Freie Universitét : * Berlin

Learning Representations from
Motion Trajectories: Analysis and
Applications to Robot Planning and
Control

Dissertation zur Erlangung des Grades
eines Doktors der Naturwissenschaften (Dr. rer. nat.)
am Fachbereich Mathematik und Informatik

der Freien Universitat Berlin

von

Nikolay Nikolaev Jetchev

Berlin
January 31, 2012

FREIE UNIVERSITAT BERLIN
Fachbereich Mathematik und Informatik

Institut fiir Informatik

Machine Learning and Robotics Lab
Prof. Dr. Marc Toussaint

Learning Representations from
Motion Trajectories: Analysis and
Applications to Robot Planning and Control

Dissertation

Autor

Vorgelegt im
Disputation am

Erstgutachter
Zweitgutachter

Nikolay Nikolaev Jetchev
aus Sofia

2. Februar 2012
20. April 2012

Prof. Dr. Marc Toussaint
Prof. Dr. Klaus-Robert Miiller

Summary

Generating motion is a crucial aspect of articulated robotics. Many robot manipulation
tasks can be defined and solved as a motion trajectory generation problem where the
robot needs to calculate and execute a task-appropriate movement. Multiple efficient
methods have been developed for this problem in the robotic community, but they do
not make use of the patterns found in motion data. We will propose in this thesis novel
approaches to combine machine learning and robotics.

The main conceptual achievement of this thesis is the successful fusion of machine
learning and robotic algorithms to improve motion generation and discover the structure
of different motion tasks. By observing examples of robot motions, optimal for a given
task, we can find the relevant features of the motions, and discover the latent structure
inherent in the interaction between robot and workspace. This leads to new algorithms
for planning and control which are demonstrated in numerous experiments to improve
on previous approaches in terms of speed and generalization ability.

For speeding up motion planning we developed an algorithm called Trajectory Predic-
tion. In the trajectory planning scenario the desired robot behavior is specified by a cost
function and a planner algorithm is used to generate low-cost motions. Our contribution
is to predict an appropriate initial trajectory that can speed up the planner. We do this
by learning a mapping from situation to trajectory, and extracting the representations
useful for such a mapping.

For learning from demonstration we developed an algorithm called Task Space Re-
trieval Using Inverse Optimal Control. In this scenario no cost function is available to spec-
ify what is a good motion. By observing example trajectories our method can learn a
value function model and an efficient sparse task space representation of the desired be-
havior. A controller for motion generation is developed based on this value function,
effectively generalizing the demonstrated behavior in novel situations.

Acknowledgements
Danksagung

I have been very lucky to have Marc Toussaint as my main thesis advisor. Throughout
my time as PhD student he has always supported me and inspired me with his creative
vision and great expertise in various fields. His visionary ideas and helpful approach
allowed me to realize the joy of discovery and improve myself as a thinker. This gave
me the chance to vastly broaden my horizons and meet and discuss science and life with
fascinating people.

I thank Klaus-Robert Miiller for being the second referee of my thesis. His insights
in machine learning have helped me the appreciate the discipline on a deeper level. I
am very happy that I had the chance to be a part of the great IDA lab and enjoy the
amazingly open and creative atmosphere there.

I owe a lot to my mother Ekaterina for her wise advice.
I thank Denitza for staying patient with me and always smiling.

And I want to mention the TU and FU colleagues I had the pleasure to know: Tobias,
Stanio, Daniel, Martijn, Claudia, Katja, Pascal, Gregoire and all the rest. We had good
times together.

Berlin, my favorite city.

ii

“Our nature consists in motion; complete rest is death.”

Blaise Pascal

“The aim of every artist is to arrest motion, which is life, by artificial
means and hold it fixed so that a hundred years later, when a stranger

looks at it, it moves again since it is life.”

William Faulkner

“Data is a precious thing and will last longer than the systems them-

selves.”

Tim Berners-Lee

“Data is not information, information is not knowledge, knowledge is
not understanding, understanding is not wisdom.”

Clifford Stoll

Contents

Introduction

1.1 Speeding-up Planning
1.1.1 Related Motion and Trajectory Generation Methods
1.1.2 Previous Use of Machine Learning Techniques to Speed up Planning

1.2 Imitation Learning
1.2.1 Related Work in Imitation Learning
1.2.2 Previous Work in Recovering Task Spaces

1.3 Outline and Contributions
1.3.1 Publication Summary

Background: Motion Generation and Learning

2.1 Kinematics of Articulated Robot Motion
2.1.1 Motion Features and Task Spaces

2.2 Motion Models for Forward Control - Inverse Kinematics

2.3 Motion Models for Planning
2.3.1 Robot Motion Planning: a BasicModel
2.3.2 Sampling Based Planning
233 OnPlanningand Control

2.4 Machine Learning and Imitation Learning Methods
241 Direct Policy Learning
2.4.2 Markov Decision Process and Reinforcement Learning
243 Inverse OptimalControl
244 Discriminative Learning

Trajectory Prediction: Mapping Situations to Motions

31 Overviewof TP

3.2 Planning Motion and Predicting Motion
3.2.1 Trajectory Prediction: Overview of the Algorithm

3.3 Situation Representations and Descriptor
3.3.1 General Geometric Descriptor
33.2 Voxel Descriptor

3.4 Task Space Trajectory IK Transfer
3.4.1 Motion Representation: Output Trajectory Task Space

vii

— O Q0 0 O\ Ul = N =

—_

13
13
14
16
16
17
18
19
19
20
21
21

viii

3.42 Formalization of the Transfer Operator
3.5 Mapping SituationtoMotion o000
3.5.1 Gathering Data Demonstrating Optimal Motions
3.5.2 Learning the Situation to Motion Mapping
3.6 Discussion: Trajectory Prediction and Imitation Learning
3.6.1 TP and Direct Policy Learning
3.6.2 TPasaMacro ActionPolicy
37 Experiments
3.7.1 Reaching on Different Table Sides
3.7.2 Reaching in Cluttered Scene.
373 GraspingaCylinder
3.8 Conclusions fromTP
381 FutureWork

An Extension of Trajectory Prediction: Parallel Process Planning
41 Introduction
42 Relatedwork L
4.3 Planning and Parallel Trajectory Exploration Framework
431 Notation
43.2 Framework and Algorithm
4.4 Adapting Trajectory Prediction to the Parallel Framework
45 Experiments
451 Robotand PlannerSetup
4.5.2 Setup of Two Different Scenarios for Reaching Task
45.3 Trajectory PredictionSetup
454 Results
46 Conclusions
461 FutureWork L

TRIC: Task Space Retrieval Using Inverse Optimal Control
51 Overview of the TRICmethod
52 Motion Model and Controller
5.3 Learning the TRIC Value Function from Motion Data
5.3.1 Discrimination in Feature Space via Loss Term L,,
5.3.2 Making the Gradient Consistent with the Demonstrations via Loss
Term L,o
54 Discussionof TRIC
54.1 Local and Global Imitation
5.4.2 Limitations of the TRIC Model: Periodic Motion
543 DiscussionoftheLossTerms
55 Experiments
551 TheGraspingTask
5.5.2 TRIC Setup: Motion Representation and Value Function Model . .

CONTENTS

CONTENTS

5.5.3 Experimental Results: Performance of the Learned Grasping Con-
troller

5.5.4 Analysis of the Trajectory Dataset: Structure Revealed from the
Sparse Discriminative Value Function

5.5.,5 Analysis of the Motion Features: Retrieving Relevant Task Spaces .

5.6 Conclusions fromTRIC
561 FutureWork L

6 Conclusions
6.1 What is Possible Now: Summary of the Benefits of TP and TRIC
6.2 Future Work: Fusing TPand TRIC

A Proofs and Derivations
A.1 Derivation of the Gradient of the Training Loss for TP with NNOpt
A.2 Proof of Proposition 3.5.2 for SVR complexity
A.3 Proof of Proposition 3.5.1 for NN complexity
A4 Proof of Proposition 5.2.1 for the Direction of IK Generated Motion Steps .
A.5 TRIC Complexity: Training Loss and Motionmodel
A.6 Proof of Lemma 5.3.1 for the TRIC Value Function
A.7 Proof of Proposition 5.3.4 for Lyapunov Attractor Properties of TRIC . . .

Literature

Zusammenfassung

ix

100

106
107
111
112

113
113
116

117
117
117
118
118
119
119
121

121

129

CONTENTS

List of Figures

1.1
1.2
1.3
1.4

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24

A basic example of a motion planning task.
Biologically inspired motion primitives
A monkey imitatingahuman. o 0 00000
Observing a tennis teacher as a form of imitation learning.

Articulated robot scheme: connected joints and rigid body links.
Aschemeofan RRT planner.
A scheme of 3 basic planning and control methods.

Diagram overview of Trajectory Prediction
The geometrical descriptor expressing pairwise object distances.
The PCA eigenvectors as indicators of characteristic terrain.
Possible coordinate systems for output motion task space representation. .
Correlation structure of planner convergence
Trajectories as pointsin costspace.
Trajectory Prediction as a macropolicy
Table reaching scenario: typical situations
Table reaching scenario: landmarks for descriptor
Table reaching scenario: trajectories in space Yopgt -
Table reaching scenario: extracted features
Table reaching scenario: predictor accuracy.
Low dimensional embeddings of the situations.
Analysis of the situation kernel matrices.
Table reaching scenario: results of planning for 7seconds
Cluttered scenario: typical situations
Laser point cloud simulation
Cluttered reaching scenario: trajectories in space Yiarget- - -+« « « « « .« . .
Cluttered reaching scenario: predictioncosts
Kernel PCA errors for cluttered reaching scenario.
Cluttered reaching scenario: planner convergence
Cluttered reaching scenario: motion initializations
Cluttered reaching scenario: hardwaresetup
Grasping scenario: typical situations

xi

NN W W

14
18
18

24
28
30
31
35
36

xii

3.25
3.26
3.27
3.28
3.29
3.30

4.1
4.2
4.3
44
4.5
4.6
4.7

5.1
52
53
54
55
5.6
5.7
5.8
59
5.10
511
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19

6.1

LIST OF FIGURES

Markers for finger grasp alignment 59
Grasping scenario: a good grasping movement. 60
Grasping scenario: significant features 61
Grasping scenario: trajectories in space Yqnand+target « + + + ¢ - - 0 - - 0 - 61
Grasping scenario: predictioncosts. 62
Grasping scenario: planner convergence 63
Time view of computations in the parallel framework. 69
A sample situation: two alternative motions. 70
Typical situations in dynamic obstacle scenario 74
Typical situations in sequential target scenario 74
Two hand movementsinspacel’ 76
Convergence of multiple parallel planners for one dynamic obstacle scenario 77
Hardware setup for dynamic reaching tasks. 79
Diagram overview of TRIC 82
Motion representationscheme 00 L L 85
Sampling synthetic noisy samples 89
Cost surface resulting fromloss L, 90
The gradient J(¢q;) shapedbyloss Ly 92
The grasping motion. L. 98
A sphere grasping trajectory injointspace 98
Landmarks for grasping features. 99
The effects of changing training setup parameterson TRIC. 102
Comparisonof TRICand DPL 103
Trajectories of TRIC and DPL grasping 5 different targets. 104
Obstacle avoidanceand TRIC. 105
The value function learned by TRIC. 106
The cosine of angles between J and ¢;41 — ¢; minimized by loss term L,. 107
Kernel PCA visualization of the trajectory data. 108
Scores of motion features oL Lo L L L 109
Four colormaps of the important pairwise distances. 110
Average gradients of the value function f 111
Average absolute gradients of the value function f 111

Factory setting for robot motion and manipulation tasks. 114

List of Tables

3.1
3.2
3.3

4.1
4.2

51
52
53

Table reaching scenario: timing summary 52
Cluttered reaching scenario: timing summary 57
Grasping scenario: timing summary 62
Average costs for 200 simulations of dynamic obstacle reaching. 77
Average costs for 200 simulations of sequential reaching, initialization

method VS offline pre-optimization iterations. 78
Sphere grasping results: TRIC compared to the teacher 102
Results for DPL predictionondata 103
TRIC performance for cylinder grasping. 105

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

Robots have fascinated people in the last few decades. People have dreamed of hav-
ing machine companions with which to play games and solve problems in the world
together. However, before such high-level concepts become reality, the more basic but
at least as challenging task of teaching robots mastery of their bodies and environments
should be addressed. So far robots (more exactly, robot arms) perform well in highly
structured environments like factories where every object target for manipulation is al-
ways in the same predefined position, and a fixed sequence of motion commands is to be
executed. However, if somebody changes the positions of the targets the robots cannot
adapt as robustly as humans do. In order for robots to become really efficient help in
unstructured environments, there need to be improvements in the way the robots com-
prehend their environment and manipulate the objects in it. The fields of robot motion
planning and control deals with generating motion commands that can be executed by
robots. This thesis will propose methods that improve on the standard motion algo-
rithms using ideas from the field of Machine learning.

Many of the planning and control algorithms have strong priors about the robot mo-
tions to be generated, which are chosen by a human designer beforehand. If one is
creating a motion for a new task for the first time from “scratch” this is an appropri-
ate approach. However, one can learn much better priors from data. We will replace
some of the default choices used for motion generation (default straight initialization or
controllers in a fixed task space) with data driven modules that can lead to better perfor-
mance and discover the structure of the tasks that often needs to be guessed by a human
designer. We reason that the ability to reflect upon the motion experience of oneself or
the others is an invaluable tool to draw conclusions about the future. This is valid for
motor imagery, representations and perception of the world.

Motor cognition is mental processing in which the motor system draws on
stored information to plan and produce our own actions, as well as to antici-
pate, predict, and interpret the actions of others. Smith and Kosslyn 2007

We take this view of motor cognition as inspiration for our work and will show through-
out this thesis concrete ways in which to use such reflection upon gathered motion tra-

1

2 1.1 SPEEDING-UP PLANNING

jectory data to reason about the future and generate motions utilizing this experience.

We assume to have access to example trajectories, usually the output from some other
motion generation algorithm or recorded from a human demonstration. We also assume
that we can represent the motions and situations using some motion features. Usually
rich information is available from the robot kinematics and (optionally) additional ex-
ternal sensors for localizing objects in the workspace. Using our methods, we will find
better representations expressing the essence of tasks at hand, and improve on the basic
(without data and machine learning) versions of popular motion generation methods.
The information box below summarizes our main contributions.

Our contributions are:

e formulations of robot motion generation problems as novel machine
learning problems making use of robot experience
"qather data, define models and training criteria to learn from this information”

e sparse representations of motions and situations are learned
“the most efficient motion features are found from experience”

e the structure of motions and situations is extracted, analyzed and visual-
ized using novel techniques for understanding motion trajectories
"data analysis to understand the interactions between robot and workspace”

e novel planning and control algorithms
“use the learned representations in robot applications”

1.1 Speeding-up Planning

Motion planning is a fundamental issue in articulated robotics. Chapter 3 of this thesis
will describe a method that can speed up motion planning by improving the initializa-
tion used in stochastic optimal control planners. This is a sensitive aspect of such local
planners: they can fall in multiple local optima and a good solution is not guaranteed.
Using the structure of encountered environments can provide hints about movements
that are likely to be good in a given world configuration.

The animal and human ability to generate trajectories quickly is amazing. In typical
every-day situations humans do not seem to require time for motion planning but exe-
cute complex trajectories instantly. This suggests that there exists a “reactive trajectory
policy” which maps “the situation” (or at least motion relevant features of the situation)
to the whole trajectory.!

Consider the following example in Figure 1.1: a scenario with a few obstacles and
a target (indicated by a red ball). A naive motion prior will initialize the planner with

!This is not to be confused with a reactive controller which maps the current sensor state to the current
control signal — such a (temporally local) reactive controller could not explain trajectories which efficiently
circumvent obstacles in an anticipatory way, as humans naturally do in complex situations.

1 INTRODUCTION 3

Figure 1.1: A task for motion planning: calculate a trajectory to the target avoiding the obstacles.
An intelligent initial plan can speed the whole process significantly.

L 3 L]
» I Z ol

Figure 1.2: Biologically inspired motion primitives: stimulating a frog leads to a hind leg move-
ment with specific attractor, which is a type of motion trajectory. Image taken from (Mussa-Ivaldi
and Bizzi, 2000)

a straight-line trajectory going to the target, which can be bad for convergence because
of the obstacle collisions. An agent with experience of reaching around obstacles and
with an appropriate situation representation can reason about the workspace and which
areas are blocked and which are free, and quickly generate as a first motion hypothesis
a trajectory avoiding the obstacles in the free region of space. This has some interesting
analogies with research in the area of motor neural control (Mussa-Ivaldi and Bizzi 2000)
and human hand motion analysis (Sanger 2000). There is evidence that animals have de-
veloped motor primitives, sequences of motion that are executed as whole chunks. If
a frog is stimulated electrically, its leg will follow a motion trajectory to a target in the
workspace, see Figure 1.2. Different electrical stimulations lead to motions to different
targets, and each of these trajectories can be viewed as motor primitives present in the
frog and activated by stimulation. These primitives can be combined with each other, re-
sulting in more complex behaviors. Using such motor primitives is popular in imitation
learning (Schaal et al. 2003; Ilg et al. 2004) as a representation that allows to model and
synthesize motion from examples.

4 1.1 SPEEDING-UP PLANNING

Our approach would also use stored trajectories (similar to primitives) and will learn
when to call the appropriate primitive in order to improve planning costs. Such a map-
ping (if optimal) is utterly complex: the output is not a single current control signal but
a whole trajectory which, traditionally, would be the outcome of a computationally ex-
pensive trajectory optimization process accounting for collision avoidance, smoothness
and other criteria. The input is the current situation, in particular the position of relevant
objects, for which it is unclear which representation and coordinate systems to use as a
descriptor. We coin this problem Trajectory Prediction (TP) and its goal is to learn such an
(approximate) mapping from data of previously optimized trajectories in old situations
to good trajectories in new situations. We will present TP in Chapter 3 in detail. We
proceed with a brief overview of relevant motion planning and learning methods.

1.1.1 Related Motion and Trajectory Generation Methods
Local Planning Methods

Movement generation, one of the most basic robotic tasks, is often viewed as an op-
timization problem that aims to minimize a cost function. There are many different
methods for local trajectory optimization which use the cost gradient information for
minimization. Popular approaches use spline-based representation and gradient descent
(Zhang and Knoll 1995), covariant gradient descent (Ratliff et al. 2009b), Differential Dy-
namic Programming (DDP) described by (Dyer and McReynolds, 1970; Atkeson, 1993),
a variant of DDP called iterated Linear Quadratic Gaussian (iLQG) from (Todorov and
Li, 2005), and Bayesian inference (Toussaint 2009). Such methods are usually fast and
can obtain movements of good quality, suitable for control of complex hardware robots
with many DoF. However, these local methods can get stuck in local optima. TP aims to
predict directly good trajectories such that local planners only need to refine them.

Rapidly-exploring Random Trees (RRT) and Other Sampling Methods

Another approach for finding good movement trajectories is sampling to find obstacle
free paths in the configuration and work space of the robot, i.e. finding an appropriate
initialization of the movement plan. Popular methods for planning feasible paths with-
out collisions are RRTs (LaValle, 2006) and probabilistic road maps (Kavraki et al., 1995),
where random sampling is used to build networks of feasible configuration nodes. These
methods are powerful and can find difficult solutions for motion puzzles, but also have
the disadvantage to be too slow for high-dimensional manipulation problems. Building
an RRT takes some time, and a path to the target in such a network often requires addi-
tional optimization to derive an optimal robot trajectory. TP works also in conjunction
with a motion planner for refinement of some initial motion. However, TP uses ma-
chine learning methods (classification) to predict a motion, which is much faster than
the sampling approach of RRTs.

1 INTRODUCTION 5

1.1.2 Previous Use of Machine Learning Techniques to Speed up Planning
Transfer in Reinforcement Learning

Concerning our problem of learning from previous optimization data, there exist multi-
ple branches of related work in the literature. In the context of Reinforcement Learning
the transfer problem has been addressed, where the value function (Konidaris and Barto
2006) or directly the policy (Peshkin and de Jong 2002) is transferred to a new Markov
Decision Process. (Konidaris and Barto, 2006) discussed the importance of representa-
tions for the successful transfer. Although the problem setting is similar, these methods
are different in that they do not consider a situation descriptor (or features of the “new”
MDP) as an input to a mapping which directly predicts the new policy or value function.

Robot Motion Databases

Related work with respect to exploiting databases of previous trajectories has been pro-
posed in the context of RRTs. (Branicky et al., 2008) constructed a compact database of
collision free paths that can be reused in future situations to speed up planning under
the assumption that some of the previous paths will not be blocked by future obstacles
and can be reused for fast planning. (Martin et al., 2007) attempted to bias RRTs such
that after planning in a set of initial environments, the obstacles can be rearranged and
previous knowledge will be used for faster replanning in the new scene; an environment
prior, that visits with higher probability states visited in previous trials, is used to speed
up planning and use less tree nodes to achieve the final goal. In both cases, the notion
of our situation descriptor and the direct mapping to an appropriate new trajectory is
missing.

Another interesting way to exploit a database of previous motions is to learn a “ca-
pability map”, i.e., a representation of a robot’s workspace that can be reached easily, see
(Zacharias et al., 2007). While this allows to decide whether a certain task position can
be reached quickly, it does not encode a prediction of a trajectory in our sense.

(Stolle and Atkeson, 2007) predict robot locomotion movements for navigation in
new situations using databases of state-action pairs to make small steps ahead. In a
sense, such use of a database presents action primitives extracted from data similar to
TP. However, unlike TP, (Stolle and Atkeson, 2007) adapt their algorithm specifically to
the locomotion navigation domain by combining local step planning with global graph-
based search, and does not learn data-driven situation feature representations.

The field of imitation learning (Argall et al. 2009) encompasses many approaches
using demonstrated motions to learn behaviors: policies that map from situations to ac-
tions. The focus is usually to extract motions from human demonstration of different
tasks which can be later repeated “exactly” by robots, e.g. see (Calinon and Billard, 2005;
Shon et al., 2007) . The demonstrations, often complex gestures or manipulations, are to
be repeated accurately, possibly with some robustness to perturbation. However, gener-
alization to different environments and collision avoidance with obstacles there is rarely
considered in the imitation process. This is not surprising, since acquiring data in an

6 1.2 IMITATION LEARNING

interactive way is costly and limits the variation of situations and motions that can be
encountered. In Section 3.6 this comparison between TP and imitation learning will be
discussed in more detail.

TP approaches motion planning problems in a framework to improve the conver-
gence of local motion planners by predicting situation-appropriate motions. TP predicts
whole trajectories at once, not requiring additional global search routines. It seems rea-
sonable that good paths will go around obstacles, and TP can potentially provide a way
to start the motion planning task with a path avoiding collisions, similar to RRT. How-
ever, our prediction method will not be limited to obstacle avoidance only: TP will pre-
dict motion trajectories that improve the convergence of local planners and deal with all
aspects implicit in a low cost.

1.2 Imitation Learning

Imitation is a fundamental approach in the animal world. Creatures learn important
skills by observing and repeating the behavior of their parents. This has been exam-
ined in multiple species, including monkeys, rats and dolphins, see (Krutzen et al., 2005;
Voelkl and Huber, 2007). Many animals will copy behavior from other species out of
curiosity, see Figure 1.3 for a classic example of behavior “mimicry”(Ferrari et al. 2003;
Call and Carpenter 2002). There is also extensive neuroscience research about the mirror
neurons and their role in imitation behavior (Dinstein et al. 2008). It is assumed that
observing motion, predicting its intent on the basis of this observation, and imitating
motion are all basic skills required for evolutionary survival (Smith and Kosslyn 2007).

Imitation learning is an important tool for training robots in complex tasks (Argall
et al., 2009). Using machine learning techniques to find structure and learn policies
from demonstrations of desired behavior is often much more efficient than hand-crafting
robot motion controllers or specifying reward functions which to optimize. However, the
utility of the behaviors learned in this way is still limited by the implicit assumptions
made by the human designers. The question of “what to imitate”, i.e. which aspects of
the observed motions should be duplicated, is not answered in general.

Consider a robot student trying to learn the forehand swing by observing demon-
strations of a teacher (Figure 1.4). There is no obvious way to describe what is a good
forehand hit, so we cannot use some planning or optimization to make such a motion.
The teacher knows intuitively what is a good hit and can give rewards to the pupil when
he performs well or some negative rewards when he fails. However, it is tiring to repeat
this reward feedback routine for hundreds of times during a training session. It would
be much more practical to just demonstrate the hit a few times and then let the student
figure it out. Blindly mirroring the motion (mimicry) is not a good idea, because every
game the ball will be approaching the player with different speed and angle. It is also
not obvious in what representation should the repeating of the teacher’s motion be done.
Is the angle of the elbow the important aspect, or the angle of the wrist? Is it the relative
position of the racket tip with respect to the ball, or with respect to some other body part
of the player? The issue of “generalizing” the observation is far from trivial, and needs

1 INTRODUCTION 7

)

€
5N

Figure 1.3: The old saying "Monkey see Monkey do" is well illustrated by this monkey mirroring
the actions and gestures of a human demonstrator. Image taken from (Ferrari et al., 2003).

- ;

Figure 1.4: A task for imitation learning: acquire a skill (tennis forehand) by observing its exe-
cution by a proficient teacher. The image (courtesy of www . qj.net) shows a character from the
Virtua Tennis 3 computer game.

to be solved if learning by demonstration is to progress beyond simple automated tasks
where repetition suffices. A possible solution in this case would be to make a motion so
that there is contact with the ball at a certain time and at a location with certain geomet-
rical properties, e.g. displacement relative both to the ball, position of the player’s feet,
arm, hand, wrists, etc. However, such a ball contact location description is already not
trivial: there are a myriad of possible geometrical frames relative to any part of the body
we can think of, and it is not directly obvious which to take. It is up to a good student
of tennis to “extract” a proper representation, because the teacher will often not provide
such an explicit task description.

Extracting task spaces from data is particularly relevant in the context of articulated
robotics. In order to generate complex movements for a certain task, a controller typi-
cally minimizes costs in a special movement representation or with respect to multiple
task features simultaneously (e.g., collision avoidance, hand positioning, finger align-

www.qj.net

8 1.2 IMITATION LEARNING

ment, etc). Which features are suitable and how they are weighted depends on the task
at hand. The target of a good motion is typically not a specific configuration state, but
a whole task manifold. The challenge in imitation learning thus becomes to retrieve the
latent movement representation (which task features are used in the controller) rather
than to repeat a point-to-point movement. As an example consider a robot grasping an
object: from observing successful motions we should learn that some finger configura-
tions relative to the object surface result in good motions and use such representations
in the controller, rather than fix targets in the direct robot configuration space.

Task Space Retrieval Using Inverse Feedback Control (TRIC) addresses the above issues
by discovering from data a sparse discriminative value function using the most relevant
motion features and using them to generate motions. We mention briefly few of the
advantages of TRIC. First, it can handle example demonstrations in high dimensional
spaces and select the important features for movement. Second, it can generalize well
to situations and constraints unseen during demonstrations (e.g. grasping objects on
different positions and collision avoidance with new obstacles), because the learned cost
function defines a task manifold. We will present this method in detail in Chapter 5.

1.2.1 Related Work in Imitation Learning

Imitation learning via Direct policy learning (DPL) (Pomerleau, 1991) is a popular ap-
proach for learning from demonstration. In essence DPL takes demonstration data in
the form of motion trajectories and uses supervised learning to estimate a controller that
would reproduce the trajectories. This works well when the exact motion reproduction
is desired (gestures, point-to-point motions), but it can have difficulties to generalize and
modify the behaviors in new situations. Dynamic Movement Primitives (Schaal et al.,
2003) are an advanced method that learns parameters of a dynamic system which de-
fines the controller. However, it still requires to pre-specify a task space in which the
attractor operates.

Inverse Optimal Control (IOC) (Ratliff et al., 2006), also known as Inverse Planning
or Inverse Reinforcement Learning, takes demonstrations in some state space, and learns
a state cost function that gives rise to a policy consistent with this data. IOC provides a
general framework to retrieve latent objectives (rewards or costs) in observed behavior.
(Ratliff et al., 2009a) describes a combination of IOC and DPL.

1.2.2 Previous Work in Recovering Task Spaces

The question of what are suitable representations of a physical configuration, in partic-
ular suitable coordinate systems, has previously been considered in a number of works.
(Wagner et al., 2004) discussed the advantages of egocentric versus allocentric coordi-
nate systems for robot control, and (Hiraki et al., 1998) talked about such coordinates in
the context of robot and human learning. In the human motion experiments of (Berniker
and Kording, 2008) the space of joint angles @ is called intrinsic coordinate system, and
a relative position space is called extrinsic.

1 INTRODUCTION 9

(Muehlig et al., 2009; Billard et al., 2004) examine different task spaces for robot mo-
tions and select the best ones for reproducing different tasks. However, both examine
only a small pool of possible task spaces, whereas our method can find rich motion rep-
resentations from high dimensional task spaces.

Our approach TRIC jointly addresses the problems of finding relevant features of the
motion, learning the behavior to imitate, and retrieving a (latent in the demonstrations)
value function leading to such behavior. This is a different approach for motion feature
selection than looking at data variance in an unsupervised way (Jenkins and Matari¢,
2004; Calinon and Billard, 2007). For some applications such an approach can deliver
reasonable results, but often it delivers motion features unsuitable for control.

1.3 Outline and Contributions

The thesis follows an outline that gradually introduces the reader to the subject of motion
generation, starting from basic techniques and moving up to the advanced novel ML
algorithms that make the core of this work.

e Chapter 2: Robot Motion Background will present the basics required to model
kinematic robot motion generation problems, which will be necessary to under-
stand the subsequent chapters. We will explain the notions of configuration space,
workspace and task spaces, which are used to formalize motion generation. We
will explain what is meant by robot motion planning, and present briefly two ma-
jor classes of algorithms, local planners and sampling-based planners, used to cre-
ate robot motion plans. We will also introduce motion rate control (also known
as reactive control or Inverse Kinematics) and the basic equations behind it. We
will also define more formally learning from demonstration, and present DPL and
IRL, two basic approaches to the problem of repeating and generalizing motion
demonstrations.

o Chapter 3: Trajectory Prediction: Mapping Situations to Motions will present the
first novel algorithm of this thesis: TP, used to map workspace situations to motion
trajectories, which can be used to initialize and speed-up local planning methods.
We will gradually present the novel concepts involved in the TP algorithm, namely
situation representations, Task Space IK Transfer of trajectories between situations,
and machine learning methods to predict low-cost motions given situations. We
introduce novel techniques and representations for dealing with motion planning.
They lead both to faster planning algorithms and better analysis of the structure of
motions and situations. Contributions:

— We define the framework of TP, which is a novel way to use data-driven initializa-
tions for local planners

— We propose different situation descriptors - sensor and geometry based - appropri-
ate for different information contexts

1.3 OUTLINE AND CONTRIBUTIONS

— We present IK Task Space Transfer, a technique for adapting a motion from a
database to a new situation, and reason about the properties of task spaces that make
them useful for transfer.

— We propose two different predictive models for cost-sensitive classification of mo-
tions likely to improve local planner performance

— We discuss the novel design of the TP framework and why it is better suited than
imitation learning to improve local planning

— We give extensive results in simulation that show the utility of TP for making mo-
tion planning an order of magnitude faster, experiment with a variety of motion plan-
ning tasks, and illustrate the important sparse aspects of situations for planning
motion.

— We describe also a robot hardware experiment which showed successfully the ap-
plication of TP in a real scenario.

e Chapter 4: An Extension of Trajectory Prediction: Parallel Process Planning will
present an extension of TP that combines an online version of local planning al-
gorithms with multiple parallel processes each of which uses a different predic-
tion from TP. This proves to be of great practical utility for situations requiring
fast reaction to moving objects, for which usual planning algorithms are too slow.
Contributions:

— We describe an online planning algorithm building upon local planning algorithms
that can maintain multiple local online planners in parallel and select the best one
to control the robot.

— We utilize a predictive initialization module using TP to speed-up planning con-
vergence of each of the local planner threads.

e Chapter 5: Task Space Retrieval Using Inverse Optimal Control will introduce
a novel algorithm for learning from demonstration, that can use a set of teacher
demonstrations as data and learn a controller to imitate them, automatically select-
ing the features of motion that allow the best generalization of motion. Contributions:

— We define the novel algorithm of TRIC, combining ideas from inverse optimal con-
trol and discriminative learning, which can be used for efficient imitation and gen-
eralization of demonstrated motions.

— We define a novel training loss to learn a value function that is consistent with
the demonstrations

— The value function has generative, discriminative and sparse properties.
— We will discuss how TRIC compares to other imitation learning methods.

— We give qualitative and quantitative results showing the effect of different param-
eters on the performance of TRIC for motion rate control.

11

— We introduce rich geometrical motion features and use TRIC with regulariza-
tion to select the important features.

— We analyze the extracted sparse motion features and illustrate their effect on the
motion policy, giving an interpretation of the relevant latent motion aspects.

— We analyze the learned invariant representation of the task goal.

e Chapter 6: Conclusions will briefly summarize all methods and contributions of
this thesis, and then sketch an application scenario where our methods can be use-
ful for robot manipulation in a factory. We also consider future research directions
combining the approaches of TP and TRIC.

e Appendix A contains the proofs of multiple propositions introduced in the thesis.

1.3.1 Publication Summary

This thesis enhances our previously published work with deeper analysis and numer-
ous additional results. The TP method has been first described in (Jetchev and Toussaint,
2009) and then applied to a more realistic hardware and sensor scenario in (Jetchev and
Toussaint, 2010). The TRIC method has been originally described in (Jetchev and Tous-
saint, 2011a). In (Gienger et al., 2008) the question of task manifolds in conjunction with
planning is examined. Other relevant work is (Toussaint et al., 2010).

Publications

M. Gienger, M. Toussaint, N. Jetchev, A. Bendig, and C. Goerick. Optimization of fluent
approach and grasp motions. In 8th IEEE-RAS International Conference on Humanoid
Robots, 2008.

N. Jetchev and M. Toussaint. Trajectory prediction: Learning to map situations to robot
trajectories. In 26th Int. Conf. on Machine Learning (ICML), pages 449-456, 2009.

N. Jetchev and M. Toussaint. Trajectory prediction in cluttered voxel environments. In
Int. Conf. on Robotics and Automation (ICRA), pages 2523-2528, 2010.

N. Jetchev and M. Toussaint. Task space retrieval using inverse feedback control. In 28th
Int. Conf. on Machine Learning (ICML), pages 449—-456, 2011.

M. Toussaint, N. Plath, T. Lang, and N. Jetchev. Integrated motor control, planning,
grasping and high-level reasoning in a blocks world using probabilistic inference. In
ICRA, pages 385-391, 2010.

Submissions

N. Jetchev and M. Toussaint. Fast motion planning from experience: Trajectory predic-
tion for speeding up movement generation, 2011. Submitted.

12

Chapter 2

Background: Motion Generation and
Learning

2.1 Kinematics of Articulated Robot Motion

A robot consists of a set of joint axes connecting rigid body links, see Figures 2.1(a) and
2.1(b). We denote by ¢ = {q1,42,...¢qn} € R" the vector of the robot joint angles. This
is also known as the robot configuration space, and changing the values of these angles
leads to the robot moving. A kinematic map ¢ would use the robot geometry (fixed and
unchanging) and the current joint angles ¢ (variable) to find the value of the position of
some robot endeffector ¢ : ¢ — y € RY. The matrix of partial derivatives of a kinematic

map is called the Jacobian matrix J = gj € R>". If d = 1 we will call 7 the gradient
instead of the Jacobian. The interpretation of the Jacobian is that it indicates how much
the joint angles should change in order to change the value of this kinematic map.

Both the kinematic map and its Jacobian can be calculated by simple geometrical
operations chaining rotations and translations along the robot joints and links. We skip
all further details about this, and throughout this thesis we assume that we have some
module (simulator) that can calculate these kinematic maps whenever we need them. We
refer the reader to Craig (1989); Siciliano and Khatib (2008); Toussaint (2011) for further

details on how kinematic maps can be calculated using the robot geometry.

2.1.1 Motion Features and Task Spaces

Motion features will be used as a general term describing any information we can get from
the simulator. These include kinematic maps of the robot, but also any other information
that is available in a world filled with objects. Such information can come from external
sensors (3D cameras, lasers) and would typically localize external objects, not part of the
body of our robot. Such external features can not be controlled by the robot joint angles,
but provide useful context information for certain workspaces and tasks. For example,
if a robot needs to hit a ball (external object), the information of the ball motion would

13

14 2.2 MOTION MODELS FOR FORWARD CONTROL - INVERSE KINEMATICS

(a) The joints as they look on (b) A simplified scheme of 3
real Schunk LWA3 hardware different joints, their frames
with 7 arm joints connecting and 4 body links. Image taken
the arm links. from Toussaint (2011)

Figure 2.1: Articulated robot scheme: connected joints and rigid body links.

be a useful motion feature. The robot can not directly influence the motion of the ball,
but it is still important for the calculation of the robot’s own motion in order to hit the
ball.

We will use the word task space specifically for a motion feature describing the motion
of the robot itself. Task spaces can be controlled by changing the robot joint angles, as
determined by the robot kinematics and appropriate kinematic maps. Here we give
some basic examples of task spaces we can use if we know the robot kinematics and
joint angles:

e The position (z, y, z coordinates) of body i in the world frame is p;(q) € R>.
e The relative position of body i in the frame of body j is p; j(¢) € R3.
e We can calculate from each position a new feature - its norm d; ; = ||p; ;|-

¢ Analogously to d; j, one can use mathematical transformations of some task space
to define a new task space. It is also straightforward to calculate a Jacobian matrix
for such a derived task space.

e The collision costs are defined as some function of the closest distance between
rigid bodies, usually the robot body and some obstacle in the environment.

o The joint “comfort” variable would penalize the joint angles if they go away from
some predefined values.

2.2 Motion Models for Forward Control - Inverse Kinematics

In the previous section we gave examples of the various task spaces that can be used
in an articulated robot system. Suppose we have multiple criteria of desired robot po-
sitions in different task spaces, coded in an objective function that is minimal when the
robot fulfills them. Inverse Kinematics (IK), one of the most fundamental robotic meth-
ods for control, can be used to calculate motion satisfying these task space criteria. This

2 BACKGROUND: MOTION GENERATION AND LEARNING 15

algorithm is essential for the understanding of the novel methods we will present later

in this thesis, so we will write down here a variation of IK taken from Toussaint (2011),

using notation similar to Craig (1989); Siciliano and Khatib (2008).

e First, ||2]|?> = 27 is the standard squared euclidean vector norm of 2 € R¥, or Ly
norm. We can also define a metric parametrized by a precision matrix C' € R¥*¥
and we write ||z[|% = 27 Cx.

e For each task space for i = 1...M we have:
- Kinematic mapping y; = ¢;(q) € R%
—Jacobian J; measured at ¢; such that using linearization dy; = J;dq. 1
— Current value y; + = ¢;(qt).
— Desired value y;.
— Metrics in task space expressed via a matrix C; € R%*% |
— The metric in joint space W € R™ " for joint space movements.>

e Each criteria contributes a term to the objective function

Clg, @) = lla—aliy
+ |61 (q) — yillE,
+ “ e

+ [lpar(a) — yillZ,,

e The optimum of this quadratic expression is the IK equation:

i —a+ [ITCT+ W] [Tt -] 1)
=1 i=1

The cost C(g, ¢:) is small when the robot makes steps close to its current joint posi-
tions (because of the term ||q — ¢||%,) and simultaneously fulfills all task space criteria.
IK allows us to control in all these multiple task spaces simultaneously, and we can think
of the control method as a puppeteer pulling different strings on a puppet, each string
representing some task and the strength of the pull the task importance.

If one makes iteratively steps using IK at some fixed time resolution 7 one is effec-
tively controlling the endeffector velocity y = 57?’. Generating a sequence of steps {q;}
starting from ¢y with IK would be called motion rate control:

g1 = argmin C(q, ¢, 22)
q

16y refers to a change in task space value, and dq to a change in joint space.
To simplify notation we omit the joint metric W later in this thesis.

16 2.3 MOTION MODELS FOR PLANNING

Potential Based Control

Another classical control model is potential based control, where the robot is attracted
or repelled by different potentials. This can be thought as an instance of Motion Rate
Control with specific choices of task variables, e.g. a task term to go near a target and at
task term to go away from any obstacle.

2.3 Motion Models for Planning

In this section we will introduce motion planning and present various algorithms used
in robotics.

2.3.1 Robot Motion Planning: a Basic Model

For many robot tasks it is essential to plan not only a step towards the goal, but a whole
trajectory, i.e. a motion plan with start and endpoint in time. Motion planning means
generating motion with multiple steps over some time horizon in order to solve some
task (LaValle 2006). Let us describe the robot configuration at time ¢ as ¢; € R”, the joint
posture vector. We define ¢ = (qo, .., ¢r) as a movement trajectory with time horizon
of T steps. In a given situation z, i.e., for a given initial posture ¢y and the positions of
obstacle and target objects in this problem instance a typical motion planning problem is
to compute a trajectory which fulfills different criteria, e.g. an energy efficient movement
not colliding with obstacles. We formulate this as an optimization problem by defining
a cost function

T
C(z,q) = th(Qt) + hi(qt, ge—1) - (2.3)
t=1

that characterizes the quality of the joint trajectory in the given situation and task con-
straints. We will specify such cost functions explicitly in our experiments section. Gen-
erally, g will account for task targets and collision avoidance, and % for control costs,
similar to the terms involved in IK. A trajectory optimization algorithm (like the ones
we mentioned in Section 1.1.1) essentially tries to map a situation z to a trajectory q
which is optimal,

x — ¢* = argmin C(z,q) . (2.4)
q

For this we assume to have access to C(x, g) and local (linear or quadratic) approxima-
tions of C(z, q) as provided by a simulator, i.e., we can numerically evaluate C(z, q) for
given z and g but we have no analytic model. To arrive at the optimal trajectory g* (or
one with a very low cost '), most local optimizers start from an initial trajectory g and
then improve it, using the partial derivatives (and Hessian matrix) of each cost term with
respect to the joint states. We call O the local optimization operator and write ¢* = O0,(q)
when we optimize in a specific situation .

2 BACKGROUND: MOTION GENERATION AND LEARNING 17

Optimizing the trajectory cost C'is a challenging high-dimensional nonlinear prob-
lem. Using a direct approach and making gradient descent in joint space is one option to
approach it. Optimization and control methods designed specifically to optimize motion
trajectories like iLQG (Todorov and Li 2005) and AICO (Toussaint 2009) seem to work
better (in terms of convergence speed and robustness), and we will be using these in
our experiments. However, many of the movement optimization methods are sensitive
to initial conditions and their performance depends crucially on it. For example, initial
paths going straight through multiple obstacles are quite difficult to improve on, since
the collision gradients provide confusing information and try to jump out of collision in
different conflicting directions. The next section will present a different class of planning
methods that specifically focus on finding collision free paths.

2.3.2 Sampling Based Planning

The local optimization methods we mentioned in the previous section differ qualita-
tively from path planners using randomized search: finding obstacle free paths in the
configuration and work space of the robot via random sampling. Examples are Rapidly-
exploring Random Trees (RRT) LaValle (2006) and probabilistic road maps Kavraki et al.
(1995). The main idea of this class of methods is to use random sampling to build net-
works of feasible configuration nodes. These methods aim at global feasibility and are
well suited to solve complex motion puzzles in cluttered scenes, which could not be
tackled using only local optimizers.

Here we present a possible implementation of the RRT algorithm (as defined in Tou-
ssaint 2011): the robot starts in gstart and should go to gga1- It assumes that some routine
(a local planner or IK) is available to calculate whether each edge {(¢near; gnew)} can be
actually followed by the robot in a collision free way:.

Algorithm 1 Rapidly-exploring Random Trees Algorithm

Require: gstart, ggoal, number n of nodes, stepsize «, /3
Ensure: tree 7' = (V, E)
1: initialize V' = {gstart}, £ = 0
2: fori=0:ndo
3: if rand(0, 1) < 3 then gtarget < Ggoal
: else giarget < random sample from @
(near < Nearest neighbor of garget in V

if Gnew € Qfree then V < VU {Qnew}/ E«+~ FU {(Qneara Qnew)}

4
5
6: Gnew ¢ Gnear T+ m(@harget - QHear)
7:
8: end for

Once a feasible path to the target is found (path from root to leaf in the tree) it is
often jagged because of the random sampling, see Figure 2.2. RRT paths require addi-
tional optimization by a local planner to get a (dynamically) good trajectory that can be
executed on a robot with additional motion optimality constraints coded in some cost

18 2.3 MOTION MODELS FOR PLANNING

Qtarget

\ 7

~\\§ e,

Y

@
Gstart Gstart

(a) After n = 100 samples. (b) After n = 400 samples.

»

Figure 2.2: A scheme of an RRT planner in 2D configuration space: starting from gsa;¢ the planner
builds a feasible path towards the goal giarger. Image taken from Toussaint (2011).

function. Thus, sampling based planning in conjunction with local planning is a power-
ful method, but at a disadvantage because of the long time to process information before
any motion is generated.

2.3.3 On Planning and Control

In Figure 2.3 we illustrate graphically IK control, local planners (trajectory optimization)
and RRT planners. A fundamental difference between reactive control (e.g. IK) and
planning in general is that reactive control starts moving immediately, while planning
requires some time to prepare a plan as output. This reactive and immediate aspect can
be useful for quickly generating simple motions, but has the drawback that the motions
are more prone to failure. Planners, on the other side, can construct motions of much
better quality and reason about the future steps of the robot and their effects, e.g. an-
ticipating whether a movement leads to a dead-end. The local planners create smooth
motions that have multiple desired properties, but because their optimization can have
local nature it can also get stuck occasionally, e.g. if the obstacles have very complex
geometry. RRTs have more global character and can (provably) reach any solution given
enough time, but their motions are not smooth at all. However, there is the trade-off

pathyfinding

feedback control
start goal

I

Figure 2.3: A scheme of 3 basic planning and control methods (IK control, local planning and
RRT). Image taken from Toussaint (2011).

2 BACKGROUND: MOTION GENERATION AND LEARNING 19

that planners need some time to plan before outputting any motion. For time-critical
applications requiring immediate reaction this can be a drawback.

Note that all planning and control algorithms we presented here make no use of
experience so far. Our novel algorithms TP and TRIC will alleviate some of these issues:
smart prediction can shorten the planning time of a planner, and well constructed task
space can make a reactive controller more efficient globally.

2.4 Machine Learning and Imitation Learning Methods

Here we present an overview of methods for motion generation based on observing
and repeating sample motion trajectories. Unlike the planning and control methods we
presented so far, imitation learning methods make no assumption that a cost function
specifying desired motions exists. Rather, the challenge is to learn approximate models
(e.g. with machine learning) of this cost using the available data that can be used to
generate motion.

2.4.1 Direct Policy Learning

Direct Policy Learning (DPL) is one of the fundamental approaches for imitation learn-
ing, see Pomerleau (1991); Argall et al. (2009). Sometimes it is also called “behavior
cloning”, because it is a straightforward approach that tries to repeat observed motions.

A standard way to describe a robot trajectory is {z,u:};_,, where x; represents the
robot state at time ¢ and u; is the control signal, e.g. the rate of change 2;. DPL tries to
find a policy 7 : x; — u; from these observations. Different assumptions can be made
for the choice of x,u and 7 (Calinon and Billard 2007), with refinements like data trans-
formations and active learning. Given a parameterization of the policy, DPL essentially
corresponds to a regression problem, e.g. with loss:

Eapl = ZHW (2) — ug)? 2.5)

where ||.||* denotes the squared Ly norm. Minimizing Eqp finds a policy close in the
least squares sense to the demonstrations. The above loss can be extended to multiple
demonstration trajectories by averaging over them.

Howard et al. (2009) introduces an interesting alternative loss for DPL:

T
= (luell = w (@) "ue/ fue])? (2.6)
=0

This loss penalizes the discrepancy between the projection of the policy m(x¢) on u; and
the true control u;. Howard et al. (2009) show that in some problem domains this loss
leads to better behavior than the standard least squares loss.

20 2.4 MACHINE LEARNING AND IMITATION LEARNING METHODS

When the state and control spaces are high dimensional DPL has a disadvantage:
generalization is an issue and would essentially require the data to cover all possible
situations. The approach we develop in Chapter 5 will aim to improve generalization by
extracting the relevant task features from data and by finding an underlying structure of
multiple demonstrated trajectories.

2.4.2 Markov Decision Process and Reinforcement Learning

A Markov Decision Process (MDP) is a graphical model involving world states s (e.g.
robot position) and actions a (e.g. go left). It is a popular formalism for multiple learning
problems, including Reinforcement Learning (RL), see e.g. Russell and Norvig (2009).
The MDP is defined by the following probabilities, taken for reference from Toussaint
(2011):

e world’s initial state distribution P(sg)

e world’s transition probabilities P(s1 | at, s¢)

e world’s reward probabilities P(r¢ | at, s¢) and R(a, s) := E {r|a, s}
e agent’s policy m(at | s¢) = P(ao|so;)

The value (expected discounted return) of policy m when started in state s with dis-
counting factor v € [0, 1] is defined as:

V™(s) = Ex {ro+yr1 + 2+ -+ | so=s} (2.7)

One way to do reinforcement learning in a MDP is to iterate the Bellman optimality
equation until convergence of the value function - Value Iteration algorithm (Bellman
1957):

V*(s) = { a, s +’yZP "la,s) V (’)}

The optimal policy given the optimal value function is simply the policy maximizing the
immediate reward and expected future rewards:

W*(s):argg\ax[a, s —l—’yZP "la,s) V*(s)}

The value of a state V'(s) is a more global indicator of desired states than the imme-
diate reward of an action R(a, s). The values V(s) provide a gradient towards desired
states - going in direction of increasing V'(s) is the desired behavior of the robot system.

In Chapter 5 we will learn value functions in order to get effective motion policies.

*Usually in RL one has rewards that are desired to be large, while in robotics people uses costs
which are desired to be low. The algorithms remain equivalent up to a change of sign and maximiza-
tion/minimization.

2 BACKGROUND: MOTION GENERATION AND LEARNING 21

2.4.3 Inverse Optimal Control

RL or planning in general (e.g. within a MDP framework) tries to generate motions max-
imizing some reward. Learning (e.g. with Value Iteration) requires constant feedback in
the form of rewards for the states and action of the agent. However, in many tasks the
reward is not analytically defined and there is no way to access it from the environment
accurately. It is then up to the human expert to design a reward leading the robot to the
desired behavior. There is an algorithm that can effectively learn the desired behavior
and a policy for it just by observing example motions. Inverse Optimal Control (I0C),
also known as Inverse Reinforcement Learning (IRL), aims to limit the reward feedback
requirement and human expertise required to design behavior for a task. IOC learns a
proper reward function only on the basis of data, see Ratliff et al. (2006). Let’s assume
that policies 7 give rise to expected feature counts ;(7) of feature vectors ¢: i.e. what
feature we will see if this policy is executed. A weight vector w such that the behav-
ior demonstrated by the expert 7* has higher expected reward (negative costs) than any
other policy is learned by the minimizing a loss:

min |w |2 (2.8)
s.t. Vo wlp(n*) > wlp(r) + L(x*,7) (2.9)

The term w’ u(7) defines an expected reward, linear in the features. The scalable margin
L penalizes those policies that deviate more from the optimal behavior of 7*. The above
loss can be minimized with a max margin formulation. Efficient methods are required to
find the 7 that violates the constraints the most and add it as new constraint. Once the
reward model is learned, another module is required to generate motions maximizing
the reward, e.g. Ratliff et al. (2006) uses an A* planner to find a path to a target with
minimal costs.*

Learning a policy based on estimated costs is much more flexible than DPL, and a
simple cost function can lead to complex optimal policies. IOC can often generalize well
to new situations, because states with low costs create a task manifold, a whole space
of desired robot positions good for the task. In some domains it is much easier to learn
a mapping from state to cost than to learn a mapping from state to action. The latter
is a more complex and higher dimensional problem, especially when considering ac-
tions in high dimensional continuous spaces such as robot control. In Chapter 5 we will
present our method TRIC which is inspired by IOC, in that it assumes that the teacher
was optimal with respect to some latent criteria, which can be then recovered from mo-
tion demonstration data.

2.4.4 Discriminative Learning

Discriminative learning provides a common framework for many learning problems,
including structured output regression. Popular approaches include large margin mod-
els (Tsochantaridis et al. 2005) and energy based models using neural networks (LeCun

A is related to the Dijkstra graph shortest paths algorithm.

22 2.4 MACHINE LEARNING AND IMITATION LEARNING METHODS

et al. 2006). Data is given in the form of pairs of input and output values {z;,y;}. Asin
standard discriminative approaches (e.g., structured output learning), the energy or cost
f(zi,yi; w) provides a discriminative function such that the true output should get the
lowest energy from the model f:

yi = argmin f(z;,y) (2.10)
yey

Training the parameter vector w of the model f is done by minimizing a loss over the
dataset. The loss should have the property that f is penalized whenever the true answer
y; has higher energy than the false answer with lowest energy which is at least distance
r away:
gi= argmin f(z;,y) (2.11)
yeV:lly—yil>r

Finding the most offending answer ; is very often a complicated inference problem in
itself.

Instead of the common hinge loss Lyinge (i, i) = max(0, m + f(xi, y;) — f(xi, 7:)) we
will be using the log loss:

Liog (s, yi) = log(1 + ef (Frwi) =/ (i) (2.12)

which is a soft form of Lj;,ge with infinite margin (LeCun et al. 2006).

In Chapter 5 our method TRIC will use some ideas from discriminative learning for
the purpose of learning a value function with certain discriminative properties from
motion demonstrations .

Chapter 3

Trajectory Prediction: Mapping
Situations to Motions

The first approach for learning representations which we present in this thesis is Trajec-
tory Prediction (TP). The insight of this method is to learn a mapping from a descriptor of
the situation to a whole motion trajectory in a task-appropriate way, resulting in a novel
approach to speeding-up motion planning and analysis of the structure of situations.

3.1 Overview of TP

Trajectory planning and optimization is a fundamental problem in articulated robotics.
Algorithms used typically for this problem compute optimal trajectories from scratch in
a new situation, without exploiting similarity to previous problems. In effect, extensive
data is accumulated containing situations together with the respective optimized trajec-
tories — but this data is in practice hardly exploited. This chapter of the thesis describes
a novel method to learn from such data and speed up motion generation, Trajectory Pre-
diction, first described in our previous works Jetchev and Toussaint (2009, 2010).

The main idea is to use demonstrated optimal motion trajectories to predict appropri-
ate trajectories for novel situations. These can be used to initialize and thereby drastically
speed-up subsequent optimization of robotic movements and improve the convergence
behavior of a conventional motion optimizer. Our approach has two essential compo-
nents. First, to generalize from previous situations to new ones we need an appropriate
situation descriptor — we construct features for such descriptors and use a sparse regular-
ized feature selection approach to find well-generalizing features of situations. Second,
the transfer of previously optimized trajectories to a new situation should not be made
in joint angle space — we propose a more efficient task space transfer of old trajectories
to new situations.

We present extensive results in simulation to illustrate the benefits of the new method,
and demonstrate it also with real robot hardware. Our experiments with a reaching and
obstacle avoidance task, and an object grasping task, show that we can predict good

23

24 3.1 OVERVIEW OF TP

rajecto
Output

Default
‘Initialization}-[planner]-

Predicted rajectory
{Initialization]-[planner }‘

Figure 3.1: A diagram illustrating TP: we gather trajectory data from multiple runs of the mo-
tion planners; this data can then be used to predict a smarter initialization speeding-up planner
performance in a novel situation.

motion trajectories in new situations for which the refinement is much faster than an
optimization from scratch.

The main contributions of this thesis in the area of trajectory prediction can be sum-
marized as follows:

e the TP method for speeding up planning by learning a predictive model for cost-
sensitive classification of motion trajectories likely to be good planner initializa-
tions depending on the situation

o the definition and refinement of representations that allow accurate mapping of
situation to movement

e the notion of IK Transfer in task space, allowing robust generalization of the pre-
dicted movements between different situations

e quantitative results in three different motion planning tasks showing how TP can
speed up motion planning

In Section 3.2 we will give an overview of TP and how it is coupled with motion
planning. Afterwards we will proceed with Section 3.3 where we examine what repre-
sentations of states allow efficient generalization of movements between situations. In
Section 3.4 we will present the Inverse Kinematics (IK) Transfer operator we use, and
discuss what task space representations are appropriate for such transfer. The way we
learn a policy used for predicting situation-appropriate trajectories will be explained in
Section 3.5. Further discussion in Section 3.6 will elaborate connections between TP and
imitation learning, and discuss what motivated taking a different approach for our novel
TP framework. Afterwards, in the experimental Section 3.7 we will show our results for
several simulated robot motion planning scenarios. We finish the chapter with our con-
clusions in Section 3.8.

3 TRAJECTORY PREDICTION: MAPPING SITUATIONS TO MOTIONS 25

3.2 Planning Motion and Predicting Motion

We assume that the desired behavior of the robot is to generate a motion trajectory good
for some specified task. As mentioned in the background section 2.3.1, such a desired
trajectory can be calculated by a planner module minimizing a cost function. One can
think of the behavior of such a planner (and some heuristic for initialization) as a policy
mapping a situation x to a joint trajectory g. We propose to use experience in the form of
demonstrated optimal trajectories in different situations as initialization for local plan-
ners, resulting in a better movement policy. This main idea behind TP is illustrated in
the diagram in Figure 3.1. Below we give a summary of the assumptions and premises
that need to hold in order to use TP:

Premises for the TP framework:
e a cost function that characterizes how good a trajectory is for a task
¢ a planning algorithm is available that can find low-cost trajectories

e the task is to be executed in different situations sampled from an under-
lying generating distribution
"the objects in the world, their count, size and positions, have a certain pattern”

e data consisting of situation descriptors and motions good for the task
"observe the robot motion and observe all information available from sensors of
the world”

Given these assumptions, TP can accomplish the following:

e use the gathered training data to predict motion trajectories in any new
test situation and use them as planner initialization
"improve planning in situations sampled from the underlying distribution”

e selection of sparse situation features

The above assumptions necessary for TP are reasonable for many robot tasks, where
we have a description of the task to be performed (a cost function usually) and expect
to repeat this task in a structured environment. It is also reasonable to have some plan-
ner for such tasks, and it is always an advantage to speed-up motion generation. The
assumption that the training situations have similar optimal trajectories as the test tra-
jectories is related to the classical stationarity assumption in learning theory, see Russell
and Norvig (2009). This is the assumption that examples of input-output pairs seen in
the past have the same distribution as the input-output pairs encountered in the future,
here situation-motion pairs.

This section will proceed by formalizing TP.

26 3.2 PLANNING MOTION AND PREDICTING MOTION

3.2.1 Trajectory Prediction: Overview of the Algorithm

In this section we first define the trajectory prediction problem in general terms and
outline how we break down the problem in three steps: (i) finding appropriate task
space descriptors, (ii) transfer of motion prototypes to new situations, and (iii) learning
a predictive model of which motion prototype is appropriate to be transferred to a new
situation.

The goal of TP is to learn an approximate model of the mapping (2.4), i.e. from
starting robot position to a final configuration, from a data set of previously optimized
trajectories. The dataset D comprises pairs of situations and optimized trajectories,

D = {(zi,q,)",}, q; ~argmin C(z;,q) . 3.1)
q

The full sequence involved in TP is the following;:
r =1 = Toas@; = OuToa; = 4" (32)

TP takes as input an appropriately represented situation descriptor z, see Section 3.3.
We then predict the index ¢ of a motion from D to be executed and transfer it with the
operator 7 from situation z; to x, described in Section 3.4. We can view the subsequence

fia = Toaq; (3.3)

as the policy mapping situation to motion, and will explain it in Section 3.5. Finally,
the above TP sequence ends with applying the planning operator O,, which takes an
input joint trajectory initialization and modifies it to minimize its cost, see section 2.3.1.
Prediction without any subsequent optimization would correspond to pure imitation,
and our method is not designed with such aim. TP is inherently coupled with a planner
that minimizes the cost function C, so the prediction policy is designed to speed-up such
a planner.

In this formulation of TP we are using directly the trajectories g for motion represe-
nation. An alternative can be to use some parametrized representations of the spatio-
temporal aspects of the motions, e.g. splines or compositions of movement primitives.
For example, Ilg et al. (2004) extract basic movement primitives from example trajecto-
ries, and use linear combinations of these basic primitives to efficiently represent mo-
tions of different styles.

As an aside, the TP problem setup generally reminds of structured output regres-
sion (Tsochantaridis et al. 2005, see also Section 2.4.4). However, in a structured output
scenario one learns a discriminative function C(z, q) for which argmin C(z, q) can ef-

q
ficiently be computed, e.g. by inference methods. Our problem is quite the opposite:
we assume argmin C(z, q) is very expensive to evaluate and thus learn from a data set

of previously ot;)timized solutions. A possibility to bring both problems together is to
devise approximate, efficiently computable structured models of trajectories and learn
the approximate mapping in a structured regression framework. But this is left to future
research.

In the next sections we will continue with detailed description of the elements of TP.

3 TRAJECTORY PREDICTION: MAPPING SITUATIONS TO MOTIONS 27

3.3 Situation Representations and Descriptor

A typical scenario for articulated motion generation is a workspace filled with objects
and a robot. A situation (or problem instance) is fully specified by the initial robot pos-
ture go and the positions of obstacles and targets in this problem instance. There are a
lot of possible features we can construct to capture relevant situation information. For
instance, positions of obstacles could be given relative to some coordinate system in the
frame of some other object in the scene. We should expect that our ability to generalize
to new situations crucially depends on the representations we use to describe situations.

We present two different approaches for modeling a descriptor z, appropriate for
different types of workspace situations.! This section will proceed by describing these
two models.

3.3.1 General Geometric Descriptor

Our first approach is to define a very high-dimensional and redundant situation de-
scriptor which includes distances and relative positions w.r.t. many different frames of
reference. Training the predictive function then includes selecting the relevant features.
Assume we have a set of b different 3D objects (i.e. landmarks) in the scene which might
be relevant for motion generation: A = {a; }?:1. Each a; has both a 3D position and a
rotational frame, usually from the body it is attached to. We create features by exam-
ining the geometric relations between pairs of such objects. For b such landmarks we
have b = b(b — 1) such pairs. Because of the number of pairs being quadratic in the
number of landmarks, this descriptor is appropriate in workspace situations where we
have a small fixed set of important rigid bodies interacting. A typical example would
be a workspace with an articulated robot with an endeffector and other body parts as
landmarks, and a single object with simple geometry as manipulation target, see Figure
3.2 for an illustration.

For each pair j = (ji1,j2) € {1,..., I;} we measure the 3D relative difference vector
between a;, and a;, in the frame of a;, as p; = (p;”, p?, pj) The norm of p; is another
useful feature we use: d; = ||pj||. We also define the azimuths of the three axes as
¥; = {arccos(pf /d;), arccos(pj /d;), arccos(p3 /d;)}.

We gather this basic geometric information in the 7 dimensional vector (p;, d;, ;).
The final descriptor comprises all these local pairwise vectors concatenated:

x = (p1,d1,¥1, ..., Py, dj, ;) € R™ (3.4)

Note that the set of landmarks is not permutation invariant with respect to the in-
dexing of landmarks {a; };’-:1. If we have several identical objects and landmarks on
them, the order of the landmarks in set A will influence the descriptor shape. Using
relational representations can be a potential way to deal with this issue. However, the

'Note that we use = as both the situation descriptor and the situation itself in the cost C(z, q). The reason
is that each cost C(z,) is calculated always for a specific situation « with certain positions of objects in the
world that also determine the information captured in the descriptor.

28 3.3 SITUATION REPRESENTATIONS AND DESCRIPTOR

a9 a4

f .
ai as Y

)
J5 a; X

Figure 3.2: The geometrical descriptor captures the distances between pairs of landmarks a;. A
simple illustration with a1, a2, a3 and a4 as landmarks on the robot, and a5 as a landmark on an
object in the situation. Each landmark has a position and rotational frame.

lack of permutation invariance is not problematic when having enough data and not too
many landmarks. More complex geometric relations between landmarks can be used for
descriptor features, but the choice of (3.4) turned out to be sufficient in our experiments.
Given such a descriptor we can use a feature selection technique to infer from the data
which of these dimensions are best for trajectory prediction in new situations. In the
experimental Section 3.7 we will show how extracting a sparse representation from this
redundant description provides an interesting explanation of the important factors in a
situation giving rise to different motions.

3.3.2 Voxel Descriptor

The approach to use the distances between landmark centers as features is appropri-
ate for situations with few obstacles with simple geometries, but it can have scaling
issues when more objects are present. The count of pairwise distance features increases
quadratically with respect to the number of objects and there is no permutation invari-
ance, so the descriptor from Section 3.3.1 can be impractical. Another drawback of the
first descriptor is that it needs to use objects of fixed sizes. If the training data containing
the coordinates of an obstacle and a target object of one size, than no generalization is
possible to objects of other sizes in a new situation. If the object sizes were added as
features in the descriptor there would be more generalization capabilities, but often in
practical robot applications one does not have accurate geometric models of the obstacles
encountered in the workspace.

We present an extension appropriate for cluttered scenes. It utilizes a descriptor
where obstacles are modeled from point clouds of 3D sensor data, which can handle
multiple objects of various sizes easily. We call this a sensor-driven approach to trajec-
tory prediction. Note that it is not required that the situation features be differentiable
functions or controllable by the robot, we are flexible to use any information available.
We assume that a sensor (LIDAR or stereovision) is available that provides information
in the form of a point cloud from detected objects, which can be used in a voxel repre-
sentation of a scene, see Elfes (1989); Nakhaei and Lamiraux (2008). This information
representing the obstacles is crucial for the correct task execution, an assumption appro-

3 TRAJECTORY PREDICTION: MAPPING SITUATIONS TO MOTIONS 29

priate for cluttered scenes and navigation. Given a set of laser cloud points P = {p;},
we construct a 3D grid system V' = {v;} of voxels. Each voxel is identified with its coor-
dinates and its occupancy probability p(v;) € [0, 1]. The procedure for calculating p(v) is
straightforward:

1. Loop through all available measurements p;
2. Loop through all voxels v;
3. If p; C vj set p(v;) = 0.1+ 0.9p(v;)

The idea is that for every measurement point within some voxel bounds the occupied
space probability of the voxel increases. Elfes (1989) and Nakhaei and Lamiraux (2008)
use sensor models with state distributions for free, unknown and occupied voxel space,
but we used only the occupied space probability model.

To better explain the voxel descriptor, we will describe how it will look concretely
in our experiments. We define two such voxel grids, 15 voxels across each dimension,
where each voxel is a cube with side 7cm. The first grid V! is centered at the center of the
workspace, the second V2 is centered on the target location. Each voxel grid V¢ can be
described as a vector of dimension 15% = 3375 containing the values of all its cells p(v;),
but such a high dimensionality is often impractical. We can compress a voxel grid to the
200 most significant dimensions using standard Principal Component Analysis (PCA),
Pearson (1901). We have the following grid descriptor in vector form:

V=vTpecR¥ (3.5)

where P € R3375%200 jg the projection matrix calculated by PCA and V is a mean-centered
voxel grid. By taking only the columns of P with highest variance one can get a variance
preserving compression of the voxel grids.

The final situation descriptor is

x={d,V,V?} e R4 (3.6)

The terms V' and V2 are the two PCA compressed descriptors of the two voxel grids V!
and V2, and d € R!3 contains additional scene information, the initial 7D robot arm joint
position, the 3D endeffector position and 3D target position.

Voxel PCA Components as Characteristic Terrain Features

The PCA components can be interpreted as responses to characteristic terrains of the
voxel grid. The projection coefficients are the eigenvectors P:, columns of the PCA
projection matrix P. Each entry Pj; of the vector P, corresponds to one voxel cell v;.
The value of the ith principal component (i.e. 51tuat10n feature after compression) is

Vi = >_; Pjivj. Feature V; is large when the occupied voxels correspond to positive Pj;
and the free space voxels have negative P;;.2 In Figure 3.3 we visualize 6 of the PCA

2PCA uses centered voxel data: free voxels are negative and occupied voxels are positive numbers.

30 3.4 TASK SPACE TRAJECTORY IK TRANSFER

Figure 3.3: The PCA eigenvectors as indicators of characteristic terrain. Volumetric plots of the 6
PCA eigenvectors P; with greatest eigenvalue. The red isosurface (P;; = p1) shows the bound-
aries of the occupied volume, and the green isosurface (P;; = p2) the free space. The constants
p1 > 0 > py are chosen for a visualization purpose: the red and green volumes have 20 percent
of the total voxel grid volume.

eigenvectors as a volume in 3D space using their correspondence to voxel cells. The
value of the shown principal components is high when the terrain fits the pattern of
free/occupied terrain indicated in the plots.

Such a PCA decomposition for voxel data is useful to discriminate between world
configurations and represent general notions like whether the left or right side of the
workspace is free. A lot of the detailed voxel information about the world is lost by
PCA, but prediction is more efficient with lower dimensional descriptors.

3.4 Task Space Trajectory IK Transfer

In this section we will describe the way in which we repeat and adapt a motion from
the database to a random new situation. This involves three steps. First, we need to
choose a representation for the output trajectory in some task space, i.e. motion features
“appropriate” for the task. Second, we need to project a joint space trajectory to this task
space. Finally, we need to transfer a task space trajectory back to a joint space trajectory
to be used as final output to the planner.

3 TRAJECTORY PREDICTION: MAPPING SITUATIONS TO MOTIONS 31

=4
[

o
- R TR

o

)

o
=

o
>N

[.

l "®
@

06

o ;
0.8 1 0 0.2 04 06 08 1

0 0.2 0.4

(a) Two motions in the world frame: (b) Two motions in a frame centered
space Y. on the target: space Yiarget-

]
0.8

— l/o

y
S

i

086

0.4

0.

0

0.2 0.4 0.6 0.8 1

(c) A new situation, where we at-
tempt to reuse the previous motions.
A motion from space Yiaget is best
suited to initialize a motion to the
target.

Figure 3.4: A simple illustration of how a special coordinate frame represented via task space
Yiarget can help with generalization. A 2D world where the robot starts in the blue point and
needs to reach the red point target. The target centered frame generalizes better than the world
frame with respect to translations.

3.4.1 Motion Representation: Output Trajectory Task Space

As we mentioned in section 3.2 we will predict motion trajectories and transfer them via
task space. Task space transfer has three concepts involved:

e representation of motion trajectories in a certain features, i.e. task space
e projection of joint space trajectories in the selected task space
e backprojection of task space trajectories in joint space

Note that unlike the situation descriptors we introduced in Section 3.3, the task space
should contain features that are controllable by the robot joints and have Jacobians. It
should also have much lower dimensionality, so that IK control in such a task space
is still reasonable. Our current approach to task space selection is to test empirically
task spaces that seem reasonable, and to select the space that allows the best planner
initialization. This is a similar approach to Muehlig et al. (2009); Billard et al. (2004).
Some obvious choices of task spaces are the joint angle space @ (a trivial space, mapped
by identity from the robot configuration space) and Y, the space of world coordinates

32 3.4 TASK SPACE TRAJECTORY IK TRANSFER

of robot hand endeffector (mapped by the hand kinematics). However, these have the
drawback of not generalizing well — a simple change in the world like translation of
the position of an object would make a movement prototype in such space which was
good in an old situation unfeasible for the changed situation. A reasonable choice of
task space can ensure at least some degree of generalizing ability in a new situation. For
example, we would also consider the task space Yiarget of coordinates starting in a world
frame centered on the target, and Y;,¢t, a world frame starting in the center of the largest
obstacle in the scenes we examined. Such a choice of task space can help to generalize to
translations in obstacle position (Berniker and Kording 2008). In Figure 3.4 we illustrate
how space Yiarget can help with generalization between situations and makes it more
likely that an trajectory from one situation can be reused in another one.

3.4.2 Formalization of the Transfer Operator

We continue by writing the exact equations for IK Transfer and the projection and back-
projection from task space involved in it.
The projection y of a trajectory g into task space is defined as:

Yy = ¢2(q) (3.7)

where ¢, is a kinematic mapping (depending on the situation z) applied to each time
slice, with a task space for output. Another way to say this is that ¢, projects motions
from joint space to a task space.

Suppose we want to transfer the joint motion ¢’ which was optimal for situation z’ to
anew situation z. A task space trajectory y = ¢,/ (q’) needs to be backprojected to a joint
space trajectory q in order to initialize the local motion planner in a new situation z, see
Equation (3.2). Simply repeating the old motion with IK is likely to be problematic, e.g.
motion targets and obstacles change between situations, so a naive replay of a trajectory
in joint angles is likely to fail. Therefore we use IK with multiple task variables and
motion rate control (see Section 2.2) to transfer motions and adapt to new situations.
The next-step cost C'X is defined as

C™(2,q,q-1,4) = g(a) +h(g,a-1)+ | 62(q) — w ()] (38)
~—~ N—_—— ~
task cost small step follow ¢,/ (q")

where ¢; is a step from the motion ¢’ that is being transferred. The terms of C'X are
chosen so that making steps with low C'¥ fulfill different criteria important for motion
adaptation. The terms h and g influence the motion steps to have a low cost with respect
to the terms of the (task-specific) cost function from Equation (2.3). Usually the term
h(q,q-1) = ||g — q—1]|? is used to force smooth, energy efficient motions. The term
g(q) stays for additional criteria for good motions, e.g. avoiding collisions. The term
¢z (q) — dur(q))||? is for following the task space trajectory.
We generate a motion for each time slice t = 1...T" by using motion rate control:

@ = o3 (qi-1,q;) = argmin C™(z, ¢, q—1,4]) (3.9)
q

3 TRAJECTORY PREDICTION: MAPPING SITUATIONS TO MOTIONS 33

The mapping ¢, ! : (y,q0) — g projects the whole task space trajectory back to a joint
space trajectory in situation z, applying the IK operator ¢, ! to minimize next-step cost
C™X iteratively for each time step ¢, starting from gp.

The transfer operator is then the following function composition:

Tewrd = &, © 60 (q) (3.10)

Such a transfer gives our method TP a better generalization ability: a predicted motion
trajectory which by itself is not optimal for the motion task can still be followed and
adapted in the new situation with IK. Concretely, in many cases IK Transfer will produce
initial collision-free motions, which is important for planner convergence.

3.5 Mapping Situation to Motion

Once we have defined appropriate situation descriptors and the IK transfer method of
adapting motions from one situation to another, we can proceed to describe the map-
ping f predicting “situation-appropriate” movements that lead to quick motion planner
convergence. This is the last building block of TP we need to present before showing our
experimental results.

3.5.1 Gathering Data Demonstrating Optimal Motions

The first step toward learning f is the gathering of optimal trajectories in different ran-
dom situations. The dataset D comprises pairs of randomly generated situations = and
trajectories g, optimized offline to convergence with a local planner with default initial-
ization:

D = {(zi,q,){-1} (3.11)

Allowing the local planner to run for lots of iterations (costing computational time)
makes getting an optimal trajectory very likely, but failure is still possible, as our results
will indicate later. For the set D we retained only good movements and discarded the
failed attempts.

This set D constitutes a set of possible trajectories we will consider as output from TP.
In the terms of reinforcement learning or DPL, we can make an analogy and call D an ac-
tion set, because predicting a trajectory for initialization is the output from our predictive
motion mapping (policy). Note also that D is created by saving motion examples from
the robot experience, so we do not need to specify any prior action set. This is another
level in which TP sets replaces human motion priors with a data driven framework.

Then we can gather data D’ for the quality of the initialization using the saved trajec-
tories in different situations, and measure how much additional refinement they can get
from the planner for a limited amount of iterations. We measure this “refinement cost”

34 3.5 MAPPING SITUATION TO MOTION

as
F(z,q) = C(z,0lq) (3.12)

Here O} q is the trajectory found by the optimizer after j iterations, starting from initial-
ization g, and j is a constant. Such a definition of F' is a heuristic to quantify the effect
of initialization on convergence speed looking only at few planner iterations, which is
possible because the planners we use iteratively improve the solution trajectory making
small steps.

The cross-initialization dataset D’ is defined as:

D' = {(xj7xi’F(xj77-1'j1’iqi)} ; X5 € D?, (miqu’) €D (3.13)

That is, we evaluate the quality of initialization in situation z; of a database move-
ment g, transferred from z;, and this is the data we will use to learn a good mapping f.
The set D” has a new set of situations where we examine the cost of transferred motions
from set D.

A difference between the datasets D and D’ is due to the different initializations used
to create them. For the set D we use the planners with default initialization (without
experience of previous situations) to get optimal movements for the different situations,
and retain only the successful runs with low costs after planner convergence (measured
by C). In the second dataset D’ we use examples of good motions from set D, and use
IK transfer to adapt the trajectories(actions) for better generalization between situations.
Another difference is that in D’ we use the refinement cost (measured by F') for a limited
amount of iterations.

On the Complexity of Gathering Data for TP

Creating D requires d = |D| planner calls, each of which iterates until convergence to a
local optima. We define d,, = | D”| as the number of situations in the dataset D’. Creating
D' requires d,d planner calls, each of which takes j planner iterations. Obtaining such
data D’ can be expensive for complex tasks that are slow to be optimized. Data gathering
can be made faster by running for fewer iterations j to evaluate F, but this is a trade-off
because sometimes the first iterations are not indicative of the final costs of the planner
after convergence. In Section 3.7 we will also test using smaller representative sets of
motions (e.g. by using clustering) to select smaller subsets of D with different motion
types. This would be a compression of the trajectory sets allowing to evaluate a smaller
number of costs for initializations. However, even if gathering data is a slow process, this
is an operation done offline and effectively split up on multiple available CPUs. Usually
it is of great practical utility to invest time to gather data and train TP on it, because only
the online performance of the combination of TP and a planner matters in typical robotic
usage scenarios.

Here we describe the simple heuristic we developed to estimate the number of it-
erations required for F. For each situation x from the set of motions D optimized to

3 TRAJECTORY PREDICTION: MAPPING SITUATIONS TO MOTIONS 35

iterations

20 40 60 80 100
iterations

Figure 3.5: Correlation structure of planner convergence from dataset D. It allows us to visually
answer the question how many iterations are necessary to estimate to what costs the planner will
converge.

convergence, we can define the cost convergence vector:
c=(C(z,0.q),C(z,02q),) (3.14)

c consists of the costs of the trajectories found by the planner after different numbers
j of iterations: cj;) = C(x, O%q). Given a set of such cost convergence vectors, we can
calculate the correlation between costs found after certain planner iterations. This is an
estimate of how much costs after j; iterations are related to costs after jo iterations. On
Figure 3.5 we try to illustrate visually the heuristic criteria we use for estimating the
necessary amount of planner iterations to measure F' from equation (3.12). We show
correlations for 200 situations (in the grasping scenario that will be described later in
detail in Section 3.7.3) for the first 100 iterations of the planner iLQG. It can be seen that
after 60 iterations we get correlation of 0.95 with the final costs after 100 iterations, and
this is a high enough correlation for our purpose. This means that we can use j = 60
iterations for measuring F' for each combination of situation and initialization, because
60 iterations give a good estimate whether a certain initialization will lead the planner
to good costs after convergence.

3.5.2 Learning the Situation to Motion Mapping

Once we have gathered data in the set D’ as defined in Equation (3.13), we can use
it to learn the trajectory prediction mapping from Equation (3.3). This is a supervised
learning problem, but simply casting it as a multiple label classification problem is not
the best way to approach it. It is too limiting to want to train using exactly the single best
output label, i.e. trying to learn to map and transfer the best database movement g; for

36 3.5 MAPPING SITUATION TO MOTION

high cost

initial
cost

after 10 planner / \

iterations

after 20 planner / \

iterations

/

low cost

q
Figure 3.6: An illustration of costs vs trajectory values for ¢ € R. The planner takes an initial
trajectory (g, and g,) and gradually improves it over the initial cost C(z, g). By using the con-

vergence costs F' (here after 2 iterations) for training the mapping f, we are more likely to predict
q,, leading the planner to a lower cost optimum.

all situations z; from set D’ with the following loss counting® mis-classifications:

JMULTICLASS _ Z I(f(x5) # Tayo. @) (3.15)
CCjEDa:
i= argmin F(x;, Tz;,9;)
(:L'Z‘,qi)GD

We would rather learn a predictive function that tries to predict a motion for a given
situation likely to have low optimization convergence costs. It is not necessary to predict
strictly the best output, but to have an output label with low costs. The image in Figure
3.6 illustrates the intuition behind trajectory prediction: we want to predict a trajectory
initialization likely to lead to a low cost value after subsequent planner iterations.

In general the mapping from situation and initial motion to resulting cost after plan-
ning can be noisy. TP tries to predict the quality of planner initialization with some
trajectory g;. Until the final cost C(x, (’)ﬂ;izq;) is calculated, we have the effect of the
Transfer operator 7 and afterwards the effect of subsequent planner iterations O, as
shown in Equation (3.2). These two algorithmic modules, combined with the cost sur-
face which is also nonlinear and with multiple local optima, make the learning problem
quite complex. However, even with such noisy data one can get effective speed-ups of
planning algorithms using TP, as we will show in Section 3.7.

The next subsections describe two possible approaches to learning such a mapping
f leading to low cost motion planner initializations for the TP framework.

*Here I(a # b) is the binary indicator function of a being not equal to b.

3 TRAJECTORY PREDICTION: MAPPING SITUATIONS TO MOTIONS 37

Nearest Neighbor Predictor (NN)

As in typical kernel machines, at the core of a good predictor is a good choice of sim-
ilarity measure (kernel) in input space, see Scholkopf and Smola (2002). We consider
rather basic prediction methods for the situation to trajectory mapping — namely nearest
neighbor (NN) — but spend some effort in training a suitable similarity measure in situ-
ation descriptor space. We start with a descriptor vector x as input, which is potentially
redundant and high dimensional, as explained in Section 3.3. We assume that similar
situations have similar optimal trajectories. However, the usual notion of similarity as
proportional to the negative Euclidean distance may not be the best for the high dimen-
sional situation descriptors we have defined. We want to learn a similarity metric w in
the situation descriptor feature space that selects appropriate features. In addition to
improving the trajectory prediction quality, our learning method will allow to retain a
compact set of the most representative descriptor dimensions by using a sparsity induc-
ing L; norm.
We define the situation similarity function as:

k(z,x;) = exp{—%(x —z)TW(x — 24)} (3.16)
W = diag(w?, .., w?) ,

W € R**% is a diagonal matrix, and s is the number of dimensions of the descriptor .
The nearest neighbor predictor f for z is

fra— Torq; i = argmax k(x;, v) (3.17)
ieD

A direct formulation of a training loss for this predictor is

LYY (w; D) =) | F(x, f(x)) (318)

€D

Because of the maximum operator in the predictor formulation in Equation (3.17)
it is not possible to define directly a differentiable loss function for similarity metric
learning from Equation (3.18). That is why we will define a probabilistic framework for
the training loss: predict a trajectory with some probability proportional to the similarity
to . We define the probability to choose a specific trajectory i € D with such similarity
function k as:

P(f(2) = Tonq;) = %k(x,azi) (3.19)
Z = k(xz,x;) (3.20)

38 3.5 MAPPING SITUATION TO MOTION

Here Z is a normalizing constant. Afterwards we can calculate the expectation over the
planner costs in situation z when initializing with Equation 3.19 as:

E{F(z, f(2)} =Y P(f(2) = Tow,q:) F(x, Toz,4;) (3.21)

ieD

Our goal is to find a similarity metric with low expected motion planning costs over
all situations for which we have convergence information. We define the following loss
function L using the cross-initialization data D":

DN ;D) = Be 3 B{FG. (@)} + Al (3.22)
zeD*

By minimizing this loss function we simultaneously improve the nearest neighbor
predictor and do feature selection to select a small set of representative features. Our
approach has some analogies with other kernel training and feature selection methods,
e.g. Lowe (1995), where training parameters for radial basis neural network nodes also
selects important features.

Having the squares of w on the diagonal of W in Equation (3.16) ensures that we get a
positive-definite matrix W without requiring additional constraints for the optimization
problem. The purpose of the L; regularization in term A|w|; is to get sparse similarity
metrics using only few situation features. We use the L; norm of w to get a sparse
solution. We can take the vector of the +1 signs of w as the gradient of this norm, see
Schmidt et al. (2007). This allows us use gradient based methods for minimizing the loss,
and avoid using the more involved LASSO approach to sparsity (e.g. Tibshirani 1996).
The exact calculation of the gradient of the loss is found in the appendix in Equation
(A.1).

Simple extensions of the NN predictor are possible, namely taking not only the near-
est neighbor situation and its corresponding motion, but taking the k-nearest neighbors.
However, this would require modifications to our method in the NN predictor and in
the Transfer IK operator itself, since we would somehow need to average the task space
motions of a set of nearest neighbors. We tested several heuristics for this, the details of
which we omit for brevity. Taking more neighbors £ > 1 did not lead to performance
improvement in practice, so we were satisfied with just the 1-nearest neighbor predictor
NN as in Equation (3.17).

Trajectory Prediction via Cost Regression (SVR)

As an alternative to the above prediction scheme we also tested a cost regression ap-
proach (Tu and Lin 2010) to the cost -sensitive multiclass classification problem. For
regression function we use the Support Vector Regression (SVR), a popular and pow-
erful approach to function estimation, see Smola and Scholkopf (2004). We can learn
regression models

fi B F(%Tmi(li),) HAS Dxa (wia(Ii) €D (323)

3 TRAJECTORY PREDICTION: MAPPING SITUATIONS TO MOTIONS 39

for the convergence costs F' for each trajectory g; € D given some situation descriptor
using the cross-initialization data D’.

This method allows to use the SVR regression method with various kernels for the
functions f; to predict the convergence costs of initializing a planner with a trajectory
from D in a given situation. Then we can use these multiple models to find the index of
the trajectory with lowest costs. The SVR trajectory prediction model is defined as:

i = argmin f;(x) (3.24)
€D

fra—Toq

70

Here we call our whole setup of multiple regression models for classification the SVR
predictor.

Comparison of the NN and SVR Methods for TP

We can calculate the computational complexity of the two algorithms in terms of the
number of situations d, = |D"| in the training set D”, the number of trajectories d = |D|
in the motion set D, and the number of dimensions s of the descriptor vector x. The
proofs of the following two propositions are found in the appendix.

Proposition 3.5.1 The algorithmic complexity of minimizing loss 3.22 with a second order op-
timizer (BFGS) is O(d,ds + s?).

Proposition 3.5.2 The algorithmic complexity for training the SVR predictor from Equation
(3.24) is O (d(d2 + sd?)) with 2 < o < 3.

We estimate also the runtime complexity of predicting a trajectory for some new
situation.

Proposition 3.5.3 The algorithmic complexity of evaluating predictor 3.22 in one situation is
O(ds).

Proof We need to evaluate similarity to all d situation-trajectory pairs in set D, and each sim-
ilarity measurement involves basic operations with a vector of size s. Thus the complexity is
O(ds).

Proposition 3.5.4 The algorithmic complexity of evaluating predictor 3.24 in one situation is
O(ddys).

Proof The parametric form of each such function after training SVR is f;(x) = kyw; where k;
denotes the vector containing kernel values k(x, ;) for each situation x; € D*, and wj is is the
vector of coefficients found by the SVR. Evaluating each function is of Complexity O(d,s) and
we have d such functions whose minimum we search, thus the complexity is O(ddys).

40 3.6 DISCUSSION: TRAJECTORY PREDICTION AND IMITATION LEARNING

Note that s will be replaced in these formulas by some s’ < s if sparse feature selection
is employed and only s features are with weights different than 0.

An advantage of the SVR trajectory predictor from Equation (3.24) over NN is that it
is a more powerful method, which can find well fitting models to the available data D’.
The free parameters of the SVR predictor {U;cpw;} € Rz are usually much more than
the NN parameters w € R?, because we expect to have more situations in the dataset than
dimensions of situation descriptor z. This can lead SVR to more complex models, but
also means that in some cases more data will be necessary to avoid overfitting (Russell
and Norvig 2009).

A drawback of the SVR predictor from Equation (3.24) is that the set D defines a
fixed set of cost functions f;, whose minimum we predict. The predicted trajectory will
always come from the set D, so we cannot generalize for motions outside of the set D.
We also do not learn a general notion of situation similarity and cannot interpret the
features meaningfully with this prediction method. To be more precise, we can get the
notion of situation feature relevance for a single motion g; € D, but this would have the
meaning of situations likely to benefit from exactly this motion g;. In contrast, the feature
relevance we get with the NN predictor is for all motions at once: a general notion of
situation similarity and feature relevance.

Learning a similarity metric that describes well which situations have movements
suitable for transfer has an interesting property: we transfer knowledge of expected
costs for yet unseen movements, an action set of potentially unlimited size. Suppose
we have a similarity metric w using data D’ as defined in Equation (3.13). We have two
interesting implications of this property which make TP with such a predictor flexible
with respect to gathering train data and prediction in novel situations:

e we do not need to create the full cross-initialization dataset D’: we can train the
similarity metric also with missing entries (z;, zi, F (2}, Tz,2,4;))-

e if we are given a novel situation x and some novel pairs of situations and optimal
motions (x;,q;) ¢ D', we can still reason about trajectories good for x by using the
situation similarity metric w for the NN predictor.

3.6 Discussion: Trajectory Prediction and Imitation Learning

3.6.1 TP and Direct Policy Learning

The DPL approach to learning from demonstration (section 2.4.1) has some analogies
with our trajectory prediction method, but also numerous differences. DPL tries to find
apolicy 7 : s — a that maps state to action given observed state-action pairs (s, a). Given
a parameterization of the policy, DPL is usually a supervised classification or regression
problem. Usually the data comes from observation of an expert’s (teacher’s) behavior.
No assumption of a cost function characterizing good motions is made, and the predic-
tion is to be made only with the criteria to reproduce the expert motion accurately.* In

4See also our results in Section 5.5.3.

3 TRAJECTORY PREDICTION: MAPPING SITUATIONS TO MOTIONS 41

the terms of Call and Carpenter (2002) this would be mimicry: attempting to repeat an
action without understanding its goal.

In the motion planning framework we can get large amounts of demonstration data
from simulation, and use it to learn motion policies that can generalize to various sit-
uations. We do not need to reproduce the demonstrated movements perfectly with TP,
since we assume there is a cost function as in Equation (2.3) specifying what good mo-
tions are, and a planner will refine these motions subsequently after the initial initializa-
tion by minimizing the costs. The essence of TP is to find trajectories that can lead such
a planner quickly to good local optima of the cost function landscape. For this we need
to predict a trajectory just once, in the starting situation, and rely that the structure in
this trajectory will improve the planner performance. In the terms of Call and Carpen-
ter (2002) this would be goal emulation: attempting to attain the goal of observed actions
without caring whether the action is duplicated accurately. In the case of TP the goal is
to obtain low cost motion planner output, which means usually going to a desired target
configuration with low costs on the way. The predicted trajectory initialization is the
action coming from our prediction policy, but it is transformed by additional planner it-
erations. The final planner output that the robot will follow in the world (the action of TP
in another sense) can be quite different from the initial trajectory. This is acceptable, since
only the low cost of the final trajectory matters for motion planning purposes. Penaliz-
ing deviation from the initialization is not a criteria in the cost function characterizing
good motions for a task.

3.6.2 TP as a Macro Action Policy

Another important question is why we chose to have whole trajectories as prediction
output. Predicting a whole trajectory means predicting a whole sequence of motor com-
mands in joint space, a macro-action in the terms of McGovern and Sutton (1998). We
can say that TP has a macropolicy to predict a macro-action, instead of the micropol-
icy used in DPL. A micropolicy would be in this case a mapping for every time step
™ x4 — y;. Here y; is the predicted movement command in some task space and z; is
the current situation descriptor, possibly changing at each time step. By iteratively pre-
dicting a movement y; and recalculating the situation descriptor z; after executing the
movement, one can build whole trajectories.

The mapping of a situation to such a small local movement step is a challenging
machine learning problem, since we have to account for global paths and the locally
shortest path to the target is a dead end if the robot is trapped. The usual DPL approach
will also learn a reactive mapping from state to control signal for a single time slice. This
is less useful for global motion optimization, since such reactive policy can not anticipate
and adapt for a longer time horizon.

A possible approach to remedy this would be to build networks of states connected
via local actions (Stolle and Atkeson 2007). However, this can lead to jagged movements
and fail to improve the planner behavior, as our results with RRT planners will show.
Constructing such a network and searching for a global solution is also computationally

42 3.7 EXPERIMENTS

Target

states

Figure 3.7: Trajectory Prediction as a macropolicy: predict a whole trajectory at once, in contrast
to DPL which uses a micropolicy: predict 1 time step ahead (until the target is reached).

expensive. Another reason why micropolicies are more difficult to learn is that we would
need to make accurate predictions for the whole state space, whereas for TP we need to
learn mappings just for the smaller subset of starting situations in our dataset.

Using trajectories as macropolicies makes sense for our setup for several reasons:

e we use as input data the local motion planner output: whole trajectories q of length
T steps and their costs

e we need to learn a predictive mapping saying which of these trajectories are good
initialization for a given situation

e we need to output a whole trajectory g of length 7" to initialize a motion planner

Additionally, we assume that in situations where start and target robot configura-
tions are a small subset of all possible configurations, a set of trajectories can be found
that is a reasonable initialization for any start and target combination. This assumption
holds if we select “reasonable” task spaces for TP, as indicated in section 3.4.1, and the
experimental results in section 3.7 seem to confirm it.

Suppose we have a task where the starting configurations are a subset of all possible
states, and the target configurations are another subset. TP will learn a (macropolicy)
mapping from start configurations to whole trajectory pointing to the target configura-
tion. The input domain of this mapping is a subset of all possible states. DPL, on the
other side, will need to learn a mapping from all states to a motion command, because
it uses a micropolicy that needs to predict 1 time step ahead. This micropolicy is called
continuously until a target state is reached. This is illustrated in Figure (3.7).

3.7 Experiments

To test TP in practice we examined several simulated scenario setups for our robot
model. Our robot is the Schunk LWA 3 arm with 7 Degrees of Freedom (DoF) and Schunk
SDH hand with 7 DoF, making a joint configuration space ¢ € R4. The robot is shown
in Figure 2.1(a), Figure 3.23(a) and Figure 4.7. For all scenario setups we examined, we
generate random scenario instances (situations) by moving randomly objects around the

3 TRAJECTORY PREDICTION: MAPPING SITUATIONS TO MOTIONS 43

workspace, leaving the size and number of objects unchanged. Trajectory prediction
learns from a set of demonstrated situations and movements and learns to generalize
this behavior to new situations from the same generating distribution. For all tasks we
planned kinematically with 7" = 200 time steps, which is a reasonable time resolution
for movements lasting a few seconds.

All the cost functions were defined so that a movement with cost less than 0.5 is
already quite good. The minimal possible cost is 0, and the costs are truncated to 2 if they
exceed value of 2, since these are clearly bad movements and we do not want extremely
high numbers to distort the results. As preprocessing for all prediction methods, we
transform each dimension of the descriptors x to [0,1] by subtracting the minimum and
rescaling, which improves predictive performance.

Dataset D had always 64 motions optimized until convergence for random situa-
tions. D’ evaluated all these 64 motions for other 1000 random situations. For training
the SVR predictor approach to TP we used a polynomial kernel of degree 4 and penalty
parameter ¢ = 1 with an implementation from the SHOGUN package Sonnenburg et al.
(2006). For training the NN predictor approach to TP we used the Matlab optimization
toolbox and the BFGS optimization algorithm for nonlinear optimization with gradient
information and without constraints.

To validate the results for the predictor model f, for all experiments we split the set
D' by dividing D* in 800 situations for training and 200 for testing the predictors. This
way we can reason about generalization ability of the predictive mapping in new unseen
situations x. This can be also seen as transfer to new test situations of motions evaluated
on the train set situations. For the creation of all these datasets we used the iLQG as
local planner. For all planning algorithms and IK we used a C++ implementation on a
Pentium 2.4ghz computer.

This section will proceed with a description of three different motion planning sce-
narios we examined. For each of them we will structure our work roughly in the follow-
ing way:

o definition of the task costs and description of the structure of the situations and the

objects present in the workspace

o description of the TP setup: what trajectory data was used, which predictor could
learn the most accurate prediction model, and what structure was discovered in
the data and situation features

e results for planning with TP with the best predictor: how local motion planners
(AICO and iLQG) benefit and what speed-up in motion planning time can be ob-
tained by using TP

3.7.1 Reaching on Different Table Sides

Scenario Setup

The first scenario we examined, contains the robot arm which has to reach a target across
a table of size (1.2,0.7,0.1) meters with the finger as endeffector, around an obstacle (the

44 3.7 EXPERIMENTS

table) as seen in Figure 3.8. We controlled the 7 DoF of the arm, and the endeffector was
defined as the tip of the hand. Different scenarios are generated by uniformly sampling
the position of the table in a rectangular area of size (0.9, 02, 0.2) meters, the target in
(0.5, 0.2, 0.6), and the initial endeffector position in (0.3, 0.3, 0.9). Situations with initial
collisions were not allowed. Too easy situations where the endeffector was closer than
30cm to the target were discarded. This was done in order to avoid trivial situations and
to put a greater focus on more challenging scenarios, where the endeffector must move
on the other side of the table to reach the target.

We used the standard cost function in Equation (2.3) to generate motion fulfilling
the following task requirements: reaching a target, penalizing collisions, keeping within
joint limits and enforcing smoothness and precision at the endeffector position. We have
chosen the term £ to enforce a trajectory of short length with smooth transitions between
the trajectory steps. We define h as

(g, qi—1) = ||t — Qt—1”2 (3.25)
The cost term ¢ in (2.3) is defined as

9(at) = Geoltision(qt) + Greach (Gt) + Jtimit (at) (3.26)

where gconision penalizes collisions while executing the grasp movement. The value of
this collision cost is the sum of the pairwise penetration depths c; of colliding objects.
Minimizing it moves the robot body parts away from obstacles.

gcollision(qt) = 105 Z 012 (327)

]

The task of reaching the target position with the endeffector is represented in gyeach. We
want the target to be reached at the end of the movement, so we define this cost function
to have a higher value for ¢t = T

1072d% t<T
reac - 3.28
Greach () {1O2d2 o (3.28)
where d is the Euclidean distance between the endeffector and the target.
The cost term gjinit puts limits on the joint angles:
Gimit () = 1072 O(d; — 0.1)° (3.29)

=1

where d; is the distance of joint ¢ from its limit (0 and 2 radians respectively), 0.1 is a
margin, and O is the heavyside function.

3 TRAJECTORY PREDICTION: MAPPING SITUATIONS TO MOTIONS 45

=5 =y

(a) Situation x, — reaching the target re- (b) Situation z — reaching the target re-
quires moving the hand under the table. quires moving the hand over the table.

Figure 3.8: Two situations; the goal is to reach the target with the robot hand.

.target

Figure 3.9: The 11 landmarks used for the descriptor « of the table reaching scenario: the centers
of the 11 marked objects, 10 from the robot and a target object.

Trajectory Prediction Setup

Since we have only one obstacle in this table reaching scenario, we decided to use the ge-
ometric descriptor defined in Section 3.3.1 to predict trajectories using high-dimensional
geometric information about few important landmarks. Concretely, the descriptor = €
R77 is defined as a 770-dimensional vector comprising a lot of the information relevant
for this setup. We have defined 11 objects for which we measure pairwise geometric
information: 7 segments of the robot arm, the endeffector, the robot immobile platform
(similar to the world frame), the largest obstacle object (a single table in our scenario)
and the reach target location, shown in Figure 3.9. 11 landmark objects give rise to 110
different pairwise distances, each of which is in R”.

The first demonstration set D had 64 random situations and optimal movements
calculated for them using iLQG until convergence starting from a default initialization
for reaching: a straight path from start endeffector position to target. We also examined
the effect of smaller subsets from D, created using K-means clustering (MacQueen 1967)
and Euclidean distance on the task space trajectories y. We used the medians of the

46 3.7 EXPERIMENTS

Figure 3.10: Visualization of endeffector movement trajectories from D in space Ygpst, centered
on table.

clusters and situations for the creation of D’ as in Equation (3.13) to provide initialization
trajectories equal to the average task space trajectories for a cluster. By changing the
number of clusters d we change the number of motions that can be output of TP. To learn
the similarity metric and predictor f we measured the costs F' of these initial movements
g; in all 1000 situations x; € D* = D, using j = 20 iterations estimated by the heuristic
described in Section 3.5.1.

We tested empirically 3 task spaces by creating different datasets D’ for them. Figure
3.12(a) shows results for the usefulness for initialization of these spaces. The space Yiarget
represents movements relative to the target. The space Yi,s (with best performance
in Figure 3.12(a)) consists of endeffector coordinates relative to the largest obstacle, see
figure 3.10. This is a reasonable task space selection, since the main difficulty in this
scenario lies in going around the edge of the table, which is always in a different trans-
lated position. Task space Yt provides a set of table avoidance paths, and predicting an
appropriate table avoidance path for some situation is an effective motion initialization
strategy. The joint space @ had poor performance, which confirms the hypothesis that
joint space coordinates generalize poorly.

We will present results obtained by testing different prediction models on the cross-
initialization set D’. Using this offline stored data, we can quickly cross-validate different
models, without requiring expensive robot simulator calls. The set D” is split in 800 sit-
uations for training and 200 situations for testing the cost of the best predicted trajectory.

Our choices for prediction methods, including both baseline and trained TP predic-
tors, were

e NNOpt - trained NN predictor from Section 3.5.2, with A = 0.0001

e NNEuclid — NN predictor without training, with w = 1 — default Euclid metric
e SVR - predictor via cost regression as in Section 3.5.2

o best — a predictor always taking the trajectory from set DY with smallest cost F
e mean — a predictor choosing a random trajectory from set DY

In Figure 3.12(b) we examine the performance of the different predictors f using
data from the task space Ypst. SVR and NNOpt have similar performance, and improve

3 TRAJECTORY PREDICTION: MAPPING SITUATIONS TO MOTIONS 47

—>endEff|target|p”

target|table|y*
\>m9|table|px
m4|table|p*

m7|table|y”

0 5 10 15 20 25 30 35
Feature Rank

Figure 3.11: The 25 nonzero features in the learned metric NNOpt, and the geometric information
of the top 5.

on both mean and NNEuclid. However, they are still away from the lower bound of
performance best, which means that more complex models for similarity or regression
can improve the performance further.

Both graphics 3.12(a) and 3.12(b) illustrate the trend that a bigger number d of trajec-
tories in the set D can lead to better initializations. However, small numbers d provides
already a variety of initial movements and allow good initialization with TP. Having few
trajectories d also means having small cost for dataset D’ creation. This can be tuned as
necessary for different robot tasks with different computational costs of gathering data
and complexity of the prediction task.

The regularization used for NNOpt also managed to compress the descriptor quite
well: from 770 to 25 dimensions, as shown in Figure 3.11. The best features are the
big table obstacle, the target, and the endeffector, which seems intuitively appealing
interpretation of the reaching around table scenario.

We also tested varying the number of train situations d, in the set D’, as shown in
Figure 3.12(c), and testing on the same 200 test situations. A difference between SVR and
NNOpt is that NNOpt required significantly less training data for good performance.
With as few as 25 situations on which all 64 movements are evaluated NNOpt can reach
good prediction quality. In contrast, SVR needs at least 400 train situations to get good
prediction quality on the validation set. This is to be expected, since the method SVR has
many more free parameters than NNOpt, and needs more data for good prediction on
unseen test data. This is an observation consistent with statistical learning theory and
PAC bounds, see Russell and Norvig (2009).

We fitted polynomials on the data shown in Figure 3.12(c) to see how the error de-
creases in terms of the used train situations d,, see Raudys and Jain (1991) for details of
this method of quantifying error in terms of train situations. For NNOpt the best error
fit was in O(é), while for SVR the error decrease was slower - in O(@%)

Analysis of the Learned Representations with Kernel PCA

One way to illustrate the effect of learning the similarity metric is to use a low-dimensional
embedding for visualization in the space of situation descriptors, see Figure 3.13. We use

48

3.7 EXPERIMENTS

25 ——Q best 25 ——NNEuclid
—— Q NNEuclid —— NNOpt
—Y_ _ best —SVR
2t obst 2 b
Y NNEuclid est
obst —— mean
1.5 e Ytargel best 1.5
Y, NNEuclid

w <X target w
1r 9 1

0.5r 9 0.5

1 2 4 8 16 32 64 1 2 4 8 16 32 64
d d

(a) The 3 trajectory task spaces compared:
joint space () is worst.

(b) Different prediction strategies for f(x) in
space Yobs: number of movements d vs con-
vergence costs F'.

= NNEuclid
— NNOpt
- SVR

5 10 25 50 100 200 400
training situations

(c) Varying the number of situations used
for training predictors f(zx) in space Yopst.

Figure 3.12: Table reaching scenario: convergence costs F" averaged over 200 test situations and
using d motions for initialization.

Kernel PCA (Scholkopf et al. 1998) on kernel matrices K calculated for 600 situations in
the table reaching scenario, and each eigenvector u; of K is one component of the new
representation for all datapoints. By taking the 3 vectors with largest eigenvalues we get
an effective low-dimensional visualization of the underlying high-dimensional situation
space. We compare three different kernels:
a2
e a Gaussian kernel e~ = = ” using standard Euclidean metric,
with 02 = 0.1 max; jep(||z; — z;||?), corresponding to the NNEuclid predictor

s —z; 113,
e a Gaussian kernel ¢~ o7 using the learned NNOpt metric, with 2 chosen as

above, corresponding to the NNOpt predictor

e the fourth degree Polynomial kernel (z;z; + 1)? used in the SVR predictor

The graphic in Figure 3.13 shows that the learned metric discovered structure in the
space of trajectories. The two separated point groups in Figure 3.13(b) correspond to

3 TRAJECTORY PREDICTION: MAPPING SITUATIONS TO MOTIONS 49

002 5

(a) Gaussian kernel Euclid metric. (b) Gaussian kernel learned metric.

(c) Polynomial kernel.

Figure 3.13: Low dimensional embeddings of the situations using Kernel PCA. The color indi-
cates the cost for initialization with one specific trajectory q’.

the two situation types where different initialization motions are appropriate, top-down
or down-top (see Figure 3.8 for examples). The color of this visualization indicates the
costs C after planner convergence for one motion ¢’ € D we chose. Again, it can be
seen that the learned metric will likely improve NN prediction, since situations where
q' lead to low planning costs were closer to another than with the Euclidean metric in
Figure 3.13(a). The polynomial SVR kernel in Figure 3.13(c) is also able to discriminate
well in which situation ¢’ has low costs, but does not separate the two situation types
(top-down or down-top) as well as NNOpt.

We also analyzed the quality of the above kernel matrices using the methods of Braun
et al. (2008); Montavon et al. (2011).

e we denote Y as the column vector of costs of ¢’ for all 600 situations, centered with
mean 0.

o the kernel PCA coefficients for component i are defined as the absolute value of
the dot product |ulY |. A large value indicates that the component contributes to
label information, and usually having few large components and many close to 0
is an indication that noise is separated well from other components.

o the kernel PCA projection errors with d components are defined as the error of the

50 3.7 EXPERIMENTS

= Gaussian kernel (NNEuclid) = Gaussian kernel (NNEuclid)
= Gaussian kernel (NNOpt) = Gaussian kernel (NNOpt)
03 = Polynomial kernel (SVR) 35 = Polynomial kernel (SVR)

kernel PCA error
kernel PCA coefficient

0 100 200 300 400 500 600 10° 10' 10° 10°
cumulative PCA components kernel PCA component
(a) Kernel PCA errors, adding cumula- (b) Kernel PCA coefficients for compo-
tively components. nents.

Figure 3.14: Analysis of the situation kernel matrices. The axes are sorted by eigenvalues in
descending order.

projected labels on Uy = [u;, .., u4) w.r.t. the real labels:
1Y = UgUg Y ||?
An error curve quickly going to 0 usually indicates good kernel performance.
Figure 3.14 shows the result of this analysis:

e Figure 3.14(a) shows the kernel PCA projection errors. The NNOpt kernel has
the lowest error of all methods when using the first 100 components. With more
components the SVR polynomial kernel improves.

e Figure 3.14(b) of the kernel PCA coefficients also shows the good quality of the
NNOpt kernel. Only the first few components have a large response to the label
information — good signal-to-noise-ratio.

e Both Figure 3.14(a) and Figure 3.14(b) are consistent with Figure3.12(c): NNOpt
makes good predictions even with very few samples, whereas SVR needs much
more training samples to lower its error.

Planning Results

We present results for the average motion planning costs of the local optimizers and ini-
tializations as time progresses. From the point of view of a robotic scientist this would
be the most important result: how does TP improve motion generation when evaluated
on the robot platform. The results presented are for 200 random test situations on which
we already validated the predictors in the previous subsection. We evaluated 6 differ-
ent motion generation methods by combining different initializations and planners. We
tested three different initialization methods:

3 TRAJECTORY PREDICTION: MAPPING SITUATIONS TO MOTIONS 51

— LINEAR-ILQG

—— RRT-iLQG
TP-iLQG

—— LINEAR-AICO

—— RRT-AICO

- - = TP-AICO

0.2

Figure 3.15: Performance of different methods in table reaching scenario: planning for 7 seconds.
The average cost C of the planners during their convergence is plotted versus time in seconds.

o [INEAR
o TP
o RRT

LINEAR is the default option, where the start and goal endeffector positions are con-
nected with a straight line path, which is followed by the robot hand using IK for ini-
tialization. TP uses the NNOpt nearest neighbor predictor in the task space Yp,s. Both
trajectory prediction and straight line initialization require an IK operator from the en-
deffector path to joint space. The time for the IK operator ¢~ was 0.07s. The TP pre-
diction itself is practically instantaneous. RRT initialization uses our implementation as
described in Section 2.3.2. The RRT algorithm always works from scratch and does not
require any training experience of the situations one can encounter. The creation of a
RRT tree with 2000 nodes takes 8s, which is already a drawback for real time action and
much slower than the other two initializations. However, we include RRT for perfor-
mance comparison of the usefulness of such initial random collision free paths, ignoring
this huge initialization time, assuming that some more efficient implementations of the
RRT algorithm can do this faster.
The 3 initializations are combined with 2 different planner methods:

e iLQG
o AICO

For iLQG an initial trajectory q is already a part of the algorithm. For AICO we had
to use g in a different way: only for the first iteration we used instead of the real task cost

52 3.7 EXPERIMENTS

Table 3.1: Summary of the timing of different operations for table reaching scenario.

l operation H time (seconds) ‘

create D (64 situations) 440

create D’ (1000 situations) 89600

train NNOPt or SVR 40

1 planner iteration 0.07

TP prediction 0

TP and LINEAR Initialization 0.07

RRT initialization (4000 nodes) 8
TP-iLQG average cost 0.3 2
LINEAR-ILQG average cost 0.3 4

C(z, q) asurrogate cost C(x, q,q) = C(z,q)+ | g—@| 2. This forces the solution to be near
g and changes the belief states of AICO respectively. This is done just for 1 iteration, in
order to add the initialization information to the Bayesian planner, afterwards planning
continues in the normal way.

Both iLQG (Todorov and Li 2005) and AICO (Toussaint 2009) are local planners well
suited for motion planning, as mentioned in the introduction. We set the iLQG conver-
gence rate parameter e = 0.8; performance was robust with respect to different values
of e. For AICO we used instead of a fixed step parameter a second order Gauss Newton
method to determine the step. One iteration of each of the planners took 0.07s, the bulk
of which goes to collision detection and that is why the timings are similar for different
planners.

We also tested direct gradient descent in joint space with the RPROP general opti-
mization algorithm (Riedmiller and Braun 1993, Igel et al. 2005), but its performance
was an order of magnitude worse than the other 2 planners, so we did not add it to the
final results.

The results in Figure 3.15 show the convergence behavior of the planners for 7 sec-
onds, and they allow us to make the following observations:

o TP is the best initialization for both AICO and iLQG, both speeding up conver-
gence in the first initializations, and allowing to reach solutions with lower costs
overall. Sometimes a first feasible solution is reached in less than a second for
TP-iLQG, in comparison to 3 seconds for LINEAR-iLQG.

e TP-AICO also benefits greatly from a TP initialization. Note that the data D’ for
prediction was gathered only with iLQG planner data, so our predictors could
transfer successfully to a new planner.

e The RRT path initializations are unexpectedly poor choices for planner initializa-
tion: they start collision-free and with lower costs, but they are difficult for the
planners to improve and after some planner iterations even LINEAR finds better
overall solutions.

e AICO is potentially very sensitive to initialization: with improper initialization
(from any of the 3 initialization methods we examined) it can converge to bad

3 TRAJECTORY PREDICTION: MAPPING SITUATIONS TO MOTIONS 53

solutions, which are unlikely to be improved. iLQG is more robust in this sense:
with more iterations bad solutions can still be improved.

In Table 3.1 we have summarized all timing involved in this experiments, including
the average time needed to reach an average planning cost of 0.3 for all situations, cor-
responding to motions feasible on the average. This indicates the time savings one can
achieve by implementing TP.

3.7.2 Reaching in Cluttered Scene.
Scenario Setup

In the next setup, the table (same object as in the previous experiment) was cluttered
with 4 obstacles. Rectangles of various sizes and on random positions stand in the way
of a target to be reached, as shown in Figure 3.16. We controlled the 7 DoF of the arm, and
the endeffector was defined as the tip of the hand. The obstacle positions are randomly
put over the table surface, and the target is put over the table to a place unoccupied by
obstacles. We took the same reaching cost as the one defined in Section 3.7.1.

Trajectory Prediction Setup

For such cluttered situations we decided to test the sensor voxel descriptor z € R*!3
from Section 3.3.2, since it is a compact way to represent the obstacle information. In
the simulations we simulated an arm-mounted laser sensor delivering point cloud in-
formation to the scene, as in Jetchev and Toussaint (2010). We used a simple heuristic to
gather information for the scene. A basic laser sensor gives information from a 2D plane.
Before movement planning, the arm-mounted laser is rotated by moving the robot joint
of the arm segment carrying it. A full rotation in 20 steps between the joint limits covers
practically the whole workspace with rays. The points on objects intersected by rays are
added as point cloud information to construct voxel grids, see Figure 3.17 for details.

Figure 3.16: Typical situations on cluttered tables with red point as target, a table and 4 obstacles.

54 3.7 EXPERIMENTS

(a) Rotating the robot arm to cover (b) Convert the information for ray
space with rays. intersections with objects in a point
cloud to be used as voxel descriptor.

Figure 3.17: Laser point cloud simulation used in the cluttered scenario.

Figure 3.18: A visualization of different motion initializations in space Yiarget (centered on target
object) for a cluttered situation reaching task.

For task space we examined again the 3 choices from the previous experiment: joint
space (), table relative coordinates Y. and target relative coordinates Yiarget, shown in
Figure 3.18. Yiarget Wworked the best for this scenario. Some of the situations required com-
plex avoidance paths, so the linear initialization failed often to find any solutions. Thus
for the database D of optimal movements we had to use RRT initialization, otherwise
the dataset D’ was created identically as in Section 3.7.1, again using j = 20 iterations
for calculating convergence cost F'.

In Figure 3.19(a) we compare the same 5 prediction methods defined in the previous
section. NNOpt learned a much better predictor than NNEuclid. For this task the SVR
approach worked significantly better than the nearest neighbor approaches NNOpt and
NNEuclid. One possible explanation is that a standard distance metric is not appropriate
for voxel descriptors, and probably other metric models or preprocessing of the volume
data can help. Figure 3.19(a) also indicates the gains from using a higher number of
motions d. 32 motions seemed to be enough to allow good prediction possibilities to TP,

3 TRAJECTORY PREDICTION: MAPPING SITUATIONS TO MOTIONS 55

0.8 — NNEuclid 0.8 — NNOpt
o —— NNOpt 075 —SVR
’ —SVR 0.7
0.6 lé — best 065
— mean
05- 0.6
w L 055
0.4f 05
03l 0.45
0.2f
0.35
01 n |
1 2 4 8 16 32 64 50 100 200 400
d # PCA components

(a) Different prediction strategies for f(x): (b) Varying the number of PCA components
number of movements d vs convergence used for in the voxel descriptor vs conver-
costs F. gence costs F' (with d = 64 motions).

Figure 3.19: Prediction costs in the cluttered reaching scenario with task space Yiarget

= Gaussian kernel (NNEuclid)
= Gaussian kernel (NNOpt)
= Polynomial kernel (SVR)

kernel PCA error

0 200 400 600 800 1000
cumulative PCA components

Figure 3.20: Kernel PCA errors for the cluttered reaching scenario; 3 different kernels are plotted.
The polynomial kernel of degree 4 seems best.

doubling them up to 64 motions offered insignificant improvement.

In Figure 3.19(b) we examine how many PCA components are necessary to create
voxel descriptors good enough for predictive purposes. With 200 components the SVR
regression achieves the best result. The NNOpt method cannot handle well the voxel
grid PCA components features and more components do not improve but worsen per-
formance. We noticed also that simply looking at how well PCA compresses the input
voxel data — 50 components have 96% of the variance, 100 have 99% and 200 compo-
nents 99.8% of the variance — is not indicative of the TP performance with such a voxel
descriptor.

In Figure 3.20 we show analysis of the three kernel matrices of NNEuclid, NNOPt
and SVR evaluated on 1000 situations for cluttered reaching, with the same setup as
in Section 3.7.1. The plot shows how the polynomial kernel has low label projection
error with few components, and this is in agreement with our test results where the SVR
predictor is better than both NN methods for the cluttered table scenario.

56 3.7 EXPERIMENTS

Planning Results

2r — LINEAR-ILQG
1.8h f— RRT—ILQG

TP-ILQG
1.6f = | INEAR-AICO
1.4} = RRT-AICO
© 12l = = =TP-AICO
I
1t
0.8+
0.6 'k i- i
FI-FIFTEAEICT
O'40 5 1‘0 1‘5
time (s)

Figure 3.21: Cluttered scenario: the average cost C of the planners during their convergence is
plotted versus time in seconds.

The results presented in this section are for 200 random test situations, different than
the train situations. We tested the same 6 motion generation methods, but used instead
of NNOpt the SVR approach for the trajectory prediction function in the task space
Yiarget: Each planner iteration and IK operation costs 0.15s. This is more than in the
previous scenario due to more expensive collision check operations with more objects.
This was the timing using the object models in the simulator. If we were to use the voxel
representations obtained from analysis of point cloud data the timings would rise even
more. Figure 3.21 summarizes our planning experiments, and Figure 3.22 illustrates how

(a) A RRT of random collision (b) The shortest path in this (¢) A smooth movement from
free samples accessible from tree to the target is very in- TP prediction (black). LINEAR
the start position. efficient if we want a smooth (green) goes straight to the tar-

movement. get and has high collision costs.

Figure 3.22: A visualization of different initializations for cluttered reaching scenario.

3 TRAJECTORY PREDICTION: MAPPING SITUATIONS TO MOTIONS 57

Table 3.2: Summary of the timing of different operations for cluttered reaching scenario.

l operation H time (seconds) ‘
create D (64 situations) 1472
create D’ (1000 situations) 192000
train NNOPt or SVR 60
1 planner iteration 0.15
TP prediction 0
TP and LINEAR Initialization 0.15
RRT initialization (4000 nodes) 10
TP-AICO average cost 0.8 2
RRT-AICO average cost 0.8 14

exactly TP behaves differently than LINEAR and RRT initialization.

e For both AICO and iLQG planners, TP has lower costs than the RRT and LINEAR
initializations. This is to be expected since LINEAR is often starting in collisions,
see Figure 3.22(c).

e LINEAR-AICO is prone to failure even after many iterations: the many obstacles
make for a highly nonlinear cost surface with multiple local optima, and AICO
gets stuck in suboptimal solutions.

e Even though RRT takes significantly more time than the other initializations, it
fails to find optimal motions for some situations optimally. RRT starts always with
a collision free path, but suffers from the random nature of the path construction
(Figure 3.22). RRT is worse than TP for the situations we examined.

We also tested a setup with 3 more obstacles, more difficult because obstacle avoid-
ance paths become more complex. TP remained the fastest initialization even with this
more cluttered setup, a transfer of useful behavior from the training setup with 4 blocks.
This showed that the descriptors « and the predictor f can transfer knowledge to a more
diverse set of scenarios without modification, since the occupancy of the workplace is
represented well by the voxel descriptor . On the other side, when considering the
potential effect of adding even more objects in the scenario (e.g. more than 20), RRT
has the best chance to solve such puzzles. The design of the scenario has big effect on
performance.

In Table 3.2 we have summarized all times required for different operations involved
in this experiment, including the average time needed to reach an average planning cost
of 0.8 for all situations, corresponding to feasible if not yet optimal motions.

Hardware implementation

In addition to simulation, we also did hardware tests, as shown in Figure 3.23(a). We had
robust performance in real scenes with different obstacles on tables (Jetchev and Tous-
saint 2010). We added to the Schunk robot setup the Hokuyo URG-04LX laser, see Figure
3.23(b), which is able to gather information (a scanner sweep) at 20hz. We first gathered

58 3.7 EXPERIMENTS

(b) The Hokuyo URG-04LX laser
sensor and workspace cluttered used to gather point cloud infor-
with various obstacles. mation for a cluttered scene.

Figure 3.23: Hardware setup for the cluttered reaching scenario: the Schunk robot arm, the SDH
hand and an arm-mounted laser.

data in simulation as in Section 3.7.2, and then used this data to predict fast initialization
in real hardware situations. The real scene is not identical to the simulated scenes, but
since it also has similar structure (a relatively large table and several objects on it in front
of the robot) our scenario descriptors transfer adequately behavior. Such a coupling of
simulated data and real applications can be quite effective for speeding up planning if
the train and test situations come from a similar distribution, because creating huge sim-
ulated train sets is much cheaper than doing the same in hardware. A video of our robot
reaching its target, as well as the datasets used for trajectory prediction, are available at
http://user.cs.tu-berlin.de/~jetchev/TrajectoryVoxel.html .

3.7.3 Grasping a Cylinder
Scenario Setup

In our last experiment we tested TP on tasks that are more complex than reaching.
Grasping is one such task with a more complex cost function, and local planners have
greater difficulty to solve this task. The grasp setup we devised contains a target cylin-
der 1.5m long and with radius 5cm that has to be grasped by the robot, see Figure
3.24. For the random situations we translated the cylinder center in a rectangular area
(0.9,0.5,0.4) and rotated it around its radial axis by random angles in (0, 27). We also
moved the hand at random starting position similar to the previous scenarios. We con-
trolled both the arm and hand for this setup, resulting in a joint space ¢ € R4,

The cost function we designed for grasping had the same smoothness term £, but a
different term g:

g(qt) = Jcollision (qt) + Glimit (qt) + gsurface(Qt) (330)

http://user.cs.tu-berlin.de/~jetchev/TrajectoryVoxel.html

3 TRAJECTORY PREDICTION: MAPPING SITUATIONS TO MOTIONS 59

(@) (b)

Figure 3.24: Typical situations in the grasping scenario: the cylinder is rotated and translated
randomly.

Figure 3.25: The 3 markers on each finger (indicated by black dots) used to force the fingers to
move close to the object surface and align with it.

The collision and joint limit terms geolision and giimit are the same, but the term ggurface is
new. The term ggy,face measures the distance from the target surface to some markers on
the robot body and forces the robot to move these markers on top of the surface of the
target object. We defined 12 such markers, 3 on each of the 3 robot fingers, and 3 on the
wrist, as shown in Figure 3.25. By taking a configuration of 3 markers near the surface of
the fingers we force the robot to also align the surface of the fingers with the grasp target
object surface: the distance is minimal to all markers only if the surface of the fingers
is parallel to the object surface, which leads to better grasps. By using the 3-marker
configuration we can approximate this alignment property just by using proximity task
variables and not requiring more complex vector orientation task variables.
The definition of ggyrface iS:

03y, 2 T
1022, t=T

i=

YGsurface (qt) = { (331)

60 3.7 EXPERIMENTS

(a) A grasping movement: first approach (b) Finally the fingers should close on the
the object. object surface

Figure 3.26: Grasping scenario: a good grasping movement with two phases. The black line
visualized the robot hand trajectory.

where each 7); stays for distance to target cylinder surface of each of the 12 markers.
This cost function is similar to the one used by Dragiev et al. (2011), and it reflects the
simple assumption that the robot holds the object tightly if the fingers all grasp it. The
condition that the fingers also align with the object surface is useful, since the geometry
of the robot hand makes this possible only if the fingers oppose one another, an even
stronger heuristic criteria for a good grasp. The target can be grasped anywhere with
this cost, but the challenge lies in positioning the robot fingers on the surface without
colliding with it. Indirectly this requires two movement phases: first approach object
and open hand, then grasp. Figure 3.26 shows these two phases.

Trajectory Prediction Setup

We used here the geometric descriptor as in Section 3.7.1, but with a slightly different
object set: the 7 robot arm segments, the endeffector, the target cylinder center targetC,
and a marker on top of the cylinder targetE. This results in 90 pairwise object distance
descriptors and a situation descriptor z € R30.

The sizes of datasets D and D’ were as in the previous experiments, with the only
difference being that we needed j = 60 planner iterations (using the heuristic of Section
3.5.1) to measure the convergence cost F', which made data gathering slower.

We examined two task spaces. First, the joint space Q € R'*. Second, Yqhand+target €
R!Y consisting of the 7 hand joints and the 3D relative position of the arm in the target
frame. Yghandttarget i @ better task space than g, as illustrated by Figure 3.29(a). The
relative positions of the hand in the target frame generalize well to target rotations and
move the hand to positions which can be grasps near the cylinder surface, and the finger
joint information moves the fingers in an appropriate pregrasp shape.

In Figure 3.29(b) we compare the 5 different predictors for good trajectory. The SVR
predictor was the best, closely followed by NNOpt.

The regularization used for NNOpt also managed to compress the descriptor quite
well: from 630 to 17 dimensions, as shown in Figure 3.27.

3 TRAJECTORY PREDICTION: MAPPING SITUATIONS TO MOTIONS 61

» mo|targetC|y*

mb|targetC|y*
S 15
;S, targetC|m8|p”
()
=2 targetC|m3|d
° targetE|m9|y

0 5 10 15 20 25 30 35
Feature Rank

Figure 3.27: Grasping task: the 17 nonzero features in the learned metric NNOpt, and the geo-
metric information of the top 5 features.

- {:\\‘

Figure 3.28: Grasping scenario: a set of trajectory initializations in space Yghand+target, cOnsisting
of arm and hand movements relative to the target frame. Only the arm movement is visualized.

Planning Results

We tested 4 combinations of planner and initialization: AICO and iLQG combined with
LINEAR initialization (with target the center of the cylinder) and TP initialization us-
ing SVR for prediction. We did not test RRT for grasping, since it would require major
modifications to the default RRT algorithm.

In this scenario the time for a single planner iteration and IK transfer was 0.15s, and
optimization to convergence required sometimes as much as 100 iterations and was with
a high failure rate, so this problem has the potential to gain a lot from TP. Figure 3.30
shows our results for this more complex task:

o the combination TP-AICO finds the best solutions overall: 2 seconds planning time
with the TP initialization vs 14 seconds for LINEAR-AICO for reaching cost 0.4.

o TP-iLQG is similarly superior to the default LINEAR-ILQG: 8 seconds when using
TP-iLQG, while LINEAR-iLQG never reaches such average costs.

e for the grasping task AICO is better than iLQG, regardless of the initialization used.

62 3.7 EXPERIMENTS

r r r 1.2 T T T T T T T |
- Q best 11 — pest
——Q NNEuclid — NNEuclid
= Yqghand-+target best = mean
~—Yghand+target NNEuclid =~ NNOpt

4 —SVR

1

0.9

0.8

w07
0.6
0.5
0.4
03

0. 0.2
1 2 4 8 16 32 64 1 2 4 8 16 32 64

(a) The two trajectory task spaces @ and (b) Different prediction strategies for f(x):
Yihand+target: NUmMber of movements d vs con- number of movements d vs convergence
vergence costs F'. costs F.

Figure 3.29: Costs of different methods in cylinder grasping scenario in the task space Yghand+target-

A possible explanation of the last point can be the specific character of the grasp-
ing cost we used. For grasping the challenge is to coordinate multiple body parts to
do a more complex movement, whereas for the previous two tasks the challenge is to
avoid collisions. It seems that the inference algorithm of AICO can handle complex
motions better than collision avoidance. It is also worth noting that the TP predic-
tor was trained using data created only with the iLQG planner. Both D and the cross-
initialization dataset D" were evaluated only using iLQG, and thus the predictive map-
ping was trained to speed-up iLQG. However, as our results indicate, AICO benefits also
greatly from using the structure inherent in a good situation appropriate initial trajectory.
We can call this property transfer on the level of different planners.

Table 3.3 summarizes the time costs for different operation in the grasping scenario.
Despite the huge cost for gathering data needed for training TP, the gains when using
TP for initialization make it worth it when faced with a new grasping situation. As we
mentioned in Section 3.5.1, usually for more complex tasks with costly planner itera-
tions data gathering for TP is more expensive, but also the possible speed-up from good
initialization is much greater.

Table 3.3: Summary of the timing of different operations for the grasping scenario.

| operation “ time (seconds) ‘
create D (64 situations) 1920
create D’ (1000 situations) 576000
train NNOPt or SVR 40
1 planner iteration 0.15
TP prediction 0
TP and LINEAR Initialization 0.15
RRT initialization
TP-AICO average cost 0.4 2
LINEAR-AICO average cost 0.4 14

3 TRAJECTORY PREDICTION: MAPPING SITUATIONS TO MOTIONS 63

2,
= LINEAR-ILQG
18t TP-iLQG
Ll LINEAR-AICO
. == =TP-AICO
1.41
1.2
(@)
1t
0.871‘
1
0.6r *
I
04r "“F g,
0 I'!‘I"I-':-l-c-:-:-‘l-l-:-l-li-l'l‘
25 5 10 15
time (s)

Figure 3.30: Performance of different methods in cylinder grasping scenario. The average cost C
versus time in seconds.

3.8 Conclusions from TP

In this thesis chapter we proposed a novel algorithm to improve local motion planning
methods - Trajectory Prediction (TP). TP can exploit data from previous trajectory op-
timizations to predict reasonable trajectories in new situations. We proposed three key
aspects to solve this problem: an appropriate situation descriptor, task space transfer
of previously optimized trajectories to new situations, and cost-sensitive classification.
Concerning the situation descriptor, we demonstrated that learning a (L;-regularized)
metric in a high-dimensional descriptor space significantly increases performance of the
mapping. Interestingly, this means that we can extract features of a situation (e.g., choose
from a multitude of possible coordinate systems) that generalize well w.r.t. trajectory
prediction. The extracted features allow for an intuitive explanation of the crucial latent
factors to choose one movement over another, and also allow to visualize the structure
of situation space. The task space transfer — that is, first projecting an old trajectory to a
task space and then projecting it back in the new situation — allows an adaptation to the
new situation implicit in the inverse kinematics.

Speeding up local planners is crucial for fluid robot interaction with the world and
humans. The TP framework for movement prediction is of great practical utility for
many motion planning tasks, as shown by our experiments. A good initialization makes
the planner converge faster. Additionally, the planners can converge to potentially better
solutions which are not likely to be discovered by a naive initialization not using the
experience of movement and situations incorporated by the trained predictors.

The results in three different setups, a simple scene with one obstacle, a complex
cluttered scene modeled by a 3D sensor, and an object grasping task, show clearly the

64 3.8 CONCLUSIONS FROM TP

utility of trajectory prediction for speeding-up the motion planning. The most complex
task we examined, object grasping, gained the most from the experience of previous
motions learned from TP, with a speed-up of almost 7 times faster planning times on
average.

TP is a flexible method that makes transfer on at least two different levels: transfer
from train to test situations, and from training with one planner (iLQG) to testing with
another planner (AICO). This flexibility and transfer of good trajectory predictions can
be of great utility in situations when motion data from different sources is available.

3.8.1 Future Work

Future work will focus on making trajectory prediction less dependent on designer
choices. In our current implementations, selecting and testing a pool of reasonable task
spaces for motion transfer is important for the performance of the method. Develop-
ing data-driven methods for finding such task spaces using the demonstrated optimal
motions will be a step further toward understanding the latent structure of motions.
Chapter 5 of this thesis will deal with methods that can potentially make this step in the
future. It is also possible to change the representation of trajectories from a sequence
of (joint) states in time to a more compact parametrized representation such as splines
(Zhang and Knoll 1995).

Another possible direction is applying trajectory prediction to more complex and
realistic scenarios, with sensor uncertainty and moving obstacles in the workspace under
strict time constraints. Speeding up motion planning in such situations will be of even
greater utility, especially if combined with parallel exploration of alternative predicted
trajectories. A framework for such trajectory prediction in parallel will be presented in
the next Chapter 4.

Chapter 4

An Extension of Trajectory
Prediction: Parallel Process Planning

The motion generation by planning framework, described in Section 2.3 and utilized in
Chapter 3, works efficiently if we accept the general limitation that some time (a few
seconds) is needed to calculate a plan before any motion starts. We call this time the
planning time. If we assume that the world will not change during the planning time
when the robot is passively calculating a plan between the start of planning and the start
of motion execution, this delay is not a problem. However, if we have a world where
obstacles can change suddenly on a time scale smaller than the duration of the planning
time, the usual planning approaches will be of great disadvantage. A reactive forward
controller does not have the disadvantage of this passive initial behavior, but it creates
motions of inferior quality usually that can fail to achieve some tasks. In this chapter
we will present a parallel online planning framework that improves upon these draw-
backs of local planning and is a practical solution to planning in dynamically changing
scenarios. We call this the Trajectory Prediction Parallel Framework (TPPF). It has three
components:

e an online planning algorithm building upon local planning algorithms

e an algorithm to maintain multiple local online planners in parallel and select the
best one to control the robot

e a predictive initialization module to speed-up planning convergence of each of the
local planner threads

The use of online planning gives the advantage of greatly reduced window between
planning and acting. Our approach maintains multiple movement trajectories optimized
in parallel CPU threads and can improve upon and switch between alternative trajecto-
ries online during the motion execution by the robot. Such use of parallel processing
hardware is a further advantage of our approach, speeding up planning even more. As
trajectory planners find only locally optimal solutions (see Chapter 3), the third advan-
tage of our parallel framework is the exploration of different planning process initial-

65

66 4.1 INTRODUCTION

izations. The diversity of such initializations turns out to be crucial for overall planning
performance. We use trajectory prediction (TP) to generate varying initializations of
good quality. Empirical evaluations demonstrate the benefits of our approach TPPF in
different motion problems with dynamic changes in the positions of obstacles and tar-
gets.

4.1 Introduction

Consider the problem of robotic motion planning in a dynamic environment, where ob-
stacles or task constraints change over time in an unpredictable manner, e.g. a robot
arm in a factory where other robots and humans move around constantly. In such cases,
the usual two steps of planning a motion trajectory and then executing it will not lead
to efficient behavior. We want the system to react to such changes of the situation by
adapting online the plan. In some cases, a change of situation implies switching to an
alternative motion which was previously suboptimal but now became better than the
current motion plan. For instance, going on the left side of an obstacle can be good at
first, but if the object changes speed and starts moving to the left, switching to a motion
that circumvents it to the right is required immediately, a nonlocal plan change. In such
scenarios the motion generation system is required (i) to do online motion planning and
(ii) to explore and optimize multiple (locally optimal) trajectory alternatives in parallel.
In this chapter we present a framework called TPPF for such parallel online trajectory
optimization. It can be viewed as a natural extension of trajectory prediction utilizing
parallel processing and efficient heuristic for mixing planning and acting. More specifi-
cally, there are two core motivations for such a system:

e Fast trajectory optimization methods are typically local and may require multiple
restarts with different initializations to produce high quality solutions. This moti-
vates a parallel online trajectory optimization system even in static environments.

¢ In dynamic environments it is advantageous to maintain multiple locally optimal
motion hypotheses in parallel. Even when the robot controller only follows the
currently best plan, an unexpected switch in situation (change of the target or ob-
stacles) may render a previously suboptimal hypothesis to become the best. When
we maintain such multiple alternatives the robot may quickly switch to a better
hypothesis —leading to a very fast reaction to situation changes.

It turns out that the crucial issue for parallel online optimization is the initialization of
the different parallel optimization processes. Clearly, this initialization must ensure the
diversity of the alternative trajectories, as well as allow for fast optimization. The latter
implies that the initializations should be close to local optima, that is, we need a heuristic
to generate ad-hoc trajectories likely to be good depending on the situation. To ensure
diversity, the heuristic should offer not only one guess but a variety of qualitatively dif-
ferent trajectories. Our approach is to use trajectory prediction (Jetchev and Toussaint
2009) to propose such initializations in a given situation. A second interesting issue in

4 AN EXTENSION OF TRAJECTORY PREDICTION: PARALLEL PROCESS PLANNING 67

the context of parallel optimization is, how can all optimization processes be kept consis-
tent with the real motion of the robot. It does not make sense for an optimization process
to maintain a trajectory which is not consistent with the current real position of the robot,
i.e. does not have this position as the starting point. Since the robot moves online fol-
lowing only one specific trajectory, all alternative trajectories have to be modified on the
fly to stay consistent. Our parallel planning framework TPPF solves these issues and is
an efficient way for motion planning in time-sensitive tasks.

This chapter proceeds with an overview of related motion planning methods in Sec-
tion 4.2. Then we introduce our motion optimization framework in Section 4.3. In Sec-
tion 4.4 we describe the trajectory optimization component and how it fits into TPPFE. In
Section 4.5 we describe our test simulation setup and the motion planning problems we
want to solve. We also present our test results, both in simulated random environments
and with real hardware. Our conclusions are in Section 4.6.

4.2 Related work

A basic module of our framework are local trajectory planners, see Section 2.3.1. Typi-
cally these methods precompute optimal trajectories or regulators before the movement
is executed, requiring some planning time. Our framework will employ them with a
modification that allows to plan while executing the first time steps of trajectories, effec-
tively resulting in online planning. We build on very fast local optimization methods,
but exploit trajectory prediction and parallel optimization of multiple alternatives to find
better solutions using the limited available time.

The sampling based planners (Section 2.3.2) also suffer from long planning times, and
are at disadvantage for motions requiring fast reaction time and adaptation. The use of
parallel computing to speed up randomized planning has been investigated in Caselli
and Reggiani (1999); Challou et al. (1995). These works split the load of building the
sample tree among CPU cores, and speed up the average time to get a solution for motion
tasks. However, such a speed up of randomized search still does not allow simultaneous
moving and planning with dynamically optimal trajectories (our approach). Second,
in order to be able to react quickly and avoid rebuilding the whole sample tree from
scratch in dynamic situations, additional procedures are required to reuse such networks
of obstacle free nodes when the world environment changes Ferguson et al. (2006), but
the computational time remains significant.

An initial collision free plan can be adapted to moving obstacles by changing the plan
to keep it in the free space by combining global path planning with “elastic bands” that
can be shaped and stretched (Quinlan and Khatib 1993; Brock and Khatib 2000). Such
adaptation of the current motion hypothesis is comparable to one of our optimization
processes. However, it does not address the parallel adaptation scenario, the diverse
initialization issue and the consistency maintenance of alternative trajectories.

68 4.3 PLANNING AND PARALLEL TRAJECTORY EXPLORATION FRAMEWORK

4.3 Planning and Parallel Trajectory Exploration Framework

4.3.1 Notation

We define the robot configuration as ¢; € RY, the joint posture vector. Let gy, =
(qo, --, gr) be a movement trajectory starting in time step 0 and with time horizon 7'
In the previous Chapter for TP we wrote for notational simplicity just g without he time
indexes of the trajectory start and end time steps. However, the parallel framework we
are describing now will require to specifically work with these time indexes, so we in-
troduce them as new notation. In a given situation z, i.e., for a given initial posture g
and the positions of obstacles and targets in this problem instance, the motion genera-
tion problem is to compute a trajectory which fulfills different constraints, e.g. an energy
efficient movement not colliding with obstacles. We will define a the concrete choice of
x when we describe our experiments in Section 4.5.3. We formulate the planning task
as an optimization problem by defining a cost function C(z; g.7) that characterizes the
quality of the joint trajectory in the given situation and task constraints. A local planner
like iLQG will try to find the best movement (or its regulator) for a given situation.

To arrive at the optimal trajectory gq(,., many local optimizers start from an initial
trajectory q. (usually the output of some heuristic) and then improve it, e.g. by making
steps in direction of the cost function gradient. The planners iterate such steps until
convergence.

4.3.2 Framework and Algorithm

Computers have evolved recently to have more and more CPU cores, and this presents
opportunities to speed up motion planning. Multiple processes in different processor
cores can calculate movement plans simultaneously, effectively multiplying processing
power and allowing both faster motion generation and lower trajectory costs. This gives
the opportunity to devise algorithms that use these processes to efficiently distribute the
computations required for motion planning and control. We design TPPF to have one
control process and k optimization processes running in parallel, as illustrated in Figure
41.

The control process stores the currently best planned trajectory g;.;- and controls the
robot joints in real time. At the same time the £ processes optimize % different trajectories
qt.r and evaluate their costs C(z; g5 ;).

Trajectory prediction gives k different initial trajectories, which are then optimized
in parallel. This initialization module is called at time ¢ = 0 and we can reinitialize at a
later time point when new alternative trajectories are required. Trajectory prediction for
this parallel setup will be examined in Section 4.4.

Let us describe the algorithmic procedure of the online parallel optimization in detail.
We assume that the optimizers output a reference trajectory ¢;.r — later we will briefly
explain the case when the optimizers output a sequence of Linear Quadratic Regulators.
We start at time ¢ = 0. The control process has no input from optimizers at all and
controls the robot to stand still, that is to follow the constant trajectory ¢;., = go. Each

4 AN EXTENSION OF TRAJECTORY PREDICTION: PARALLEL PROCESS PLANNING 69

optimizer q |
processes

best traj.

Q ..
\J \/

control { q* L

process

—_——
I
[

%‘:
]
y

Figure 4.1: Time view of the parallel framework: dashed lines mark the intervals of duration 7,
at which two things occur: (i) the control process selects the best optimized trajectory (ii) all g*
are modified to become consistent with the expected g}, ... Between the dashed vertical lines the
control process follows g(;_;, ;. and the optimizers improve g% ;. In the illustrated case, the
first process k = 1 was best at time ¢t = 7.

of the k optimization processes is initialized with a predicted trajectory gk, (see Section
4.4). We assume that one optimization step takes real time 7. Hence, when the optimizers
provide updated trajectories the real time will be ¢ = 7 and the expected state of the
robot will still be ¢& = qo. Therefore the optimizers are queried to optimize trajectories
q’j:T which start at ¢* = ¢* and are of duration T — 7.

After one iteration of the planners the real time is t = 7. We expect all optimizers
to have finished one optimization step and output their trajectories ¢* . The control
process does the minimal cost selection, that is, the best of these trajectories is assigned to
the control process: ¢*.; < ¢, with k = argmin C(z,g" ;). The control process will

k

follow this trajectory during the real time interval [7, 27] and we expect the robot to be in
state g5, at time ¢ = 27. We need to update all optimization processes to account for this:
The currently maintained trajectories ¢5_ of the k optimizers are in general inconsistent
with the expected state g3, thatis g5 # ¢;.. Each optimization process does a consistency
modification of its current trajectory according to:

-t

v sk
T — 21 (QQT q27‘) . (41)

Vk : vt€2TiT: Qf < qzltC +

This can be viewed as simply making each alternative trajectory start at ¢5. to be valid.
Figure 4.2 illustrates this procedure in a simple two dimensional case. Once all different
trajectories are consistent, the optimizers continue with another iteration of improving
the remaining trajectory g5 ., subject to the constraint g5 = g¢5,.

70 4.3 PLANNING AND PARALLEL TRAJECTORY EXPLORATION FRAMEWORK

target

k
qs ;_ne%v obstacle

&
qT:T

Figure 4.2: A sample situation where maintaining two alternative motions improves planning.
At time 7 the control process follows g?.;- (blue) around the obstacle. The kth optimization pro-

cess maintains the alternative trajectory g*.. (green). At time 27 the robot’s expected position

has changed and g% ., is modified to qg’:};w (grey) to become consistent with g3 _. In the case the

object might move towards g*, it will be advantageous to have maintained this alternative.

Generally, in the ith planner iteration the time is ¢ = (i — 1)7. The control process
does a minimal cost selection of all provided trajectories — this gives a current reference
trajectory q(;_,, ;. for the time interval [(i — 1), i7]. The expected robot state at real time
iT is ¢;,; each optimizer does a consistency modification of its current trajectories using
Equation (4.1); the optimizers improve the trajectories g%, and will be finished before
real time i7. The pseudo code of this procedure is given in Algorithm 2. For simplicity
we examined the case when we use iLQG as a local planner, which can directly use an
input trajectory in joint space to start planning. We can also consider a more complicated
setup using a motion regulator instead of such trajectory, see Section 4.3.2.

Note that all calculations of costs of planners use the world state, and TP initial-
ization requires a descriptor x of this world state. In TPPF we assume we get constant
information from some sensors of the world, which allows to update the world state and
descriptor z, and change planner and TP initialization behavior.

The LOR planning case

Let us discuss the case when the optimizers output a time series of Linear Quadratic
Regulators instead of a reference trajectory, e.g. iLQG Todorov and Li (2005). A LOR at
time ¢ is determined by a vector ¢; € R™ and a quadratic form Q; € R™*" such that the
control signal u; (e.g., the step in joint angle space in the kinematic control case) can be
expressed as

w = Qulq — 44 . (4.2)

where ¢ denotes the true state of the robot at time step ¢ — 1. The g; can be interpreted

as a reference and (); as a gain matrix. The optimizers now output a reference trajec-
tory g7 and a series QQn.7 of gain matrices. The online parallel optimization scheme
described above is unchanged except for (i) the control process now simply implements
this LQR, and (ii) the consistency modification can now be done more naturally since the

4 AN EXTENSION OF TRAJECTORY PREDICTION: PARALLEL PROCESS PLANNING 71

Algorithm 2 Online Parallel Trajectory Optimization

1: calculate the situation descriptor «

2: initialize all g}, using trajectory prediction

3: fors=0:T—71do

wait until real time ¢ = s7

calculate the situation descriptor «

select k* = argmin C(z;¢" ;) and reassign the control reference ¢*, . < ¢* .-

k
forallk=1: K do
optionally, reinitialize q?’s +1)7.7 USINg trajectory prediction
’(CS +1)r.7 to become consistent with the expected state ¢f,).
10: optimize g, ,)., for one planner iteration, subject to q(, 1), = 4,y 1),
11: end for
12: forall k = 0do
13: follow the control reference q:T:(S 1)
14: runs parallel to the optimization threads
15: end for
16: end for

modify g

optimization output is a regulator instead of a reference trajectory. In the case of DDP
or iLQG we only have to set the constraint g¥ = ¢ before forward iterating the regu-
lator and thereby computing the consistent reference trajectory q,,.r at which the local
approximations are computed before the backward Ricatti backups.

4.4 Adapting Trajectory Prediction to the Parallel Framework

The straightforward approach to initialize the optimization processes from Section 4.3.2
would be to take a linear start-to-goal endeffector path and translate it to joint space
using Inverse Kinematics (IK). However, such linear initialization can often lead to bad
solutions, see Section 3.7. Another drawback is that the standard procedure does not
create a diversity of alternative trajectories to overcome the locality of the optimization
and explore alternatives in parallel. We propose to use trajectory prediction as a heuristic
to generate a diversity of initialization trajectories that explores different typical motion
patterns.

We will use experience in the form of demonstrated trajectories in different situations
to get better planner initializations and thus a better movement policy. The implementa-
tion of TP requires a dataset D = {(z;,q;)%_,} comprising pairs of randomly generated
situations = (drawn from a distribution of reasonable world situations) and trajectories q
optimized offline with a local planner. The situation descriptor « is modeled as a vector
containing information for the world situations, see Section 4.5.3 for the concrete imple-
mentation for TPPE. Once we have such data, we can learn a function f : x — ¢ that
predicts the costs of initializing a planner in situation z with some motion transferred
from the trajectory database. In the SVR trajectory prediction implementation (Section

72 45 EXPERIMENTS

3.5.2) the predictor had the form f(z) = Tez:q P = argmin f;(z), where we first
€D
learned to predict expected costs when initializing a planner with motion g; as f;(z).
This prediction method can be used to provide the most likely trajectories for a given
situation as mentioned in Section 4.3.2: output q;, with lowest predicted costs fi(z).
In relation to the parallel framework described in the previous section, TP has two

advantages:

)

o Itis more likely to speed up each planner with a good initialization. The prediction
method and transfer operator require time roughly equal to a single planner itera-
tion. Considering the benefit of TP to make planning faster by an amount of time
equal to multiple iterations (see Section 3.7), TP can be a very effective method in
conjunction with the parallel framework TPPF.

e With multiple differently initialized processes TP will explore a wider diversity
of possible trajectory initializations and increase the chance that in any given sit-
uation there will be some proposed movements that can be later refined to low
cost solutions. This adds reactive adaptation capabilities to TPPF so that if the
world situation changes abruptly, one of the different trajectories being optimized
in planners will be close to a good solution.

We expect that increasing the number of planning processes from 1 to 2 will have
great benefit for the quality of motion plans. However, after a certain number we expect
that the performance gains from such multiple processes will flatten and there will not
be any significant increase in performance. This is consistent with our results in the
previous chapter and Figure 3.12(a) which shows how the number of motion alternatives
in a set influences the quality of the best of them. For example, the performance gain
of having 2 instead of 1 trajectories is larger than the gain of having 64 instead of 32
trajectories.

4.5 Experiments

4.5.1 Robot and Planner Setup

We examined a reaching task for our robot setup (Schunk LWA3 arm and a SDH hand)
shown in Figure 4.7, both in simulation and in hardware. We set in our experiments a
trajectory time resolution 7" = 200, a time horizon of 200 slices of 0.01 seconds each, for
a total duration of 2s. We controlled only the 7 joints of the robot arm. The robot hand
endeffector has to reach a point target location at the final time step of the trajectory,
i.e. attime ¢ = T. For all experiments we used the canonical reaching cost function
as defined in our previous experiments in Section 3.7.1. In general, costs less than 0.1
are excellent motions, costs around 0.4 are feasible without collisions but probably near
constraint limits, and costs above 0.6 are with collisions or fail to reach the target.

For our parallel framework and for training trajectory prediction we always used
iLQG as motion planning optimizer module with 7 = 0.07 seconds (time per iteration)

4 AN EXTENSION OF TRAJECTORY PREDICTION: PARALLEL PROCESS PLANNING 73

on a 2.4 GHz CPU. We expect other planners to perform also reasonably well in such a
framework. The inverse kinematics routine required by both the default linear initializa-
tion and the IK Transfer T takes also 7 seconds. The main cost bottleneck for both iLQG
and IK are the collision checks, required for cost calculation at each of the 7" time slices.

4.5.2 Setup of Two Different Scenarios for Reaching Task

For the same reaching task we designed two scenario domains, for each of which we
generated random world scenes = with specific obstacle placement structures. We chose
these scenario domains to highlight two different aspects of humanoid robot motion
planning. The first is online planning with dynamic obstacles. The second is online
planning in situations where the targets randomly change position — the sequential target
domain. For the simulations of both scenarios we assumed perfect noise-free 3D sensors
that provide information for the speeds and positions of obstacles and objects. Given
the initial position and velocity of an obstacle and assuming there are no external forces
to accelerate the obstacle, our simulator can predict its position. However, if something
changes like the velocity of the object, which causes the estimates to be changed. Such
a change of estimated object positions will most likely change the costs of a trajectory
g. More formally, C(x; q) # C(2'; q) if « represents the simulator state before and z’ the
simulator state after the change. Such points of change are likely to benefit from quick
change of the planners’ currently maintained trajectories.

Dynamic Obstacle Scenario

The robot has to reach a target (red point) with its hand and avoid two obstacles placed
between the initial hand position and the target. The obstacles start with some veloc-
ity vector and change it to a different velocity after random #cpange seconds in the time
interval [0.5, 1.5]. We limit the movement range of the obstacles between the robot and
the target, neither hitting the robot, nor flying out of reach, to have challenging and still
feasible planning problems. The initialization module is called at times 0 and tchange + 7,
where new paths are initialized, in response to the obstacle behavior change (assumed
to be detected from sensors updating the situation descriptor z).

We chose to have only one velocity change for the obstacles in this domain. General-
ization to multiple change points is straightforward, by just calling the TP initialization
module in the parallel architecture at the times of change.

Figure 4.3 illustrates an example scenario in this domain. At first, the obstacles move
away from the robot, and the initial plan is a rather straight approach to the target. At
time tchange the obstacles change speed on a collision course with the initial plan. Quick
re-initialization allows the robot to immediately retract slightly and find a better path to
the target out of the obstacles” way.

74 4.5 EXPERIMENTS

final (tme 4/200)

final (time 98/200)

(a) Planned motion ¢* in the early phase of (b) At tchange the obstacles change velocities.
the trial: collision free if the obstacles would The controller selects an alternative trajectory
continue their motion. that retracts the hand and then circumvents

the obstacles.

Figure 4.3: Typical situations in dynamic obstacle scenario: reach target and avoid moving ob-
stacles.

Sequential Target Scenario

In this scenario the robot has to reach a point target around one static obstacle. The
scenarios are generated in two steps. First, the robot starts from its initial position with
the hand withdrawn and has 2 seconds to reach the randomly placed target. Then, the
target is moved at a random position on the other side of the obstacle and the robot has again
2 seconds to reach it. The target is deliberately placed to confuse the robot. The difficulty
is that in some situations even if the target appears very close to the robot hand, the
direct move is blocked and the robot has to take a long detour to circumvent the obstacle
and reach the target on the other side, see Figure 4.4.

(a) Initial position - reach target. (b) Second phase - reach new target loca-
tion.

Figure 4.4: Typical situations in sequential target scenario.

4 AN EXTENSION OF TRAJECTORY PREDICTION: PARALLEL PROCESS PLANNING 75

4.5.3 Trajectory Prediction Setup

We used the SVR predictor variation of TP (see Section 3.5.2). For each problem domain,
we generated 1000 random situations and calculated trajectories optimized until conver-
gence with iLQG. We then “compressed” this dataset by clustering the trajectories in 20
clusters (see Section 3.7.1 for details on this procedure). We used the joint space @ for
task space for TP in the sequential target domain. For the dynamic obstacle domain we
used the task space I', which is basically a 3D space of the hand endeffector coordinates
in a specially constructed frame, see Jetchev and Toussaint (2010) for details. This frame
is constructed with basic geometric operations (scaling, translation and rotation) to al-
ways have the start hand position at (0,0, 0) coordinates and the target at (0,0, 1). This
design of task space has the following interesting property: the backprojected paths by
Transfer IK (Section 3.4.2) would always start at the current hand position and end at the
target position. This is the most important cost term for the reaching task, and satisfying
it by design of task space turned out to be advantageous in our case, see Figure 4.5

To define situation descriptors x we designed a descriptor having the features we
assumed were relevant for the scenarios we try to solve. We define x in the following
way

xr = (217 29,23, 24, %o, ZZ: Ztarget) S Rm . (43)

21, 22, 23, 24 are the current 3D positions of the robot’s hand, wrist, elbow and arm. z, is
the current obstacle position and 2! is the estimated obstacle position at the final time
T'. Ztarget is the target location. Thus, the descriptor for the sequential reaching scenario
with one obstacle the descriptor = has 21 dimensions. For situations with two obstacles
we simply added additional coordinates for the other obstacle: z,, for current state and
2L for expected position at the final time step 7. For the dynamic obstacle scenario with
2 obstacles the descriptor « has 27 dimensions.

We use a simple piecewise constant velocity motion model for the obstacles of the dy-
namic obstacle scenario. More complicated motion models with acceleration can easily
be incorporated by modifying the descriptors x and adding additional features. There is
related work on visual cue processing for motion prediction in cognitive science Coull
et al. (2008), where the features of motion necessary to make accurate predictions for
object movements and potential collisions are discussed, e.g. polynomials of speed, ac-
celeration and position values. In more complex situations cluttered with numerous ob-
stacles, a voxel situation descriptor Jetchev and Toussaint (2010) will be a better choice.

4.54 Results
Results for Dynamic Obstacle Scenario in Simulation

We compared the performance of 4 different methods. The baseline is iLQG with linear
path initialization LINEAR. We tested also linear initialization with a hypothetical iLQG
that makes 2 iterations in 0.07 seconds, and called this LINEAR2. The assumption behind
this test is to illustrate the potential effect of a faster local planner with only one default

76 4.5 EXPERIMENTS

Figure 4.5: Two hand movements transferred from task space I': each start at the current position
and end at the red point target.

initialization. Trajectory prediction and parallel planning was labeled TPn, denoting n
parallel processes, in addition to the the control process.

For quantitative results we examined costs in a set of randomly simulated scenarios
with different obstacle and target placements. We will give the average costs over mul-
tiple runs and standard deviations for the mean estimation. Keep in mind that all costs
show the quality of the actual movement done in the fixed time of 2 seconds for planning
and motion execution. Thus the times of all planner and initialization combinations are
the same, and what can really distinguish them is the quality of motions generated.

In the first column of Table 4.1 we examined the effect of having a re-initialization at
the velocity change time ¢ cpange:

e All TPn can solve such motion problems effectively, while the standard approach
of LINEAR has too high costs.

e TP1 has lower costs than LINEAR2 and this shows that initialization with an ap-
propriate initial path is more effective than using a linearly initialized but 2 times
faster planner.

e Using parallel exploration with more processes (TP2, TP3, TP4) can further lower
costs. However, the gains of TP4 over TP3 are quite small, and we expect that
adding more parallel processes (e.g. TP5) will have diminishing effect on perfor-
mance improvement.

Not reinitializing with trajectory prediction at tchange lowered performance for all
methods, as the second column of Table 4.1 shows. If the world situation x changes sud-
denly as in our dynamic obstacle domain at time #change, all of the process costs jump
abruptly. Local improvements from planner iterations cannot fix the different old plans
fast enough in the short period of 2 seconds for adaptation. Reinitializing is advanta-
geous at such change points, because trajectory prediction can predict diverse move-
ments again and increase the chance that some of the planned movements can lead to
good optimal trajectories. Without new initialization the old trajectories can not be “re-
paired” quickly enough and collisions can occur driving the costs very high.

4 AN EXTENSION OF TRAJECTORY PREDICTION: PARALLEL PROCESS PLANNING 77

—a
—q?
—a
—a

(a) Using new TP initialization at time
tchange: quick adaptation and convergence
att =1.05

(b) Not using TP initialization at time
tchange: slower adaptation and conver-
gence att = 1.2

Figure 4.6: The costs of multiple planner output trajectories ¢ being optimized in parallel for
one dynamic obstacle scenario. Between ¢t = 0 and tchange all planner processes converge to
good solutions. At tehange = 0.9s all planner movement costs worsen when the obstacles change
velocity, and new motion trajectories are required to go to the target without hitting an obstacle.

Table 4.1: Average costs for 200 simulations of dynamic obstacle reaching.

Initialization Method || 2 Initializations at | 1 Initialization at
t =0and t = tchange t=0
LINEAR-ILQG 0.70 £+ 0.05 1.02 £ 0.06
LINEAR2-iLQG 0.55 +0.04 0.85 4+ 0.05
TP1-iLQG 0.41 +0.03 0.9 +0.05
TP2-iLQG 0.39 +0.03 0.86 + 0.05
TP3-iLQG 0.37 £ 0.03 0.82 +0.05
TP4-iLQG 0.36 + 0.03 0.80 &+ 0.05

If one looks again at Figure 4.3, it can be seen that if at time ¢.j,414e the old best plan
is not changed immediately, the robot will be hit by the obstacle. With TP a new plan
avoiding the new path of the moving obstacle is generated almost immediately. The esti-
mated costs of 4 different planner threads is illustrated in Figure 4.6. There it can be seen
how all planners converge in the beginning, then the obstacle change velocities at ¢.j4nge
and the old plans become unfeasible. We show the estimated costs of the different mo-
tion trajectories C(z; q') which use the current information for the obstacle movement
as the parallel framework proceeds in time. It can be seed how using an additional TP
initialization at time ¢ = f.punge improves greatly the reactive performance of the plan-
ners. The net gain of 0.15s faster planner convergence but it is crucial for performance
in this scenario (even though for many static planning scenarios this would seem like a
very short duration).

78 45 EXPERIMENTS

Table 4.2: Average costs for 200 simulations of sequential reaching, initialization method VS
offline pre-optimization iterations.

of offline n=>0 n=>5 n =10 n=15
iterations

LINEAR-LQG || 0.56 +0.06|0.52 + 0.060.54 + 0.06| 0.54 + 0.06
TP1-iLQG 0.22 +0.03/0.16 & 0.02]0.14 £+ 0.02| 0.13 4 0.01
TP2-iLQG 0.23 +0.03/0.15 + 0.02]0.13 £ 0.01| 0.12 4 0.01
TP3-iLQG 0.20 +0.02/0.13 +£0.01|0.12 £ 0.01| 0.12 4+ 0.01
TP4-iLQG 0.19 +0.02/0.12 +0.01|0.12 +£ 0.01 |0.11 £+ 0.00

Results for Sequential Target Scenario in Simulation

Table 4.2 shows our results in the sequential target domain. First, we compared different
initializations of the planners, with LINEAR being again the baseline, and TPn for n=1...4
being the TP initialization with 1, 2, 3 and 4 planner processes in addition to the control
process. Second, we tested the gains from some offline pre-optimization before time
t = 0. We indicate the use of n additional offline optimization iterations(each of which
delays the movement start by 7 = 0.07s) in the columns of Table 4.2.

LINEAR fails to find good solutions consistently, even with extra pre-optimization
iterations: a straight line path is difficult to be made into a curved detour path as in
tigure Figure 4.4(b). The results confirm that more parallel initializations are better for
TP. More pre-optimization iterations lead to increased performance, mainly because they
allow better transfer of the prototypes and better estimation of the costs required for the
argmin in line 4 of Algorithm 2. However, just a few iterations are enough to improve
the trajectories before starting to follow, there is a negligible gain from doing more than
5 pre-optimization iterations at start time.

Hardware Demonstration

We also tested a sequential target setup with the Schunk LWA3 arm, depicted in Fig. 4.7.
There we have a blue target ball moved by the human demonstrator around a cylinder
obstacle. The human demonstrator deliberately changes the target location any time
the robot arm comes near it. The online planner performed quickly and robustly in an
interactive situation where a human moves the target!.

We used an 8 core desktop computer. We used 2 cores for vision, 4 cores for iLQG
optimization in parallel processes (with 7" = 400 and 4 seconds duration), 1 core for con-
trol. For vision we had a stereo Bumblebee camera and used the method of Linderoth
et al. (2010) for calibration and learning to map 2D image coordinates to 3D world coor-
dinates. We got a reasonable performance of 15 frames per second and average accuracy
of 5mm.

'A video demonstrating the robot motions is available at http://user.cs.tu-berlin.de/
~jetchev/MultiPlan.html

http://user.cs.tu-berlin.de/~jetchev/MultiPlan.html
http://user.cs.tu-berlin.de/~jetchev/MultiPlan.html

4 AN EXTENSION OF TRAJECTORY PREDICTION: PARALLEL PROCESS PLANNING 79

Figure 4.7: Our hardware setup: Schunk LWA3 arm, stereo Bumblebee camera, black obstacle
and a blue target that the arm follows continuously.

4.6 Conclusions

We presented a parallel algorithm for online motion planning. Its main contributions
are the utilization of multiple CPU cores for online planning in parallel, and the predic-
tion of diverse initial trajectories that allow the system to explore and switch between
alternatives depending on the environment. The last capability is achieved by using tra-
jectory prediction for motion planning initialization. The machine learning approach of
TP is applied to great effect to two challenging robot problems requiring quick reaction
times to unpredictable changes in the world. The mapping learned from data between
situations and motions codes some of the world structure in the predictor function. This
structure is reused when encountering novel situations: the predictor initializes the plan-
ners to already reasonable motions and speeds up convergence. Our results showed how
such exploration of multiple trajectories, made especially effective by splitting the com-
putational load between multiple CPU cores, improves online planning performance:
under time constraints our model manages to effectively generate feasible motions.

4.6.1 Future Work

Future work will look to apply the TP parallel framework to more realistic hardware
robot scenarios. By selecting carefully the features available in the situation descriptor
and the task space used for prediction, the TPPF framework can be adapted to many pos-
sible scenarios. Right now the biggest hindrance to the further application of the TPPF
to real scenarios with moving objects, is the sensor problem: how to get the most accu-
rate information about the world in the fastest amount of time. Using an optical flow
representation (Willert et al. (2007)) to capture motion structure for a whole scene with-
out relying on individual object speed measurements can allow TPPF to reason about
cluttered moving scenes.

It is also possible to incorporate the sensor uncertainty in the trajectory prediction
module by adding error estimates to the features of the situation descriptor. We can then
let the machine learning approaches used for TP to make sense of the features and their
noise and learn appropriate mappings of situation to motion.

80

4.6 CONCLUSIONS

Chapter 5

TRIC: Task Space Retrieval Using
Inverse Optimal Control

The next algorithm we developed is called Task Space Retrieval Using Inverse Feedback
Control (TRIC). Its idea is to find simultaneously 3 aspects of the latent structure of mo-
tion data: a sparse discriminative value function specifying the desired motions, a mo-
tion representation of features relevant for a task, and a motion generation policy. To
learn this we are using data in the form of demonstrated motion trajectories, without
the strong assumption of knowing any cost function characterizing the observations and
without knowing the task space in which the demonstrations should be executed. We
demonstrated the effectiveness of our method by learning from imitation a controller for
robot grasping of objects, a challenging high-dimensional task. TRIC learns the impor-
tant control dimensions for the grasping task from a few example movements and is able
to robustly approach and grasp objects in new situations.

5.1 Overview of the TRIC method

Learning complex skills by repeating and generalizing expert behavior is a fundamen-
tal problem in robotics. A common approach is learning from demonstration: given
examples of correct motions, learn a policy mapping state to action consistent with the
training data (DPL). However, the usual approaches do not answer the question of what
are appropriate representations to generate motions for specific tasks. Inspired by In-
verse Optimal Control, we present TRIC, first presented in our previous work Jetchev
and Toussaint (2011a). The main contributions of TRIC for this thesis are:

o the discovery of a sparse discriminative value function

e the use of this value function to create a motion controller for imitation of the
demonstrations in a robust and goal-oriented way

o the analysis of motion features relevant for a certain task

81

82 5.1 OVERVIEW OF THE TRIC METHOD

- Learned - - Motion
‘ Contro"er OUtPUt
Sparse relevant
motion features

Figure 5.1: A diagram illustrating TRIC: use motion data to imitate observed movements. First
learn a representation of the motions and a value function, then use the value function in a motion
rate controller.

In Chapter 3 we assumed that we were given a cost function that specified what
the desired motions were, and motion generation was just a matter of optimizing this
cost. However, in general this cost function assumption does not hold, and we do not
know the measure of a good motion for a task. Usually experts use their knowledge to
design a cost function suitable for the desired motions, but this can be complicated and
not intuitive for certain tasks. In some cases it is easier just to give examples of desired
motions and construct a cost (negative reward) function from them (Ratliff et al. 2006).
Note that the power of inverse optimal control methods is that without having a specific
task description (e.g. in the form of a cost function), we can infer the desired behavior
just from demonstration. Here we take a slightly different approach and learn a value
function representing the desired behaviors.

Suppose we are given a set of motions and no additional information about them.
We can ask the question “Why were the motions performed in this way?”. The implicit as-
sumption we make is that the teacher that showed us this demonstrations is rational and
the demonstrations were optimal with respect to some criteria defined in some motion
feature subspace. Both the optimality criteria and the relevant motion features are not
directly recorded in the observations. Both can be considered latent structure in the data,
that can be eventually discovered by proper learning methods. The essence of our algo-
rithm is to learn a value function f that characterizes the demonstrations. The teacher
movements should always decrease f, which can be viewed also as a motion potential
leading to correct motions (Howard et al. 2008). Without any prior knowledge about the
task at hand, the controller using the learned value function can effectively generalize
motion from few training examples to new situations.

The concept of value function as used by TRIC is related to the notion of value func-
tion in RL, but we are representing expected discounted costs (negative rewards) instead
of discounted rewards. A value function has the following properties (see Section 2.4.2)
that make it appealing to use for learning and generating motion:

e the value function in RL is a representation of the expected discounted return of a
given policy

e given an optimal value function, the optimal policy is to maximize the immediate
reward and expected future rewards

5 TRIC: TASK SPACE RETRIEVAL USING INVERSE OPTIMAL CONTROL 83

In relation to the first property, a high-level view of the value function f is that it repre-
sents the goal or intention of the teacher’s policy that created the demonstrations. This is
not a fixed description of a desired robot configuration, but a whole subspace of states.
Generating motion with this subspace as a goal allows to satisfy the task in a flexible
way, similar to the task manifold concept of Gienger et al. (2008). In relation to the sec-
ond property, we can use the learned value function to generate motions with a reactive
controller that goes smoothly in the direction of decreasing the value.

Another question we can ask is “What are the task spaces in which this motion is per-
formed best?”. For example, if the teacher had the goal of reaching to a target object with
his endeffector the task space Yi4qer Of relevant coordinates in the target frame will be
the best one. Usually experts would choose a task space and just assume that it is the
proper one for a given task (see Section 2.4.1). It is difficult to design behavior for more
challenging tasks like object manipulation, because the correct task spaces, targets and
costs are not known apriori. Other approaches would take a set of task spaces and test
which of them works best with respect to a certain criteria; see e.g. our approach to
TP in Section 3.4.1, used also by Muehlig et al. (2009); Billard et al. (2004). However, in
most interesting robotic setups there will be too many task spaces and the robot designer
cannot test every single one of them to see which works best for some task. Learning a
value function from teacher demonstrations has many advantages in such cases, and it
can also give a satisfactory answer to the question of “What to imitate”. The next cen-
tral idea in our approach is to model f as a sparse discriminative value function of a
high-dimensional feature vector y, which offers a large variety of potential geometric
features that might be relevant for a motion. The optimization of f implies a choice of
these features. Thus we answer the question of What in imitation learning in a princi-
pled way using data and Machine Learning by coupling the learning of value function
characterizing motion data with task space retrieval.

Our approach is to define a large set of motion features from which we can extract a
compact set of the important task dimensions using TRIC. The choice of features ¢(q) = y
effectively determines what value functions we can learn, and what task spaces we can
select as relevant for a given task. However, this is a weak prior restriction, since with our
method we can select the important dimensions out of any set of motion features and we
can easily take as landmarks all objects in a scene, and any geometrical relations between
them. Aslong as our feature set y is rich and contains multiple controllable task spaces of
the robot body parts relevant for the task at hand, we can expect to successfully imitate
with TRIC a large class of motion problems with such motion features. The concrete
choice of features will be presented in Section 5.5.

In Figure 5.1 we illustrate the main concepts of TRIC, and in the next textbox we
summarize what TRIC requires and what it can accomplish:

84 5.2 MOTION MODEL AND CONTROLLER

Premises necessary for the TRIC framework:

¢ a controller algorithm and a rich set of motion features
“the ability to control the robot in different ways”

e ability to record data: situations (e.g. object positions) and motions

e an assumption that the teacher was rational and had a latent goal
“the teacher showed the desired behavior and there was a hidden criteria specify-
ing why it is desired”

e the world situations are sampled from a generating distribution
"the objects in the world, their count, size and positions, have a certain pattern”

o we limit the class of behaviors we want to imitate to non-periodic motions
Given these premises, TRIC can accomplish the following:

e learn a value function for the task
"learn the teacher’s hidden goal that characterizes the observations”

o the value function leads to a controller to imitate and generalize the data
"imitate in unseen situations from the same distribution”

e learn a sparse motion representation
"understand what the teacher did in what task spaces”

This chapter will proceed to explain and demonstrate the TRIC algorithm. In Sec-
tion 5.2 we describe our motion model, that is, how the value function f implies the
movement. In Section 5.3 we state the desired properties of the value function f and
define a training loss for learning f from demonstrations and explain the significance of
each term. We will discuss some of the properties and limitations (i.e. why the motion
data should be non-periodic) of TRIC in Section 5.4. We will test the effectiveness of
our method in a robot grasping application and analyze the best features for grasping
in Section 5.5. Finally, Section 5.6 concludes the chapter and gives some ideas for future
work.

5.2 Motion Model and Controller

The method of TRIC was designed for generating motion with articulated robot models.
We write the vector of joint angles of the robot as ¢ € R™ and a robot movement tra-
jectory for T time steps is {g;}’_,. We assume that for each joint configuration ¢ we can
compute a high-dimensional feature vector ¢(q) € R*, which we will describe in detail in
Section 5.5. The feature vector will typically comprise all possible relative and absolute
positions and distances between a set of landmarks defined on the robot and external
objects — clearly, the size of the feature vector is quadratic in the number of landmarks.

5 TRIC: TASK SPACE RETRIEVAL USING INVERSE OPTIMAL CONTROL 85

It is the objective of learning to select relevant features to describe the value function f
of a motion. The features ¢(q) are non-linear in ¢ and can be computed from the robot
kinematics. E.g. if the task is to move the robot hand to a target position, a properly cho-
sen feature that codes this distance will allow much easier control than the robot joint
configuration space. TRIC uses the richness of the representation ¢(¢) to learn a value
function model and select important features, see for illustration Figure 5.2.

¢)y | f)ify)

Figure 5.2: Motion representation scheme: the joints ¢ are mapped by ¢ to a high-dimensional
feature vector y, which is then used to find the value function f(y). In general y has many more
dimensions than ¢; f should be sparse in y.

Note that strictly speaking we are using for the features a task space projection y =
¢2(q) of the joint state ¢ in some situation = containing the state of the world at this in-
stance, as in Section 3.4. For simplicity in notation for TRIC we are skipping the situation
subscript in ¢,, and it should be assumed that the motion features are always calculated
with respect to the current world situation x.

We assumed that the teacher was rational with respect to some hidden criteria. Thus,
if we suppose that f is trained as a value function consistent with the observations,
the robot can generate motion with a method commonly used in robotics: motion rate
control (see Section 2.2). More precisely, the robot motion is generated by imposing a
smooth decreasing “motion” on f which is translated back to joint angle motions using
inverse kinematics (IK).

More formally, motion rate control can be defined as computing a new robot pose
given the old pose g; in each time slice ¢t by minimizing the next step function CMR:

qt+1 = argmin CMR(q, Qt) (6.1)
q

The next-step cost CM ¥ is defined similarly to C'X from Equation (3.8) in Section 3.4:

CM(q, 1) = |l — ail® + || £ 0 #(g) = f o $lar) + ll§, + Cprior(a) (52)
—_—— —_———
small step decrease f o ¢(q) motion priors

The first term ||g — ¢;||* penalizes step length, the standard way to prioritize smooth
movements. The second term | f o ¢(q) — f o &(qt) + (52||§l aims for a decrease in the
value function f o ¢(q) by a rate d,. The constant é; controls the importance of this

term with respect to the other terms of CMR_ The third term Chrior(¢) imposes additional

86 5.2 MOTION MODEL AND CONTROLLER

standard costs for joint limits and collisions, i.e. our prior constraints on the motion to
be generated.

Iteratively making steps ¢, ¢¢+1, ... with this motion model generates a continuous
motion trajectory decreasing the value function f o ¢(q) = f(y). Note that our goal is
not to find a joint posture having the global minima of the value function in one step,
but to generate motion smoothly decreasing the value function. With our motion model
(5.1) we do not aim to recover the exact sequence of joint states from the demonstrations,
but learn to generate motions good with respect to the (latent) value function. We lose
the speed information and relax the problem; the speed is tuned by the parameters in
equation 5.2 which control how fast we decrease the value function. Because of the lin-
earization used in IK (Section 2.2), we can only expect that IK makes small steps towards
the goal.

The gradient of f o ¢ with respect to g can be found using the chain rule:

ofog) 0f o

J="0¢ T os0q

(5.3)

The first term o1 can be calculated analytically given a parametrization of f. The second

9¢
term gﬁ is the task space Jacobian that can be calculated from our articulated robot

simulator for a specific posture q. Because f is a function of task space feature inputs, it
can be viewed in itself as a more complex constructed parametrized motion task space.

With this motion model we have the following property, whose proof can be found
in the appendix.

Proposition 5.2.1 If §1 — oo then the IK solution q;1 minimizing Equation (5.2) has the
property that the next step q;+1 — q; is proportional to the value function gradient J.

An alternative motion model can directly make steps proportional to the gradient of
the cost-to-go Equation (5.2) and this will also minimize the value function and result
in motion imitation. However, the motion rate control formulation is more robust with
respect to satisfying different terms with different weights, and is preferred for robot
controllers.

Note that even though we can add as many task variables as we want and use motion
rate control, in practice having more variables reduces the performance of the algorithm.
TRIC is designed to find a sparse set of task variables which are important for the specific
task, which has these advantages:

e regularization of the value function prevents overfitting and improves the learning
performance

¢ having a large set of task spaces means that probably some of them are just noise
and irrelevant for the task at hand, so it is better to not follow blindly such noisy
motion aspects

¢ having few task spaces as targets makes it more likely that IK will find joint states
satisfying all of the task space targets with reasonable accuracy

5 TRIC: TASK SPACE RETRIEVAL USING INVERSE OPTIMAL CONTROL 87

5.3 Learning the TRIC Value Function from Motion Data

We defined in the previous section the motion model we use, assuming a value function
f existed. Now we will explain how we can learn this value function f such that our
motion model generates motions similar to demonstrated behaviors. We assume that f
is a differentiable function parameterized by the vector w —in Section 5.5 we will specify
f concretely.

Suppose the robot observes D = {¢, yi, g?(qﬁ)}f\;’T, a set of N demonstration trajec-
tories of length T"each. Our training algorithm can handle trajectory data of varying time
lengths because the loss function sums over all trajectories and their time steps. We as-
sume for simplicity that all trajectories are fixed to 7" time steps. The data consists of joint

space trajectories movements, their projections to the motion feature space ¢(q}) = v,
. . . 99 . . .
and the Jacobian matrices of this feature space 87(25 (¢8).} A dataset with sampled motion
q

trajectories assumes indirectly that the demonstration steps go linearly between the sam-
ples ¢; and ¢;41. We can call this the keyframes assumption. It is an indirect assumption
behind the majority of DPL methods. It is up to the teacher providing demonstrations
that the sampling rate is high enough to capture the essential demonstration properties.

The main assumption we make for learning a value function from data is that the
teacher is rational and the demonstrations were optimal with respect to some criteria
defined in some motion feature subspace. One way to incorporate this assumption is to

design a value function f with the following 3 properties:

o (i) The demonstrations move to states of lower value as time progresses: f acts as
a generative motion potential.

e (ii) Demonstrated teacher motions are discriminated against any other motions:
discrimination.

e (iii) A small set of relevant motion features are selected: sparsity.

Property (i) arises from the assumption that a rational teacher moves closer to his
desired goal as time progresses. This property is also fundamentally necessary for our
motion model Equation (5.1) where we want to reproduce the teacher’s motion by gen-
erating joint states with gradually lower value f.

Property (ii) arises from the fact that the motions of the rational teacher should have
lower value function than any random motions, because they are closer to the goal of
the demonstration than random motor commands.

Property (iii) comes from the assumption that some motion subspace has a good
description of the latent goal of the teacher. To ensure that f has these 3 properties we

'If it is clear from the context that we are dealing with just one trajectory, we will skip the superscript i
and write just g; instead of g;.

88 5.3 LEARNING THE TRIC VALUE FUNCTION FROM MOTION DATA

define the training loss L(D;w) for data D and value function parameters w:

T
L(D;w) = Z Z(anLn(yf; w) + ayLy(g);w)) + aulwl, (5.4)
i=1 t=1

The hyperparameters o = {a,, g, a} determine the influence of the different loss
terms. Once we have defined the loss L(D;w) we can use gradient-based optimization
to optimize with respect to the parameters w to learn the function f. The loss is related
to the 3 properties of TRIC in this way:

e Both loss terms L,, and L, influence property (i).

e Property (ii) is ensured directly by the design of the loss term L,,, but it is also
influenced by the term L,.

e The L; regularization term |w|, in Equation (5.4) forces sparsity in the parameters
of the function f(y) and indirectly performs feature selection with respect to y.
Because of the coupling f(y) = f o ¢(q), the sparsity of w means that the motion
rate control will lead to joint states ¢ changing some task dimensions of y and not
caring about others — which we call task space retrieval and selection, property (iii).

The next sections will explain in more detail L,, and L,, and how they influence the
value function f and ensure that properties (i) and (ii) hold. In appendix A.5 we write
the exact computational complexity of training TRIC and generating motion using f.

5.3.1 Discrimination in Feature Space via Loss Term L,

We want to design the term loss L,, so that properties (i) and (ii) hold. First we make the
following observations:

e The demonstrated trajectories were assumed to be near optimal and should have
low values f.

o All other possible motions should be discriminated from the true motions and have
high values f.

o The trajectory samples ahead in time should have lower f values than those before
them.

We use an approximation to model the relation between the teacher demonstration
and what we called informally all other possible motions or noise. We create a small set of
m =1, .., M of synthetic noisy samples which need to be discriminated from the demon-
strated trajectories:

q;fi,m = qz—l + N(Oa 02) (55)
Tt = O(Gtm) (5.6)

5 TRIC: TASK SPACE RETRIEVAL USING INVERSE OPTIMAL CONTROL 89

Figure 5.3: The noise §; sampled from a Gaussian centered at ¢;—;. A few noisy samples are
shown, colored by their weights €; ,,,. Low weights are green and high weights are red (for visual
clarity the weights are discretized to 2 colors).

The noisy joint states g, are created by adding Gaussian noise with variance o2 to
the robot joint configuration of the previous time slice ¢;—;. We add noise on ¢ and
not on y directly since the feature vectors y lie on a subspace constrained by the robot
kinematics and dependencies between the dimensions of y. Thus, we sample in joint
space resulting in task space samples lying on a low-dimensional subspace Y34 C R?
where s is the number of dimensions of y. If we have n joints, this would be a no more
than n-dimensional subspace.

We define the distance between a joint state and a joint trajectory interpolated linearly
between its keyframes:

dcurve(Qa {(I’Y}z:t) =)\E[O,Ilr}l,i’y%[t,T]”q — Gy — A(‘]’y—i—l - C_I'y)H (5.7)

We define sample weights for a sample ¢} ,,, equal to the distance to the true demonstra-
tion trajectory ahead in time:

Gi,m = dCurV@(di,ma {q}y}%—‘:t) (58)

Samples that are near a correct state ¢; in the future will have low weights. Samples
that are away from the true trajectory in the future will have high weights and their loss
contribution will be higher. Such sample weighting represents this prior for metric in
the space of y = ¢(g), and is also consistent with the keyframe assumption we made in
the previous section 5.3.

The way we create these synthetic samples and weight them is illustrated in Figure
5.3. The term L,, is then defined as:

M
Ly w) = D € log(L+ e/ Wi =1 Gt (5.9)
m=1
We use the log loss from Equation (2.12), common in discriminative learning, to penalize
noisy samples with low value f.

90 5.3 LEARNING THE TRIC VALUE FUNCTION FROM MOTION DATA

Figure 5.4: The loss term L,, pushes down the value function f o ¢(¢) near the true trajectory
samples ¢; , and up the cost of the generated noise. Red represents high value.

Minimizing the loss term L,, directly ensures the discriminative property (ii). An
intuitive interpretation is that we “push down” the value f(y) of the true samples and
“push up” the value of the artificial noisy samples, proportional to their weights as in
Figure 5.4, where for simplicity ¢ = y € R?.

Minimizing the loss L,, ensures that the generative property (i) holds under certain
assumptions, as the following lemma shows.

Lemma 5.3.1 Assume that the following holds for TRIC and the training demonstrations:

(i) a single linear trajectory {q;}L_, in the joint task space ¢(q) = q € R",

(ii) M — oo noisy samples,

(iii) sign(a — b) is used instead of log(1 + e2~°) in the terms of L., in Equation (5.9),

(iv) values of the metric deyrve in Equation (5.7) smaller than a constant €, are set to 0.

Then a lower bound Lg on the loss L' = Z;‘le L, (q; w) exists, and when L' = Lp it holds for
all time steps t that (I) f(q—1) > f(q¢), i.e. the value function is decreasing along the trajectory,
and (1) f(qr) is a minimum of the value function.

The proof of this lemma is in the appendix.

Properties of the Attractors of f

The different minima of f act as attractors to the motion generation system defined in
Equation 5.1. We can analyze its stability properties using notions from the classical Lya-
punov Stability theory (Slotine and Li 1991), redefined for a motion rate control system
instead of the usual differential equation notation & = g(x). If a motion system converges
to some equilibrium point regardless of the starting point it will be called asymptotically
stable.

Definition 5.3.2 The motion system x1 = ¢ + g(x+) is asymptotically stable at the point x*
if starting from any xq it converges asymptotically to x*, i.e.

lim z; = x* (5.10)
t—o0

5 TRIC: TASK SPACE RETRIEVAL USING INVERSE OPTIMAL CONTROL 91

Proving such a property for a motion system is useful, because it signifies that the mo-
tions can reach their targets robustly with respect to any perturbations and random start-
ing conditions (Perkins and Barto 2002; Khansari-Zadeh and Billard 2010). There is the
standard Lyapunov Stability theorem that states a condition when the asymptotic stabil-
ity property holds:

Theorem 5.3.3 The motion system xy11 = x¢ + g(x) is asymptotically stable at the point x* if
a continuous and continuously differentiable function V (x) can be found such that:

(@) V(z)>0 Vz#z*

B V) =0 11
(¢) V(:p) <0 Vx#z* .
(d) V(z*)=0

Now we proceed to claim that TRIC is asymptotically stable under some assump-
tions, and the proof is in the appendix.

Proposition 5.3.4 Suppose we have trained TRIC on a single trajectory {qs, v }1_, and that the
implications of Lemma 5.3.1 hold for a trajectory in that task space. Additionally, we generate
motion with 6; — oo, i.e. very high weighting of the value function. Then the motion generated
by the model in Equation (5.1) fulfills the conditions of Theorem 5.3.3 and is thus asymptotically

stable in the joint space subspace Q' = {¢' : ¢(¢’) = ¢(qr) = yr}.

This proposition tells us that we have as attractor a whole joint subspace @’ to which
our motion generation method will converge given enough time. The attractor is not a
single state but a subspace, because redundancy of the joint space allows for multiple
different robot joint configurations ¢’ to have the same task features v;.

It is not trivial to prove convergence properties of TRIC in a realistic scenario with
multiple trajectories, limited samples M and §; not going to infinity. Our experiments in
Section 5.5 show empirically that motion generation using the learned value function is
robust and stable. However, it is obvious that if we have extreme cases, e.g. an obstacle
blocking all paths to to the target and pushing the robot away, no performance of the
system can be guaranteed because obstacle avoidance will influence the behavior more
than the task-related value function.

5.3.2 Making the Gradient Consistent with the Demonstrations via Loss Term
Lg

The next loss term we discuss is L,. Its main idea is to force the negative gradient —7
to point in the direction of difference vector (i.e. velocity) between steps ¢;+1 — ¢; of the
demonstrated trajectories in joint space. There are several reasons for this design:

92 5.3 LEARNING THE TRIC VALUE FUNCTION FROM MOTION DATA

—J(qt) qt+1

» 4

Figure 5.5: A trajectory sampled in ¢; and ¢, +1. The loss term L is minimized when the negative
gradient —7(q;) has maximal cosine of its angle with the direction of the next step g;+1 — .

e The teacher that gave the demonstrations was assumed to be rational, so we ex-
pect that he moved in the direction of steepest value descent between ¢; and ¢ .
The keyframes assumption we made in Section 5.3 ensures that the trajectories are
approximately linear between the samples in time available in the dataset.

e According to (5.2.1) the solution for optimal next step ¢ of the motion rate control
model has the property that our controller creates steps in joint space proportional
to the negative gradient —7.

e We want to ensure that properties (i) and (ii) hold.

The loss term L, is defined as:

L j(Qt)T (g1 — qr)
B = 17 (T T — il o1
where 7 (¢;)” is the gradient of fo¢ evaluated at this particular joint state ¢;. Minimizing
the cosine of the angle between 7 (¢;) and ¢;+1 —q¢; is equivalent to maximizing the cosine
of the angle between — 7 (¢;) and g¢4+1 — ¢:, which is maximal when these are parallel and
have angle 0. Thus we can see that minimizing loss L, has the effect that — 7 (¢;) points
in the direction of the next step g;+1 — ¢; as in Figure 5.5.

This effect and the mathematical properties of the gradient (steepest directional deriva-

tive) determine the relation of the term L, to properties (i) and (ii):

e The value function f decreases along the vector ¢;+1 — ¢, thus f decreases in time
—related to the generative property (i).

e For alocal neighborhood @, := {¢} for which ||¢ — ¢|| < 7 for some small enough

~ it holds that
J(qt)
fodla —vi==5) <fedle) Vee@
g < i
This is discrimination between the joint state on the (linearly interpolated) true

teacher’s trajectory (q; — 7”583”) and any other joint states in the subset), —

related to the discriminative property (ii) for this specific local neighborhood.

oL
Note that computing 879 involves calculating
w

o7 _ f 00
ow dpdw dq

(5.13)

5 TRIC: TASK SPACE RETRIEVAL USING INVERSE OPTIMAL CONTROL 93

The first term on the right side can be calculated from f analytically, and the second is
the so-called kinematic Jacobian, which we also have in our training data D. This means
that minimizing L, can be done offline, without simulator calls, which simplifies the
training architecture and improves performance.

On Why the Term L, is Defined in Joint Space

Note that it is reasonable to use the term L, to condition where the derivative of the
value function points with respect to joint space observations ¢ and not feature space ob-
servations y = ¢(q). The joint values are in a relatively low dimensional space, and we
expect that only joint values directly relevant for the task goal were moved, otherwise
they would have stayed in place because of the “laziness principle” for good motions,
see 2.2. The y observations are high dimensional and with many possibly irrelevant di-
mensions, so it is not reasonable to expect that these dimensions all change in a steepest
descent manner. For example, suppose that the real value function only depends on the
first dimension of y, which we denote yp;;. Changing just this y};; would be the most
rational way to lower the value function. However, all dimensions of y = ¢(q) are cou-
pled because of the robot structure, so it can be that in the observed trajectories some
irrelevant dimension yp; was also changed. It would be undesirable to condition the
value function and its derivative to change yj3 as observed because this dimension is
just noise.

5.4 Discussion of TRIC

In this section we will first discuss the motion imitation qualities of TRIC and then its
limitations. Afterwards we will go in more detail and discuss the loss terms L,, and L,
and how they relate to established methods for imitating motion.

5.4.1 Local and Global Imitation

The above motion model creates a system capable of imitating behavior in a different
way from both the DPL and IOC methods we mentioned in Section 2.4. We can see DPL,
IOC and TRIC as three different conceptual approaches to imitation, using the concepts
defined in Call and Carpenter (2002):

e DPL would imitate by memorizing an action (output) to execute given a state (in-
put situation). It would repeat an action without regard of potential outcome —
mimicry. Such an approach cannot adapt already seen motions to new unseen sit-
uations, so for good performance one would need to provide examples of every
possible state and the action for it. If we use more interesting representations for
input state and action one can probably get more interesting behavior, but with
more features learning a mapping would be more difficult.

94 5.4 DISCUSSION OF TRIC

e IOC would learn rewards (negative costs) for each state consistent with a ratio-
nal teacher. A global planner is needed to generate a motion (sequence of states)
that maximizes the immediate rewards obtained in each state. Because the rewards
reflect local properties of states, the planner can generate motion paths that differ
from the training sequences, but are optimal with respect to the same rewards —
goal emulation.

e TRIC learns a value function, such that going to states of low value imitates the
desired behavior. This value function represents aspects of the expected future costs
(negative rewards). We can interpret that the value function is a “representation”
of the global goal (low value), but this value function is also trained to imitate the
observations whenever possible. This would be imitation of both goal and action in
the definitions of Call and Carpenter (2002).

In TRIC the learned value function f : ¢(¢) — R, or equivalently fo ¢ : ¢ — R,
determines the motion (policy) of the system, a role analogous to the rewards in IOC and
Reinforcement Learning, see Section 2.4.2. However, unlike IOC where an immediate
reward is learned, we learn a value function f in the TRIC model, corresponding to
expected future reward. This means that another difference with IOC is that we do
not need a global planner to create a whole motion maximizing the sum of rewards for
each step. We can use a local controller to follow this value function, e.g. by using
motion rate control with Equation (5.1). The value function f reflects a more global
aspect of motion, similar to expected future rewards in RL. The way we learn f (Section
5.3) ensures that decreasing f via the term || f o ¢(q) — f o ¢(gs) + 2|3, in Equation (5.2)
leads to motion similar to the whole teacher trajectory. The other terms ||g — ¢/|*> and
Chrior(¢) in Equation (5.2) correspond to priors about the next motion step (e.g. smooth
change and no collisions), playing the role of an immediate reward.

5.4.2 Limitations of the TRIC Model: Periodic Motion

The value function f acts as a potential over states ¢(g;) and TRIC is designed with the
premises that (I) f decreases monotonically across the trajectory as it goes ahead in time
and that (II) f has some minima to which the system goes and stops. We proved that
TRIC is consistent with (I) and (II) using the assumption that the trajectories are lines or
paths that do not cross themselves, see Lemma 5.3.1. This assumption deliberately ex-
cludes motion trajectories that cross themselves, which is often the case in tasks that have
a looping periodic aspect. Such tasks cannot be solved by an attractor to a subspace of
low value. An example of this issue can be following a demonstrated circular trajectory
of the robot hand around a central point. The teacher makes two complete cycles around
the center, and expects the robot to understand this behavior and learn to loop in such
circular trajectories. Suppose the robot starts at some point gy on the circle. The TRIC
value function f o ¢(q) would need to decrease constantly around the edge of the circle
as the robot moves and the motion controller always goes in the direction of decreasing
value function. Once we make a full cycle and go back to the initial position g, the value

5 TRIC: TASK SPACE RETRIEVAL USING INVERSE OPTIMAL CONTROL 95

function f o ¢(qp) will have to be lower than the initial value f o ¢(qp). This is clearly
a contradiction, and indicates a design limitation of the current TRIC model. Another
approach to modeling the value function would be to add the last state of the robot ¢;—;
as information and learn a value function over data f o ¢(q;—1,¢:). This is a potential
solution to the circular movement problem indicated above, but it is left to future work.

5.4.3 Discussion of the Loss Terms
Discussion of the Loss Term L,,

The L,, Equation (5.9) has similarities with IOC and Equation (2.8):
o the expected state features p(7) correspond to our motion features y

e the comparison of true policy 7* to the other policies 7 is similar to comparing the
true trajectory sample y; to the noisy data points ¢ ,,,: both lead to terms in the
training loss that are large when the true trajectory is not preferred to any other
motion

e the scalable margin £(7*, 7) corresponds to the weights € ,,,: both quantify how
large the penalization in the training loss terms is: larger when a preferred false
trajectory is away from the true trajectory

However, a difference is that the rewards in IOC are immediate rewards of next step
transitions, whereas the value function f signifies rather an expected future cost (negative
reward), see Section 5.4.1.

A comparison can also be made between discriminative learning in ML and the term
L,,. The usual approach to discriminative learning as in Equation (2.11) would require
finding the most offending false answer and discriminating it from the true answer. We
do a similar discrimination (where value function corresponds to energy) between the
true sample y; and the noisy data points ;. However, we use a discrete set of such
samples to approximate the space of these samples in a small neighborhood of the last
joint state g;—;. This is much faster than looking for the most offending false answer, but
potentially inaccurate if there are not enough samples. Another difference is that we do
not have input vectors z as in the classic discriminative learning: we discriminate just in
the space of outputs y.

Discussion of the Loss Term L,

It can be shown that L, is related to Howard et al. (2009) and DPL as formulated in
J (Qt)T
[T(q)) |

control signals u; = %, normalized to constant length. Then both the DPL loss

in Equation (2.6) and L, loss in Equation (5.12) will be minimized when 7(g;)Tu; = 1
for all joint states g;. When policies and motor commands are normalized, minimizing

Equation (2.6). Consider the normalized gradient as control policy 7(¢:) and the

96 5.5 EXPERIMENTS

projection discrepancy becomes equivalent to minimizing the angle between motor com-
mand and policy prediction. The relation of DPL and L, is also a strong indication that
the term L, leads to a value function robust to unseen constraints, just as the method of
Howard et al. (2009), but we have not investigated this in detail.

Another analogy can be made between the TRIC loss with terms L, and L,, and the
hybrid heuristic IOC approach of Ratliff et al. (2009a) that also combines two terms:

o discriminate the teacher’s policy by giving it higher rewards — analogous to the
role of L,, for TRIC, with low value function instead of high reward

e predict directly the next step using the previous state as input, similar to a DPL
approach — L, is related to DPL in the formulation of Howard et al. (2009), as we
mentioned already in this section

Khansari-Zadeh and Billard (2010) present an error function for imitation learning
with two terms: the difference between magnitudes of velocity vectors of the demon-
stration data and controller prediction, and the difference between the directions of these
velocity vectors. Our loss term L, is maximizing the cosine of the angle between the
negative gradient —7 and the velocity vector ¢; — ¢;—1 observed in training data. In
Proposition (5.2.1) we showed how the gradient 7 is influencing the direction of the
joint steps created by the motion rate controller, and thus the direction of the observed
velocity vector influences the motion created by our model. However, the velocity mag-
nitude information is lost by TRIC because of an additional scaling factor in our motion
controller, see Proposition (5.2.1).

5.5 Experiments

The task we will examine in detail in order to demonstrate the performance of TRIC is
grasping of objects by a robot. This section will present our findings when applying
TRIC to grasping data. It is organized in the following way:

e In Section 5.5.1 we describe our robot experimental setup and why the grasping
task is interesting for imitation learning.

o In Section 5.5.2 we define the parametric model used for the implementation of the
value function f. We also define the rich set of motion features y and the settings
of the motion rate controller.

e In Section 5.5.3 we present experiments and results comparing the average per-
formance of TRIC on random grasping targets, compared to the teacher and DPL
as baselines. We also look at the effect of different hyperparameters and settings,
and examine a more complicated scenario: cylinder grasping in the presence of
obstacles.

e In Section 5.5.4 we analyze the discriminative and generative aspects of TRIC on
the trajectory dataset D, related to properties (i) and (ii) from Section 5.3. We also
show the subspace of grasping motions revealed by analysis of the value function.

5 TRIC: TASK SPACE RETRIEVAL USING INVERSE OPTIMAL CONTROL 97

o In Section 5.5.5 we analyze the extracted sparse motion features, property (iii).

5.5.1 The Grasping Task
Motivation for Selecting Grasping for Experimental Testing of TRIC

Grasping is essential for robot manipulation of everyday objects. It is a complex manip-
ulation task that requires control of multiple robot body parts with respect to an object.
This means that there are many possible task spaces relevant for control. Grasping is a
non-trivial task, which has received attention in the context of learning by demonstra-
tion and robotics. It is also a good example of how many different motion represen-
tations have been designed by experts for grasping. Tegin et al. (2009) acquire grasps
from human movements and repeats them in joint space. Kroemer et al. (2009) explore
grasps in a parametrized 6D space of position and orientation of the gripper, and learns
a value function with regression. Kroemer et al. (2010) use the hand fingertips for grasp-
ing within the Dynamic Motion Primitives framework. Gienger et al. (2008) create a task
manifold of presampled grasp positions and orientations and a motion potential towards
them. None of the above works try to extract from data a representation for grasping. It
is an interesting challenge to extract the important task spaces from data and learn good
controllers with as few prior assumptions as possible for good grasping, and this is what
we will demonstrate with TRIC.

Setup of the Grasping Task

Our robot has a joint configuration space ¢ € R4, as in the experiments in Section 3.7.3.
We use as demonstration source the method of Dragiev et al. (2011), which is an effi-
cient human-designed controller to grasp objects, with predefined reach and close fin-
gers phases, as shown in Figure 5.6. The setup consists of the robot and a grasp target.
We restrict the grasp target to be a sphere or cylinder to simplify the setup, but even with
such simple geometry the grasp task requires complex robot motion. The controller of
Dragiev et al. (2011) has several hard-coded phases, each of which controls different
robot body parts and gives them different relative importance. All this information is
hidden from TRIC, which has to recover the behavior just from observation. We visual-
ize the joint angles for one sphere grasping trajectory in Figure 5.7.

We use the errors of the task variables defined in Dragiev et al. (2011) as a cost metric
to validate how good are the grasps of the TRIC controller (it did not play any role in
training other than the fact that the teacher demonstrations were good with respect to
this cost). The grasp cost is active only at the final grasping posture: it requires that
all fingers lie at the object surface and are aligned to it, similar to Equation (3.31). This
metric evaluates the final grasping posture of motion with a number between 0 and 1,
where values below 0.25 are good grasps.

98 5.5 EXPERIMENTS

(a) First approach the red target object and (b) Finally align the fingers close to the object’s
open the fingers surface

Figure 5.6: Illustration of a grasping motion that the robot has to learn.

joint angle (radians)

joint angle speeds (radians/t)

o
o 5) 15 20 25 E) 3)
time t

(a) Absolute joint values in radians. (b) Joint velocity values measured as g:+1 — gs.

Figure 5.7: A sphere grasping trajectory in joint space for T' = 40 time steps.

5.5.2 TRIC Setup: Motion Representation and Value Function Model
Selecting a Rich Set of Task Spaces

In Section 5.1 we said that the effectiveness of TRIC depends on selecting a rich set of task
space motion features that seem reasonable for a certain task. For our experiments we
decided to use a rich geometrical representation, namely the pairwise distances between
a set of important landmarks, defined on the robot body and objects in the environment
(similar to Section 3.3.1). The feature space y = ¢(q) consists of b pairwise landmark
relative positions p; and their norms d; = ||p;|| for each landmark pair i = (j1, j2):

y = (p1.di,...,py, d) € R* (5.14)

Our approach to task space selection needs to define the set of landmarks and the geo-
metric motion features, representing a prior on motion representations which are poten-
tially suitable for the task at hand.

5 TRIC: TASK SPACE RETRIEVAL USING INVERSE OPTIMAL CONTROL 99

Figure 5.8: The features y are defined using the landmark set A = {a;}$_;, indicated by black
dots.

Concretely for the grasping experiments we defined a set of 8 landmarks on the robot
and the grasp target object A = {a;}}_;, shown in Figure 5.8. This includes the center of
the target object a1, the three fingertips a3, as, a4, the three lower parts of the fingers as,
ag, ar, and the palm center ag. The feature space consists of pairwise landmark positions
and their norms: y = ¢(q) € R?*, as defined in the motion features Equation (5.14).
We preprocess each dimension of y by rescaling it in [0, 1]. Some features are redundant
due to the specific geometry of the landmarks and feature construction. First, d; ; = d;;
because the norm of a vector does not change as it is rotated in some frame. Second the
landmarks on fingers are defined on rigid bodies connected by joints, so their movement
relative to one another is highly constrained, e.g. landmark ay always lies on the bound-
ary of a 2D circle relative to the 3D frame of a3. We remove the redundant features using
correlation as a measure (Haindl et al. 2006), resulting in final motion features y € R%.

This approach to modeling task spaces with information between geometric bodies
in a scene is related to the interaction mesh approach in animation, see Ho et al. (2010).
The authors use graph theoretic notions to animate and repeat motions in a Laplacian
representation, i.e. each point is represented with respect to the average point of some
neighbors on the graph. This leads to a set of motion constraints for each time slice of
trajectory of fixed length extracted from a set of motion demonstrations, and they can be
used to generate new motion imitating the demonstrated trajectories. In the case of TRIC
we learn a value function leading to some goal-directed behavior, a more complex prob-
lem than simply replaying animation with small adaptations, but the representational
power of our motion features is similarly based on the geometric information available
in pairs of objects.

Parametrization of the Value Function

The description of the TRIC algorithm so far assumed that the value function f is a
differentiable function parametrized by a vector w. Concretely for our experiments we

100 5.5 EXPERIMENTS

chose a sigmoid neural network with K nodes plus a linear term:

1
flyw) =2"Wa +y"Ws (5.16)

The parameters w consist of W € RE*$, W, € RX, W3 € RX and » € R¥ is the hidden
layer; s = 150 is the dimensionality of y.
0 0
The complexity of this neural model is O(sK) for evaluation of f(y), % and 8—f The
) Y

Oyow
s. 2 We trained our models for 100 iterations with the BEGS method from the MATLAB
Optimization Toolbox. The training time scales with K: for a linear model K = 0 it takes
less than a minute, and 30 minutes for K = 30. We used Equation (5.1) for motion rate
control using the learned costs f o ¢(q).

second partial derivative has complexity O(s?K), which depends quadratically on

Parameter Settings of the Motion Rate Controller

We rescaled the values of f so that the global minimum value of the model is -1. We did
this by dividing W, and W3 by |W3| + |W3|. This rescaling does not change the motion
implied by the cost function, and allows for better comparison of differently trained
models. Without such normalization the magnitudes of the value function f can be
quite different, and this directly influences the motion generation Equation (5.2) and the
number of steps required to reach the value function minima. By normalizing the value
function after training we ensure that with one single setting of J, the different value
functions trained on the same dataset will have similar effect on the motion generation
speed of TRIC.

We set §; to 1000 and d2 to 0.03, which is a reasonable motion rate, usually requiring
around 500 steps to reach the target. The speed of execution can be increased by taking
a larger parameter 2. We used also the standard additional constraints on collision
avoidance and joint limit avoidance coded in the term Clyior, as defined in Section 3.7,
with weights high enough to ensure that the IK controller stays collision free and within
joint limits.

Note that the coupling of different terms in Equation (5.1) and the multiple nonlinear
task spaces incorporated in y = ¢(q) create a quite complex problem for the IK method
that uses linearization. It happens rarely that a single step will decrease the value func-
tion exactly by d> , but the slower gradual decrease we get works well in practice.

5.5.3 [Experimental Results: Performance of the Learned Grasping Controller

We examined grasping of a sphere and a cylinder. For quantitative comparison we in-
spected grasp costs of TRIC with different settings. For qualitative comparison we man-

2Here we write of instead of of because y = ¢(q).

dy ¢’

5 TRIC: TASK SPACE RETRIEVAL USING INVERSE OPTIMAL CONTROL 101

ually inspected whether the grasps generated by TRIC look plausible, and whether TRIC
could generalize well to collisions with obstacles and grasp flexibly on different positions
of the target object.

The default values of the hyper-parameters from Equation (5.4) are o, = 1,09 =
1, = 0.001, and the other parameters are M = 60 samples, N = 27 trajectories,
K = 30 sigmoids for the model of f. We generate the M random samples by randomly
sampling collision-free joint configurations with a normal distribution with o = 0.05,
corresponding to 0.05 radians joint angle standard deviation.

For training we generate a dataset by translating the position of the target object a;
in a regular grid 50 x 40 x 40cm in front of the robot, taking 3 positions in each grid
dimension, leading to N = 27 different settings and training trajectories. Each grasp
movement is generated for 5 seconds, and we sampled 7' = 40 time steps from it, once
every 125ms. The target is grasped faster when the object is closer to the robot, so some
of these motion trajectories grasped the object sooner or later than others.

Experiment 1 - Influence of the Hyperparameters on Sphere Grasping

For testing the grasp costs of the controller learned with TRIC we created a new set of
15 trajectories on random positions within the training grid and evaluated the grasping
costs of different TRIC models with 500 steps taking 5 seconds for execution. Thus TRIC
made one step every 10ms. This is a faster control rate than the sampling rate of our
training set. This is due to the fact that we relaxed following the exact steps of the teacher
and added the speed of imitation as a parameter to tune in our model (d2).

We tested 3 variations of the TRIC model by changing the parameters o, and «,
controlling the weights of loss terms L, (gradient direction) and L,, (discrimination from
noise samples).

Figure 5.9(a) shows how the performance of TRIC changes with respect to the num-
ber of noisy samples M. Figure 5.9(b) shows how the number of test trajectories N
influence the performance. We make the following observations:

e More samples M allow better training of TRIC, and having too few samples wors-
ens performance. With 60 samples the performance is quite good (comparable to
the teacher’s) and we expect no further gains by increasing M to larger values. It
seems that 60 samples were enough to approximate the local neighborhoods in the
subspace of valid robot configurations (see Section 5.3.1).

e With as few as 3 trajectories TRIC could learn grasping just as good as with 27
trajectories - efficiency in terms of V.

e The parameter M seems more critical than N. Since the training of TRIC is linear
in terms of M and N, this shows that to speed-up training decreasing N is better
than decreasing M.

e The best hyperparameters of TRIC are a; = 1 and «,, = 1, indicating that both loss
terms L, and L,, are important to learn the value function.

102 5.5 EXPERIMENTS

Table 5.1: Sphere grasping results: TRIC compared to the teacher on 15 test situations.

| method || standard deviation and average of grasping cost |

Teacher 0.06 £+ 0.01
TRIC 0.08 & 0.01
T4 TRIC o, =1 =0 r TRICa =1a =0
1ol - TRIC &, =0 o =1 09y L. TRICx, =00 =1
__TRICa =1 =1 08y __TRICo =1a =1
i n g n 9

O -~

20 40 60 3 9 27

M noise samples N train trajectories
(@) The effect of changing the number of noisy sam- (b) The effect of changing the number of training
ples M on TRIC. motions N on TRIC.

Figure 5.9: The effects of changing training setup parameters on TRIC: noisy samples M and
training trajectories IV are varied.

Overall, TRIC performed sufficiently close to the teacher heuristic from Dragiev et al.
(2011), as we summarize in Table 5.1.

Experiment 2 - Comparison of TRIC with DPL in Sphere Grasping

In a second experiment we implemented as baseline the DPL method from Section 2.4.1
for comparison with TRIC, using the same training set as in the previous experiment.
We used our pairwise geometrical information feature y for state space = in the DPL
notation, and u; = g;+1 — g for control u;, and a neural network with 60 sigmoids to learn
7, a regression problem with least-squares loss. We made the following observations for
this regression problem that:

e DPL with loss Equation (2.6) could not learn even the train data and the regression
loss remained very high.

e DPL with loss Equation (2.5) could learn the train data well, but had poor perfor-
mance on the test data from the previous experiment.

Table 5.2 shows the errors of m on the train and test sets, indicating that probably
much more data is necessary to learn a well generalizing mapping on test data from
world state to motion command ;.

5 TRIC: TASK SPACE RETRIEVAL USING INVERSE OPTIMAL CONTROL 103

Table 5.2: The predictive accuracy for the DPL policy mapping 7 : g; — u; using 27 trajectories
of length 40 steps each. We show absolute values in radians of the joint speeds |u,[;|, and the
absolute errors for train and test set errors |us[;] — 7(q4[x])|, averaged over the 14 joint dimensions
k € {1,14} and over all situations.

] H average joint angle value in radians ‘

joint speeds |u| 0.009 + 0.001
train set errors |ux — 7(gy[x))| 0.002 £+ 0.001
test set errors [u — m(qyr))| 0.006 + 0.001
05 T—DoPL
——Teacher
0.4+ —TRIC
0.31
80.2
0.1
0 0.62 0.b4
Perturbation from Train set o

Figure 5.10: Comparison of TRIC to Direct Policy Learning on different test sets with increasing
“distance” between training and test data of {0, 0.02,0.04} meters.

After we trained the policy 7, we implemented an IK controller for DPL imitation
using the following IK motion generation scheme:

CP"™(q,q1) = |lg — atl|* + 103|lq — gt — w(q0)||> + Cprior(q) (5.17)

gi+1 = argmin C°7 (g, ¢;) (5.18)
q

To test DPL performance more quantitatively we defined a new validation set, con-
sisting of (a) 30 scenarios from the original train set, (b) 30 scenarios modified from the
train set with added random translation to the target position sampled from a Gaussian
with 2cm standard deviation, and (c) 30 scenarios created analogously with 4cm stan-
dard deviation. Figure 5.10 shows how the results degrade for DPL as the validation
scenarios become remote from the training samples, whereas TRIC remains robust.

Figure 5.11(a) visualizes the motions generated by TRIC on 5 different target grasp
object positions. For comparison, Figure 5.11(b) shows the trajectories of DPL for the
same 5 targets. The 3 right-most positions (one of which is P3) are in the train set and
DPL can put the fingers around the object. However, the fingers do not embrace the
object as deeply and do not oppose each other as fully as expected, , see Figure 5.11(e).
Thus the DPL grasp is worse than the teacher demonstration even in a situation from the
train set (already seen target position). A reason can be that the collision term geoliision (¢)
included in Clyior (¢) tries to push the hand away from the obstacle. Simply repeating old

104 5.5 EXPERIMENTS

-0s| 05,

-055)
-065) e

E ors

085 PR 5/,— g
-0.95| ~
B}

l
03 03 025 02 015 01 005 0 005 01 05 03
X cm

02 o1
X cm

(a) TRIC grasps all 5 objects suc- (b) DPL fails to grasp objects P1
cessfully. The controller con- and P2, and is suboptimal for ob-
verges to a good grasp posture. jects P3, P4 and P5.

©

(c) At target location (d) Target P1 is (e) At target loca- (f) Target P3 is
P1 method DPL can grasped by TRIC. tion P3 method DPL grasped by TRIC.
not grasp the object. grasps suboptimally.

Figure 5.11: A test to compare TRIC and DPL: 5 target sphere positions are to be grasped. Fig-
ures 5.11(a) and 5.11(b) show the trajectories of the robot finger landmark a; when grasping a
sphere. The target (shown as a circle colored as the respective grasp trajectory) is translated on 5
positions.

motion commands can not compensate adequately for this disturbance without properly
tuned weights for the trade-off between collision and other motor commands.

In the 2 left-most positions (one of which is P1) DPL fails to make even a suboptimal
grasp. These positions are not in the train set and this explain why DPL failed, see Figure
5.11(c). On all 5 positions TRIC manages to get good grasps comparable in quality to the
teacher, see the examples of Figure 5.11(d) and 5.11(f) for grasp targets P1 and P3.

The relatively poor performance of DPL with joint space @) for the motion commands
is to be expected, because as we reasoned already in Section 3.7, commands in joint space
have difficulties in generalizing to translations in objects in the workspace. If the task is
simply point reaching, this could be remedied by selecting a task space like Yiarget € R3,
a low dimensional space that captures efficiently the essence of point reaching (see also
Section 3.7). For grasping there are no such obvious solutions. Taking ¢(gi4+1) — ¢(qt)
as motion command, in the high dimensional space of y € R% is not practical and
worked even worse, because the machine learning prediction task becomes too complex
- a mapping of dimensionality R!%0 s R150.

5 TRIC: TASK SPACE RETRIEVAL USING INVERSE OPTIMAL CONTROL 105

Experiment 3 - Cylindrical Objects

In a third experiment we tested TRIC on more complex objects — an elongated cylinder
with 30cm height and 5cm radius. We created a new training set of N = 10 demonstra-
tions, by rotating the cylinder on its Y-axis randomly by [0, 7/2] radians.We then trained
TRIC with the default parameters and tested the learned f on grasping of cylinders ro-
tated differently than the train set. As can be seen in Table 5.3 the performance of TRIC
with nonlinear model K = 30 is similar to Teacher. Linear TRIC (K = 0) was worse than
the nonlinear one, thus, more complex motion policies require non-linear models for f.
It is also worth noting that as few as N = 10 trajectories of length 7" = 40 were enough
to train TRIC - efficiency in terms of demonstrations required. See Figure 5.12(a) for an
example of a cylinder grasp performed by TRIC.

(a) A robot grasping pose for a cylinder. (b) Grasping the target while avoiding ob-
stacle B. The dots C and D indicate possible
grasp approaches.

Figure 5.12: Implicit obstacle avoidance and cylinder grasping with TRIC.

Experiment 4 - Obstacle Avoidance as Motion Constraint

In a fourth experiment we examined how TRIC reacts to an obstacle B in its path to
the target. Because our motion model includes a prior cost term Cpyior(¢) for avoiding
obstacles, the motion controller can handle such cases robustly. In our evaluation the
obstacle B appears only in the validation set, not in the train set. TRIC is reasonably
robust to these previously unseen obstacles: the motion rate controller tries to stay out

Table 5.3: Result for cylinder grasping on a set with N = 10 motions and default hyperparame-
ters, TRIC with linear and nonlinear models compared with the teacher performance.

| method | performance

Teacher 0.07 £0.01
TRIC K = 30 0.09 £0.02
TRICK =0 0.19 +£0.02

106 5.5 EXPERIMENTS

h 75
10

10
-5

215
El 20

Za
2
25 0
“ F -

s 0 15 2 2w % 4
time ¢

Figure 5.13: TRIC learns a value function f(y) decreasing for all observed trajectories y; for time
steps ¢t € {1,...,40} and situations ¢ € {1, ...,33}. Situations 1 to 27 are from the train set, and
situations 28 to 33 from the test set. Blue indicates low value.

of collisions and will adapt to a grasping pose that is compatible with this constraint,
see Figure 5.12(b). The straight approach to grasp pose D is no longer feasible, because
it will collide with B. Another grasping pose C can be found, one of the many grasp
poses with low value f in the subspace of good grasps (see Figure 5.15). Because it is
also reachable without collisions, C' was preferred to D. This is an illustration of the
generalization ability of TRIC unlike DPL, which is limited by the seen trajectories and
can not adapt them to never before seen obstacles.

Clearly the local collision avoidance behavior of our controller has limitations —in a
more complex world cluttered with obstacles reactive avoidance can get stuck in local
minima, a drawback common to all local reactive controllers (see Section 2.3.3).

5.5.4 Analysis of the Trajectory Dataset: Structure Revealed from the Sparse
Discriminative Value Function

Examining the Value Function f and its Gradient after Training

The TRIC models were trained robustly with respect to the different parameters. Figure
5.13 shows that we successfully learned a value function f always decreasing ahead in
time, a learned invariant property of the demonstrated sphere grasping motions. We can
also notice in this figure that we have identical behavior of this value function on the 27
training situations and the 6 test situations. This is an indication on how well our model
generalizes from the train data to unseen novel situations in the same domain.

In Figure 5.14(a) we illustrate how well TRIC could align the gradient 7 to the tra-
jectory relative steps g;+1 — ¢. In the majority of data points we had a value of L,(q})
near -1, indicating that TRIC successfully learned a value function with this property.
However, near the final time steps ¢ > 30 this value worsens a bit. We have a possible
explanation for this effect. Near the final phases of the motion the collision cost gcolision
(a term of Clpyior) increases, as shown in Figure 5.14(b). This increase is due to the fact
that the robot fingers close on the object surface near the end of a good grasp. The col-
lision costs increase also the magnitude of the collision gradients. As a result, the value
function is not decreased in the steepest descent manner, but in a way combined with

5 TRIC: TASK SPACE RETRIEVAL USING INVERSE OPTIMAL CONTROL 107

E

5 10 15 2 25 30 35 0 5 10 15 25 30 35 40

. . 20
time ¢ time t

(a) Angle cosines for all situations (b) A plot of the collision costs of a
and trajectory steps. Blue value in- grasping motion: near the end the
dicates small cosine as desired in the collisions rise significantly.

loss criteria.

Figure 5.14: The value L, (qé) reflecting cosine of angle between 7 and ¢;+1 —¢; minimized by loss
term L, for all observed trajectories y! for time steps ¢t € {1, ...,40} and situations i € {1, ..., 33}.
Situations 1 to 27 are in the train set, 28 to 33 in the test set.

collision avoidance, resulting in a less-steep value function decrease.

The Subspace of Good Grasps

Another way to analyze the effect of training TRIC is to look at the hidden layer z =
16% of the neural network model for value f as defined in Equation (5.15), see Mon-
tavon et al. (2011). Figure 5.15 shows a low dim. kernel PCA visualization using Gaus-
sian kernel on the raw features y and the learned hidden (latent) representations z of the
27 train trajectories.> As we showed in Figure 5.13, the trained value function decreases
monotonically in time, so the color is also an indicator of the time progress of the sample
trajectories, red isnear t = 1 and t = T = 40 is dark blue. In Figure 5.15(a) the set of goal
states (t ~ T = 40, colored blue) are scattered in a region and seem different depending
on the different grasp posture. With such representation it is not easy to define what is
a good grasp. Figure 5.15(b) shows that the training of TRIC produced such latent z val-
ues that all goal states are close to one another, much closer than in the first plot. Thus
the trained neural network value function has found a compact representation of the
subspace of good grasps. This representation allows TRIC to switch between different

grasps when required, as in the experiment in Section 5.5.3.

5.5.5 Analysis of the Motion Features: Retrieving Relevant Task Spaces

We just showed the quality of the controller and value function learned by TRIC by
examining the way it grasps. Another aspect of TRIC is the contribution of different
features to the learned value function, which can lead to a better explanation of what
exactly the robot learned from the teacher.

3Similar to the use of kernel PCA for visualization we showed in Section 3.7.1.

108 5.5 EXPERIMENTS

0.06 o
0.04
0.02+

-25
o4

-0.02+

—0.047/

_\//*O/ﬁ)éi -35 _35
Goal -0.02 0 0.02 0.04 ~0.05
state
(a) Kernel PCA using Gaussian kernel on raw fea- (b) Kernel PCA using Gaussian kernel on hidden
g g
tures y. Large goal state region. neural network layer z. Compact goal state repre-

sentation.

Figure 5.15: Kernel PCA visualization of the trajectory data. The color indicates the value func-
tion f, which is inversely correlated with the time index t after proper training.

Sparsity of Features Contributing to the Value Function

To get an insight into the feature selection done implicitly by the loss minimization of
Equation (5.4), we defined a score for the contribution of each feature to the value func-
tion f. It is defined as a weighted sum of the absolute values of coefficients of the model
of f from Equation (5.16):

s(y) = |W{||[Wa| + [Ws (5.19)

This is a heuristic to see how much each feature contributes to the value function
f. In Figure 5.16 we display these scores, using one of the trained models for the sphere
grasping task. It can be seen that the L;-regularization selected about 38 of these features
for the cost f.

In order to interpret meaningfully the selected features we look at the geometric in-
formation of the landmarks (see Figure 5.8) represented by the features. Figure 5.17
shows the feature scores as a map related to pairwise measurements p; = (p;?, pgj, pj)
and norms d; = ||p;||, as defined in Section 5.5.2. It can be seen that the highest score is
s(dy2) = 47.5, which corresponds to the distance between the target object a; and one
of the fingers as. The next best is s(d; 4) = 47.25, distance between the target and an-
other finger as. Overall, all 4 feature score maps in Figure 5.17 show that the features
measuring relative distance of the target landmark a; from the fingers (column or row
index 1) are the most important for the grasping task. This seems like a meaningful way
to construct features for a grasping task.

The other geometric feature pairs with high scores, not involving the target object
landmark a1, are relative distances of the fingers with respect to one another and the
base of the hand. These features influence the robot pose and the way the fingers align to

5 TRIC: TASK SPACE RETRIEVAL USING INVERSE OPTIMAL CONTROL 109

L L
0 10 20 30 20 5 £ 70 90 100

Feature R 1nk

Figure 5.16: Effect of L,-regularization: the motion features sorted by score s(y;) from the coeffi-
cients of the TRIC model. In our notation s(y;) is the score of feature i.

each other to get a grasp where the fingers oppose one another. This might seem obvious
to the human observer who knows quite well what is grasping, but it is interesting to see
what is the robot’s estimation of the features required for imitation of grasping.

Analysis of the Gradients of the Value Function
of

Another interesting way to extract structure using TRIC is to look at the gradients 30 €
A Y

R® evaluated at each data point ;. This allows to analyze the time progress of the feature

contribution to the activation of f. We can define the average gradient v/ f; € R® for a

time step t:

N
f= % Z al (5.20)

We are averaging the values of all evaluated gradients for a fixed time step. If we look
at the individual dimensions of the vector v/ f; this gives us the average contribution for
time ¢ of feature j to the value function.

Figure 5.18 illustrates the results, where we have displayed only the values of v/ f;
only for the most representative 20 dimensions by value of s(y). We see how the contri-
bution of each feature changes over time, and this can be interpreted as adaptable policy
depending on the current state of the motions ¢;. It is due to the nonlinear model we
used for f with K = 30 sigmoid nodes. We see that in different time steps different
features have the greatest contribution to f. For more complex motions with different
phases we are likely to see even more variation of the gradients in time. A linear model
(with K = 0 nonlinear sigmoid nodes) for f in Equation (5.16) would have constant
gradients for every time step, equal exactly to Ws.

110 5.5 EXPERIMENTS

8 8

30 30
7 7

2!
6 S 6 25
5 20 5 20
"4 15 "4 15
3 10 3 10
2 5 2 5
1 1

0 0

12345678 12345678

8 4
7 35 40
6 30
30

s 25
S 20 "
s 15
) 10 10

5
1

0 0

12345878 12345678

Figure 5.17: Four colormaps of the feature scores s(y) represented as pairwise distances, red is
high score and blue is low score. Each of the 4 maps corresponds to one of the three spatial
dimensions p; = (p}, pj, p?) or their norm d; = ||p;|. Each entry of a map is a feature dimension
indexed by j = (j1, j2) and since we used 8 landmarks ji, jo € {1,8}. In each map the column
corresponds to j; and the rows corresponds to jo, indicating the two compared landmarks.

The detailed view in Figure 5.18(b) shows v/ f; just for the 8th best feature, which has
the geometric interpretation of py |, the y distance between the finger a3 and the target a.
We see that the gradient starts positive in the initial steps, indicating that the controller
is decreasing the value of pj; (thus bringing the finger closer to the target) in order to
decrease f(y). As time progresses the sign of 7/ f; changes and now this value py ; will
be increasing. This behavior has the following interpretation for the grasping task:

e First the robot hand approaches the sphere target, so the distance p4 ; should get
smaller.

o After the fingers are sufficiently close to the sphere surface, the distance p3 ; should
stay relatively constant; by having a value function that tries to increase pj , we
keep a balance between this and other geometrical features and the net effect is
constant distance of fingers to target surface.

Note that the motions are not aligned perfectly in time, so this adds some distortion
since v/ f; averages for fixed time steps. A better analysis can be achieved by applying
some form of Dynamic Time Warping for alignment in time (Myers and Rabiner 1981).

5 TRIC: TASK SPACE RETRIEVAL USING INVERSE OPTIMAL CONTROL 111

= feature rank 8

© o &~

Feature Rank
V[

>

5 10 15 2 30 35 40 o 5 10 15 25 30 35 40

20 20
time ¢ time ¢

(a) The values of 5/ f; corresponding to the top 20 (b) Plot of the 8th feature by rank: the
ranked features vs time ¢. gradient changes sign at ¢ = 8.

Figure 5.18: Average gradients v/ f; of the value function f. Positive and negative values indicate
how the respective pairwise object geometrical relation influences the f.

Feature Rank

Figure 5.19: Average absolute gradients 5/ f; of the value function f. The magnitude indicates
how important a feature was on the average for time step ¢. Top ranked 20 features vs time t.

We can similarly define the average absolute gradient v/ f; € R® for a time step t:

L1 af,
Vi = 5 Dl 0 521)

Figure 5.19 shows the values of 5/ f{. When time progresses features change their relative
weight in the calculation of the value function. Some features are important at the begin-
ning of the motion, when the robot arm is very far away from the target, other features
are most important when the robot already has his fingers in a grasp on the object.

5.6 Conclusions from TRIC

In this chapter we presented a novel method for learning a sparse discriminative value
function from demonstrations, finding relevant task spaces from a set of rich geometri-
cal features, and generating motion with a controller using the value function. TRIC can

112 5.6 CONCLUSIONS FROM TRIC

generalize robustly to different situations unseen during training. We tested its perfor-
mance on a robot grasping task, presented results showing the effect of different train-
ing and model settings, and visualized the extracted task space features. We can use
the learned model to interpret the most important task dimensions, and their relative
weighting in time. A visualization of the hidden layers of the neural network we used
for training reveals how TRIC represents a subspace of good grasping poses.

Our method has some limitations. First, it is not suitable for periodic movements
and would need to add state information from previous time slices to deal with more
complex motions. Second, we assume that an accurate robot kinematic model and sen-
sors for workspace objects” locations are available that provide rich features. TRIC can
be sensitive to noise in these input features and their Jacobians, and sometimes it is not
possible or practical for the teacher to provide so much detailed motion information.

5.6.1 Future Work

A possible future research direction can explore even richer features and models to
model cyclical behavior and movements with distinct subgoals and phases. By modi-
fying the value function f to be a recursive or deep neural network, we will be able to
model even more complex behaviors from demonstrations.

We can try to couple TRIC with powerful object representations like implicit sur-
faces.* Modeling more complex object geometries is important for realistic applications.
Additionally, a coupling of perception and manipulation can be interesting in a frame-
work where both objects and motions are represented as potential fields.

It is also possible to use TRIC on the huge amounts of recorded human motion data
recently available online, e.g. the CMU Motion Capture Database (mocap.cs.cmu.
edu). The analysis of human demonstrations with TRIC can both teach robots new skills
and also uncover interesting results concerning which features underly human motion
generation. Giving an accurate motion description — e.g. “use the elbow and never the
wrist for the tennis forehand” — can benefit even humans wanting to learn a skill better.

We assumed that the data presented to TRIC comes from a single task. It can be an
interesting challenge to use trajectories that come from different tasks (e.g. grasping as
one task and throwing as a second) where the task identity is hidden. We can use value
function models with a latent variable for the hidden task identity to simultaneously
group the different motions into their respective tasks and learn the value function.

So far we have used TRIC in settings where no task cost information is known. We
can try setups where such information is available (at least partially) and directly incor-
porate cost observations into the training loss.

*Tmplicit surface object models are learned from sensory data and the object surface is a nonlinear func-
tion potential itself, e.g. a Gaussian Process or SVR, see Steinke et al. (2005).

mocap.cs.cmu.edu
mocap.cs.cmu.edu

Chapter 6

Conclusions

In this thesis we showed how a novel fusion of machine learning and robotic methods
can be of great benefit for creating and understanding robot motions. Our contributions
can be grouped in two main categories. First, our algorithms TP and TRIC constitute fast
motion generation methods capable of executing complex tasks. Second, we presented
new methods for analysis of the feature representations that build the robot’s inner view
of the tasks and workspace situations it has to deal with. Our methods were defined
in a relatively general way, and can be adapted to various worlds, tasks and robots.
For example. the basic features we used for situations and motions can be augmented
with additional geometric information and transformations in order to represent even
richer structures in data. The machine learning methods we used for situation classi-
fication (TP) and value function approximation (TRIC) can be enhanced using various
algorithms from the rich toolbox of machine learning. Using special kernels or neural
networks with different architecture can lead to effective adaptations of our methods
for various datasets. We believe that this fusion of data intensive techniques and robot
algorithms can be of great benefit for any motion generation problem satisfying the rel-
atively general assumptions we made. This assumptions are that the world situations
have a certain structure and can be thus mapped to different motions, and that a large
amount of information is available, providing features both for describing world struc-
ture and robot motion task spaces.

6.1 What is Possible Now: Summary of the Benefits of TP and
TRIC

In order to show the practical utility of our methods we will use the example of an
industrial factory with robot arm manipulators soldering car metal frames (targets), as
shown on Figure 6.1. Such a setup is suitable for gathering data and using machine
learning: a task is to be repeated multiple times in some structured domain. Even if
the workspace is not static — target objects move on a conveyor belt, other machines
and humans get in the way — we can expect that experience of the environment and

113

114 6.1 WHAT IS POSSIBLE NOW: SUMMARY OF THE BENEFITS OF TP AND TRIC

Figure 6.1: Factory setting for robot motion and manipulation tasks: multiple robot arms (model
ABB IRB 6400) have to solder an object. Image taken from the producer’s website www . abb . com.

successful motions can improve the motion generation process.

The most basic approach would be to have a fixed motion trajectory that the ma-
chines are programmed to follow, but this has great limitations. First, generating a fixed
trajectory just by expert knowledge can be quite involved in itself. Second, such a trajec-
tory would work well just for a fixed position of the robot and its manipulation target.
It is more realistic to expect that something is different every time the robot arm ap-
proaches its soldering target:

e the manipulation target is not where the robot expects it to be, e.g. due to issues
with time lag and other problems with the conveyor belt

e a human or other robot stands in the way and a fast generation of a new trajectory
with good collision avoidance is required to avoid accidents

o the target objects are of different geometries, and a variety of motions will be re-
quired for the same task, making it impossible to enumerate all of them

It is possible that an expert can specify the desired positions of the endeffector with
respect to the target object that result in a good soldering manipulation. Such specifi-
cation, together with priors to avoid collisions and other dangerous motions that can
break the robot (e.g. joint limits), can be used to define a cost function for the manipula-
tion task. Then we can use planning algorithms to calculate optimal trajectories for the
task in simulation and then execute them for real. Standard motion planning algorithms
can be used to create motions of high quality, often much better than what a human can
program. If we want to further speed-up and improve planning, our method TP from
Chapter 3 can be of good use. In order to use TP to predict motion trajectories we need
to do these steps:

e design a situation descriptor

www.abb.com

6 CONCLUSIONS 115

— either define a set of important landmarks in the workspace and take all pair-
wise distances between them, or use the output of a sensor (e.g. a camera) as
a descriptor of space around the robot

— if the objects to manipulate are moving, include velocity information
— if the objects are of varying sizes, add some size information as features

e make a database by recording situation descriptors and optimal trajectories calcu-
lated by a motion planner using the cost function we assumed to have

e to reuse the database motions specify a reasonable task space for transfer, e.g. the
relative positions of robot endeffector in the frame of the target object to manipulate

We would get the following benefits after we train TP:

e a potentially great speed-up of motion planning convergence speed, al-
lowing the robot to generate better motions in less time

¢ an analysis of the datasets of workspace situations and optimal trajecto-
ries, revealing situation features that are important for the task execution
and influence the type of optimal motions

If no cost or other task specification can be designed, we can take the programming
by demonstration approach in order to design flexible controllers for robot motion gen-
eration. This is often applicable to scenarios where the human experts in the factory
know what is a good manipulation by their experience. and can do it in some way, but
can not formalize a good manipulation in the form of a function with specific motion
features as inputs. In order to use programming by demonstration with TRIC (Chapter
5), we would need to provide enough data that can be used as input to our algorithm :

e define rich task spaces that incorporate multiple geometric features of the robot
and additional information from relevant target objects in the world

e generate a set of good example motions using human input (e.g. servoing or tele-
operating the robot)

e record these motions in the rich task spaces

Training TRIC and using it to learn the structure of the recorded motions can give the
following benefits:

e a controller that can execute the inferred motions and allow the robot arm
to generalize the desired manipulation task to changing world conditions

e the above controller can be also fused with priors on good motions like
collision and joint limit avoidance

e a value function that indicates the goals of the controller

e selection of the features important for the task, giving an intuitive geo-
metric description of the structure of motions good for the task

116 6.2 FUTURE WORK: FUSING TP AND TRIC

The analysis of the learned value function and motion features using the approaches
we showed in Section 5.5.4 and Section 5.5.5 can also provide useful feedback to humans
wanting to be sure that the robot has learned a useful motion model. If necessary, the
motion data used as input can be changed and the rich task spaces defined for the task
can be augmented with other potentially important manipulation features.

6.2 Future Work: Fusing TP and TRIC

The two methods we presented, TP for planning and TRIC for imitation learning, have
been developed with different applications in mind. A future combination of the two
seems very promising because the two approaches can augment each others’ strengths.
We will sketch some potential ways to make this combination:

e TRIC into TP — we can use TRIC to analyze the datasets of optimal motions avail-
able in the TP setting. With TRIC we can find out which task spaces are best suited
to repeat and generalize demonstrated motions. This would be a more principled
way than the task space pooling approach! we used so far in TP to find task spaces
that reflect the structure of the stored trajectories and can improve planning results
significantly. Once such optimal task spaces are found, we can either use them
just to represent the recorded trajectories in such task spaces and use cost sensi-
tive classification for prediction, or leave the trajectory transfer components and
directly use TRIC as replacement of the Transfer IK initialization operator.

e TP and planning into TRIC — a combination of local planners (like iLQG) with
TRIC can also be beneficial. The straightforward way to proceed can be described
in three steps. First, learn a value function with TRIC as described already. Second,
add the value function as a term in a specially defined trajectory cost function (with
additional smoothness and collision terms) requiring to go to a state of minimal
value at the final time step 7. Third, use a local planner to find a trajectory of
fixed time duration minimizing this cost function. This could be a more efficient
way than the reactive motion rate control to combine motion priors like obstacle
avoidance with the decreasing value function criteria. The planner will ensure that
the value function decreases smoothly and the robot moves gradually to its target,
going to a region where the value function is low (and the task is achieved) and
where additional constraints like collision avoidance are satisfied. Such a planner
can probably deal better than pure IK control with degenerate value surfaces where
no constant descent is possible. We tested a prototype implementation of such a
combination of TRIC with a local planner, and got promising first results.

'A few candidate task spaces were directly tested for motion planning and the best were selected.

Appendix A

Proofs and Derivations

A.1 Derivation of the Gradient of the Training Loss for TP with
NNOpt

We will now write formally the partial derivative of the loss of TP as defined in Equation
(3.22), with respect to the vector w.
The final derivative of the loss is:

OL(w; D") OE{F(z, f(z))}
T ”! 2

5 5 + Asign(w) (A.1)

zeD®

Here the vector of the +1 signs of w is defined as gradient of the L norm, see Schmidt
et al. (2007).
The derivative of the expectation Equation (3.21) is:

OE {F(x f(z ZF Tona) 8P(f(x()3= Trz;4;) (A2)
w
The derivative of the full probability P(f(z) = Tz,q;) is:
Ok(z, x;) B a Ok(z,x))
OPU() =Teeg) 7 gy PUW =T i =5,
ow Z2 '

The derivative of k(x, ;) is:

Ok(z,z;) _ Oexp{— 3@ —) "W (x —)}

ow ow = —k(z, z;)(z — z;)*diag(w) (A.4)

A.2 Proof of Proposition 3.5.2 for SVR complexity

Proposition: The algorithmic complexity for training the SVR predictor from Equation
(3.24)is O (d(dS + sd2)) with2 < o < 3.

117

118 A.3 PROOF OF PROPOSITION 3.5.1 FOR NN COMPLEXITY

Proof The calculation of the polynomial kernel matrix takes time O(sd2) for d, points in
R®. The training time of the SVR is stated in the literature (Bordes et al. 2005) as O(d%)
with 2 < a < 3. This should be multiplied with d, because we train d multiple regression
models. Thus, the final complexity O (d(d$ + sd?)) is proven.

A.3 Proof of Proposition 3.5.1 for NN complexity

Proposition The algorithmic complexity of minimizing loss 3.22 with a second order
optimizer (BFGS) is O(d,ds + s?).

Proof We have s dimensions of each situation descriptor. The complexity to calculate
prediction probabilities for a single situation is O(ds) because we calculate similarities
to d other trajectories, and each similarity evaluation k(x;, ;) takes s operations. For d,
situations the complexity is O(d,ds) to evaluate all prediction probabilities and calculate
the gradient of the loss. Once we have calculated the loss value and gradient we make a
gradient descent step using the BFGS second order method for unconstrained gradient-
based optimization, see Nocedal and Wright (2006). It requires usually a small amount
of iterations to converge. The costs per iteration are of complexity O(s?) due to the
approximation of Hessian matrix. Combining the costs of calculation of the gradient
and estimating the next BFGS step results in complexity O(d,ds + s?).

A.4 Proof of Proposition 5.2.1 for the Direction of IK Generated
Motion Steps

Proposition If §; — oo then the IK solution ¢;+1 minimizing Equation (5.2) has the prop-
erty that the next step ¢;11 — ¢ is proportional to the value function gradient 7.

Proof If §; — oo then the term ||f o ¢(q) — f o P(qr) + (52H§1 of Equation (5.2) is weighted
so high that C);,, and any other cost terms we might add are neglected. Let J be
the gradient of the value function f o ¢(¢) evaluated at ¢ = ¢;. Using the linearization

fodlqs1) = fod(q)+ T(q+1 — qt), we can apply the IK Equation (2.1):

Q41 = Gt — 02T (A.5)

Tt = (T76.7) T (A.6)
— 1

= JN(ITIT + o)) = 7 (A7)

We have used the Woodbury identity and the fact that 777 = || 7 ||? in the case where we
have a 1-dimensional task variable y (in that case the Jacobian is a row vector gradient).
J* is called the pseudoinverse of J. Thus, the steps generated by our motion model are
proportional to J times a negative scalar number.

A PROOFS AND DERIVATIONS 119

A.5 TRIC Complexity: Training Loss and Motion model

Let us call Oy the complexity of evaluating the value function f o ¢. We also write Oy
for the complexity of calculating the first derivative and Oy4 for the complexity of eval-
uating the second derivative of f. The complexities of Oy, O4 and Ogqf are at least linear
in s, where s is the number of dimensions of y = ¢(q), but this is highly specific for
the choice of value function model f, see for example Section 5.5.2 for a concrete exam-
ple. Extracting sparse features can speed-up the calculation of task spaces ¢(¢) and their

0
derivatives 8—¢, and decrease the complexities Oy and Oy, if we use this sparsity in the

implementation.

The complexity of L,, is O, = O(M(Og4 + Oy)) because for each noisy sample we
have to calculate its value function and the gradient. The complexity of L, is O, =
O(Oggr + Ogf) , because we have to optimize the Jacobian instead of the value function
directly. The total loss function complexity is then O(NT'(O,+0,)), because we calculate
Ly and L, for each step of every trajectory.

Making an IK step with joints ¢ € R" is of complexity O(O;O4 + n®) because we
need to invert a matrix of size n x n and calculate the value and gradient of the value
function, see Equation (2.1).

A.6 Proof of Lemma 5.3.1 for the TRIC Value Function

Lemma Assume that the following holds for TRIC and the training demonstrations:

(i) a single linear trajectory {¢:}7_, in the joint task space ¢(q) = ¢ € R",

(ii) M — oo noisy samples,

(iii) sign(a — b) is used instead of log(1 + ¢*~°) in the terms of L,, in Equation (5.9),

(iv) values of the metric dcyrve in Equation (5.7) smaller than a constant ¢ are set to 0.
Then a lower bound Lz on the loss L' = Zle Ly (qt; w) exists, and when L’ = Lp it
holds for all time steps ¢ that (I) f(¢:—1) > f(g), i.e. the value function is decreasing
along the trajectory, and (II) f(gr) is a minimum of the value function.

Proof

e Using (i) we assume the trajectory starts at the origin of some coordinate frame and
is aligned with an axis: ¢; = (0,0, ...) and g7 = (Q,0,) where @ is the length of
the trajectory in joint space.

e Let ¢ = {Gr.m M, be the set of noisy samples for ¢, sampled as in Equation (5.5).

e By (iii) we write the loss as L' = Zthl > i mec, msign(f(ae) — f(Gem)). We state

120

A.6 PROOF OF LEMMA 5.3.1 FOR THE TRIC VALUE FUNCTION

that the following property (A) holds:

T
I'=->> eam=1Ls

t=1 me(;

(A.8)

& [Vt,m : |:€t,m > 0= f(G,m) > f(%)}

We will now prove (A):
— in the <« direction: each ¢, > 0 by Equation (5.8) and sign(a) € {—1,0,1}, thus

it is clear that the lower bound is achieved if V¢, m : |:€t,m >0= f(Gem) > f (qt)} .

— in the = direction: suppose some ¢, > 0 and sign(f(q:) — f(Gx)) > 0; then
another value function f’ identical to f everywhere but in ¢, ;, — i.e. sign(f’(q:) —
J'(Grx)) < 0—will have a lower value and so the lower bound was not achieved
by the first f.

We will show that (A) implies (I) and (II). Because of (ii) each ¢; can be assumed to
fill densely R", i.e. there is always a sample arbitrarily close to any point in space.
Thus (ii) implies that V¢3¢ € (; s.t. ¢ is arbitrarily close to ¢;—;. Such a sample will
have weight ¢ > 0 by Equation (5.8). Thus (A) implies that f(g;—1) > f(g) for all
t, and (I) is valid.

On the other side, V¢3¢ € (; s.t. ¢” is arbitrarily close to ¢;+1. However, the
corresponding weight ¢’ = 0 by Equation (5.8) and thus f(g:+1) > f(g¢) is not
implied by (A).

Using (ii) again, (r contains a dense neighborhood around g7, and all weights

er.m > 0 by Equation (5.8). Thus by (A) Vg7, € (7 : f(qr) < f(Gr,m), and so f(qr)
is a minimum, (II).

Now we will show constructively that the lower bound Lp can be reached by a
specific choice of value function f.

— Define f(q) = (q[l])2 —2Qqu) + %deurve(q, {a:}]_,), where the square brackets
indicate dimension.

— The minimum of f is at ¢ = @, because (q[l])Q — 2Qqq is a quadratic form
and deurve > 0 by Equation (5.7). We note that maxc(; 7y f (g¢) = 0, using that
deurve(q, { qt}le) = 0 for the demonstrated trajectory samples.

— Choose a random sample ¢* € (; for any ¢, with weight ¢*. By Equation (5.8) and
(iv) it holds €* > deyrve(G*, {@i }1—1).

— If deurve(G*,{q:}1—1) = 0 then G* lies on the trajectory and ¢* = (v,0,0,...) for
v € [0,Q]. If v < t by the construction of f it holds that f(¢*) > f(¢) and by
Equation (5.8) € > 0. If v > t then by Equation (5.8) ¢* = 0.

—If deurve (G, {qt}1—1) > €o then €* > €. By construction of f it holds f(¢*) > 1 >
f(g) because f(g;) < 0.

— We examined all possible cases for ¢, and (A) always holds. Thus the lemma is
proven.

A PROOFS AND DERIVATIONS 121

By taking €9 — 0 we can effectively relax (iv). Assumption (i) can be relaxed and
our proof can be generalized using some additional transformations to any curved path
which is not crossing itself. In general it is not possible to prove the lemma without
assumption (ii) and for multiple different trajectories: one can construct data for which
the lemma does not hold. However, properties (I) and (II) seem to hold in general for
various datasets we tried.

A.7 Proof of Proposition 5.3.4 for Lyapunov Attractor Properties
of TRIC

Proposition Suppose we have trained TRIC on a single trajectory {q,y: }._; and that the
implications of Lemma 5.3.1 hold for a trajectory in that task space. Additionally, we gen-
erate motion with §; — oo, i.e. very high weighting of the value function. Then the mo-
tion generated by the model in Equation (5.1) fulfills the conditions of Theorem 5.3.3 and
is thus asymptotically stable in the joint space subspace Q' = {¢' : ¢(¢') = é(qr) = yr}.

Proof Because of §; — oo the term decreasing the value function f will dominate the
motion equation and we can ignore the effect of the other terms. Let’s construct V' (¢) =
fod(q) — cr, where ¢ = f o ¢(qr) is the value function evaluated at joint state ¢r (last
trajectory step) after training of TRIC. Then the Lyapunov stability conditions hold:

e (a) holds because of Lemma 5.3.1 which implies that ¢z = f o ¢(gr) is local mini-
mum and any other joint state ¢ s.t. ¢(q) # ¢(¢r) will have higher value f o ¢(q).

e (b) holds by the construction of V' (g) directly implying that
Vigr) = fodlqr) —cr =0

e Proposition 5.2.1 holds because we assumed that §; — oo. This implies that the
steps of the motion model are proportional to the gradient 7. Thus the motion
model of Equation (5.2) will make steps decreasing the value f o ¢(g;) constantly
and (c) holds.

e (d) holds because ¢ = f o ¢(gr) is local minimum and after we reach a joint state
¢ st. ¢(¢') = ¢(qr) the gradient of the value function will be 0 and no further
decrease will be possible.

122 A7 PROOF OF PROPOSITION 5.3.4 FOR LYAPUNOV ATTRACTOR PROPERTIES OF TRIC

Literature

B. D. Argall, S. Chernova, M. M. Veloso, and B. Browning. A survey of robot learning
from demonstration. Robotics and Autonomous Systems, 57(5):469 — 483, 2009.

C. G. Atkeson. Using local trajectory optimizers to speed up global optimization in
dynamic programming. In NIPS, pages 663-670, 1993.

R. E. Bellman, editor. Dynamic Programming. Princeton University Press, 1957.

M. Berniker and K. Kording. Estimating the sources of motor errors for adaptation and
generalization. Nature Neuroscience, 11(12):1454-1461, 2008.

A. Billard, Y. Epars, S. Calinon, G. Cheng, and S. Schaal. Discovering optimal imitation
strategies. Robotics and autonomous systems, Special Issue: Robot Learning from Demon-
stration, 47(2-3):69-77, 2004.

A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers with online and
active learning. Journal of Machine Learning Research, 6:1579-1619, 2005.

M. Branicky, R. Knepper, and J. Kuffner. Path and trajectory diversity: Theory and algo-
rithms. In IEEE Int. Conf. on Robotics and Automation (ICRA), pages 1359-1364, 2008.

M. L. Braun, J. M. Buhmann, and K.-R. Miiller. On relevant dimensions in kernel feature
spaces. Journal of Machine Learning Research, 9:1875-1908, 2008.

O. Brock and O. Khatib. Elastic strips: A framework for integrated planning and exe-
cution. In The Sixth International Symposium on Experimental Robotics, pages 329-338,
2000.

S. Calinon and A. Billard. Recognition and reproduction of gestures using a probabilistic
framework combining PCA, ICA and HMM. In 22nd Int. Conf. on Machine Learning
(ICML), pages 105-112, 2005.

S. Calinon and A. Billard. Incremental learning of gestures by imitation in a humanoid
robot. In HRI '07: Proceedings of the ACM/IEEE international conference on Human-robot
interaction, pages 255-262, 2007.

J. Call and M. Carpenter. Three sources of information in social learning. Imitation in
animals and artifacts, pages 211-228, 2002.

123

124 LITERATURE

S. Caselli and M. Reggiani. Randomized motion planning on parallel and distributed
architectures. In Euromicro Conf. on Parallel, Distributed, and Network-Based Processing,
page 297, 1999.

D. Challou, D. Boley, M. Gini, and V. Kumar. A parallel formulation of informed ran-
domized search for robot motion planning problems. In IEEE Int. Conf. on Robotics and
Automation (ICRA), pages 709-714, 1995.

J. T. Coull, E Vidal, C. Goulon, B. Nazarian, and C. Craig. Using time-to-contact in-
formation to assess potential collision modulates both visual and temporal prediction
networks. Frontiers in human neuroscience 2008;2:10, 2008.

J. J. Craig. Introduction to Robotics: Mechanics and Control. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1989. ISBN 0201095289.

I. Dinstein, C. Thomas, M. Behrmann, and D. J. Heeger. A mirror up to nature. Current
biology : CB, 18(1), 2008.

S. Dragiev, M. Toussaint, and M. Gienger. Gaussian process implict surface for object
estimation and grasping. In IEEE Int. Conf. on Robotics and Automation (ICRA), 2011.

P. Dyer and S. R. McReynolds. The Computation and Theory of Optimal Control. Elsevier,
1970.

A. Elfes. Using occupancy grids for mobile robot perception and navigation. Computer,
22(6):46-57, 1989.

D. Ferguson, N. Kalra, and A. T. Stentz. Replanning with rrts. In IEEE Int. Conf. on
Robotics and Automation (ICRA), pages 1243 — 1248, May 2006.

P. F. Ferrari, V. Gallese, G. Rizzolatti, and L. Fogassi. Mirror neurons responding to
the observation of ingestive and communicative mouth actions in the monkey ventral
premotor cortex. European Journal of Neuroscience, 17(8):1703-1714, 2003.

M. Gienger, M. Toussaint, N. Jetchev, A. Bendig, and C. Goerick. Optimization of fluent
approach and grasp motions. In 8th IEEE-RAS International Conference on Humanoid
Robots, 2008.

M. Haindl, P. Somol, D. Ververidis, and C. Kotropoulos. Feature selection based on
mutual correlation. In CIARP, pages 569-577, 2006.

K. Hiraki, A. Sashima, and S. Phillips. From Egocentric to Allocentric Spatial Behavior:
A Computational Model of Spatial Development. Adaptive Behavior, 6(3-4):371-391,
1998.

E.S. L. Ho, T. Komura, and C.-L. Tai. Spatial relationship preserving character motion
adaptation. ACM Transactions on Graphics, 29(4):1-8, 2010.

LITERATURE 125

M. Howard, S. Klanke, M. Gienger, C. Goerick, and S. Vijayakumar. Behaviour gen-
eration in humanoids by learning potential-based policies from constrained motion.
Applied Bionics and Biomechanics, 5(4):195-211, 2008.

M. Howard, S. Klanke, M. Gienger, C. Goerick, and S. Vijayakumar. A novel method for
learning policies from variable constraint data. Autonomous Robots, 27:105-121, 2009.

C. Igel, M. Toussaint, and W. Weishui. Rprop using the natural gradient. Trends and
Applications in Constructive Approximation. International Series of Numerical Mathematics,
151:259-272, 2005.

W. Ilg, G. H. Bakir,]J. Mezger, and M. A. Giese. On the representation, learning and
transfer of spatio-temporal movement characteristics. Int. Journal of Humanoid Robotics,
1(4):613-636, 2004.

O. C. Jenkins and M. J. Matari¢. A spatio-temporal extension to isomap nonlinear di-
mension reduction. In 21st Int. Conf. on Machine Learning (ICML), 2004.

N. Jetchev and M. Toussaint. Trajectory prediction: Learning to map situations to robot
trajectories. In 26th Int. Conf. on Machine Learning (ICML), pages 449456, 2009.

N. Jetchev and M. Toussaint. Trajectory prediction in cluttered voxel environments. In
Int. Conf. on Robotics and Automation (ICRA), pages 2523-2528, 2010.

N. Jetchev and M. Toussaint. Task space retrieval using inverse feedback control. In 28th
Int. Conf. on Machine Learning (ICML), pages 449-456, 2011a.

N. Jetchev and M. Toussaint. Fast motion planning from experience: Trajectory predic-
tion for speeding up movement generation, 2011b. Submitted.

L. E. Kavraki, J.-C. Latombe, R. Motwani, and P. Raghavan. Randomized query pro-
cessing in robot path planning. In Twenty-seventh annual ACM Symposium on Theory of
Computing (STOC), pages 353-362, 1995.

S. M. Khansari-Zadeh and A. Billard. Bm: An iterative algorithm to learn stable non-
linear dynamical systems with gaussian mixture models. In IEEE Int. Conf. on Robotics
and Automation (ICRA), pages 2381-2388, 2010.

G. Konidaris and A. Barto. Autonomous shaping: knowledge transfer in reinforcement
learning. In 23rd Int. Conf. on Machine Learning (ICML), pages 489-496, 2006.

O. Kroemer, R. Detry, J. H. Piater, and J. Peters. Active learning using mean shift op-
timization for robot grasping. In IEEE/RS] Int. Conf. on Intelligent Robots and Systems
(IROS), pages 2610-2615, 2009.

O. Kroemer, R. Detry, J. H. Piater, and J. Peters. Grasping with vision descriptors and
motor primitives. In ICINCO (2), pages 47-54, 2010.

126 LITERATURE

M. Krutzen, J. Mann, M. Heithaus, R. Connor, L. Bejder, and W. Sherwin. Cultural trans-
mission of tool use in bottlenose dolphins. Proceedings of the National Academy of Sci-
ences, 102(25):8939-8943, 2005.

S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K., 2006.
Available at http:/ /planning.cs.uiuc.edu/.

Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang. A tutorial on energy-based
learning. In Predicting Structured Data, 2006.

M. Linderoth, A. Robertsson, K. Astrom, and R. Johansson. Object tracking with mea-
surements from single or multiple cameras. In Int. Conf. on Robotics and Automation
(ICRA), pages 4525-4530, 2010.

D. G. Lowe. Similarity metric learning for a variable-kernel classifier. Neural Computation,
7:72-85, 1995.

J. B. MacQueen. Some methods for classification and analysis of multivariate observa-
tions. In Proc. of the 5th Berkeley Symposium on Mathematical Statistics and Probability,
volume 1, pages 281-297, 1967.

S. Martin, S. Wright, and]J. Sheppard. Offline and online evolutionary bi-directional
RRT algorithms for efficient re-planning in dynamic environments. In IEEE Int. Conf.
on Automation Science and Engineering (CASE)., pages 1131-1136, 2007.

A. McGovern and R. S. Sutton. Macro-actions in reinforcement learning: an empirical
analysis. Technical Report 98-70, University of Massachusetts, Amherst, 1998.

G. Montavon, M. Braun, and K.-R. Miiller. Kernel analysis of deep networks. Journal of
Machine Learning Research, 12:2563-2581, 2011.

M. Muehlig, M. Gienger,]J. J. Steil, and C. Goerick. Automatic selection of task spaces
for imitation learning. In IEEE/RS] Int. Conf. on Intelligent Robots and Systems (IROS),
pages 4996-5002, 2009.

E. A. Mussa-Ivaldi and E. Bizzi. Motor learning through the combination of primitives.
Philosophical transactions of the Royal Society of London., 355:1755-69, 2000.

C. S. Myers and L. R. Rabiner. A comparative study of several dynamic time-warping
algorithms for connected word recognition. The Bell System Technical Journal, 60(7):
1389-1409, 1981.

A. Nakhaei and F. Lamiraux. Motion planning for humanoid robots in environments
modeled by vision. In 8th IEEE-RAS Int. Conf. on Humanoid Robots, pages 197-204,
2008.

J. Nocedal and S. Wright. Numerical optimization. Springer series in operations research
and financial engineering. Springer, New York, NY, 2nd edition, 2006.

LITERATURE 127

K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical
Magazine, 2(11):559-572, 1901.

T.]. Perkins and A. G. Barto. Lyapunov design for safe reinforcement learning. Journal
of Machine Learning Research, 3:803-832, 2002.

L. Peshkin and E. D. de Jong. Context-based policy search: Transfer of experience across
problems. In ICML-2002 Workshop on Development of Representations, 2002.

D. A. Pomerleau. Efficient training of artificial neural networks for autonomous naviga-
tion. Neural Comput., 3:88-97, 1991.

S. Quinlan and O. Khatib. Elastic bands: Connecting path planning and control. In [EEE
Int. Conf. on Robotics and Automation (ICRA), pages 802-807, 1993.

N. Ratliff, B. Ziebart, K. Peterson,]. A. Bagnell, M. Hebert, A. K. Dey, and S. Srinivasa.
Inverse optimal heuristic control for imitation learning. In Proc. of AISTATS, pages
424-431, 2009a.

N. Ratliff, M. Zucker, A. Bagnell, and S. Srinivasa. Chomp: Gradient optimization tech-
niques for efficient motion planning. In IEEE Int. Conf. on Robotics and Automation
(ICRA), 2009b.

N. D. Ratliff,]. A. Bagnell, and M. A. Zinkevich. Maximum margin planning. In 26th Int.
Conf. on Machine Learning (ICML), pages 729-736, 2006.

S.J. Raudys and A. K. Jain. Small sample size effects in statistical pattern recognition:
Recommendations for practitioners. IEEE Trans. on Pattern Analysis and Machine Intel-
ligence, 13:252-264, March 1991.

M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learn-
ing: The rprop algorithm. In IEEE Int. Conf. On Neural Networks, pages 586-591, 1993.

S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 3rd
edition, 2009.

T. D. Sanger. Human arm movements described by a low-dimensional superposition of
principal components. Journal of Neuroscience, 20(3):1066—1072, 2000.

S. Schaal, J. Peters, J. Nakanishi, and A. J. [jspeert. Learning movement primitives. In
International Symposium on Robotics Research, pages 561-572, 2003.

M. Schmidt, G. Fung, and R. Rosales. Fast optimization methods for 11 regularization:
A comparative study and two new approaches. In 18th European Conf. on Machine
Learning (ECML), pages 286297, 2007.

B. Scholkopf and A. J. Smola. Learning with kernels : support vector machines, regulariza-
tion, optimization, and beyond. Adaptive computation and machine learning. MIT Press,
2002.

128 LITERATURE

B. Scholkopf, A. J. Smola, and K.-R. Miiller. Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation, 10(5):1299-1319, 1998.

A. Shon, J. Storz, and R. Rao. Towards a real-time bayesian imitation system for a hu-
manoid robot. In IEEE Int. Conf. on Robotics and Automation (ICRA), pages 2847-2852,
2007.

B. Siciliano and O. Khatib, editors. Springer Handbook of Robotics. Springer, 2008.
J.-J. Slotine and W. Li. Applied Nonlinear Control. Prentice Hall, 1991.

E. Smith and S. Kosslyn. Cognitive psychology: mind and brain. Pearson/Prentice Hall,
2007.

A.]. Smola and B. Scholkopf. A tutorial on support vector regression. Statistics and
Computing, 14:199-222, 2004.

S. Sonnenburg, G. Rétsch, C. Schéfer, and B. Scholkopf. Large scale multiple kernel
learning. Journal of Machine Learning Research, 7:1531-1565, 2006.

E. Steinke, B. Scholkopf, and V. Blanz. Support vector machines for 3d shape processing.
Computer Graphics Forum, 24(3):285-294, 2005.

M. Stolle and C. Atkeson. Transfer of policies based on trajectory libraries. In IEEE/RS]
Int. Conf. on Intelligent Robots and Systems (IROS), pages 2981-2986, 2007.

J. Tegin, S. Ekvall, D. Kragic,]. Wikander, and B. Iliev. Demonstration-based learning
and control for automatic grasping. Intelligent Service Robotics, 2:23-30, 2009.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statis-
tical Society, 58:267-288, 1996.

E. Todorov and W. Li. A generalized iterative LQG method for locally-optimal feedback
control of constrained nonlinear stochastic systems. In Proc. of the American Control
Conference, volume 1, pages 300-306, 2005.

M. Toussaint. Robot trajectory optimization using approximate inference. In 26th Int.
Conf. on Machine Learning (ICML), pages 1049-1056, 2009.

M. Toussaint. Robotics. University Lecture, 2011. URL http://userpage.
fu-berlin.de/~mtoussai/teaching/11-Robotics/.

M. Toussaint, N. Plath, T. Lang, and N. Jetchev. Integrated motor control, planning,
grasping and high-level reasoning in a blocks world using probabilistic inference. In
IEEE Int. Conf. on Robotics and Automation (ICRA), pages 385-391, 2010.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for
structured and interdependent output variables. Journal of Machine Learning Research,
6:1453-1484, 2005.

http://userpage.fu-berlin.de/~mtoussai/teaching/11-Robotics/
http://userpage.fu-berlin.de/~mtoussai/teaching/11-Robotics/

H.-H. Tu and H.-T. Lin. One-sided support vector regression for multiclass cost-sensitive
classification. In ICML, pages 1095-1102, 2010.

B. Voelkl and L. Huber. Imitation as faithful copying of a novel technique in marmoset
monkeys. PLoS ONE, 2(7):e611, 2007.

T. Wagner, U. Visser, and O. Herzog. Egocentric qualitative spatial knowledge represen-
tation for physical robots. Robotics and Autonomous Systems, 49(1-2):25 — 42, 2004.

V. Willert, M. Toussaint, J. Eggert, and E. Koérner. Uncertainty optimization for robust
dynamic optical flow estimation. In The sixth Int. Conf. on Machine Learning and Appli-
cations, pages 450-457, 2007.

E. Zacharias, C. Borst, and G. Hirzinger. Capturing robot workspace structure: represent-
ing robot capabilities. In IEEE/RS] Int. Conf. on Intelligent Robots and Systems (IROS),
pages 3229-3236, 2007.

J. Zhang and A. Knoll. An enhanced optimization approach for generating smooth robot
trajectories in the presence of obstacles. In Proc. of the European Chinese Automation
Conf., pages 263-268, 1995.

Zusammenfassung

Lernen von Reprasentationen aus Bewegungstrajektorien: Analyse und Anwendung
in Roboterplanung und -Regelung

Ein Schwerpunkt der Forschung an Robotern ist die Generierung von Bewegung. Um
die Gegenstdnde in seiner Umgebung handzuhaben und mit ihnen verschiedene Auf-
gaben zu losen, muss ein Roboter die dafiir notwendigen Bewegungtrajektorien berech-
nen und anschliessend ausfiihren. Eine Vielzahl Methoden zur Generierung von Bewe-
gung wurde in der Robotik entwickelt. Doch keine dieser Methoden nutzt die Muster in
vorangegangenen erfolgreichen Bewegungen aus, um die Bewegungsgenerierung besser
und schneller zu machen. In dieser Doktorarbeit schlage ich neuartige Ansitze vor,
die Techniken des Maschinellen Lernens und der Robotik vereinen. Diese Ansitze er-
moglichen es einem Roboter, die Merkmale und latente Struktur in seiner Interaktion
mit der Umgebung zu analysieren und dadurch aus seiner Erfahrung effizientere Bewe-
gungen zu lernen. In zahlreichen Experimenten zeige ich, dass meine Ansédtze schneller
und effizienter Bewegungen erzeugen als etablierte Techniken.

Der erste konkrete Beitrag zu Bewegungsplanung ist die so genannte Trajectory Pre-
diction. Unsere Methode kann, gegeben eine Weltbeschreibung, schnell eine geeignete
Trajektorie, aufgrund einer von Daten gelernten Funktion, vorhersagen. Die von Daten
gelernten Muster erlauben eine deutlich schnellere Bewegungserzeugung in Vergleich
zu Methoden die diese Daten nicht benutzen. Diese Muster reflektieren Strukturen in
der Anordnung von Objekte, die die robotische Bewegung beinflussen.

Mein zweiter Ansatz Task Space Retrieval using Inverse Optimal Control ist eine Meth-
ode zum Lernen aus der Beobachtung einer Bewegungsdemonstration. Aus der Demon-
stration lernt dieser Ansatz eine Wertefunktion fiir gute Bewegungen und eine kompakte
Aufgabenreprasentation. Dadurch kann ein Roboter auf Grundlage der gelernten Werte-
funktion in neuen Situationen angemessene Bewegungen erzeugen und sich wie demon-
striert verhalten, ohne dass ihm eine explizite Aufgabenspezifikation gegeben werden
muss.

131

Vita
Nikolay Nikolaev Jetchev

CV not available in the online version due to privacy reasons.

Erklarung

Hiermit erkldre ich, dass ich die vorliegende Dissertation selbststindig auf der Grund-
lage der in der Arbeit angegebenen Hilfsmittel und Hilfen verfasst habe.

Nikolay Nikolaev Jetchev
Berlin, den 31. Januar 2012

135

	Introduction
	Speeding-up Planning
	Related Motion and Trajectory Generation Methods
	Previous Use of Machine Learning Techniques to Speed up Planning

	Imitation Learning
	Related Work in Imitation Learning
	Previous Work in Recovering Task Spaces

	Outline and Contributions
	Publication Summary

	Background: Motion Generation and Learning
	Kinematics of Articulated Robot Motion
	Motion Features and Task Spaces

	Motion Models for Forward Control - Inverse Kinematics
	Motion Models for Planning
	Robot Motion Planning: a Basic Model
	Sampling Based Planning
	On Planning and Control

	Machine Learning and Imitation Learning Methods
	Direct Policy Learning
	Markov Decision Process and Reinforcement Learning
	Inverse Optimal Control
	Discriminative Learning

	Trajectory Prediction: Mapping Situations to Motions
	Overview of TP
	Planning Motion and Predicting Motion
	Trajectory Prediction: Overview of the Algorithm

	Situation Representations and Descriptor
	General Geometric Descriptor
	Voxel Descriptor

	Task Space Trajectory IK Transfer
	Motion Representation: Output Trajectory Task Space
	Formalization of the Transfer Operator

	Mapping Situation to Motion
	Gathering Data Demonstrating Optimal Motions
	Learning the Situation to Motion Mapping

	Discussion: Trajectory Prediction and Imitation Learning
	TP and Direct Policy Learning
	TP as a Macro Action Policy

	Experiments
	Reaching on Different Table Sides
	Reaching in Cluttered Scene.
	Grasping a Cylinder

	Conclusions from TP
	Future Work

	An Extension of Trajectory Prediction: Parallel Process Planning
	Introduction
	Related work
	Planning and Parallel Trajectory Exploration Framework
	Notation
	Framework and Algorithm

	Adapting Trajectory Prediction to the Parallel Framework
	Experiments
	Robot and Planner Setup
	Setup of Two Different Scenarios for Reaching Task
	Trajectory Prediction Setup
	Results

	Conclusions
	Future Work

	TRIC: Task Space Retrieval Using Inverse Optimal Control
	Overview of the TRIC method
	Motion Model and Controller
	Learning the TRIC Value Function from Motion Data
	Discrimination in Feature Space via Loss Term Ln
	Making the Gradient Consistent with the Demonstrations via Loss Term Lg

	Discussion of TRIC
	Local and Global Imitation
	Limitations of the TRIC Model: Periodic Motion
	Discussion of the Loss Terms

	Experiments
	The Grasping Task
	TRIC Setup: Motion Representation and Value Function Model
	Experimental Results: Performance of the Learned Grasping Controller
	Analysis of the Trajectory Dataset: Structure Revealed from the Sparse Discriminative Value Function
	Analysis of the Motion Features: Retrieving Relevant Task Spaces

	Conclusions from TRIC
	Future Work

	Conclusions
	What is Possible Now: Summary of the Benefits of TP and TRIC
	Future Work: Fusing TP and TRIC

	Proofs and Derivations
	Derivation of the Gradient of the Training Loss for TP with NNOpt
	Proof of Proposition 3.5.2 for SVR complexity
	Proof of Proposition 3.5.1 for NN complexity
	Proof of Proposition 5.2.1 for the Direction of IK Generated Motion Steps
	TRIC Complexity: Training Loss and Motion model
	Proof of Lemma 5.3.1 for the TRIC Value Function
	Proof of Proposition 5.3.4 for Lyapunov Attractor Properties of TRIC

	Literature
	Zusammenfassung

