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Extended Abstract

This thesis addresses three challenges in modeling regulatory and signal trans-
duction networks. Starting point is the generalized logical formalism as in-
troduced by R. Thomas and further developed by D. Thieffry, E. H. Snoussi
and M. Kaufman. We introduce the fundamental concepts that make up such
models, the interaction graph and the state transition graph, as well as model
checking, a computer science technique for deciding whether a finite transition
system satisfies a given temporal specification.

The first problem we turn to is that of whether a given model is consis-
tent with time series data. To do so we introduce query patterns that can
be automatically derived from discretized data. Time series data, being such
an abundant source of information for reverse engineering, has previously been
used in the context of logical models but only under the synchronous, transition-
based notion of consistency. The arguably more realistic asynchronous transi-
tion relation has so far been excluded from such data driven reverse engineering,
probably because the corresponding non-determinism in the transition system
introduces additional obstacles to the already hard problem. Our contribution
here is a path-based notion of consistency between model and data that works
for any transition relation. In particular, we discuss linear time properties like
monotony and branching time properties like robustness. The result are sev-
eral query patterns, similar to but more complex than the ones proposed by
P. T. Monteiro et al. A toolbox, called TemporalLogicTimeSeries for the
automated construction of queries from data is also presented.

The second problem we turn to concerns the two types of long-term be-
haviors that logical models are capable of producing: steady states, in which
the activity levels of all network components are kept at a fixed value, and
cyclic attractors in which some components are unsteady and produce sustained
oscillations. We attempt to understand the emergence of these behaviors by
searching for symbolic steady states as defined by H. Siebert. Our main con-
tribution is the introduction of the prime implicant graph, which describes all
minimal conditions under which components may change their activities, and
an optimization-based algorithm for the enumeration of all maximal and mini-
mal symbolic steady states. Essentially, we generalize the canalizing effects and
forcing structure that were first introduced and studied by S. Kauffman and
F. Fogelman in the context of random Boolean networks. The chapter includes
a theorem that relates symbolic steady states to the existence of positive feed-
back circuits in the interaction graph. A toolbox, called BoolNetFixpoints
that implements our algorithm is also described.

The theme of the last chapter is how to deal with uncertainties that in-
evitably appear during the modeling of biological systems. One is often forced
to resolve them since most types of analysis require a single, fully specified
model. The knowledge gap is usually filled by making simplifications or by
introducing additional assumptions that are hard to justify and therefore some-
what arbitrary. The alternative is to work with and analyze sets of alternative
models, rather than single models. This idea entails additional theoretical and
practical challenges: With which language should we describe our partial knowl-
edge about a system? How can predictions be made given that each model in
the set may behave differently? How can hypotheses and additional data be
added to the current knowledge in a systematic manner?
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It seems that there are in principle two different approaches. The first one
is constraint-based and studied by F. Corblin et al. It translates the partial
knowledge and modeling formalism into facts and rules of a logic program.
Common solvers can then deduce additional properties or test the validity of
given queries across all models. In contrast, we propose to study the pros and
cons of an explicit approach that enumerates all models that agree with a given
partial specification. During the first step, models are enumerated and stored
in a database. During a second step, models are annotated with additional
information that is obtained from custom algorithms. The relationships between
the annotations are then analyzed in a third step. The chapter is based on the
prototype implemention LogicModelClassifier that performs the discussed
steps.

Throughout, we apply our results to two previously published models of bi-
ological systems. The first one is a small model of the galactose switch which
regulates the transcription of genes that are involved in the metabolism of yeast.
We address questions that arise during the construction of the model, for exam-
ple the number of involved components and their interactions, as well as issues
related to model validation and model revision with time series data. The case
study also discusses different approaches to data discretization.

The second one is a medium size model of the MAPK network studied by
D. Thieffry et al. that is used to predict the cell fate response to different stimuli
involving the growth factors EGF, TGFB, FGF and DNA damage. With the
methods developed in this thesis we can prove that the model is capable of 18
different asymptotic behaviors, 12 of them steady states and 6 cyclic attractors.
The question of which attractor is reached from which initial state is answered
and we can show that the response in terms of proliferation or growth arrest
and apoptosis is fully determined by the input stimulus.
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Ausführliche Kurzfassung

Diese Arbeit beschäftigt sich mit drei Herausforderungen, die beim Modellieren
von regulatorischen Netzwerken und der Signaltransduktion auftreten. Zunächst
beschreiben wir den logischen Formalismus, der von R. Thomas eingeführt und
D. Thieffry, E. H. Snoussi und M. Kaufman weiterentwickelt wurde. Er zeich-
net sich dadurch aus, dass die Komponenten des Modells nur Werte aus einem
endlichen Bereich annehmen. Wir stellen die grundlegenden Objekte eines logis-
chen Modells, den Zustandsübergangsgraphen und den Interaktionsgraphen, vor
und besprechen das Model Checking, eine Methode zur automatischen Prüfung
von Ausdrücken temporaler Logiken in gegebenen Modellen.

Der erste Teil der Arbeit beschäftigt sich damit, wie wir entscheiden können,
ob ein gegebenes Modell mit Zeitreihendaten konsistent ist. Dazu konstruieren
wir verschiedene Anfragen nach denen Daten in temporale Logiken übersetzt
werden können. Zeitreihendaten spielen eine wichtige Rolle beim Reverse Engi-
neering von logischen Modellen nach Daten, aber bisher nur unter der Annahme,
dass die Übergänge des dem Modell zugrundeliegenden Übergangssystems syn-
chron sind. Die realistischere Annahme, nämlich dass sich die Aktivitäten
der Komponenten asynchron ändern, wurde bisher in diesem Zusammenhang
nicht untersucht. Das liegt wahrscheinlich daran, dass die dadurch entstehen-
den nicht-deterministischen Übergangssysteme ein ohnehin schon schwieriges
Problem noch weiter verkomplizieren. Unser Beitrag in diesem Zusammenhang
sind verschiedene pfadbasierte Definitionen von Konsistenz, die unabhängig von
der gewählten Übergangsrelation prüfbar sind. Wir diskutieren die Möglichkeit
Monotonie- und Robustheits-Annahmen mithilfe von Linear Time Logic und
Computational Tree Logic zu kodieren. Außerdem wird die Toolbox Tempo-
ralLogicTimeSeries zur automatischen Generierung der besprochenen An-
fragen vorgestellt.

Im zweiten Teil wenden wir uns dem Langzeitverhalten und den Attraktoren
von logischen Modellen zu. Wir versuchen die Existenz von stabilen Zuständen,
in denen die Aktivitäten aller Komponenten konstant bleiben, und auch von
zyklischen Attraktoren, in denen einige Komponenten dauerhaft instabil sind,
mithilfe der sogenannten symbolischen Fixpunkte zu erklären. Die Ergebnisse
beziehen sich dabei auf die Definitionen von H. Siebert. Es werden die Prim-
Implikanten, als minimale Bedingungen unter denen diskrete Funktionen ihren
Wert ändern können, eingeführt und der Prim-Implikanten-Graph vorgestellt.
Das zentrale Ergebnis ist, dass symbolische Fixpunkte durch bestimmte Kanten-
mengen in diesem Graphen repräsentiert werden. Diese können durch 0-1 Op-
timierungsprobleme beschrieben und mithilfe von üblichen Constraint-Solvern
gefunden werden. Ein Skript, das alle beschriebenen Schritte durchführt, ist
unter dem Namen BoolNetFixpoints verfügbar.

Im letzten Teil der Arbeit beschäftigen wir uns mit Ungewissheiten, die
während des Modellierens biologischer Systeme zwangsläufig auftreten. Oft
ist man gewzungen diese auszuräumen, da die meisten Analysemethoden
vollständig spezifizierte Modelle benötigen. Das geschieht oft dadurch, dass
starke Vereinfachungen gemacht oder schwer zu begründende, und damit
willkürliche, Annahmen getroffen werden müssen. Die Alternative dazu besteht
darin gleichzeitig mit allen Modellen zu arbeiten, die dem aktuellen Stand des
Wissens entsprechen. Dadurch entstehen zusätzliche theoretische und praktis-
che Herausforderungen: Mit welcher Sprache können Modelle teilweise spez-
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ifiziert werden? Wie lassen sich Vorhersagen treffen, wenn sich jedes Mod-
ell potenziell anders Verhalten kann? Wie können zusätzliche Annahmen und
Daten möglichst systematisch hinzugefügt werden?

Im Prinzip gibt es zwei Herangehensweisen. Der Constraint-Programming
Ansatz, umgesetzt von F. Corblin et al., übersetzt das vorhandene, partielle
Modell sowie den Modell-Formalismus in Fakten und Regeln eines logischen
Programms. Übliche Logic Programming Solver können dann prüfen ob sich
eine Eigenschaft aus diesem Programm herleiten läßt, oder nicht. Im Gegen-
satz dazu untersuchen wir die Vor- und Nachteile eines expliziten Ansatzes.
Dabei werden alle Modelle, die mit einer gegebenen Spezifikation konsistent sind,
aufgezählt und in einer Datenbank gespeichert. In einem zweiten Schritt können
die Modelle mit zusätzlichen Informationen versehen werden, deren Beziehun-
gen zueinander dann in einem dritten Schritt ausgewertet werden. Das Kapitel
orientiert sich an der prototypischen Umsetzung LogicModelClassifier mit
der die besprochenen Schritte ausgeführt werden können.

Die entwickelten Methoden und Ideen werden an zwei Modellen illustriert.
Das erste ist ein kleines Modell des Galaktose-Genschalters in Hefe welcher am
Stoffwechsel beteiligt ist. Es werden Fragen behandelt die sich beim Aufstellen
des Modells stellen, zum Beispiel wieviele Komponenten gebraucht werden und
wie diese interagieren sollen. Des Weiteren wird die Modell-Validierung und
Revision mit Hilfe von Expressionsdaten angesprochen. Verschiedene Herange-
hensweisen zur Diskretisierung der Daten werden miteinander verglichen.

Das zweite ist ein größeres Modell des MAPK Systems, welches das
Schicksal von Krebszellen in Abhängigkeit von verschiedenen Umwelteinflüssen
beschreibt. Zu den Einflüssen zählen die Wachstumsfaktoren EGF, TGFB und
FGF sowie DNS-Schäden. Mit den in der Dissertation erarbeiteten Methoden
und Ideen können wir zeigen, dass das Model in der Lage ist 18 verschiedene
Reaktionen zu zeigen. 12 davon sind stabile Zustände und 6 sind zyklische At-
traktoren. Die Frage welcher Attraktor von welchem Anfangszustand erreicht
werden kann wird beantwortet und wir können zeigen, dass das asymptotis-
che Verhalten des Modells, in Bezug auf die Entscheidung Zellwachstum oder
Zelltod, vollständig durch die Anfangsbedingungen bestimmt ist.



Chapter 1

Introduction

”We are interested in studying the dynamics of arbitrarily cross cou-
pled biochemical networks in which the rates of synthesis of key
metabolites are regulated by the concentrations of control molecules
in the medium.”

–L. Glass and S. Kauffman in [1]

1.1 Positioning and Motivation

This thesis belongs to the field of life sciences that attempts to understand
and simulate biological processes with mathematical models and computer pro-
grams. More specifically, the biological context is the study of protein inter-
action networks and in particular gene regulatory and signal transduction net-
works. Gene regulation is the process by which living cells control the tran-
scription and translation of their genes and involves various mechanisms. There
is, for example, the regulation by DNA binding proteins, the transcription fac-
tors, whose transcription is in turn regulated. The patterns of gene expression
change over time and are characteristic for specific cell types as well as dis-
eases. They can be monitored quantitatively by various techniques such as
blotting mRNA concentrations or fluorescent microscopy in which the inten-
sity of co-expressed fluorescent proteins is measured. Signal transduction is the
mechanism by which cells sense stimuli in their environment via receptors in
their membranes. A stimulus propagates via kinases along numerous pathways
and results in a response that ranges from the production of specific enzymes
that metabolize available nutrients to programmed cell death. Within a single
cell there may be hundreds of genes, transcriptions factors, receptors and sig-
naling proteins. To predict the dynamics of such networks therefore requires
more than understanding how each part works.

Mathematics offers a large variety of frameworks and rules that define what
a state of the system might be and how states may change over time. The
concentrations of a set of proteins can, for example, be modeled by a system of
differential equations. Each equation consists of synthesis and degradation terms
that are constructed according to given rate laws. These are often highly non-
linear and the equations may involve tens of variables and kinetic parameters.
Even if knowledge regarding the reaction laws is available, ODE models still

9



10 CHAPTER 1. INTRODUCTION

require much quantitative information regarding the kinetic parameters. Such
information is often difficult or impossible to measure. It is frequently remarked
that the high accuracy of ODE trajectories may then be misleading, given that
the parameters and rate laws behind them are only known to a much lesser
degree.

To challenge these obstacles and potentially study larger networks, qualita-
tive approaches have been suggested. One recurring technique is to introduce a
mapping from the continuous space to a discrete space that, hopefully, preserves
key properties like the number of steady states and their stabilities while being
invariant to the precise values of the kinetic parameters. Examples are the work
of L. Glass and S. Kauffman [1] and E. H. Snoussi [2].

Logical models were also suggested by M. Sugita [3] in a series of papers
that introduced the idea that reaction networks may be understood as coupled
molecular automata that behave much like the switching circuits of electri-
cal engineering, each having binary inputs, outputs, and certain time delays.
R. Thomas took a similar viewpoint and developed, together with D. Thief-
fry and M. Kaufman, a methodology that deals explicitly with time delays,
asynchronous updates and more than two activity levels [4–6]. In [4] he also
remarked that biological expertise is often expressed in qualitative, natural lan-
guage statements like

”in the absence of immunity, this, in the presence of immunity, that;
at low temperature, this, at high temperature, that ...”

that is particularly predisposed to a logical formalization. Our work is based
on this generalized logical formalism. We introduce it in Chap. 2.

A lot of effort goes into the construction and validation of individual models
of specific biological systems and processes. Published models exist, for example,
for the immunity control in bacteriophage lambda [6], the flower morphogenesis
in A. thaliana [7], the cell cycle control in eukaryotes [8], the embryonic develop-
ment of D. melanogaster [9,10] and processes involved in cell fate decisions [11].

Early on, the computer played an important role in studying logical net-
works. Originally it was required to simulate the properties of randomly gen-
erated Boolean networks. In [12] S. Kauffman used a computer to generate
networks and record information about their attractors, sets of states that the
system will eventually be trapped in. He suggested that the number of limit
cycles and their lengths relates well to known characteristics regarding cell dif-
ferentiation and robustness. Since then formal methods from computer science,
notably logic programming and model checking, but also constraint program-
ming have been introduced to the realm of logical networks. In particular,
G. Bernot et al. [13] employed computation tree logic (CTL) for the specification
and model checking for the verification of properties that can be used to vali-
date logical models. Their ideas were implemented in the tool SMBioNet [14],
which automates the selection of models that satisfy topological constraints as
well as CTL specifications. At the same time F. Fages et al. introduced a rule-
based modeling language and tool, called Biocham [15], which is also capable
of answering CTL queries.

Temporal logics, for which CTL is an example, have originally been in-
troduced for software and hardware design of safety-critical systems for which
merely testing some executions is not an option. Model checking provides the al-
gorithms that can prove whether a design is reliable or not, see for example [16].
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Transition systems, essentially directed graphs with nodes that represent states
and arcs that indicate possible transitions, are used to model the designs. In
addition, the states are labeled with information about the system at a certain
moment of its behavior. For models of biological systems this may, for exam-
ple, be whether a kinase is phosphorylated, whether a protein concentration
has crossed a certain threshold or whether a gene is active. Besides the formal
language, the power of model checking lies in it accepting a symbolic description
of the transition system. Rather then requiring lists of states and transitions,
symbolic model checking operates on transition rules. Depending on the spec-
ification, transition systems may therefore be checked for which graph search
algorithms would fail.

The question of how to formulate appropriate queries and in which tem-
poral logic is not straightforward, the semantic difference between queries in
even the most common logics, linear time and branching time, can be very
subtle, see for example [17]. P. T. Monteiro et al. [18] address this issue by
suggesting four query patterns that capture recurring themes like consequence
or invariance. Chap. 3 belongs to this domain. Here, we propose patterns that
encode time series data as nested reachability queries. The motivation was to
automatically check whether a model is capable of reproducing given sequen-
tial observations. We discuss several properties of paths, including monotony,
path length, stability and robustness, that seem to us to be relevant to model
validation. Naturally, one potential application of our encodings is to reverse
engineering. But, we have also asked if a high confidence in the model can be
used to assess a particular aspect of the quality of the data, the sampling rate.

A second family of questions that are usually asked when studying dynam-
ical systems concerns the possible long-term behaviors. The logical networks
that are considered in this thesis are capable of producing two types of long-
term behaviors: sustained oscillations and steady states. Many algorithms for
the detection of the corresponding attractors in the state space of a given sys-
tem exist, see for example [19–29]. But, these algorithms can not be used
interchangeably. Some work only for synchronous transition systems while oth-
ers assume the asynchronous update. Some are specifically designed to detect
steady states, others can detect sustained oscillations but only of a certain
length. Furthermore, some are deterministic and exhaustive while others are
stochastic and incomplete: they rely on sampling and partial state space explo-
ration. Also, some algorithms depend on established problem-solving machinery
and respective solvers, while others are stand-alone implementations. In addi-
tion, most algorithms include a reduction step during which the original problem
is transformed into an equivalent smaller problem, for example by removing all
so-called output cascades which can be shown to be irrelevant for the detection
step. Since model reduction techniques potentially affect the efficiency of any
analysis algorithm they have been addressed explicitly, for example by A. Naldi
et al. [30] and A. Saadatpour et al. [31].

It turns out that finding steady states is more straightforward than finding
sustained oscillations. For one, steady states are invariant of the assumed update
strategy. Second, the number of states involved in sustained oscillations may
grow exponentially with the size of the network. Hence, even if an algorithm
can detect oscillations it may not be able to return the answer without finding a
good, short description of the involved states, a problem that is itself, in general,
NP-hard.
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More importantly, the mere enumeration of all attractors of a logical net-
work offers only very little insight into questions regarding decision making,
robustness and control. That such insight is possible was first suggested by
R. Thomas [32] who conjectured a connection between feedback circuits and
the existence of certain long-term behaviors. More specifically, Thomas con-
jectured that positive and negative feedback circuits in the interaction graph
are necessary conditions for the existence of multi-stationarity and sustained
oscillations, respectively. Later, A. Richard et al. proved these conjectures to
be true [33, 34]. Unfortunately, Thomas’ theorems are rather weak in practice
since all interesting models contain positive as well as negative feedback. Sev-
eral results which aim at sharpening his theorems have since been obtained by
the systematic study of elementary circuits by E. Remy and P. Ruet [35], of
intersections of circuits by J. Demongeot et al. [36], and of the notion of circuit
functionality by J. P. Comet et al. [37].

Starting point for our investigations regarding this topic is the work of
S. Kauffman and F. Fogelman on canalizing effects and self-freezing circuits,
see [38]. Kauffman observed that in random Boolean networks with an av-
erage connectivity of k between 2 and 3, a large number of components are
asymptotically stable, leading to few and short limit cycles. He argued that
this observation can be explained by the large proportion of canalizing func-
tions among the functions of that connectivity. The key observation he made
is that canalizing effects may form pathways along which activities propagate
from one component to the next. If the network of all canalizing pathways,
which he called the forcing structure, contains a cycle then the involved compo-
nents can be shown to be fixed at the circuit values in some limit cycles. In [39]
F. Fogelman developed these ideas further and proposed an algorithm for the
computation of the forcing structure of a given network. Curiously, when the
interest in logical models extended from random networks to specific networks,
which are carefully assembled to model specific biological systems, the worth of
the forcing graph was forgotten.

It was rediscovered by H. Siebert in [40] in the context of computing the
so-called symbolic steady states, which generalize the notion of steady states.
Rather than representing a single state, a symbolic state refers to a subspace
of states, that is, a set of states with a particularly simple geometry. Under
the appropriate definition of steadiness, symbolic states become useful in pre-
dicting the asymptotic behaviors of a network. They contain information about
the location of attractors as well as their basins of attraction. Siebert showed
that cycles in the forcing graph and symbolic steady states are related concepts:
instances of the latter induce instances of the former, but she also remarked
that not every symbolic steady state is induced by a corrseponding circuit. The
forcing structure in its original definition can therefore not detect all symbolic
steady states. Our research regarding the long-term behaviors was hence moti-
vated by the problem of how to compute all symbolic steady states of a given
model.

The third topic that is addressed belongs to the domain of reverse engineer-
ing. Usually, the biological knowledge or data that is available at any given
time can not be expected to define a model unambiguously. Even the simplest
models may require an exponential number of experimental observations to be
uniquely determined, see for example the problem of identifying a Boolean net-
work by Knock-Out and Knock-In experiments, as described by T. Akutsu et
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al. [41].
It seems that systematic investigations of the space of all models that are

feasible with a given set of assumptions are often neglected in favor of ad hoc
definitions or some form of model selection. Model selection is usually guided
by a notion of optimality, for example by introducing a cost that is proportional
to the number of components or the number of interactions between compo-
nents and seeking the cheapest model that is consistent with all observations.
In general, there may of course be more than one optimal model in which case
one is again faced with the question of how to deal with sets of models, unless
one chooses to randomly select one of them. The preference of single, fully spec-
ified models over sets of models has at least three aspects. First, most types of
analysis require a single, fully specified model, see for example [42–45]. Second,
working with sets of models entails additional theoretical and practical chal-
lenges: With what language should we describe our partial knowledge about a
system? How can predictions be made given that each model in the set may
behave differently? How can hypotheses and additional data be added to the
current knowledge in a systematic manner? Third, many problems, for exam-
ple the aforementioned time-series decision and attractor detection problems,
are NP-hard. To be interested in all models that satisfy a specification based
on these problems may then easily lead to an exponential number of NP-hard
problems, because the search space may grow exponentially in the model size
(e.g number of network components). Our own experience in working with sets
of models is that one may easily be interested in questions that are computa-
tionally infeasible.

To partly overcome the computational difficulties, frameworks that deal with
model pools are therfore often restricted to specific reasoning engines. An exam-
ple is the work by F. Corblin et al. [46–48]. Their approach is constraint-based
and translates the partial knowledge and modeling formalism into facts and
rules of a logic program. Common solvers, specifically the prolog engine SICS-
tus [49] and the answer set solving collection Potassco [50], can then deduce
additional properties or test the validity of given queries across all models.

An example of such constraint-based reasoning is the inference of a model of
the regulatory network that controls the first steps of D. Melanogaster embryo
segmentation as published in [48]. The prior knowledge consists of two parts,
structural knowledge and expression profiles. The structural knowledge is rep-
resented by a generic interaction map that includes well-established as well as
potential interactions. The expression profiles are translated into steady states
assumptions that are loosely defined as successions of local peaks of expression of
the gap genes. The answer set programming (ASP) based framework SysBiOX
then performs two tasks. It checks whether the prior knowledge is consistent
and, second, it infers properties in the form of parameter inequalities, that are
common to all consistent models.

The computational performance is impressive, given that the space of feasible
models, those that are consistent with the structural information, exceeds 2100.
On the other hand, the employed steady state assumptions can arguably be seen
as strong constraints. It is not clear how SysBiOX performs on properties other
than steady states, for example the aforementioned reachability properties.

Related to the inference problem and its constraint-based solution is the so-
called training of models to perturbation data advocated by J. S. Rodriguez et
al. [51]. The task here is to select from the set of models that are consistent
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with a prior-knowledge interaction map, those that minimize the difference be-
tween predictions and observations, in this case normalized phospho-proteomics
data. Whereas [51] relied on model selection and a genetic algorithm, i.e., a
local search, A. Siegel et al. [52] have recently proposed to employ ASP and a
complete model pool analysis. They have also pointed out benefits of a complete
analysis, which they variability analysis, to problems regarding robustness and
experimental design. An example is the extension of the combinatorial problem
of finding intervention strategies, as defined by S. Klamt et al. [53], from single
models to the complete set of feasible models, an extension that may intuitively
be interpreted as ”intervention under uncertainty”.

A typical question regarding the design of experiments is to find an ex-
periment, for example a perturbation, that guarantees a maximally divergent
behavior between the currently feasible models. The reasoning is that such an
experiment, since it discriminates so well between the models, maximizes the
gained information and leads to the smallest subsequent model pool.

In contrast to the constraint-based and ASP-based frameworks we propose
to study the pros and cons of an explicit approach that enumerates all models
that agree with a given partial specification. The idea is to create a universal
framework for the analysis of sets of models that is not restricted to specific
types of prior knowledge or data.

1.2 Summary

Chapter 2

This chapter discusses the mathematical framework for logical models. It sets
out by introducing components as finite domain variables that represent the
activities of the substances of the modeled system. The fundamental notions of
states and the state space are discussed and a language for referencing subsets
and subspaces of states is suggested. The second ingredient of logical mod-
els, the update functions, which determine the trajectories in state space, are
subsequently introduced. We briefly describe how update functions may be rep-
resented by rules rather than tables of input-output values and emphasize a
special class logical models, the Boolean networks. The next section defines the
interaction graph which is derived from the update functions and contains all
information regarding interaction pathways and feedback. The common addi-
tional interaction attributes, their sign and threshold, are also mentioned. In
addition, the condensation graph, which is closely related to the SCC graph,
is defined. It is a layered, acyclic graph in which each node represents a SCC
of the interaction graph. It has applications in making analysis algorithms
more efficient by dividing a given problem into smaller sub-problems. The next
section deals with the state transition graph which relates states by directed
transitions. They are in turn derived from the so-called update strategy, an as-
sumption regarding the possibility that two components change activity during
a single transition. Two widely used strategies, the fully synchronous and fully
asynchronous update, are discussed and the respective transition relations are
defined.

The last sections recapitulate model checking and in particular the syntax
and semantics of two frequently used temporal logics. An instruction for trans-



1.2. SUMMARY 15

lating logical models into the model checking format SMV is also given. The
chapter concludes with a model checking benchmark and a case study that
illustrates how logical models are constructed.

Chapter 3

This chapter is dedicated to temporal logic specifications in the context of model
validation with time series data. Our contribution here is a path-based notion
of compatibility. Time series data had previously been used for the reverse engi-
neering of logical networks, but only under the transition-based notion of com-
patibility, that is, the assumption that successive measurements are represented
by synchronous transitions in the model. We discuss various linear time and
branching time query patterns and the tool TemporalLogicTimeSeries [54]
for the automatic generation of queries from data.

The chapter begins with an introduction to time series data and data dis-
cretization. We introduce the notion of compatibility and give a temporal logic
encoding. The notion of monotonic compatibility and the nested conditional
reachability query are introduced. A proof that deciding monotonic compati-
bility is at least NP-hard is given. We propose a method for the assessment
of the sampling rate of time series data. Variations of reachability queries are
discussed, notably branching time compatibility, which is related to robustness.
The chapter is concluded by a case study.

Chapter 4

This chapter addresses the asymptotics of logical networks. Our main contribu-
tion is an algorithm for the computation of all minimal and maximal symbolic
steady states of logical networks in terms of sets of prime implicants. Our defi-
nitions generalize the self-freezing circuits of S. Kauffman and F. Fogelman and
we establish a connection to positive circuits in the interaction graph.

The chapter begins with the definition of attractors, trap sets and related
concepts like basin of attraction and stable and oscillating components. The
attractor decision problem and a model checking solution are introduced. Sym-
bolic steady states and seeds are recapitulated and their counterparts in state
space are discussed. A natural model reduction technique and a lower bound
for the number of cyclic attractors are introduced. The prime implicant graph
(PIG) is introduced as a directed hypergraph. A theorem is proved that re-
lates seeds to stable and consistent arc sets in the PIG. A connection to positive
circuits in the interaction graph and Thomas’ Theorems is explained. The struc-
ture of symbolic steady states is discussed. An optimization-based method for
computing all maximal seeds is proposed. An ILP and ASP encoding are given.
Preliminary results combining model checking with symbolic steady states is
presented. The chapter is concluded by a case study of a MAPK signaling
network.

Chapter 5

This chapter is divided into three sections that present results regarding uncer-
tainties in the construction of models. Our contribution is the software toolbox
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LogicModelClassifier [55] that combines constraint satisfaction for the con-
struction, with databases for the storage and model checking for the selection
of logical models.

The chapter begins with a discussion of the iterative process of reverse engi-
neering. Next we introduce a predicate language for the specification of logical
models. The section is followed by a description of our software. The section is
divided into model specification, model annotation and model analysis.



Chapter 2

Qualitative Models of
Regulatory Networks

”We distinguish between two fundamentally different types of math-
ematical models: causal, theory-like models and non-causal, correla-
tional models. By making causal claims about how certain aspects
of a real system function, causal models constitute theories about
that system. Therefore, such models can be used for both predic-
tion and explanation. Non-causal mathematical models, on the other
hand, simply express observed statistical correlations among various
elements of a real system. These models should be used only for
prediction purposes, on the assumption that they work only within
a certain range of values of variables.”

– Y. Barlas and S. Carpenter in [56]

2.1 The Qualitative Modeling Framework

A qualitative, or logical model of a regulatory network is a tuple (V, F ) which
describes the components V and the update functions F of the network. In the
following two subsections we introduce both objects in terms of finite-valued
variables and functions.

2.1.1 The Components

V is a set that consists of n variables V = {v1, . . . , vn} that represent the
network components under consideration of the model. Each variable v ∈ V
has a finite domain Dom(v) = [0..Max (v)] where Max (v) ∈ N0 is a constant
and

[a..b] := {k ∈ Z | a ≤ k ≤ b}
is our notation for a discrete interval. The convention that Dom(v) is a discrete
interval with lower bound 0 is not essential to the qualitative framework, whereas
the fact that the domains are finite and ordered, is.

A variable is usually identified with a single gene or a single type of protein
of the network but it may also represent a family of proteins, a multi-protein

17
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complex or even a complete cellular process like Apoptosis or Proliferation.
A value a ∈ Dom(v) of a variable v represents the activity of the correspond-

ing network component. The use of the term activity is deliberately vague as it
may represent various different situations. For example:

• at what qualitative rate a gene is being transcribed,

• the qualitative concentration of a protein,

• the qualitative ratio of phosphorylated to un-phosphorylated proteins,

• the qualitative temperature, acidity or saltiness of the environment,

If a variable v ∈ V satisfies Dom(v) = B = {0, 1}, it is understood to be a
Boolean variable and we identify the value 0 with the Boolean value false and
1 with true.

A state of the network is an assignment of values to variables, i.e., an unam-
biguous determination of the activity of every network component. We formalize
states by functions: A state is a function x that satisfies

x : V → N0, ∀v ∈ V : x(v) ∈ Dom(v).

We specify states by a sequence of n = |V | values that correspond to the com-
ponents in the order given in V . For example, x = 1102 should be read as
x(v1) = 1, x(v2) = 1, x(v3) = 0 and x(v4) = 2.

The set of all states, called state space, of the variables V is denoted by
S(V ) or simply S if it is clear which variables are meant. Since the activities of
components in a state are chosen independently, S can naturally be identified
with the Cartesian product ∏

v∈V
Dom(v)

by specifying some ordering of V . A useful metric for the state space is the
Manhattan distance.

Definition 1. The distance distv(x, y) between two states x, y ∈ S in the di-
rection of v ∈ V is defined by distv(x, y) := |x(v) − y(v)| and the Manhattan
distance Dist(x, y) by

Dist(x, y) :=
∑
v∈V

distv(x, y).

A principle challenge of working with qualitative models is the state explo-
sion problem which is entailed by the above definition of S. It is caused by
the fact that the number of states |S| of a network grows exponentially in the
number of variables n = |V | and the maximal activities Max (v) for v ∈ V :

|S| =
∏
v∈V

(Max (v) + 1) .

Many interesting model properties are specified on the basis of the large set S.
So we need a descriptive language for larger objects than individual states and
algorithms that use that language.
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A popular approach is to consider sets of states rather than individual states.
Apart from algorithmic advantages, a concise language for sets of states makes
many statements and descriptions clearer and easier to read. In the following we
discuss the view point we adopt in this thesis. The objects that reference the sets
of states are called state descriptions. As the language of state descriptions we
use propositional formulae over atomic propositions that compare a component
with an activity. An atomic proposition a is hence a statement

a ::= v � k

where v ∈ V is a component, � ∈ Ω := {=, 6=, <,≤, >,≥} a comparison operator
and k ∈ N0 an activity. For every comparison operator � ∈ Ω, we denote by
AP� = AP�(V ) the set of all atomic propositions that are restricted to the fixed
comparison operator �. The set of all atomic propositions of all types is then
denoted by

AP = AP (V ) :=
⋃
�∈Ω

AP�.

Whether an atomic proposition is true or false in a given state is determined
by a labeling function L : S → 2AP that assigns to every state x ∈ S a set of
propositions L(x) ⊆ AP that will be understood to be true in x while all others
are false. Naturally, we define L to agree with the semantics of a state and a
proposition:

v � k ∈ L(x) :⇔ x(v) � k.

Definition 2. A state description d over AP is a formula constructed by the
grammar

d ::= (v � k)
∣∣∣ d ∣∣∣ d1 · d2

∣∣∣ d1 + d2

where v � k ∈ AP or the special formula ε which we call the empty description.
The set of all state descriptions is denoted by StateDesc = StateDesc(V ).

Definition 3. The satisfaction relation |= between states and state descriptions
is defined by the usual rules of logic:

x |= ε is true
x |= (v � k) iff (v � k) ∈ L(x)
x |= d1 · d2 iff x |= d1 and x |= d2

x |= d1 + d2 iff x |= d1 inclusive or x |= d2

x |= d iff not x |= d

A description d defines a subset S[d] ⊆ S of states by selecting those states
that satisfy d:

S[d] := {x ∈ S | x |= d}.
The states S[d] are said to be referenced by d, see for example Fig. 2.1.

Observation 1. The states that are referenced by a state description may be
given in terms of sub-formulae by the following observation:

S[d1 · d2] = S[d1] ∩ S[d2]

S[d1 + d2] = S[d1] ∪ S[d2].
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A useful sub-family of descriptions is the one obtained by allowing only
conjunctions of equalities.

Definition 4. A symbolic state of V is a state description that is constructed
by the grammar

p ::= (v = k)
∣∣∣ p1 · p2

where v = k ∈ AP= or the empty description ε. The set of all symbolic states
is denoted by Sym = Sym(V ).

000

030

300

332

S[v1 = 1]

S[v2 = 1]

S[(v1 ≥ 2)(v2 ≥ 2)]

Figure 2.1: The grid structure of the state space of the components V =
{v1, v2, v3} with maximal activities Max (v1) = Max (v2) = 3 and Max (v3) = 2.
Every intersection of three lines represents a state whose activities are given as
a sequence of 3 integers that represent the activities of v1, v2 and v3 respectively.
Lines connect states with Manhattan distance equal to 1. The distinction be-
tween solid and dashed lines is made only for aesthetic reasons. States in the
blue plane are referenced by the symbolic state (v1 = 1), in the red plane by
(v2 = 1) and in their intersection by (v1 = 1)(v2 = 1). The states in the gray
box, although rectangular, are not a subspace and not referenced by a symbolic
state.

In this setting, we call ε the empty symbolic state. A symbolic state p is called
consistent if it references at least one state, i.e., if S[p] 6= ∅. Two symbolic
states p, q are said to be consistent if p · q is consistent. A symbolic state may
reference no states, for example (v = 0) · (v = 1), or all states because ε ∈ Sym
and S[ε] = S. Symbolic states are usually assumed to be consistent unless
explicitly stated otherwise.

With the intention of simplifying statements about symbolic states we in-
troduce two additional representations. Let p be the symbolic state (v1 =
k1) · .. · (vm = km). First, the set representation Setp of p is defined by

Setp = {(vi, ki) | 1 ≤ i ≤ m}.

The domain V [p] of p is defined to consist of the components that appear in the
conjunction:

V [p] = {vi | 1 ≤ i ≤ m}.
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Second, the mapping representation Mapp of p is a function with range
{k1, . . . , km} that is defined by

Mapp : V [p]→ {k1, . . . , km}, Mapp(vi) = ki.

The notion of states being symbolic has been applied to questions regarding
circuit functionality and the long-term behaviors of a network. They appear,
for example, in [57, 58] under the term singular states. We have adopted the
term symbolic state from [40] and will come back to the implications regarding
the long-term behaviors in Chap. 4.

Note that symbolic states could also be seen as partial states in the sense
that p ∈ Sym is a state of a subset of the variables V [p] ⊆ V .

If all variables are Boolean then the state space is also called the Boolean
hypercube and the symbolic states Sym then correspond to the faces of the
Boolean hypercube, in particular |Sym| = 3n. An example is given in Fig. 2.2.

000 100

010

S[v2 = 1]

S[v3 = 1]

S[(v2 = 0)(v3 = 0)]

S[ε]

001

Figure 2.2: The Boolean hypercube for V = {v1, v2, v3} and 5 of its 33 = 27
subspaces (faces) and corresponding symbolic states. States with Manhattan
distance equal to 1 are connected by lines.

The size of p ∈ Sym is defined to be |p| := |V [p]|. For the empty symbolic
state we define V [ε] = ∅ and hence |ε| = 0. The notion of certain maximal
and minimal symbolic states with respect to the following partial order will be
essential to Chap. 4.

Definition 5. We define the following partial order for symbolic states p, q ∈
Sym:

p ≤ q :⇔ Setp ⊆ Setq.

Note that p and q are therefore comparable if they are consistent and that
the notion of size corresponds, intuitively, to the ”dimension” of the subspace
and not the referenced states. As a corollary we get

p ≤ q ⇔ S[p] ⊇ S[q]

which may seem counter-intuitive at first.
We specify symbolic states by a sequence of |p| values whose subscript cor-

responds to the index of the component as given in V . For example, p = 1103
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means V [p] = {v1, v3} with Mapp(v1) = 1,Mapp(v3) = 0 in mapping represen-
tation and Setp = {(v1, 1), (v3, 0)} in set representation.

Observation 2. Since for any state x ∈ S there is a unique symbolic state px
such that S[px] = {x} there is also, for any subset S′ ⊆ S, a state description d
such that S[d] = S′.

Finally, we identify a state x ∈ S and a symbolic state p ∈ Sym if S[p] = {x}.

2.1.2 The Update Functions

The second object of a model (V, F ) is a set of functions F , called the update
functions of V , that determine the activities of the components over time. For
every v ∈ V there is exactly one function fv ∈ F with fv : S → Dom(v) that
maps a state x ∈ S into the domain Dom(v) of v. Note that sometimes we will
use the indexed notation vi ∈ V and fi ∈ F to indicate that fi is the update
function of vi.

Since S is a Cartesian product of finite sets, the functions f ∈ F belong to
the family of n-variable discrete functions with n = |V |.

The image fv(x) ∈ Dom(v) is called the target activity of v in x. It deter-
mines the response of v to the state x, i.e., the activity that v tends towards
when the network is in state x.

The combined response of the network to a state is called target state and
denoted by F (x) where the set F is interpreted as a function F : S → S
that assigns to each component v ∈ V its target activity fv(x), i.e., for all
v ∈ V : F (x)(v) := fv(x). The rules by which the target activities unfold the
global dynamics of a network are discussed below in Sec. 2.3.

A qualitative model (V, F ) of a regulatory network therefore demands a full
specification of F by, for example, input-output tuples (x, fv(x)) for every state
x ∈ S and every component v ∈ V . Functions that show up in applications have,
however, often a relatively simple structure that allows for a more condensed
representation of the update function. A typical case where this is possible are
Boolean networks for which we can define F by Boolean expressions. A Boolean
expression is a formula constructed by the grammar

f ::= 0
∣∣∣ 1
∣∣∣ v ∣∣∣ f ∣∣∣ f1 · f2

∣∣∣ f1 + f2

where v ∈ V signifies a variable, f the negation, f1 · f2 the conjunction and
f1 +f2 the (inclusive) disjunction of the expressions f, f1 and f2. Since Boolean
networks are predominant among publications about qualitative regulatory net-
works and since they often serve as good illustrations for otherwise technical
definitions, we take a paragraph to define them.

Definition 6. A network (V, F ) is Boolean iff all its components are Boolean.
In Boolean networks, every update function f ∈ F is therefore a n-variable
Boolean function f : Bn → B which we can represent by a Boolean expression
over the n input variables V .

Given a state x ∈ S of a Boolean network, each expression f ∈ F can be
evaluated by substituting the value x(v) for each occurrence of the variable v in
f and applying the rules of logic.
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The idea of defining a function by a formula extends to general discrete
functions. But, since the input variables V may not be Boolean, we must resort
to state descriptions instead of Boolean expressions. By the same reason, since
the target value of f(x) may not be Boolean, we must specify the implied value
explicitly.

Hence, whereas the representation of a Boolean function consists of a sin-
gle Boolean expression, the formula-based representation of a general discrete
function f requires a set of so-called rules, where each rule specifies all states
for which fi is constant at a certain value.

Definition 7. A rule is a tuple (r, (v = k)) where r is a state formula and (v =
k) ∈ AP= an atomic equality. We denote a rule (r, (v = k)) by r ⇒ (v = k). A
rule r ⇒ (v = k) is valid for a given fv if

∀x ∈ S[r] : fv(x) = k.

Definition 8. A set of rules {ri ⇒ (v = ki) |; 1 ≤ i ≤ m} represents a function
fv ∈ F , iff each rule is valid and every state x ∈ S is referenced by some rule:

S[r1 + ..+ rm] = S.

Observation 3. For any function fv ∈ F there is a set of rules that represents
it. The natural construction is for every k ∈ Dom(v) to determine the subset
Sk := {x ∈ S | fv(x) = k} of k pre-images under fv and then to find, by
Observation 2, a state description rk that references Sk. Clearly, the rules
{(rk ⇒ (v = k)) | k ∈ Dom(v)} then represent fv.

(A)
x = (u, v, w) fv(x)

(0, 0, 0) 1
(0, 0, 1) 0
(1, 0, 0) 1
(1, 0, 1) 1
(0, 1, 0) 1
(0, 1, 1) 0
(1, 1, 0) 1
(1, 1, 1) 1

(B) fv = u+ w

(C) (u = 1) + (w = 0)⇒ (v = 1)
(u = 0) · (w = 1)⇒ (v = 0)

(D)
(u = 1)⇒ (v = 1)
(w = 0)⇒ (v = 1)
(u = 0) · (w = 1)⇒ (v = 0)

Figure 2.3: The four different representations of an update function fv ∈ F of
a Boolean network with V = {u, v, w}. (A) input-output representation, (B)
a Boolean expression representation, (C) a rule based representation, and (D)
another rule-based representation.

2.2 The Interaction Graph

The interaction graph can be seen as an abstraction of a model, it captures
only the dependencies between the variables as inherent in the update functions
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but discards the details. As a consequence two models may have the same
interaction graph. The structure of the interaction graph, and in particular the
presence or absence of positive and negative feedback, is useful when predicting
the dynamics of the respective models.

For the definitions in this section it is convenient to introduce the unit ac-
tivity eu ∈ S for u ∈ V by eu(v) := 1 if u = v and 0 otherwise, and a shorthand
for the addition of states x, y ∈ S by (x⊕ y) ∈ S and (x⊕ y)(v) := x(v) + y(v).
As in [59] we say that fv ∈ F depends on u ∈ V if there are 1 ≤ t ∈ Dom(u)
and x ∈ S[u = t− 1] such that

fv(x) 6= fv(x⊕ eu). (2.1)

The dependencies are usually visualized by the following graph-based represen-
tation.

Definition 9. The interaction graph of (V, F ) is the directed graph (V,→) that
consists of the node set V and the arc set →=→F⊆ V × V with (u, v) ∈→ iff
fv depends on u.

For convenience we write u → v and u 6→ v instead of (u, v) ∈→ and
(u, v) 6∈→. If u → v then we say that u is a regulator of v and that the
interaction (u, v) is present or observable in (V, F ).

The interaction graph is usually labeled by additional information. The
value t in the above definition of dependency is, for example, often interpreted
as a threshold value of concentration-dependent interactions. We define the
set of thresholds T (u, v) ⊂ Dom(v) of an interaction u → v to consist of all

1 ≤ t ∈ Dom(u) that satisfy Eq. 2.1. We may use u
t1,...,ti−−−−→ v to indicate that

{t1, .., ti} ⊆ T (u, v) is a subset of the thresholds of an interaction. In Boolean
models the set of thresholds of any interaction is alway T (u, v) = {1}.

Another characteristic of interactions is whether they are activating or in-

hibiting or both. We define the sign of an interaction Sign(u
t−→ v) ⊆ {+,−}

and one of its thresholds t ∈ T (u, v) according to the ways in which Eq. 2.1 can
be satisfied.

+ ∈ Sign(u
t−→ v) ⇔ ∃x ∈ S[u = t− 1] : fv(x) < fv(x⊕ eu)

− ∈ Sign(u
t−→ v) ⇔ ∃x ∈ S[u = t− 1] : fv(x) > fv(x⊕ eu)

Note that Sign(u
t−→ v) = {+,−} is therefore allowed in which case the interac-

tion u
t−→ v is activating as well as inhibiting. We may combine the threshold

and sign and write, for example, u
+t−→ v to indicate that + ∈ Sign(u

t−→ v). If
u is a Boolean variable then the thresholds must be equal to {1}. We may omit

them and write u
+−→ v instead of u

+1−−→ v.

2.2.1 Condensation and SCCs

The interaction graph is already an abstraction, but further abstractions, which
are called the condensation graph and the SCC graph, are also useful. In par-
ticular, many computational problems can be split into sub-problems that are
defined by the nodes of the condensation graph. In this section we introduce
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basic concepts that will be useful in Chap. 4, for extensions of these concepts see
e.g. [60]. The definitions rely on the following standard terminology for graphs
and directed graphs.

The predecessors and successors of v ∈ V in a digraph (V,→) are

Pred→(v) = Pred(v) := {u ∈ V | u→ v}, and

Succ→(v) = Succ(v) := {w ∈ V | v → w}.

A finite path in (V,→) is a sequence (v0, v1, . . . , vk) of vi ∈ V such that vi → vi+1

for all 0 ≤ i < k. Note that k ∈ N0 indicates the length of the path in terms of
the number of interactions rather than the number of components. A path of
length 0 consists therefore of a single node and is permissable. The existence of
a path from u to v is indicated by u v.

Definition 10. A strongly connected component (SCC) of a digraph (V,→) is
an inclusion-wise maximal subset U ⊆ V that satisfies u  v for all u, v ∈ U .
We denote the set of SCCs by SCC(V,→).

Note that it is possible that v ∈ V does not belong to any SCC, namely if
there is no path v  v. We call v ∈ V that do not belong to a SCC cascade
components and denote them by Cascade(V,→). Similarly, undirected paths
and (weakly) connected components are defined by considering the undirected
interaction graph that is obtained by ignoring the orientation of the edges.

A component that has no predecessors in the interaction graph is called a
constant of the model. A constant v ∈ V hence satisfies fv(x) = k for all x ∈ S
and some fixed k ∈ Dom(v) and we may write fv = k to indicate that fv is
constant. A component that has only itself as a predecessor is called an input
of the model. There are two types of inputs. A stable input v ∈ V satisfies
fv(x) = x(v) for all x ∈ S. An input that is not stable is also called an unstable
input. Note that constants are cascade components while inputs are SCCs of
size 1.

With these definitions in place we are now interested in information regard-
ing the hierarchy of the interactions between components. The first observation
is that the interaction graph may not be (weakly) connected. In such a case the
system consists of several independent sub-models that can, for most questions,
be analyzed separately. Each connected component is in turn partitioned into
SCC components and cascade components. The condensation graph captures
the interactions between SCCs and cascade components.

Definition 11. The condensation graph of a digraph (V,→) is the digraph
(C, 99K) where C := Cascade(V,→)∪SCC(V,→) and the presence of an arc is
determined for c1, c2 ∈ Cascade(V,→) and U1, U2 ∈ SCC(V,→) by:

c1 99K c2 :⇔ c1 → c2
c1 99K U1 :⇔ ∃u ∈ U1 : c1 → u
U1 99K c1 :⇔ ∃u ∈ U1 : u→ c1
U1 99K U2 :⇔ U1 6= U2,∃u1 ∈ U1, u2 ∈ U2 : u1 → u2

The SCC graph is similar to the condensation graph, but its node set consists
only of SCCs and discards the cascade components. It is useful for defining the
hierarchies between components as inherent in the interaction graph.
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Definition 12. The SCC graph of a digraph (V,→) is the digraph (D,�) where
D := SCC(V,→) and U1 � U2 iff U1 99K U2 in the condensation graph (C, 99K)
or there is a path U1 99K c1 . . . ck 99K U2 in (C, 99K) such that c1, . . . , ck ∈
Cascade(V,→).

Note that the SCC graph (D,�) is acyclic. We now assign a number
0 ≤ layer(U) ∈ N to each U ∈ SCC ((, V ),→) such that layer(Ui) = k im-
plies that there is no path from Uj � · · · � Ui for all Uj with layer(Uj) ≤ k.
The motivation for dividing components into layers is that since the first k lay-
ers (for every 0 ≤ k) are upstream of all components in the remaining layers, its
dynamics is effectively independent of the components downstream. This ob-
servation can be exploited for questions regarding, for example, the asymptotics
of a model.

We define the layers in terms of the longest paths leading into a SCC. We set
layer(U) := 0 for all U ∈ D that have no predecessors in (D,�). Since (D,�)
is acyclic there is at least one such U . For U ∈ SCC(V,→) with predecessors
we define

layer(U) := max({m | U0 � · · · � Um = U is a path in (D,�)}).
Since (D,�) is acyclic, layer(U) is well defined. All input components belong
to layer 0. Note that the layers are similar to a topological sort but that they
are also unique. An example is given in Fig. 2.4.

(a) Interaction graph (b) Condensation graph

(c) SCC graph

v1
U1

U3U2

U4

c2
c1

v1 U1

U3U2

U4

c2
c1

v1 U1

U3

U2

U4

layer 0

layer 1

layer 2

Figure 2.4: (a) The interaction graph (V,→) with Ui ∈ SCC (V,→), c1, c2 ∈ V
constants, v1 ∈ V an input and the remaining components are cascade com-
ponents. Note that {v1} ∈ SCC (V,→). (b) The condensation graph (C, 99K)
is obtained by replacing the SCCs with single nodes, see Def. 11. (C) The
SCC graph (D,�) consists only of nodes that represent SCCs in the interaction
graph. There is an edge from Ui to Uj if there is a path of cascade components
from Ui to Uj . This graph has 3 layers.

2.3 The State Transition Graph

2.3.1 Transition Rules

A transition rule specifies how F determines for every x ∈ S a set of states
that are reachable by a single transition. The resulting relation between the
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states of a model is usually thought of as a directed graph (S,→) called the
state transition graph, or STG for short. The STG is the basis for the analysis
and for simulations of the dynamics of a qualitative model.

There are many different definitions for transition rules. For an overview see
for example [61–64]. The methods developed in this thesis are not restricted
to a particular transition rule. As representative examples we define the syn-
chronous update, as introduced by S. Kauffman in [12] to study Boolean models
of gene regulatory networks, the asynchronous update that was introduced by
R. Thomas in [65] with the intention of including varying time scales in models
of gene regulation, and the mixed update that contains both synchronous and
asynchronous transitions but also partially synchronous transitions.

The essential principle behind the existence of a transition is that each state
is attracted to its target state. Formally, a transition x → y must reduce the
distance to the target state F (x). That is, a transition relation satisfies

x→ y ⇒ Dist(x, F (x)) ≥ Dist(y, F (x)). (P1)

Second, a transition x → y is often required to be quasi-continuous in every
v ∈ V :

x→ y ⇒ ∀v ∈ V : distv(x, y) ≤ 1 (P2)

There is some freedom of choice regarding whether every state is required to
have a successor, i.e., whether transition relations are required to be total, and
the use of self-loops, i.e., for which states x → x holds. For our purposes it
turned out to be convenient to require that transition relations are total

∀x ∈ S : |Succ(x)| ≥ 1 (P3)

and that self-loops are characteristic of fixpoints of F

x→ x⇔ F (x) = x. (P4)

Transition relations are conveniently defined by the tendencies of compo-
nents.

Definition 13. The tendency tendv(x) ∈ {−1, 0, 1} of a component v ∈ V in
a state x ∈ S is defined by

tendv(x) :=


1 : fv(x) > x(v)

0 : fv(x) = x(v)

−1 : fv(x) < x(v)

.

The Synchronous Update

The synchronous transition relation is denoted by � and demands that every
component’s tendency is realized in a single transition:

x� y :⇔ ∀v ∈ V : y(v) = x(v) + tendv(x)

It is not hard to see that the synchronous transition relation respects the
requirements (P1) − (P4). The resulting STG is deterministic in the sense
that |Succ(x)| = 1 for all x ∈ S. Deterministic updates are popular in model-
ing network dynamics because they are easier to handle, conceptually as well
as computationally, than non-deterministic updates. For Boolean networks an
equivalent definition is x� y :⇔ y = F (x).
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The Asynchronous Update

One motivation for considering asynchronous updates is that the modeled pro-
cesses may take place on different time scales. A synthesis rate may, for example,
be much higher than the degradation rate or vice versa, for a given protein. To
incorporate this, target activities are usually interpreted as calling activities to
change rather than stating that they have changed. If no counter-call is received
then the activities will eventually change after some specific delay. In general,
the delays of different processes are not equal and hence a race to change decides
which activity is updated first.

A second motivation for studying the asynchronous update is that connec-
tions have been established between the dynamics of a logical models and a sim-
ilar system of piecewise linear differential equations, see for example [2, 66, 67].
In that setting, the asynchronous STG can be seen as an approximation to the
phase space and trajectories of the differential equations.

The asynchronous transition relation ↪→ introduced here assumes that the
delays are not known and that any one process may finish first.

x ↪→ y :⇔
{

either F (x) = y ∧ x = y

or Dist(x, y) = 1 ∧ ∃v ∈ V : y(v)− x(v) = tendv(x)

Again, it is not hard to see that this relation respects the principles (P1)−
(P4). It results in a STG that is non-deterministic in the sense that |Succ(x)| ≥
1 for all x ∈ S. Non-deterministic STGs are usually seen as over-approximations
of the modeled system in the sense that not every path in the STG is predictive
for a behavior of the biological system.

The Mixed Update

The mixed transition relation is the most general transition relation. It is de-
noted by � and defined by permitting a change in an arbitrary number of
components. That is, x � y if either F (x) = y and x = y, i.e., if x = y is
a steady state, or if there is a non-empty U ⊆ V such that y(v) 6= x(v) and
y(v)− x(v) = tendv(x) for all v ∈ U .

We use → to denote any transition relation that satisfies (P1) − (P4), and
�, ↪→ or � if we want to specifically denote synchronous, asynchronous or
mixed transitions.

2.3.2 Trajectories

We denote the set of all infinite paths (x0, x1, . . . ) in (S,→) by Paths∞ =
Paths∞(S,→) and the set of all paths, finite or infinite, by Paths. As for the
interaction graph, the existence of a path from x to y is denoted by x  y.
As shortcuts for denoting a state, prefix, suffix or fragment of a path we use
the square bracket notation as in [16]: The ith state of an infinite path π =
(x0, x1, . . . ) is denoted by π[i] := xi, a prefix is denoted by π[..k] := (x0, . . . , xk),
a suffix by π[k..] := (xk, xk+1 . . . ) and a fragment by π[k..l] := (xk, . . . , xl). The
length of a finite path π = (x0, . . . , xr) is defined to be the number of occurring
transitions rather than states and is denoted by len(π) = r.
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Furthermore we use the following notation for paths with a given initial state
x ∈ S or set of initial states I ⊆ S:

Paths(x) := {π ∈ Paths | π[0] = x}
Paths(I) := {π ∈ Paths | π[0] ∈ I}

So far we have described how (S,→) is obtained from (V, F ). One may also
ask the reverse question: Given a digraph (S,→), is there is a model (V, F )
such that its STG is equal to (S,→)? The question is, for example, relevant
for the reverse engineering of models from data and addressed in e.g. [68, 69].
For our purposes this question is relevant because in Chaps. 3 and 4 we will
frequently want to point out the existence of a Boolean network with a given
asynchronous STG. Rather than defining F we will draw (S, ↪→) and make sure
that a corresponding F exists. The rules that ensure the existence of F are the
following.

Observation 4. Let S be the state space some Boolean variables V . For every
subset E ⊆ S × S that satisfies (x, y) ∈ E ⇒ Dist(x, y) ≤ 1 and (x, x) ∈ E ⇔
SuccE(x) = {x} there is a Boolean network (V, F ) such that (S, ↪→) = (S,E).

In practice we can therefore choose for each pair of neighbouring states one
of the four orientations in Fig. 2.5 (b). If we then add self-loops to all states
with out-degree 0 the resulting digraph will be equal to (S, ↪→) of some Boolean
network (V, F ).

0000 1000

0100

0010

0001

(a) The state space of 4 Boolean components (b) Orientations

x y

Figure 2.5: (a) The state space of 4 Boolean components, states with Manhattan
distance equal to 1 are connected by an undirected edge. If each edge in (a) is
replaced by one of the four orientations in (b), and if self-loops are added to
all states with out-degree 0 then the resulting directed graph will correspond to
the asynchronous STG (S, ↪→) of some Boolean network (V, F ), see Obs. 4.

2.4 Temporal Logic

Model checking is a formal method from computer science that solves the prob-
lem of deciding whether a temporal logic specification is satisfied by a given
transition system. Its main area of application are safety critical, complex sys-
tems and in particular the design of reliable electronic circuits. E. M. Clarke,
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E. A. Emerson and J. Sifakis have together been awarded the 2007 Turing Award
for their contribution in developing model checking into an effective technology
that is widely used in the industries [70].

The idea to apply model checking to systems biology was proposed around
2003 in [13,71] and has since been extended by various groups, see for example
[18,72–74] and [75] for a review. As a result, there are now a number of different
languages and corresponding model checking algorithms and tools.

The benefit of the model checking machinery for the analysis of qualita-
tive models is the efficiency of available algorithms, in particular the symbolic
representation of states, and the expressiveness of the specification languages.

In this section we briefly recapitulate the basic definitions and the two fun-
damental specification languages, linear time logic (LTL) and computation tree
logic (CTL). The intention is to prepare the theoretical background for Chap. 3
and 4. The definitions and notation are based on [16].

Transition Systems

For our purposes, a transition system is a state transition graph together with
state-specific information regarding the activities and target states. Formally
5-tuple

TS = (S,→, AP, L, I)

where (S,→) is a state transition graph, AP is the set of atomic propositions,
L : S → 2AP is the labeling function for state descriptions, and I ⊆ S a set of
initial states. For an increased expressiveness we add new symbols to the atomic
state descriptions AP . The first one is δv with v ∈ V and used in propositions
of the form δv �k where � ∈ Ω, k ∈ {−1, 0, 1}. It relates directly to the tendency
of a component, see Def. 13. The labeling function L is extended by:

δv � k :⇔ tendv(x) � k.

The second one is ∆ and used in the form ∆ � k with � ∈ Ω, k ∈ [0..n], n = |V |.
It refers to the number of components whose activities are equal to their target
activities:

∆ � k ∈ L(x) :⇔ |{v ∈ V | tendv(x) 6= 0}| � k.
With these new propositions we may now reference states by the component’s
activities, as in S[(u = 0)(v > 2)], or by the component’s tendencies, for example
S[(δv = 0)(∆ ≤ 2)], or by a combination of both. For example, (∆ = 0)(v = 1)
references all fixpoints that lie in the (v = 1) subspace:

S[(∆ = 0)(v = 1)] = {x ∈ S | F (x) = x ∧ x(v) = 1}.

The relevance of fixpoints and other asymptotic behaviors of models is discussed
in Chap.4.

Since throughout this thesis the atomic propositions AP and the labeling
function L do not change anymore, we will specify transition systems as 3-tuples
TS = (S,→, I).

2.4.1 Linear Time Logic

Linear time logic (LTL) is a specification language that concerns individual,
infinite paths in the transition system. The language consists, in addition to
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the Boolean operators, of linear time operators that permit the specification
that given sub-formulae should hold for certain fragments of the path. The
syntax of LTL is defined as follows.

Definition 14. An LTL formula φ over the set of atomic propositions AP is
formed according to the following grammar:

φ ::= true
∣∣∣ a ∣∣∣ φ1 ∧ φ2

∣∣∣ ¬φ ∣∣∣ X φ
∣∣∣ F φ ∣∣∣ G φ

∣∣∣ φ1 U φ2

where a ∈ AP .

The satisfaction relation π |= φ that defines whether a path π ∈ Paths∞(S)
satisfies an LTL formula φ is given in Table 2.1.

π |= true
π |= a iff a ∈ L(π[0])
π |= φ1 ∧ φ2 iff π |= φ1 and π |= φ2

π |= ¬φ iff ¬ (π |= φ)
π |= X φ iff π[1 . . . ] |= φ
π |= F φ iff ∃ 0 ≤ j : π[j . . . ] |= φ
π |= G φ iff ∀ 0 ≤ j : π[j . . . ] |= φ
π |= φ1 U φ2 iff ∃ 0 ≤ j : π[j . . . ] |= φ2

and ∀ 0 ≤ i < j : π[i . . . ] |= φ1

Table 2.1: The definition of the satisfaction relation |= for an individual, infinite
path π ∈ Paths∞(S) and a LTL formula φ.

The operators are usually called ”next” for X , ”finally” for F , ”globally”
for G and ”until” for U . The logical disjunction φ1 ∨ φ2 and implication
φ1 ⇒ φ2 are defined by their equivalences involving ¬ and ∧. Note that these
linear time operators allow syntactically different formulae that are semantically
identical, for example F φ ≡ true U φ. In fact, the full expressiveness of the
above operators is already achieved with formulae involving only U and X ,
but for our purposes it is convenient to also include F and G . Also note that
the until operator may be true even though φ1 is always false: if π |= φ2 then
π |= (φ1 U φ2) for any φ1.

The satisfaction relation extends from paths to transition systems by requir-
ing that every path π ∈ Paths∞(I) of the set I ⊆ S of initial states satisfies the
formula. For our purposes, however, it is convenient to introduce the quantified

satisfaction relations |=∃ and |=∀ . They are defined for a TS = (S,→, I) and a
LTL formula φ by

TS |=∃ φ iff ∃x ∈ I : ∃π ∈ Paths∞(x) : π |= φ

TS |=∀ φ iff ∀x ∈ I : ∀π ∈ Paths∞(x) : π |= φ.
(2.2)

Again, these are just convenient shortcuts and the following equivalence holds:

TS |=∃ φ⇔ ¬
(

TS |=∀ ¬φ
)
.

Note that Eq. 2.2 involves two quantifiers, one for the initial states and one for

the paths that are rooted in the initial states. So far we have considered |=∃
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which uses ∃ for both and |=∀ which uses ∀ twice. The reason is that these
are decidable with standard model checking algorithms. Two more satisfaction
relations are theoretically possible, namely

TS |=∃∀φ iff ∃x ∈ I : ∀π ∈ Paths∞(x) : π |= φ

TS |=∀∃φ iff ∀x ∈ I : ∃π ∈ Paths∞(x) : π |= φ.
(2.3)

but neither are decidable with standard LTL model checking algorithms.

2.4.2 Computation Tree Logic

Whereas LTL is a linear time logic whose satisfaction relation is based on indi-
vidual paths, computation tree logic (CTL) is a branching time logic. Branching
time specifications depend on trees and sub-trees of alternative paths which are
rooted in states x ∈ S. The universal ”for all paths” A and the existential
”there is a path” E specify the dependence while the linear time operators
F ,X ,G , U specify the paths. Hence, the syntax of CTL is divided into state
formulae and path formulae where the former quantifies and logically connects
the later.

Definition 15. A CTL state formula ψ over the set of atomic propositions AP
is formed according to the following grammar:

ψ ::= true
∣∣∣ a ∣∣∣ ψ1 ∧ ψ2

∣∣∣ ¬ψ ∣∣∣ E ϕ
∣∣∣ A ϕ

where a ∈ AP and ϕ is a CTL path formula formed according to the grammar:

ϕ ::= X ψ
∣∣∣ F ψ ∣∣∣ G ψ

∣∣∣ ψ1 U ψ2

where ψ,ψ1 and ψ2 are CTL state formulae.

Path formulae are therefore defined in terms of state formulae and vice versa
but CTL model checking requires a CTL state formulae which, for brevity, we
simply call CTL formulae. Path formulae are identical to LTL formulae but
defined over an extended set of propositions involving the state formulae. The
satisfaction relation that defines whether a state satisfies a CTL formula is
defined in Fig. 2.6.

As for LTL, we derive the quantified satisfaction relations |=∃ and |=∀ for
CTL formulae ψ and transition systems TS = (S,→, I) by

TS |=∃ ψ iff ∃x ∈ I : x |= ψ

TS |=∀ ψ iff ∀x ∈ I : x |= ψ.

Note that, as opposed to LTL, there are no other quantified satisfaction relations
because the previously second path quantifier is now part of the path formu-
lae. But, the relations of Eq. 2.3 are not equivalent to CTL. They are neither
expressible in pure LTL nor CTL. Finally it should be remarked that LTL and
CTL are not comparable in terms of their expressiveness, i.e., depending on the
kind of property we wish to check we may not have a choice as to formulating it
in either LTL or CTL. Also, the available model checking algorithms for the two
languages differ in their time and space complexities, see [16] for model checking
algorithms, complexities and a comparison regarding the expressive powers of
LTL and CTL.
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x |= true
x |= a iff a ∈ L(x)
x |= ¬ψ iff not x |= ψ
x |= ψ1 ∧ ψ2 iff x |= ψ1 and x |= ψ2

x |= Eϕ iff ∃π ∈ Paths∞(x) : π |= ϕ
x |= Aϕ iff ∀π ∈ Paths∞(x) : π |= ϕ

π |= Xψ iff π[1] |= ψ
π |= Fψ iff ∃0 ≤ i : π[i] |= ψ
π |= Gψ iff ∀0 ≤ i : π[i] |= ψ
π |= ψ1 Uψ2 iff ∃0 ≤ j : σ[j] |= ψ2

and ∀0 ≤ i < j : σ[i] |= ψ1

Figure 2.6: (top) The satisfaction relation x |= ψ for states x ∈ S and CTL
state formulae ψ. (bottom) The satisfaction relation for π |= φ for paths π ∈
Paths∞(x) and CTL path formulae.

2.4.3 NuSMV Model Checking

NuSMV is a model checking software [76, 77] which is based on SMV, the
original symbolic model verifier that was developed by E. M. Clarke et al. [78].
It features BDD-based and SAT-based algorithms for the automatic verification
of LTL and CTL specifications for finite transition systems.

The first aim of this section is to illustrate how a model (V, F ) may be trans-
lated into the NuSMV language. In practice, the description is then passed to
the software together with a LTL or CTL specification for verification. Although
encodings are frequently used [14,43] they are rarely discussed, for an exception
see [79]. The second part consists of a benchmark for logical networks that
attempts to determine the size of the largest networks that are still tractable
with NuSMV.

Encodings

For our purposes, the system description consists of declaring the variables,
the transition system and the temporal specifications. The transition system
is essentially defined by a set of equations whose solutions determine the next
state for a given current state, just as we used F (x) to define the successors of
x in Sec. 2.3. NuSMV allows the use of non-deterministic equations, which are
treated by considering all possible solutions, and hence the definition of several
successors of a state.

NuSMV’s system description is organized into a hierarchy of communicat-
ing modules, each behaving like a sub-system with their own inputs and vari-
ables. But, compared with industrial systems, the STGs of qualitative models
are rather simple and we can define them within a single module, which by
convention must be called main. For a working example of a NuSMV system
description see Fig. 2.7.

Next, we discuss how to translate the synchronous and asynchronous STGs
of a model into the NuSMV language. Starting point is the previous example of
Fig. 2.7 and a rule-based representation for every f ∈ F . The missing ingredients
are the requirements that transitions are quasi-continuous and, in the case of
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MODULE main;

VAR

v1 : 0..1;

v2 : 0..1;

ASSIGN

next(v1) := 1-v2;

next(v2) := v1;

INIT

v1>=0 & v2=0;

CTLSPEC

AG(AF(v1=0))

LTLSPEC

G(F(v1=0))

v1 = 0
v2 = 0

v1 = 1
v2 = 0

v1 = 0
v2 = 1

v1 = 1
v2 = 1

Figure 2.7: (a) An example of a complete system description in the NuSMV
language. It consists of several blocks of declarations that are identified by
capital letters. The first of them, MODULE, sets up the environment in which
we define the transition system, VAR defines the state variables, ASSIGN defines
the system of equations that in turn define the transition relation by the next

expression, INIT is an expression that defines the initial states, and CTLSPEC and
LTLSPEC are temporal logic specifications. (b) The resulting transition system
with the initial states in blue.

the asynchronous update, the non-determinism. Furthermore, we would like to
include information about the tendency and stability, i.e., atomic propositions of
the form δv�k and ∆�k, in the system description so that temporal specifications
may refer to them.

Let us begin with the latter. The NuSMV language permits the use of
auxiliary variables that do not belong to the state space and therefore do not
induce transitions. The sole purpose of those variables is to make the system
description more concise, for example by replacing an often recurring expression
by such a variable. They are defined within their own declaration block which
is identified by the DEFINE keyword. An example is given in Fig. 2.8.

The encoding of the tendency propositions δi � k uses the if-then-else con-
struct cond ? expr1 : expr2 which evaluates expr1 if the Boolean condition
cond is true and expr2 otherwise. Since tendv(x) ∈ {−1, 0, 1} for all v ∈ V and
x ∈ S we use two if statements to decide whether the difference is greater, less
or equal to 0. The encoding of the stability propositions ∆ � k uses the count
operator count(list) which counts the number of expression that are true in list.

With the tendency variables, the synchronous transition relation of a network
is readily defined by using the ASSIGN construction of Fig. 2.9 (a). The asyn-
chronous transition relation requires NuSMVs capability of non-determinism.
That is, instead of single solutions only, NuSMV permits a set of successor
values for each state variable, and every possible assignment of state variables
to values results in a corresponding transition. For the asynchronous transi-
tion relation we exploit this by giving each variable the choice to remain at the
current value or to change towards its target state. But, the resulting transi-
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DEFINE

f1 := 1-v2;

f2 := v1;

diff1 := f1-v1;

diff2 := f2-v2;

delta1 := dif1>0?1: dif1<0?-1:0;

delta2 := dif2>0?1: dif2<0?-1:0;

Delta := count( (delta1!=0), (delta2!=0) );

Figure 2.8: We introduce auxillary variables for the target activities fi(x) by
f1 and f2, for the difference between the target state and the current state
fi(x)− x(vi) by diff1 and diff2, for the tendencies δi by delta1 and delta2

and for the number of unstable components ∆ by Delta. The variable for δi is
defined by a if-then-else construct and the one for ∆ by a count expression, see
main text.

tion system would have a self-loop on every state because in every state the case
that no variable changes is not yet forbidden. We therefore introduce a so-called
transition constraint. A transition constraint is a Boolean expression that may
involve the current state and next state values. When the transition system is
built, all transitions for which the constraint evaluates to false are removed. An
example of the construction of an asynchronous transition relation is given in
Fig. 2.9 (b) and for the mixed update, which is very similar, in Fig. 2.9 (c).

ASSIGN

next(v1) := v1+delta1;

next(v2) := v2+delta2;

(a)

ASSIGN

next(v1) := {v1,v1+delta1};
next(v2) := {v2,v2+delta2};

TRANS

Delta=0 | count( (v1!=next(v1)), (v2!=next(v2)) )=1;

(b)

TRANS

Delta=0 | count( (v1!=next(v1)), (v2!=next(v2)) )>=1;

(c)

Figure 2.9: The constructions of the deterministic, synchronous transition re-
lation in (a) and the non-deterministic, asynchronous transition relation in (b)
and the mixed transition relation, which is identical to the asynchronous one
except for the transition constraint, in (c).
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Benchmark Setup

We close the section on NuSMV with a benchmark for model checking logical
networks. The question we attempt to answer is

How large can a logical network be before basic biologically meaning-
ful queries become computationally infeasible?”

To our knowledge this question has not been addressed before.
The question has three aspects that need to be discussed: (1) What type of

networks do we consider?, (2) What is a basic query?, and (3) What is meant
by computationally infeasible?

We decided to consider randomly generated Boolean networks because they
are the simplest networks and because published network generators are avail-
able. In the most basic setup, first studied in [12] and also called random N,K
networks, a random network for the parameters (n, k) ∈ N× N is generated by
creating n components and selecting for each v ∈ V exactly k predecessors at
random from V . The predecessors are not required to be observable regulators,

that is, the update function for each v ∈ V is chosen at random from all 22k

possibilities including f = 0 and f = 1. Intuitively, the number of observable
interactions of (V, F ) has a considerable effect on the complexity of the state
transition graph and hence on whether a query is computationally feasible or
not. Hence, we consider a slight variation of the original setup in which the
predecessors are required to be observable regulators.

For the benchmark to be reproducible, we used the R package BoolNet [44]
and its function generateRandomNKNetwork to generate the networks. In ad-
dition to the fixed in-degree topology, as defined above, we tested the homo-
geneous in-degree topology in which the in-degree of each component is chosen
according to a Poisson distribution with mean λ = k. For both topologies we
tested the values k = 2 and k = 3. The function generateRandomNKNetwork

has more parameters but we have kept them at their default values, see [44]
for the details. In particular, as mentioned above, the default parameter for
choosing the update functions is noIrrelevantGenes=True which requires that
the predecessors of each v ∈ V are observable regulators.

Whether a query is feasible for a network (V, F ) also depends on the update
strategy. Intuitively, the more transitions there are the more paths there are
and the more difficult it is to decide whether a query holds or not. We decided
to test all three update strategies of Sec. 2.3, the synchronous, asynchronous
and the mixed update.

The second aspect concerns the temporal logic specifications that are tested
for each generated network. It seems that there are in principle two approaches.
Either the queries are also randomly generated or the same, fixed set of queries
is tested each time. Since random queries introduce additional difficulties re-
garding the parameters of their generation we opted for a fixed set of queries.
Our query patterns range from ones that are trivial in the sense that we can
a priori say that they are true, to basic reachability, stability and consequence
specifications. They are formulated as CTL queries1 because of the symbolic
verification algorithms, see [16] for details. They are summarized in Fig. 2.10
and inspired by the biologically meaningful query patterns of [18].

1In hindsight we should have repeated them for LTL specifications.
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Name CTL formula
Trivial v1 = 0 ∨ v1 = 1
Rechability EF (v1 = 1)
Stability EF (AG (v1 = 1))
Fixpoint ∆ = 0
Consequence AG (v1 = 1− > EF (v2 = 1))
Sequence 1 EF (v1 = 1 ∧EF (v2 = 1))
Sequence 2 E (v1 = 1 U v2 = 1)

Figure 2.10: The 7 basic queries that we tested for each random network. Trivial
is a priori true because each component is Boolean. Reachability queries if there
is a path along which v1 is activated. Stability tests if finally v1 is always active.
Fixpoint tests, if used with the existential satisfaction relation, if there is a
steady state. Consequence and Sequence test nested reachability properties.

Hence, our benchmark consists of 2 topologies, 7 CTL formulae, 3 transition
relations and 2 in-degree parameters k. There are therefore 2 · 7 · 3 · 2 = 84
different scenarios. For each scenario we increased n, starting from n = 20, until
3 randomly generated networks with the same parameters failed to compute with
NuSMV. We say that a computation fails if the process runs out of memory or
if the answer is not computed within 1 hour.

The running time of NuSMV also depends on the enabled features and op-
tions it is called with. We tested two setups. The first one has the single option
-dcx which disables the generation of so-called counterexamples, a useful anal-
ysis step that we are not interested in in this basic benchmark. The second one
has in addition the options -df which enables the computation of the reachable
states and -dynamic which enables the dynamic variable reordering for the bi-
nary decision diagrams (BDD), see [77] for details. It turned out that the second
setup outperformed the first and only the results of the second are shown. The
model checks were ran as single threaded processes on Linux desktop PCs with
30 GB RAM and 8 CPUs2 with 3.00GHz and NuSMV 2.5.4. The timing was
done with the Linux commands time and timeout.

Benchmark Results

The central result of the benchmark is that, averaged across all non-trivial
queries and topologies, NuSMV can handle networks with n ≈ 41 to 71 for the
synchronous update and n ≈ 39 to 55 for the mixed and asynchronous updates.
As expected, the non-deterministic transition relations are harder to deal with
than the synchronous update. Of course larger networks might be manageable
if more memory and faster processors were used, but the order of magnitude
for our encodings seems to be less than 100, unless the in-degrees are fixed to
k = 1 or k = 2.

Finally, testing the trivial query shows that NuSMV does not use any form
of pre-processing for the temporal specification. For, although the model checker
deals well with the trivial query if the update is synchronous, it requires about
the same time that is required for more complex queries if the update is non-
deterministic. Hence, if we are interested in whether a transition system with

2Intel(R) Xeon(R) CPU X5450 @ 3.00GHz.
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(Trivial) (Reachability) (Stability)

(Fixpoint) (Consequence) (Sequence 1)

(Sequence 2) (Averages)

Figure 2.11: The maximal n = |V | for which each of the 7 queries are still
computationally feasible and an 8th table which shows the averages across the
6 non-trivial queries.

n ≈ 100 satisfies a specification it may be worth it to ask if, with the help of,
for example, projections or reductions, we can reduce the problem to smaller
sub-problems. An example for this approach is the case-by-case analysis of
Chap. 4.8.

A surprising result is that if k = 3 then the maximal n = |V | does, appar-
ently, not depend on whether the in-degrees are fixed or chosen at random. Our
expectation was that the maximal n should be larger for fixed in-degrees.

2.5 Case Study: The Galactose Switch in Yeast

Yeasts produce energy, in the form of ATP, by breaking down sugars. The
preferred nutrient of S. cerevisiae, for example, is glucose, but it can also utilize
galactose if glucose is not available. The galactose switch is responsible for
regulating the transcription of the genes which encode enzymes that are required
for the galactose metabolism, see for example [80].

Motivated by the need for in vivo assessments of reverse-engineering and
modeling approaches, the authors of [81] have created and inserted

”a five component regulatory network into S. cerevisiae that is neg-
ligibly affected by endogenous genes and that responds to galactose
with gene transcription”.

The network assumed to be autonomous and can be switched on or off by grow-
ing the modified yeast in either galactose or glucose. The network is called
IRMA which stands for In vivo Reverse-engineering and Modeling Assessment.
The dynamics of IRMA was studied by perturbation experiments in which the
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cells were shifted from glucose to galactose, called switch-on, and from galactose
to glucose, called switch-off. Samples were collected every 10-20 minutes for 3-5
hours and altogether 9 experiments, 5 switch-on and 4 switch-off, were per-
formed. The samples were amplified using a form of polymerase chain reaction
(PCR) that detects mRNA as opposed to the actual proteins.

As in [81, 82] we assume that an increase or decrease in mRNA leads to
a proportional change in protein concentration, although the mRNA might be
over-expressed while nothing changes at the corresponding protein level.

Figure 2.12: The IRMA network, illustration taken from [81]. It consists of 5
proteins Cbf1, Gal4, Gal80, Ash1, Swi5 and the sugar galactose.

The aim of this section is to discuss the construction of alternative Boolean
models that represent the IRMA network of Fig. 2.12. The construction is based
on the information given in [81,82]. The network consists of five internal compo-
nents and an external signaling molecule, gal, that models whether galactose is
available as a nutrient. The internal components, Cbf1, Gal4, Gal80, Ash1 and
Swi5, represent the promoters as well as the respective proteins. It is assumed
that the components regulate each other’s activities via only 8 interactions.
Most of them are transcriptional but there is also a protein-protein interaction
Gal80→ Gal4 and a signaling interaction gal→ Gal80.

In [81] it is explained that the transcriptional regulations of the internal com-
ponents are well-understood: Cbf1 activates Gal4 which activates Swi5 which
activates both Gal80 and Ash1. The only complex promoter in the network is
the one of Cbf1. It is activated by Swi5 and inhibited by Ash1. From the equa-
tions given in [81,82] it seems that it is neither clear whether Swi5 is necessary
for the activation of Cbf1 nor whether Ash1 is capable of fully inhibiting Cbf1.
Hence, three different update functions that agree with the interaction graph of
Fig. 2.12 are plausible for Cbf1.
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fCbf1 = Swi5 ·Ash1

fCbf1 = Swi5 + Ash1

fCbf1 = Swi5

(2.4)

We refer to them as the conjunctive update (conj ), the disjunctive update (disj )
and the Swi5 update (swi5 ), respectively.

The signaling molecule gal is modeled as a stable input (see Sec. 2.2.1) with
fgal = gal . The interaction Gal80→ Gal4 represents the formation of the pro-
tein complex Gal80−Gal4 that inhibits the binding of Gal4 to the promoter of
Swi5. Although Gal80 and Cbf1 both interact with Gal4, the interactions repre-
sent different processes. The latter changes the transcription rate of Gal4 while
the former regulates the concentration of unbound Gal4. We must therefore
be clear about the semantics of the components activities. Different viewpoints
can be taken depending on whether the activity of Gal4 represents the activity
of the respective gene, i.e., its transcription and translation, or whether it rep-
resents the concentration of Gal4 protein that is not bound in a complex with
Gal80. Each viewpoint entails its own update functions for Gal4.

Gal80

Ash1

gal

Cbf1 Gal4 Swi5

fgal = gal

fAsh1 = Swi5

fGal4 = Cbf1

fGal80 = Swi5

fSwi5 = Gal4 · (Gal80 + gal)

Figure 2.13: The transcriptional viewpoint where the interactions between
gal,Gal4 and Gal80 are modeled by their effect on the promoter of Swi5.

In the first case, which we call the transcriptional viewpoint, processes
like signal transduction and complex formation are implicit in the update
function of the promoters of the affected genes. We replace the interactions
gal → Gal80 and Gal80 → Gal4 by gal → Swi5 and Gal80 → Swi5. Swi5 is
expressed if its transcription factor Gal4 is expressed and not bound to Gal80,
which is the case if either Gal80 is not expressed or the signaling molecule gal
is present. The equations for Gal4 and Gal80 model the fact that each has
a single transcription factor. The transcriptional viewpoint can also be seen
as using a ”separation of time scales” argument where it is assumed that the
formation of the complex takes place in a negligible amount of time compared
with the time required for a change in gene activity. The interaction graph and
equations are shown in Fig. 2.13.

In the second case, which we call the mechanistic viewpoint, we change
the semantics of the components that represent Gal4 and Gal80 slightly. In-
stead of ”active” meaning ”the gene is expressed” we let activity represent the
”presence of unbound protein”. Free Gal4 is present if its transcription factor
Cbf1 is present and free Gal80 is not present. Gal80 can bind to Gal4 if its
transcription factor Swi5 is present and the signal gal is absent. This viewpoint
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Gal80

Ash1

gal

Cbf1 Gal4 Swi5

fgal = gal

fAsh1 = Swi5

fGal4 = Cbf1 ·Gal80

fGal80 = gal · Swi5

fSwi5 = Gal4

Figure 2.14: The mechanistic viewpoint where each interaction is a physical
interaction and Gal4 represents the concentration of Gal4 proteins that are not
bound to Gal80.

seems natural because every interaction models a physical binding of proteins.
The equations are given in Fig. 2.14.

Gal80

Ash1

gal

Cbf1 Gal4 Swi5

G4G80

fgal = gal

fAsh1 = Swi5

fGal4 = Cbf1

fGal80 = Swi5

fG4G80 = Gal4 ·Gal80 · gal

fSwi5 = Gal4 ·G4G80

Figure 2.15: The explicit viewpoint introduces an additional component G4G80
that models whether the protein complex Gal4-Gal80 is present.

The third case is called the explicit viewpoint in which the complex Gal4-
Gal80 is modeled by introducing and additional component G4G80. This is
therefore the only of the three models that requires a transition for the decay
of the Gal4-Gal80. The explicit viewpoint can also be seen as introducing a
component, namely G4G80, that memorizes the conditions required for the for-
mation of the complex. G4G80 may therefore be still active while in a state that
does not satisfy the conditions anymore. The equations are given in Fig. 2.15.

We are not aware of any formal result that relates models to each other
that differ in the above sense, but are otherwise derived from the same informa-
tion. The underlying connection between them appears to be related to model
reduction techniques where some selected components are made implicit, see
e.g. [30].

The assumption that the components are Boolean instead of multi-valued is
sensible for the transcriptional and mechanistic models because the only com-
ponent with more than one target is Swi5, but two of them Gal80 and Ash1
have the same promoter, see Fig. 2.12. Their thresholds in terms of Swi5 pro-
tein concentration can therefore be argued to be comparable. The interaction
Swi5 → Cbf1 , however, introduces a second promoter and the thresholds might
be different. The explicit viewpoint offers two additional choices for non-Boolean
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components, namely G4G80 and Gal4.
Since the three viewpoints, the three update functions for Cbf1 (Eq. 2.4) and

the three transition relations (Sec. 2.3.1) already define 27 different models and
since in Sec. 3.7 we want to test all of them for compatibility with expression
data (also available in [81]) we decided not to explore non-Boolean models in
this thesis.



Chapter 3

Reachability Queries

”The main challenges of model validation are the achievement of a
match between the precision of model predictions and experimental
data, as well as the efficient and reliable comparison of the predic-
tions and observations.”

– G. Batt et al. in [83]

A mathematical model is validated by testing it against experimental obser-
vations. If the observation belongs to the model’s behaviors then the data and
model are said to be compatible. Otherwise, one usually seeks a revision that
introduces a minimal number of changes to the original model and ensures that
the data and the new, revised model are compatible.

The central motivation in this chapter is the first step: deciding whether
a model and a particular type of observation, a time series, are compatible.
Sec. 3.1 discusses time series specific issues like data discretization and the
sampling rate. Sec. 3.2 introduces a path-based notion of compatibility for
time series and models and suggests a temporal logic query for deciding it.
Sec. 3.3 extends the previous notion by introducing the concept of monotonic
paths. Sec. 3.4 applies the notion of monotony to assess the sampling rate.
Sec. 3.5 discusses additional variations of compatibility. Sec. 3.6 introduces a
Python package, TemporalLogicTimeSeries, that translates discrete time
series into CTL and LTL formulae. Sec. 3.7 illustrates the ideas on a biological
case study and Sec. 3.8 discusses the results. This chapter is a complete revision
and extension of results published in [84–86].

3.1 Introduction: Time Series Data

We collectively refer to the data obtained from recording the activities of the
components of a model as time series data. Because of the high level of ab-
straction inherent to the qualitative modeling framework the various different
types of time series data, i.e., gene expression profiles, protein or RNA concen-
tration data, time-lapse microscopy, fluorescent reporters etc., are potentially
all amenable to the subsequent discussion.

Apart from recording activities, time series data is also characterized by the
sampling rate, i.e., the amount of time that elapsed in between measurements.

43
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The sampling rate may in general be non-uniform with, for example, a high
frequency in the beginning of an experiment and a lower frequency towards the
end. An important computational problem for designing time series experiments
is to determine the lowest sampling rate that is likely to capture the key events
of the experiment. See [87,88] for a review on related questions and Sec. 3.4 for
our contributions to the problem.

A discrete time series is obtained from continuous-valued data by a suitable
discretization method, directly by qualitative observations, or a mixture of both.
Including qualitative observations in the time series is a strength of discrete
modeling as it may be hard to translate such assumptions into quantitative
data required for continuous models.

t0 t1 t2 t3

Activity of v1

t0 t1 t2 t3

Activity of v2

t0 t1 t2 t3

Activity of v3

(a) Time series data

p0 = 010213

p1 = 0112

p2 = 1102

p3 = 112213

(b) Symbolic state representation

v1 v2 v3

p0

p1

p2

p3

0

1

2

−

(c) Tabular representation

Figure 3.1: An example of a real-valued and discretized time series. (a) The
numerical data of three components v1, v2, v3 was taken at four time points
t0, . . . , t3 with non-uniform sampling rate. The plots show possible expression
curves that agree with the measured data points. Measurements inside the gray
horizontal threshold areas are interpreted as uncertain. (b) The discrete time
series that corresponds to the data and thresholds. (c) The time series in tabular
form with the color code on the right, red indicating ”uncertain value”.

The issue of choosing a suitable discretization method for continuous data
is crucial in the sense that the outcome of subsequent analysis steps is clearly
dependent on it. Formally, continuous data is a sequence of real-valued vectors,
one for each measurement, where each entry represents the activity of a single
component at that time point. A discretization is then a mapping that is mono-
tone in the values of those vectors onto integer vectors of the same dimension.

An important parameter of discretization is the number of cut-points, i.e.,
the integer domain that is permitted for each component. Some methods bi-
narize only, others require the integer domain for each component as an input
while others determine the domains automatically. For a formal discussion of
data discretization in the context of systems biology see, for example, [89].
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It is worth noting a couple of things: (1) Given that the data represents
concentration levels and under the assumption that the interactions are switch-
like, one has to ideally estimate the threshold values of the underlying sigmoidal
curves. One may therefore consider to discretize the data by guessing the thresh-
old values. (2) Although exponential, the total number of discretizations of a
continuous-valued time series is finite for a fixed number of cut-points. In certain
cases, for example if the aim is to binarize a short time series, it may therefore
be feasible to consider many or all possible discretizations.

The starting point of this chapter is the following definition.

Definition 16. A discrete time series for a given set of components V is a
sequence P = (p0, . . . , pm) of m ∈ N symbolic states pi ∈ Sym(V ) where pi
represents the ith measurement of the experiment.

That is, we explicitly permit questionable or imprecise discretization results
in the form of excluding those components from the domain of the respective
symbolic state (see Def. 4). In practice, this has the advantage of deriving
results based on varying levels of certainty.

The notion we aim to discuss and define is the compatibility of (V, F ) with a
time series P = (p0, . . . , pm). In particular, we investigate additional monotony
and stability assumptions and turn the question of compatibility into a formal
decision problem that can be answered with model checking.

3.2 Compatibility

The issue of whether some time series data and a qualitative model are compat-
ible has implicitly been addressed in the context of reverse engineering. Nat-
urally, it is based on the STG of the model and therefore dependent on the
particular transition rule one has chosen. To our knowledge compatibility has
so far only been considered for the synchronous update � in which case it
is based on the existence of a transition between successive measurements, as
in [41,90–92].

In such settings the authors usually assume that every component of the
model can be measured or guessed at every time point, i.e., that the data can
be discretized into a sequence of states (x0, . . . , xm), with xi ∈ S, rather than
symbolic states. The model and time series are then said to be compatible if
for all 0 ≤ i < m : xi � xi+1.

This notion has the advantage that the reverse engineering of a model from
data becomes feasible for relatively large networks, see for example [92], but
creates some complications regarding the discretization step: only time series
that satisfy the consistency condition

∀0 ≤ i < j < m : xi = xj ⇒ xi+1 = xj+1

can potentially be compatible with a model, the others can not because � is
deterministic. Otherwise, in case there are inconsistencies, it appears that the
best one can do is to simply discard them from the reverse engineering process,
as discussed in [93].

But, even if the time series is consistent, a transition-based notion of com-
patibility seems inappropriate for quasi-continuous (see Sec. 2.3.1) and for
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asynchronous STGs as we would have to additionally require that ∀v ∈ V :
distv(xj , xj+1) ≤ 1 in the former and Dist(xj , xj+1) = 1 in the latter case,
for all measurements 0 ≤ j < m. Hence, we introduced in [85] the following
path-based notion of compatibility.

Definition 17. A model (V, F ) and its STG (S,→) are compatible with a
time series P = (p0, . . . , pm) iff there is a sequence of states (x0, . . . , xm) with
xi ∈ S[pi] such that for every 0 ≤ i < m there is a path xi  xi+1 in (S,→).
We call x0  x1  · · · xm a (P )-time series path and say that xi represents
the ith measurement of P .

Note that since non-deterministic STGs are usually over-approximations of
the modeled system, we assume that the presence of a single time series path
is sufficient for the compatibility of model and data. Alternatively, one could
consider requiring that every path that starts in S[p0] is a time series path.

Fig. 3.2 illustrates the problem of deciding compatibility.

S[p0]

S[p1]

S[p2] S[p3]

S[p4]

Figure 3.2: A schematic view on the state space of a model. Dots represent
states, rectangles the subspaces which are referenced by the symbolic states of
the time series. The model is compatible with (p0, . . . , p4) if there is a path
that visits S[p0], . . . , S[p4] in order. Because the sets S[pi] may contain more
than one state and because update rules may be non-deterministic, there may
be several time series paths.

We conclude with a couple of remarks. First, deciding whether a model and
time series are compatible is in general a hard problem. At the end of Sec. 3.3
we argue that it belongs to the class of NP-hard problems.

Second, if a model and time series are compatible then there may be several
different time series paths. The difference between them may, for example,
concern the path length as indicated by the red and black paths in Fig. 3.2.

Third, if there is a time point 0 < i < m such that |S[pi]| = 1 then a
model (V, F ) and (p0, . . . , pm) are compatible if and only if (V, F ) is compatible
with (p0, . . . , pi) and with (pi, . . . , pm). The original problem therefore decouples
into two independent sub-problems. This observation is exploited in [94] where a
simple and efficient graph search algorithm is proposed that solves compatibility
problems that decouple maximally, i.e., into m sub-problems. On the other
hand, even the most favorable assumption, namely that the model satisfies
every induced sub-problem

∀0 ≤ i < j ≤ m : ∃xi ∈ S[pi], xj ∈ S[pj ] : xi  xj (3.1)

is in general only necessary but not sufficient to guarantee that the model is
compatible with (p0, . . . , pm).
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Fourth, the sets S[pi] may have a non-empty intersection, as for p1 and p2

in Fig. 3.2. The definition of compatibility does not require that the states that
represent the measurements are distinct. Hence, a model and time series are
trivially compatible if there is a state x ∈ S with

x ∈
⋂

0≤i≤m
S[pi].

In this case the measurements agree so well that a single state x is capable of
representing all measurements and, independent of the update functions F , a
model is compatible with the time series iff x ∈ S.

Finally, in case a model and time series are not compatible, it would be
desirable to retrieve some information on why that is. Along this line we propose
to check the necessary conditions of Eq. 3.1. In some cases, the incompatibility
may be explained by the existence of i, j such that 0 ≤ i < j ≤ m and for all
xi ∈ S[pi], xj ∈ S[pj ] : xi 6 xj . In this case S[pj ] is not reachable from S[pi],
which may have an easy explanation: S[pi] may, for example, be a so-called
trap set in which case every i such that i < j ≤ m and S[pj ] ∩ S[pi] = ∅ will
cause an inconsistency. The concept of trap sets and how to detect those that
are simultaneously subspaces is described in Chap. 4.

3.2.1 Temporal Logic Encoding

It is not difficult to see that the question of compatibility can be solved with
model checking algorithms. Recall from Sec. 2.4 that we specify transition sys-
tems as 3-tuples TS = (S,→, I) with I ⊆ S the initial states. The LTL formula
that queries whether the time series (p0, p1, p2) and a model are compatible is
defined by nesting F operators in the following way:

φ := F (p1 ∧ F (p2))

and checking whether the transition system TS = (S,→, S[p0]) satisfies TS |=∃ φ.
In general, the nested reachability query is given by the following construction.

Definition 18. The nested reachability query R(P ) for a time series P =
(p0, . . . , pm) is defined recursively by

φm := pm

φm−t := pm−t ∧ F φm−t+1, t = 1, . . . ,m

and R(P ) := F (φ0).

The next statement observes that the nested reachability query does really
solve the compatibility problem.

Observation 5. A model (V, F ) and time series P = (p0, . . . , pm) are compat-
ible if and only if

TS |=∃ R(p1, . . . , pm)

where TS = (S,→, S[p0]).



48 CHAPTER 3. REACHABILITY QUERIES

Note that by quantifying the path operator F in Def. 18 we obtain two CTL
variants of R(P ) which we denote by RE (P ) and RA (P ). It is not hard to see
that R(P ) and RE (P ) are equivalent in the sense that for any transition system
and time series both queries are either simultaneously true or false. Depending
on the model checking software available or for reasons of efficiency, state space
encoding or counter example generation, one may therefore choose either.

3.3 Monotonic Compatibility

The nested reachability query is a somewhat weak definition of compatibility
because it accepts paths of an arbitrary length. There are several arguments
for the preference of short time series paths.

The first one involves the assumption that there is a correspondence between
a path’s length and the energy required to perform its transitions1. In particular,
given a time series and two alternative models, each compatible with the time
series, one is then tempted to favor the model whose STG contains the shorter
time series path.

Similarly, but avoiding the notion of energy, one might argue that models
with shorter time series paths offer a simpler explanation for the data and that
path length is therefore an interesting criterion for model selection. There are of
course modeling scenarios in which neither of the two arguments is applicable.
Intuitively, the longer a time series path the more oscillations will necessarily
appear in the activity profiles of the components until the trajectory reaches a
steady state. This observation is illustrated in Fig. 3.3.

The relevance of oscillations in time series paths is that they implicitly estab-
lish a relationship between the sampling rate on the one hand, and the reaction
rates of the biological processes, which are represented by the components, on
the other. Intuitively, if for a process the time elapsed between successive mea-
surements is small compared to its reaction rate then we expect its activity to
change without oscillations. This observation motivates the need to query the
existence of paths that are monotonic in a specific component.

Definition 19. A path x1 → x2 → . . .→ xk is increasing, decreasing or steady
in a component v ∈ V , iff

∀i < k : xi(v) ≤ xi+1(v) (increasing)

∀i < k : xi(v) ≥ xi+1(v) (decreasing)

∀i < k : xi(v) = xi+1(v) (steady)

Let M : U → {↗,↘, •} be a function that labels the components U ⊆ V as
increasing ↗, decreasing ↘ or steady •. A path x1 → x2 → . . . → xk is M -
monotonic iff it is increasing, decreasing and steady in all v ∈ U that are labeled
respectively. M is called a monotony specification.

Since sampling rates are generally non-uniform and since a model may rep-
resent processes whose reaction rates are on different scales of magnitude, for
example signal transduction and gene regulation, we would like to specify in-
dependently which components are monotonic and in which intervals. The

1Assuming that each transition requires about the same amount of energy.
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(a) The profiles for a short path.
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(b) Possible profiles for a long path.

Figure 3.3: As the length of a time series path increases oscillations in between
the activity profiles (p0, . . . , p3) will necessarily appear. The profiles in (a) have
no oscillations while the profiles in (b) have each at least one oscillation.

following definition of monotonic compatibility achieves this with a sequence
M = (M0, . . . ,Mm−1) of monotony specifications.

Definition 20. Let P = (p0, . . . , pm) be a time series and M =
(M0, . . . ,Mm−1) a sequence of monotony specifications with Ui ⊆ V and

Mi : Ui → {↗,↘, •}.

The STG (S,→) of a model (V, F ) is M -compatible with P iff there is a P -time
series path x0  · · ·  xm such that for every 0 ≤ i < m the path segment
xi  xi+1 is Mi-monotonic.

A time series and monotony specification are conveniently represented in
tabular form by superimposing Mi on the respective cells in the table, as in
Fig. 3.4. Note also that the monotony specifications are independent of whether
the respective component has been measured.

3.3.1 Temporal Logic Encoding

As for the problem of compatibility there is a temporal logic encoding that
decides whether a model is M -compatible with a time series P . The structure
of the query is similar to that of nested reachability R but involves a sequence of
temporal logic conditions C = (γ1, . . . , γm). With the intention of introducing
further variations of the notion of compatibility in Sec. 3.5, we now define a
general conditional nested reachability query pattern and then show how M -
compatibility is decided by one particular choice of C. The idea of ”high-
level query templates” that capture recurring biological questions and can be



50 CHAPTER 3. REACHABILITY QUERIES

v1 v2 v3

p0

p1

p2

p3

0

1

2

−

↗
↗ ↘ ↘
• ↗ •

Figure 3.4: An example of a specification of a time series P = (p0, . . . , p3)
and monotonies M = (M0, . . . ,M2) in tabular form. The values of Mi are
superimposed on the table. M2(v3) is for example shown in the (p2, v3) cell.
Note that we can specify a component to be monotonic even if its activity is
not measured. For example M1(v3) =↘ but v3 6∈ V [p1] and v3 6∈ V [p2].

automatically translated into temporal logic was advocated in [18]. We begin
with an LTL encoding.

Definition 21. Let P = (p0, . . . , pm) be a time series and C = (γ0, . . . , γm) any
sequence of LTL formulae. The conditional nested reachability query R(P,C)
is defined recursively by

φm := pm

φm−t := pm−t ∧ (γm−t+1 U φm−t+1), t = 1, . . . ,m

and R(P,C) := (γ0 U φ0).

The nesting of U operators in this way ensures, for every i < m, that when a
suitable xi ∈ S[pi] is reached, condition γi+1 is satisfied until the next suitable
xi+1 ∈ S[pi+1] is reached and so on. A first observation is that if C is non-
restrictive, e.g. if C = (true, . . . , true), then R(P ) and R(P,C) are equivalent.
The latter is therefore a generalization of the former.

Two CTL versions of R(P,C) are obtained from Def. 21 by requiring that
C is a sequence of CTL formulae and quantifying the operator U . We denote
them by RE (P,C) and RA (P,C).

Next, we want to show that for a time series P and monotony specification
M , there is a sequence of conditions C such that the model is M -compatible
with P if and only if it satisfies R(P,C). The idea is to enforce the monotonies
by conditional next operators.

Definition 22. Let M : U → {↗,↘, •} with U ⊆ V be a monotony specifica-
tion. We define the LTL formula µ(M) by

µ(M) :=
∧
v∈U

ξ(v,M(v)),
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where ξ(v,M(v)) is in turn defined by

ξ(v,↗) :=

Max(v)∧
k=1

(v = k ⇒ X v ≥ k)

ξ(v,↘) :=

Max(v−1)∧
k=0

(v = k ⇒ X v ≤ k)

ξ(v, •) :=

Max(v)∧
k=0

(v = k ⇒ X v = k).

In case U = ∅ then µ(M) is defined to be µ(M) := true.

The formulae ξ(v,↗), ξ(v,↘), ξ(v, •) are therefore satisfied iff the next tran-
sition is increasing, decreasing or steady in v, respectively. By taking the con-
junction over k ∈ Dom(v) it is ensured that the monotony is independent of the
value of v in the current state. Note the slightly different index sets in each case
that stem from the observation that (v = 0⇒ X v ≥ 0) and (v = k ⇒ X v ≤ k)
for k = Max (v) are trivially true. With the query pattern µ(M), we are now
ready to define C of the conditional reachability query that decides the question
of M -compatibility.

Observation 6. Let P = (p0, . . . , pm) be a time series, M = (M0, . . . ,Mm−1)
a sequence of monotony specifications and TS = (S,→, S[p0]). A model (V, F )
is M -compatible with P if and only if

TS |=∃ R(P ′, C)

where P ′ := (p1, . . . , pm) and C = (µ(M0), . . . , µ(Mm−1)) where µ(Mi) are the
query patterns of Def. 22.

Note that in this construction the until operators U of the pattern µ(Mi)
ensure that ξ(v,Mi(v)) is satisfied not only for a single transition but for the
whole path segment xi  xi+1 that connects pi to pi+1.

As for compatibility, it is natural to ask whether monotonic compatibility
may be encoded in CTL. Unfortunately, this is problematic. To explain why,
we briefly discuss the notion of equivalence for LTL and CTL formulae. A LTL
formula ϕ and CTL formula Φ are said to be equivalent, denoted by ϕ ≡ Φ, if
for every transition system TS

TS |= ϕ⇔ TS |= Φ.

In [16], a theorem is presented that helps in deciding for a given formula in one
language whether there exists an equivalent one in the other and what it might
be.

Theorem (Clarke and Draghicescu, from [16] Sec. 6.3)). Let Φ be a CTL for-
mula, and ϕ the LTL formula that is obtained by eliminating all path quantifiers
in Φ. Then:

Φ ≡ ϕ or there does not exist any LTL formula that is equivalent to Φ.
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Hence, if an LTL formula and a CTL formula are equivalent then the latter
is obtained from the former by quantifying the path operators. An example
is the equivalence R(P ) ≡ RE (P ) for compatibility which was mentioned in
Sec. 3.2.1. To prove that monotonic compatibility can not be encoded in CTL
it is therefore sufficient to find for every quantification ψ of the LTL encoding φ
of a particular time series and monotony specification, a transition system that
satisfies exactly one of ψ and φ.

Theorem 1. Monotonic compatibility can not be encoded in CTL.

Proof. Consider the following time series P = (p0, p1) and monotony specifica-
tion of a Boolean network with V = {v1, v2, v3}.

v1 v2 v3

p0

p1

0 1 0

1

↗

The LTL formula that encodes the above M -compatibility problem is

φ := (v1 = 1⇒ X v1 = 1) U p1.

Since there are 2 operators, there are 22 different CTL formulae obtained from
ϕ by quantifying the operators X and U .

ΦEE := E
(
v1 = 1⇒ EX v1 = 1

)
U v1 = 1

ΦEA := E
(
v1 = 1⇒ AX v1 = 1

)
U v1 = 1

ΦAE := A
(
v1 = 1⇒ EX v1 = 1

)
U v1 = 1

ΦAA := A
(
v1 = 1⇒ AX v1 = 1

)
U v1 = 1

Consider the transition system TS 1 below which is the asynchronous STG of
some Boolean network. It is not M -compatible because the path from 000
to 111 contains a decrease in v1. But, the initial state 000 satisfies the two
CTL candidates ΦEE and ΦAE . This can be seen by checking that (v1 = 1 ⇒
EX v1 = 1) is satisfied in every state along the black path. In particular,
101 |= (v1 = 1⇒ EX v1 = 1) because of the transition 101 ↪→ 100 in red.

The other two candidates are ruled out by TS 2 which is the asynchronous
STG of another network. This system is M -compatible because the black path
is non-decreasing in v1, but the initial state does not satisfy the other two CTL
formulae. The reason is that 101 6|= (v1 = 1 ⇒ AX v1 = 1) because of the red
transition that is decreasing in v1.

We conclude with a couple of remarks. First, Thm. 3.3.1 of Clarke and
Draghicescu only applies when equivalence is considered over the set of all tran-
sition systems. For infinite subsets of transition systems, for example the ones
that are the STGs of logical networks, it may not be true that one can check
the existence of an equivalent CTL encoding by quantifying the path opera-
tors. Hence, Thm. 1 does not prove that there is no CTL equivalent for M -
compatibility for logical networks. We believe, however, that Thm. 3.3.1 also
holds for the restriction to transition systems of logical networks and in partic-
ular Boolean networks.
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000

111

101

101 |= (v1 = 1 ⇒ EXv1 = 1)

000

101

111

101 6|= (v1 = 1 ⇒ AXv1 = 1)

(a) Transition system TS 1 (b) Transition system TS 2

Figure 3.5: Two transitions systems that prove that monotonic compatibility
can not be encoded by quantifying the LTL property for monotony.

Second, the statement ”there is no equivalent CTL encoding” becomes mean-
ingless when considered over a finite set of transition systems, as is the case in
real life modeling scenarios, because then, for any LTL formula there is an
equivalent CTL formula that is obtained, not by quantification, but instead by
some form of explicit enumeration of all cases of transition systems for which
the formula holds. Of course, such enumeration will result in overly long and
complicated CTL formulae and is never actually useful.

Third, the definition of monotonic paths and the corresponding temporal
logic encoding are independent of the type of update rule considered. In partic-
ular they work for the three updates strategies ↪→,�,� of Sec. 2.3 as well as
for the update by so-called priority classes which are defined in [95].

Finally, certain combinations of values of Mappi
(v) and Mappi+1

(v) entail
a necessary condition for the value of Mi(v) with regards to the existence of a
monotonic path. For example, if Mappi(v) < Mappi+1

(v) then Mi(v) ∈ {↘, •}
is clearly not satisfiable by any path.

3.3.2 Computational Complexity

The aim of this section is to answer the question

How hard is it to decide if a logical network and a time series are
compatible?

Intuitively speaking, decision problems are problems that can be rephrased in
terms of the existence of an object that lives in a space that is determined by
the problem input. A guess to a decision problem is an element in this space.
In our case the problem input is a logical network together with a time series.
The question ”are they compatible?” can be rephrased as ”is there a time series
path in the transition system?”. A naive solution to decision problems is to
test each guess, in our case to enumerate all paths and test each for whether it
reproduces the time series or not.

A decision problem belongs to the class of non-deterministic polynomial time
(NP) problems if guesses can be tested in polynomial time with respect to the
size of the input. A reduction of one decision problem into another is a function
that transforms instances of the first into instance of the latter in polynomial
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time. A problem is NP-complete if it can be reduced to the Boolean satisfiability
problem (SAT), which is defined in the main part of the section below, and vice
versa. A problem is NP-hard if it is not in NP but there is a NP-complete
problem that can be reduced to it. NP-hard problems are therefore at least
as hard as NP-complete problems. For a formal discussion of computational
complexity and reductions see [96].

Formally, the introductory question is the decision problem with the input
being a logical network (V, F ) and a time series P = (p0, . . . , pm) and the output
being whether there is a P -time series path in (S,→). We call it Compatibility,
denoted by COMP. To determine its computational complexity we will focus on
a special case of logical network and time series. Clearly, COMP is then at least
as hard as the special case. The decision problem we focus on is called Boolean
Compatibility (BCOMP).

Name BCOMP
Input A Boolean network (V, F ) and a discrete time series P = (p0, p1).
Output Whether (S, ↪→) of (V, F ) is compatible with P .

Note that we are only considering the asynchronous transition graph (S, ↪→)
and time series with exactly two measurements. We will prove the BCOMP is
NP-hard. The proof is the result of a discussion with A. Reimers2 and based
on a reduction of SAT to BCOMP.

First, it seems that BCOMP does not belong to NP because the length
of a guess, in this case a path, is not polynomially bounded by the length of
the input ((V, F ), P ). The reason is that paths are sequences in S that may
grow exponentially with respect to (V, F ). Hence, even reading a guess might
not be achievable in polynomial time, let alone checking if it is a time series
path. To rigorously prove that BCOMP does not belong to NP would require
us to construct a family ((Vi, Fi), Pi) of instances of BCOMP such that each
(Vi, Fi) is compatible with Pi but the shortest time series paths do actually
grow exponentially in the size of the input. We would also have to show that
reading an exponential length fragment of the shortest path is necessary to
decide whether it is a time series path.

We now sketch a polynomial time reduction of SAT to BCOMP.
The input of an instance of SAT is a set of Boolean variables U =

{u1, . . . , un} and clauses C = {c1, . . . , ck} where each ci is a logical disjunction
of some variables of U or their negation. A solution to SAT is an assignment
of truth values to U that satisfies all clauses in C. We transform an instance of
SAT into a Boolean network (V, F ) with n+1 components, one for each variable
u ∈ U and an additional one for the clauses C, and a time series P = (x0, x1).
First the definitions of (V, F ). For ease of notation, define V := U∪{un+1} where
un+1 is the extra variable. We define the update functions F = {f1, . . . , fn+1}
by

fi :=

{
1 : 1 ≤ i ≤ n
c1 · .. · ck : else

.

Hence, (V, F ) is a network in which every component ui ∈ U can always tran-
sition from 0 to 1, but the component un+1 can only change if the state of

22013, Freie Universität Berlin
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U satisfies all clauses C, see Fig. 3.6. The measurements of the time series
P = (x0, x1) are the 0 state and the 1 state x0, x1 ∈ S that satisfy

∀v ∈ V : x1(v) = 1, x0(v) = 0

respectively.
The reduction of SAT to BCOMP is correct:

Proposition 1. A SAT instance (U,C) has a solution if and only if the corre-
sponding (V, F ) is compatible with the time series P = (x0, x1) in (S, ↪→).

Proof. The proof is based on the observation that a solution of (U,C), say
r : U → B, is represented by a state s ∈ S[un+1 = 0] with s(u) = r(u) for all
u ∈ U . s is reachable from x0 because every state in S[un+1 = 0] is reachable
from x0. But fn+1(s) = 1 because s satisfies all clauses and hence there is a
transition s ↪→ s′ ∈ S[un+1 = 1]. Since for any y ∈ S[un+1 = 1] there is a path
to x1 we have found a P time series path. The same argument holds the other
way, if there is a path x0  x1 then this path can be split in x0  s ↪→ s′  x1

where s ∈ S[un+1 = 0] and s represents a solution to (U,C) since fn+1(s) = 1.
An illustration is given in Fig. 3.6.

x0
x1s

S[un+1 = 0] S[un+1 = 1]

s′
fn+1(s) = 1

Figure 3.6: The transition graph (S, ↪→) of the logical network (V, F ) that cor-
responds to a SAT instance (U,C). The clauses C are encoded in fn+1 ∈ F .
There is a solution to (U,C) iff there is a path x0  s ↪→ s′  x1. It is
represented by s ∈ S[un+1 = 0] because fn+1(s) = 1.

3.4 Assessment of the Sampling Rate

The monotony specification M = (M0, . . . ,Mm−1) was motivated by the need
to decide if there is a time series path that is free of oscillations for a set of
variables Ui ⊆ V in between pi and pi+1 and hence in agreement with the
sampling rate. So far, it was therefore the data that determined whether a
given model is acceptable or not. But the information flow can also be reversed:
a compatible model can be used to assess the data.

In [87] it is emphasized that the determination of the lowest sampling rate
that captures all key events is an important challenge in designing time se-
ries experiments. The argument is that under-sampling might misrepresent the
component’s activities while over-sampling is expensive and time consuming.
Currently, the author remarks, the sampling rates are usually fixed by the in-
tuition of the experimentalists.
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In the following we discuss how a model that is M -compatible with a time
series P = (p0, . . . , pm) can be used to decide if specific intervals of the ex-
periment were under-sampled for specific components. Note that M represents
initial assumptions. The assessment includes the case when M is empty in which
case the assessment is based on basic compatibility. The idea is to detect under-
sampled intervals by checking if the model predicts a behavior that is unexpected
with respect to the time series and initial assumptions M . Hence, the notion
of what is to be expected defines whether an interval is under-sampled or not.
Our notion of expectation is based on monotonies and changes in activities.

The procedure is to check for every component v ∈ V and every sample
pi if v is currently decreasing, increasing or steady. This requires its last and
next measured values, to infer the direction. The indeces of the last and next
measured values are s and t in the definition below. If these values exist then
the expected monotony is clear and depends on their relative order. In general,
however, it might be the case that there is no last value, or no next value or
even both (if v is not measured at all in P ). In this case we will make the ad hoc
assumption that v was steady. Note that in the assessment procedure described
below, this assumption can be overridden by any other monotony specification.

Definition 23. Given a time series P = (p0, . . . , pm) over the components V .
Let (i, v) be a tuple with 0 ≤ i ≤ m − 1 and v ∈ V . The expected monotony
E(i, v) ∈ {↗,↘, •} of v in between the measurements pi and pi+1 is defined by
the following cases: If

s := max{j ∈ [0..m] | j ≤ i, v ∈ V [pj ]}
t := min{k ∈ [0..m] | k ≥ i+ 1, v ∈ V [pk]}

exist then we define

E(i, v) :=


↗ : Mapps

(v) < Mappt
(v)

• : Mapps
(v) = Mappt

(v)

↘ : Mapps
(v) > Mappt

(v)

.

Otherwise pi is the last or first measurement in the profile of v, or v is not
measured at all, and we define E(v, i) := •.

Recall that Mapp : V [p] → Dom(v) is the mapping representation of a
symbolic state p ∈ Sym, see Sec. 2.1.1.

Assessment Procedure

Recall that we base our assessment on a model that is assumed to be M -
compatible with P = (p0, . . . , pm) where M = (M0, . . . ,Mm−1) represents the
initial monotony assumptions. With the expected monotony defined we propose
the following assessment procedure.

(1) Mark all positions (i, v) that are not already specified in M as under-
sampled if the model disagrees with the expectation E(i, v).

More precisely, let (i, v) ∈ [1..m] × V be a tuple such that v 6∈ Ui where Ui

is the domain of Mi. We derive the extension M ′(i, v) = (M ′0, . . . ,M
′
m−1) of M

and (i, v) by defining

U ′j :=

{
Uj : j 6= i

Ui ∪ {v} : j = i
, M ′j(u) :=

{
Mj(u) : (j, u) 6= (i, v)

Mi(v) := E(i, v) : (j, u) = (i, v)
.
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At this point two possible situations arise.
(2a) Some positions (i, v) were marked as under-sampled. It follows that

every M -monotone path contains an unexpected behavior for v in between the
measurements pi, pi+1. This might be either a full oscillation, a dip or peak in
the activity profile of v, or a change in activity in case (i, v) is the first or last
measurement or v was not measured at all. The assessment finishes with the
suggestion that the experiment should be repeated with a higher sampling rate
in the intervals and for the components that were marked.

(2b) No positions were marked. In this case the model and data seem to
fit perfectly together. But, the extensions M ′(i, v) are merely a local test that
does not guarantee the existence of a path that satisfies all expectations at the
same time. The existence of such a path requires an additional test.

Definition 24. Let P = (p0, . . . , pm) be a time series and M =
(M0, . . . ,Mm−1) a monotony specification. The best fit specification B =
(B0, . . . , Bm−1) of P and M is defined by Bi : V → {↗,↘, •} with

Bi(v) =

{
Mi(v) : v ∈ Ui

E(i, v) : else
.

Hence, if a model is B-compatible then it satisfies the initial monotony
assumptions M and the additional expected monotonies E(i, v) at the same
time and we conclude that the sampling rate was sufficient. If the model is not
B-compatible then we conclude that the sampling rate was too low somewhere
but also that the exact interval and component for which unexpected behaviors
appear can not be determined by the model, because for each tuple (i, v) there
are some paths that behave as expected but also some that do not.

3.5 Variations of Compatibility

The conditional reachability pattern R(P,C) of Def. 21 was used only to define
an LTL encoding of a monotony specification M . Here, C was defined to be
C = (µ(M0), . . . , µ(Mm−1)) with µ(Mi) being conditional next expressions of
Def. 22 that ensure the monotony of specific components. The motivation in this
section is to explore other applications of R(P,C) but also of its CTL variant
RE (P,C).

3.5.1 Robust Compatibility

So far, a model is said to be compatible with a time series if its transition system
satisfies the corresponding linear time property, i.e., if there is a time series path
in its STG. Whereas the existence of such a path demonstrates that the model is
capable of reproducing the time series, it does not offer any information on how
robust the path is with respect to perturbations in the sequence of component
updates that lead from the first to the last state of the path.

As it has often been said that the dynamics of biological processes is robust
in this respect it is desirable to formulate such a property in temporal logic.
That is, we would like to query the existence of a path with the property that
branching at any state will permit a continuation that is again a time series
path.
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Definition 25. A model is branching time compatible with a time series P =
(p0, . . . , pm) iff there is a time series path x1 → . . . → xt such that for every
1 ≤ s ≤ t and every y ∈ S : xs → y there is a z ∈ S[pm] and a path y  z such
that

x1 → . . .→ xs → y  z

is again a P -time series path.

Note that this definition is independent of which state represents which
measurement. As a consequence the representatives of the original path and the
branched path may be different. Note also that differently quantified, weaker
versions of Def. 25 are possible and encoded similarly.

As its name suggests, we need the branching time logic to encode this prop-
erty. To do so we use the existential CTL variant RE (P ) of the nested reacha-
bility query R(P ) that was discussed in Def. 18. For clarity we define the queries
that encode the existence of the path continuations separately. Denote by βi
for 0 ≤ i ≤ m the CTL formula

βi := AX (RE (pi, . . . , pm)).

Hence, if x |= βi for a state x ∈ S then for all its successors y ∈ Succ(x) there
is a Pi time series path with Pi := (pi, . . . , pm), see Fig. 3.7 for an illustration.

Observation 7. Let P = (p0, . . . , pm) be a time series. A model (V, F ) is
branching time compatible with P if and only if

TS |=∃ RE (P ′, C))

where P ′ := (p1, . . . , pm), C := (β1, . . . , βm) and TS = (S,→, S[p0]).

S[pi] S[pi+1]

x

y

xkx1

z

xi xi+1

Figure 3.7: A model is branching time compatible with a time series if there is a
time series path π = x1  · · · xk, such that for every successor y ∈ Succ(x)
of every state x of π there is a continuation y  z to a state z = z(y) ∈ S
such that x1  x→ y  z is also a time series path. The states along π must
therefore satisfy βi+1 = AX (RE (pi+1, . . . , pm)).

Def. 25 can be seen as a first-order version of robustness with one path being
robust and its continuations being regular paths. A second-order version, which
requires that the continuations are themselves branching time compatible, is
also possible. It is constructed by replacing RE (pi, . . . , pm) in the definition of
βi with the first-order query of Obs. 7. Inductively this can be generalized to
any degree of robustness.
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The next natural question is whether M -compatibility can also be gener-
alized to branching time M -compatibility. This would be straightforward if a
CTL formula existed that encodes the M -compatibility which is, by Thm. 1,
impossible for general transition systems and very likely to be impossible for
logical networks, as discussed in Sec. 3.3.1.

There is, however, a variation on the notion of monotony, which we call
strict monotony, that is encodable in CTL. Recall, from Def. 19 that a path
x1 → x2 → . . . → xk is increasing in v ∈ V if xi(v) ≤ xi+1(v) for all i < k.
We say that v is strictly monotone if it is monotone for all successors of states
along the path, not only the one that is next on the path. A component v ∈ V
is, for example, strictly increasing if xi(v) ≤ y(v) for all y ∈ Succ(x) and i < k.

Strict M -compatibility is easy to encode, in either LTL or CTL, using the
tendency propositions δv�k ∈ AP for k ∈ {−1, 0, 1}. It is achieved by modifying
the sub-formulae ξ(v,↗) of Def. 22 by ξ′(v,↗) by

ξ′(v,↗) := (δv ≥ 0)

ξ′(v,↘) := (δv ≤ 0)

ξ′(v, •) := (δv = 0)

Also, strict M -compatibility, since it is encodable in CTL, can be extended to
branching time strict M -compatibility by following the above constructions for
branching time compatibility.

Note that the variations of branching time compatibility all deal and struggle
with the non-determinism of the STG. A deterministic M -monotonic time series
path x1  · · · xm trivially satisfies all of the above definitions. So, how about
querying the existence of deterministic time series paths?

3.5.2 Attracting Pathways

An attracting pathway is a trajectory with a restricted out-degree. The notion
and terminology are taken from [97] where it is defined as ”a pathway in which
all or almost all edges with one vertex on the pathway are directed toward
it”. The authors state that attracting pathways are expected to be present in
the STGs of models of biological systems because a ”defining characteristic of
biological systems is a remarkable insensitivity to stochastic fluctuations both
in the environment and in the organism itself”.

With propositions of the form ∆ � k (see Sec. 2.4) all of the above queries,
compatibility, M -compatibility and branching time compatibility, can be ex-
tended to accept only time series paths with a restricted out-degree along
specific path segements. To query, for example, the existence of a deter-
ministic M -compatible path, using LTL, we replace each condition µ(Mi) of
C = (µ(M1), . . . , µ(Mm)) by

µ(Mi) ∧ (∆ = 1)

We make two remarks. First, the out-degree restriction can be chosen inde-
pendently for each pair pi, pi+1. To query a path that is ”increasingly determin-
istic” we could for example use the conditional nested reachability query with
the conditions:

C = (∆ = 3,∆ = 2,∆ = 1).
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Second, the propositions ∆ = 1 and ∆ = 0 can be used to detect limit cycles
and fixpoints in STGs, see Chap. 4.

3.5.3 Stability and Partial Stability

In addition to the monotony specification Mi in between the measurements pi
and pi+1 we may also demand that some components Wi ⊆ V are stable when
the time series path reaches measurement pi.

This assumption is, for example, relevant in modeling perturbation exper-
iments. Here, the set up is that some components are the so-called external
control components. They may be activated or inhibited during or before the
experiment by gene perturbations, stimulations of receptors, and so on. The
remaining components are called internal components and their dynamics can
not be influenced directly. It is then assumed that for some initial values for the
control components, the internal network has settled into a fixpoint, i.e., that
fv(x) = x(v) for all internal components v. Then a change in the activities of
some external control components will change the conditions of some internal
components and lead the network to the next internal fixpoint.

Definition 26. A time series path x0  · · · xm satisfies the stability speci-
fication W = (W0, . . . ,Wm) with Wi ⊆ V iff for all 0 ≤ i ≤ m:

∀v ∈Wi : fv(xi) = xi(v).

The control problem for Boolean networks, on which the above description
is based, is due to [98] and solutions using model checking and counterexamples
were suggested in [79]. We add to their results that the control problem can be
extended by all previous concepts of this chapter, i.e., by stability and monotony
specifications, a restriction of out-degrees and robustness.

Stability specifications may be encoded in the conditional nested reachability
queries R(C,P ), RE (C,P ), RA (C,P ) by using the tendency propositions δv � k
and modifying Def. 21. To query, for example, the existence of an M -compatible
path that satisfies the stability specifications W = (W0, . . . ,Wm) using LTL,
replace each condition µ(Mi) of C = (µ(M1), . . . , µ(Mm)) by

µ(Mi) ∧
∧

v∈Wi

δv = 0.

A special case of stability specification is to require that the path ends in a
fixpoint. This requirement is specified by

W = (∅, . . . ,∅, V ).

3.6 Software

A Python package, called TemporalLogicTimeseries [54], with which dis-
crete time series data can automatically be translated into the various temporal
logic encodings is available. The input format is text-based, an example is given
in Fig. 3.8.

The package includes the script ”macros.py” which translates the input into
temporal logic formulae by following one of four common use cases. They are
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(1) compatibility, (2) monotonic compatibility, (3) branching time compatibility,
and (4) the best fit specification. Each use case takes a discrete time series as
an input and requires some parameters that decide the ”flavor” of the encoding.
AsymptoticallyStable is a Boolean parameter that determines whether the
time series path should end in a fixpoint or not. OutDegree is a natural number
that restricts the number of successors of each state along the time series path
to a constant. Use case (1) has an additional parameter TemporalLogic that
determines whether the encoding should be done in CTL or LTL and use case
(2) requires, as an additional input, a matrix of monotony specifications M =
(M0, . . . ,Mm−1) of Def. 20.

Input:

v1 v2 v3

0 0< 1

0< 1> ->

1= 0< -=

1 2 1

v1 v2 v3

p0

p1

p2

p3

0

1

2

−

↗
↗ ↘ ↘
• ↗ •

Output:

(1) v1=0 & v2=0 & v3=1

(2) (((v2=1->X(v2>=1)) & (v2=2->X(v2>=2))) U (v1=0 & v2=1 &

(((v1=1->X(v1>=1)) & (v2=0->X(v2<=0)) & (v2=1->X(v2<=1))&

(v3=0->X(v3<=0))) U (v1=1 & v2=0 & (((v1=1->X(v1=1)) &

(v2=1->X(v2>=1)) & (v2=2->X(v2>=2)) & (v3=1->X(v3=1))) U

(v1=1 & v2=2 & v3=1))))))

Figure 3.8: An example of the input format for discrete time series and
monotony specifications as used by TemporalLogicTimeseries [54]. The
symbols < and > are interpreted as increasing and decreasing respectively while
= is interpreted as steady. (top left) The text-based input file. (top right) The
interpretation as a discrete time series with monotony specifications. (bottom)
The output of the function macros.monotonic compatibility is divided into
the initial constraint (1) and the LTL formula (2).

3.7 Case Study: The Galactose Switch in Yeast

This section picks up where the case study of Sec. 2.5 left off. Here we test
each of the models of the three viewpoints of the IRMA network against the
various time series encodings. We focus on: (1) Compatibility, (2) Branching
time compatibility, (3) Compatibility with restriction of out-degrees, (4) Com-
patibility with asymptotic stability, and the (5) Best fit specification. The goal
is to discuss how each of the 9 models fits to the data and possibly select a ”good
model”. As we will see, this is quite a challenge that involves many decisions
regarding data discretization and the temporal encoding of the data. The ques-
tions regarding data discretization are where to place the threshold and how
much uncertainty to permit. Regarding the temporal encoding of data, it is
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not a priori true that we should expect that a ”good model” is branching time
compatible with the data or asymptotically stable. Although one may argue
that these properties are biologically meaningful, it may be the case that the
data is represented by a trajectory that is characterized by not being robust in
our sense.

The first steps will therefore be to investigate how the encodings perform in
an ideal scenario, on simulated data, and to discretize the data. The goal in the
former is to understand what kind of compatibility can be expected between
data and the candidate models. Finally we demonstrate the procedure for the
assessment of the sampling rate of Sec. 3.4. Implications for model revision are
discussed.

All encodings were generated using TemporalLogicTimeSeries, see [54]
and the previous section.

3.7.1 Simulations

To get a sense for how well a match between data and model can be expected we
generated artificial asynchronous switch-on and switch-off data for each of the 9
models. We followed the random component semantics for generating the time
series which is also used in [44] and not the random successor semantics. In the
former, the next state xt+1 in the simulation is generated from xt by randomly
selecting a component v ∈ V to update, whether or not tendv(xt) 6= 0. If a
component with tendv(xt) = 0 is selected then xt+1 = xt which seems realistic
since we can not guarantee that the system has changed from one measurement
to the next. On the other hand, the successor semantics selects a random
successor xt+1 of xt in (S,→). Here xt+1 = xt if and only if xt is a fixpoint.
Examples of the difference in simulating time series data are given in Fig. 3.9.

(a) (b)

Figure 3.9: Two examples for simulated switch-on data (gal = 1) derived from
the transcriptional model with fCbf1 = Ash1 + Swi5. The time series in (a)
was generated by the random component semantics while for (b) we used the
random successor semantics that produces a true random walk in the STG. Our
computer experiments are based on simulations of type (a).

For each of the 9 models we have generated 1000 time series for the switch-on
and 1000 for the switch-off experiments. The time series were of the same lengths
as the number of samples in [81], 14 and 18 respectively, and characterized by
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a random initial state x ∈ S[gal = 1] for switch-on and x ∈ S[gal = 0] for
switch-off simulations. Since the data is derived from the models we do not
have to test compatibility or whether there is a best fit time series path. Both
answers are a priori positive. Hence we tested only the remaining 3 questions:
How many of the 1000 time series are (1) branching time compatible with the
model under investigation, (2) have an asymptotically stable time series path,
and (3) have a time series path with a restricted out-degree?

(a) Branching Time Compatibility

(b) Asymptotically Stable

Figure 3.10: The number of times, out of 1000, that a simulation is robust in
(a) and asymptotically stable in (b). The numbers are very similar between
rows (model type) but vary across columns (regulation of Cbf1 ). Highlighted in
yellow is the prediction that, across all modeling assumptions and regulations
of Cbf1, the switch-on data should be reproduced by a path that ends up in a
fixpoint. Highlighted in blue is the prediction that whether or not the switch-off
data is reproduced by a stable path is linked to the regulation of Cbf1.

The results for (1-2) are summarized in Fig. 3.10. A first observation is
that for each of the 9 models and both types of experiments there are some
simulations that are robust and some that are asymptotically stable. A perhaps
surprising observation is that the numbers seem to be independent of the model
type as the numbers do not vary much across rows. They do however vary
across the columns, which correspond to different update functions of Cbf1.

Regarding the stability, about 99% of the simulated switch-on experiments
end up in a fixpoint, independent of the type of model (rows) or the regulation
of Cbf1 (columns). We therefore note the following simulation-based prediction:

• We expect to see that the switch-on data is reproduced by a time series
path that is asymptotically stable.

The results for the switch-off data suggest an equivalence between the regulation
of Cbf1 and asymptotic stability. Each number is either 0 or around 1000 with
variations across columns but not rows. The prediction is:

• If and only if fCbf1 6= Ash1 +Swi5 do we expect to see that the switch-off
data is reproduced by an asymptotically stable path.

The results for branching time compatibility are less conclusive. About 30%
of the simulations are robust. A noteworthy remark is that in case of the switch-
off data the regulation of Cbf1 has, again, a strong effect on the robustness. If
fCbf1 = Ash1 + Swi5 (middle column) then almost all simulations are robust.
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Figure 3.11: The number of out-degree restricted time series paths for the tran-
scriptional model. The plots show the restriction k = 1, . . . n = |V | on the
x-axis against the number of acceptable simulations on the y-axis. The data
for the other two model types, the mechanistic and explicit viewpoints, is very
similar and not shown. Highlighted in yellow is the scenario switch-off and
fCbf1 = Ash1 + Swi5 in which none of the 1000 simulations has a k-restricted
path with k = 1, 2.

A possible explanation for these results may be that the regulation of Cbf1
determines whether the STG contains fixpoints or sustained oscillations in the
form of large SCCs.

The results for the existence of out-degree restricted paths are given in
Fig. 3.11. As the simulations hardly vary across different model types, only the
ones for the transcriptional models are shown. The plots have the restriction pa-
rameter k on the x-axis and the number of simulations that have a k-restricted
time series path on the y-axis. The plots are naturally cumulative: if there is a
k-restricted path then the same path is (k + 1)-restricted. Note that any path
is trivially k = |V | = 5 restricted but for the considered models also k = 4 re-
stricted, because gal is a stable input that can not change along any path. The
shape of the plots is very similar across different update function for Cbf1 with
about 10% of simulations being deterministic (k = 1) and an apparent linear
increase. An exception is the switch-off data and fCbf1 = Ash1 + Swi5 , high-
lighted in yellow in Fig. 3.11. In that case k ≥ 3 is required for compatibility.
We hence note the prediction:

• If fCbf1 = Ash1 + Swi5 then we expect the switch-off data to be incom-
patible for k = 1, 2.

3.7.2 Data Discretization

The next step is to discretize the switch-on and switch-off data. The PCR data
of the 5 switch-on and 4 switch-off experiments is available as a spreadsheet in
the supplementary materials of [81]. According to [81] the replicates were made
to reduce the influence of noise on the data. Averaged and normalized switch-on
and switch-off time series are available. In Fig. 3.12 we illustrate the available
data. As an example we plotted the 9 individual and the 2 normalized time
series of Ash1. The mRNA concentrations are given in terms of 2−∆Ct values,
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for details see [81]. As in [81,82] we also assume that an increase or decrease in
mRNA leads to a proportional change in protein concentration.

Figure 3.12: An example for the data available in [81]. On the left, the unpro-
cessed PCR data of Ash1 which consists of 5 switch-on time series in red and 4
switch-off time series in blue. On the right, the normalized data. Although the
unprocessed curves seem generally increasing for the switch-on and decreasing
for the switch-off data, the trends are much more pronounced in the normalized
curves.

To binarize the data we assume that all 8 interactions have highly non-
linear response profiles for varying regulator concentrations, i.e., that there is a
threshold value for each interaction below which the regulator is ineffective and
above which it is effective at a constant rate. The goal of the binarization step
is to determine the threshold value of each interaction. In addition, since we
are interested in a Boolean model for the IRMA network, we assume that for
Swi5, which is the only component that regulates several other components, all
its thresholds are at about the same value.

As a method for computing the threshold for each component we have tested
3 naive approaches and 4 algorithms. As naive approaches we used: taking the
mean value, the median value, and the midpoint 1

2 (max−min) between the
maximum and minimum values. The algorithms we used are k-means clus-
tering, the first edge and max edge detector methods published in [99] and a
scan statistic method. All algorithms are implemented in the software package
BoolNet [44].

As discussed in [81] the initial peaks in Gal4 and Gal80 could be due to
carbon starvation effects. The values may be much above the actual regulation
thresholds which would bias the computation of the thresholds. But, since we
can not judge whether these values are outliers or not we have decided to be
passive and keep the values.

Since there are two time series for each component we have a choice as to
whether we want to discretize the joint data or each time series separately. In
general it should be preferable to discretize the joint data because it potentially
contains a larger range of activity values and hence a clearer picture of what
should be considered to be an effective or ineffective concentration level. We
make the assumption that there is a single threshold that works for both the
switch-on and the switch-off data. To demonstrate the possibility of allowing
uncertainties in the thresholds we removed all values that lie within the interval
(t−u, t+u), where t is the threshold and u := 0.05·(max−min) is 5% of the total
activity range, from the discrete time series. It should be remarked that implicit
to all discretization methods is the assumption that each component does indeed
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cross its regulation threshold somewhere in the data. This assumption is slightly
problematic (why should constant components be disallowed?) but probably
only avoidable by insights into the biological background that we are lacking.
The thresholds are illustrated in Fig. 3.13.

Figure 3.13: The normalized data and thresholds obtained by the mean, median
or midpoint method and the k-means, edge detector (first and max) and scan
statistic method. We have grouped the discretization methods into three groups.
Those that tend to be high are colored in blue, those that tend to be low in
red and those in between, which we refer to as mean, in gray. The width of
the thresholds indicate a 10% uncertainty and values inside the threshold are
marked as uncertain in the discrete time series.

The thresholds fall, qualitatively speaking, into three groups depending on
whether they tend to be above, below or at the mean value of the data. High
thresholds lead to ”calm” time series with many 0′s, mean threshold values lead
to ”erratic” time series with many changes from 0 to 1 and low threshold values
lead to ”calm” time series with many 1′s as illustrated in Fig. 3.19. The ”er-
ratic” behavior of mean threshold time series occurs because the measurements
accumulate and oscillate around the threshold, as can be seen for Gal4 and
Gal80 in Fig. 3.13.

The thresholds obtained from the naive approaches are often located where a
majority of the measurements accumulate, i.e., at the steady plateaus, if there
are any. Since the measurements usually oscillate around these plateaus the
naive approaches seem to be emphasizing the noise in the data. The result
are ”restless” time series that require a lot of transitions. A good example for
this effect can be seen in the discretization of Gal4. The ”restlessness” can be
countered by increasing the value of u.

As an illustration for what can be done in case of uncertainties regarding
the discretization method, which we are also facing in this case study, we will
construct a so-called consensus time series for each group of thresholds (low,
mean, high) which records the values that are agreed upon by all discretization
methods in the respective group. Formally, the consensus time series of two
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time series P = (p1, . . . , pm) and Q = (q1, . . . , qm) is C = (c1, . . . , cm) where
Setci := Setpi

∩Setqi for all 1 ≤ i ≤ m and Setp ⊂ V ×B is the set representation
of a symbolic state p ∈ Sym, as defined in Sec. 2.1.1. The consensus time series
of a set of time series is then obtained by applying the pairwise construction
iteratively. The results are shown in Fig. 3.14.

Note that a consensus time series has two types of uncertain measurements,
those that are uncertain because they are uncertain for every time series of the
group (red cells in Fig. 3.14) and those that are uncertain because there are two
time series in the group whose values are not equal (blue cells in Fig. 3.14).

Note also that results based on the consensus time series are ”cautious”.
That is, if a model is compatible with any time series in the group then it is
also compatible with the consensus time series. This is true for all notions of
compatibility discussed in this chapter.

High, switch-on Mean, switch-on Low, switch-on

High, switch-off Mean, switch-off Low, switch-off

Figure 3.14: The consensus time series for the high, mean and low threshold
values. Blue cells show disagreements among the discretization methods and are
interpreted, like red cells, as uncertain values in the temporal logic encodings.

Finally, we remark that it is encouraging to observe that although discretiza-
tion is a sensitive step that potentially has a strong influence on the outcome of
the time series encodings and subsequent analysis, it seems that the threshold
values are likely to belong to a smaller number of groups (high, mean, low in our
case). In practice it may therefore be feasible to test all discretization methods
in question and work with a small number of consensus time series.

3.7.3 Compatibility

In this section we test each combination of models, transition relation and time
series for compatibility. The model parameters are: 3 models types, 3 update
functions for Cbf1 (see Eq. 2.4) and 3 transition relations. The temporal logic
encoding parameters are: 3 pairs of consensus time series (switch-on, switch-off)
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and 3 variations of compatibility (basic, branching time, best fit), each of which
can be tested with an out-degree restriction of k = 1, 2, 3. Since the parameters
can be chosen independently, we are faced with and have tested

3× 3× 3× 3× 3× 3 = 36 = 729

different combinations. It turns out that there are only 36 compatible combi-
nations. They are listed in Fig. 3.20. Note that we say that a model satisfies
a variation of compatibility with a consensus time series if it does so for both,
the switch-on and the switch-off.

The aim of this section is describe some properties of the compatible combi-
nations that caught our attention, to compare them with the simulation-based
predictions of Sec. 3.7.1 and possibly to select a ”best” model or a ”best” dis-
cretization.

First, some properties that caught our attention.

• None of the synchronous models are compatible with any time series. This
may be so because the time series contain a measurement twice but with
different successors or simply because it is unlikely that one of our 9 pre-
defined synchronous models is compatible with a data-based time series.
It seems to us that this will in general be the case. This kind of model
validation is hard with synchronous updates.

• None of the models have asymptotically stable time series paths. This
is in direct opposition to the expectation, which was raised in Sec. 3.7.1,
that the switch-on data should be reproduced by an asymptotically stable
path.

• There are no best fits between any model and any time series. This should
be interpreted as an overall poor fit between the data and the models.

• The time series paths in this case study are highly non-deterministic. They
contain at least one state with an out-degree k ≥ 4 except when consider-
ing the mixed transition relation and the mechanistic type model in which
case there is a path with out-degree k ≤ 3, see Fig. 3.20.

• Since x ↪→ y ⇒ x� y we asked whether the mixed update� ever made a
difference in terms of compatibility compared with the same asynchronous
system. There are two cases. First, as might have been expected, �
can increase the ”determinism” of a path by decreasing the out-degrees
along the states of a path. See for example the mechanistic model with
conjunctive update and high thresholds in Fig. 3.20. Second, (S,�) may
be compatible with a time series whereas (S, ↪→) is not, see the mean
thresholds for the mechanistic model.

• There is almost a correspondence between the disjunctive update of Cbf1
and the existence of a robust time series path. The only robust time series
path that is not linked to the disjunctive update of Cbf1 is the explicit type
model with high thresholds values and fCbf1 = Swi5 , see also Fig. 3.20.

Now, regarding model selection. We would like to demonstrate that this kind
of exhaustive testing can be used for defining selection criteria. As examples
consider the following scenarios
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(1) We are interested in the model that is compatible with all three threshold
levels. There are 3 models that have this property. They are the explicit
type models with the asynchronous or mixed update strategy.

(2) We are interested in the model with the ”best” time series path. The
disjunctive, mixed update, mechanistic model is the only one that has a
robust, out-degree restricted path (with k ≤ 3). The corresponding time
series are discretized by high-valued thresholds.

One may also count the number of times each update of Cbf1 occurs amongst
the compatible models (disj :13, swi5 :13, conj :10), how often each model type
occurs (explicit :16, transcr.:12, mech.:8), and so on. For a discussion on analyz-
ing sets of models and a software for their management, see Chap. 5.

3.7.4 Assessment of Sampling Rate

To assess the data quality we followed the procedure described in Sec. 3.4. It
requires to test for all components v ∈ V and all time points 1 ≤ i ≤ m of
a given time series P = (p1, . . . , pm) and model whether there is a E(v, i)-
monotone time series path where E(v, i) is the expected monotony specification
of Def. 23.

The first step is to choose the model that the assessment should be based on.
We have tested several scenarios and decided to use the transcriptional model
with fCbf1 = Swi5 · Ash1 , the mean thresholds and the asynchronous update
↪→ for an illustration because in this scenario there are three under-sampled
intervals. Following the assessment procedure we generated for each (v, i), of
which there are 5 · (14− 1) = 65 for the switch-on and 5 · (18− 1) = 85 for the
switch-off time series, the respective LTL specification and tested whether there
is a corresponding monotone time series path.

For each time series we recorded those positions (v, i) for which no such
path exists because, as discussed in Sec. 3.4, each such (v, i) implies a change
in activity of v on the path segment xi  xi+1 where xi, xi+1 represent the
measurements pi, pi+1 of the time series, respectively, that is not inherent in
the data. Depending on xi(v) it will be 0 → 1 → 0 if xi(v) = 0, which we call
an unobserved peak, or 1 → 0 → 1 if xi(v) = 1, which we call an unobserved
dip, or a single transition, either 0 → 1 or 1 → 0, if pi is the last measurement
that includes v or pi+1 the first. The prediction for these (v, i) in terms of the
sampling rate is that:

• A replicate of the experiment with an increased sampling rate in the inter-
val [i, i+ 1] will reveal previously unobserved dips below the discretization
threshold or peaks above the threshold for the activity of v.

For the chosen scenario, the assessment predicts three unobserved oscilla-
tions, two for the switch-off experiment and one for the switch-on experiment.
We illustrate them by inserting an additional row into the tabular representa-
tion of the time series that shows which components are predicted to oscillate,
see Fig. 3.15 and Fig. 3.21. To get an impression for what the oscillations might
look like in terms of the expression curves, we have modified the original curves
(by hand) in Fig. 3.16.
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Cbf1 Gal4 Swi5 Gal80 Ash1

20min

40min

dip

90min

100min

dip peak

Cbf1 Gal4 Swi5 Gal80 Ash1

(a) Switch-On (b) Switch-Off

Figure 3.15: Cut-outs of the mean threshold time series that show the intervals
for which the sampling rate assessment predicts oscillations. The complete time
series is shown in Fig. 3.21. The prediction for the switch-on time series in
(a) is a dip in activity for Swi5 in between the 1st and 2nd measurements,
in the interval [20min..40min]. For the switch-off time series (b) a dip and a
peak are predicted for Cbf1 and Swi5 respectively in between the 8th and 9th

measurements in the interval [90min..100min].
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Figure 3.16: Based on the assessment of the sampling rate we manually modified
the expression curves of Swi5 and Cbf1 to fit the predictions. Predictions for
the red switch-on curve are given in yellow, corrections for the blue switch-off
curve in turquoise. The corresponding time intervals are indicated by the dashed
vertical lines.

Finally, we asked whether the unobserved oscillations can be explained in
terms of the model. Consider, for example, the dip of Swi5 in the switch-
on time series between the measurements p0 and p1. The discretization for
these measurements is precise in all components and so the problem of deciding
whether there is a time series path decouples into two separate compatibility
problems P1 := (p0, p1) and P2 := (p1, . . . , p13) as discussed in Sec. 3.2. In this
case it is easy to see why there is no P1 time series path that is monotone in Swi5.
First, the monotony requires that Swi5 is steady at 1 since Mapp0

(Swi5 ) =
Mapp1

(Swi5 ) = 1 along the path. Second, the measurements require that Gal80
decreases since Mapp0

(Gal80 ) = 1 > Mapp1
(Gal80 ) = 0, i.e., that fGal80 = 0

somewhere along the path. Third, the model states that fGal80 = Swi5 = 1
everywhere along the path, a contradiction.

The same argument can be used for the predicted oscillation of Cbf1 in the
switch-off data. Here Gal4 is required to decrease while Cbf1 is steady at 1,
which contradicts fGal4 = Cbf1 = 1. Not all cases of predicted oscillations
are as easy to explain. Requirements can propagate, for example, where a
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change in activity of one component triggers an oscillation in its regulators and
in turn in their regulators, and so on. Explanations for the predictions are
further obstructed because they may rely on components that were recorded as
uncertain but have become fixed on every feasible path. Hence, to explain a
prediction we might have to check which states of S[pi] are actually reachable
from S[p0].

We conclude with two observations. (1) Regarding the assessment based
on different models or time series, the predictions are very similar across all
types of models and update functions for Cbf1. Often the assessment returns
no predictions but if it does then the problematic intervals are in the range
[90min − 100min] for the switch-off and [20min − 40min] for the switch-on
data. (2) In practice one might want to allow uncertainties in the model that
the assessment is based on. This is possible and the natural approach is to take
the union of the (v, i), i.e., all (v, i) that are predicted by some model, which is
also called brave reasoning, or the intersection of the individual results, i.e., all
(v, i) that are predicted by every model, which is also called cautious reasoning.
The question of how to reason over sets of models is treated in more detail in
Chap. 5.

3.8 Discussion

The starting point of this chapter were discrete time series observations and the
question of compatibility between data and a given model. We suggested various
notions of compatibility involving assumptions about the stability, robustness
and monotony of the system. All time series encodings followed essentially the
same nested reachability pattern R(P,C) with symbolic states P and conditions
C. In general, P and C can be arbitrary expressions of a given temporal logic.
Measurements may, for example, be arbitrary state descriptions instead of sym-
bolic states. A list of the ingredients we have discussed in this chapter is given
in Fig. 3.17.

ξi
γi

symbolic state v = k
stability δv = 0
out-degree ∆ ≤ 2

”Checkpoints”

stability δv = 0
monotony v = k ⇒ Xv ≥ k
out-degree ∆ ≤ 2
robustness AX(RCTL(pi+1, . . . , pm))

”Conditions”

ξi+1

Figure 3.17: The time series encodings consist of ”checkpoints” and ”conditions”
with examples for the properties discussed in this chapter.

One aspect of the linear time series properties that has only been addressed
implicitly so far is their length in terms of number of transitions. As discussed
in [86], it may serve as a selection criterion if two models are otherwise equally
suitable. Ordinary model checkers like NuSMV can not report the length of
the shortest witness of an LTL property. Extended algorithms are required
to do so, see for example [86] and the model checker Parsybone [100]. A
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similar shortcoming is the inability of reporting all states that satisfy a CTL
property which lead to the development of Antelope [74]. A workaround for
determining the shortest witness of an LTL property is to encode the length as
a part of state space, as was proposed in [79], and then to iteratively test the
validity of the property using different bounds.

An alternative is to use bounded LTL model checking (BMC) as introduced
in [101] which iteratively increases the depth k of the search for a witness until
the property is satisfied for the first time, the computation runs out of memory
or an upper bound K is reached. BMC relies on SAT solvers rather than decision
diagrams and it has frequently been pointed out that BMC and symbolic model
checking are complementary in the sense that either may fail where the other
can still compute the answer. We would also like to point out that bounded
model checking was originally introduced for LTL and has, to our knowledge,
not been transfered to CTL. Since CTL properties can, in general, not be proved
or disproved with paths it is not so obvious how to even define a bound for the
validity of a branching time property. As discussed in [102], tree-like witnesses
exist only for the existential fragment ECTL where only the path quantifier E
is allowed and negation is restricted to atomic sub-formulae.

A third alternative is to use constraint programming instead of model check-
ing. Examples are [46,47] with the Prolog-based tool GNBox and [48] with the
ASP-based tool SysBiOX. Although the aim of this work is to infer knowledge
from data and partially specified models, the same algorithms can of course
be used for single, fully specified models. The authors of [46–48] have already
defined path predicates to query the existence of a bounded path between two
symbolic states. In [47] one can, for example, query path(M, [S0, . . . , S1], 48) to
find out if there is a path x  y of at most 48 transitions in the asynchronous
STG of M = (V, F ) such that x and y satisfy the descriptions S0 and S1,
respectively. According to [47]

”The most computer-intensive queries are those involving paths. For
such queries our approach is limited to networks of medium size.”

As is the case for BMC and symbolic LTL model checking, it seems that declar-
ative approaches and model checking may complement rather than replace each
other.

A challenging question related to model validation is the design of model
revision algorithms. Consider for example the assessment of the sampling rate
in the previous section. If additional experiments do not reveal the predicted
oscillations (or if the sampling rate is known to be sufficient) one may also
attempt to revise the interaction thresholds or the model itself.

The data assessment for Cbf1 indicates problems in the interval [90min −
100min]. They could possibly be resolved by either increasing the threshold
from about 0.03 to about 0.05 (units of 2−∆Ct) or by introducing another
threshold at 0.05 and hence changing the model and state space by increas-
ing the maximal activity of Cbf1. See Fig. 3.18 for an illustration. It would be
desirable to develop a threshold assessment method, based also on the idea of
monotone paths, that is capable of suggesting a ”correction” to thresholds by
either changing their values or adding additional thresholds.

Finally, questions for future work might address to the following issues:

(1) Can the missing or uncertain value values in the discrete time series be
predicted by a sequence of queries similar to the sampling rate assessment?
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(a) Threshold assessment (b) Model revision

Figure 3.18: The sampling rate assessment procedure predicts a dip in the
activity of Cbf1 below its discretization threshold of 0.03 (units of 2−∆Ct).
A threshold assessment method might propose either an increase of the given
threshold from 0.03 to 0.05 as shown in (a) or introduce an additional threshold
at 0.05 as shown in (b).

(2) What can be learned about the sequence of events? Which components
change first, which ones next?
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(a) High threshold values, many 0′s.

(b) Mean threshold values, ”erratic” behavior.

(c) Low threshold values, many 1′s.

Figure 3.19: The original time series and the consensus time series on the right
of (a) and (b). Black, gray and red cells indicate values above, below and within
a 5% range of the respective thresholds. Blue cells in the consensus time series
indicate disagreements among time series in the respective group.
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fCbf1 STG Thresholds Robust k #

Transcr.
Models

conj, swi5 ↪→,� mean,high 8
disj ↪→,� mean,high X 4

Mech.
Models

conj, swi5 � high ≤ 3 2
disj � high X ≤ 3 1
swi5 � mean ≤ 3 1
disj � mean X 1

conj, swi5 ↪→ high 2
disj ↪→ high X 1

Explicit
Models

conj, swi5 ↪→ mean,high 4
disj �,↪→ mean,high X 4

disj, swi5 �,↪→ low 4
conj � high 1
swi5 � high X 1

conj, swi5 � mean 2
36

Figure 3.20: Key to symbols: ↪→ and � are the asynchronous and mixed tran-
sition relations. The three different update functions for Cbf1 are referred to
by conj, disj and swi5, see Eq. 2.4. They represent fCbf1 = Swi5 · Ash1 ,
fCbf1 = Swi5 + Ash1 and fCbf1 = Swi5 , respectively. The table shows all com-
patible combinations of models, transition relations and discretization methods.
The table is horizontally divided into the three model types: transcriptional,
mechanistic and explicit (see Sec. 2.5). The column ”fCbf1” refers to the update
function of Cbf1, the column ”STG” to the transition relation, ”Threshold” in-
dicates which consensus time series was used (see Sec. 3.7.2), a check mark in
”Robust” means that the respective models are branching time compatible, the
column ”k” indicates whether the respective models are compatible with an out-
degree restriction of k and ”#” counts the number of individual combinations
referred to by each row.



76 CHAPTER 3. REACHABILITY QUERIES

dip

Cbf1 Gal4 Swi5 Gal80 Ash1

20min

40min

60min

80min

100min

120min

140min

160min

180min

200min

220min

240min

260min

280min

Cbf1 Gal4 Swi5 Gal80 Ash1

20min

30min

40min

50min

60min

70min

80min

90min

100min

110min

120min

130min

140min

150min

160min

170min

180min

190min

dip peak

(a) Switch-On (b) Switch-Off

Figure 3.21: The positions of the predicted oscillations of the sampling rate
assessment within the discrete time series. The assessment is based on mean
thresholds, the transcriptional model with fCbf1 = Swi5 · Ash1 and the asyn-
chronous transition relation.



Chapter 4

Asymptotics of a Model

The topic of this chapter are the attractors of logical networks. Attractors are
used to predict, for example, the outcome of virus infections where in some
cells the virus multiplies and kills its host and in some cells the virus and host
establish a symbiosis, see [6]. They are also used to model processes like cell
differentiation. In [7] they are computed to predict stable patterns of gene
expression which correspond to differnt cell types of A. thaliana.

In Sec. 4.1 we define attractors in terms of recurring states on infinite paths.
We then ask how model checking can help in predicting the asymptotics of
logical models. Sec. 4.2 collects various queries related to the location in state
space and the stability of components. The main contribution of this chapter
begins in Sec. 4.3 with a recapitulation of the notion of a seed. The relationship
between seeds and attractors is discussed in Sec. 4.4. We then introduce the
prime implicant graph in Sec. 4.5. It is the basis of our method for finding seeds
in Sec. 4.6. The chapter concludes with suggestions for a complete analysis of
large networks and a case study of a MAPK signaling network.

This chapter is an extension of results published in [103].

4.1 Attractors

The asymptotic behaviors of a model are defined via the long-term properties
of the paths of its state transition graph. Given a path π ∈ Paths∞(S), it is
natural to say that those states that are visited infinitely often, i.e., belong to
the suffix π[k..] for every k ∈ N, make up a particular asymptotic behavior of
the model. If a state x ∈ S belongs to an asymptotic behavior it must therefore
also belong to a strongly connected component U ∈ SCC (S,→), see Def. 10.
For (S,�), and deterministic STGs in general, the SCCs are exactly the cycles
in the transition graph. For (S, ↪→), and other non-deterministic STGs, the
situation is a bit more involved because now cycles may intersect. Among the
SCCs of a model the attractors are particularly interesting.

Definition 27. A strongly connected component X ∈ SCC (S,→) such that for
all π ∈ Paths∞(X) and for all i ∈ N: π[i] ∈ X is called an attractor of (S,→).
The set of attractors is denoted by Attr = Attr(S,→).

Attractors are therefore X ∈ SCC (S,→) such y ∈ X for all y ∈ Succ→(x)

77
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with x ∈ X. In the context of the SCC graph of (S,→), see Def.12, they are
also called terminal SCCs because their out-degree in the SCC graph is 0.

Attractors capture long-term behaviors that are robust with respect to
branching in time. That is, given a path π ∈ Paths∞(S) that visits the states
of an attractor X ∈ Attr at some time j, i.e., π[j] ∈ X, then any path π′ that
is obtained from π by branching at some time j′ > j, i.e., π[..j′] = π′[..j′] but
π[j′+1] 6= π′[j′+1], will necessarily remain within X. This property is not true
for non-terminal SCCs. There is always at least one path obtained by branching
that will leave a non-terminal SCC and lead to a different long-term behavior.
Hence, the special role of attractors is that one can argue that asymptotic states
obtained from them are stable with respect to the order with which the activities
of components are updated.

We distinguish two types of attractors depending on their size, the steady
states and the cyclic attractors:

Steady = Steady(S,→) := {x ∈ S | {x} ∈ Attr(S,→)}
Cyclic = Cyclic(S,→) := {X ⊆ S | X ∈ Attr(S,→), |X| ≥ 2}.

A definition that is related to attractors is that of a trap set. Trap sets do
not require the states in question to be strongly connected.

Definition 28. . A trap set in (S,→) is a subset T ⊆ S such that π[i] ∈ T for
all paths π ∈ Paths∞(T ) and i ∈ N.

Note that every trap set contains at least one attractor and that trap sets
can be characterized by the following condition.

Observation 8. A set T ⊆ S is a trap set in (S,→) iff y ∈ T for all y ∈
Succ→(x) with x ∈ T .

The following section explores how model checking can help in understanding
the asymptotics of a logical network (V, F ).

4.2 Attractor Queries

Many algorithms for the detection of attractors of a given system exist, see
for example [19–29]. They can be grouped into different themes depending on
whether they focus on a particular transition relation and on whether they im-
pose a size limit on the computed attractors. Some work only for synchronous
transition systems (e.g. [19, 21]) while others assume the asynchronous update
(e.g. [25]). Some are specifically designed to detect steady states (e.g. [20]),
others can detect cyclic attractors but only of a certain size (e.g. [22]). Further-
more, some are deterministic and exhaustive, while others are stochastic and
incomplete: they rely on sampling and partial state space exploration.

In addition, most algorithms include a reduction step during which the orig-
inal problem is transformed into an equivalent smaller problem, for example by
replacing cascade components which can be shown to be irrelevant for the de-
tection step. Since model reduction techniques potentially affect the efficiency
of any analysis algorithm they have been addressed explicitly (e.g. [30, 31, 60]).
Intuitively, the computational complexity of finding attractors depends strongly
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on the number of feedback circuits in the interaction graph. It is, for example,
easy to find all attractors of a network whose interaction graph is feedback-free.

The aim of this section is to gather basic results regarding the use of model
checking when deciding if a model (V, F ) is capable of a specified asymptotic
behavior. Each of the following queries, except Obs. 16, relies on CTL model
checking. LTL versions, obtained by removing the quantifiers, are also possible
but will relate to the weaker interpretation of asymptotic behaviors and therefore
non-terminal SCCs in (S,→). The principle difference to the above mentioned
algorithms is that most of the following queries require a specification that
describes some aspect of the asymptotic behavior.

It is worth noting the capability of model checking algorithms to produce

a counterexample if TS 6|=∀ φ or, equivalently, a witness if TS |=∃ φ, see [16].
For LTL, a witness or counterexample is a path fragment which proves that TS
satisfies or refutes φ. For CTL, a state formula is proved or refuted by returning
an initial state x ∈ I such that x |= φ, resp. x 6|= φ. For each of the following
attractor queries we will mention how counterexamples and witnesses can be
used for further analysis. Although CTL proofs can be extended to paths,
which are called traces [16], and even trees [102], we restrict our remarks to the
basic notion. NuSMV is capable of producing state-based counterexamples and
witnesses for CTL.

The first question that can be answered with CTL queries is deciding if there
is a cyclic attractor or a steady state in a given subset of states. The queries are
based on propositions of the form ∆ � k which refer to the number of successors
of a state, see Sec. 2.4. For the next four queries, let d ∈ StateDesc be a state
description (see Def. 2) and TS = (S,→, I) with the initial states I = S[d].

Observation 9. There is x ∈ Steady such that x ∈ S[d] iff TS |=∃ (∆ = 0). A
witness is x ∈ Steady with x ∈ S[d].

Observation 10. There is X ∈ Cyclic such that X ⊆ S[d] iff TS |=∃ AG (∆ ≥
1 ∧ d). A witness is x ∈ S[d] such that X ∈ Cyclic for all X ∈ Attr that are
reachable from x.

Note that to ensure that X ⊆ S[d] we need to test AG (∆ ≥ 1 ∧ d) instead
of AG (∆ ≥ 1). It can also be decided whether some set T ⊆ S contains, or
is itself, a trap set. The difference in the respective queries is the satisfaction
relation.

Observation 11. There is a trap set T ⊆ S[d] iff TS |=∃ AG (d). A witness is
x ∈ S[d] such that x ∈ T .

Observation 12. S[d] is a trap set iff TS |=∀ AG (d). A counterexample is
x ∈ S[d] such that there is a path x y for some y 6∈ S[d].

We can also base our queries on the stability of the components in an at-
tractor.

Definition 29. Let X ∈ Attr(S,→). A component v ∈ V is said to be stable
in X iff x(v) = y(v) for all x, y ∈ X. Components that are not stable are called
unstable or oscillating in X.

Asking whether there is an attractor such that some components are stable
or unstable is different from the previous queries because we do not have to
specify a set S[d] ⊆ S. For the following query let TS = (S,→, S).
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Observation 13. Let U1, U2 ⊆ V . There is X ∈ Attr such that all u ∈ U1 are
stable in X and all v ∈ U2 are unstable in X iff

TS |=∃ AG (
∧

u∈U1

δu = 0) ∧AG (
∧

v∈U2

EF (δv 6= 0)).

A witness is x ∈ S such that all attractors X ∈ Attr that are reachable from x
are stable in U1 and unstable in U2.

Note that the additional operator EF for unstable components is required
because an unstable component may temporarily satisfy δu = 0.

A different kind of question concerns the number of attractors. Once we
know that some set T ⊆ S is a trap set, we are usually also interested in how
many X ∈ Attr there are such that X ⊆ T . A single CTL query that decides
this question is in practice not feasible because it would rely on a form of state
enumeration of T , which results in an exponential length query. If, however, a
state x ∈ X of an attractor X ∈ Attr with X ⊆ T is already known then we
can test if it can be reached by every state in T . If the answer is positive then
X must be the only attractor, otherwise there is a second one.

Observation 14. Let T ⊆ S be a trap set and x ∈ X with X ∈ Attr(S,→) and
X ⊆ T . X is the only attractor in T iff

TS |=∀ EF (x), for TS = (S,→, T ).

Note that this query can be modified by TS |=∀ EF (x) ∨ EF (y) to query if
X,Y ∈ Attr with x ∈ X and y ∈ Y are the only attractors of a network.

Finding a state x ∈ T such that x ∈ X ∈ Attr and X ⊆ T for a given trap
set T ⊆ S may theoretically be difficult. In practice, however, it seems that a
random walk x1 → . . .→ xk in (S,→) with initial state x1 ∈ T and of sufficient
length, for example k = 10|V |, usually results in a final state xk ∈ X with the
desired property. To be sure, model checking can be used to decide if xk is
inside an attractor:

Observation 15. Let x ∈ S. There is X ∈ Attr(S,→) such that x ∈ X iff

TS |=∀ AG (EF (x)), for TS = (S,→, {x}).
Note that since there is a unique initial state I = {x} this query is equivalent

to the one that uses the existential version of ”|=”.
Finally, model checking can also be used to detect deterministic cycles.

Definition 30. A path x1 → . . . → xk in (S,→) is a deterministic cycle iff
x1 = xk and |Succ→(xi)| = 1 for all 1 ≤ i ≤ k.

Usually, these cycles are associated with synchronous transition systems in
which case they are also called limit cycles, they may however also exist in
non-deterministic STGs. They can be detected by either LTL or CTL model
checking with the proposition ∆ = 1.

Observation 16. There is a deterministic cycle in (S,→) iff

TS |=∃ G (∆ = 1), for TS = (S,→, S).

Equivalently, any of the two CTL formulae AG (∆ = 1) or EG (∆ = 1) can
be used. Note that this approach for detecting deterministic cycles is similar
to [26] but more basic as it relies on standard model checking algorithms.
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4.3 Seeds and Trap Sets

The queries of the previous section can be combined to detect the attractors of
a network. We can use the queries of Obs. 9 and Obs. 10 with the initial states
S[d] = S to find the first X ∈ Attr(S,→). The returned witness either belongs
to X or it can be the starting point for a sufficiently long random walk that will
find a state x ∈ X. The query of Obs. 14 can then be used to decide if there is
another attractor. If so, the new witness will be the starting point for the next
random walk that finds y ∈ Y with Y ∈ Attr(S,→) (again Obs. 14), and so on.

But, the pure model checking approach is limited to networks with about 70
components for the synchronous update and about 50 for the asynchronous and
mixed updates, see Sec. 2.4.3, due to the state explosion problem. Since steady
states can be efficiently computed for much larger networks (see e.g. [23, 43])
scalable methods are in particular required for determining or estimating the
number of cyclic attractors including where in state space they are. In Sec. 4.8
we develop such a method. This section introduces the neccessary background.
The goal is to find a useful characterization for symbolic states that reference
trap sets.

Definition 31. A subspace S[p] for p ∈ Sym that is a trap set is called trap
space.

Compared with general trap sets, trap spaces are particularly simple in terms
of their specification. An arbitrary set T = S[d] ⊆ S may need a description
d ∈ StateDesc that is much larger than |V | whereas a trap space S[p] can always
be specified by |p| ≤ |V | atomic propositions. In addition, finding trap spaces
scales well to networks with hundreds of components, as will be remarked in
Sec. 4.6. The intuition behind trap spaces is illustrated in Fig. 4.1.

S[ε] = S

S[p]
T

S[q]
S[p · q] x

y

Figure 4.1: A schematic view of a state transition graph (S,→). A subspace
S[p] for p ∈ Sym that satisfies the trap set condition (see Obs. 8), i.e., x 6→ y
for all x ∈ S[p] and y 6∈ S[p], is called a trap space. Trap spaces may contain
other trap sets T ⊆ S[p] whose geometry in terms of the length of a shortest
d ∈ StateDesc such that S[d] = T , is more complicated. Trivially S[ε] = S is a
trap space and the intersection S[p] ∩ S[q] = S[p · q] of two trap spaces is again
a trap space.

The background begins with the notion of symbolic steady states, as defined
in [40]. Since our work is based on [40] we stick to the terminology used therein.
As the name suggests, symbolic steady states are first of all symbolic states
and secondly steady - but in what sense? The idea in [40] was to extend the
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notion of transitions from regular states to transitions between symbolic states
by extending F from S to Sym. The requirement was that the extension F :
Sym → Sym should be a true generalization, i.e., that if x = px for x ∈ S and
px ∈ Sym then the image of x and the image of px are also equal. Recall from
Sec. 2.1.1 that x = px ⇔ S[px] = {x}.

So how is the image of a symbolic state defined? The idea in [40] was to
define it in terms of the update functions f ∈ F that are constant in S[p].

Definition 32. The image q = F [p] ∈ Sym of a symbolic state p ∈ Sym with
respect to F is defined by

(c, v) ∈ Setq :⇔ ∀x ∈ S[p] : fv(x) = c.

Note that this definition is an extension in the above sense:

Observation 17. If p = x for p ∈ Sym and x ∈ S then F [p] = F (x) holds
because every f ∈ F is trivially constant in S[p] = {x} and equal to f(x).

With Def. 32 we can immediately define symbolic steady states as the fix-
points of Sym under F .

Definition 33. A symbolic state p ∈ Sym that satisfies F [p] = p is called a
symbolic steady state. The set of all symbolic steady states is denoted by

SymSteady = SymSteady(V, F ) := {p ∈ Sym | F [p] = p}.

We will prove in Thm. 2 that p ∈ SymSteady have the property we are after,
namely that S[p] is a trap set if F [p] = p. There may, however, be symbolic
states that are not steady and nevertheless reference trap sets. F [p] = p is
therefore not a good characterization for symbolic states that reference trap
sets. The one we are looking for is F [p] ≥ p where ”≥” is the partial order
defined in Def. 5.

This property was also mentioned in [40] where symbolic states that have
it were called seeds. We stick to this name and will for the remainder of this
chapter focus on seeds rather than symbolic steady states.

Definition 34. A symbolic state p ∈ Sym that satisfies F [p] ≥ p is called a
seed. The set of all seeds is denoted by

Seeds = Seeds(V, F ) := {p ∈ Sym | F [p] ≥ p}.

The name ”seed” is motivated by the observation that they can be used as
starting points to finding symbolic steady states by an iterative procedure that
is sometimes referred to as percolation. It is based on the observation that if
F [p] ≥ p then F 2[p] ≥ F [p].

Proposition 2. If p ∈ Seeds then F [p] ∈ Seeds.

Proof. Let q := F [p]. Since q ≥ p it follows that S[q] ⊆ S[p]. Therefore, every
f ∈ F that is constant in S[p] is also constant in S[q]. Hence F [q] ≥ F [p] = q
and q ∈ Seeds.
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Since V is finite, there is k ∈ N such that F k+1[p] = F k[p] ∈ SymSteady .
Hence, we can assign to each seed a unique symbolic steady state that is obtained
by percolation. Note also that the definition of F [p] is almost like a synchronous
transition relation on the set of symbolic states. What is missing is the notion
of a distance between symbolic states, which we could define much like the
Manhattan distance of Def. 1. The asynchronous, synchronous and mixed STGs
are therefore extendable to the set of symbolic states Sym. The symbolic steady
states are then exactly the fixpoints of these symbolic STGs (Sym,→).

The central result in this section is that seeds correspond to trap spaces.

Theorem 2. p ∈ Seeds if and only if S[p] is a trap space in (S,→).

Proof. For the direction ”⇒”, assume p ∈ Seeds but S[p] is not a trap set.
Then there is x → y such that x ∈ S[p] and y 6∈ S[p]. But then there is
(v, c) ∈ Setp : fv(x) 6= c which contradicts p ≤ x and fv(z) = c for all z ∈ S[p],
in particular for z = x.

For the direction ”⇐”, assume S[p] is a trap set. Then for all x ∈ S[p] and
x→ y it holds that y ∈ S[p]. In particular, for all (v, c) ∈ Setp and all x ∈ S[p]
it holds that fv(x) = c. Hence SetF [p] ⊃ Setp and therefore F [p] ≥ p which
implies p ∈ Seeds.

What we have gained by this characterization is that by solving the inequal-
ity F [p] ≥ p of Def. 34 for p ∈ Sym we can find all trap spaces in (S,→). Since
F [p] is defined in terms of f ∈ F that are constant in S[p] we need to under-
stand under which circumstances f ∈ F becomes constant. This question will
be answered in Sec. 4.5.

A somewhat surprising corollary of Def. 32 and Thm. 2 is that trap spaces (as
opposed to trap sets) are identical for all update strategies that satisfy Eq. (P1)
in Sec. 2.3.1. An example is given in Fig. 4.2.

Corollary 1. Let p ∈ Sym. The following statements are equivalent:

(i) S[p] is a trap set in (S,�).

(ii) S[p] is a trap set in (S, ↪→).

(iii) S[p] is a trap set in (S,�).

Proof. The definition of F [p] for p ∈ Sym (Def. 32) and the proof of Thm. 2 are
independent of the transition relation.

Note that Cor. 1 is a generalization of the observation that steady states are
identical for the synchronous and asynchronous STGs, i.e., that Steady(S, ↪→
) = Steady(S,�). The size |p| of p ∈ Seeds contains information regarding the
location and size |X| of attractors X ⊆ S[p]. Also, given p ∈ Seeds we can read
off the components that must be stable: every v ∈ V [p] is stable at Mapp(v)
in every X ⊆ S[p]. But, there may be additional u ∈ V with u 6∈ V [p] that
are also stable in some X ⊆ S[p]. One reason why this can happen is that trap
spaces can be nested, i.e., one contained in another. We introduce the following
notation for the extremal elements of Seeds under the partial order of Def. 5.
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Figure 4.2: The existence of trap spaces is independent of the transition relation.
Shown are the synchronous and asynchronous STGs of the same Boolean net-
work. Each STG has the same 4 trap spaces S[ε] = S, S[01], S[02] and S[0102].
The same holds for the mixed STG (not shown as it has too many tranisions).

Definition 35. We denote by max(Seeds) and min(Seeds) the following sets:

max(Seeds) := {p ∈ Seeds | ∀q ∈ Seeds : p, q comparable⇒ p ≥ q}
min(Seeds) := {p ∈ Seeds | ∀ε 6= q ∈ Seeds : p, q comparable⇒ p ≤ q}

It follows that ε ∈ max(Seeds) if and only if Seeds = {ε} because ε is
comparable with every p ∈ Seeds and ε ≤ p. For the definition of min(Seeds)
we require ε 6= q because otherwise min(Seeds) = {ε} (independent of Seeds) for
the same reason. Note that ε ∈ min(Seeds) holds. Note also that min(Seeds)
reference, in terms of number of states, the largest trap spaces and max(Seeds)
reference the smallest trap spaces.

Finally, by Obs. 17 the set inclusion

Steady ⊆ max(Seeds) (4.1)

holds. Our method for computing max(Seeds) in Sec. 4.6 is therefore also a
new method for computing steady states. Note that the problem of computing
max(Seeds) is therefore at least as hard as computing Steady , which is known
to be NP-hard (see e.g. [104]).

The next section explores the connection between seeds and cyclic attractors.

4.4 Seeds and Cyclic Attractors

If we compute all maximal seeds then we have, by Eq. 4.1, also found all steady
states of a network. How about the cyclic attractors? We can derive a lower
bound for their number based on the following set.

Definition 36. We denote by max 6S(Seeds) all maximal seeds that are not
steady states:

max
6S

(Seeds) := {p ∈ max(Seeds) | ∀x ∈ Steady : p 6= x}
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In practice, to compute max 6S(Seeds) from max(Seeds) we simply remove all
p with |p| = |V |. The intuition behind the following lower bound on |Cyclic| is
that trap sets that contain no steady states must contain cyclic attractors.

Theorem 3. The maximal, non-regular seeds are a lower bound on the number
of cyclic attractors: |max 6S(Seeds)| ≤ |Cyclic|.

Proof. Let p ∈ max 6S(Seeds). By Thm. 2, S[p] is a trap set and therefore
contains an attractor X ⊆ S[p]. If X = {x} then x ∈ Steady and p ≤ x.
But since p 6= y for all y ∈ Steady it follows that p < x which contradicts the
maximality of p. Hence |X| ≥ 2.

We continue by answering four questions that concern the number and loca-
tion of cyclic attractors with respect to trap spaces. Each question is answered
by an example network. Recall from Sec. 2.1.1 that we specify symbolic states
p ∈ Sym by a sequence of |p| values with subscripts that indicate the respective
component.

Example 1. Is every cyclic attractor contained in some S[p] with ε 6= p ∈
Seeds?

No, there may be cyclic attractors that are not contained in a non-trivial
trap space.

0000

0100

1000 0001

S[12]

S[14]

S[1214]

0110

0010

0111

X

Figure 4.3: A network with a cyclic attractor not contained in a non-trivial trap
space, see Ex. 1.

The network in Fig. 4.3 consists of 4 variables and there is 1 cyclic attractor
X. It is a subset of exactly 3 non-trivial subspaces, namely S[1214], S[14] and
S[12]. But, none of them is a trap set: 0111 ↪→ 0110 violates the trap set
condition of Obs. 8 for S[1214] and S[14], and 0100 ↪→ 0000 for S[12]. It may
therefore happen that the only trap space that a cyclic attractor is contained in
is the trivial S[ε] = S.

Example 2. Is there a unique cyclic attractor in S[p] if p ∈ Seeds?
No, even if p ∈ max 6S(Seeds) there may be more than 1 cyclic attractor in

S[p]. Hence the inequality of Thm. 3 may be strict.
The network in Fig. 4.4 has exactly one non-trivial seed 14 but S[14] contains

two cyclic attractors Y1, Y2. In this case the attractors can not be separated,
because Y1 ⊆ S[p] implies Y2 ⊆ S[p] for every p ∈ Seeds. In particular, the
smallest subspace that contains Y1 is S[0114] but 0111 ∈ Y2 and 0111 ∈ S[0114].
The same holds for the smallest subspace S[1214] that contains Y2 because 0101 ∈
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0000
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Y1

Y20111
S[1214]

S[0114]

S[14]

Figure 4.4: An exmple of cyclic attractors that can not be separated by trap
spaces, see Ex. 2.

Y1. Hence, the number of cyclic attractors in S[p] may be greater than 1 even
if p ∈ max 6S(Seeds).

The motivation for the next question is whether we can focus on max6S(Seeds)
when searching for cyclic attractors (based on seeds) or whether we have to
consider, potentially all of Seeds.

Example 3. If X ∈ Cyclic is contained in S[q] for q ∈ Seeds is there always
p ∈ max6S(Seeds) such that X ⊆ S[p]?

No, such p may not exist.

0001

S[0214]

1001

0011

0101 Z1

Z2

0000

0100

1000

S[14]

Figure 4.5: A network with a cyclic attractor that is not contained in a trap
space of a maximal seed, see Ex. 3.

The network defined in Fig. 4.5 has two cyclic attractors Z1, Z2 and two
non-trivial trap spaces S[14] and S[0214]. But since 14 < 0214 it follows that
max 6S(Seeds) = {0214} and hence for Z1 there is no p ∈ max6S(Seeds) such that
Z1 ⊆ S[p]. This example also shows that the smallest trap space that contains a
cyclic attractor may be referenced by neither a maximal nor a minimal seed.

The final question is motivated by the observation that if S[p] is a trap space
then every v ∈ V [p] is stable in every X ∈ Cyclic with X ⊆ S[p]. But is every
v ∈ V with v 6∈ V [p] also unstable in every X ⊆ S[p] ? At the end of Sec. 4.3
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we already mentioned that this is not true for p ∈ Seeds because they can be
nested. The next example shows that it is false even when considering only
maximal seeds.

Example 4. Is every cyclic attractor X ⊆ S[p] with p ∈ max 6S(Seeds) unstable
in all components v ∈ V that satisfy v 6∈ V [p]?

No, additional components v 6∈ V [p] may be stable in X.

0000

0100

1000 0001

S[12]

0110

0010

0111

X

Figure 4.6: A network with a cyclic attractor X that is stable in v4 but v4 6∈ V [p]
where p = 1214 is the maximal seed that describes X, see Ex. 4.

The network in Fig. 4.6 has one cyclic attractor X and one non-trivial trap
space S[12] But v4 is stable in X because X = {1111, 1101, 0101} although v4 6∈
V [11] = {v1}. The scope V [p] of p ∈ Seeds is therefore only a superset of the
variables that oscillate in the attractors contained in S[p].

The above examples prove that the exact number and location of the cyclic
attractors can not be deduced from the seeds alone. But they can be used as
the input to the CTL query patterns of Sec. 4.2. We will discuss the combined
approach of computing seeds and model checking for the detection of cyclic
attractors in Sec. 4.8. It will also become apparent that, in practice, seeds
are often a very good description of the cyclic attractors, in particular for the
asynchronous transition relation.

The next two sections address the problem of computing seeds. An impor-
tant observation will be that seeds can be efficiently computed even for large
networks.

4.5 The Prime Implicant Graph

Trap spaces S[p] are characterized by the inequality F [p] ≥ p, see Def. 34 and
Thm. 2. Since F [p] is defined in terms of those f ∈ F that are constant in S[p],
see Def. 32, we will first discuss the conditions that ensure that f ∈ F becomes
constant. Minimal such conditions, called prime implicants, are represented in
a directed hypergraph which we call the prime implicant graph. The main result
in this section is Thm. 4. It proves that every seed is represented by a set of
prime implicants. It is essential for our method of computing seeds in Sec. 4.6.

Minimal size implicants of Boolean functions were named prime implicants
when they were studied by W. Quine in [105]. We stick to the terminology and
define the following generalization. First, we define what an implicant is and
then the condition under which implicants are prime.
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Definition 37. Let v ∈ V and c ∈ Dom(v). A c-implicant of fv ∈ F is a
symbolic state p ∈ Sym such that fv(x) = c for all x ∈ S[p].

A c-implicant p of f ∈ F can therefore be interpreted as a conjunction of
assumptions that guarantee that f becomes constant at a value c. Since we
want to be economical in computing the seeds we are only interested in the
implicants that make the smallest number of assumptions. The definition of
prime implicants distinguishes between constant and non-constant functions.
Recall that we write f = c for f ∈ F and c ∈ N to indicate that f(x) = c for all
x ∈ S.

Definition 38. Let v ∈ V and c ∈ Dom(v). A c-prime implicant of a non-
constant fv is a c-implicant p ∈ Sym such that there is no other c-implicant
q ∈ Sym that satisfies q < p. For constant fv = c we define that p with
Setp := {(v, c)} is its unique c-prime implicant and that fv has no other prime
implicants. The set of all prime implicants of a regulatory network (V, F ) con-
sists of all triplets (p, c, v) such that p is a c-prime implicant of fv ∈ F :

Primes = Primes(V, F ) := {(p, c, v) | p is a c-prime implicant of fv}.
Example 5. Consider a Boolean network with V = {v1, v2, v3} and f1 = v1+v2.
So p := 1112 is a 1-implicant of f1 because f1(x) = 1 for all x ∈ S[1112] =
{110, 111}. But, p is not prime because q := 11 is also a 1-implicant of f1 and
q < p. f1 has two 1-prime implicants, namely 11 and 12, and one 0-prime
implicant, namely 0102.

Observation 18. The set of prime implicants of a regulatory network is finite
because the set of candidate triplets (p, c, v) is finite and we can decide for every
one whether it represents a prime implicant or not.

Quine was interested in prime implicants because they are useful, as an initial
step, for constructing a minimal representation of a given Boolean function
which in turn makes for a cost effective design of a corresponding electric circuit.
Our interest is that we can use the prime implicants to find all seeds of a
network. We now briefly state Quine’s terminology to show that Def. 38 is
really a generalization of the same idea to discrete functions.

A clause is a conjunction of literals, e.g. uvw for Boolean variables u, v, w ∈
V . An implicant of a non-constant Boolean expression is a clause such that there
is no assignment to the variables that makes the clause true but the expression
false. An implicant is prime if there is no clause of fewer literals that is also
an implicant. Therefore, if we identify literals with the corresponding atomic
equalities, i.e., v with (v = 1) and v with (v = 0), then our 1-prime implicants
of Def. 38 and Quine’s prime implicants coincide for Boolean expressions.

We found that a useful representation of Primes is in the form of a directed
hypergraph (N ,A) in which each arc a ∈ A represents exactly one (p, c, v) ∈
Primes and each node N an atomic assumption (v = c).

Definition 39. The prime implicant graph of (V, F ) is the directed hypergraph
(N ,A) where

N = N (V ) := {p ∈ Sym | |p| = 1}
consists of all size 1 symbolic states. The arcs A = A(V, F ) ⊂ 2N × 2N are
defined by the mapping

α : Primes → 2N × 2N , (p, c, v) 7→ ({p1, . . . , p|p|}, {q}),
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where

(1) p = p1 · .. · p|p| is the unique decomposition of p into size 1 symbolic states,

(2) q ∈ Sym is defined by Setq := {(v, c)}

The prime implicant graph has one arc for every prime implicant:

A = A(V, F ) := {α(p, c, v) | (p, c, v) ∈ Primes}

The head of an arc a = ({p1, . . . , p|p|}, {q}) is denoted by H(a) := q, and its
tail by T (a) := p.

An illustration of the representation of prime implicants as hyperarcs is given
in Fig. 4.7.

u1

d1

u2

v

c

d2

(p, c, v) ∈ Primes

a := α(p, c, v) ∈ A
p = (u1 = d1) · (u2 = d2)

a

Figure 4.7: Each (p, c, v) ∈ Primes is represented by a = α(p, c, v) ∈ A in the
prime implicant graph (N ,A). The elements of N are white discs and hyperarcs
have a common arrowhead. For the layout, we place all q ∈ N with V [q] = {u}
for some u ∈ V inside gray discs that are labeld with u.

Note that there is a one-to-one correspondence between arc sets A ⊆ A
and sets of prime implicants P ⊆ Primes and that in Boolean networks, N
corresponds to the literals of propositional logic and that |N | is polynomial in
V (as opposed to |S|).

An illustration of a prime implicant graph is given in Ex. 6 below. Now
we establish a relationship between subsets A ⊆ A and the seeds of a network
(V, F ). To do so we need the notions of consistency and stability.

Definition 40. A subset A ⊆ A is consistent iff for all a1, a2 ∈ A the symbolic
states H(a1) and H(a2) are consistent.

If A = {a1, . . . , am} ⊆ A is consistent then the conjunction H(a1) · .. ·H(am)
is called the induced symbolic state of A and denoted by H(A). For the special
case A = ∅ we define H(A) := ε.

Definition 41. A subset A ⊆ A is stable iff for every a ∈ A there is Ba ⊆ A
such that T (A) ≤ H(Ba).

In this case the requirements T (a) for each implication a ∈ A to become
effective are met by some assumptions H(Ba). An illustration of consistency
and stability is given in Fig. 4.8 and an example is given in Ex. 6.

The central idea for the computation of Seeds is given in the next result:
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v

c1

c2

a1 ∈ A

a2

Consistency a1 ∈ A⇒ a2 6∈ A

u1 c1
u2

c2

b ∈ A

b1 b2

Stability b ∈ A⇒ ∃b1, b2 ∈ A

Figure 4.8: Intuitively, an arc set A ⊆ A is consistent if a ∈ A that targets v at
c1 implies a2 6∈ A if a2 targets v at another value c2. A is stable if b ∈ A implies
that each tail end of b is targeted by another arc bi ∈ A.

Theorem 4. p ∈ Seeds if and only if there is a stable and consistent A ⊆ A
such that H(A) = p.

Proof. The statement is true by definition for p = ε and A = ∅.
For the direction ”⇒ ”, let p 6= ε and (v, c) ∈ Setp.
Since F [p] ≥ p is follows that fv[p] = c and hence that there is a c-prime

implicant qv of fv that satisfies qv ≤ p. The set A := {α(qv, c, v) ∈ A | (v, c) ∈
Setp} is consistent because p is consistent. By construction it satisfies H(A) = p.
It is also stable because T (a) ≤ p for all a ∈ A.

For the direction ”⇐ ”, let ∅ 6= A ⊆ A be stable and consistent. Since A is
consistent, p := H(A) is well-defined. Then for all (v, c) ∈ Setp there is a ∈ A
such that H(a) = c. Let a = (q, c, v). Since A is stable it follows that q ≤ p and
so fv(x) = c for all x ∈ S[p]. Hence F [p] ≥ p and p ∈ Seeds.

Corollary 2. Inclusion-wise maximal stable and consistent arc sets induce max-
imal seeds.

Example 6. Consider the Boolean network (V, F ) with V = {v1, v2, v3, v4} and

f1 = v1 + v2, f2 = v1 · v4, f3 = v1 · v4, f4 = v3.

The prime implicant graph (N ,A) and the set Primes are given in Fig. 4.9.
The 6 stable and consistent arc sets are

A = ∅, B = {a3, a5}, C = {a1},
D1 = {a1, a4, a8, a10}
D2 = {a2, a4, a8, a10}
D3 = {a1, a2, a4, a8, a10}

where H(A) = ε,H(B) = 0102, H(C) = 11 and for i = 1, 2, 3 : H(Di) = 1101
are the 4 seeds of the system:

Seeds = {ε, 0102, 11, 1101},max(Seeds) = {1101},min(Seeds) = {11, 0102}.

Note that the prime implicant graph can also be seen as generalization of
the forcing graph of S. Kauffman [38] and F. Fogelman [39]. A special case
of seed was first was studied by these authors under the name of self-freezing
circuits whose existence relies on canalizing effects. Those circuits occur if, in
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The prime implicant graph (N ,A).

Figure 4.9: The set Primes and the prime implicant graph (N ,A) of Ex. 6.
For Boolean components we draw q ∈ N that correspond to positive literals in
black and negated literals in white. The colors of the arcs indicate sets that are
consistent and stable.

our terminology, there is a stable and consistent arc set ∅ 6= A that contains
exclusively size 1 prime implicants, i.e., for all a ∈ A we have |T (a)| = 1.

Note also that the prime implicant graph is an object that usually lives in
between the large STG and small IG of (V, F ). For, although the number of
prime implicants of even a Boolean f ∈ F may grow exponentially with the
number of variables it depends on, see e.g. [106], we found that for typical
biological models the size, the number of arcs and nodes, is in between that of
the STG and IG.

4.6 Computing Seeds

The previous section translated the problem of finding seeds by solving F [p] ≥ p
into finding stable and consistent arc sets in the prime implicant graph, see
Thm. 4. In this section we show that those arc sets can be computed with
existing solvers for integer linear or answer set programs.

We propose an optimization-based method for finding all maximal stable and
consistent arc sets in (N ,A). As a preliminary step, the set Primes has to be
computed. This can be achieved for Boolean networks with any implementation
of the Quine-McCluskey algorithm, see e. g. [107]. Although for sufficiently
complex expressions f ∈ F the enumeration of Primes itself can be a hard
problem, we found that the complexity of F in typical biological models is low
enough for this step to be negligible.

For non-Boolean f ∈ F we suggest to transform f into a Boolean function
g and use the Boolean approach. Since f may depend on other non-Boolean
components whose values must be transformed into additional Boolean variables
that g depends on, this procedure is not likely to be very scalable or efficient.
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An alternative is to modify existing algorithms for the computation of Boolean
prime implicants, for example the one in [107].

We now formulate a 0-1 optimization problem to compute maximal or min-
imal stable and consistent arc sets A ⊆ A of Boolean networks. For every arc
a = (p, c, v) ∈ Primes we introduce a variable xa ∈ {0, 1} indicating whether or
not a is a member of the set A ⊆ A that we want to compute. We denote these
variables by X := {xa | a ∈ Primes}.

In addition, we introduce a variable ycv ∈ {0, 1} for every v ∈ V and c ∈
Dom(v) that indicates whether v is in the domain of the induced symbolic state
and, if so, what value it takes. We denote them by Y := {ycv | c ∈ Dom(v), v ∈
V }. For any v ∈ V and every c ∈ Dom(v), we require ycv = 1 if and only if
(v, c) ∈ Setp for p := H(A). To encode this requirement, we use the logical
constraints

ycv ⇐⇒
∨

a∈Bc
v

xa, for all c ∈ Dom(v), v ∈ V. (C1)

Here, Bc
v := {a ∈ A | SetH(A) = {(v, c)}} denotes the arcs inducing v to take

the value c, and ⇒ and ∨ are the standard logical connectives for implication
and disjunction.

Next, we want to enforce the set A := {a ∈ A | xa = 1} to be stable and
consistent. To achieve this, we add the following constraints (C2) resp. (C3):

xa ⇒ ycv, for all a ∈ A, (v, c) ∈ SetT (a) (C2)

ycv ∨ ydv , for all v ∈ V, c 6= d ∈ Dom(v). (C3)

To find maximal stable and consistent sets A ⊆ A, we solve the 0-1 optimization
problem (here

∑
denotes addition)

maximize
∑
yc
i∈Y

yci , such that (C1), (C2), (C3). (0-1)

The above formulation can also be used to compute Seeds and min(Seeds). To
compute p ∈ Seeds we solve the satisfiability problems (without optimization)
and to find p ∈ min(Seeds) we minimize the objective function in problem
(0-1) rather than maximizing it. To solve problem (0-1) in practice, we can
reformulate the constraints (C1)-(C3) as linear 0-1 inequalities or as an answer
set program. The next sections present two possible encodings.

4.6.1 ILP Encoding

An integer linear program (ILP) belongs to the class of problems that involve
integer variables, linear constraints and a linear objective function. A solution
to an ILP satisfies all the constraints and optimizes the objective. ILP has
previously been suggested as a method for solving problems arising in the study
of Boolean networks, see e.g. [98] and references therein.

To encode the constraints as linear inequalities we use the following com-
mon translation into linear inequalities. The constraint (C1) that describes the
indicator variables Y translates to (L1).

ycv ≤
∑
a∈Bc

v

xa, for all c ∈ Dom(v), v ∈ V.

ycv ≥ xa, for all a ∈ Bc
v.

(L1)
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The stability and consistency constraints (C2), (C3) translate to (L2), (L3)
respectively.

xa ≤ ycv, for all a ∈ A, (v, c) ∈ SetT (a) (L2)∑
c∈Dom(v)

ycv ≤ 1, for all v ∈ V. (L3)

All maximal seeds can be enumerated by iteratively solving problem (0-
1) of the previous section, min(Seeds) can be computed by minimizing (0-1).
Whenever a new solution z : X∪Y → {0, 1} is found, we add a so-called no-good
cut, which prevents this solution from being computed again. For example, we
can use the constraint

1 ≤
∑

yc
v∈G(z)

ycv, where G(z) := {ycv ∈ Y | z(ycv) = 0}.

A prototype Python implementation, called BoolNetFixpoints, for
Boolean networks using the integer programming solver Gurobi [108] is avail-
able [109]. Regarding the efficiency of using this encoding and Gurobi we
remark that we have tested Boolean networks that were randomly generated by
the same method as for the NuSMV benchmark in Sec. 2.4.3. Preliminary re-
sults show that the complete sets min(Seeds) and max(Seeds) can be computed
for networks with hundreds of components within seconds to minutes depending
on the size of Primes(V, F ). We also tried enumerating all seeds but found that
|Seeds| grows very quickly as p, q ∈ Seeds implies p · q ∈ Seeds.

4.6.2 ASP Encoding

Answer set programming (ASP) is a form of logic programming that is based on
the so-called answer set semantics of logic programs, see [110]. Our prototype
Software [109] is capable of translating a given Boolean network into a stan-
dard ASP input file that can be processed with the solver Potassco [50]. To
encode the arcs A we introduce two ternary predicates, head(v,c,ID) and the
tail(v,c,ID), where v refers to a component, c to an activity and ID is an
index that determines whether a tail and a head belong to the same arc a ∈ A.
Each arc a ∈ A is then translated into a number of so-called facts by stating
all the tail elements and the head element it consists of. For example, an arc
a3 = (q, 0, v1) with Setq = {(v2, 0), (v3, 1)} becomes

tail(v2,0,a3).

tail(v3,1,a3).

head(v1,0,a3).

Note that the index a3 in each predicate links the data together. In the
”generate and test” fashion of defining ASP problems we generate all possible
subsets A ⊆ A and introduce an unary predicate in set(ID) that indicates
whether the arc with index ID belongs to the solution A ⊆ A or not. It encodes
the variables xa ∈ X in the formulation of the (0-1) problem above.

{in set(ID) : head(v,c,ID)}.
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The consistency constraint (C2) is translated into a so-called filter that for-
bids certain combinations of assignments to predicates. For a Boolean compo-
nent v the following filter is sufficient:

:- in set(ID1), in set(ID2), head(v,1,ID1), head(v,0,ID2).

It forbids that two arcs with identifiers ID1 and ID2 that target the same
component v but at different values (here 0 and 1), belong to the same solution.
To encode consistency for non-Boolean components requires an additional filter
for every c1, c2 ∈ Dom(v) such that c1 6= c2.

The stability constraint (C3) is translated into the filter

:- in set(ID1), tail(v,c,ID1), not in set(ID2) : head(v,c,ID2).

It forbids the existence of a ∈ A (ID1) that has a tail (v, c) ∈ SetT (a) which
is not the head of another arc b ∈ A (ID2). Note that

not in set(ID2) : head(v,c,ID2)

means ”there is no b ∈ A such that H(b) = (v = c)”. So far we have not
tested the efficiency and scalability of the ASP framework and this encoding
but we plan to do a comparison between ASP and ILP in the future.

4.7 Seeds and Positive Feedback

This section is a short excursion to the so-called circuit analysis of logical net-
works. We restrict ourselves to Boolean networks but generalizations are pos-
sible. A circuit is a path v1 → v2 → . . . → vk in (V,→) such that vi 6= vj
for 1 ≤ i < j < k and v1 = vk, i.e., a circuit is a non-empty path in which
the first and last nodes are identical. A circuit is positive if there is a se-
quence si ∈ {+,−} of signs for 1 ≤ i < k such that si ∈ Sign(vi → vi+1) and
|{1 ≤ j < k | sj = −}| is even. A circuit is negative if there is a sequence of
signs such that |{1 ≤ j < k | sj = −}| is odd. Note that since interactions can
be activating and inhibiting, i.e., Sign(u → v) = {+,−}, circuits can be both
positive and negative.

R. Thomas’ conjectured the following relationship between circuits and the
asymptotic behaviors of a network:

(1) If |Attr(S, ↪→)| ≥ 2 then there is a positive circuit in (V,→).

(2) If |Cyclic(S, ↪→)| ≥ 1 then there is a negative circuit in (V,→).

Both have since been proved. For a discussion about the conjectures and formal
proofs see [33, 34] and references therein. The interest in proving statements
that relate the interaction graph and the state transition graph, i.e., to discover
commonalities in the dynamics of all models with the same IG, is motivated by
the need to predict the behavior of a model without knowing all of its logical
parameters, i.e., the exact target values of each f ∈ F . Note that Thomas’
theorems are rarely restrictive in real biological case studies since practically any
model contains a positive and negative circuit in the IG. Practically any model
is therefore, in theory, capable of producing multistability (several attractors)
and sustained oscillations (cyclic attractors).
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The central result in this section is Thm. 5 which proves that seeds require
positive circuits in the interaction graph (V,→). The proof is based on the
following lemma which states that prime implicants induce signed interactions.

Recall that u
+−→ v if there is a state x ∈ S[u = 0] such that 0 = fv(x) <

fv(x⊕ eu) = 1, see Sec. 2.2.

Lemma 1. Let (V, F ) be a constant-free Boolean network. For each (p, c, v) ∈
Primes and each (u, d) ∈ Setp the following implications hold:

d = c ⇒ u
+−→ v

d 6= c ⇒ u
−−→ v

Proof. There are four different combinations of values for c and d. We
prove the case c = 1 and d = 1, the others are derived similarly. To il-
lustrate the claim, consider the hyperarc representation in Fig. 4.10. Let

u
0

1 v
0

1

(w1, e1) α(p, 1, v)

(wk, ek)

Figure 4.10: The arc representation of (p, c, v) ∈ Primes with c = 1 and d = 1.

Setp = {(u, 1), (w1, e1), . . . , (wk, ek)} and define the symbolic state r by Setr :=
{(u, 0), (w1, e1), . . . , (wk, ek)}. We claim that r can not be a 1-implicant of fv.
For a contradiction, assume it is.

If |p| = 1 then S[p]∪S[r] = S[u = 1]∪S[u = 0] = S and so fv(x) = 1 for all
x ∈ S, but F is constant-free.

If |p| ≥ 2 then consider z ∈ Sym defined by Setz := {(w1, e1), . . . , (wk, ek)}.
Since S[z] = S[p] ∪ S[r] and since |z| ≥ 1 it follows that z is also a 1-implicant
of fv. But z < p contradicts the minimality of p. Hence r is not a 1-implicant
and so there is x ∈ S[r] such that fv(x) = 0. But since y := x ⊕ eu satisfies
y ∈ S[p] and therefore fv(y) = 1 we get

0 = fv(x) < fv(x⊕ eu) = fv(y) = 1

and therefore the interaction u
+−→ v.

It therefore makes sense to speak of the subgraph of (V,→) that is induced
by a set of prime implicants P ⊆ Primes. It is obtained by applying Lem. 1
to each p ∈ P . The following theorem is the main result of this section. It
states that stable and consistent arc sets A ⊆ A induce positive circuits in the
IG. Intuitively, the existence of a circuit follows from the stabiliy of A: for each
implicant there are other implicants that stabilize it and hence, by Lem. 1, for
each u → v there is a w ∈ V s.t. w → u. The positiveness of all such circuits
is a consequence of the consistency of A: an odd number of changes in the
implications would introduce inconsistencies.
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Figure 4.11: The prime implicant graph of Ex. 6, its stable and consistent arc
sets B,C,D1, D2, D3 and the induced interaction graphs. Note that each IG
contains a circuit and that all circuits are positive.

Theorem 5. Let (V, F ) be a constant-free Boolean network and A ⊆ A with
A 6= ∅ a stable and consistent arc set. The interaction graph that is induced
by the corresponding prime implicants must contain a circuit and every such
circuit is positive.

Proof. Let P ⊆ Primes be the prime implicants that correspond to A via the
bijection α given in Def. 39. P is non-empty because A 6= ∅.

Existence of a circuit : By Lem. 1 each (p, c, v) ∈ P induces |p| interactions
and because A is stable it holds that for each induced interaction u → v there
is (q, d, u) ∈ P that induces an interaction w → u for some w ∈ V [q]. Since the
overall number of induced interactions is finite and every interaction has this
property there must be a circuit in the IG.

Positiveness: Let v1
s1−→ v2 . . . vk

sk−→ v1 be a circuit where each vi
si−→ vi+1

is induced by (pi, ci, vi+1) ∈ P . If |{1 ≤ j ≤ k | sj = −}| is odd then,
according to the condition for the signs in Lem. 1, the number of times that
ci 6= Mappi

(vi) is also odd. But then there must be (after possibly renaming

the indices) a sequence of interactions vi
si−→ vi+1

si+1−−−→ vi+2 and corresponding
primes (pi, ci, vi+1), (pi+1, ci+1, vi+2) ∈ P such that ci 6= Mappi+1

(vi+1) =: d.
Since P is stable there must be (q, d, vi+1) ∈ P . But then P is not consistent
because (pi, ci, vi+1), (q, d, vi+1) ∈ P with ci 6= d, a contradiction. Hence |{1 ≤
j ≤ k | sj = +}| is even and the circuit positive.

The theorem is illustrated for the network of Ex. 6 in Fig. 4.11.
By the correspondence between Seeds and stable and consistent arc sets we

get the following corollary.

Corollary 3. Let (V, F ) be a constant-free Boolean network. If there is a non-
empty p ∈ Seeds then there must be a positive circuit in (V,→).
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Proof. By Thm. 4 there is a stable and consistent arc set A 6= ∅ such that
H(A) = p for such p ∈ Seeds. The statement follows by applying Thm. 5 to
A.

Since steady states are seeds, a special case of Cor. 3 is that the existence
of a positive circuits is necessary for |Steady | ≥ 1 in constant-free Boolean
networks. Note that a constant-free network can be obtained from a network
with constants by percolating p ∈ Sym defined by Setp := {(v, c) | fv = c}, see
Prop. 2.

Another way of interpreting Thm. 5 is that each s ∈ Seeds requires a positive
circuit whose components are a subset of V [s]. This can be exploited when
computing inclusion-wise minimal seeds.

Corollary 4. If p ∈ min(Seeds) then there is a U ∈ SCC (V,→) such that
V [p] ⊆ U and U contains at least one positive circuit.

A good pre-processing for finding minimal seeds is therefore to enumerate
all U ∈ SCC (V,→) that contain at least one positive circuit and then to search
for stable and consistent arc sets in the respective prime implicant subgraphs.

Since seeds, which are associated with steady states and positive feedback,
are characterized by stable and consistent arc sets, it is natural to ask if cyclic
attractors and negative feedback are also associated to subsetes A ⊆ A with
similar properties. For networks whose interaction graph consists of an isolated
circuit this is the case. Here, the existence of cyclic attractors and negative
feedback correlates with inconsistent and stable arc sets, see Fig. 4.12. But, for
networks whose IGs are not isolated circuits the connection between inconsistent
and / or stable arc sets and cyclic attractors remains an open problem.
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(a) Isolated positive circuit (b) Isolated negative circuit

fv = u

fu = v fu = v

fu = v

Figure 4.12: The network in (a) has 2 stable and consistent arc sets and 2 steady
states. The network in (b) has 1 stable and inconsistent arc set and 1 cyclic
attractor. This observation holds for isolated circuits of arbitrary size.

4.8 Completeness and Univocality

Let us briefly summarize how seeds are useful to predict the asymptotics of
a network. First, our method for computing seeds scales to networks with
hundreds of components and finds all minimal or maximal seeds within seconds
or minutes (for randomly generated networks, data not shown). By Eq. 4.1 the
maximal seeds include all steady states of the system, and by Thm. 3 the number
of maximal non-regular seeds is a lower bound to the number of cyclic attractors.
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The examples in Sec. 4.4 demonstrate that the lower bound may in general be
weak in the sense that |Cyclic(S,→)| can be much larger than |max6S(Seeds)|.
In practice, however, max(Seeds) is often a very good description of Attr(S,→)
with |max(Seeds)| = |Attr(S,→)| and a unique attractor X in every S[p] for
p ∈ max(Seeds). We capture the properties of ”a good description” in the
following definitions.

Definition 42. A subset P ⊆ Seeds such that for every X ∈ Attr(S,→) there
is p ∈ P with X ⊆ S[p] is called complete in (S,→).

Definition 43. p ∈ Seeds such that |{X ∈ Attr(S,→) | X ⊆ S[p]}| = 1 is
called univocal in (S,→).

000

010

100

001

S[1112]

X

S[1112]

000

010

100

001

X

Y

(a) (S, ↪→) (b) (S,�)

Figure 4.13: The synchronous and asynchronous STGs of the same network.
The set P := {1112} ⊆ Seeds is complete in (S, ↪→) because X ⊆ S[1112] but
not complete in (S,�) because the cyclic attractor Y is not contained in S[1112].
Note also that ε ∈ Seeds is univocal in (S, ↪→) but not univocal in (S,�).

Note that both definitions depend on the transition relation →. A seed
p may be univocal in (S, ↪→) but not univocal in (S,�), see the example in
Fig. 4.13. Note also that even if p ∈ Seeds is univocal it may be that S[p] is
not the smallest subspace that contains the respective attractor X ⊆ S[p], see
Ex. 4.

We can use CTL model checking to decide whether P ⊆ Seeds is complete,
whether p ∈ P is univocal and also whether S[p] is the smallest subspace con-
taining an attractor X. To test whether S[p] is the smallest subspace we use the
query in Obs. 13. Completeness is decided by the following slight modification
of the query in Obs. 14.

Observation 19. Let P ⊆ Seeds and TS = (S,→, S). P is complete in (S,→)
if and only if

TS |=∀
∨
p∈P

EF (p).

To decide whether p ∈ Seeds is univocal we first observe that if p = x with
x ∈ Steady then p is trivially univocal. Otherwise, we generate an initial state
x ∈ X such that X ⊆ S[p] and X ∈ Attr(S,→) by a random walk, see Sec. 4.2
and Obs. 15, and then use the query of Obs. 14 to decide whether p is univocal.
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If a set P ⊆ Sym is not complete, or if p ∈ Sym is not univocal then the
counterexamples can be used as starting points for further analysis, e.g. in the
latter case detecting an attractor outside of the subspaces referenced by P and
in the former detecting a second attractor inside S[p].

If the transition system of the network in question is managable by the model
checking software we can therefore use the above approach. If it is too large1

we may still be able to decide completeness and univocality by a suitable model
reduction and modified CTL queries. The goal of the remainder of this section is
to introduce two basic reduction methods that will be crucial for the case study
in Sec. 4.9. For more involved reduction methods, see for example [30, 31, 60]
and references therein.

4.8.1 Model Reduction 1: Substitution

The motivation for this reduction method is that if we are interested in the
trajectories inside a trap space S[p] then we can remove all components that
are stable in S[p] from the system and consider the projected trajectories in the
reduced network, see e.g. [40]. Its definition requires the notion of substituting
p into a function f ∈ F .

Definition 44. Let f ∈ F and p ∈ Sym. The function f [p] is defined by
f [p] : U → Dom(v) with U := S(V \V [p]) and

f [p](y) := f(p · y), ∀y ∈ S(U),

where p · y =: x ∈ S(V ) is well-defined because V [p] ∪ V [y] = V and V [p] and
V [y] are disjoint. We say that f [p] is obtained from f by substitution of p.

Intuitively speaking, the network (Vp, Fp) is then obtained from (V, F ) by
”dividing out” the seed p:

Definition 45. The network (Vp, Fp) that is obtained from (V, F ) by substitu-
tion of p ∈ Seeds(F, V ) is defined by

Vp := {v ∈ V | v 6∈ V [p]}
Fp := {fv[p] | fv ∈ F, v ∈ Vp}.

There is then a one-to-one correspondence between transitions in S[p] of the
original network (V, F ) and transitions in the reduced network (Vp, Fp), see [40]
for proofs. Relevant for our purposes is that p ∈ Seeds(V, F ) is therefore univocal
in the STG of the (V, F ) if and only if ε ∈ Seeds(Vp, Fp) is univocal in the STG
of (Vp, Fp). This reduction method is in practice useful because (V, F ) may be
too large for model checking while (Vp, Fp) may be feasible, if |p| is large enough.
An example of model reduction by substitution is given in Fig. 4.14.

4.8.2 Model Reduction 2: Input Percolations

The second reduction method concerns only networks with stable input com-
ponents, see Sec. 2.2.1. The idea is that we can immediately derive a set of

1About 50 components for non-deterministic and 70 components for deterministic STGs,
see the NuSMV benchmark in Sec. 2.4.3
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complete seeds by fixing each input to some value and then percolating the
combined effect. Recall that for every p ∈ Seeds there is a unique symbolic
steady state q ∈ Seeds that is obtained from p by percolation, see Sec. 4.3.
Proofs are given in [40].

Theorem 6. Let (V, F ) be a network with stable input components v1, . . . , vk
and k ≥ 1. Define for each combination (c1, . . . , ck) ∈ Dom(v1)×· · ·×Dom(vk)
a corresponding p ∈ Sym by p := (v1 = c1) · · · · · (vk = ck). Then p ∈ Seeds for
each such p and the set of all such p is complete in (S,→).

Intuitively, this theorem states that the inputs partition the state transition
graph into trap spaces defined by the values of the inputs. The following theorem
states that replacing each seed of a complete set by the corresponding percolated
symbolic steady state results again in a complete set.

Theorem 7. If {p1, . . . , pm} ⊆ Seeds is complete in (S,→) then {q1, . . . , qm} ⊆
Seeds, where qi is the symbolic steady state obtained from pi by percolation, is
also complete in (S,→).

Note that the above statement is independent of the transition relation.
In practice, this reduction method is combined with the reduction by sub-

stitution in the following way. Let P be the set of p ∈ Seeds obtained by
percolating the different input combinations. Since P is complete and since
there is a one-to-one correspondence between the transitions and therefore the
attractors between (V, F ) in S[p] and the reduced network (Vp, Fp), see [40], we
can consider each network (Vp, Fp) separately. An example is given in Fig. 4.14.

v1 v2

v3 v4

v5 v6

v7

v1 v2

v3 v4

v5 v6

v7

input combination

percolation

reduced network

f1 = v1

f2 = v2

f3 = v1

f4 = v1 · v2
f5 = v6 + v3 · v4
f6 = v2 · v5 + v7

f7 = v5

f ′5 = v6

f ′6 = v7

f ′7 = v5
(a) (b)

Figure 4.14: An example for model reduction by input percolation and substi-
tution. (a) A network (V, F ) with inputs v1, v2 ∈ V . (b) The reduced network
(Vp, Fp) with Vp = {v5, v6, v7} and Fp = {f ′5, f ′6, f ′7} where p = (v1 = 1)(v2 =
0)(v3 = 1)(v4 = 0) is obtained by fixing the inputs to v1 = 1 and v2 = 0 and
percolation. Note that the activities of p are represented by black (active) and
white (inactive) boxes in the interaction graph. Dashed interactions are not
observable in the reduced network.

4.9 Case Study: A MAPK Signaling Network

The aim of this section is to describe the asymptotic behaviors of the Mitogen-
Activated Protein Kinase (MAPK ) network published in [11]. The network is
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a generic response map for the influence of different stimuli involving growth
factors and DNA damage on processes such as cell proliferation, apoptosis and
cell differentiation. Its components represent signaling proteins, genes and phe-
nomenological components. It is stated that

”The results of systematic simulations for different signal combina-
tions and network perturbations were found globally coherent with
published data.”

We add to these results a complete description of Attr(S, ↪→) for the unper-
turbed network by a combined approach of computing seeds and CTL model
checking. For model checking we used NuSMV 2.5.4 and the seeds were com-
puted with BoolNetFixpoints [109]. All computations were done with a
Linux desktop PC with 30 GB RAM and 8 CPUs @ 3.00GHz.
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Figure 4.15: The original interaction graph of the MAPK network as given
in [11].

Network Size and Structure

The network consists of 53 Boolean components and 108 interactions. The orig-
inal interaction graph is given in Fig. 4.15 and the update functions are specified
in [11]. There are 4 input components DNAdamage, EGFRstim, FGFR3stim
and TGFBRstim whose activities represent different stimuli, and 3 output com-
ponents Apoptosis, GrowthArrest and Proliferation that represent the response
in terms of proliferation or cell death. The remaining components form one
large SCC (37 components) and several cascades (9 components) that connect
the inputs to the SCC and the outputs. The condensation of the interaction
graph is given in Fig. 4.16.

First, we computed max(Seeds) (within seconds) and found that |Steady | =
12 in agreement with [11] and |max6S(Seeds)| = 6. Hence, by Thm. 3, we
immediately deduce |Cyclic(S,→)| ≥ 6 and each S[p] with p ∈ max 6S(Seeds)
contains at least 1 cyclic attractor.

Next, we asked whether max(Seeds) is complete in (S,→) (for any →) but
found that NuSMV runs out of memory for the query of Obs. 19. Since the net-
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Figure 4.16: The condensation graph of the MAPK network consists of the
4 input components in layer 0 and one SCC with 37 components in layer 1.
The remaining components connect the inputs to the SCC and the SCC to the
output components.

work has input components we decided to continue with the reduction method
described in Sec. 4.8.2. The 4 inputs give rise to 24 = 16 different input com-
binations and 16 corresponding reduced networks obtained by percolating the
input values. Note that since the number of maximal seeds is greater than the
number of input combinations we can immeadiately deduce that there must be
an input with several asymptotic behaviors. We then computed for each input
combination the symbolic steady state that is obtained by percolation, see also
Sec. 4.8.2. The corresponding reduced networks are just small enough (number
of components) to be managable with NuSMV. The goal for the remainder of
this section is to present a case-by-case analysis of each reduced network that
correspond to one of the 16 different input combinations. We grouped the re-
sults into 4 different classes that lead to arguably similar behaviors. The section
is concluded with a short discussion.

Input Type 1: Fast Convergence

This type of stimulus is characterized by TGFBRstim = 1 and consists therefore
of 8 different input combinations. In each case the percolation resulted in p ∈
Seeds with |p| = 53, i.e., in a steady state. We checked how well these steady
states agree with each other and found that they are largely identical. Hence
we tested the effect of TGFBRstim = 1 without any assumptions on the other
inputs and found that almost all components stabilize, see Fig. 4.17. Note that
this is not necessarily so. As stated in Sec.4.8.2, components that stabilize due
to percolation do so independently of the update strategy.
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Figure 4.17: TGFBRstim = 1 alone drives almost all components including
the outputs into stable values (black=1, white=0). The 8 steady states that
correspond to this type of intput differ only in the other inputs and ATM and
TAOK.

Type 2: Large Cyclic Attractors

This type of stimulus is characterized by the absence of TGFBRstim, the ab-
sence of DNAdamage and the presence of EGFRstim or FGFRstim and consists
therefore of 3 cases.

For each of the 3 cases we computed the symbolic steady state p ∈ Seeds
that corresponds to the input percolation and the maximal seeds of the respec-
tive reduced model (Vp, Fp). We found that each reduced model has a single
maximal seed q ∈ Seeds(Vp, Fp) which was confirmed to be complete in (S, ↪→)
of (Vp, Fp) by model checking. The condensation graphs (see Def. 11) of the
3 reduced models are shown in Fig. 4.18. In each case we generated a ran-
dom walk of length 200 and confirmed that the resulting state belongs to some
X ∈ Cyclic(S, ↪→). We could also confirm that X is the only attractor and that
every component of the reduced network oscillates in X. We grouped these stim-
uli because almost all components of the original network, namely 39, 41 and
41, oscillate in the resulting attractors, including the three output components
Apoptosis, GrowthArrest and Proliferation.

Type 3: Small Cyclic Attractors

This type of stimulus consists of 3 cases and is characterized by the absence of
TGFBRstim, the presence of DNAdamage and the presence of EGFRstim or
FGFRstim. The reduced networks consist of only 8, 9 and 10 components and
their interaction graphs are given in Fig. 4.19. Each network has a single cyclic
attractor in (S, ↪→) in which every component is unstable. We grouped these
stimuli because only 8, 9 and 10 components (out of 53) oscillate in the corre-
sponding cyclic attractors of the original network and the output components are
identically stable at Apoptosis = 1 , GrowthArrest = 1 and Proliferation = 0 .
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Figure 4.18: The cyclic attractors associated with inputs of type 2 are largely
identical and characterized by many oscillating components, including the three
outputs. The interaction graph on the top shows the oscillating components in
red. At the bottom are the condensation graphs of the corresponding reduced
models, the one on the right occured twice.

Type 4: Internal Decision

This type of stimulus is characterized by the absence of TGFBRstim, EGFRstim
and FGFRstim and consists therefore of 2 cases. Each of the 2 reduced networks
obtained from percolating the inputs consists of one SCC with several output
cascades. We computed the maximal seeds in each case and found that there
are 2 steady states in each reduced network accounting for 4 steady states of the
unreduced network. The models are just small enough for NuSMV to confirm
that there are no cyclic attractors in (S, ↪→).

We have grouped these input combinations because in both cases the decision
for which of the two steady states is reached is due to the internal state of the
network. In other words, the identical signal can result in different steady states.
We compared the activities that define the two possible steady states and found
that they are identical with respect to the output components.
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The Synchronous Update

We have repeated the above analysis for the synchronous transition relation. As
mentioned in Fig. 4.13, although the synchronous and asynchronous STGs have
the same trap spaces, whether P ⊆ Seeds is complete and whether p ∈ Seeds
is univocal may differ between (S, ↪→) and (S,�). Indeed, we found that there
are 4 input combinations for which the corresponding maximal seeds are not
complete. The input combination in which every stimulus and DNAdamage
are absent (type 4) has, for example, 14 additional cyclic attractors in (S,�)
whereas (S, ↪→) has only the 2 steady states mentioned above. For a table
of the number of additional cyclic attractors see Fig. 4.20. Note that the ob-
servation that synchronous STGs often have many more cyclic attractor than
asynchronous, more realistic STGs is not new (see e.g. [111]). One of the rea-
sons why (S,�) is often said to be less realistic is because it contains so many
”spurious limit cycles”.
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Figure 4.19: The cyclic attractors that exist for input combinations of type 3
are characterized by few oscillating components, illustrated in red in the in-
teraction graph on top. The interaction graphs of the 3 reduced models are
given below. Note that they involve mostly the same components and negative
feedback circuits.
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Input-Output Mapping

The main result of this case study is that we could confirm for a large network
that the maximal seeds are a good description of the asymptotic behaviors
of asynchronous STGs. We found that max(Seeds(V, F )) is complete in (S, ↪→)
and each p ∈ max(Seeds(V, F )) univocal. Furthermore the unstable components
in each X ∈ Cyclic(S, ↪→) are exactly the components V \V [p], i.e., each p ∈
max(Seeds) is the smallest possible subspace that contains the cyclic attractor
in S[p].

For most input combinations there is exactly 1 corresponding attractor, ex-
cept when all growth factors are absent. In that case there are two steady
states for DNAdamage = 1 and two for DNAdamage = 0 . Nevertheless, if only
the values of the output components are considered, the MAPK network be-
haves likes a input-ouput network in the sense that the values of the input
components fully determine the asymptotic values of the output components.

Input combination Steady states |Cyclic(S, ↪→)| |Cyclic(S,�)|
0010 (type 2) 0 1 6
1010 (type 3) 0 1 3
1000 (type 4) 2 0 1
0000 (type 4) 2 0 14

Figure 4.20: The 4 input combinations for which there are additional cyclic
attractors in the synchronous STG. The inputs are specified in the following
order: DNAdamage, EGFRstim, FGFR3stim and TGFBRstim. The additional
limit cycles of (S,�) consist of between 2 and 12 states.

4.10 Discussion

The relevance of trap spaces in predicting the asymptotics of a model is that
they can be computed efficiently for large networks (similar to the computa-
tion of steady states) and have implications on the existence of cyclic attractors
independently of the chosen update strategy. In practice, a combination of com-
puting maximal seeds and CTL model checking to confirm that every attractor
is contained in one of the respective trap spaces (completeness) and that ev-
ery trap space contains a unique attractor (univocality) seems promising. To
deal with larger networks we described a reduction method by substitution to
decide univocality and a reduction method by percolating input values to de-
cide completeness (both in Sec. 4.8). A generalization of the second method to
networks that do not have inputs is possible. One way is to exploit the layers
in the condensation of the interaction graph of a model (V, F ) (see Def. 11)
by removing all components U ∈ SCC (V,→) with layer(U) > k ≥ 0 and con-
sidering the asymptotics of the remaining network (V k, F k). In this case one
can prove that a necessary condition for the completeness of max(Seeds(V, F ))
in (S(V ),→) is the completeness of max(Seeds(V k, F k)) in (S(V k),→). This
reduction by removing ”passanger components”, i.e., downstream components
with no feedback to the upper layers, is of course only possible if there are dif-
ferent layers in the condensation. Networks whose interaction graph consists of
a single strongly connected components appear to pose the hardest problem in
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terms of asymptotic behaviors. We expect that other reduction methods can be
shown to conserve completeness and univocality, for example [60], and that the
asymptotics of even larger networks can efficiently be understood.

A topic that we are currently exploring is the structure of maximal seeds
in terms of minimal seeds. For every p ∈ max(Seeds(V, F )) we can list all
q ∈ min(Seeds(V, F )) that satisfy q ≤ p. The symbolic steady state r ∈ Seeds
that is obtained by percolating the conjunction of all such q must also satisfy
r ≤ p. Depending on whether r = p we repeat this decomposition (for the
reduced model (Vr, Fr)) until all components V [p] belong to some minimal seed
or are stabilized by percolation. The positive feedback circuits (see Sec. 4.7)
that correspond to the resulting sequence of minimal seeds form a hierarchy.
This hierarchy might be interpreted as a sequence of stabilization events that
lead to the trap space S[p]. We believe that this might be relevant to questions
regarding the control of regulatory networks. To force the system into S[p] would
for example require interfering with the respective minimal positive circuits in
the structure of p.

Of related work, one is particularly close to our method of computing seeds
by searching for stable and consistent arc sets in the prime implicant graph. In
[112] the authors propose a method for computing the stable dynamic repertoire
of a network, i.e., the smallest subspaces that contain C ∈ Attr(S, ↪→), by an
iterative 8 step reduction method. The algorithm is based on computing stable
motifs, which correspond to our definition of minimal seeds, and oscillating
components which correspond, essentially, to maximal stable but inconsistent arc
sets in the prime implicant graph. Both are obtained from the expanded network,
a simple directed graph that assumes the role of our prime implicant graph. The
concept of the expanded network is taken from [113] where elementary signaling
modes are defined and used to predict the propagation of signals in Boolean
networks. In [112] it is explained that the expanded network is derived from F
by assuming that all f ∈ F are given in DNF and that each f satisfies property
3 of Appendix A:

”If, for a state of a subset of the inputs of f , one has f = 1 (whatever
the states of the remaining inputs), then the disjunctive form of f
must have at least one of its conjunctive clauses equal to 1 when
evaluated at the state of this subset of nodes.”

In [112] no formal definition of the expanded graph is given and it is not ex-
plained how to convert a given DNF into one that satisfies this property. But,
it seems that this property requires exactly that each f ∈ F is given as the
(unique) disjunction of all of its prime implicants. Any other DNF will essen-
tially correspond to a subset of arcs in the prime implicant graph and hence a
subset of computed seeds.

A formal description of the algorithm that computes the stable motifs (min-
imal seeds) from the expanded network is missing, but Sec. III of [112] suggests
that a generate-and-test approach is taken: all directed cycles in the expanded
network are enumerated by Johnson’s algorithm [114], each is tested for the de-
sired properties (stability and consistency) and only the inclusion-wise minimal
ones are kept. The quasi-attractors, which correspond to our maximal seeds,
are then enumerated by iteratively (1) computing a minimal seed and finding
the associated symbolic steady state by percolation and (2) repeating (1) for
the remaining network until no more of minimal seeds exist in it.
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A preliminary comparison of running times between our ILP encoding and
the complete reduction method, see Fig. 9 in [112], suggests that our method is
faster and capable of solving harder problems. Note that [112] also generated
random Boolean networks, hence our results are comparable, but only for a fixed
in-degree of k = 2, and only for minimal seeds p of size |p| < 40 for networks
(V, F ) with |V | > 100 due to the large number of circuits in the expanded
networks.

[112] goes beyond our results in trying to predict, heuristically, which com-
ponents might stabilize due to incomplete oscillations and which cyclic attrac-
tors might be missed due to unstable oscillations. The predictions are based
on observations that are comparable to the ones given in Sec. 4.4. On the
other hand, [112] neither mentions the problem of univocality, which we address
with CTL model checking in Sec. 4.8, nor the observation that the number of
non-regular maximal seeds is a lower bound for the cyclic attractors (Thm. 3).

Overall, [112] and our work discuss very similar concepts and it would be
fruitful to unify the ideas in one framework, e.g., by translating the definition of
oscillating components (Sec. II G in [112]) into our terminology such that ILP
or ASP solvers can be used to detect these objects.

But, the principle problem of efficiently characterizing which components
oscillate asymptotically and which stabilize, i.e., the problem of computing the
smallest subspace that contains X for every X ∈ Attr(S,→), remains open. Our
experience with networks, the results for the MAPK network and the discussion
in [112] suggest that in practice there is not much room for complications. It
seems that for (S, ↪→), the maximal seeds are usually complete, each one of them
univocal and an exact characterization of the oscillating and stable components.



Chapter 5

Construction and Analysis
of a Model Pool

”Moreover, when studying a system, the biological knowledge arrives
in an incremental manner. It would be appreciable to apprehend the
problem in such a way that when new knowledge has to be taken
into account, previous work is not put into question. In other words,
one would like to handle not only a possible model of the system, but
the exhaustive set of models which are, at a given time, acceptable
according to the current knowledge.”

– G. Bernot and J.-P. Comet in [72]

5.1 Introduction: Reverse Engineering

In Chap. 3 we discussed how to decide if a given property, in this case a time-
series specification, holds for a fully specified model. The motivation for this
chapter is the inverse problem where the property specification and whether it
holds are given but the model is only partially known. The natural motivation
behind this problem is its application to the reverse engeneering of models from
data. As mentioned in [72], the available data is usually not sufficient to recon-
struct a model uniquely. Rather, there is a pool of models where each member
satisfies the constraints placed by the data. The procedure of reverse engineer-
ing has often been described as an iterative, circular process that generates new
constraints by interpreting the current data, while the analysis of the current
model pool guides experiments that in turn generate new data and constraints.
The procedure is illustrated in Figure 5.1.

At the core of this chapter is a software toolbox, currently called
LogicModelClassifier [55], that is based on a software seminar given in
2011 at the FU Berlin. Originally, the goal was to write a software that (1) enu-
merates all update functions that are consistent with a given signed interaction
graph, (2) filters from this initial pool all models whose state transition graph
satisfies a given CTL specification, and (3) analyzes the remaining models by
returning for each update function and input the set of occuring target values.
Towards the end of the seminar we added several functionalities to the software.

109
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In particular, we extended the specification language used in (1) from interac-
tion signs to propositions about threshold functions, a certain class of signed
input-symmetric functions, and introduced a logic for attractors, that could be
used instead of CTL in step (2). In 2012 the software was completely revised
and the result is the focus of this chapter.

In the following two sections we will introduce a specification language for
logical models and the toolbox LogicalModelClassifier.

Model Pool

Experiments

(guide)

(reduces)

(create)

Prior Knowledge

Assumptions

(question)

Qualitative Data

(question)

Predictions

&

Figure 5.1: The simplified and iterative process of reverse engineering with data.
It begins with the translation of prior knowledge into a set of initial constraints.
All models that are consistent with them are contained in the initial model
pool. The analysis of the pool leads to predictions that guide the design of new
experiments. The obtained data is translated into additional constraints that
reduce the number of consistent models. Inconsistent constraints lead to an
empty model pool that may be used to question the prior knowledge, modeling
assumptions or translation of data into constraints.

5.2 The Specification Language

The aim of this section is to propose a specification language for logical models.
We will define it in terms of predicates which we group into five different themes
that are loosely related to the computational complexity of the corresponding
decision problems. A specification is a statement that determines some aspect
of (V, F ) or (S,→). An example is Components ≥ 4 which requires that the
model has at least 4 components. Formally, we define the syntax and semantics
by statements like

(V, F ) |= Components ≥ 5 iff |V | ≥ 5.

Complex specifications are constructed by the usual logical connectives ∧,∨, .
An example is Components ≥ 5 ∧ Components ≤ 10.

A. Components

The two fundamental predicates, Components and Max , concern the number of
components and their maximal activities. Since we are interested in cardinalities
we require that they are followed by a comparision operator � ∈ Ω = {=,=, <
,≤, >,≥} and a natural number k ∈ N1.
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(V, F ) |= Components � k iff |V | � k
(V, F ) |= Max (vi) � k iff Max (vi) � k.

Throughout this chapter we assume that the number of possible components
and their maximal activities are finite.

B. Interactions

Interaction labels are closely related to biological assumptions regarding the
character of an interaction between two components. Typically, the regulators
of a component are divided into activators and inhibitors but formally more vari-
ations exist, see for example [85]. The basic interaction predicates are Activating
and Inhibiting . For two components u, v ∈ V and t ∈ N we define

(V, F ) |= Activating(u, t, v) iff u
+t−→ v

(V, F ) |= Inhibiting(u, t, v) iff u
−t−−→ v.

A lot of ”syntactic sugar” can be added to them, notably predicates for
observability and sign-definiteness.

Observable(u, t, v) :⇔ (Activating(u, t, v) ∨ Inhibiting(u, t, v))

ActivatingOnly(u, t, v) :⇔
(

Activating(u, t, v) ∧ Inhibiting(u, t, v)
)

A true increase in expressiveness is obtained by adding an additional param-
eter that specifies where in state space the interaction should be effective. The
more expressive version of activation is, for example, Activating(u, t, v, d) where
d ∈ StateDesc (see Def. 2) restricts the state x ∈ S that proves that u → v is
observable (see Def. 9).

(V, F ) |= Activating(u, t, v, d) iff ∃x ∈ S[d · (u = t− 1)] : fv(x) < fv(x⊕ eu).

Additionally, ”threshold-free” predicates are also useful for non-Boolean
components.

Activating(u, v) iff ∃t ∈ Dom(u) : u
+t−→ v

Observable(u, v) iff u→ v

C. Update Functions

The basic predicate to affect the target values of an update function directly is
to require that somewhere in state space they are all below, above or equal to
a certain value. Hence, we require that the following predicates always appear
together with a comparison operator � ∈ Ω and a constant k ∈ N0.

(V, F ) |= AllTargetValues(v, d) � k iff ∀x ∈ S[d] : fv(x) � k
(V, F ) |= SomeTargetValues(v, d) � k iff ∃x ∈ S[d] : fv(x) � k

Additionally, it might be useful to allow relative comparisons, i.e., compar-
isons among target values rather than between target values and constants.
In [55] we have experimented with the following semantics
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(V, F ) |= AllTargetValues(u, d1) �AllTargetValues(v, d2)
iff ∀x ∈ S[d1] : ∀y ∈ S[d2] : fu(x) � fv(y)

and the three other cases involving SomeTargetValues. But, relative compar-
isons have so far not been necessary in practice.

Several useful shorthands are derived from the above predicates. The first
one requires that all target values are equal in S[d], without specifying a value.

(V, F ) |= AllEqual(v, d) iff ∀x, y ∈ S[d] : fv(x) = fv(y)

The second one is a shorthand for defining the update function of Boolean
components.

Boolean(v, d) :⇔ AllTargetValues(v, d) = 1 ∧AllTargetValues(v, d) = 0

The third one allows the use of multiplexes as introduced in [14]. Multiplexes
can be thought of as enforcing assumptions regarding the formation of complexes
among the regulators of a component. Formally they enforce several AllEqual
constraints. Suppose that a component v has 2 ≤ m regulators and that they
can form 1 ≤ k ≤ 2m regulatory complexes (e.g. protein complexes). The
requirement for the formation of a complex can be described in terms of the
states S[di] in which it forms. That is, we assume that in S[di] the building
blocks of the ith complex are present and it forms spontaneously without a
state transition. Suppose further that the activity of v depends only on the
presence or absence of the complexes (and not the individual regulators). Then
fv is structured into 2k different input combination rather than 2m. Denote by
C(d1, . . . , dk) ⊆ StateDesc the 2k combinations of complexes being present or
absent.

Multiplex (v, d1, . . . , dk) :⇔ ∀d ∈ C(d1, . . . , dk) : AllEqual(v, d)

As an example consider a component v ∈ V that has three Boolean regulators
a, b, c ∈ V . Suppose a and b regulate v by forming a protein complex which
is present in all x ∈ S such that x(a) = 1 and x(b) = 1. The constraint
Multiplex (v1, d1, d2) with d1 := (a = 1) · (b = 1) and d2 := (c = 1) enforces that
fv behaves as if it had only two regulators, the protein complex and c. In this
case C = {d1 · d2, d1 · d2, d1 · d2, d1 · d2}. For more details and examples see [14].

The fourth shorthand enforces the presence of subgraphs in the state tran-
sition graph. The simplest one is to enforce a transition between two states
x1, x2 ∈ S and a given transition relation →.

(V, F ) |= Transition(x1,→, x2) iff x1 → x2

Useful derived predicates are

Path(→, x1, . . . , xk) :⇔ Transition(x1,→, x2) ∧ · · · ∧ Transition(xk−1,→, xk)
SteadyState(x,→) :⇔ Transition(x,→, x)
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D. Temporal Logic

The predicates that enforce branching and linear time properties come in two

flavours each, depending on which satisfaction relation, |=∃ or |=∀ , is cho-
sen. Hence, for a quantifier Q ∈ {∃,∀}, a description of the initial states
d ∈ StateDesc, a transition relation → and a LTL or CTL formula φ resp.
ψ, we define the following predicates.

(V, F ) |= CTL(Q, d,→, ψ) iff TS |=Q ψ with TS = (S,→, S[d])

(V, F ) |= LTL(Q, d,→, φ) iff TS |=Q φ with TS = (S,→, S[d])

All the reachability queries that we introduced in Chap. 3, for example
”nested reachability”, ”branching time reachability” or ”best fit”, can be turned
into shorthand predicates based on CTL and LTL.

E. Stability and Oscillations

These predicates facilitate statements about the asymptotic stability or insta-
bility of components as defined in Sec. 4.1. First, we would like to be able to
specify where in state space an attractor is. We suggest to do so by requiring the
existence of a trap set or a trap space. The distinction is made mainly because
the second one is potentially easier to decide, even for large networks, using our
results on computing seeds in Sec. 4.6. Let d ∈ StateDesc.

(V, F ) |= ExistsTrapSet(d) iff ∃X ∈ Attr : X ⊆ S[d]
(V, F ) |= ExistsTrapSpace(d) iff ∃p ∈ Seeds : S[p] ⊆ S[d]

In addition, it is useful to introduce predicates that relate directly to the
stable and oscillating components of an attractor (see Sec. 4.1). Let U,U1, U2 ⊆
V .

(V, F ) |= ExistsStab(U) iff ∃X ∈ Attr s.t. u is stable in X ∀u ∈ U
(V, F ) |= ExistsOsc(U) iff ∃X ∈ Attr s.t. u is unstable in X ∀u ∈ U
(V, F ) |= ExistsStabOsc(U1, U2) iff ∃X ∈ Attr s.t. u is stable in X ∀u ∈ U1

and v is unstable in X ∀v ∈ U2

Note that these predicates can be formulated in terms of CTL(Q, d,→, ψ)
using the queries discussed in Sec. 4.2.

F. Derived Networks

We can also require that a predicate is evaluated on a network (V ′, F ′) that is
obtained from (V, F ) by some modification of F or V . An example are knock-
in or knock-out experiments. In the basic setting, a perturbation of (V, F ) is
specified by p ∈ Sym where each (v, c) ∈ Setp indicates that v ∈ V is fixed
at c ∈ Dom(v). A knock-out of two components v1, v2 ∈ V may for example
be specified by p ∈ Sym with Setp := {(v1, 0), (v2, 0)}. For a perturbation
p ∈ Sym of (V, F ) we define the update functions F p := {gv | v ∈ V } by gv := c
(constant) if (v, c) ∈ Setp and gv := fv ∈ F otherwise. The predicate Perturb
is then defined in terms of a perturbation p ∈ Sym and an arbitrary expression
ω of our specification language:
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(V, F ) |= Perturb(q, ω) iff (V, F q) |= ω

Note that an alternative to using the predicate Perturb is to explicitly add
the perturbed models (V ′, F ′) to the model pool, annotate them by whether they
satisfy ω, and (somehow) consider the connection between (V, F ) and (V ′, F ′)
during the analysis (see Sec. 5.3).

5.3 Description of a Prototype Software

In this section we describe the software LogicModelClassifier [55]. It can
be thought of as consisting of three parts: (1) model instantiation, (2) model
annotation and (3) model analysis. There is no clear conceptual distinction
between steps one and two and we distinguish them merely for computational
reasons.

We use the term model pool as essentially meaning a set of models. A
key feature of a model pool is that individual models may be equipped with
additional information in the form of labels. In the prototype software [55]
model pools are implemented by the database engine SQLite. Although a
structured query language (SQL) database is relational we do not use this feature
explicitly, i.e., the database consists of a single table and each model of the pool
is stored in a single row. A model is stored as an integer vector that encodes
a rule-based representation of the update functions F (see Def. 8). Additional
information, knowledge or assumptions are stored in dedicated columns. Each
column represents a single property, for example whether a model is compatible
with a time series called ”A”. The property name is then the identifier of the
column, it might for example be TimeSeriesA. If a model (V, F ) is compatible
with time series ”A” we will annotate the model by ”(TimeSeriesA = 1)” and
say that ”1” is the label of (V, F ) and the property TimeSeriesA.

In the following sections we describe the currently implemented methods for
instantiation, annotation and analysis.

1. Model Instantiation

The user can choose between three means of model instantiation: complete
enumeration, sampling and perturbation.

Name Complete Enumeration.
Input An expression φ of the specification language with predicates

from Sec. 5.2 (B-C).
Output The model pool that contains all models that satisfy φ.

The first approach, complete enumeration, requires the components V , in-
cluding their maximal activities and names, and an interaction graph (V,→)
together with a threshold function T that assigns T (u, v) ⊆ [1..Max (u)] to each
interaction u → v in (V,→). Note that V and their maximal activities ensure
that the number of feasible models is finite. (V,→) and T can be thought of
as a ”super-structure” that is the union of all potentially existing interactions
and thresholds as well as all prior knowledge interactions and thresholds. It is
therefore not restrictive.



5.3. DESCRIPTION OF A PROTOTYPE SOFTWARE 115

The second input is an expression φ of the specification language that con-
sists exclusively of predicates mentioned in Sec. 5.2 (B-C), i.e., refers to the
interactions and update functions. The expression is parsed and turned into a
constraint satisfaction problem (CSP, see e.g. [115]) that consists of an integer
variable for every logical parameter of every update function. In this setting, a
logical paramter is essentially a rule in the representation of an update function,
see [116]. In practice the CSP often splits into several independent sub-problems.
For efficiency the script will partition the logical parameters into independent
sub-problems that are solved separately and whose solutions are combined, by
taking the Cartesian product, to yield all models that satisfy the contraint φ.
We use the CSP solver python-constraint, see [117].

Name Sampling.
Input An expression φ of the specification language with predicates

from Sec. 5.2 (B-C) and the sample size k ∈ N.
Output A model pool that contains k models that are chosen uniformly

from the set of all feasible models.

The instantiation by sampling is based on the previous observation that, in
practice, the CSP that is created for the complete enumeration often consists of
several independent sub-problems. If the feasible models can not be enumerated
and stored (Cartesian product too large) we may instead choose to sample the
feasible models by drawing solutions from the sub-problems. Note that we can
sample uniformly from this space as it is a Cartesian product.

A typical example is the case when φ is a conjunction of interaction labels.
The CSP for complete enumeration then splits into |V | sub-problems, one for
each f ∈ F . If the space of feasible models is too large to be stored explicitly
but the set of feasible functions fv for each v ∈ V can be enumerated, the user
may choose to draw a uniform sample from feasible models instead.

Name Perturbation.
Input A model (V, F ) and a parameter di ∈ N for each vi ∈ V .
Output The model pool that contains all (V, F ′) that satisfy

dist(fi, f
′
i) ≤ di for all vi ∈ V .

The instantiation by a perturbation takes an initial model (V, F ) and creates
all models that are similar with respect to the logical parameters. More precisely,
the distance dist(fi, f

′
i) ∈ N between two update functions fi, f

′
i of a component

vi is defined to be the sum of differences between the logical parameters of fi
and f ′i . The idea is identical to the Manhattan distance between states, see
Def. 1. The numbers di ∈ N for each vi ∈ V specify the admissible distance to
fi ∈ F .

The script also accepts a model pool, rather than a single model, as an input.
In that case all perturbations of all members are combined.

2. Model Annotation

During the annotation phase models are drawn from the pool and subjected to
tests, typically model checking or other properties that require exploring the
state transition graph. But, conceptually a test is any algorithm that computes
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a label for a model. It could, for example, consist of running a certain number
of stochastic simulations and returning some statistics. The result of the test is
attached to the model in the form of a label. The parameters that are common
to all annotation scripts are (1) a property name under which the annotation
is stored (column in the database), (2) a model pool, and (3) an optional SQL
expression that defines a subset of models. The property name specifies the
name of the column that will be created to store the computed labels. Usually
the whole pool is annotated, but if the annotation algorithm is computationally
expensive or the pool large, we may want to annotate only a subset of models.
To select subsets of models we use statements of the form

SELECT * FROM models WHERE expr

where * indicates that the complete row in the database is returned, models
is the table that contains the models and expr is a Boolean expression over
existing labels in the pool that is specified by the user.

In the following we describe the annotation scripts that are currently avail-
able.

Name CTL Model Checking.
Parameters A CTL formula ψ, transition relation →, d ∈ StateDesc

and Q ∈ {∃,∀}.
Label (Boolean) The truth value of CTL(Q, d,→, ψ).

The CTL model checking script computes a Boolean label: either a model
satisfies CTL(Q, d,→, ψ) or it does not. There is a corrsponding script for LTL.

Name Update Functions.
Parameters Subset of components U ⊆ V .
Labels (Integer) Creates one label for every v ∈ U that records the

ID of the update function fv ∈ F

The update functions script creates |U | integer valued labels for each model
in the pool, one for each v ∈ U , such that two models have identical labels
for v ∈ U iff they have identical update functions fv ∈ F . The motivation for
associating models with identical update functions for certain components, with
each other, is that this information can be used during the analysis described
below.

Name Attractor Detection.
Parameters A transition relation → and d ∈ StateDesc.
Label (Text) A comma-separated list of the smallest subspaces

containing an attractor and the number of attractors con-
tained.

The attractor detection script creates a string valued label which stores the
smallest subspaces S[p] for p ∈ Sym that contain an attractor that is reachable
from the initial states S[d]. The symbolic state p of each subspace S[p] is
converted into a string of the form (v1=c1)(v2=c2)...(vk=ck) where each
vi=ci corresponds to some (vi, ci) ∈ Setp. The label is then a comma-separated
list of all such strings together with the number of attractors X ∈ Attr(S,→) in
each subspace S[p]. The attractors are computed using Tarjan’s algorithm [118]
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with an explicit unfolding of the state transtition graph. This implementation
is therefore intended for small models with about 15 components.

Name Seeds.
Parameters The objective O ∈ {min,max}.
Label (text) A comma-separated list that represents max(Seeds)

or min(Seeds).

The seeds script creates a string valued label that represents the set min(Seeds)
or max(Seeds), depending on the choice of O. Each seed p is represented in the
same way as for the attractor detection script. The seeds are computed using
the ILP encoding and the solver Gurobi, see Sec 4.6. Note that the number of
maximal seeds is exponential in the number of stable input components and so
the labels may become too long for storage very quickly.

There is also a script that contains the code of [94], i.e., an A∗ search al-
gorithm for everywhere precise time-series data and monotony specifications.
Finally, there are two convencience scripts. The first one annotates models by
the truth value of a single predicate of Sec. 5.2 (B-C) and the second one by a
SQL selection query in terms of labels already in the database. These scripts
are useful if the user wants to create custom partitions of the model pool, based
on expressions over existing labels. The resulting classes can then be analyzed
during subsequent analysis steps.

3. Model Analysis

The third phase analyzes the models and their labels in a given database.
Whereas for a single model a property either holds or does not hold, for sets of
models there are three cases. Either the property holds for all, for some or for no
models. Mathematically, the analysis of a model pool is about testing whether
subsets have a non-empty intersection, whether one set is a subset of another
and about computing the cardinalities of sets. The analysis scripts take advan-
tage of SQL by repeatedly executing SELECT * WHERE expr and COUNT(expr)
queries. In the following we discuss the currently available scripts. As in the
previous section, the user can always restrict the analysis to a subset of models
by a corresponding SQL expression.

Name Class Detection.
Parameters A set of property names N = {Name1, . . . ,Namek}.
Output A table of all non-empty classes with respect to N .

The class detection script computes all combinations of labels of the prop-
erties N (among the selected models). Suppose, for example, that we are inter-
ested in two properties N := {TimeSeriesA,TimeSeriesB} with Boolean labels,
where each label indicates whether a model is compatible with the some expres-
sion data A, resp. B. Since there are 4 label combinations, a pool may contain
up to 4 different classes with respect to N . It is often the case, however, that
classes are empty, i.e., that there is no model in the pool that is annotated by
that particular label combination. The script prints all non-empty classes and
their cardinalities to the screen or to a CSV file.
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Signs in the pool Strictest Sign
u 6→ v + − + ∧ −
X not observable

X activating only
X inhibiting only

X dual
X X not inhibiting
X X not activating
X X either dual or not observable

X X monotonous
X X activating

X X inhibiting
X X X not dual
X X X not inhibiting only
X X X not activating only

X X X observable
X X X X free

Table 5.1: The mapping between the interaction signs of u
t−→ v as they occur

in a model pool and the strictest sign that will be returned by the script.

Name Strictest Interaction Sign.

Parameters An interaction u
t−→ v.

Output The strictest interaction sign of u
t−→ v among the models

in the pool.

This script computes the strictest interaction sign for a given interaction u
t−→ v.

The notion is taken from [85]. It is motivated by the need to determine the
character of an interaction for a set of models rather than an individual model.
For individual models only four cases arise: either u 6 t−→ v or Sign(u

t−→ v) = {+}
or Sign(u

t−→ v) = {−} or Sign(u
t−→ v) = {+,−}, see Sec. 2.2. More cases arise

for sets of models because now the interaction signs of individual models may
disagree with each other. An interaction may, for example, be activating in
some models and not observable in the other models. Hence, a set of models

may have up to 24 = 16 different combinations of occuring signs for u
t−→ v.

In [85] we proposed to compute the strictest interaction sign by mapping each
of the 16 different combinations of occuring signs to the strictest sign, with
respect to logical implication, that is true for each model in the set. The script
does essentially the same and returns a verbal description of the strictest sign
as defined in Tab. 5.1.

Name Implication and Independence.
Parameters Two property names Name1,Name2.
Output All implications between Name1 and Name2.

The implication and independence script requires two property names. Let
L1 = {a1, . . . , am} and L2 = {b1, . . . , bn} be the labels that occur for them in
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the pool. For each (a, b) ∈ L1 × L2 the script checks whether every model that
is annotated by (Name1 = a) is also annotated by (Name2 = b). Each such
(a, b) is called an implication and we write ”(Name1 = a) ⇒ (Name2 = b)”.
Each implication is printed to the screen. Implications that are true in both
directions are called equivalences and marked as such. If there are no impli-
cations, it is checked whether the properties are independent in the sense that
for every label combination (a, b) ∈ L1 × L2 there is a model that is annotated
by it. Two properties are therefore independent if the number of classes of
N := {Name1,Name2} is equal to |L1| · |L2|. Note that the existence of an
implication and therefore the question of independence is decided with respect
to the selected models.
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Chapter 6

Conclusion

Our aim was to contribute to the analysis and understanding of logical models
of regulatory networks. To do so we decided to focus on the following three
questions:

(1) How can time-series data be used for the validation of asynchronous, non-
deterministic models?

(2) How can the asymptotics of a specific model be predicted?

(3) What is a good reverse-engineering framework given that knowledge arrives
in an incremental manner?

The starting point for the questions was the notion of compatibility between
data and a given model. We suggested various extensions involving assumptions
about the stability, robustness and monotony of the system. A toolbox, which
is called TemporalLogicTimeSeries, for the conversion of data in CTL and
LTL queries is available [54].

To answer the second question we studied subspaces in state space that are
stable in the sense that trajectories that enter into them can not escape anymore.
These trap spaces exist independently of and are identical for every transition
relation. They can be seen as a generalization of steady states to steady sub-
spaces. We proposed a method for computing the smallest and largest trap
spaces of a given networks that scales well to networks with hundreds of compo-
nents. To draw conclusive statements about the number of cyclic attractors we
suggest to use CTL model checking combined with model reduction techniques
to increase the efficiency. Although cyclic attractors may be outside of trap
spaces, we believe that in practice and for the asynchronous transition graph,
the smallest subspaces that contain cyclic attractors are trap spaces. A toolbox,
which is called BoolNetFixpoints, for the computation of all maximal and
minimal trap spaces is available [109].

It seems to us that the main challenge for the third question is to design a
framework that is capable of employing arbitrary methods of analysis. Our sug-
gestion is to explicitly enumerate the set of feasible models and then annotate
them with additional information. A toolbox, which is called LogicModel-
Classifier, for the specification and annotation of model pools is available [55].
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[5] René Thomas, Denis Thieffry, and Marcelle Kaufman. Dynamical be-
haviour of biological regulatory networks i. biological role of feedback loops
and practical use of the concept of the loop-characteristic state. Bulletin
of mathematical biology, 57(2):247, 1995.
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