a point, forcing the solution to pinch at the point y = 0 as t→ T .

To prove that it is a type I curvature singularity we apply again the comparison
principle. This time we place a sphere centred on the rotation axis above the maximum
height of Σ, or below the minimum height if we find ourselves on the negative side of the
graphs ωΣ. Taking the initial sphere to be disjoint from the evolving graphs one obtains
that they remain disjoint for all times of existence. Therefore the evolving graph can
only become singular on the axis of rotation as fast as the sphere. Now since a sphere
evolving by mean curvature flow develops a Type I curvature singularity when it finally
contracts at the centre point on the rotation axis y = 0 (in fact we could place any
strictly convex surface there, as one can infer from [21]), the radially symmetric graphs
must also develop a Type I curvature singularity there. �

Remark. The plane z = ωΣ(0) (or z = −ωΣ(0)) which bounds the torus comes
from the maximal (or minimal) height of the surface Σ. This condition can be weakened
by replacing the plane with a backwards cone which still gives enough freedom for the
comparison principle to work for the self-similar torus of Angenent. We have decided to
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use the plane condition instead since requiring the self-similar torus in the hypothesis of
the theorem is very strong condition. With the plane condition, one has the freedom to
choose any torus which will simply pinch the graphs at the point y = 0, not necessarily
shrinking self-similarly. That is, any torus which does not collapse to a circle will do.

Remark. One may carry through a similar idea for graphs without any symmetry,
however the statement obtained is much weaker. Of course the comparison principle
continues to apply and the torus continues to force the graph to cease existing after
a finite amount of time. The problem is that as of this moment, we have not been
able to prevent the occurrence of a singularity for the gradient on the free boundary.
For our techniques to work, it seems one requires at least some symmetry assumption.
This implies that the graph may not even exist as long as the torus: it may develop
a singularity for the gradient (or the curvature) on the free boundary before the torus
pinches off. The upshot of this is that without the rotational symmetry assumption
we only obtain a maximal time estimate from above, and do not have any information
about the type of singularity which develops in finite time.

Our theorem requires the following result due to Angenent [2].

Theorem 5.8 (Angenent [2], 1989). For n ≥ 2 there exist embeddings Xn : S1 ×
Sn−1 → Rn+1 for which Xn(p, t) =

√
2(1− t) ·Xn(p) is a solution of the flow by mean

curvature equation.

Remark. This theorem states the existence of a self-similar torus. The solution for
the compact mean curvature flow given by the embedding in the theorem above states
that the torus shrinks to the origin by dilatations, and it will become singular at time
T = 1.

There are three quantities which characterise a torus, and Angenent finds conditions
on these for which the torus is self similar. We consider the torus instead as a surface
of revolution. The width of the torus is the maximal distance from the rotation axis
taken pointwise and the radius of the hole is the minimum of all distances of points
from the curve to the axis of rotation. The third quantity is the ‘fatness’ of the torus
or the maximum height that the plane curve takes as a graph. Let us denote the three
quantities by r1 for the radius of the hole, r2 for the width of the torus, and h for the
maximum height. In case we are looking at a perfect torus, obtained by the rotation
of a circle, the three quantities will be: r1 is the difference between the radius of the
rotation and the radius of the rotated circle, r2 is be the sum of r1 and the diameter of
the rotated circle and h is just the radius of the circle which is being rotated. Following
the work of Angenent [2] one finds, quite surprisingly, that the self-similar torus is not
a ‘perfect torus’, obtained by the rotation of a circle. It is in fact somewhat egg-shaped,
so working directly with the self-similar torus is not easy. This is why we make use of a
little trick.

Since we are working with a general graph we want to give the most general condition
on the three quantities for which the existence of a self-similar torus is assured. The
most direct method is to fit a big “box” in the region where we wish to place the curve
generating the self-similar torus, which then is contained in the “box”. From discussions
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Figure 5.1. The three quantities of the torus.

found in [2] we obtain relations between the three quantities, for which the torus is a
self-similar shrinking solution.

Lemma 5.9 (Angenent [2], 1989). There exists a smallest r∗2 ≥
√

2n for which we
have a self-similar torus with r∗1 ≥ 1

r∗2
and h ≤ C

r∗2
, where C does not depend on r∗2.

For n = 2 one can also estimate numerically [2, 5] the approximate values of these
three quantities for the self-similar torus.

Remark (Angenent [2], 1989, Chopp [5], 1994, Approximate values for the self-
-similar torus for n = 2). For the above existence result in the case n = 2 we have the
following approximate values

r∗2 = 3.4,

r∗1 = 0.45,

h∗ = 0.87,

C < 3

up to scaling.

We do not wish to use only the values given by the existence result of the above
lemma since one may always find a “smaller” torus which also shrinks self-similarly.
Thus we must be very careful in the scaling behaviour of these three quantities. In the
following we look at the the conditions that a scaled version of the self-similar torus
must satisfy. Assuming we start with another value for the width of the torus, which we
denote as before with r2, we need to introduce a scaling factor:

λ =
r2

r∗2
≤ r2√

2n
.

The conditions imposed on the three quantities are scaled appropriately as:
(a) r1 ≥ λ2 1

r2
,

(b) h ≤ λ2 C
r2

.
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As announced in the lemma above, note that the constant C does not depend on the
scaling.

Next we wish to give sufficient conditions for the self-similar torus of Theorem 5.7 to
exist. We work assuming that the initial graph is positive. The negative or mixed cases
are treated similarly. Let us set

Q = {z ∈ R : ∃y ∈ [r(0), R] such that z = ω0(y) and z > ωΣ(0)}
to be the set of all initial values above the fixed height line z = ωΣ(0) from Theorem
5.7. Let

M = sup
z∈Q

ω−1
0 (z)

be the farthest point away from the rotation axis y = 0 for which the initial graph is
above the maximal value of the Σ graphs. Then we have the following lemma.

Lemma 5.10 (Conditions on the initial graph). Suppose ω0 is an initial graph for the
problem (41). If there exists 0 < R2 ≤ M and there exist z1, z2 ∈ Q with z1 ≤ z2 and
z2 − z1 ≥ C 2R2

r∗2
2 such that |maxω−1

0 (z) − minω−1
0 (z)| ≥ R2 − R2

r∗2
2 for all z ∈ [z1, z2],

then there exists the self-similar torus required for Theorem 5.7.

Proof. The two conditions of the lemma are sufficient to enable us to construct
a “box” high enough and wide enough such that we are able to fit the curve which
generates the self-similar torus in the region bounded by the constant height z = ωΣ(0)
and the initial graph ω0. The box permits our curve to satisfy the above scaled conditions
(a) and (b). �

6. Examples

We want to mention here two examples for the two types of problems (40) and (41).
One of them is the motion by mean curvature flow of radially symmetric graphs inside
the catenoid neck and the second one is the motion by mean curvature flow of radially
symmetric graphs outside the unit sphere combined with a fixed zero Dirichlet boundary
height on a fixed radius outside the sphere. In the first problem our results imply that
the mean curvature flow solution exists for all times and converges to the flat disc inside
the catenoid neck. The second shows that the problem (41) has a long time solution if
we start with an initial graph below the height of the sphere and converge as t→∞ to
the annulus around the sphere. In the case where we do not have such an initial bound
on the height and instead satisfy the conditions of the Theorem 5.7, the graphs move
towards the North Pole of the sphere or the South Pole in case we find ourselves with
a negative graph. The graph develops a Type I curvature singularity at either of these
poles in finite time.



CHAPTER 6

Mean curvature flow of graphs with a free boundary on general
hypersurfaces in Euclidean space

1. Introduction

This chapter treats the general setting for our two types of problems. The majority
of the results in this chapter are explicitly proved in R3, even though most of the results
carry over without difficulty to higher dimensions.

First we define in detail the two problems, the evolution of graphs by mean curvature
flow with Neumann boundary condition on a fixed contact surface in R3 and the evolution
of graphs with both Neumann and Dirichlet boundary conditions.

In section 3 we obtain height bounds in two different ways. The first is strongly
related to the information enclosed in the contact surface Σ and it is more restrictive.
As examples here we have mean curvature flow of graphs outside the sphere or inside
the catenoid neck. The second type of height bound follows simply from the radially
symmetric chapter results with no extra condition imposed on the surface Σ and it
applies to any of the situations considered thus far: motion outside the sphere, inside or
outside the catenoid neck, and more.

Section 4 takes the reader through a well-known method for obtaining bounds on
the Dirichlet boundary.

It is followed by the section concerned with gradient bounds on the Neumann bound-
ary. We classify the ‘bad’ behaviour that a graph might exhibit on the Neumann bound-
ary. There are two types of bad gradient behaviour. The first one we call a tilt and
it occurs when the surfaces will become non-graphical on the Neumann boundary by
the unit normal becoming parallel to the vector field of rotation for the surface Σ. We
present here an extensive list of conditions on curvature and derivatives of curvature in
a first boundary point of tilt. The second type of bad gradient behaviour on the Neu-
mann boundary is when the evolving graphs move towards a point where the surface of
contact Σ is horizontal. We can exclude such behaviour in certain situations. The result
is obtained for the evolution of graphs which are defined on two dimensional topological
disks.

Section 6 treats the particular case when the contact surface is a cylinder in R3

for the purely Neumann problem (1). We obtain uniform bounds for height, gradient,
and mean curvature. These estimates imply long time existence. This result has been
previously obtained by Huisken [23] through the use of integral estimates, a completely
different method.

In section 7 we treat the mean curvature flow of graphs in a half space with free
boundary on a hyperplane. This is the natural next step in developing the results
obtained for entire graphs by Ecker and Huisken [9]. Here we work directly with the

71
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general n-dimensional flow and we obtain uniform bounds for the height, gradient and
the mean curvature. Initially convex or concave (in the sense of eigenvalues of the second
fundamental form) hypersurfaces remain so, and thus we also obtain uniform bounds
on the full second fundamental form. These estimates imply long time existence for the
solution. Further, we prove that the solution converges to a hyperplane if the initial
height is bounded. This can be contrasted with the following well-known result from
minimal surface theory: any complete minimal surface bounded between two planes must
be itself a plane. This is obvious from the maximum principle; here we face the difficulty
of having to prove that the solution converges to a minimal surface with bounded height.
The standard technique relies heavily upon the surface area remaining bounded, and in
this situation that is obviously not the case. We instead directly prove that the norm of
the second fundamental form decays to zero.

The last section contains a collection of useful results for general graphs evolving by
mean curvature flow with free boundary. Here we discuss the compatibility condition on
the Dirichlet boundary and also show that solutions with bounded area which exist for
all time must converge to a minimal surface. Here we also apply a technique developed in
this chapter, section 5, to obtain long time existence for some of the radially symmetric
flows with weaker conditions on Σ.

2. Setup

As in Chapter 5 we only consider contact surfaces Σ which are the union of two
rotationally symmetric graphs ω+

Σ , ω−Σ where

Dom ω+
Σ = Dom ω−Σ ,

ω+
Σ (y) ≥ 0,

ω−Σ (y) ≤ 0,

ω+
Σ (y) = 0⇔ ω−Σ (y) = 0,

for all y = |(x1, x2)|. Each point X ∈ Σ can be written as X =
(
(x1, x2), ωΣ(y)

)
, where

ωΣ is either ω+
Σ or ω−Σ . We also impose that the graphs meet vertically, that is

〈νΣ(y), e3〉 = 0 when ωΣ = 0,

where we denote by νΣ the normal to ωΣ. A convention which we continue to use is that
the normal to the fixed surface Σ is pointing away from the moving graphs.

For example we have ω±Σ (y) = ±arccosh(y) and ω±Σ (y) = ±
√

1− y2 for the catenoid
and the sphere respectively. This rotational symmetry is consistent with our previous
work. Note also that for rotationally symmetric surfaces of contact Σ the Killing vector
field K3 : R3 → R3 defined in Chapter 4 as K3( x1, x2, x3) = ( x2, − x1, 0) is in every
point tangent to Σ:

〈K3, νΣ〉 = 0.(52)

We also impose the following condition on the contact surface Σ

ωΣ 〈νΣ, e3〉 ≤ 0 everywhere on Σ,(53)

where νΣ is a choice of unit normal to the fixed surface Σ pointing for all times outside the
evolving mean curvature flow surfaces defined below. This condition ensures that we are
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able to obtain height estimates for our problems using a maximum principle approach.
Condition (53) is satisfied for motion outside the sphere or inside the catenoid neck. For
motion inside the sphere and outside the catenoid neck the sign is reversed.

Remark. We see in the next section on height bounds that we do not need to impose
condition (53) to obtain height bounds. We nevertheless state it here, since it is a way
to obtain height bounds using the maximum principle.

We are now ready to redefine our problems. Since most of the results we present
here are for the case n = 2, we shall for the moment restrict ourselves to this. There are
two types of problem that we consider. The first is the mean curvature flow of graphs
with a Neumann boundary condition on the fixed surface Σ. The boundary condition is
given by enforcing a ninety degree contact angle with the surface Σ.

Let M2 to be a smooth, orientable 2-dimensional manifold with smooth, compact
boundary ∂M2 and set M0 := F0(M2), where F0 : M2 → R3 is a smooth embedding
satisfying

∂M0 ≡ F0(∂M2) = M0 ∩ Σ,

〈νM0 , νΣ ◦ F0〉 (p) = 0 ∀p ∈ ∂M2,

where we have denoted by νM0 the unit normal to M0. Let I ⊂ R be an open interval
and let Ft = F (·, t) : M2 → R3 be a one-parameter family of smooth embeddings for all
t ∈ I. The family of surfaces (Mt)t∈I , where Mt = Ft(M

2), are said to be evolving by
mean curvature flow a with free Neumann boundary condition on Σ if

∂F

∂t
(p, t) = − H(p, t)νMt , ∀(p, t) ∈M2 × I,(54)

F (·, 0) = F0,

F (p, t) ⊂ Σ, ∀(p, t) ∈ ∂M2 × I,
〈νMt , νΣ ◦ F 〉 (p, t) = 0, ∀(p, t) ∈ ∂M2 × I,

where we have denoted by νMt the unit normal to Mt and by H the mean curvature of
Mt.

The second type of problem is when the evolving surfaces also have a second boundary
on which we prescribe a fixed height over the plane of definition as a graph. This is the
general setting which includes the example we have worked on in Chapter 4 where the
surface Σ was the unit sphere in R3. We define this problem as follows.

LetM2 to be a smooth, orientable 2-dimensional manifold with two smooth, compact,
disjoint boundaries which we denote by ∂NM

2 for Neumann boundary and ∂DM
2 for

Dirichlet boundary. Set M0 := F0(M2), where F0 : M2 → R3 is a smooth embedding
satisfying

∂NM0 ≡ F0(∂NM
2) = M0 ∩ Σ,

〈νM0 , νΣ ◦ F0〉 (p) = 0 ∀p ∈ ∂NM2,

∂DM0 ≡ F0(∂DM
2).

We will impose also another condition on the Dirichlet boundary which is a necessary
condition in obtaining the Dirichlet boundary estimates in Section 3 of this chapter. If
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we consider the Dirichlet boundary of the associated graph in the e3 direction of M0,
that is the projection onto the R2 plane prR2∂DM0, then the following must hold:

H
∣∣
prR2∂DM0

≥ 0.(55)

Let I ⊂ R be an open interval and let Ft = F (·, t) : M2 → R3 be a one-parameter family
of smooth embeddings for all t ∈ I. The family of surfaces (Mt)t∈I , where Mt = Ft(M

2),
is said to be evolving by mean curvature flow with free Neumann boundary condition
on Σ and an additional fixed Dirichlet boundary condition if it satisfies

∂F

∂t
(p, t) = − H(p, t)νMt , ∀(p, t) ∈M2 × I,(56)

F (·, 0) = F0,

F (p, t) ⊂ Σ, ∀(p, t) ∈ ∂NM2 × I,
〈νMt , νΣ ◦ F 〉 (p, t) = 0, ∀(p, t) ∈ ∂NM2 × I,
F (p, t) = F0(p), ∀(p, t) ∈ ∂DM2 × I.

We also assume that, in both problems, M0 can be written as a graph in the direction
of e3. So initially we have

〈νM0 , e3〉 > 0.(57)

In the following we show that (54) and (56), for special cases of the surface Σ and
conditions on the initial surface M0, preserve the initial graph condition, which leads us
to gradient bounds for the associated scalar graph problem.

3. Height bounds

As announced in the introduction of this chapter we use two methods for obtaining
height bounds for the problems under study. The first one is when we make use of
condition (53) and prove that the height of the graphs remain for all times bounded
by the initial values. The second comes from using the radially symmetric graphs as
barriers. Let us start with the first method.

Following [9] we define the height function u : Mt → R

u(X) := 〈X, e3〉 = 〈F (p, t), e3〉

where we freely alternate between using F (p, t) for a point p ∈ M2 and the position
vector X = F (p, t). This function measures the distance of a fixed point on the moving
surface to the hyperplane (orthogonal to e3) over which the surface is initially defined as
a graph. Having a bound on this height is equivalent to having a bound on the height
of the associated graph function.

In a local orthonormal frame {τi}1≤i≤2 on Mt we also have the formula

∇Mtu =
2∑
i=1

〈τi, e3〉 τi.(58)
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From the work on entire graphs by Ecker and Huisken [9], one observes that this height
function satisfies the heat equation on Mt:( d

dt
−∆Mt

)
u = 0.(59)

This evolution allows us to bound the height at all times, barring poor boundary be-
haviour. In both (54) and (56) one sees that because u is constant on the Dirichlet
boundary, the only bad behaviour can occur at the Neumann boundary. Imposing the
extra condition (53) on the surface Σ one can exclude such behaviour as follows.

On the Neumann boundary the unit normal of Σ is in every point a member of the
tangent space of Mt, so we can always choose τ2 = νΣ = ν∂Mt on the boundary. Then
we get the following result.

Theorem 6.1 (Height bounds using an additional condition and the maximum prin-
ciple). Let Σ be a rotationally symmetric surface in R3 satisfying (53). Let Mt be a graph
satisfying (54) or (56). Then the height function u is bounded by the supremum of its
initial values for all time

sup
Mt

|u| ≤ sup
M0

|u|.

Proof. From the parabolic evolution of the height function (59) we obtain that the
square of the height function also satisfies( d

dt
−∆Mt

)
u2 = −|∇Mtu|2 ≤ 0.

By Theorem 2.9 this implies

sup
Mt

u2 ≤ max
{

sup
M0

u2,max
∂DMt

u2,max
∂NMt

u2
}
.

Since max
∂DMt

u2 ≤ sup
M0

u2 this simplifies to

(60) sup
Mt

u2 ≤ max
{

sup
M0

u2,max
∂NMt

u2
}
.

To exclude a maximum of the square of the height function on the Neumann boundary
we will make use of (53) and the Neumann angle condition. Suppose there exists a point
X = X(p, t) ∈ ∂NMt such that the function u2 has a first boundary maximum at X.
Then by the Hopf Lemma 2.7, using the parabolic evolution of u2, we get a sign on the
derivative of the height function in the normal direction to the boundary, that is〈

∇u2, ν∂Mt

〉 ∣∣
X

= 2u 〈∇u, νΣ〉
∣∣
X

> 0(61)

where we have chosen ν∂Mt = νΣ. Here and henceforth we abbreviate ∇Mtu by ∇u. Now
by (58) we also have

〈∇u, νΣ〉 =
2∑
i=1

〈τi, e3〉 〈τi, νΣ〉

= 〈τ2, e3〉
= 〈νΣ, e3〉
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where we have used the choice of our orthonormal frame. This implies〈
∇u2, ν∂Mt

〉 ∣∣
X

= 2u 〈νΣ, e3〉
∣∣
X

= 2ωΣ 〈νΣ, e3〉
∣∣
X
,

where in the last equality we have used that u = ωΣ on the Neumann boundary, since
the evolving graphs move on the surface Σ. From the assumption (53) on Σ we have〈

∇u2, ν∂Mt

〉 ∣∣
X
≤ 0,

and this contradicts the sign given by the Hopf Lemma (61) at a maximum on the
boundary. This finally implies that there is no maximum of the height squared on the
Neumann boundary at any time. Returning to (60) we obtain the desired result. �

Remark (Examples). This type of height bound is applicable for the motion of
graphs outside the sphere or inside the catenoid neck, or to a graph evolving outside any
ellipsoid in R3.

The second way of obtaining height bounds is less restrictive and uses additional
conditions on Σ similar to those imposed in the previous chapter on radially symmetric
graphs.

Theorem 6.2 (Height bounds using comparison principle and barriers). Let Σ be
a rotationally symmetric surface in R3 as defined in Section 2. Let Mt satisfy (54) or
(56). If Σ satisfies condition (43) or (44), for problem (54) or (56) respectively, then
we have for all time

sup
Mt

|u| ≤ sup
M0

|u|.

If Σ satisfies instead condition (46) for the problem (56) then there exists a global con-
stant C <∞ such that for all times

sup
Mt

|u| ≤ C.

Proof. The proof is simple and is based on the results on radially symmetric graphs
from Chapter 5. It works in the same way for all our various problems. We can always
find radially symmetric graphs ω+ and ω− such that the surfaces generated by them are
barriers for the initial manifold M0. By the comparison principle, Theorem 2.10, they
remain barriers for all surfaces Mt so long as the immersions Ft exist. From Lemma
5.3 and the proof of Theorem 5.5 we see that the radially symmetric graphs satisfy
height bounds for all times. These bounds are given by the initial values in the case of
conditions (43) and (44).

In case we only have condition (46) for problem (56), we can not conclude that the
height of the solution remains bounded by the supremum of the initial values. For this
case we apply Theorem 5.5 to the radially symmetric barrier. Thus the constant C is
the equivalent of ωΣ(R) in that proof. There R denotes the radius of the rotation on
the Dirichlet boundary. So the constant C can be computed after the choice of the
radially symmetric barrier as C = ωΣ(R), where R is the Dirichlet boundary point for
the radially symmetric graphs. �
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Remark (Examples). This type of height bound applies to all of the examples we
have considered thus far: the evolution of graphs outside the sphere, inside or outside
the catenoid neck, outside ellipsoids, and so on.

Remark. The computations in this section and the comparison with rotationally
symmetric barriers apply equally in all dimensions, and so the results of this section
apply also to the mean curvature flow of hypersurfaces in Rn+1 for each of the problems
under consideration, with the same hypotheses.

4. Dirichlet boundary estimates

In this section we briefly review the well-known method used to obtain estimates on
the Dirichlet boundary through the construction of barriers. For more details on general
results in this field and references we invite the reader to follow Appendix B. Here we
only state the result that is most applicable to our work. For mean curvature flow
with Dirichlet boundary conditions the use of barriers was observed for the first time by
Huisken in [23]. There one makes use of the well-known work of Serrin [34] to construct
barriers for the elliptic analogue of the parabolic operator. The two barriers (an ‘upper’
and a ‘lower’) bound the initial data at the Dirichlet boundary, and (following Huisken)
one can apply the strong maximum principle to bound the gradient at the Dirichlet
boundary for all times.

Theorem 6.3 (Huisken [23], 1989, Estimates on the Dirichlet boundary). Let Mt

satisfy (56) with smooth initial data M0 which satisfies conditions (55) and (57). Then
there exists a global constant C > 0 such that for all time

(62) 〈νMt , e3〉 > C on the Dirichlet boundary ∂DMt.

Proof. To follow the proof of Huisken [23] we need to first write our problem as
a non-parametric mean curvature flow, as in [8] and as in Chapter 4 for the sphere
problem. The immersion flow (56) is equivalent up to tangential diffeomorphisms to the
following scalar evolution of a graph h : Ω̃ → R: in the e3 direction, defined on a time

dependent domain Ω̃ =
⋃

t∈[0,T )

Ω(t)× {t}:

∂h

∂t
=
√

1 + |Dh|2 div
( Dh√

1 + |Dh|2
)

on Ω̃,(63)

〈νh, νΣ〉 = 0 and h(x, t) = ωΣ(|x|) on ∂ΩN(t) for all t ∈ [0, T ),

h(x, t) = h0 on ∂ΩD for all t ∈ [0, T ),

h(x, 0) = h0 on Ω(0),

where Ω(t) ⊂ R2 has two distinct smooth boundaries: the Neumann boundary ∂ΩN(t)
and the Dirichlet boundary ∂ΩD. Here we have also denoted by νh the unit normal to
the graph function h. The Neumann boundary condition is given by the restriction that
the graphs must meet the surface Σ perpendicularly and also be at the same height as
the graph ωΣ which generates the rotationally symmetric surface Σ. The function ωΣ is
as in (53).
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The result of this theorem is that on the Dirichlet boundary we enjoy a uniform
(in time) gradient bound along the flow. The link between the gradient and the inner
product 〈νMt , e3〉 is well explained in [8, 9], so we omit it here.

Following the work of Serrin [34], we are able to find barriers δ− and δ+ defined
locally in a neighbourhood U of the Dirichlet boundary ∂ΩD such that

div
( Dδ−√

1 + |Dδ−|2
)
≤ 0 on Ω(0) ∩ U ,

div
( Dδ+√

1 + |Dδ+|2
)
≥ 0 on Ω(0) ∩ U ,

δ− = δ+ = h0 on ∂ΩD,

δ− ≤ h0 ≤ δ+ on Ω(0) ∩ U .

The choice of barriers is made locally around the Dirichlet boundary independent of
time. The existence of the barriers δ+ and δ− is by construction and can be found in
Appendix B, starting with relation (136). In the notation here one should keep in mind
that M = sup

Ω(0)

h0.

Using the above and the strong maximum principle we obtain that the barrier func-
tions bound the graph function from above and below for all times:

δ− ≤ h(·, t) ≤ δ+ on
(
Ω(t) ∩ U

)
∀t ∈ [0, T ).

Thus there exists a constant C < ∞ depending on ∂ΩD and h0 such that we get the
gradient bound for all times of existence

|Dh| ≤ C uniformly on ∂ΩD × [0, T ),

which implies (62). �

5. Neumann boundary gradient behaviour and bounds

Following [9] we consider two quantities s, v : Mt → R:

s(X) : = 〈νMt(X), e3〉
v(X) : = 〈νMt(X), e3〉−1 = s−1(X).

Up to tangential diffeomorphisms, one can express the second quantity as v =
√

1 + |Dh|2.
This makes it clear that an upper bound on v gives the desired gradient bound.

As discussed in the introduction we start with an initial graph, and so at t = 0 we
have s(·, 0) > 0. Preserving the sign of this function gives us some control on the
gradient of the graph function, since when the quantity s stays bounded away from zero,
v is bounded from above. Preserving the sign of s(·, t) > 0 for all times ensures that Mt

remains a graph.
Following Ecker and Huisken [9] we see that these quantities satisfy parabolic evo-

lutions.
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Proposition 6.4 (Ecker, Huisken [9], 1989, Evolution of v). The quantity v : Mt →
R satisfies the evolution:( d

dt
−∆Mt

)
v = − |AMt |2v − 2v−1|∇Mtv|2 ≤ 0.

Proof. From [21], we have that the time derivative of the normal satisfies d
dt
νMt =

∇MtH, thus

d

dt
v = −v2

〈
∇MtH, e3

〉
.

In terms of a local orthonormal frame {τi}1≤i≤2 on Mt we compute:

∆Mtv =
2∑
i=1

Dτi

(
− v2 〈∇τi , e3〉

)
=

2∑
i=1

2∑
l=1

Dτi

(
− v2 〈hilτl, e3〉

)
= −v2

〈
∇MtH, e3

〉
+ v|AMt |2 + 2v−1|∇Mtv|2,

where we have used the Weingarten and Codazzi equations and the fact that in the
interior we can choose coordinates such that the Christoffel symbols vanish at a point.
Bringing the last two equalities together we obtain the desired result. �

This proof also implies the following evolution of s.

Proposition 6.5 (Ecker, Huisken [9], 1989, Evolution of s). The quantity s : Mt →
R satisfies the evolution: ( d

dt
−∆Mt

)
s = |AMt |2s.

On the Neumann boundary contained in the fixed surface Σ there are two important
cases when v quantity becomes unbounded (and s becomes zero). In the following we
explain each of them in detail and present results which help to avoid such bad behaviour.

First however we wish to quote a result which prevents the boundary curve ∂Mt from
losing regularity by developing corners. This result can be found in Stahl [35], Theorem
7.19, as a local in time and space gradient bound on the Neumann boundary contained
in Σ.

Theorem 6.6 (Stahl [35], 1994, Local gradient estimate at the boundary). Let
X0 = F (p0, t0) ∈ ∂NMt0. Then ∀ε > 0 ∃r1 > 0, δ > 0 such that〈
νMt(F (p, t)), νMt0

(X0)
〉−1

< 1 + ε, ∀(p, t) with F (p, t) ∈ Zr1(X0), 0 ≤ t− t0 ≤ δ

where r1 = r1(ε, Σ, n) and Zr1(X0) is the infinite space time cylinder centre at X0 with
r1 radius of the circle.

Using this result we know that the first bad behaviour that can happen on the
Neumann boundary is loss of the graph property. First let us recall that we require
our surface Σ ⊂ R3 to be rotationally symmetric. The first bad behaviour, when the
gradient can become infinite on the Neumann boundary is, when the evolving surface
tilts. That is, 〈νMt , e3〉 = 0 because νMt becomes parallel to the rotation vector field of
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C 4 

Figure 6.1. Tilt in the motion of graphs outside the sphere.

Σ, νMt = K3

|K3| up to a sign. We call this bad behaviour tilting. The second case is when

the moving surfaces reach a point on the Neumann boundary where Σ is horizontal:
| 〈νΣ, e3〉 = 1|. This is also not desirable since the Neumann boundary condition then
states that νMt is then tangent to a plane parallel to the plane of definition of the graph,
thus 〈νMt , e3〉 = 0. We shall exclude this behaviour in certain cases.

Remark. For some of the initial graphs the second type of bad behaviour on the
Neumann boundary, that is evolution towards horizontal parts of the contact surface
Σ, can not be prevented. Indeed, we were able to prove (cf. Theorem 4.15) that the
graphs will actually move toward these points and develop a curvature (and gradient)
singularity there.

Let us start with the first case, the tilting, and see what properties the surface Mt

possesses in the first point of tilt. We state here results which can be applied to both (54)
and (56). Below we work with an orthonormal frame {τi}1≤i≤2 spanning TMt chosen
such that for all X ∈ ∂Mt we have

τ1 ∈ TX∂NMt,

τ2 = νΣ = ν∂NMt .

The following proposition collects the properties that the surface Mt exhibits in the first
point of tilt on the Neumann boundary.

Proposition 6.7 (Properties in a first boundary tilt). Let Ft satisfy (54) or (56).
Suppose that X ∈ ∂NMt ⊂ Σ is the first point of boundary tilt. Then at X the following
properties hold

〈νMt , e3〉 = 0 at X and 〈νMt , e3〉 > 0 everywhere else on Ms with s ∈ [0, t],(64)

h11 = h12 = 0,(65)

h22 〈νΣ, e3〉 < 0,(66)
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Figure 6.2. Tilt in the motion of graphs inside the catenoid neck.

∇1h11 〈τ1, e3〉 ≥ 0,(67)

∇1h12 = h22 h
Σ
11,(68)

∇1h22 〈τ1, e3〉 ≤ − h22 h
Σ
22 〈νΣ, e3〉 ,(69)

∇2h22 = h22

(
hΣ

22 − hΣ
11

)
,(70)

where we have denoted by hij and hΣ
ij the components of the second fundamental forms

AMt and AΣ of Mt and Σ respectively.

The proof of the proposition is contained in the results below. We first prove the
following curvature properties, which we keep separate from the other properties since
they are sufficient on their own to prevent tilt in the cases where the contact surface is
a cylinder or a hyperplane.

Proposition 6.8 (The second fundamental form in a first boundary tilt point). Let
Ft satisfy (54) or (56). Let X ∈ ∂NMt ⊂ Σ be a first point of boundary tilt, that is
〈νMt , e3〉 = 0 by νMt = K3

|K3| up to a sign. Then the second fundamental form of Mt at X

has the following properties:

AMt(τ1, τ1) = 0,

AMt(τ1, τ2) = 0,

〈νΣ, e3〉 AMt(τ2, τ2) < 0.

Proof. This proof is similar to that of Lemma 4.11. The quantity s satisfies a nice
evolution, as we have seen in Proposition 6.5. Since we are in a boundary point where
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for the first time the quantity s takes a zero value after being positive for all earlier
times, we can apply the Hopf Lemma, Lemma 2.11. This gives a sign on the derivative
normal to the boundary ∂Mt and also the value of the derivative in the direction of the
tangent to the boundary curve:

∇ν∂NMt
s|X < 0,

∇τ1s|X = 0.

We have used again the convention that the unit normal to Σ points away from the
evolving graphs. Let us now compute the general form of the gradient of s in the
2-dimensional setting:

∇τis = ∇τi 〈νMt , e3〉 = 〈∇τiνMt , e3〉 =
2∑
l=1

hil 〈τl, e3〉 .

Note that here we used the Weingarten equations. We also have denoted by hil the
component AMt(τi, τl) of the second fundamental form of Mt in the τi and τl direction.
Using our choice of orthonormal frame we compute

∇ν∂NMt
s|X = ∇νΣ

s|X = ∇τ2s|X
= AMt(τ1, τ2)|X 〈τ1, e3〉 |X + AMt(τ2, τ2)|X 〈τ2, e3〉 |X
< 0,

∇τ1s|X = AMt(τ1, τ1)|X 〈τ1, e3〉 |X + AMt(τ1, τ2)|X 〈τ2, e3〉 |X
= 0.

Note that 〈τ1, e3〉 |X is not zero, since X is a tilt point. Now observe that, as in the
sphere case of Lemma 4.11, that in a boundary tilt point we have νMt = K3

|K3| ∈ TXΣ

(up to a sign). Also by our choice of basis the other tangent vector to Σ is τ1. So
{ K3

|K3| , τ1} is an orthonormal basis of the tangent space TXΣ. Further, since these vectors

are orthogonal and Σ is a surface of rotation with rotation vector K3 we know that these
two tangent vectors are in fact principal directions for Σ at X. Then, at X the second
fundamental form of Σ is diagonal. Thus

AΣ(τ1, νMt)|X = 0.

Using now Proposition 4.10 from Stahl [35], we have

AMt(τ1, νΣ) = − AΣ(τ1, νMt) everywhere on ∂Mt,

and thus obtain that the second fundamental form of the moving graphs is also in
diagonal form:

AMt(τ1, τ2)|X = 0.

This is the third relation, and combining this with the above computation of the direc-
tional derivatives of s gives the other two desired relations. �

Using this result one can prove that tilting is not possible when Σ is a cylinder.
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Proposition 6.9 (Non-tilting in the case of cylinders). Let Σ be a cylinder in R3,
and suppose Ft satisfies (54) or (56). Then there is no tilting behaviour on the Neumann
boundary for the evolving surfaces Mt.

Proof. Suppose that Mt tilts at X ∈ ∂NMt. Then Proposition 6.8 implies

〈νΣ, e3〉 AMt(τ2, τ2)|X < 0.

This is in direct contradiction with the fact that when the surface Σ is a cylinder we
have

〈νΣ, e3〉 = 0.

This ends the proof. �

Remark. This result is consistent with previous work of Huisken [23]. We investi-
gate cylinders in detail in the next section where, using uniform bounds on the height
and gradient, we obtain long time existence. The estimates are obtained in a different
way than the integral estimates in the above mentioned work. The argument of non-
tilting presented above is independent of this type of problem. The tilting behaviour is
excluded for evolutions inside (as considered in [23]) or outside the cylinder indepen-
dent of the dimension of the set. Although excluding tilting does not provide a uniform
bound, it states that for all times of existence the surfaces remain graphs. This holds
even if they are defined outside the cylinder on an infinite domain.

We continue with the results required for Proposition 6.7. We are working with a
surface of contact Σ which is rotationally symmetric, and the vector field of rotation
is given by the Killing vector field K3 : R3 → R3. This together with the tilt point
information provides us with an extra property on the first derivatives of components of
the second fundamental form of Mt.

Lemma 6.10 (Property of the rotation vector of Σ in a tilt point). Let Ft satisfy
(54) or (56). Let X ∈ ∂NMt ⊂ Σ be a first point of boundary tilt. Then at X we have

Dτ1K3 ∈ (TXMt)
⊥.

Proof. Since we know by the Neumann boundary condition that ∂NMt is included
in Σ we can differentiate relation (52) in directions tangent to the boundary of the
moving graphs locally around X. Since the boundary is only one dimensional, this is
only in the τ1 direction. We compute:

d(〈K3, νΣ〉)(τ1) = 0,

〈Dτ1K3, νΣ〉 + 〈K3,Dτ1νΣ〉 = 0.

Now using the fact that τ1 ∈ TXΣ and that K3 is also a tangent vector to Σ we have

〈Dτ1K3, νΣ〉 = − 〈K3,Dτ1νΣ〉 = − AΣ(K3, τ1).(71)

Let us recall that X is a tilt point and Proposition 6.8 implies that in such points we
have AΣ(K3, τ1) = |K3| AΣ(νMt , τ1) = 0, where we the first equality holds up to a
sign. This gives us

〈Dτ1K3, νΣ〉 = 0.(72)
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Now from the properties of Killing vector fields in R3, Proposition 4.1, we also have that

〈Dτ1K3, τ1〉 = 0.

This together with (72) and the fact that at X we can take as an orthonormal basis of
R3 the basis {τ1, νΣ, νMt} give the desired result. �

Using the above result one is able to compute some of the components of the 3-tensor
of the first derivative of the second fundamental form AΣ of Σ at the tilt point X.

Proposition 6.11 (Property of second fundamental form of Σ in a tilt point). Let
Ft satisfy (54) or (56). Let X ∈ ∂NMt ⊂ Σ be a first point of boundary tilt. Then at X
we have

(∇Σ
τ1
AΣ)(τ1, νMt) = 0,

where we have denoted by ∇Σ the covariant derivative on Σ.

Proof. This proposition uses the results and similar computations as in the proof
of Lemma 6.10. We begin by looking at (71). This has been obtained by differentiation
of relation (52) on the boundary curve in direction τ1 tangent to the boundary and
tangent to Σ. We can once more differentiate in the same direction of the tangent to
the boundary τ1 to obtain〈

D2
τ1,τ1

K3, νΣ

〉
+
〈
DDτ1τ1

K3, νΣ

〉
+ 〈Dτ1K3,Dτ1νΣ〉 =

− (∇Σ
τ1
AΣ)(τ1, K3) − AΣ(∇Σ

τ1
τ1, K3) − AΣ(∇Σ

τ1
K3, τ1).(73)

We look at the terms in the above relation and estimate them at our tilt point X. The
easiest is the second derivative which completely vanishes by Proposition 4.2, that is〈

D2
τ1,τ1

K3, νΣ

〉
= 0.

Another term also vanishes:

AΣ(∇Σ
τ1K3, τ1) = 0,

using the result of Lemma 6.10 and the fact that in a tilt point the second fundamental
form of the surface Σ is of diagonal form, an argument which can be found in Proposition
6.8.

Let us expand the next term:

AΣ(∇Σ
τ1
τ1, K3) = 〈Dτ1τ1, τ1〉 AΣ(τ1, K3) + 〈Dτ1τ1, νMt〉 AΣ(νMt , K3)

where we have used that 〈Dτ1τ1, τ1〉 =
〈
∇Σ
τ1
τ1, τ1

〉
and also 〈Dτ1τ1, νMt〉 =

〈
∇Σ
τ1
τ1, νMt

〉
at X on Σ since νMt and τ1 are tangent to the surface Σ. Also recall that we are working
at a point X on the boundary so the third component of an orthonormal basis of R3 is
the normal of the moving graphs νMt .

The first inner product is zero atX, using the results found in the proof of Proposition
6.8 where we have up to a sign

AΣ(τ1, K3)|X = |K3| AΣ(τ1, νMt)|X = 0.

The second term is a curvature of Mt at X:

〈Dτ1τ1, νMt〉 = − AMt(τ1, τ1).
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Now using the results in Proposition 6.8 we see that this curvature in particular is 0 at
X. Combining the arguments above we have that the full term vanishes at X:

AΣ(∇Σ
τ1
τ1, K3) = 0.

The next term is

〈Dτ1K3,Dτ1νΣ〉 = 〈Dτ1K3, νMt〉 AΣ(νMt , τ1) = 0,

where we used the result of Lemma 6.10 and the proof of Proposition 6.8, in particular
the fact that the second fundamental form of Σ at a tilt point is diagonal.

Now we look at the last term:〈
DDτ1τ1

K3, νΣ

〉
= 〈Dτ1τ1, τ1〉 〈Dτ1K3, νΣ〉 + 〈Dτ1τ1, νΣ〉 〈DνΣ

K3, νΣ〉
+ 〈Dτ1τ1, νMt〉

〈
DνMt

K3, νΣ

〉
.

From the properties of Killing vector fields in R3 we know that 〈DνΣ
K3, νΣ〉 = 0 so the

middle term vanishes. Now looking at the last one it also disappears from Proposition
6.8, as

〈Dτ1τ1, νMt〉 |X = − AMt(τ1, τ1)|X = 0.

Finally, the first term is also zero by Lemma 6.10

〈Dτ1K3, νΣ〉 = 〈Dτ1K3, νMt〉 〈νMt , νΣ〉 .
Therefore the only remaining term in (73) at a tilt point X is the one we were interested
in, and it must also be zero. �

We need to use another result of Stahl [35] which we quote below.

Proposition 6.12 (Stahl [35], 1994). Let Ft satisfy (54) or (56). On the boundary
∂NMt ⊂ Σ, the derivatives of components of the second fundamental forms of Mt and Σ
are related by the equation:

(∇τ1A
Mt)(νΣ, τ1) = − (∇Σ

τ1
)AΣ(νMt , τ1) − 2 AMt(τ1, τ1)AΣ(τ1, τ1)

+ AMt(νΣ, νΣ) AΣ(τ1, τ1) + AMt(τ1, τ1) AΣ(νMt , νMt).

The next Proposition relates the above result of Stahl and our previous Proposition
6.11.

Proposition 6.13 (Property of derivative of curvature in a first boundary tilt point).
Let Ft satisfy (54) or (56). Let X ∈ ∂NMt ⊂ Σ be a first point of boundary tilt. Then
at X we have

(∇τ1A
Mt)(τ1, νΣ) = ∇1h12 = AMt(νΣ, νΣ) AΣ(τ1, τ1) = h22h

Σ
11

where we have denoted by ∇ the covariant derivative on Mt.

Proof. This follows directly by inserting the result of Proposition 6.11 into Propo-
sition 6.12 and observing that in a first boundary tilt point we have that AMt(τ1, τ1) = 0
by Proposition 6.8. �

One result of great help to us is the following proposition which is also due to Stahl
[35]. It follows simply from differentiating the Neumann boundary condition in time.
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Proposition 6.14 (Stahl [35], 1994). Let X ∈ ∂NMt. Then

〈∇H, νΣ〉 |X = HAΣ(νMt , νMt)|X .

This result can be used, as Stahl has done, to preserve the initial sign of the mean
curvature in the case of the problem (54). We are ready now to prove Proposition 6.7.

Proof of Proposition 6.7. The first property is just the definition of a first
boundary tilt point. The next two properties have been proved in Proposition 6.8.
Relation (68) follows from the result of Proposition 6.13. We focus now on the rest of
the relations. We make use of the above propositions and lemmas.

To prove (67) one has to notice that in the first boundary tilt point the quantity s
takes a first minimum. That implies

D2
τ1,τ1

s ≥ 0.

Using the Weingarten equations we can expand this to

Dτ1

(
h11 〈τ1, e3〉 + h12 〈νΣ, e3〉

)
≥ 0

and finally

∇1h11 〈τ1, e3〉 + 2h11

〈
∇Mt
τ1
τ1, τ1

〉
〈τ1, e3〉 + 2h12

〈
∇Mt
τ1
τ1, νΣ

〉
〈τ1, e3〉

+ h11 〈Dτ1τ1, e3〉 + ∇1h12 〈νΣ, e3〉 + h12

〈
∇Mt
τ1
τ1, τ1

〉
〈νΣ, e3〉 + h22

〈
∇Mt
τ1
τ1, νΣ

〉
〈νΣ, e3〉

+ h11

〈
∇Mt
τ1
νΣ, τ1

〉
〈νΣ, e3〉 + h12

〈
∇Mt
τ1
νΣ, νΣ

〉
〈νΣ, e3〉 + h12 〈Dτ1νΣ, e3〉 ≥ 0.

Now using the fact that h11 = h12 = 0 we obtain

∇1h11 〈τ1, e3〉 + ∇1h12 〈νΣ, e3〉 − h22h
Σ
11 〈νΣ, e3〉 ≥ 0

where we have also used hΣ
11 = −〈Dτ1τ1, νΣ〉 = −

〈
∇Mt
τ1
τ1, νΣ

〉
. From (68) and the

above we can conclude relation (67).
Next we shall prove (70). Using Proposition 6.14, keeping in mind our choice of

orthonormal basis where τ2 = νΣ on the Neumann boundary ∂NMt, we have

∇2H = HhΣ
22 = (h11 + h22)hΣ

22.

The first component of the second fundamental form of Mt vanishes at a point of tilt
and simplifies the above to

∇2H = h22h
Σ
22, and

∇2h11 + ∇2h22 = h22h
Σ
22.

Applying the Codazzi equation to the last identity gives

∇2h22 = h22h
Σ
22 − ∇1h12,

and together with (68) ends the proof of (70).
The last relation to be proven is (69). It is an expression of the fact that at a first

boundary tilt point s = 0, and so the time derivative of s is non-positive.

d

dt
s ≤ 0, so
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Figure 6.3. Motion outside the catenoid neck.

d

dt
〈νMt , e3〉 ≤ 0.

Using the evolution of the unit normal (as can be found in [21] for example) we compute

〈∇H, e3〉 ≤ 0,

∇1H 〈τ1, e3〉 + ∇2H 〈νΣ, e3〉 ≤ 0.

From Proposition 6.14 and the fact that h11 = 0 at X we replace the second term as
follows:

∇1H 〈τ1, e3〉 ≤ −h22h
Σ
22 〈νΣ, e3〉 ,(

∇1h11 + ∇1h22

)
〈τ1, e3〉 ≤ −h22h

Σ
22 〈νΣ, e3〉 .

Replacing the first term on the left side using relation (67) we obtain (69). This ends
the proof of the proposition. �

The second case of bad gradient behaviour on the Neumann boundary is when the
evolving graphs move towards a point where Σ is horizontal, that is a point where
| 〈νΣ, e3〉 | = 1. If the surface Σ contains no horizontal points in the horizontal slab
defined by the minimum and maximum height of the initial graph and the surface Σ
satisfies the requirements of Proposition 6.1, then the height bound in terms of the
supremum of the initial values gives that the graphs do not reach any points where Σ is
horizontal.

For example if we have motion of graphs outside the unit sphere in R3 with an initial
height bound for the maximum and minimum of the initial graph below the maximum
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and minimum height of the sphere respectively, then the graphs do not reach the North
or South Pole. If we do not have the initial height bound, then as we have seen in
Proposition 4.15 some graphs do move towards the North or South Pole and develop a
curvature singularity as well as unbounded gradient.

If Σ does not satisfy (53), then we are still able to exclude such bad behaviour for
a certain class of initial graphs even without initial height bounds below the height of
points where Σ is horizontal. This result is contained in Theorem 6.17. The class of
initial graphs is quite general and it is defined by the inclusion of the origin point of R2

in the domain of definition of the associated scalar graph. One should think of this as
requiring that the scalar graph is defined on a topological two dimensional disc. Also
there are some conditions on the contact surface Σ as to where the horizontal points
appear. An example for which these conditions are satisfied is the mean curvature flow
of graphs inside a torus hole. For this example the following result states that the graph
does not reach points where νΣ = e3 or νΣ = −e3, even if the height is initially much
larger than the maximal height of the torus (or smaller than the minimal height).

This result is somewhat surprising, since one can imagine a situation where the
initial values are far above the maximal height of the surface Σ, and it might actually be
optimal for the moving graphs, in taking minimal area, to slide up to the points where
Σ surface becomes horizontal. The theorem does not apply to motion outside the sphere
since the domain of definition of the associated scalar graphs is an annulus in R2.

Let us first define w : Mt → R as the length of the projection of the position vector
onto the plane of definition of the graphs

w(X) := |F (p, t)|2 − u2(X),(74)

where here we used u to denote the height of the graphs and F (p, t) is the position
vector. As earlier, below we work in an orthonormal frame {τi}1≤i≤2 on Mt such that

τ1 ∈ TX∂NMt,

τ2 = νΣ = ν∂NMt .

on the Neumann boundary ∂NMt ⊂ Σ. First we compute the evolution of w.

Proposition 6.15 (Evolution of horizontal length). Let Ft satisfy (54) or (56) (or
any mean curvature flow evolution). Then the horizontal length w : Mt → R has the
following parabolic evolution ( d

dt
− ∆Mt

)
w ≤ 0.

Proof. Using relation (58) and the evolution of the height function u from (59) we
compute ( d

dt
−∆Mt

)
w =2

〈( d
dt
−∆Mt

)
F, F

〉
− 2u

( d
dt
−∆Mt

)
u

− 2
2∑
i=1

〈τi, τi〉 + 2
2∑
i=1

〈
∇Mtu, τi

〉2
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= − 2
2∑
i=1

|τi|2 + 2
2∑
i=1

〈e3, τi〉2 .

Since

〈e3, τi〉2 ≤ |τi|2 |e3|2

and |e3| = 1 this gives the desired result( d
dt
−∆Mt

)
w ≤ 0.

�

Remark. Note that the previous evolution is strict unless the tangent vector along
the boundary is parallel to e3.

Proposition 6.16 (Derivative normal to the boundary in a horizontal part of Σ).
Let Ft satisfy (54) or (56) and w : Mt → R be the horizontal length defined as above. Let
X ∈ ∂NMt ⊂ Σ be a point on the Neumann boundary where Σ has a horizontal point.
Then the derivative normal to the boundary ∂NMt vanishes at point X:

〈∇w, ν∂Mt〉 = 0.

Proof. With the above choice of the orthonormal frame as above we compute

〈∇w, ν∂Mt〉 = 〈∇w, τ2〉 = 2 〈τ2, F 〉 − 2u 〈τ2, e3〉 ,

where in the last equality we have used relation (58). At a horizontal point of Σ we have
νΣ = −e3 or νΣ = e3. Using for example the first case and we simplify the above to

〈∇w, ν∂Mt〉 = − 2 〈e3, F 〉 + 2 〈F, e3〉 〈e3, e3〉 = 0,

where we have also used the definition of the height u = 〈F, e3〉. The same applies for
the other case. This ends our proof. �

Theorem 6.17 (Excluding evolution to horizontal points of Σ). Let Σ be a rota-
tionally symmetric surface in R3 as in Section 2 and let Ft satisfy (54) where M2 is
topologically equivalent to a disk. Suppose X̃ ∈ Σ, X̃ =

(
(x̃1, x̃2), ωΣ(|(x̃1, x̃2)|)

)
is a

point such that | 〈νΣ, e3〉 | = 1 at X̃ and |(x̃1, x̃2)|2 > max
M0

(F 2
0 − u2). Then the graphs Mt

do not reach X̃.

Remark. The condition imposed on the initial graph simply states that the Neu-
mann boundary of the graph is away from the horizontal points of Σ. One should keep
in mind the picture of a mean curvature flow solution inside a catenoidal neck which
flattens out before∞. The theorem can be applied if the initial graph boundary is away
from those horizontal points. The maximum of the initial graph’s height can be above
those points though and that is what makes this result useful, since only the usual pro-
cedure of bounding the height by the initial values does not give us enough information
to exclude evolution towards the horizontal parts of Σ.
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Proof of Theorem 6.17. The proof is by contradiction. Let us assume that for
some time t̃ the surface Mt̃ has reached for the first time the point X̃. That implies
X̃ = F (p̃, t̃) ∈ ∂Mt̃ ⊂ Σ for some p̃ ∈ M2. From Proposition 6.15 we have a parabolic
evolution for the horizontal length w and knowing that this is the first time when our
moving surfaces evolve towards a horizontal point of surface Σ, where the length w
attains a boundary maximum by the conditions imposed on the point X̃, then the Hopf
Lemma, Lemma 2.7, gives

〈∇w, ν∂Mt〉 > 0.

This relation is contradicted by the result of Proposition 6.16 and this ends the proof of
the theorem. �

Remark. The proof of the above theorem is independent of the graph condition
(57) so the result still stands for an immersion evolution. This result is also independent
of dimension.

There are two special cases of contact surfaces Σ for which we are able to prove
uniform bounds for the gradient. These are treated in the two following sections.

6. Mean curvature flow of graphs with a free boundary on a cylinder

This section treats the problem (54) when the contact surface Σ is a cylinder in R3,
that is mean curvature flow of graphs inside any cylinder in 3-dimensional Euclidean
space.

In Proposition 6.9 we proved that titling does not occur in the case where Σ is a
cylinder. In this setting we are also able to prove uniform bounds of the height, gradient
and mean curvature. This result is the equivalent of the one found in [23], but obtained
without the use of integral estimates. We want to remind the reader that the unit normal
to the cylinder is taken such that it points away from the evolving surfaces.

The uniform estimates are contained in the theorem below.

Theorem 6.18 (Uniform bounds for mean curvature flow with free boundary on a
cylinder). Let Σ be a cylinder in R3 such that AΣ(K3, K3) > 0 and 〈νΣ, e3〉 = 0. Let
Ft satisfy (54) with F0 satisfying the initial graph condition (57). Then the following
uniform bounds hold

sup
Mt

|u| ≤ sup
M0

|u|,(75)

inf
Mt

s ≥ inf
M0

s,(76)

sup
Mt

∣∣∣H
s

∣∣∣ ≤ sup
M0

∣∣∣H
s

∣∣∣,(77)

for all times t ∈ [0, T ).

Proof. The proof is based on repeated applications of the maximum principle. For
the height bound (75) we only need to apply Proposition 6.1 after noticing that the
cylinder Σ satisfies (53).
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The gradient bound (76), which is equivalent to a lower bound on the s = 〈νMt , e3〉
quantity comes from the following. Using the parabolic evolution of the s (from Propo-
sition 6.5) we have

inf
Mt

s ≥ min
{

inf
M0

s, inf
∂NMt

s
}
.

Suppose that there exists a point X∗ = F (p∗, t∗) ∈ ∂NMt∗ such that s attains a new
minimum value at X∗. Then by applying the Hopf lemma 2.11 with a choice of or-
thonormal frame {τ1, τ2} of TMt such that τ1|∂NMt ∈ T∂NMt and τ2|∂NMt = νΣ we have
at X∗

0 > ∇νΣ
s = ∇νΣ

〈νMt , e3〉 = h12 〈τ1, e3〉 + h22 〈νΣ, e3〉
= h12 〈τ1, e3〉 ,

where we have used the definition of the second fundamental form and, in the last
equality, the fact that Σ is a cylinder with e3 being a tangent direction. Using Proposition
4.10 we relate the curvature h12 to the hΣ

12 and compute this curvature in the basis formed
by the principle directions of the cylinder, K3

|K3| and e3:

h12 = −hΣ
12 = −AΣ

(
τ1, νMt

)
= −AΣ

( K3

|K3|
,
K3

|K3|
)〈

τ1,
K3

|K3|

〉〈
νMt ,

K3

|K3|

〉
− AΣ

( K3

|K3|
, e3

)〈
τ1,

K3

|K3|

〉
〈νMt , e3〉

− AΣ
(
e3,

K3

|K3|
)
〈τ1, e3〉

〈
νMt ,

K3

|K3|

〉
− AΣ(e3, e3) 〈τ1, e3〉 〈νMt , e3〉

= −AΣ
( K3

|K3|
,
K3

|K3|
)〈

τ1,
K3

|K3|

〉〈
νMt ,

K3

|K3|

〉
.

The Hopf lemma result translates to

0 > − AΣ
( K3

|K3|
,
K3

|K3|
)〈

τ1,
K3

|K3|

〉〈
νMt ,

K3

|K3|

〉
〈τ1, e3〉 .(78)

We also express K3

|K3| in the orthonormal basis of R3 given by {τ1, νMt , νΣ}

K3

|K3|
=

〈
τ1,

K3

|K3|

〉
τ1 +

〈
νMt ,

K3

|K3|

〉
νMt +

〈
νΣ,

K3

|K3|

〉
νΣ

=

〈
τ1,

K3

|K3|

〉
τ1 +

〈
νMt ,

K3

|K3|

〉
νMt ,

where we have used that K3 is always tangent to the cylinder. Combining 〈K3, e3〉 = 0
with the above implies

−
〈
τ1,

K3

|K3|

〉
〈τ1, e3〉

〈
νMt ,

K3

|K3|

〉
=

〈
νMt ,

K3

|K3|

〉2

〈νMt , e3〉 ≥ 0.

returning to (78) this implies that the curvature coming from the rotation of the cylinder
satisfies

AΣ(K3, K3) < 0,
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and this contradicts our hypothesis imposed on the cylinder Σ. Thus there does not
exist y minimum of the quantity s on the Neumann boundary, and so we have for all
times the gradient bound (76):

inf
Mt

s ≥ inf
M0

s.

The estimate (77) follows again from an application of the maximum principle. After
the same computation as in [9] and using the evolution of the mean curvature found in

[22] we can see that H2

s2
satisfies a parabolic evolution in the interior( d

dt
−∆Mt

)H2

s2
≤ 2
∇s
s
· ∇H

2

s2
.

From the above evolution and the use of the maximum principle Theorem 2.9 with the
bounded vector field a = ∇s

s
, we see that so long as we exclude maximums of the above

quantity on the boundary we obtain the theorem.
Suppose that there exists a point X∗ = F (p∗, t∗) ∈ ∂NMt∗ such that H2

s2
attains a

maximum value at X∗. From the Hopf lemma we have at X∗

0 < ∇νΣ

H2

s2
= 2

H

s2
∇νΣ

H − 2
H2

s3
∇νΣ

s.(79)

From Proposition 6.14 the first term becomes

2
H

s2
∇νΣ

H = 2
H2

s2
AΣ(νMt , νMt)

= 2
H2

s2
AΣ
( K3

|K3|
,
K3

|K3|
)〈

νMt ,
K3

|K3|

〉2

,

where for the last equality we have used, just as before, the decomposition of the unit
normal νMt in the basis formed by the principle directions of the cylinder.

The second term in (79) can be computed using the same discussion as in the bound
(76) as follows

− 2
H2

s3
∇νΣ

s = − 2
H2

s3
AΣ
( K3

|K3|
,
K3

|K3|
)〈

νMt ,
K3

|K3|

〉2

〈νMt , e3〉

= − 2
H2

s2
AΣ
( K3

|K3|
,
K3

|K3|
)〈

νMt ,
K3

|K3|

〉2

,

where in the last equality we have also used the definition of s = 〈νMt , e3〉. Replacing
the two terms in (79) we obtain

0 < ∇νΣ

H2

s2
= 0.

This contradicts the assumption of a maximum of H2

s2
on the Neumann boundary and

thus we have the claimed uniform bound (77):

sup
Mt

∣∣∣H
s

∣∣∣ ≤ sup
M0

∣∣∣H
s

∣∣∣.
�
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Remark (Mean curvature bound). From the bound (77) and s = 〈νMt , e3〉 ≤ 1 one
can easily obtain an uniform bound on the mean curvature of the evolving surfaces

sup
Mt

|H| ≤ sup
M0

∣∣∣H
s

∣∣∣.(80)

Theorem 6.19 (Long time existence for mean curvature flow with free boundary on
a cylinder). Let Σ be a cylinder in R3 such that AΣ(K3, K3) > 0 and 〈νΣ, e3〉 = 0. Let
Ft satisfy (54) with F0 satisfying the initial graph condition (57). Then there exists a
solution for all times and it converges as t→∞ to a disk.

Proof. Once one has obtained uniform height and gradient estimates, the proof
of the theorem is completely standard. For example, in Huisken [23] one can see that
uniform bounds on the height and gradient are sufficient for the long time existence
of graphs evolving by mean curvature flow with a ninety degree angle condition on a
cylinder.

For completeness we present here the most important steps in this well-known par-
abolic program for obtaining long time existence from uniform bounds for height and
gradient. The scalar graph problem associated with (54) fits into the frame of work
found in Chapter 6 of [27]. The uniform estimates on height and gradient give us a
uniform H1+α estimate for the solution by applying Theorem 1.1 of Chapter 6 in [27]
for any time t ≥ 0 and in any interior point. The estimate can be easily extended to the
boundary by making use Theorem 2.1 of Chapter 6 in [27] and our uniform bound on
H2

s2
. This bound is in fact a uniform bound on the time derivative of the scalar graph

function, and can also be obtained from the uniform bounds on the height and gradient.
This implies that for any time t > 0 we have H1+α estimates of the solution up to
and including the boundary. Thus the coefficients of our problem are at least Hölder
continuous. The long time existence now follows from Corollary 8.10 in [30]. The proof
is based on considering the problem as uniformly parabolic, linear with Hölder contin-
uous coefficients, obtaining good estimates, and applying the Arzelá-Ascoli theorem in
combination with Theorem 3.8.

Now since the area is uniformly bounded, Proposition 6.28 implies that the solution
is a minimal surface. Comparison with moving planes or an estimate of

∫
Mt
vdµ as in

(12) of [23] implies that the gradient of the solution approaches zero, and so it must be
a disk. �

7. Mean curvature flow of graphs with free boundary on a hyperplane

Suppose Σ is a hyperplane in Rn+1 with n ≥ 2 defined by

〈νΣ, en+1〉 = 0,

everywhere on Σ. Define the two half spaces generated by Σ in Rn+1 as Rn+1
+ and Rn+1

− .
Suppose Mn is a smooth, orientable n-dimensional manifold with smooth boundary
∂NM

n and set M0 := F0(Mn) ⊂ Rn+1
+ where F0 : Mn → Rn+1 is a smooth embedding

satisfying

∂NM0 ≡ F0(∂NM
n) = M0 ∩ Σ,

〈νM0 , νΣ ◦ F0〉 (p) = 0 ∀p ∈ ∂NMn,
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where we have denoted by νM0 the unit normal vector field on M0.
Let I ⊂ R be an open interval containing zero and let Ft = F (·, t) : Mn → Rn+1,

t ∈ I be a one-parameter family of smooth embeddings. The family of hypersurfaces
(Mt)t∈I , where Mt = Ft(M

n), is said to be evolving by mean curvature flow with free
Neumann boundary condition on Σ if

∂F

∂t
(p, t) = − H(p, t)νMt , ∀(p, t) ∈Mn × I,(81)

F (·, 0) = F0,

F (p, t) ⊂ Σ, ∀(p, t) ∈ ∂Mn × I,
〈νMt , νΣ ◦ F 〉 (p, t) = 0, ∀(p, t) ∈ ∂NMn × I,

where we have denoted by νMt the unit normal to Mt and by H the mean curvature of
Mt.

For this problem we are able to prove uniform bounds for the gradient of the asso-
ciated scalar graph problem as well as uniform bounds on the mean curvature which
together with an initial convexity or concavity condition brings us to long time exis-
tence. This result is the most natural next step from the result on entire graphs of
Ecker and Huisken [9]. The restriction of convexity or concavity is not used to obtain
uniform bounds, rather it enters when one desires long time existence for the graphs
without an initial height bound. The idea is that this allows one to bound the full
second fundamental form in terms only of the mean curvature.

Note that the higher dimensional analogues of the s and u quantities are

s = 〈νMt , en+1〉 , and u = 〈F, en+1〉 ,
respectively.

Theorem 6.20 (Uniform bounds for mean curvature flow of graphs in a half space).
Let Σ be a hyperplane in Rn+1 with n ≥ 2 and 〈νΣ, en+1〉 = 0. Let Ft satisfy (81) with
F0 satisfying the initial graph condition

〈νM0 , en+1〉 ≥ C > 0,

everywhere on M0. Then the following uniform bounds hold

sup
Mt

|u| ≤ sup
M0

|u|,(82)

inf
Mt

s ≥ inf
M0

s,(83)

sup
Mt

∣∣∣H
s

∣∣∣ ≤ sup
M0

∣∣∣H
s

∣∣∣(84)

for all times t ∈ [0, T ).

Proof. The proof is based again on repeated applications of the maximum principle.
For the height bound (82) we only need to apply Proposition 6.1 in the n-dimensional
setting by noticing that the hyperplane Σ satisfies the n-dimensional version of (53).

The gradient bound (83), which is equivalent to a lower bound on s,comes as follows.
The parabolic evolution of s implies

inf
Mt

s ≥ min
{

inf
M0

s, inf
∂NMt

s
}
.
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Suppose that there exists a point X∗ = F (p∗, t∗) ∈ ∂NMt∗ such that s attains a new
minimum value at X∗. Then by applying the Hopf Lemma 2.11 with a choice of or-
thonormal frame {τi}i=1,n of TMt such that τi|∂NMt ∈ T∂NMt for all i = 1, . . . , n − 1
and τn|∂NMt = νΣ we have at X∗

0 > ∇νΣ
s = ∇νΣ

〈νMt , en+1〉 =
n−1∑
i=1

hin 〈τi, en+1〉 + hnn 〈νΣ, en+1〉

=
n−1∑
i=1

hin 〈τi, en+1〉 ,

where we have used the definition of the second fundamental form and, in the last
equality, the fact that Σ is a hyperplane with en+1 ∈ TΣ. Using Proposition 4.10 (this
holds without any difficulty in higher dimensions) we shall relate the curvatures hin to
the curvatures hΣ

in of Σ, for each i = 1, . . . , n− 1. Since Σ is a hyperplane and {τi, νMt}
for i = 1, . . . , n− 1 forms an orthonormal basis of TΣ we have that

hin = − hΣ
in = 0,

for all i = 1, . . . , n− 1. This transforms the result of the Hopf lemma to

0 > ∇νΣ
s = 0,

and contradicts the existence of a minimum of s on the Neumann boundary. Thus we
have the uniform gradient bound (83)

inf
Mt

s ≥ inf
M0

s.

The estimate (84) follows again from an application of the maximum principle. After
the same computation as in [9] and using the evolution of the mean curvature found in

[22] we can see that H2

s2
satisfies( d

dt
−∆Mt

)H2

s2
≤ 2
∇s
s
· ∇H

2

s2
.

From the above evolution and the use of the maximum principle with the bounded vector
field a = ∇s

s
, we see that so long as we exclude maximums of the above quantity on the

boundary we obtain the desired uniform estimate.
Consider the same orthonormal frame {τi}i=1,n of the tangent space TMt as before.

Suppose that there exists a point X∗ = F (p∗, t∗) ∈ ∂NMt∗ such that H2

s2
attains a new

maximum value at X∗. From the Hopf Lemma we have at X∗

0 < ∇νΣ

H2

s2
= 2

H

s2
∇νΣ

H − 2
H2

s3
∇νΣ

s.(85)

Now note that Proposition 6.14 also obviously holds in higher dimensions. Thus the
first term becomes

2
H

s2
∇νΣ

H = 2
H2

s2
AΣ(νMt , νMt) = 0

where for the last equality we have used the fact that Σ is a hyperplane.
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The second term in (85) also vanishes from the same discussion as in the proof of
the bound (83)

− 2
H2

s3
∇νΣ

s = 0.

Replacing the two terms in (85) we obtain

0 < ∇νΣ

H2

s2
= 0.

Thus there does not exist any new maxima of H2

s2
on the Neumann boundary and we

obtain (84):

sup
Mt

∣∣∣H
s

∣∣∣ ≤ sup
M0

∣∣∣H
s

∣∣∣.
�

Remark (Mean curvature bound for mean curvature flow of graphs in a half space).
From the bound (84) and s = 〈νMt , en+1〉 ≤ 1 we obviously also have

sup
Mt

|H| ≤ sup
M0

∣∣∣H
s

∣∣∣.(86)

In the case of Σ being a hyperplane we can prove also that the mean curvature decays
in time.

Proposition 6.21 (Decay of mean curvature). Let Σ be a hyperplane in Rn+1 with
n ≥ 2 and 〈νΣ, en+1〉 = 0. Let Ft satisfy (81) with F0 satisfying the initial graph condition

〈νM0 , en+1〉 ≥ C > 0,

everywhere on M0. Then the mean curvature satisfies

2t

n
H2 ≤ sup

M0

1

s2
− 1,

for all times t ≥ 0.

Proof. Following the same idea as Ecker and Huisken [9] we can compute the

evolution on Mt of 2t
n
H2

s2
+ 1
s2

using the evolution of H
2

s2
computed in the previous theorem:( d

dt
−∆Mt

)(2t

n

H2

s2
+

1

s2

)
≤ 2
∇s
s
· ∇2t

n

H2

s2
+

2

n

H2

s2
− 2

s2
|A|2 − 6

|∇s|2

s4
.

Using the fact that 1
n
H2 ≤ |A|2 we simplify the above to( d

dt
−∆Mt

)(2t

n

H2

s2
+

1

s2

)
≤ 2
∇s
s
· ∇
(

2t

n

H2

s2
+

1

s2

)
.

This implies that we can apply the maximum principle, Theorem 2.9, and bound 2t
n
H2

s2
+ 1
s2

by the maximum between the supremum of the initial values and the supremum on the
boundary.
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We shall contradict the appearance of new maxima on the Neumann boundary.
Suppose that there exists a point X∗ = F (p∗, t∗) ∈ ∂NMt∗ such that 2t

n
H2

s2
+ 1

s2
attains a

new maximum value at X∗. From the Hopf Lemma we have at X∗

0 < ∇νΣ

(
2t

n

H2

s2
+

1

s2

)
=

2t

n
∇νΣ

H2

s2
+ ∇νΣ

1

s2
= 0.(87)

Where in the last equality we have used (cf. the proof of Proposition 6.20) Proposition
6.14 and the fact that Σ is a hyperplane. This contradicts the existence of a new
maximum on the boundary for our quantity and thus we conclude

sup
Mt

(
2t

n

H2

s2
+

1

s2

)
≤ sup

M0

1

s2
.

Using s ≤ 1 we can simplify the above to

2t

n
H2 ≤ s2 sup

M0

1

s2
− 1 ≤ sup

M0

1

s2
− 1.

This completes the proof. �

We know from Theorem 10.4 of Stahl [35] that when Σ is umbilic, an initially convex
(or concave) hypersurface, in the sense that all the eigenvalues of the second fundamental
form are positive, remains so under the flow for all times of existence.

Theorem 6.22 (Stahl [35], 1994, Convexity). Let Σ be umbilic and let Ft satisfy
(54) with M0 convex in the sense of eigenvalues. Then Mt is convex for all t ∈ [0, T ].

This theorem together with the uniform bound on the mean curvature from (86)
provides us with a uniform bound on the second fundamental form.

Proposition 6.23 (Second fundamental form bound for mean curvature flow of
graphs in a half space). Let Σ be a hyperplane in Rn+1 with n ≥ 2 and 〈νΣ, en+1〉 = 0.
Let Ft satisfy (81) with M0 convex or concave in the sense of eigenvalues. Then

sup
Mt

|A|2 ≤ sup
M0

∣∣∣H
s

∣∣∣2,
for all times t ∈ [0, T ).

To prove long time existence for this problem we make use of the following result of
Hamilton.

Lemma 6.24 (Hamilton [19], 1982, Equivalent metrics). Let gij be a time dependent
metric on M for 0 ≤ t < T ≤ ∞. Suppose∫ T

t=0

max
M

∣∣ ∂
∂t
gij
∣∣
M
dτ ≤ C <∞.

Then the metrics gij(t) are at each time equivalent, and they converge as t→ T uniformly
to a positive-definite metric tensor gij(T ) which is continuous and also equivalent.
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Remark. In the above lemma the norm of the time derivative of the metric is taken
with respect with the metric as∣∣ ∂

∂t
gij
∣∣
M

=

√
gijgkl

∂

∂t
gik

∂

∂t
gjl,

where the indices are i, j, k, l = 1, . . . , n and we have used the Einstein summation
convention. We can also relate this norm to the second fundamental form using the
time derivative of the metric from [21],

∂

∂t
gij = −2Hhij,

so ∣∣ ∂
∂t
gij
∣∣
M

= 2
√
H2gijgklhikhjl = 2|H||A|.

This result is useful since in some cases one does not have an initial bound on the
height. We present here two different results of long time existence.

If we have an initial height bound the result of long time existence follows in a similar
way as in the case of a bounded domain of definition for the associated scalar graph
evolution. Here the initial height is viewed as the property that initial hypersurface lies
between two hyperplanes.

Theorem 6.25 (Long time existence of graphs in half spaces with free boundary on
a hyperplane and initial height bounds). Let Σ be a hyperplane in Rn+1 with n ≥ 2 and
〈νΣ, en+1〉 = 0. Let Ft satisfy (81) with F0 satisfying an initial height bound

sup
M0

|u| = sup
M0

| 〈F0, en+1〉 | ≤ C0 <∞.

Then there exits a solution for (81) for all times t ≥ 0 and it converges to a minimal
surface as t→∞.

Proof. The problem (81) is equivalent to a scalar graph evolution on a half space
with oblique derivative boundary condition. Since the initial graph has a height bound
we can apply Theorem 6.1 in Chapter 4 of [27] and obtain a unique solution for the
associated linearised problem. The same fixed point argument as in Theorem 3.6 can
be applied to obtain a short time solution of the quasilinear scalar graph evolution in
a half space with oblique derivative boundary condition. For any time t ≥ 0 we have
H1 uniform estimates on the solution, which together with the uniform estimate of the
time derivative for the scalar graph function, given by relation (84), imply uniform H1+α

(where α ∈ (0, 1)) as in Theorem 2.1, Chapter 6 of [27]. The H1+α uniform estimates
for all times t ≥ 0 imply long time existence by a standard application of the Arzelá -
Ascoli Theorem as in Corollary 8.10, [30].

The convergence part of the argument is follows using Proposition 6.21 and taking
t→∞ in

H2 ≤ n

2t

(
sup
M0

1

s
− 1
)
,

which implies that H → 0. �



8. ADDITIONAL TOOLS AND RESULTS 99

Remark. Standard comparison with moving planes, as referred to in the introduc-
tion, shows that the solution is asymptotic to a plane as t→∞.

If there is no initial height bound then we are still able to obtain long time existence
if we use the result of Hamilton, Lemma 6.24, and impose initial convexity or concavity
of the hypersurface.

Theorem 6.26 (Long time existence of graphs in half spaces with a free boundary
on a hyperplane and initial convexity or concavity). Let Σ be a hyperplane in Rn+1 with
n ≥ 2 and 〈νΣ, en+1〉 = 0. Let Ft satisfy (81) with M0 convex (concave ) in the sense of
eigenvalues then there exits a solution for (81) for all times t ≥ 0.

Proof. Even without the initial height bound, (81) is equivalent to a scalar graph
evolution. Writing the problem as the evolution of a graph over the initial hypersurface
and using the results found in [27] we obtain the existence of a short time solution.
Suppose that there exists a finite maximal time T < ∞ such that the solution for (81)
exists only on [0, T ). Then for all times in [0, T ) we have uniform bounds on s, H

s
and

H by Theorem 6.20. Also from the result of Stahl, Theorem 6.22 we can preserve the
convexity (concavity) of Mt for all times in [0, T ] which implies that we get a uniform
bound on the second fundamental form |A|2 for all times [0, T ) by Proposition 6.23.
We can therefore apply Lemma 6.24 and obtain that the hypersurfaces Mt converge
uniformly to a limit hypersurface MT which is H1, since the limit metric is continuous.
This implies that the unit normal on MT is defined and continuous. Due to the uniform
estimates for s we get that on MT the s quantity is also uniformly bounded which
implies as in the proof of Theorem 6.20 that the mean curvature H is bounded. Using
the preservation of convexity (concavity) up to the time T we also get the bound on |A|2
and obtain that the limit hypersurface MT is H2. We can therefore reapply short time
existence and this contradicts the maximality of T . �

8. Additional tools and results

One is able to apply the techniques of the previous section on Neumann gradient
bounds to improve the long time existence for some cases of radially symmetric graphs.

The theorem below treats the case of the radially symmetric problem (40). In Chap-
ter 5, when obtaining long time existence for this problem we were forced to impose the
condition (43) on Σ. This condition states that the surface Σ has no horizontal points
between the maximum and minimum height of the initial graph. This property together
with the height bound of the evolving graphs between the initial values prevents the
graphs of moving on the Neumann boundary to a point where Σ is horizontal.

However, one can also obtain this result using Theorem 6.17. This theorem tells us
that we are able to relax the condition of having no horizontal points for the surface Σ in
the range spanned by the initial height of the graph. For problem (40) the initial height
of the graph is allowed to be greater than the height of points where Σ is horizontal. The
condition has been relaxed to no horizontal points of Σ in the horizontal slab bounded
by the maximum and minimum of the Neumann boundary values. As one can see in
the remark following Theorem 6.17 this slab can be much smaller than the one which is
bounded by the maximum and minimum of the initial height. This allows us to consider
contact surfaces Σ which are worse behaved, in the sense of existence of horizontal points.
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Theorem 6.27 (Long time existence of radially symmetric graphs - improved con-
ditions). Let Σ and the graph function ω0 be defined as in Chapter 5. Define the set

S = {y ∈ Dom(ωΣ) : |ωΣ(y)| ≤ |ω0(r0)|}
where r0 is as in Theorem 5.2. Then if

ωΣ(y)
dωΣ

dy
(y) ≥ 0 ∀y ∈ S(88)

dωΣ

dy
(y) 6= 0 ∀y ∈ S(89)

there exists a solution to the problem (40) for all times and it converges to a minimal
surface as t→∞.

Proof. The proof follows the exact lines of Theorem 5.2 with the addition that
excluding evolution towards the horizontal points of Σ is given by Theorem 6.17 applied
to the radially symmetric graph. �

In case we have long time existence for solutions of (1) or (2) it is easy to give
sufficient conditions such that the solution converges to a minimal surface. In Chapter
5, we have worked with the most general surfaces Σ which still permit us to obtain
long time existence for the evolving radially symmetric graphs. In some cases of radially
symmetric graphs, as in Theorem 5.6, we can prove that the graphs converge to constant
functions, so minimal surfaces of constant height above the plane of definition as a graph.
But there are other cases where the graphs exist for all times but they do not converge
to constant functions, as in Theorem 5.5. If we have long time existence and uniformly
bounded area then following standard convergence argument can be applied.

Proposition 6.28 (Convergence to minimal surfaces). Let Mt be a solution of (1)
or (2) which exists for all time. Assume that there exists a global constant C < ∞
with |M0| ≤ C. Then the surfaces Mt converge to a smooth minimal surface M∞ as
t→∞.

Proof. The proof of this result is the equivalent of the proof found in Huisken
[23], but in the setting of immersions evolving by mean curvature flow instead of non-
parametric mean curvature flow. We begin by observing that

d

dt

∫
Mt

dµt = −
∫
Mt

H2dµt,

where we have used the time evolution of the area element, computed as in [23]. We
integrate in time and obtain∫ t

0

∫
Mt

H2dµt = |M0| − |Mt|,

where we have denoted by |Mt| =
∫
Mt
dµt the area of the surface Mt. Using the fact

that the initial area is bounded we have that there exists a constant C̃ < ∞ such that∫ t

0

∫
Mt

H2dµt < C̃ < ∞.
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Now since we do have long time existence, this means T = ∞ we can take time to
infinity in the above and conclude∫ ∞

0

∫
Mt

H2dµt < C̃ < ∞.

Due to the uniform estimates of the long time existence (either uniform bounds on height
and gradient or gradient and second fundamental form) one can obtain by smoothness
estimates as in [9] that the time derivative of H2 is also bounded globally in time and
space. Hence, using the bound on area, the derivative of the map

t →
∫
Mt

H2dµt

is uniformly bounded for t ∈ [0,∞). This together with the above bound on
∫∞

0

∫
Mt
H2dµt

and the non-negativity of the above time map gives us that
∫
Mt
H2dµt → 0 as t → ∞.

And this implies that H → 0 as time t→∞ and ends the proof. �

The next result treats the additional compatibility condition that one must impose
on the initial graph at the Dirichlet boundary. To prevent the graphs from moving away
from the fixed height at which we want to prescribe them on the Dirichlet boundary of
the problem (2) one needs to impose

H
∣∣
∂DM0

≡ 0.(90)

It is sufficient to impose this condition at the initial time since we can preserve it for all
times as shown below.

Proposition 6.29 (Preservation of the compatibility condition at the Dirichlet
boundary). Let Mt satisfy (2) and the initial condition (90). Then for all time

H
∣∣
∂DMt

≡ 0.

Proof. The proof is just a basic computation, and in principle is contained in the
study of the local existence of (2).

On the Dirichlet boundary we have the immersions at any time being equal to the
values of the initial immersion at those points, so time independent:

F (p, t) = F0(p), ∀(p, t) ∈ ∂DMn × [0, T ).

Differentiating the above we obtain

∂

∂t
F ≡ 0 on ∂DM

n × [0, T ).

This implies

∂

∂t
F |∂DMt = − H

∣∣
∂DMt

νMt|∂DMt .

The last two relations give us the conclusion of the proposition. �





APPENDIX A

The sphere problem - more properties of a tilt on the
Neumann boundary

1. Introduction

In the previous chapters our goal has been to find the most general conditions for
which the problems (54) or (56), starting with an initial graph preserve the graph prop-
erty and exist for all times.

We have proved in the case of radially symmetric graphs that long time existence
can be shown with the expected additional conditions on the contact surfaces Σ.

The second type of condition is assuming that the initial graphs have a reflective
symmetry. This type of condition allows us to prove that the graph property is preserved
for all times of existence in the case when the contact surface is a sphere. As explained
in Chapter 6, for general graphs there are two ways by which the gradient bound on
the Neumann boundary is not satisfied. One of them is when the surface Σ contains
a horizontal section and the second and most important is the so called tilt behaviour.
This is when the moving graph immersions lose the graph property in the sense of the
quantity s = 〈ν, e3〉 becoming 0 by νMt = K3

|K3| up to a sign. In this appendix we want

to present one additional result which characterises the first tilt point on the Neumann
boundary for the motion of graphs outside the unit sphere in R3. The setting in which
we work is applicable to more than one example but the computations become far too
difficult if we do not have the extra properties given by the surface of contact Σ being
a sphere. If one tries to construct a surface which has a first tilt point on the Neumann
boundary for the problem (21), such that this surface is used as an initial surface later,
then we find out that in this point the time derivative of the quantity characterising the
graph property s = 〈νMt , e3〉 is zero. The bigger picture tells us then that we are not able
to construct a counterexample for long time existence of (21) by means of continuous
dependence on initial data.

The sections below are organised as follows. We start with the construction of a
general local parametrisation of a surface having a ninety degrees contact angle with
the surface Σ as in our two problems (54) and (56) and compute in this setting all the
necessary quantities: the metric, the components of the second fundamental form and
the components of the third tensor which is the first covariant derivative of the second
fundamental form.

The next section treats only the case when the surface Σ is a unit sphere in R3, that
is the problem (21) and shows how one can use the first tilt properties from Proposition
6.7 to prove that the time derivative of the s quantity is zero in a first tilt point.

103
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Here I would like to thank Prof. Dr. Ben Andrews for his suggestions, interest and
many exciting discussions on this topic during my visits to The Australian National
University in Canberra.

2. Construction of the general parametrisation

In this section we construct a general parametrisation of an immersion which has a
ninety degrees contact angle with a general surface Σ. The construction is valid for any
initial surface which is an embedding and which satisfies the Neumann condition of the
two studied problems, (54) and (56). In the setting of this parametrisation we compute
all the quantities which are used in Proposition 6.7 to characterise a first point of tilt.

We start by defining the parametrisation X : I1 × I2 → R3. We denote by M∗

the surface generated by X. Let I1 and I2 be two real intervals such that 0 ∈ I1 and
0 ∈ I2 ∼ I2. We want to construct our parametrisation on a small ball around the tilting
point so the construction is defined on a Cartesian product of small length real intervals
such that the tilting point occurs at point (0, 0).

Let us define the parametrisation X

X(u, v) := σ(u, v) + v νΣ(σ(u, v))(91)

where σ : I1×I2 → Σ is a family of curves in Σ. This type of parametrisation constructs
the surface M∗ starting from a family of curves out of Σ and that is for each v, σ(u, v)
is a curve in Σ. Every point from M∗ found at distance v from Σ is projected onto Σ by
the unit normal of the contact surface Σ. At v = 0 we find the curve of the boundary
of the surface, that is σ(·, 0) = ∂M∗ ⊂ Σ.

For this type of parametrisation we compute all the quantities from the above list
of properties found in Proposition 6.7: the metric, curvatures and first derivatives of
curvature.

The first condition that the M∗ has to satisfy is the Neumann contact angle condition
〈νM∗ , νΣ〉 = 0. This condition is satisfied if we impose the following restriction on the
curve σ(·, 0) since as we have seen above the contact with the surface Σ and thus the
boundary curve is the curve obtained for v = 0

∂σ

∂v
|v=0 ≡ 0.(92)

Next we compute the metric on M∗ at the boundary.

Proposition A.1 (The metric of M∗). With the above choice of parametrisation
the metric on the boundary ∂M∗ is given by

g11 =
∣∣∣∂σ
∂u

∣∣∣2,
g12 = 0,

g22 = 1.



2. CONSTRUCTION OF THE GENERAL PARAMETRISATION 105

Proof. The first step is to compute the tangent basis for TM∗ from the parametri-
sation definition (91)

τ1 =
∂X

∂u
=

∂σ

∂u
+ v D ∂σ

∂u
νΣ,

τ2 =
∂X

∂v
=

∂σ

∂v
+ v D ∂σ

∂v
νΣ + νΣ(σ(u, v)).(93)

These simplify at v = 0, which is true on the boundary ∂M∗, and using (92) to

τ1 =
∂σ

∂u

∣∣∣
(u,v)=(u,0)

,

τ2 = νΣ(σ(u, 0)).(94)

By definition the metric components at the point (u, v) = (u, 0) are

g11 = 〈τ1, τ1〉 = |∂σ
∂u

∣∣∣2
(u,v)=(u,0)

,

g12 = 〈τ1, τ2〉 =

〈
∂σ

∂u
, νΣ

〉
= 0,

g22 = 〈τ2, τ2〉 = |νΣ|2 = 1.

where we have also used relation (92) and the fact that σ(·, 0) is a curve in Σ, so its
tangent vectors are perpendicular to the normal of Σ. This ends our proof. �

As one can see the basis of our tangent vectors to the M∗ surface generated by the
parametrisation is an orthogonal one but not an orthonormal one at the chosen point
of tilting. That means that in all our future computations we need to be careful about
scaling things in the proper way.

The next step is to choose a unit normal to the M∗ surface. This choice has to be
in agreement with the extra condition that the patch of surface that we define using the
parametrisation is a graph in the e3 direction, except at the point of tilting (u, v) = (0, 0).
This means that we need to satisfy relation (64).

Let us make the choice of unit normal to be the normed cross product of the two
tangent vectors defined above.

νM∗ =
∂X
∂u
× ∂X

∂v

|∂X
∂u
× ∂X

∂v
|

=
τ1 × τ2

|τ1 × τ2|
.(95)

The next proposition computes the components of the second fundamental form of the
surface M∗ on the boundary.

Proposition A.2 (Second fundamental form of M∗). With the above choice of
parametrisation the second fundamental form of the surface M∗ on the boundary ∂M∗

is given by

h11 = − 1

|∂σ
∂u
× νΣ|

〈
∂σ

∂u
× νΣ,

∂2σ

∂u2

〉
,

h12 = − 1

|∂σ
∂u
× νΣ|

〈
∂σ

∂u
× νΣ,D ∂σ

∂u
νΣ

〉
,



106 A. THE SPHERE PROBLEM

h22 = − 1

|∂σ
∂u
× νΣ|

〈
∂σ

∂u
× νΣ,

∂2σ

∂v2

〉
.

Proof. By definition the components of the second fundamental form are

h11 = −
〈
νM∗ ,

∂2X

∂u2

〉
,

h12 = −
〈
νM∗ ,

∂2X

∂u∂v

〉
,

h22 = −
〈
νM∗ ,

∂2X

∂v2

〉
.

So all we have to do is use the choice of unit normal from (95) and compute the second
derivatives of the parametrisation.

∂2X

∂u2
=

∂

∂u

(∂X
∂u

)
=

∂2σ

∂u2
+ v D2

∂σ
∂u
, ∂σ
∂u
νΣ + v D ∂2σ

∂u2
νΣ,

∂2X

∂u∂v
=

∂

∂u

(∂X
∂v

)
=

∂2σ

∂u∂v
+ v D2

∂σ
∂u
, ∂σ
∂v
νΣ + v D ∂2σ

∂u∂v

νΣ + D ∂σ
∂u
νΣ,

∂2X

∂v2
=

∂

∂v

(∂X
∂v

)
=

∂2σ

∂v2
+ D ∂σ

∂v
νΣ + v D2

∂σ
∂v
, ∂σ
∂v
νΣ + v D ∂2σ

∂v2
νΣ + D ∂σ

∂v
νΣ.(96)

And these become on the boundary ∂M∗ where v = 0 and where we have relation (92)

∂2X

∂u2
=

∂2σ

∂u2
,

∂2X

∂u∂v
= D ∂σ

∂u
νΣ,

∂2X

∂v2
=

∂2σ

∂v2
(97)

where we have used the fact that (92) implies

∂2σ

∂u∂v
≡ 0.(98)

Returning to the definition of the second fundamental components ends our proof. �

Let us now compute the first derivatives of components of the second fundamental
form. By Codazzi we see that we only need to compute four of them, and that is ∇1h11,
∇1h12, ∇1h22 and ∇2h22. Also we do not compute the second one since it is only used in
the computation of others and it brings no further restrictions on the future construction.
We put the remaining three in the following proposition.

Proposition A.3 (First derivative of second fundamental form of M∗). With the
above choice of parametrisation the first covariant derivatives of the second fundamental
form of M∗ on the boundary ∂M∗ are given by

∇1h11 = − 2h11

|∂σ
∂u
|2

〈
∂2σ

∂u2
,
∂σ

∂u

〉
+ 2hΣ

11h12 +
∂

∂u

( 1

|∂σ
∂u
× νΣ|

)∣∣∣∂σ
∂u
× νΣ

∣∣∣h11
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− 1

|∂σ
∂u
× νΣ|

〈
∂σ

∂u
× νΣ,

∂3σ

∂u3

〉
− 1

|∂σ
∂u
× νΣ|2

hΣ
12

〈
∂σ

∂u
×
[∂σ
∂u
× νΣ

]
,
∂2σ

∂u2

〉
,(99)

∇1h22 = − 1

|∂σ
∂u
× νΣ|

〈
∂2σ

∂u2
× νΣ,

∂2σ

∂v2

〉
− hΣ

12

|∂σ
∂u
× νΣ|2

〈
∂σ

∂u
×
[∂σ
∂u
× νΣ

]
,
∂2σ

∂v2

〉
− 1

|∂σ
∂u
× νΣ|

〈
∂σ

∂u
× νΣ,

∂3σ

∂u∂v2

〉
− h22

|∂σ
∂u
× νΣ|2

〈
∂2σ

∂u2
× νΣ,

∂σ

∂u
× νΣ

〉
− 2hΣ

11h12

|∂σ
∂u
|2

,(100)

∇2h22 = − 1

|∂σ
∂u
× νΣ|

〈
D ∂σ

∂u
νΣ × νΣ,

∂2σ

∂v2

〉
− 1

|∂σ
∂u
× νΣ|

〈
∂σ

∂u
× νΣ,

∂3σ

∂v3

〉
− 3

1

|∂σ
∂u
× νΣ|

〈
∂σ

∂u
× νΣ,D ∂2σ

∂v2
νΣ

〉
− 2h22

〈
∂2σ

∂v2
, νΣ

〉
− 2

h12

|∂σ
∂u
|2

〈
∂2σ

∂v2
,
∂σ

∂u

〉
− h22

|∂σ
∂u
× νΣ|2

[ 〈
D ∂σ

∂u
νΣ × νΣ,

∂σ

∂u
× νΣ

〉
+

〈
∂σ

∂u
× ∂2σ

∂v2
,
∂σ

∂u
× νΣ

〉 ]
(101)

where we have neglected to expand some of the terms since they are not useful in the
below construction argument.

Proof. To obtain the above relations we shall use the following formula

∇khij =
∂

∂xk

(
hij
)
− AM

∗
( ( ∂2X

∂xk∂xi

)TM∗
,
∂X

∂xj

)
− AM

∗
(
∂X

∂xi
,
( ∂2X

∂xk∂xj

)TM∗ )
,

where xi, xk, xj can be either u or v and the indices i, j, k go from 1 to 2.
Let us start with the first relation

∇1h11 =
∂

∂u

(
h11

)
− 2 AM

∗
( (∂2X

∂u2

)TM∗
,
∂X

∂u

)
.

On the boundary ∂M∗, where v = 0 and (92) is true we have ∂2X
∂u2 = ∂2σ

∂u2 , so

(∂2X

∂u2

)TM∗
=

〈
∂2σ

∂u2
,
∂σ

∂u

〉 ∂σ
∂u

|∂σ
∂u
|2

+

〈
∂2σ

∂u2
, νΣ

〉
νΣ.

Then the second term of the relation becomes

2 AM
∗
( (∂2X

∂u2

)TM∗
,
∂X

∂u

)
= 2

〈
∂2σ

∂u2
,
∂σ

∂u

〉
h11

|∂σ
∂u
|2

+ 2

〈
∂2σ

∂u2
, νΣ

〉
h12.

Also here we can use that ∂X
∂u

= ∂σ
∂u

on ∂M∗ ⊂ Σ is also tangent to Σ to see that〈
∂2σ

∂u2
, νΣ

〉
= − hΣ

11
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and expand the second term as

2 AM
∗
( (∂2X

∂u2

)TM∗
,
∂X

∂u

)
= 2

〈
∂2σ

∂u2
,
∂σ

∂u

〉
h11

|∂σ
∂u
|2
− 2 hΣ

11 h12.

Now let us return to the first term of the relation and expand it using Proposition A.2

∂

∂u

(
h11

)
= − ∂

∂u

[ 〈
∂σ
∂u
× νΣ,

∂2σ
∂u2

〉
|∂σ
∂u
× νΣ|

]
= − ∂

∂u

( 1

|∂σ
∂u
× νΣ|

) 〈∂σ
∂u
× νΣ,

∂2σ

∂u2

〉
− 1

|∂σ
∂u
× νΣ|

∂

∂u

( 〈∂σ
∂u
× νΣ,

∂2σ

∂u2

〉)
.

We leave the first term in the same form and only notice that the inner product is
actually a curvature of M∗〈

∂σ

∂u
× νΣ,

∂2σ

∂u2

〉
= −h11 |

∂σ

∂u
× νΣ|.

The second term expands as follows

∂

∂u

( 〈∂σ
∂u
× νΣ,

∂2σ

∂u2

〉)
=

〈
∂2σ

∂u2
× νΣ,

∂2σ

∂u2

〉
+

〈
∂σ

∂u
×D ∂σ

∂u
νΣ,

∂2σ

∂u2

〉
+

〈
∂σ

∂u
× νΣ,

∂3σ

∂u3

〉
.

First we notice that
〈
∂2σ
∂u2 × νΣ,

∂2σ
∂u2

〉
= 0 and then we expand the derivative of the unit

normal to Σ on the boundary ∂M∗ in the following way

D ∂σ
∂u
νΣ =

〈
D ∂σ

∂u
νΣ, νM∗

〉
νM∗ +

〈
D ∂σ

∂u
νΣ,

∂σ

∂u

〉 ∂σ
∂u

|∂σ
∂u
|2

+
〈

D ∂σ
∂u
νΣ, νΣ

〉
νΣ.

The last term vanishes using the fact that νΣ is a choice of unit normal to the surface Σ
and the rest of the inner products are as follows〈

D ∂σ
∂u
νΣ, νΣ

〉
= 0,〈

D ∂σ
∂u
νΣ, νM∗

〉
= hΣ

12,〈
D ∂σ

∂u
νΣ,

∂σ

∂u

〉
= hΣ

11.

Returning one step in our computation we get〈
∂σ

∂u
×D ∂σ

∂u
νΣ,

∂2σ

∂u2

〉
= hΣ

12

〈
∂σ

∂u
× νM∗ ,

∂2σ

∂u2

〉
+

hΣ
11

|∂σ
∂u
|2

〈
∂σ

∂u
× ∂σ

∂u
,
∂2σ

∂u2

〉
= hΣ

12

〈
∂σ

∂u
× νM∗ ,

∂2σ

∂u2

〉
.

Now returning the whole way in our computation of ∇1h11 and replacing the choice of
unit normal to M∗ by (95) we obtain the expected result

∇1h11 = − 2h11

|∂σ
∂u
|2

〈
∂2σ

∂u2
,
∂σ

∂u

〉
+ 2hΣ

11h12 +
∂

∂u

( 1

|∂σ
∂u
× νΣ|

)∣∣∣∂σ
∂u
× νΣ

∣∣∣h11
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− 1

|∂σ
∂u
× νΣ|

〈
∂σ

∂u
× νΣ,

∂3σ

∂u3

〉
− 1

|∂σ
∂u
× νΣ|2

hΣ
12

〈
∂σ

∂u
×
[∂σ
∂u
× νΣ

]
,
∂2σ

∂u2

〉
.

Again we mention that the terms we did not expand vanish in a tilting point in the
following construction so we did not bother with them.

We now do the same for the second derivative of curvature

∇1h22 =
∂

∂u

(
h22

)
− 2 AM

∗
(
∂X

∂v
,
( ∂2X

∂u∂v

)TM∗ )
.(102)

Using (96) we see that on the boundary ∂M∗ we have

∂2X

∂u∂v

∣∣∣∣
M∗

= D ∂σ
∂u
νΣ.

Now if we decompose this in directions tangent to M∗ we have(
∂2X

∂u∂v

)TM∗
=
〈

D ∂σ
∂u
νΣ, νΣ

〉
νΣ +

〈
D ∂σ

∂u
νΣ,

∂σ

∂u

〉 ∂σ
∂u

|∂σ
∂u
|2

=
hΣ

11

|∂σ
∂u
|2
∂σ

∂u
,

where we have used that〈
D ∂σ

∂u
νΣ, νΣ

〉
= 0 and

〈
D ∂σ

∂u
νΣ,

∂σ

∂u

〉
= hΣ

11.

That implies that the last term in (102) is given by

2AM
∗
(
∂X

∂v
,
( ∂2X

∂u∂v

)TM∗ )
= 2

hΣ
11h12

|∂σ
∂u
|2
.(103)

We return to the first term in (102) and expand it using Proposition A.2

∂

∂u
h22 =

∂

∂u

[
−

〈
∂σ
∂u
× νΣ,

∂2σ
∂v2

〉
|∂σ
∂u
× νΣ|

]

= − ∂σ

∂u

( 1

|∂σ
∂u
× νΣ|

) 〈∂σ
∂u
× νΣ,

∂2σ

∂v2

〉
− 1

|∂σ
∂u
× νΣ|

∂

∂u

( 〈∂σ
∂u
× νΣ,

∂2σ

∂v2

〉 )
.

(104)

Let us compute the two terms separately and we start by looking at the above norm
from the first term as a squared root of the inner product of the two vectors

∂

∂u

∣∣∣∂σ
∂u
× νΣ

∣∣∣ =

〈
∂2σ
∂u2 × νΣ,

∂σ
∂u
× νΣ

〉
+
〈
∂σ
∂u
×D ∂σ

∂u
νΣ,

∂σ
∂u
× νΣ

〉
|∂σ
∂u
× νΣ|

.

The second term in the above can be made to vanish by the following decomposition of
the derivative D ∂σ

∂u
νΣ〈

∂σ

∂u
×D ∂σ

∂u
νΣ,

∂σ

∂u
× νΣ

〉
=

〈
∂σ

∂u
× ∂σ

∂u
,
∂σ

∂u
× νΣ

〉
hΣ

11

|∂σ
∂u
|2
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+

〈
∂σ

∂u
×
[ ∂σ
∂u
× νΣ

]
,
∂σ

∂u
× νΣ

〉
hΣ

12

|∂σ
∂u
× νΣ|

+

〈
∂σ

∂u
× νΣ,

∂σ

∂u
× νΣ

〉〈
D ∂σ

∂u
νΣ, νΣ

〉
= 0.

where we have used properties of the cross product and the fact that νΣ is a choice of
unit normal to the contact surface Σ. This give us

∂

∂u

∣∣∣∂σ
∂u
× νΣ

∣∣∣ =

〈
∂2σ
∂u2 × νΣ,

∂σ
∂u
× νΣ

〉
|∂σ
∂u
× νΣ|

and also

∂

∂u

1

|∂σ
∂u
× νΣ|

= −

〈
∂2σ
∂u2 × νΣ,

∂σ
∂u
× νΣ

〉
|∂σ
∂u
× νΣ|3

.

We return at (104) to compute the second part

∂

∂u

〈
∂σ

∂u
× νΣ,

∂2σ

∂v2

〉
=

〈
∂2σ

∂u2
× νΣ,

∂2σ

∂v2

〉
+

〈
∂σ

∂u
×D ∂σ

∂u
νΣ,

∂2σ

∂v2

〉
+

〈
∂σ

∂u
× νΣ,

∂2σ

∂u∂v2

〉
.

We can expand the middle term by expressing the derivative of the unit normal Σ in
terms of the chosen basis of R3 at points on the boundary ∂M∗ where (u, v) = (u, 0), as
we have done before.

∂

∂u

〈
∂σ

∂u
× νΣ,

∂2σ

∂v2

〉
=

〈
∂2σ

∂u2
× νΣ,

∂2σ

∂v2

〉
+

hΣ
12

|∂σ
∂u
× νΣ|

〈
∂σ

∂u
×
[ ∂σ
∂u
× νΣ

]
,
∂2σ

∂v2

〉
+

〈
∂σ

∂u
× νΣ,

∂2σ

∂u∂v2

〉
.

This gives us that (104) transforms to

∂

∂u
h22 =

〈
∂2σ
∂u2 × νΣ,

∂σ
∂u
× νΣ

〉
|∂σ
∂u
× νΣ|3

〈
∂σ

∂u
× νΣ,

∂2σ

∂v2

〉
− 1

|∂σ
∂u
× νΣ|

( 〈∂2σ

∂u2
× νΣ,

∂2σ

∂v2

〉
+

hΣ
12

|∂σ
∂u
× νΣ|

〈
∂σ

∂u
×
[ ∂σ
∂u
× νΣ

]
,
∂2σ

∂v2

〉
+

〈
∂σ

∂u
× νΣ,

∂2σ

∂u∂v2

〉 )
.

Replace the above relation and (103) into (102) and we get the second relation stated
in the results

∇1h22 = − 1

|∂σ
∂u
× νΣ|

〈
∂2σ

∂u2
× νΣ,

∂2σ

∂v2

〉
− hΣ

12

|∂σ
∂u
× νΣ|2

〈
∂σ

∂u
×
[∂σ
∂u
× νΣ

]
,
∂2σ

∂v2

〉
− 1

|∂σ
∂u
× νΣ|

〈
∂σ

∂u
× νΣ,

∂3σ

∂u∂v2

〉
− h22

|∂σ
∂u
× νΣ|2

〈
∂2σ

∂u2
× νΣ,

∂σ

∂u
× νΣ

〉
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− 2hΣ
11h12

|∂σ
∂u
|2

.

We turn our attention now to the third result of the proposition.

∇2h22 =
∂

∂v

(
h22

)
− 2 AM

∗
( ( ∂2X

∂v2

)TM∗
,
∂X

∂v

)
.(105)

The second term is easier to handle in the same way as before. First notice that on the
boundary ∂M∗, from (97) we have

∂2X

∂v2

∣∣∣
∂M∗

=
∂2σ

∂v2

and this allows us to express the tangential part on the boundary ∂M∗ as follows( ∂2X

∂v2

)TM∗
=
( ∂2σ

∂v2

)TM∗
=

〈
∂2σ

∂v2
, νΣ

〉
νΣ +

〈
∂2σ

∂v2
,
∂σ

∂u

〉 ∂σ
∂u

|∂σ
∂u
|2
.

That gives us that the second term in (105) is

2 AM
∗
( ( ∂2X

∂v2

)TM∗
,
∂X

∂v

)
= 2 AM

∗
( ( ∂2X

∂v2

)TM∗
, νΣ

)

= 2 h22

〈
∂2σ

∂v2
, νΣ

〉
+ 2

h12

〈
∂2σ
∂v2 ,

∂σ
∂u

〉
|∂σ
∂u
|2

(106)

where we have used that ∂σ
∂v

∣∣∣
∂M∗

= νΣ. We return now to expand the first term of

(105) and we have to notice that here we can not use the definition of the components of
the second fundamental form from Proposition (A.2) since we differentiate in direction
v which is normal to the boundary, but the full definition using the tangent vectors of
the parametrisation. That goes as follows. First we use the definition of the second
fundamental form component

h22 = −

〈
∂X
∂u
× ∂X

∂v
, ∂

2X
∂v2

〉
|∂X
∂u
× ∂X

∂v
|

and then we differentiate in the v variable

∂

∂v
h22 = − 1

|∂X
∂u
× ∂X

∂v
|

〈
∂2X

∂u∂v
× ∂X

∂v
,
∂2X

∂v2

〉
− 1

|∂X
∂u
× ∂X

∂v
|

〈
∂X

∂u
× ∂2X

∂v2
,
∂2X

∂v2

〉
− 1

|∂X
∂u
× ∂X

∂v
|

〈
∂X

∂u
× ∂X

∂v
,
∂3X

∂v3

〉
− ∂

∂v

1

|∂X
∂u
× ∂X

∂v
|

〈
∂X

∂u
× ∂X

∂v
,
∂2X

∂v2

〉
.(107)

There are four terms that we have to deal with. We start here with the first term by
using the form of tangent vectors of M∗ and the second derivative of the parametrisation
at the boundary ∂M∗ from (94) and (97)

− 1

|∂X
∂u
× ∂X

∂v
|

〈
∂2X

∂u∂v
× ∂X

∂v
,
∂2X

∂v2

〉
= −

〈
D ∂σ

∂u
νΣ × νΣ,

∂2σ
∂v2

〉
|∂σ
∂u
× νΣ|

.(108)
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The second term vanishes using properties of the cross product

− 1

|∂X
∂u
× ∂X

∂v
|

〈
∂X

∂u
× ∂2X

∂v2
,
∂2X

∂v2

〉
= 0.(109)

For the third term we need to compute the third derivative of the parametrisation in
the v direction starting with the general second derivative from (96)

∂3X

∂v3
=

∂

∂v

( ∂2σ

∂v2
+ D ∂σ

∂v
νΣ + v D2

∂σ
∂v
, ∂σ
∂v
νΣ + v D ∂2σ

∂v2
νΣ + D ∂σ

∂v
νΣ

)
=
∂3σ

∂v3
+ 3 D2

∂σ
∂v
, ∂σ
∂v
νΣ + v D3

∂σ
∂v
, ∂σ
∂v
, ∂σ
∂v
νΣ

+ 3 v D2
∂2σ
∂v2 ,

∂σ
∂v

νΣ + 3 D ∂2σ
∂v2
νΣ + v D ∂3σ

∂v3
νΣ.

On the boundary where (92) is true and also we have v = 0 this becomes

∂3X

∂v3
=

∂3σ

∂v3
+ 3 D ∂2σ

∂v2
νΣ,

and then we can compute the third term as follows

− 1

|∂X
∂u
× ∂X

∂v
|

〈
∂X

∂u
× ∂X

∂v
,
∂3X

∂v3

〉
= − 1

|∂σ
∂u
× νΣ|

〈
∂σ

∂u
× νΣ,

∂3σ

∂v3

〉
− 3

1

|∂σ
∂u
× νΣ|

〈
∂σ

∂u
× νΣ,D ∂2σ

∂v2
νΣ

〉
.(110)

The fourth and last term can be computed as below by first computing the derivative

∂

∂v

1

|∂X
∂u
× ∂X

∂v
|

= −

〈
∂2X
∂v∂u
× ∂X

∂v
, ∂X
∂u
× ∂X

∂v

〉
+
〈
∂X
∂u
× ∂2X

∂v2 ,
∂X
∂u
× ∂X

∂v

〉
|∂X
∂u
× ∂X

∂v
|3

.

Using the fact that we are on the boundary ∂M∗ where v = 0 and (92) is true the fourth
term becomes

− ∂

∂v

1

|∂X
∂u
× ∂X

∂v
|

〈
∂X

∂u
× ∂X

∂v
,
∂2X

∂v2

〉
= − h22

|∂σ
∂u
× νΣ|2

[ 〈
D ∂σ

∂u
νΣ × νΣ,

∂σ

∂u
× νΣ

〉
+

〈
∂σ

∂u
× ∂2σ

∂v2
,
∂σ

∂u
× νΣ

〉 ]
.(111)

Now replacing (108), (109), (110) and (111) into (107), and then replacing (107) and
(106) into (105) we get the last result of this proposition

∇2h22 = − 1

|∂σ
∂u
× νΣ|

〈
D ∂σ

∂u
νΣ × νΣ,

∂2σ

∂v2

〉
− 1

|∂σ
∂u
× νΣ|

〈
∂σ

∂u
× νΣ,

∂3σ

∂v3

〉
− 3

1

|∂σ
∂u
× νΣ|

〈
∂σ

∂u
× νΣ,D ∂2σ

∂v2
νΣ

〉
− 2h22

〈
∂2σ

∂v2
, νΣ

〉
− 2

h12

|∂σ
∂u
|2

〈
∂2σ

∂v2
,
∂σ

∂u

〉
− h22

|∂σ
∂u
× νΣ|2

[ 〈
D ∂σ

∂u
νΣ × νΣ,

∂σ

∂u
× νΣ

〉
+

〈
∂σ

∂u
× ∂2σ

∂v2
,
∂σ

∂u
× νΣ

〉 ]
.

And this completes our proof. �
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We are now ready to start working on the particular case when Σ surface is a unit
sphere.

3. Mean curvature flow of graphs outside the sphere

This section is reserved for the problem (56) when the contact surface Σ is a unit
sphere in R3. More details on this problem can be found in Chapter 4. We construct
here the parametrisation of the surface on which there is a first point of tilt in time and
space. The conditions required by such a surface tell us more about the behaviour of a
mean curvature flow solution which tilts.

If the contact surface Σ is the unit sphere in R3 centred at the origin then we have

hΣ
11 = hΣ

22 = 1 and,

hΣ
12 = 0,(112)

for any orthonormal basis of the tangent space to Σ. Also here we have made the choice
of unit normal to Σ such that

〈νΣ, e3〉 ≥ 0,(113)

which is the opposite of the convention of Proposition 6.7 so we are careful to modify the
results accordingly. That is why the inequality of (66) changes as in (116). This change
of convention is easier to use in the setting of the previous section. In case we do not
work with an orthonormal basis of the tangent space of Σ, but only an orthogonal one
as is the case of the local parametrisation of the previous section then the curvatures of
the sphere need to be scaled by the length of the tangent vectors. This is the reason why
property (119) in the below proposition is slightly changed as to the (69) in Proposition
6.7. For Σ being a unit sphere in R3 the results of Proposition 6.7 change as below.

Proposition A.4 (Tilt properties for a unit sphere). Let Mt be a family of immer-
sions satisfying (21) where Σ be a unit sphere centred at the origin in R3. Suppose that
X(p, t) ∈ ∂NMt ⊂ Σ is the first point where s = 0 by νMt = K3

|K3| up to a sign. At

this point take an orthogonal basis of the tangent space of Mt to be {τ1, τ2} where τ1 is
tangent to the boundary curve contained in Σ and τ2 is the choice of unit normal to Σ
such that it points into the surface of the graph Mt. Then at X the following properties
hold

〈νMt , e3〉 = 0 at X and 〈νMt , e3〉 > 0 everywhere else(114)

h11 = h12 = 0(115)

h22 〈νΣ, e3〉 > 0(116)

∇1h11 〈τ1, e3〉 ≥ 0(117)

∇1h12 = h22(118)

∇1h22 〈τ1, e3〉 ≤ − h22 〈νΣ, e3〉 |τ1|2(119)

∇2h22 = 0(120)

where we have denoted by hij and hΣ
ij the components of the second fundamental forms

AMt and AΣ of Mt and Σ respectively.
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Remark. One can see that we have taken the opposite convention as in earlier
chapters for the unit normal to the surface Σ. We are moving on the outside of the
sphere and the normal of the sphere is chosen such that the convention is that the
sphere is convex. In case we work with the (56) problem and we move on the interior of
the sphere then the curvatures of the sphere are negative and the above result changes
appropriately.

Our parametrisation is defined using the family of curves σ : I1 × I2 → R3. Let us
denote the components of σ, σ1, σ2 : I1 × I2 → R as below

σ(u, v) =
(
σ1(u, v), σ2(u, v),

√
1− σ1(u, v)2 − σ2(u, v)2

)
,

where the last component is defined such that we have that for every u and v the curve
σ(u, v) is contained in the unit sphere Σ. Using the properties of a first tilt point we
impose different conditions on the two components of σ. Before we start we need to
mention that here since we are working with the surface Σ being an unit sphere in R3

and using the definition of our parametrisation as in (91) the unit normal to the surface
Σ is just the position vector of the curve σ

νΣ = σ.(121)

The first condition that we want to satisfy is (114). Use the above remark (121) and the
definition of the unit normal to the parametrisation (95) and see that (114) transforms
to the following

∂σ1

∂u
(u, v)σ2(u, v)− ∂σ2

∂u
(u, v)σ1(u, v) > 0 ∀(u, v) 6= (0, 0) and

∂σ1

∂u
(0, 0)σ2(0, 0) =

∂σ2

∂u
(0, 0)σ1(0, 0).

One can also write the above in the following form

∂

∂u

σ1

σ2

(u, v) > 0 ∀(u, v) 6= (0, 0) and

∂

∂u

σ1

σ2

(0, 0) = 0.

This leads us to the following constraint on the parametrisation (91) of a surface with a
first point of tilt at (u, v) = (0, 0)

σ1(u, v) = σ2(u, v) g(u, v) where g : I1 × I2 → R and

∂g

∂u
(u, v) > 0 ∀(u, v) 6= (0, 0) and

∂g

∂u
(0, 0) = 0.(122)

From now on we look to impose restrictions on σ2 and the new introduced g function.
The next condition we look at is the Neumann condition imposed on the parametri-

sation (92). This gives the following relations on σ2 and g functions

∂σ2

∂v
(u, 0) = 0 and

∂g

∂v
(u, 0) = 0 ∀u.(123)



3. MEAN CURVATURE FLOW OF GRAPHS OUTSIDE THE SPHERE 115

We turn our attention now to the two curvature properties (115) and (116). From the
first one we only use the information given by the component h11, the other one being
trivial since we are working with a orthogonal basis on the unit sphere Σ. Again we
make use of (95) and compute the unit normal to the moving surface which contains a
first point of tilt at (0, 0) to be

νM∗ =
1

|∂σ2

∂u
(0, 0)|

√
1 + g2(0, 0)

( ∂σ2

∂u
(0, 0), −∂σ2

∂u
(0, 0)g(0, 0), 0

)
.(124)

We also need to compute the second derivative in u and v of σ(u, v) at (0, 0) as

∂2σ

∂u2
(0, 0) =

( ∂2σ2

∂u2
(0, 0)g(0, 0) +

∂2g

∂u2
(0, 0)σ2(0, 0),

∂2σ2

∂u2
(0, 0), . . .

)
,(125)

and

∂2σ

∂v2
(0, 0) =

( ∂2σ2

∂v2
(0, 0)g(0, 0) +

∂2g

∂v2
(0, 0)σ2(0, 0),

∂2σ2

∂v2
(0, 0), . . .

)
,(126)

where we have used the conditions (122) and (123) and also omitted the last component
since it does not come into the following computation. The relations (115) and (116)
give us the following

∂σ2

∂u
(0, 0)σ2(0, 0)

∂2g

∂u2
(0, 0) = 0,(127)

∂σ2

∂u
(0, 0)σ2(0, 0)

∂2g

∂v2
(0, 0) < 0.(128)

One can see that these together simplify the (127) to be

∂2g

∂u2
(0, 0) = 0.(129)

The next relation we want to look at is (117). Using relations (99), (121) and the
properties (115) and (116) this becomes

− 1

|∂σ
∂u

(0, 0)× σ(0, 0)|

〈
∂σ

∂u
(0, 0)× σ(0, 0),

∂3σ

∂u3
(0, 0)

〉 〈
∂σ

∂u
(0, 0), e3

〉
≥ 0.

To compute the last scalar product we once again use relation (122)〈
∂σ

∂u
(0, 0), e3

〉
= −

∂σ2

∂u
(0, 0)σ2(0, 0)(1 + g(0, 0)2)√
1− σ2

2(0, 0)(1 + g2(0, 0))
.

We also need to compute the third partial derivative in u for σ

∂3σ

∂u3
(0, 0) =

( ∂3σ2

∂u3
(0, 0)g(0, 0) +

∂3g

∂u3
(0, 0)σ2(0, 0) + 3

∂2g

∂u2
(0, 0)

∂σ2

∂u
(0, 0),

∂3σ2

∂u3
(0, 0), . . .

)
,

where we have also used (122) and (123) and omitted the last term since it does not play
a role in the computation. Returning to our (117) and applying (127) we get another
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property of the two components of σ

∂3g

∂u3
(0, 0) ≥ 0.(130)

The last relation we are going to work on needs a little modification before we are able
to obtain our desired property. This is relation (119). Starting with relation (100) in
which we compute the component of the three tensor of the derivative of curvatures of
the surface described by our parametrisation, we apply first the two properties (115)
and (116) and also use relation (121) to get

∇1h22 = − 1

|∂σ
∂u
× σ|

〈
∂2σ

∂u2
× σ, ∂

2σ

∂v2

〉
− 1

|∂σ
∂u
× σ|

〈
∂σ

∂u
× σ, ∂3σ

∂u∂v2

〉
− h22

|∂σ
∂u
× σ|2

〈
∂2σ

∂u2
× σ, ∂σ

∂u
× σ

〉
.

Using the same techniques as the ones found in the proof of Proposition A.3 we can
expand the scalar product from the first term from above into the following〈
∂2σ

∂u2
× σ, ∂

2σ

∂v2

〉
=

1

|∂σ
∂u
|2

〈
∂2σ

∂u2
× σ, ∂σ

∂u

〉〈
∂σ

∂u
,
∂2σ

∂v2

〉
+

〈
∂2σ

∂u2
× σ, σ

〉〈
σ,
∂2σ

∂v2

〉
+

1

|∂σ
∂u
× σ|2

〈
∂2σ

∂u2
× σ, ∂σ

∂u
× σ

〉〈
∂σ

∂u
× σ, ∂

2σ

∂v2

〉
=

1

|∂σ
∂u
|2

〈
∂2σ

∂u2
× σ, ∂σ

∂u

〉〈
∂σ

∂u
,
∂2σ

∂v2

〉
− h22

|∂σ
∂u
× σ|

〈
∂2σ

∂u2
× σ, ∂σ

∂u
× σ

〉
,

where in the last equality we have used the definition of the second fundamental form
components as seen in Proposition A.2 and properties of the cross product. One can
also simplify this more by noticing that〈

∂2σ

∂u2
× σ, ∂σ

∂u

〉
= 0.

This comes from the following short computation. First by the properties of the cross
product we always have 〈

∂σ

∂u
× σ, ∂σ

∂u

〉
= 0 ∀(u, v).

This allows us to differentiate in u and obtain〈
∂2σ

∂u2
× σ, ∂σ

∂u

〉
= −

〈
∂σ

∂u
× ∂σ

∂u
,
∂σ

∂u

〉
−
〈
∂σ

∂u
× σ, ∂

2σ

∂u2

〉
= −

∣∣∣∂σ
∂u
× σ

∣∣∣ h11 = 0,

where we have used in the last equality the property (115) in a first point of tilt and the
properties of the cross product.

Now returning to our first term of (100) we have〈
∂2σ

∂u2
× σ, ∂

2σ

∂v2

〉
= − h22

|∂σ
∂u
× σ|

〈
∂2σ

∂u2
× σ, ∂σ

∂u
× σ

〉
.
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That gives us that the first and last term found in (100), which do not cancel from the
other properties are in sum vanishing. In the end (100) becomes

∇1h22 = − 1

|∂σ
∂u
× σ|

〈
∂σ

∂u
× σ, ∂3σ

∂u∂v2

〉
.(131)

We now use this relation to compute the relation given by (119) and obtain〈
∂σ

∂u
× σ, ∂3σ

∂u∂v2

〉 ∂σ2

∂u
σ2(g2 + 1)√

1− σ2
2(g2 + 1)

(0, 0)

≤
〈
∂σ

∂u
× σ, ∂

2σ

∂v2

〉√
1− σ2

2(g2 + 1)

(
∂σ2

∂u

)2
(g2 + 1)

1− σ2
2(g2 + 1)

(0, 0).

First we have to compute the third mixed derivative of σ in u and v as follows

∂3σ

∂u∂v2
(0, 0) =

( ∂3σ2

∂u∂v2
(0, 0)g(0, 0) +

∂2g

∂v2
(0, 0)

∂σ2

∂u
(0, 0) +

∂3g

∂u∂v2
(0, 0)σ2(0, 0),

∂3σ2

∂u∂v2
(0, 0), . . .

)
where we have used (122) and (123) to eliminate some terms and again omitted the last
term of the vector for it does not come into the computation. Returning to our relation
from one computation above we get after simplifications

∂3g

∂u∂v2
(0, 0) ≤ 0.(132)

All the above constraints on the parametrisation of a surface which develops a first
point of tilt can be found in the following proposition.

Proposition A.5 (Properties of a parametrisation in a first tilt point). Let Mt

satisfying the evolution (21). Let Mt∗ be the first surface such that it has on the Neumann
boundary ∂NMt∗ ⊂ Σ the first point of tilt in time and space. Let Mt∗ be represented
using the parametrisation (91) such that the point of tilt is at (0, 0) ∈ I1 × I2, then the
following restrictions are imposed on the components of the parametrisation

σ1(u, v) = σ2(u, v) g(u, v) where g : I1 × I2 → R and

∂g

∂u
(u, v) > 0 ∀(u, v) 6= (0, 0) and

∂g

∂u
(0, 0) = 0,

∂σ2

∂v
(u, 0) = 0 and

∂g

∂v
(u, 0) = 0 ∀u,

∂2g

∂u2
(0, 0) = 0,

∂σ2

∂u
(0, 0)σ2(0, 0)

∂2g

∂v2
(0, 0) < 0,

∂3g

∂u3
(0, 0) ≥ 0,

∂3g

∂u∂v2
(0, 0) ≤ 0.
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Using all the relations stated above we are able to prove that in a first point of
tilt the time derivative of the quantity s which characterises the graph property of an
immersion vanishes.

Proposition A.6 (Time derivative of s at a first tilt point). Let Mt satisfying the
evolution (21). Let Mt∗ be the first surface such that it has on the Neumann boundary
∂NMt∗ ⊂ Σ the first point of tilt X∗ in time and space. Then

d

dt
s(X∗) =

d

dt
〈νMt∗ , e3〉

∣∣∣
X∗

= 0.

Proof. First we have to note here that the way we represented the surfaces using
locally the parametrisation defined with the help of the family of curves σ can be done
for any smooth immersed surface Mt. So having the proof in a setting where we work
locally around the tilt point is sufficient for the result of the proposition to work for any
surface evolving by (21).

Let us now start with the proof. We denote by f : I2 → R the partial derivative of
the function g in the u variable at the point of tilt, that is

f(v) :=
∂g

∂u
(0, v).

Using relation (122) one can see that

f(0) = 0 and f(v) > 0 ∀v ∈ I2, v 6= 0

and this tells us that the function f has a minimum at v = 0 which is a boundary point.
Also at this point we have

df

dv
(0) = 0,

using relation (123). Then the minimum at v = 0 is obtained in such a way that

df

dv2
(0) =

∂3g

∂u∂v2
(0, 0) ≥ 0.

The last inequality together with property (132) tells us that we can only have

∂3g

∂u∂v2
(0, 0) = 0.

This also implies that the inequality (119) can only be satisfied with equality, so

∇1h22 〈τ1, e3〉 = − h22 〈νΣ, e3〉 |τ1|2.
If one looks back on the proof of how this inequality was obtained in the previous chapter,
Proposition 6.7 relation (69), then we get that at the point of first tilt X∗ we have

0 ≥ d

dt
s
∣∣∣
X∗

= 〈∇H, e3〉
∣∣∣
X∗

= ∇1H 〈τ1, e3〉
1

|τ1|2
∣∣∣
X∗

+ ∇2H 〈νΣ, e3〉
∣∣∣
X∗

= ∇1h11 〈τ1, e3〉
1

|τ1|2
∣∣∣
X∗

+ ∇1h22 〈τ1, e3〉
1

|τ1|2
∣∣∣
X∗

+ ∇2h11 〈νΣ, e3〉
∣∣∣
X∗

+ ∇2h22 〈νΣ, e3〉
∣∣∣
X∗
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= ∇1h11 〈τ1, e3〉
1

|τ1|2
∣∣∣
X∗
− h22 〈νΣ, e3〉

∣∣∣
X∗

+ h22 〈νΣ, e3〉
∣∣∣
X∗

= ∇1h11 〈τ1, e3〉
1

|τ1|2
∣∣∣
X∗
.

where the first inequality comes from the fact that we have the first minimum of the
s quantity in time and space and in the rest we have used the Codazzi equations, the
above equality in the relation (119) and properties (118) and (120) from Proposition
A.4. One can see that this implies

∇1h11 〈τ1, e3〉
∣∣∣
X∗
≤ 0,

which together with property (117) tells us that it can only be true with equality. So
we obtain

∇1h11 〈τ1, e3〉
∣∣∣
X∗

= 0

and also by this we conclude our result

d

dt
s
∣∣∣
X∗

= 0.

�

Remark (Second time derivative behaviour). One might continue the above discus-
sion by treating the second derivative in time of the s quantity. This tells us if the surface
with the first tilt becomes better after the time of the tilt or maintains the tilt for some
time. One can easily see that the second time derivative can not be strictly negative at
the tilt point X∗, since that will imply that it has a maximum in time and that is not
possible since before the time of the tilt all values are bigger than at the time of tilt. So
the two cases remaining are if the second derivative is strictly positive or vanishes. If
the second time derivative will be strictly positive then the tilt will immediately become
better and the surfaces will regain their graph property. If we have a second derivative
in time also vanishing at the time of tilt then we are in a true point of inflection in time
for the s quantity and one needs to bring in discussion the third derivative of time to be
able to characterise the tilt point.





APPENDIX B

Dirichlet boundary estimates

1. Introduction

In this appendix we discuss in detail the problem of obtaining Dirichlet boundary
estimates and how these fit into the big picture of long time existence for our graph
solutions. As we recall, we are working with graph problems which sometimes have two
boundaries. On one of them the boundary condition is a free Neumann given by a ninety
degrees angle on a fixed 2−dimensional surface, Σ in R3 and on the other one we have
a fixed Dirichlet boundary condition which keeps our graph functions at some height,
which for example in the sphere problem treated in Chapter 4 is constant and 0.

The problem of obtaining bounds for the gradient on the Dirichlet boundary is well
understood and there are many results as one can see in the below list of problems
treated by different authors.

For mean curvature flow with Dirichlet boundary conditions the barriers have been
used for the first time by Huisken in [23]. There one makes use of the well known work
of Serrin [34] to construct barriers for the elliptic problem of the parabolic operator.
The two barriers bound the initial values at the Dirichlet boundary. Following the steps
of Huisken, one can apply the strong maximum principle and bound the gradient on the
Dirichlet boundary for all times.

The above use of results is enough for an experienced reader, but for the completion
of the work we include here a choice of exposition which contains the construction of
barriers and the way they are used. Due to the huge amount of work done on the
subject, we had to make a choice of material to follow and we apologise for omitting
most of the references available. We have chosen the work of Trudinger, [39] since it is
self contained treating the cases elliptic to parabolic, and also since it treats a general
type of boundaries, weaker than convex and time dependent height functions on the
Dirichlet boundary. This generality is later explained in this appendix.

The Cauchy-Dirichlet problems have been treated extensively in literature, for elliptic
as well as parabolic evolutions. We want to give here a short history on how much work
has been done on the general types of problem and explain our choices on which results
to follow and why. We apologise in advance for omitting some of the names and results
but we are restricting ourself only to the ones which we further use.

The existence of solutions for uniformly elliptic equations has been shown by La-
dyzhenskaya and Ural’tseva in [28]. This was followed by the fundamental work of Ser-
rin, [34], where were obtained very general conditions under which the Dirichlet problem
for quasilinear elliptic equations with arbitrary smooth boundary values is solvable in
a given domain. He also showed that these conditions are sharp, in the sense that the

121
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problem is not solvable for some (infinitely differentiable) boundary values when the
conditions are violated.

The next step was to try to do the same for the parabolic case of the problems
and here we find the work of Ladyzhenskaya, Ural’tseva and Solonnikov, [27], which
appeared in the same time as their elliptic work but treated the uniformly parabolic
equations. There are also more general and extensive works which treat the parabolic
problems and we mention here couple of them which caught our attention. The book
of Lieberman [30], which we have used in the earlier chapter of short time existence,
contains a quite general and complete work on parabolic boundary value problems. Also
here we have to mention the work of Edmunds and Peletier [11], which is the analogue
of Serrin’s elliptic result but in the parabolic setting.

So as we see, there are many works which treat the elliptic and parabolic Dirichlet
boundary value problems in great details. We restrict ourself to a more specialised result,
the one of Trudinger [39] in which he obtains the analogue of the elliptic general case of
Serrin [34] for the boundary gradient.

From the fundamental work of Ladyzhenskaya, Ural’tseva and Solonnikov, [27], we
see that the solvability of the Dirichlet boundary value parabolic problems depends
upon the establishment of C1 estimates for the graph functions. The derivation of these
estimates can be naturally split into three steps. The first is a height estimate of the
graph function on the boundary, followed by the entire domain height estimate. The
second and the most difficult is the boundary gradient estimate. And the third, which
ends the argument is an estimate of the first derivative of the graph function on the
whole domain.

If we look at our problems, we notice that the height boundary estimate is given by
the fixed height on which the Dirichlet boundary value keeps our graphs. The Neumann
boundary estimates can be obtained for some types of problems by imposing different
conditions on the contact surface Σ. The interior estimates come as we have seen in
earlier chapters from maximum principle. The third step is also an application of the
maximum principle since we can use a beautiful equivalent definition of the first deriv-
ative of a graph which generates a surface moving by mean curvature flow, found in
[9]. So what we are left to do and what is treated in the following sections is to obtain
bounds for the first derivative of the graphs on the Dirichlet boundary. And this is the
reason we decided to follow the work done by Trudinger combined with the standard
construction of barrier functions which can be found in many places in the literature
starting with Serrin.

2. Setup

The following work can be found in [39]. We keep the sign convention related to the
mean curvature and orientation of the boundary normal. This convention is that the
mean curvature of convex surfaces, like for example a sphere is positive with respect to
the inner normal to the sphere. We have decided to keep the convention since its more
natural when working with distance functions and also has been used extensively by all
the big works we are quoting from, like Serrin, Lieberman, Trudinger, Giusti and so on.

Let Ω be a bounded domain in the n-dimensional Euclidean space, with n ≥ 2 and
boundary ∂Ω. We consider the space time cylinder Ω̃ = Ω× [0, T ). Before the parabolic
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quasilinear problem is treated it is necessary to look at the elliptic case of the problem.
This is because the barrier construction of the elliptic case carries through the parabolic
one also. For a parabolic operator P , as the one defined in (20) in the short time
existence chapter, we consider the elliptic operator associated

Qu = aij(x, u,Du) D2
iju + a(x, u,Du),(133)

where 1 ≤ i, j ≤ n. The coefficients aij and a are continuous in all their arguments and
the ellipticity condition that the matrix aij is positive definite is satisfied.

We follow the construction of barriers for the elliptic operator. First we explain what
the existence of above and bellow barriers for the graph functions implies. Consider the
elliptic problem

Qu = 0 in Ω.

Suppose that in a neighbourhood Ux0 of a boundary point x0 ∈ ∂Ω there exist two
C2(Ux0 ∩ Ω) functions, w− and w+ satisfying

(i) Qw+ ≤ 0 and Qw− ≥ 0 in Ux0 ∩ Ω,

(ii) w+(x0) = w+(x0) = u(x0),

(iii) w−(x) ≤ u(x) ≤ w+(x), x ∈ ∂(Ux0 ∩ Ω).

It follows from (i) that the difference functions u − w+ and w− − u satisfy maximum
principles in Ux0 ∩ Ω and then by the boundary conditions (iii) we have that

w−(x) ≤ u(x) ≤ w+(x), x ∈ Ux0 ∩ Ω.

Using (ii) we get

w−(x)− w−(x0) ≤ u(x)− u(x0) ≤ w+(x)− w+(x0).

Consequently the normal derivatives of u, w+ and w− satisfy the following

−
∣∣∣∂w−
∂ν

(x0)
∣∣∣ ≤ ∣∣∣∂u

∂ν
(x0)

∣∣∣ ≤ ∣∣∣∂w+

∂ν
(x0)

∣∣∣,
for any direction ν tangent to the graphs. This estimate gives us a bound for the first
derivative of the graph function on the Dirichlet boundary, provided we have bounded
first derivative for the two barriers.

We call the functions w+ and w−, upper and lower barriers for the operator Q and
function u at x0. The above argument is the proof of the following proposition.

Proposition B.1 (Trudinger [39], 1972). Let u be a function satisfying Qu = 0.
If we have the existence of a lower and upper barrier for any point of the boundary ∂Ω
then we have a bound for the first derivative of the function u on the boundary.

Denote by λ(x, u, p) and Λ(x, u, p) the minimum, respectively the maximum eigen-
value of the matrix operator aij(x, u, p) such that we have

0 < λ|ξ|2Rn ≤ aijξiξj ≤ Λ|ξ|Rn , ∀ξ ∈ Rn ξ 6= 0 .

Following the work found in Serrin or Bernstein we can define the quantity E = E(x, u, p) =
aijpipj. By the above we have

λ|p|2 ≤ E ≤ Λ|p|2.



124 B. DIRICHLET BOUNDARY

Let us compute these expressions for the minimal surface equation, which is the elliptic
version of the mean curvature flow, that is

Mu = (1 + |Du|2) ∆u−D2
iju Diu Dju.

For this operator we have

E = |p|2,
λ = 1,

Λ = (1 + |p|2).(134)

For us it is interesting to see what are these quantities for the elliptic part of the parabolic
operator for graphs moving by mean curvature flow. As one can see this operator is better
behaved than the minimal surface operator since its smallest and biggest eigenvalue are
smaller than the ones above. They are a scaled version of those. If we define the scaled
operator to be

M̃u = ∆u − 1

1 + |Du|2
D2
ij u Diu Dju,

then it is easy to see that its smallest and largest eigenvalues are

E =
|p|2

1 + |p|2
,

λ =
1

1 + |p|2
,

Λ = 1.(135)

From now on, when following the notes of Trudinger on the minimal surface operator and
then on the parabolic minimal surface problem we always add comments which relate
us to the mean curvature flow, which is just a scaled version of the parabolic problem
treated by Trudinger.

There are two steps in the construction of barriers in the paper of Trudinger and
those are: constructing barriers when our graph problem has zero Dirichlet boundary
conditions and then from this step the second one which is the general boundary value
problems is obtained by defining a change of variables.

3. Construction of barriers

The work of Trudinger [39] generalises the construction of barriers from the usual
convex condition of the boundary set to a more general convexity condition. The con-
struction starts with the case when the Dirichlet boundary is convex in the easier sense
that there exists a hyperplane which contains a piece of the boundary. That makes
things easier since it assumes that the boundary around the point where we construct
the barrier is flat. After obtaining barriers for this case, Trudinger modifies the estimates
to include the case when the boundary satisfies an outside sphere condition. The next
step is to generalise those estimates and get a general Q−convexity condition for the
boundaries for which we can construct local boundary barriers. This condition is less
restrictive than the one found in Serrin and includes as a particular case the positive
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mean curvature boundaries. Here the parabolic version of the minimal surface opera-
tor, with Dirichlet boundary values is stated as a Corollary, by showing that sets with
boundaries with positive mean curvature are Q−convex with respect to the minimal
surface operator. Also the results are carried through from Dirichlet boundary condi-
tions which are not dependent of time to the time dependent version. Our problems are
the simplest version of the result presented below. We have a fixed in time Dirichlet
boundary condition on a boundary with positive mean curvature.

We follow the construction of barriers in the first two steps from Trudinger, going
from convex boundaries in the sense of flatness to the one of outside sphere condition
and Q−convex boundaries and we omit some of the proofs inviting the reader to [39]
for more details. Along the way we state our observation on how the mean curvature
flow fits into the program.

Suppose that ∂Ω is convex at a point x0, in the sense that there exists a hyperplane
P satisfying x0 ∈ P ∩ Ω ⊂ P ∩ ∂Ω. Define the linear function d(x) = dist(x,P) as the
distance from a point x ∈ Ω to the hyperplane P . This function satisfies:

|Dd| = 1 and aij D2
ijd = 0.

Define the function w = φ(d) where we take φ ∈ C2[0,∞) such that φ′ 6= 0 and check if
the conditions from the definition of the barrier functions are satisfied.

Qw = aij(x, u,Dw) D2
ijw + a(x, u,Dw) =

φ′′

(φ′)2
E + a.

If we assume the existence of a non-decreasing function ν0 such that we have

|a| ≤ ν0(|u|) E , ∀x ∈ Ω, |p| > 1,(136)

it give us ( φ′′

(φ′)2
− ν
)
E ≤ Qw ≤

( φ′′

(φ′)2
+ ν

)
E ,

provided that |φ′| ≥ 1 where ν = ν0(M), M = sup
Ω
u. Define now

φ(d) =
1

ν
log(1 + kd),

for k > 0 and also consider the neighbourhood U = Ux0 = {x : d < a}, a > 0. We have
that φ′′ = −ν(φ′)2 in U . If we take ka = eνM − 1 then

φ(a) =
1

ν
log(1 + ka) = M

and

φ′(d) =
k

ν(1 + kd)
≥ k

ν(1 + ka)
in U ∩ Ω

=
k

νeνM

= 1 if k = νeνM .

Then with the above choices of k and a the functions w+ = +φ(d) and w− = −φ(d) are
respectively upper and lower barriers at x0 for the operator Q and for the function u
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provided u = 0 on U ∩Ω. This is the first most simplest construction. From now on we
modify the estimate (136) for more general type of domains.

Let us consider a new geometric configuration of the boundary ∂Ω at x0. Assume
that ∂Ω satisfies an exterior sphere condition at x0 and that is, there exists a sphere
S = S(b) of radius b > 0, such that x0 ∈ S ∩ Ω ⊂ S ∩ ∂Ω. The above hyperplane
construction can be useful if we change coordinates such that we can convert ∂Ω from
satisfying an exterior sphere condition to the convexity in the sense of a hyperplane
existence as above. After doing the change of coordinates the estimate (136) transforms
into

|a| + |p| Λ ≤ ν0(|u|) E , x ∈ Ω, |p| > 1.(137)

This estimate can be also obtained by direct construction of barriers now using the
distance to the boundary of the sphere, ∂S, d(x) = dist(x, ∂S). Define w = φ(d) in the
same way and apply the same operator

Qw = φ′aij D2
ij d +

φ′′

(φ′)2
E + a.

These two barrier constructions allow us to use Proposition B.1 and obtain gradient
bounds for zero Dirichlet boundary data problems for boundaries which are either flat
or satisfy an exterior sphere condition.

Remark. In Trudinger’s [39] setting the sign of the mean curvature is computed
with respect to the inner normal, opposite to the convention in Huisken [23].

We want now to pass to arbitrary boundary values. This is done by considering the
evolution of the difference between the graph solution and the boundary values. For this
we define the following functional which comes into the operator definition

F(x, u, p, q) = aij(x, u, p)(pi − qi)(pj − qj).

Let now u = f on ∂Ω with f ∈ C2(Ω). Then the first generalisation of (136) is

|a| + Λ sup
Ω
|D2f | ≤ ν1(|u|) F(x, u, p,Df), x ∈ Ω, , |pk −Dkf | ≥ 1,(138)

where we denote by ν1 a non decreasing function depending on ν0 and |f |C2(Ω).
If we are in the case of domains satisfying the exterior sphere condition the estimate

(137) changes for arbitrary Dirichlet data into

|a|+ Λ|p−Df |+ Λ sup
Ω
|D2f | ≤ ν1(|u|)F(x, u, p,Df), x ∈ Ω, |p−Df | ≥ 1,(139)

where again we denote by ν1 a non decreasing function depending on ν0 and |f |C2(Ω).
The next step is to generalise these conditions needed for the existence of the barrier

functions to domains which have convexity in terms of the elliptic operator. Note that
although the exterior sphere condition is satisfied by C2 domains, it is easier to regard
it as a geometric condition rather than a regularity one. For a quasilinear operator Q of
the form considered as above we say that ∂Ω is Q−convex at x0 ∈ ∂Ω if there exists a
C3 domain S = Sx0 satisfying

(i) x0 ∈ ∂S ∩ Ω ⊂ ∂S ∩ ∂Ω,
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(ii) k = kx0 = sup
Ω

dist(x, ∂S ∩ ∂Ω)

d(x)
< ∞ or D2d = 0,

(iii) Q(d) ≤ 0 and −Q(−d) ≤ 0 for x ∈ ∂Ω ∩ ∂S

where d denotes the distance function d(x) = dist(x, ∂S). By C3 we mean that d is a
C3 function in some neighbourhood of ∂S, let us say in the set where d ≤ d0.

We call ∂Ω to be Q−convex if it is Q−convex at each x0 ∈ ∂Ω and uniformly convex
if kx0 and |d|C3(Ωx0 ) where Ωx0 = Ω ∩ {d ≤ d0} are bounded independent of x0.

Thus if ∂Ω ∈ C3 and condition (iii) is satisfied with S = Ω, then ∂Ω is uniformly
Q−convex. Also it is easy to see that the Q−convexity contains also the two convexity
cases we have discussed above, in the following way. Any convex domain in the sense of
flatness is Q−convex with respect to any operator Q with a = 0. Also if ∂Ω satisfies an
exterior sphere condition then it is convex with respect to the Q = 0 operator.

Let us look now at two operators which are of interest for us, the minimal surface
operator and the elliptic part of the non-parametric mean curvature flow, which is a
scaled version of the first one. We start with the following proposition.

Proposition B.2 (Trudinger [39], 1972, Sets with boundary with positive mean
curvature). Suppose that ∂Ω ∈ C3 and the mean curvature H = Hx0 of ∂Ω at x0satisfies

H ≥ 0, ∀x0 ∈ ∂Ω. Then ∂Ω is Q−convex with respect to the operators M∞ and M̃∞

given by

M∞u = ∆u −
Diu Dju D2

iju

|Du|2
,

M̃∞
u = ∆u.

Proof. From the smoothness property of the boundary ∂Ω ∈ C3 the first two
conditions are satisfied for the operator M∞. What we need to check is the third one.
From the properties of the distance function, following discussions found [34], we can
see that ∆d = −(n− 1)H and the second term in M∞d vanishes since

D2d(x) = −diag
{ k1

1− k1d(x)
, . . . ,

kn−1

1− kn−1d(x)
, 0
}

in a set of coordinates where we also have

Dd(x) = (0, . . . , 0, 1).

We want to remind the reader that we have kept the sign conventions from [39]. Also let
us notice that in the work of Trudinger, the mean curvature is scaled by the dimension
of the boundary set. The boundary set for us is a n− 1-dimensional set so we have

H =
1

n− 1

n−1∑
i=1

ki.

This constant is not changing the sign in the inequality on the mean curvature of the
boundary set. To prove that M∞d ≤ 0 we need to have −(n − 1)H ≤ 0 which is
equivalent to our hypothesis that H ≥ 0. �
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To generalise the necessary estimates for the existence of barriers from the two simpler
cases of convexity to the more general one of Q−convexity one must distinguish a part
of the operator Q, for which one solves the Dirichlet boundary value problem, likeM∞

or M̃∞
This part of the operator is used to show that the boundary set is convex with

respect to the Q−convexity definition. Therefore Trudinger and us following his work
consider the following splitting of an elliptic operator

Qu = ΛQ∞u + Q0u where

Q∞u = aij∞(x, u, σ)D2
iju + |Du| C∞(x, u, σ), σ =

Du

|Du|
,

Q0u = aij0 (x, u,Du)D2
ij + a0(x, u,Du)(140)

where we have aij∞, C∞, a
ij
0 , a0 ∈ C1(Ω× R× Rn).

Corollary B.3 (Non-parametric mean curvature flow operator). For the minimal
surface operator,M and the elliptic operator of the non-parametric mean curvature flow,
M̃ we define M∞ and M̃∞

as in Proposition B.2.

Note that here we have used relations (134) and (135), for our biggest and smallest
eigenvalues for the two operators.

From [39], we see that for an elliptic problem with zero Dirichlet boundary values
and a boundary which satisfies the Q−convexity, the dual inequality to (136) and (138),
is

Λ + |p| Λ0 + |a0| ≤ ν0 (|u|) E , |p| ≥ 1, x ∈ Ω.(141)

This is obtained by the same construction of barriers using the distance function and
computing everything using the decomposition of the operator. The last step is to
obtain the dual of the inequalities (137) and (139) for some arbitrary boundary data.
This follows the exact computations as in the simpler cases. We can now state the
general theorem of estimates on the boundary for the first derivative of a solution to an
elliptic problem with general Dirichlet data.

Theorem B.4 (Trudinger [39], 1972). Let the operator Q satisfy the decomposition
(140) and the estimate

Λ + |p|Λ0 + |a0| ≤ ν1(|u|) F(x, u, p,Df), x ∈ Ω, |pk − Dkf | ≥ 1

and suppose that ∂Ω is uniformly Q∞−convex. Then if u is a C2(Ω) solution of the
problem

Qu = 0 in Ω

u = f on ∂Ω,

we have

|Du| ≤ C on ∂Ω

where C depends only on ν0, S, k, supΩ |u| and |f |C2(Ω).

This is the result we base our parabolic version of the first derivative bound on the
Dirichlet boundary.
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4. Estimates on the Dirichlet boundary for mean curvature flow

Consider now the general parabolic operator, defined also in the short time existence
chapter

Pu =
∂u

∂t
− Qt =

∂u

∂t
− aij(t, x, u,Du) D2

iju − a(t, x, u,Du)

again with 1 ≤ i, j ≤ n and continuous coefficients now also in time, aij, a ∈ C0(Ω̃),
where we define Ω̃ = Ω× [0, T ), T > 0. We use the quantities defined in the construction
of barriers made in the elliptic case and think of them as also time dependent by adding
a subscript of time, for example Q the elliptic operator becomes Qt, for a time dependent
coefficient operator.

We also redefine the parabolic boundary for our case, a cylinder domain to be PΩ̃ =
∂Ω× (0, T ) ∪ Ω× {0}.

Since our discussion is set locally around the Dirichlet boundary then the following
theorem is also applicable for our case when the set has two boundaries, and here we
are talking about our Chapter 4, 5 and 6 or any other cases when we have combined
boundary conditions.

Using the above section of construction of barriers for the elliptic case and noticing
that the barriers in the elliptic case can also be used for the parabolic problems we can
state the theorem which gives us the Dirichlet boundary bounds for the first derivative
of the graphs. First define the two operators

Q∞t u = aij∞(t, x, u, σ) D2
iju − |Du| C∞(t, x, u, σ), for σ =

Du

|Du|
,

Q0
tu = aij0 (t, x, u,Du) D2

iju + a0(t, x, u,Du),

where aij∞, C∞ ∈ C1(Ω̃× R× Rn). These operators are used to separate the coefficients
containing the first derivative in the elliptic operator. We denote by Λ0 the largest
eigenvalue of the operator’s Q0

t second order coefficient. The operator Q∞ is the one
which we use to get the generalised convexity of the boundary set ∂Ω.

Before stating the estimate we want to remind the reader about one functional defini-
tion, used in the elliptic construction of barriers which can be extended to the parabolic
version by including the time variable

F(t, x, u, p, q) = aij(t, x, u, p)(pi − qi)(pj − qj) for vectors p and q.

Theorem B.5 (Trudinger [39], 1972, Dirichlet gradient bound ). Let the operator
P satisfy the following two conditions

Qtu = ΛQ∞t u + Q0
tu

and

Λ + |∂f
∂t
| + |p| Λ0 + |a0| ≤ ν1(|u|) F(t, x, u, p,Df), (x, t) ∈ Ω̃, |pk −Dkf | ≥ 1

(142)
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and suppose that ∂Ω is uniformly Q∞t convex, ∀t ∈ [0, T ]. Then if u is a C2,1(Ω̃) solution
of

Pu = 0 in Ω̃,

u = f on PΩ̃,

we have the following boundary first derivative bound

|Du| ≤ C on ∂Ω× (0, T ),

where C depends on ν1, Ω, |f |
C2,1(Ω̃)

and sup
Ω̃

|u|.

This theorem is followed by a Corollary which explains why the parabolic minimal
surface equation satisfies the requirements of the theorem.

Corollary B.6 (Trudinger [39], 1972, Minimal surface equation). The first initial
boundary value problem

n
∂u

∂t
= (1 + |Du|)−

3
2

{
(1 + |Du|2) ∆u − D2

iju Diu Dju
}

in Ω̃,

u = f on PΩ̃,

is solvable uniquely in Ω̃ provided the mean curvature H of the boundary ∂Ω satisfies

H ≥ n
n−1

sup
(0,T )

|∂f
∂t
| at each point of the boundary ∂Ω.

Proof. The smoothness C2,1(Ω̃) is obtained by the estimates from the short time
existence chapter in the same way for the minimal surface operator as for the mean
curvature flow of graphs. However we cannot say that the estimate (142) is satisfied

for arbitrary functions ft. The theorem still applies since lim
|p|→∞

∂f
∂t

|p|Λ
=
∂f

∂t
and we can

reduce the problem to the zero boundary value problem. There ft can be incorporated
in Q∞t . Working now with a zero boundary value problem, when we use u − f we can
redo the same computation as in obtaining Prop B.2 and see that we have an extra free
term n|∂f

∂t
|. The set ∂Ω is M∞−convex if

M∞d = −(n− 1)H + n|∂f
∂t
| ≤ 0

which is true from the assumptions of the theorem. We are thus able to construct
barriers which permit us to bound the height and gradient of the solution. �

The same can be done now for the non-parametric mean curvature flow which is just
a scaled version of the parabolic minimal surface equation and a better behaved one.

Corollary B.7 (Non-parametric mean curvature flow). If u is a C2,1(Ω̃) solution
of

∂u

∂t
= ∆u − 1

1 + |Du|2
D2
iju Diu Dju in Ω̃,

u = f on PΩ̃,
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and suppose that we have the mean curvature of the boundary ∂Ω satisfying H ≥
1

n−1
sup
(0,T )

|∂f
∂t
| at each point of the boundary ∂Ω then there exists a constant C depending

only on ν1, Ω, |f |
C2,1(Ω̃)

and sup
Ω̃

|u| such that

|Du| ≤ C on ∂Ω× (0, T ).

Proof. The proof follows the exact lines of the above proof of corollary. We use the
result of Corollary B.3, which also looks at the operator coming from the elliptic part of
the mean curvature flow of graphs. �

Remark. It is easy to see that the required estimate for the mean curvature of the
boundary is easily satisfied when the Dirichlet boundary function is not time dependent
and the mean curvature of the boundary is positive. This is the situation in two type of
problems we consider throughout the Chapters 4, 5 and 6. We can therefore state that
the construction of barriers for our case is achieved. Also in our case we use the mean
curvature as being the sum of principal curvatures, unscaled by the dimension of the set

∂Ω so our hypothesis for the mean curvature can be reduced to H ≥ sup
(0,T )

|∂f
∂t
| ≥ 0 at

each point of the boundary ∂Ω.





Bibliography

[1] S.J. Altschuler and L.F. Wu. Translating surfaces of the non-parametric mean curvature flow with
prescribed contact angle. Calc. Var. Partial Differential Equations, 2:101–111, 1994.

[2] S.B. Angenent. Shrinking doughnuts. Proc. of the Conf. on Elliptic and Parabolic Equations held
at Gregynoy, Wales, 1989.

[3] K.A. Brakke. The motion of a surface by its mean curvature. Princeton University Press Princeton,
NJ, 1978.

[4] J.A. Buckland. Mean curvature flow with free boundary on smooth hypersurfaces. J. Reine Angew.
Math., 2005(586):71–90, 2005.

[5] D.L. Chopp. Computation of self-similar solutions for mean curvature flow. Experiment. Math.,
3(1):1–15, 1994.

[6] T. Colding and W.P. Minicozzi. Sharp estimates for mean curvature flow of graphs. J. Reine Angew.
Math., 574:187–195, 2004.

[7] M.P. Do Carmo. Riemannian geometry. Birkhauser, 1992.
[8] K. Ecker. Regularity Theory for Mean Curvature Flow. Birkhauser, 2004.
[9] K. Ecker and G. Huisken. Mean curvature evolution of entire graphs. Ann.of Math., 130(2):453–471,

1989.
[10] K. Ecker and G. Huisken. Interior estimates for hypersurfaces moving by mean curvature. Invent.

Math., 105(1):547–569, 1991.
[11] D. E. Edmunds and L. A Peletier. The Dirichlet problem for the minimal surface equation in higher

dimensions. Ann. Sc. Norm. Super. Pisa Cl. Sci., 25(3):397–421, 1971.
[12] M. Gage and R.S. Hamilton. The heat equation shrinking convex plane curves. J. Differential

Geom., 23(1):69–96, 1986.
[13] M.E. Gage. Curve shortening makes convex curves circular. Invent. Math., 76(2):357–364, 1984.
[14] E. Giusti. Minimal surfaces and functions of bounded variation. Birkhauser, 1984.
[15] M. Grayson. The heat equation shrinks embedded plane curves to round points. J. Differential

Geom., 26:285–314, 1987.
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[35] A. Stahl. Über den mittleren Krümmungsfluss mit Neumannrandwerten auf glatten Hyperflächen.
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