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Summary

The clear distinction between metals and insulators is a well established and appartently simple

concept which can be clarified by studying the behavior of the electrical conductivity. However, a

theoretical description of the processes leading to one of the two extremes is no trivial task. The widely

accepted band structure theory relies on an one-electron picture to characterize the metallic/insulating

behavior of a material. However, in spite of the fact that it can be used to make successful predictions,

this description does not capture one of the essential elements characterizing the nature of an electronic

quantum system, i.e. the electron correlation. The key to the different behaviors is clearly contained

in the correlated many-electron wave function, but the analysis of such a high-dimensional object

in configuration space can be quite cumbersome. Therefore the development of powerful tools to

simplify this task is necessary.

The total position-spread (TPS) tensor, which was derived by Walter Kohn’s theory of the insulating

state, plays a key role in the field of metal-insulator transitions (MITs). This tool provides information

about the electron localization, which is strongly connected to the electrical conductivity. Therefore,

in this work particular attention was paid to the calculation of the TPS tensor of small and extended

systems. Moreover, part of this thesis focuses on a new formalism, which allows the study of spin

mobility and spin entanglement and provides therefore deeper insight into the effects of electron

correlation.

In the framework of quantum information theory (QIT), the quantum entanglement can be quantified

by means of measures such as the von Neumann entropy. Also, the analysis of the elements of the

two-orbital reduced density matrix provides an overview of the complexity of the many-electron wave

function. These insights were used in this work for the analysis of the metallic/insulating character of

a system.

However, in order to perform such investigastions, the problem of achieving an accurate description of

the many-electron wave function has to be dealt with. Despite the tremedous progress in the efficiency

of quantum-chemical methods, the treatement of extended systems using standard approaches is still

a difficult (if not unfeasible) task. Therefore the development and testing of sophisticated, low-scaling

methods is currently the subject of many investigations. In this work, two approaches were employed:

1) the ab-initio density matrix renormalization group (DMRG) approach which, based on a tensor
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product ansatz, provides very precise results and exploits QIT to improve its performance; 2) the

method of increments (MoI) which, using a many-body expansion in terms of localized orbitals,

yields accurate correlation energies. By using both methods on strongly correlated one-dimesional

model systems, we worked on a new formalism of the method of increments which can be used

to describe the whole dissociation curve without inconvenient discontinuities. Finally, aiming to

calculate the total position-spread tensor of extended systems, we worked on the application of the

MoI for quantities other than the correlation energy.



Zusammenfassung

Der deutliche Unterschied zwischen Metallen und Isolatoren ist ein bekanntes und augenscheinlich

einfaches Konzept, das mit dem Verhalten der elektrischen Leitfähigkeit erklärt werden kann. Die

theoretische Beschreibung von Prozessen, die zu einem der zwei Extrema führen, ist jedoch nicht

trivial. Die weithin akzeptierten Bandstrukturtheorie basiert auf einem Einelektronenbild, um den

metallischen/insulierenden Charakter des Materials zu beschreiben. Obwohl es zu vielen erfolgreichen

Vorhersagen führt, beschreibt dieses Model gerade eine der essentiellen Elemente eines elektroni-

sches Quantensystems nicht, die sogenannte Elektronenkorrelation. Der Schlüssel zur korrekten

Beschreibung der verschiedenen Leitfähigkeiten liegt zweifellos in der korrelierten Mehrelektronen-

wellenfunktion. Da die Hochdimensionalität eines solchen Objektes im Konfigurationsraum dessen

Analyse erschwert, wird die Entwicklung von neuen wirksamen Methoden für solche Aufgaben

notwendig.

Ein Analysewerkzeug spielt eine Hauptrolle im Rahmen von Metall-Isolator-Übergängen, der Ge-

samtortsausbreitungstensor (TPS aus dem Englischen total position-spread), der aus Walter Kohns

Theorie des Isolatorzustands abgeleitet wurde. Der TPS Tensor enthält Informationen über die Elek-

tronlokalisierung, die stark mit der elektrischen Leitfähigkeit verbunden ist. Deswegen haben wir

unser Interesse auf die Berechnung des TPS Tensors für kleine sowie ausgedehnte Systeme ausgerich-

tet. Außerdem behandelt ein Teil dieser Arbeit einen neuen Formalismus, der die Untersuchung der

Spinbeweglichkeit und der Spinverschränkung erlaubt, um ein besseres Verständnis von den Effekten

der Elektronkorrelation zu erlauben.

Im Rahmen der Quanteninformationstheorie (QIT), kann die Quantenverschränkung durch Werk-

zeuge wie die von Neumann Entropie quantifiziert werden. Außerdem erhaltet die Analyse der

Elementen von der Zweiorbital reduzierten Dichtematrix Einsicht über die Komplexität der Meh-

relektronenwellenfunktion. Solche Untesuchungen wurden in dieser Arbeit für die Analyse der

metallischen/insulierenden Charakter eines System genuzt.

Allerdings bedürfen solche Untersuchungen eine genaue Beschreibung der Mehrelektronenwellenfunk-

tion. Trotz der gewaltige Forschritte, die immer genauere quantenchemische Methoden hervorgebracht

haben, ist die Behandlung ausgedehnter Systeme mit hohem Aufwand verbunden oder nicht pratikabel.

Deshalb ist die Entwicklung und das Testen von neuen hochentwickelten niedrig skalierenden Metho-
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den ein sehr aktuelles Thema. In dieser Arbeit wurden zwei von solchen Methoden genutzt: 1) die

Dichtematrix Renomierungsgruppe (DMRG), die auf einem Tensorproduktansatz basiert und sehr ge-

naue Ergebnisse erzielt und QIT nutzt; 2) die Inkrementenmethode (MoI aus dem Englischen method

of increments), die durch eine Vielkörper-Entwicklung in Form von lokalisierten Orbitalen, akkurate

Korrelationenergierechnungen erlaubt. Beide Methoden wurden auf stark-korrelierte eindimensionale

Systeme angewandet. Dabei haben wir einen neuen Formalismus der Inkrementenmethode entwickelt,

der gesamte Dissoziationkurven ohne Unterbrechungen beschreiben kann. Um die Berechnung des

TPS Tensors für ausgedehnte Systeme zu ermöglichen, wurde die MoI für diese Große ebenfalls

angewendet.
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Chapter 1

Introduction

Metal-insulator transitions (MITs) are processes that attract particular attention in the condensed-

matter physics community[1–8]. This is because the ability to tune the electrical conductivity

by changing experimental conditions implies countless practical applications. The pursuit of a

complete understanding of the metallic and insulating state has therefore prompted the development

of theoretical descriptions based on first principles[9, 10]. This means understanding how the electron

transport is affected by electron-nuclei interactions and electron-electron interactions when weak

external electric (and/or magnetic) fields are applied. The condition of a small perturbation with

the external field is not essential, but it allows the investigation of conducting properties by making

considerations based on the analysis of the wave function at thermal equilibrium. This is clearly

convenient from a theoretical point of view.

Strictly speaking, the metallic and the insulating states can be meaningfully distinguished only at 0 K.

Indeed at finite temperatures thermal excitations cause the direct current (DC) conductivity σDC of any

material to be finite, even if for practical reasons it can be considered negligible for ‘insulators’[10, 11].

At absolute zero the distinction is stronger since σDC vanishes for an insulator while it is finite for

a metal. Such a behavior for a metallic state is due to the presence of delocalized electronic states

made available by electron-hole excitations at energies immediately above the ground state[10].

However, since the correct description of the electron-hole excitation spectrum is very difficult (if not

impossible) for materials of interest, the general theory considers instead the single-electron excitation

spectrum to investigate conducting properties. This leads to the well established approximation of

the gap criterion[9] according to which the distinctive mark of an insulator is a finite energy gap

∆E = (E(n+ 1)− E(n)) − (E(n)− E(n− 1)) for a system with n electrons. However, this is

only a valid approach if the electron-hole excitations can be decoupled into single-electron excitations,

or in other words if there is no electron correlation. Indeed, for weakly correlated systems where

the driving force of their conducting properties is given by the interaction between electrons and the
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periodic potential defined by the nuclei, the analysis of single-electron excitation spectra allows one

to make successful predictions. In such situations, a satisfactory description of such a spectrum can be

achieved by approximating it with the eigenvalues of an effective one-electron Hamiltonian, that is, via

mean-field approaches such as Hartree-Fock (HF) and density functional theory (DFT)[12–16]. Once

again, through the analysis of the electronic density of states (DOS) and band structure, insulators can

be identified by the presence of a completely filled valence band and a gap in the DOS, while partial

filling is characteristic of a metallic behavior[17–19]. Moreover, through the analysis of the gap size,

one can evaluate whether thermal excitations can promote an appreciable electrical conductivity at

finite temperature, that is, if the material is a semi-conductor[20–23].

The success of such a theory does not only lie in its ability to make such predictions, but maybe more

importantly, in the fact that it allows one to design materials with desired transport properties. For

instance, the understanding of the band structure allows one to enhance the electrical conductivity by

doping the material with specific electron-deficient or electron-rich species[24].

The insulating behavior can be attributed to different phenomena which can be rationalized in terms

of an one-electron picture: 1) as already discussed, band insulators are due to a full valence band and

a (large) energy gap and therefore the absence of free charge carriers; 2) Peierls insulators[25] present

the very same characteristics of the band structure, but the presence of a gap is due to changes in the

lattice structure. A typical example of this is dimerized hydrogen chains. As translational symmetry

is reduced by the formation of dimers, the Brillouin zone shrinks and the half-filled band splits into a

completely filled valence band and an empty conduction band; 3) finally, Anderson insulators[26, 27]

are also due to the interaction of electrons with the periodic potential. In these materials, the presence

of defects in an otherwise periodic potential causes electrons to be localized and therefore prevent

electrical conductivity.

Although the one-electron picture is very successful in many respects, it has to be viewed critically.

Drawing conclusions regarding the DC conductivity, which is a two-electron property, from an one-

electron picture is an approximation that might break down in presence of strong electron correlation.

For instance, gapped systems can behave as superconductors because of the formation of electron

pairs at low temperature[10]. Also, the opposite can be true – a variety of materials, such as transition-

metal oxides, are poor conductors or even insulators despite having a half filled valence band in an

one-electron description[28]. As noted by Rudolf Peierls[29], the strong Coulomb repulsion between

electrons is very likely to be responsible for such a behavior, since it causes a reduced electron

mobility. These strong electron-correlation effects are ignored by the conventional band-structure

model and give rise to a class of insulating materials named Nevill Mott[30–33]. The simplest

successful description of Mott insulators and Mott MITs can be obtained by studying the Hubbard

Hamiltonian[34–36] which includes the most important terms describing Coulomb correlation of

electrons sitting on the same site and the electron hopping between neighbor sites. Although model
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Hamiltonians yield satisfactory qualitative descriptions of such phenomena in many cases, many

effects are neglected, such as inter-site interactions, multiband effects and orbital degeneracy, which

are obviously fundamental for the description of realistic systems[11].

However, disregarding the accuracy of the description of the system, the characterization of the

electron transport should be based on the analysis of the ground state wave function only, according to

a theory of the insulating state, which is independent to the phenomena driving to the vanishing of the

electrical conductivity. Such a theory was proposed by Walter Kohn in his seminal work of 1964[37],

where he proved that the insulating behavior can be attributed to the many-body localization of the

wave function. This means that the wave function of an insulating system can be written as a sum

of many-body Wannier functions which are “localized in disconnected regions of the many-particle

configuration space and have essentially vanishing overlap”[37]. This should not be confused with

the localization of the electron density in real space which can actually be somewhat delocalized in an

insulator[10] (consider for instance covalent insulators).

Much attention has been paid to the analysis of the many-body localization[38–43]. A tool which

allows a quantitative measure of this phenomenon is the localization tensor (LT) introduced by

Raffaele Resta and co-workers in the late 1990s[44, 45]. The LT, which is given by the second-moment

cumulant of the position operator, was shown to be strongly related to the electrical conductivity, since

in the thermodynamic limit (that is infinite size) it diverges for metals, while it converges for insulators.

Moreover, as further discussed by Souza, Wilkens and Martin[46–48], the connection of the LT with

the electrical conductivity was highlighted by its relation with the dielectric polarization which is also

a fundamental index of the metallic/insulating character. Directly connected to the localization tensor

is the total position-spread (TPS) tensor[49, 50] which applies better than the LT to molecular systems

since it is not normalized for the number of electrons. Following the rule of thumb discussed by Resta,

in this work the TPS tensor was applied to strongly correlated one-dimensional systems of different

sizes in order to study its dependence on the system size and predict the metallic/insulating behavior

at the thermodynamic limit. For instance, the TPS was calculated along the dissociation curve of

hydrogen chains, which offer a simple quantum-chemical model for the study of MITs (see Paper m1).

In these systems the electron mobility reduces sensibly when the internuclear distance is stretched,

going from a metallic-like state in the bound regime towards an ensemble of non-interacting atoms

where charge transfer is clearly impossible. Moreover, just as the electron mobility and therefore the

delocalization of the electronic wave function can be studied by means of the TPS tensor, so too can

the mobility of α- and β-spin electrons be analyzed by means of a related tool, the spin-partitioned

(SP)-TPS tensor. This formalism, which allows deeper insight into the electronic wave function, was

introduced and studied in some of the publications composing this work (Papers m1, m2 and M1).

Since the electron mobility is strongly dependent on the electron correlation, a satisfactory description

of the TPS requires the application of accurate quantum-chemical correlation methods, which, however,
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are limited if not unfeasible for extended and periodic systems because of their unfavorable scalings.

Therefore as system size grows, alternative approaches to the standard post-Hartree-Fock methods

have to be followed. Many efforts have been made to develop sophisticated methods which yield very

accurate results for large systems by reducing the Hilbert space according to different strategies. When

dealing with periodic systems, local approaches[51–67] are among the most effective methods because

of the locality of electron correlation, which can be exploited by choosing a proper representation

of the wave function in terms of localized one-electron functions. In this work, among such local

approaches, particular focus was given to the method of increments (MoI)[64–68] (see Papers M3-5),

which yields accurate correlation energies by employing a many-body expansion in terms of localized

orbitals. However, the standard formalism of the method of increments cannot provide a smooth

ground state dissociation curve. A corrected formalism to do so was then developed and tested in this

work (see Paper M5). This was critical to describe the change occurring in the systems along the

dissociation curve. Furthermore, although the majority of works on this topic focus on the calculation

of the correlation energy[69–79], the MoI scheme can be extended in principle to any observable.

This was shown by Dolg et al.[80, 81] who applied the MoI to the calculations of polarizabilities. In

the present work a similar many-body expansion was used for the calculation of the TPS tensor via

the MoI.

By using a very different ansatz the density matrix renormalization group (DMRG)[82–91] approach

also offers the chance to reduce the computational cost and achieve very accurate results for extended

systems. DMRG calculations were then used as a benchmark for testing the applicability of the

different formalisms of the method of increments. Furthermore, by applying DMRG, the entanglement

analysis achievable by quantum information theory (QIT)[92–101] was exploited for studying MITs

(see Paper M2). In particular the metallic/insulating character was connected to differences in

the decay of the orbital entanglement with distance. Such insight was possible by analyzing the

von Neumann entropy and the elements of the two-orbital reduced density matrix which embody

information regarding transition probabilities. Moreover, the changes of the block von Neumann

entropy with system size were connected to a vanishing energy gap in model systems.

Finally, since entanglement is a key property exploited in the matrix product state (MPS) formalism[90,

91, 102–106] by DMRG, the analysis based on QIT was used to study the effect of a particular one-

electron basis on the effectiveness of the DMRG method. As discussed, localized orbitals are less

entangled than canonical orbitals and this leads to a substantial improvement of DMRG performance.

This doctoral dissertation is structured as follows: in Chapter 2 a brief insight into the many-electron

problem and the standard quantum-chemical electron correlation methods is provided; local methods

are introduced in section 2.3 with particular focus on the different formalisms of the method of

increments; section 2.4 is dedicated to the density matrix renormalization group, the role played

by quantum information theory in DMRG and the entanglement analysis; the chapter concludes
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by depicting a mathematical description and highligthing the properties of the TPS tensor and its

spin partition (section 2.5); in Chapter 3 a brief description of the systems under study is given. As

anticipated, this work focuses on the theoretical investigation of strongly correlated one-dimensional

systems. These were chosen to simplify the complexity of the problem and allow the testing of

methods under development and tools for the analysis of correlated wave functions; Chapter 4

provides an overlook of the results presented in the scientific publications constituting this work,

which are reported in Chapter 5; this dissertation concludes with an outlook presented in Chapter 6.





Chapter 2

Theoretical background

2.1 The many-electron problem

Before diving into the description of the different quantum-chemical methods that have been employed

in this work, it is necessary to define a series of terms and concepts for understanding what follows. It

is however assumed that the reader is already familiar with key concepts of quantum mechanics such

as the idea of wave function, operators and the meaning of the Schrödinger equation, as well as with

the Dirac notation.

Let us start by considering the time-independent Schrödinger equation (TISE)[107] for a general

molecular system:

ĤTΨ({xk}, {ξκ}) = ETΨ({xk}, {ξκ}) (2.1)

The solution of this eigenvalue problem allows us to evaluate the discrete energy values ET accessible

to the system. The full Hamiltonian ĤT and the wave function Ψ of an isolated molecular system

depend both on the electron coordinates {xk} and the nuclear coordinates {ξκ}. As the reader should

keep in mind, these involve both spatial and spin coordinates. We will refer to the electronic and

nuclear spatial coordinates as {rk} and {ρκ}, respectively. Spin variables are indicated as {wk} for

electrons and {ωκ} for nuclei.

In our quest for a solution of the TISE we will first apply a brilliant approximation named after Max

Born and Robert Oppenheimer[108]. The Born-Oppenheimer approximation (BOA) takes advantage

of the fact that the electrons move so much faster than the nuclei that the latter can be considered

frozen in comparison to the electronic motion. This adiabatic approximation allows us to factorize

the wave function as Ψ({xk}, {ξκ}) = Φ({xk}){ξκ}Ξ({ξκ}) where Φ and Ξ are the electronic and

nuclear wave function, respectively. Since the Hamiltonian can be also split into an electronic and
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nuclear contribution (ĤT = Ĥe + ĤN), we can define an electronic TISE:

ĤeΦ({xk}){ξκ} = EeΦ({xk}){ξκ} (2.2)

This way the BOA leads to a tremendous simplification of Eq. 2.1, since one can focus on the

electronic wave function only, in order to calculate the electronic contribution Ee to the total energy

ET. Moreover, because of this adiabatic approximation, the nuclei have vanishing kinetic energy

in the electronic TISE. Therefore only the nuclear repulsion VN contributes to the potential energy

within the Born-Oppenheimer approximation.

As it can be seen from Eq. 2.2 Φ depends parametrically on the nuclear coordinates, which have

then to be defined before attempting to solve the electronic Schrödinger equation. This means that

we can calculate a set of electronic energy eigenvalues for any specified molecular structure. The

multidimensional surface describing the dependence of one eigenvalue ET on the nuclear coordinates

takes the name of potential energy surface (PES). Although it is important to stress the fact that the

PES is an artifact caused by the Born-Oppenheimer approximation, it is a major tool in quantum

chemistry since it often allows us to understand chemical processes with a comprehensive description.

All methods that will be described in the following sections attempt to solve the electronic time-

independent Schrödinger equation by taking advantage of the BOA.

One final consideration has to be made regarding the nature of the electronic Schrödinger equation.

As already mentioned, the electronic variables {xk} involve both spatial {rk} and spin variables

{wk} which can be decoupled so that xk = {rk, wk}. A widely employed approximation allows

us to omit the spin dependency of the Hamiltonian, which means a non-relativistic Hamiltonian is

considered. Relativistic effects which are embodied by the Dirac equation become important when

heavy atoms are involved and/or when spin orbital coupling effects need to be described in general.

In this work we will not consider such effects, but we will rather always employ a non-relativistic

electronic Hamiltonian. In atomic units this has the form

Ĥe = −1

2

∑
k

∇2
k −

∑
k

∑
κ

Zκ

|rk − ρκ|
+

1

2

∑
k

∑
j ̸=k

1

|rk − rj |
(2.3)

where Zκ is the charge of the κth nucleus. The strong electron-electron Coulomb repulsion (third

term in Eq. 2.3) causes the electronic motion to be strongly correlated and prevents us from exactly

factorizing Φ in terms of one-electron functions. Therefore, despite the simplifications produced by

the Born-Oppenheimer approximation and by the use of a non-relativistic Hamiltonian, the electronic

TISE is still impossible to solve exactly. This constitutes the many-electron problem, which is

probably the main challenge of quantum physics and chemistry. We will explore different methods to

obtain approximate solutions for Eq. 2.2 in the following sections, but it is worthwhile to make some
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further considerations about Φ which will allow us to evaluate a proper ansatz first. To do so we will

analyze the properties that it has to satisfy and describe the nested concepts of quantum states, energy

levels, configurations and orbitals.

As mentioned, an (in principle infinite) set of energy eigenvalues Ee can be achieved by solving the

electronic Schrödinger equation. These energy values, however, are not sufficient to fully define

the state of the system and additional information is required. We can understand this in analogy to

the concept of thermodynamic state, which can be fully identified only by the measuring a suitable

set of state functions, such as pressure, temperature, volume, etc. In the very same way, in order to

unequivocally define a quantum state, one requires the knowledge of a suitable set of observables.

Since in quantum mechanics, in order to simultaneously measure different observables, the respective

operators must commute with each other, it should be clear that what we are looking for is a complete

set of commuting operators (CSCO)[109, 110]. Since we have already defined one of these operators,

that is, the Hamiltonian, we need to find operators that commute with it and with each other.

In a general molecular system described by a non-relativistic Hamiltonian, the CSCO are given by

the elements of the corresponding symmetry group and the eigenvalues of Ŝ2 and Ŝz spin operators,

s(s+1) and sz . In other words, the knowledge of the irreducible representation (IRREP) Γ according

to which the wave function transforms as well as the spin quantum numbers s and sz of the full system

and the corresponding energy eigenvalue gives us full information about the quantum state of the

system.

Because of spatial and spin symmetry different states are energetically degenerate. In particular for a

specified s quantum number, 2s+1 degerate states with sz = s, s−1, · · · ,−|s−1|,−s are expected.

Similarly, states transforming according to a m-dimensional IRREP will be part of a m-fold set of

degenerate states. All states which are degenerate as a consequence of this relations will constitute an

energy level, which according to the general convention will be labeled as 2s+1Γ.

It has to be underlined that atoms and linear molecules are special cases since their CSCOs comprehend

additional operators. In particular for atoms, because of their spherical symmetry, the squared total

electronic orbital angular momentum L̂2 and one of its components (in general the z component

L̂z is considered) should be defined. For linear molecules instead the net electronic orbital angular

momentum along the bond axis has to be considered.

Besides allowing us to define correctly a quantum state, the knowledge of these properties will help

when writing a proper ansatz for the electronic wave function. Since an analytical form of Φ cannot

be achieved, we can write the exact wave function as a linear combination of a proper complete set of

n-electron functions {ϕi}:

|Φ⟩ =
∑
i

ci |ϕi⟩ (2.4)
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Knowing the properties that Φ must satisfy allows us to make a mindful selection of {ϕi}. Indeed,

we can safely state that the corresponding expansion coefficients ci will not vanish if they are

eigenfunctions of the CSCO with the same eigenvalues as Φ. We require, therefore, an expression for

these ‘building blocks’ of the wave function, which respect these properties.

Maybe the most intuitive expression for these n-electron functions is the product of n one-electron

functions {χµ}, i.e. a Hartree product. This form however does not respect one further property of

the electronic wave function, that is, that it must be antisymmetric with respect to the exchange of any

two electrons. In formulas:

Φ(x1 · · ·xp · · ·xz · · ·xn) = −Φ(x1 · · ·xz · · ·xp · · ·xn) (2.5)

The antisymmetrized products of one-electron functions are named after John C. Slater, who in 1929

introduced the idea of using determinants in order to describe the wave function[111], even if such

form had already been employed by Werner K. Heisenberg[112] and Paul Dirac[113]. A Slater

determinant (SD), which by definition respects the required antisymmetry and consequently the Pauli

principle, has the form:

|ϕSD⟩ =
1√
n!

∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) · · · χn(x1)

χ1(x2) χ2(x2) · · · χn(x2)
...

...
. . .

...

χ1(xn) χ2(xn) · · · χn(xn)

∣∣∣∣∣∣∣∣∣∣∣
(2.6)

It is often the case that a single Slater determinant might not be an eigenfunction of all CSCO.

However by applying symmetry, proper linear combinations of Slater determinants can always be

made which yield a proper set of {ϕi}. We will refer to them as configuration state functions (CSFs).

The one-electron functions {χµ} are denoted as spin orbitals, a term that derives from analogy with

the one-electron functions which are exact solutions of the TISE for the hydrogen atom. For a

non-relativistic Hamiltonian, spin orbitals can be factorized in terms of a spatial function and a spin

function which can assume two values only, corresponding to spin-up (α) or spin-down (β):

χµ(x) = φν(r)σ(w) with σ(w) = α, β (2.7)

The spatial orbitals (or simply orbitals) {φν} can then host up to two electrons with opposite spin and

are often used in many formalisms instead of spin orbitals.

By choosing a specific distribution of n electrons into orbitals, we can identify one electronic configu-

ration of the molecular or atomic system. Although arguments based on electronic configurations

are often used to make simple interpretations of chemical phenomena, we should keep in mind that
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they are based on a one-electron description and they should never be confused with the concept of

electronic state.

To conclude, a set of one-electron functions is required in order to construct all possible Slater

determinants and in turn CSFs and the exact wave function through linear combinations. Before

describing how to obtain the ‘best’ possible set of orbitals, we must first introduce a further keystone

concept of quantum chemistry which is used in many methods to approximately solve the TISE. That

is the variational principle. This states that for any trial-approximated ground-state wave function Φ̃0,

the expectation value of the Hamiltonian is always larger than or equal to the energy of the ground

state, E0:
⟨Φ̃0| Ĥe |Φ̃0⟩
⟨Φ̃0|Φ̃0⟩

≥ E0 (2.8)

We will see in the next section how the presence of this lower boundary for the energy is exploited in

different quantum-chemical methods, to which we will refer as variational methods. As stated above,

Eq. 2.4 yields the exact wave function if a complete set of n-electron functions is used. This means an

infinite set, which in turn requires an infinite amount of one-electron functions, which is unfeasible

for obvious reasons. Any wave function obtained by applying a truncation in Eq. 2.4 will respect the

variational principle (Eq. 2.8).
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2.2 Standard quantum-chemical methods

2.2.1 Hartree-Fock

Considering what we have explained so far, it should be clear how the lowest level of approximation

for an electronic wave function can be achieved with a single CSF. The method developed by Douglas

Hartree and Vladimir Fock at the end of the 1920s[114, 115] is based on such an approximated

ansatz of the wave function and exploits a self-consistent algorithm which minimizes the energy

by optimizing the occupied orbitals. The cornerstone of the Hartree-Fock method is that it defines

an effective one-electron Hamiltonian, the Fock operator, whose eigenfunctions are the canonical

orbitals. In this brief description of the HF method, we will use spin orbitals. However, the reader

should note that an analogous formalism can be derived by using spatial orbitals and imposing spin

orbitals corresponding to the same φ(r) to be degenerate. This leads to the restricted HF (RHF). In

the unrestricted HF (UHF)[116] further degrees of freedom are added, by allowing all spin orbitals to

optimize independently.

The Fock equations

In the following, for sake of simplicity we will consider a CSF consisting of a single Slater determinant.

We will start by the expression of the expectation value of the energy for a SD of the form of Eq. 2.6

with orthonormal spin orbitals:

ESD =
∑
k

⟨χk|ĥ|χk⟩+
∑
k

∑
j ̸=k

⟨χkχj |ĝ|χkχj⟩ − ⟨χkχj |ĝ|χjχk⟩

ĥ = −1
2∇

2
k −

∑
κ

Zκ
|rk−ξκ|

ĝ = 1
|rk−rj |

(2.9)

where the summation indices k and j run over the spin orbitals present in the Slater determinant.

Because of the variational principle, ESD has as lower bound the exact energy E0. We can therefore

minimize it with respect to small variations of the spin orbitals under the constraint of mutual

orthogonality. This can be achieved by use of the Lagrange multiplier method:

∂ESD

∂χk
− ∂

∂χk

∑
k

∑
j

λkj(δkj − ⟨χk|χj⟩) = 0 (2.10)

where the scalars λkj are the Lagrange multipliers and δkj is a Kronecker-delta. By solving the set of

n equations defined by Eq. 2.10 one obtains:

F̂|χk⟩ =
∑
j

λkj |χj⟩ (2.11)
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where F̂ is the Fock operator. There always exists a proper unitary transformation of the orbitals

{χk} → {χ̃k} which allows us to express this equation as:

F̂|χ̃k⟩ = εk|χ̃k⟩ (2.12)

The Fock equation, Eq. 2.12, is of extreme importance, because it states that if the wave function

is described by a single determinant ansatz, there exists a set of optimal orthonormal orbitals {χ̃k}
which minimize the energy and have the incredible property of being eigenfunctions of an effective

one-electron Hamiltonian, F̂, with eigenvalues εk.

In order to understand how the optimization works, it is worthwhile to describe first the structure of

the Fock operator, which is generally split into three terms, the one-electron operator ĥ and the two

electron Coulomb Ĵ and exchange K̂ operators:

F̂ = ĥ+ Ĵ+ K̂ (2.13)

where the latter two operators depend on the orbitals themselves:

Ĵ =
∑
j

Ĵj with Ĵjχ̃k =

∫
χ̃∗
j (x

′)
1

|r′ − r|
χ̃j(x

′)χ̃k(x)dx
′dx (2.14)

K̂ =
∑
j

K̂j with K̂jχ̃k =

∫
χ̃∗
j (x

′)
1

|r′ − r|
χ̃k(x

′)χ̃j(x)dx
′dx (2.15)

Because of this dependence the Hartree-Fock method requires a self-consistent field (SCF) approach.

This means that we will start from an approximated form for {χ̃k}, construct the Fock operator and

solve the Fock equations to determine a new set of spin orbitals. New iterations are then repeated

until convergence is reached.

One-electron basis sets and the Roothan-Hall equations

Clearly, in order to optimize the orbitals by solving the Fock equation, a set of degrees of freedom

needs to be selected first. Very accurate results can be obtained by the use of numerical methods

which allow the optimization of the orbitals on a three-dimensional grid which discretizes the {rk}
which are continuous in R3. However, in order to reduce the computational cost, most methods

exploit analytical basis sets. This means that each orbital is expanded as a linear combination of a

set of functions which constitute a one-electron basis set and the expansion coefficients are used as

optimization parameters. Different functions can be employed, but because they strongly simplify the

evaluation of one- and two-electron integrals, Gaussians are the widest used in quantum-chemical

methods. The use of such functions leads us to another key point of quantum chemistry, that is the use



14 Theoretical background

of a linear combination of atomic orbitals (LCAO) as an ansatz for molecular orbitals. These atomic

orbitals can in turn be described by linear combinations of atom-centered Gaussians.

By expanding the canonical orbitals in terms of a one-electron basis set, the Fock equations can finally

be expressed in matrix form, which constitutes the Roothan-Hall equation[117, 118]:

FCMO = SCMOE (2.16)

In Eq. 2.16, F is the Fock matrix, S the overlap matrix, the CMO matrix contains the coefficient used

to expand the molecular orbitals in term of the one-electron basis set and E is the diagonal matrix

whose elements are the orbital energies εk.

Final considerations

The direct consequence of employing a single Slater determinant is that a mean field approximation is

implicitly introduced. Indeed, in our attempt to factorize the n-electron wave function in terms of n

one-electron functions, we are implying that the probability of finding one electron in a particular

region of space is independent of the position of the electrons with the opposite spin, that is they are

uncorrelated. Indeed, the Coulomb repulsion between electrons is averaged since the Fock operator

considers the interaction between each fermion and the density created by the others. The missing

contribution to the energy of the system is referred to as correlation energy.

We have to stress the fact, however, that although the HF method is generally referred to as an

uncorrelated method, this is misleading since electrons with same spins are actually partially correlated

thanks to the Pauli principle, which is taken into account by the Slater determinant ansatz itself. This

is described by the exchange integrals. Nevertheless, we will refer to correlation energy Ecorr when

describing the difference between the exact energy and the Hartree-Fock energy.

In order to calculate the correlation energy, we will apply more sophisticated methods using the

Hartree-Fock wave function as the starting point. Indeed, as already mentioned in section 2.1, we

will attempt to approximate the exact wave function by generating all (or as many as) possible

configuration state functions by using the canonical orbitals obtained via the HF method. For this

reason, these methods are generally referred as post-Hartree-Fock methods.

Finally, we want to stress the fact that the dimension D of the one-electron basis set corresponds to

the number of orbitals that can be generated, but HF optimizes only the n spin orbitals included in

Slater determinant. Therefore a distinction emerges between the n occupied canonical spin orbitals

and the D − n virtual spin orbitals. Although the latter are an artifact of the use of a one-electron

basis set and they have no real physical meaning, the difference between the eigenvalue of the lowest

unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) are often

used as an approximated evaluation of the excitation gap according to the Koopmans’ theorem[119].
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Moreover, the virtual orbitals play a fundamental role in post-Hartree-Fock methods. Indeed, once

the Fock equations have been solved, one can construct a variety of configuration state functions

just by defining excitations from the ground CSF into the virtual space. The so generated n-electron

functions have the advantage of being orthogonal to each other and span a subspace of the infinite

Hilbert space where the exact wave function is defined, the Fock space.
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2.2.2 Configuration interaction

In light of the explanations of section 2.2.1, it should be clear how we can approximately expand the

exact wave function as in Eq. 2.4, where all {ϕi} are constructed by starting from the HF CSF by

performing excitations into the virtual space. If we insert this ansatz in the electronic TISE we obtain:

Ĥe |Φ⟩ = Ee |Φ⟩ (2.17)∑
i

ciĤe |ϕi⟩ = Ee

∑
i

ci |ϕi⟩ (2.18)

By multiplying both sides for ⟨ϕj | and exploiting orthonormality relations:

∑
i

ci ⟨ϕj | Ĥe |ϕi⟩ = Eecj (2.19)

This equation can be expressed in matrix form (Secular equation):

HC = EC (2.20)

where H is the Hamiltonian matrix in the {ϕi} basis, C the coefficient matrix and the diagonal matrix

E contains the eigenvalues of the electronic Hamiltonian.

It has to be underlined that H is actually a very sparse matrix. Indeed, since the Hamiltonian is

a two-electron operator, according to the Slater-Condon rules[111, 120] the only non-vanishing

elements Hij are those where ϕi and ϕj differ by single and double excitations. A further element

of sparseness arises as a direct consequence of employing canonical orbitals. Indeed, since they are

eigenfunctions of an effective one-electron operator, the Fock operator, it can be shown that any

element which involves the Hartree-Fock CSF and a single excited CSF is also zero. This property is

described by the Brilluoin theorem[121].

Once the elements of H are constructed employing one-electron and two-electron integrals, the only

remaining task is to diagonalize this matrix in order to obtain all possible eigenvalues of Ĥ. The

method that we have described so far goes under the name of Full Configuration Interaction (FCI) and

if applied would give us the best achievable answer to the many-electron problems, within the limit of

the one-electron basis set employed and the BOA, of course. However, despite the relatively simple

construction of the Hamiltonian matrix, its factorial growth with system and one-electron basis set

size soon makes storage and diagonalization unfeasible. This frustrating reality of the many-electron

problem led to the development of a variety of faster and more efficient approaches which overcome

the dimensionality problem. We will begin by analyzing the most fundamental of these which consists

of a truncation of the configuration interaction (CI) wave function (Eq. 2.4) and will then discuss more
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sophisticated methods, such as coupled cluster and the more recent density matrix renormalization

group, describing both their advantages and disadvantages.

Truncated CI

The most obvious solution for reducing the size of the Hamiltonian matrix is to cut down the amount

of CSFs involved by including only low-level excitations, such as single and double excitations.

Indeed, these are likely to be the ones which affect the character of the wave function the most.

Moreover, since only CSFs related by double excitations yield non-vanishing elements it seems also

more reasonable that they should be the most important for inclusion in the expansion of the wave

function. Indeed, from Eq. 2.19, if a pre-normalized wave function is considered (cHF = 1), the FCI

correlation energy can be expressed as:

Ecorr =
∑
a,b
α,β

cαβab ⟨ϕHF| Ĥe |ϕαβ
ab ⟩ (2.21)

where |ϕαβ
ab ⟩ is the CSF obtained by double excitation from the HF occupied orbitals a and b into

the virtual orbitals α and β. Independently of the level of truncation of the CI wave function, the

correlation energy will be expressed as in Eq. 2.21. However, it should be clear that the values of the

coefficient will be strongly affected, although the matrix elements of Ĥ will not. Nevertheless, for

many small systems a CI singles and doubles (CISD) will give an acceptable level of approximation

with respect to FCI, as long as we are not interested in describing dissociation processes. Indeed,

truncated CI wave functions suffer a lack of a very important requirement of the electronic wave

function, size-extensivity[122, 123]. This is the formal condition of correct scaling that a method

should satisfy. To understand this, let us consider the wave function describing a collection of

non-interacting fragments. The corresponding energy should be equal to the sum of the energies of

the individual fragments. In other words, a method is size-extensive, if the calculated energy scales

linearly with the number of electrons in the non-interacting limit.

The apparently simple requirement of size-extensivity is not easy to satisfy if a truncated CI is

employed. Say that a single fragment can be described by means of CISD. In this case, in order to

achieve the same level of approximation for describing two non-interacting fragments, up to quadruple

excitations should be included. The error caused by lack of size-extensivity might be rather large and

becomes more and more important as the system size increases. A way of correcting truncated CI

results is to apply an ad-hoc correction to the energy ∆EQ given by the Davidson correction[124, 125],

calculated as:

∆EQ =
(1− c2HF)

c2HF

(ECISD − EHF) (2.22)
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As soon as the weight of the HF configuration cHF is large (that is, the correction is small), this

approach yields reliable results. However, far more sophisticated approaches exist that include size-

extensivity in the ansatz of wave function without need for further corrections. Among those, probably

the most efficient approach that allows us to achieve FCI-like size-extensive results is the coupled

cluster.
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2.2.3 Coupled cluster

As we have seen, the linear expansion used so far to describe the wave function leads to a system of

linear equations involving the energy and the expansion coefficients (Eq. 2.19). In order to reduce to

number of equations a truncated CI has to be employed, but this leads to a lack of size-extensivity.

We will see in this section how, by employing a different ansatz, the coupled cluster method allows us

to solve the TISE without this drawback by employing a set of non-linear equations whose size is the

same as of a truncated CI.

Let us start by rewriting the FCI wave function in terms of excitation operators T̂αβ...ω
ab...z , where ab . . . z

are occupied orbitals in the HF CSF, ϕHF, and αβ . . . ω are virtual orbitals. By acting on ϕHF, these

operators generate excited CSFs ϕαβ...ω
ab...z multiplied by the respective amplitudes1 tαβ...ωab...z yielding an

expression equal to Eq. 2.4:

|ΦFCI⟩ =
(
1 +

∑
T̂α
a +

∑
T̂
αβ
ab +

∑
T̂
αβγ
abc + · · ·

)
|ϕHF⟩ (2.23)

= |ϕHF⟩+
∑

tαa |ϕα
a ⟩+

∑
tαβab |ϕαβ

ab ⟩+
∑

tαβγabc |ϕαβγ
abc ⟩+ · · · (2.24)

The key point of couple cluster (CC)[126–132] theory is the use of a different ansatz where the cluster

operator T̂ =
∑

T̂
αβ...ω
ab...z does not act linearly, but rather exponentially on ϕHF. As one can easily

verify, it is remarkable that the resulting expression involves the same CSFs included in the FCI wave

function, no matter which level of excitations is included in T̂. Consider for instance only single

excitations:

|ΦCCS⟩ = eT̂ |ϕHF⟩ (2.25)

=

(
1 + T̂ +

1

2!
T̂2 +

1

3!
T̂3 + · · ·

)
|ϕHF⟩ (2.26)

=

(
1 +

∑
T̂α
a +

1

2!

∑
T̂α
a T̂

β
b +

1

3!

∑
T̂α
a T̂

β
b T̂

γ
c + · · ·

)
|ϕHF⟩ (2.27)

Even at the CC singles (CCS) level, the Taylor expansion of the cluster operator creates all singles,

doubles, triples, etc. which insure a size-extensive wave function. In this particular case where the

amplitudes of the higher excited CSFs depend on those of the singles (for instance tαβab = tαa t
β
b ), the

higher excitations are called disconnected. Because of this, the flexibility of ΦCCS is not comparable

to ΦFCI, but the inclusion of connected doubles T̂αβ
ab and triples T̂αβγ

abc into the cluster operator is in

general enough to achieve a results comparable to FCI.

Despite the fact that, because of the exponential ansatz, size-extensivity is preserved independently of

the truncation of the cluster operator, so far this does not seem to have brought any advantage in the
1In coupled cluster formalism we refer to the expansion coefficients as amplitudes.
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solution of the TISE:

Ĥee
T̂ |ϕHF⟩ = Eee

T̂ |ϕHF⟩ (2.28)

If we had to solve it in an analogous way to Eq. 2.19, that is by projecting on all the ⟨ϕαβ...ω
ab...z | we

would run into an infinite series. Instead, the mathematics of exponentials allows us to obtain an

alternative set of equations by means of the Baker-Campbell-Hausdorff (BCH) formula:

e−T̂Ĥee
T̂ = Ĥe + [Ĥe, T̂] +

1

2!
[[Ĥe, T̂], T̂] +

1

3!
[[[Ĥe, T̂], T̂], T̂] +

1

4!
[[[[Ĥe, T̂], T̂], T̂], T̂] (2.29)

According to the BCH formula, the transformed Hamiltonian e−T̂Ĥee
T̂ can be exactly expressed by a

finite series which is at the worst quartic for T̂. By employing the relation ⟨ϕHF| e−T̂ = ⟨ϕHF|, this

allows us to obtain a new set of equations for the amplitudes, by projecting on the connected excited

CSFs. In the case of CCSD (CC singles and doubles), the so obtained coupled cluster equations are:

⟨ϕHF| e−T̂Ĥee
T̂ |ϕHF⟩ = Ee (2.30)

⟨ϕα
a | e−T̂Ĥee

T̂ |ϕHF⟩ = 0 (2.31)

⟨ϕαβ
ab | e

−T̂Ĥee
T̂ |ϕHF⟩ = 0 (2.32)

It is remarkable that the energy appears in only the first of the CC equations. This decoupling allows

us to solve the other equations first in order to evaluate the amplitudes and then use them to calculate

the energy.

CCSD constitutes a good compromise between computational cost and accuracy. In those situation

where the description of triples or higher excitation become necessary, instead of employing CCSDT or

CCSDTQ, one can achieve excellent solutions by means of a computationally cheaper approach. This

consists of using the doubles’ amplitudes to calculate approximate second order triples’ amplitudes

via perturbation theory, which are in turn used to derive corrections to the energy. The described

method is referred to as CCSD(T)[133–135] and is maybe the most commonly employed coupled

cluster method.

Final considerations

We conclude the description of CC with some final comments. As the reader might have already

noticed, the coupled cluster equations are not derived by invoking the variational principles. This is

because minimizing the expectation value of the energy ⟨ϕHFe
T̂†

ĤeeT̂ϕHF⟩
⟨ϕHFeT̂

†
eT̂ϕHF⟩

would lead to an intractable

set of nonlinear equations. Coupled cluster is not a variational method and although the method is

very accurate, it might yield energy lower than FCI. The drawback of the CC approach is however not

the lack of variationality, but rather the fact that it is a single-reference method, that is, it uses the HF
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CSF as a reference. Therefore coupled cluster fails in those situations where HF does not yield a good

description of the system. As we will see in section 2.2.4, in these situations references consisting of

more CSFs (multiconfigurational) have to be obtained, so that multireference methods can be applied.

Following the assumption that a large multireference character implies large values of the amplitudes

of excited determinants, useful diagnostics based on the analysis of such coefficients give the chance

of evaluating whether the CC results can be considered reliable. In particular the T1 diagnostic[136]

considers the norm of the single excited vector |t(1)| normalized by the number of electrons n:

T1 =
|t(1)|√

n
(2.33)

Coupled cluster results are in general considered reliable is T1 is smaller than 0.02-0.025.
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2.2.4 Multiconfigurational self-consistent field and multireference methods

As already stated, single-reference methods work reliably for all those situations where a single CSF is

a physically acceptable minimal description of the wave function. This however is often not the case.

Typical examples are open shell atoms with valence p or d orbitals for which the ground configuration

gives rise to a variety of states each composed of a linear combination of CSFs. All the orbitals

constituting these Slater determinants need to be optimized together which, as we know, HF is not

capable of.

The approach capable of dealing with such a problem is the multiconfigurational self-consistent field

(MC-SCF) method. The expression of the MC-SCF wave function is not different from the CI wave

function (see 2.4), but the expansion spans a limited part of the Fock space. The n-electron functions

constituting a MC-SCF wave function are constructed by performing excitations within a particular

set of one-electron functions, the active orbitals. MC-SCF does not involve a direct diagonalization of

the Hamiltonian, but rather a SCF cycle which invokes the variational principle in order to minimize

the energy by optimizing both the CI coefficients and the active orbitals.

The one-electron picture that emerges from the HF method is completely lost in such a treatment.

Indeed, the optimized active orbitals are not eigenfunctions of an effective Hamiltonian such as the

Fock operator, and their associated energy does not have a particular physical meaning as for the

canonical orbitals. However, these functions are extremely important since they diagonalize the

one-electron density matrix and therefore allow us to write the wave function in the most compact

form possible, by employing the smallest possible number of CSFs. These functions are called natural

orbitals and, because of this intrinsic property, they play a key role in multireference (MR) calculations

performed on top of a MC-SCF wave function.

Obviously, a multiconfigurational wave function contains some of the electron correlation. Even if a

well marked distinction is hard to make, the correlation energy described by including the necessary

nearly-degenerate CSFs at the MC-SCF level of theory is called static in contrast to the dynamical

correlation. The latter is the correlation of the movement of electrons and can be described by methods

such as configuration interaction and coupled cluster.

It of course clear, that since both CI and orbital coefficients are optimized, only a restricted amount of

configurations can be included in the calculations. Various choices can be made concerning the active

space employed in a MC-SCF and often a careful analysis of the chemical problem has to be made in

advance to choose the orbitals to include, making MC-SCF often difficult to apply. The complete

active space (CAS)-SCF[137–139] constitutes maybe the widest employed approach since it reduces

the work needed to select the active orbitals and constructs all possible CSFs which can be generated

with those. If the CAS is not feasible, other choices might be necessary for reducing the active space.

For example, the active orbitals can be divided into different subsets and restrictions on the order of
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excitations from/to some of these can be forced. This approach is referred to as restricted active space

(RAS)-SCF. In the general nomenclature CAS(n,m) or RAS(n,m) indicate MC-SCF calculations

involving n active electrons in m active orbitals.

So far we have considered MC-SCF calculations applied in order to minimize the energy of the ground-

state only. However, it is often the case that multiple states have to be optimized simultaneously.

Indeed, the natural orbitals obtained by a MC-SCF performed on a single state only might not be

a proper choice for successive multireference calculations on excited states. This is also a problem

that has to be dealt with in systems presenting a large number of low energy states such as d-metal

complexes, even if one is interested in the ground state only. The state-averaged (SA) MC-SCF

offers to chance of performing such a mutual optimization by minimizing a properly defined energy

functional which depends on the energy of all considered states. In a sense SA natural orbitals are a

better mathematical choice for successive MR calculations, which are necessary to include dynamical

correlation and obtain meaningful approximations to energy eigenvalues.

In analogy to CI calculations performed on top of HF wave functions, multireference CI (MRCI)[140,

141] calculations can be performed on top of MC wave functions. Although the equations involved

become more cumbersome, the concept behind the methods is the same. This means that we will

construct single and double (or higher) excited determinants from the reference CSFs which constitute

the MC wave functions. As in the case of single-reference CI, size-extensive corrections such as

Davidson’s have to be applied by employing algorithms similar to those seen in section 2.2.2. In

this work, we applied MRCISD (MRCI singles and doubles) and a more sophisticated size-extensive

MRCI approach, the averaged coupled pair functional (ACPF)[142]. This takes care of the lack of

size-extensivity by inserting corrections in the diagonal elements of the Hamiltonian matrix before

diagonalization. Finally, the CC equations can be applied on top of a multiconfigurational wave

function, too[143–145]. However, the equations to be solved are rather cumbersome and hard to

handle. Therefore MRCC methods have only been implemented in a few codes so far.
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2.2.5 Considerations about standard quantum-chemical methods

Scaling

In the discussion of standard quantum-chemical methods the reader was often warned that according

to system size N, some methods are unfeasible. A desirable property of a method would be a low

order (or even linear) scaling, that is, the computational cost should increase at low rate as the number

of electrons and basis functions grows. For instance the HF method, for which the bottleneck is given

by the integral storage, scales upmost as O(N4), while correlation methods have more unfavourable

scalings ranging from O(N5) for MP2 (second-order Møller-Plesset perturbation theory[146]), O(N6)

for CCSD and O(N7) for CCSD(T) up to O(N!) for FCI.

Smart implementations, such as the use of density fittings[147, 148], can reduce such scalings and

what were considered impossible problems a few decades ago are now routine calculations, thanks to

the continuous advances in computer science. Nevertheless, when dealing with extended systems,

wave function correlation methods are often still not a feasible option and DFT is generally employed

instead. Therefore there is great interest in the development of new wave-function based approaches

to overcome this dimensionality issue. We will describe two such approaches in the next sections, the

method of increments, which is one variant of the local correlation methods, and the density matrix

renormalization group.

Size-consistency

Some further considerations have to be made about a concept which is often confused and used

interchangeably with size-extensivity, size-consistency. While as already described in section 2.2.2,

size-extensivity refers to the correct scaling of the energy with the number of electrons, the concept

of size-consistency, introduced by Pople[149], is connected to the description of fragmentation.

Stated clearly, it is the requirement that a dissociation curve of a specific state be described without

discontinuities using the same ansatz for the wave function for any molecular structure. For instance, a

ground-state dissociation curve is described in a size-consistent manner at the HF level if the employed

ground-state CSF involves the same orbitals from the bound regime till dissociation.

In contrast to size-extensivity, size-consistency is not a property of the method itself, but depends

rather on the process under study. As an example, RHF is a size-extensive method, but depending

on the process it might not yield size-consistent results. Therefore single-reference methods can be

affected by a lack of size-consistency if they are performed on top of a size-inconsistent HF reference.

On the other hand, this problem is not in general encountered for multireference methods if the active

space used in MC-SCF reference was properly chosen. This simple statement is very important

because it underlines the importance of the reference wave function for obtaining meaningful results.
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This considerations regarding the relation between a reference and size-consistency will be very

important when discussing how dissociation curves can be described via local methods.
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2.3 Local correlation methods

In this section we will give a brief overview of the local methods with a focus on the method of

increments (MoI). The crucial point of these approaches is that they exploit the short range nature of

electron correlation. So far, we have employed different truncations of Eq. 2.4 based on excitations

in a canonical orbital representation. Although these are undoubtedly strong arguments, truncations

based on a distance criterion can often yield high-quality results comparable to the ones of standard

correlation methods. Moreover, because of the reduced scaling, local approaches allow us to treat

systems which are prohibitive for wave function methods such the ones described so far.

The key point about local methods is that a different representation of the wave function is used.

Rather than canonical orbitals, which are delocalized over the whole molecular system, localized

orbitals (LOs) are employed, whose probability density is concentrated in a limited region of space.

In other words we have to apply an unitary transformation to the canonical orbitals:

|ϑι⟩ =
∑
ν

Uνι |φν⟩ (2.34)

where Uνι are the elements of an unitary matrix. Using LOs allows us to select only those excitations

occurring among orbitals which are close in space. Making considerations based on the chemical

sense and on very intuitive distance arguments, this kind of approach achieves surprisingly good

results in many cases. This philosophy is not very different from the one adopted by different model

Hamiltonians, such as the Hubbard or the Hückel one, which just consider nearest neighbor inter-

actions. However, one main difference has to be kept in mind: while these models employ local

Hamiltonians, the local correlation methods use LOs to describe the wave function of a non-local

Hamiltonian.

There exist different algorithms which allow us to localize the molecular orbitals according to

different criteria, but those employed most for finite systems are the Pipek-Mezey[150] and Foster-

Boys[151, 152] localization. The latter, which was employed in this work, minimizes the spatial

extent of the LOs by maximizing the distance between their center of charges.

A common issue in the use of localized orbitals is the los of mutual orthogonality when both occupied

and virtual orbitals of an HF wave function are localized. This was, for instance, the case for the

first applications of localized orbitals in extended systems by Stollhoff and Fulde, who employed

a set of non-orthogonal orbitals[53, 153, 154]. This does not prevent us, however, from applying

methods such as the particularly successful local second-order Møller-Plesset perturbation theory

(LMP2)[62, 63, 155] and local coupled cluster (LCC), whose equations are adapted to the use of

non-orthogonal basis. The algorithms employed by these approaches are not very different from

the canonical CC and MP2, but, once again, excitations are only allowed into orbitals located in
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restricted regions of space. The first applications of these approaches were by Pulay and Saebø, who

considered excitations from a set of orthogonal LOs into non-orthogonal projected atomic orbitals

(PAOs)[51, 52, 156]. These schemes were extended for the use of other sorts of virtual orbitals, which

led to a significant reduction of the number of excitations into the virtual space, e.g. pair natural

orbitals (PNOs) and orbital specific virtuals (OSVs), as used by Werner and Schütz[157, 158], who

also implemented these methods in MOLPRO. Finally, thanks to the work of Pisani and Schütz, LMP2

has also become a state-of-art method for periodic system and is implemented in the CRYSCOR

code[63, 155].

Stoll’s method of increments (MoI)[64–76] is based on a different scheme, which allows the descrip-

tion of the electron correlation energy as a many-body expansion. The key point of the MoI is that it

derives the contributions to the total correlation energy by performing explicit calculations on small

fragments of the system, while describing the rest as an environment at the mean-field level. Besides

the obvious reduction in scaling, an advantage of the MoI is its flexibility in its application along with

any size-extensive quantum-chemical method. Moreover, in its standard formalism, only the occupied

orbitals of the HF reference are localized so that mutual orthogonality is not an issue. In this work,

we focused in particular on the application of different formalisms of the method of increments which

are described in details in section 2.3.1.

2.3.1 The method of increments

As stated, the method of increments aims to describe the correlation energy Ecorr as a sum of

individual contributions (increments) associated with different parts of the system. In order to do so,

correlation calculations are performed with a properly defined set of localized orbitals allocated at

specific spatial centers, while the rest of the system is kept at the HF level. These groups of LOs are

generally referred to as bodies.

Once the bodies into which the system has been split have been chosen, a first crude approximation

for the correlation energy can be obtained by the sum of all individual correlation energy contributions

associated to each body, the one-body increments ϵi:

E(1)
corr =

N∑
i

ϵi (2.35)

At the one-body level, roughly 50-90 % of Ecorr can be retrieved depending on the choice of the

bodies. This is, of course, not enough for chemical precision, but the result can be improved upon

step by step by introducing contributions derived from higher order increments. In order to calculate

these contributions, one has to consider the correlation between two bodies, three bodies and so on.

Therefore, groups of LOs constituting different bodies are included in correlation calculations leading
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to values ϵij...z. These finally yield the required increments by subtracting the corresponding lower

order increments. As an example, for the two-body increments we have the expression:

∆ϵij = ϵij − (ϵi + ϵj) (2.36)

Analogously for the three-body increments we will have:

∆ϵijk = ϵijk − (∆ϵij +∆ϵjk +∆ϵik)− (ϵi + ϵj + ϵk) (2.37)

Finally, the total correlation energy can be evaluated including all contributions:

Ecorr =
∑
i

ϵi +
∑
i<j

∆ϵij +
∑
i<j<k

∆ϵijk + · · · (2.38)

Since the electron-electron correlation is short ranged, the increments are expected to decrease as the

distance r between the contributing bodies increases. Moreover, since the electronic Hamiltonian is a

two-electron operator, it is reasonable to state that high-order increments are expected to be smaller

than lower order ones. In formulas we expect that the following conditions are fulfilled:

|∆ϵij| > |∆ϵik| for rij < rik (2.39)

|∆ϵij| > |∆ϵijk| > |∆ϵijkl| (2.40)

If this is the case, the expansion converges rather quickly and a reasonable truncation of the expression

in Eq. (2.38) can be done allowing us to successfully apply the method.

The choice of the LOs constituting the bodies is rather arbitrary, as well as the localization pattern

employed, but an insight into the electronic structure of the system might help to make a proper

partition which allows faster convergence. Moreover, depending on the multireference character of

the system, both single-reference and multireference approaches can be used in the MoI framework,

by using different sets of LOs. For instance, if CCSD(T) is used, only the occupied orbitals of the HF

reference are localized and grouped into bodies, while the virtual orbitals are kept delocalized and used

in all correlation calculations. We will refer to such an approach as CCSD(T)-MoI. On the other hand,

if a local multiconfigurational character needs to be described, MC-SCF calculations can be performed

using bodies which involve both localized occupied and virtual orbitals, allowing the description

of the static correlation contributions. In this procedure, which we will refer to as CAS-MoI, only

the LOs constituting the chosen body (or bodies) are optimized, while the others are kept frozen.

Finally, dynamical correlation can then be calculated by including the remaining delocalized virtual

orbitals in a MRCI calculation performed on top of CAS-MoI results. This approached is referred to
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as MRCI-MoI.

The MRCI-MoI was shown to be particularly successful in describing situations where static cor-

relations plays an important role, for example for calculating the cohesive energy of bulk alkaline

earth metals[70, 159]. Moreover we tested the behavior of this method for the description of the

whole dissociation curve a one-dimensional beryllium system, where an avoided crossing has to be

observed as described in Papers M3 and M4. Also in this case, the MRCI-MoI yielded very good

results, but we were limited by the fact that in different regions of the dissociation curve different HF

configurations and therefore different LOs had to be selected. In other words, since the reference used

for the localization is not size-consistent, the MoI applied on top of it could not yield size-consistent

results. As presented in Paper M5 and briefly summarized in section 2.3.2, we introduced a formalism

that employs a size-consistent CAS-SCF reference for the localization in order to correctly describe

the avoided crossing yielding size-consistent results within the MoI framework.

Figure 2.1 Schematic representation of the method of increments (MoI). The ellipses and circles
represent canonical and localized orbitals (LOs), respectively. Full lines indicate occupied Hartree-
Fock orbitals, while the dash curves represent virtual orbitals. In CAS-MoI the occupied and some
of the virtual orbitals are localized and used for the calculation of the increments. In this sketch
each body used in CAS-MoI constists of an occupied and a virtual LO. The red, yellow and green
areas highligth the groups of orbitals used for one-, two- and three-body calculations. MRCI-MoI
calculations are performed on top of the CAS-MoI results by including excitations into the delocalized
virtual orbitals as represented by the colored arrow. In the single-reference MoI only occupied HF
orbitals are localized and excitations into the delocalized virtual orbitals are performed.
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2.3.2 The two-state constant coupling method of increments

In this section we give a brief description of the two-state constant-coupling (TSCC)-MoI, which is

presented in more detail in Paper M5. In order to address the problem of the lack of size-consistency

of the MoI, this approach employs a reference that does not consist of a single configuration, but uses

a MC wave function instead. For sake of simplicity, we considered a system which requires two CSFs,

|ϕ′⟩ and |ϕ′′⟩, for achieving a size-consistent approximated ground-state wave function |Φ̃GS⟩ in any

region of the dissociation curve:

|Φ̃GS⟩ = c
′
GS |ϕ

′⟩+ c
′′
GS |ϕ

′′⟩ (2.41)

By applying two distinct unitary transformations to |ϕ′⟩ and |ϕ′′⟩, two sets of LOs can be obtained

and used separately as the basis for MoI calculations, similarly to what was described above. This will

yield two sets of increments which can be used to correct the energy of |ϕ′⟩ and |ϕ′′⟩, denoted as E
′

and E
′′
, respectively. Employing a similar expression to Eq. 2.38, one can then calculate the terms:

H11 = E
′
+
∑
i

ϵ
′
i +

∑
i<j

∆ϵ
′
ij +

∑
i<j<k

∆ϵ
′
ijk + · · · (2.42)

H22 = E
′′
+
∑
i

ϵ
′′
i +

∑
i<j

∆ϵ
′′
ij +

∑
i<j<k

∆ϵ
′′
ijk + · · · (2.43)

The electron-correlation corrected terms H11 and H22 do not yield approximations of the energy

eigenvalues of the system, but they rather constitute the diagonal elements of a 2× 2 Hamiltonian

matrix with the corresponding secular equation:∣∣∣∣∣H11 − E H12

H21 H22 − E

∣∣∣∣∣ = 0 (2.44)

The two orthonormal bases implied by Eq. 2.44, |ϕ1⟩ and |ϕ2⟩, correspond to linear combinations of

determinants obtained by local excitations from |ϕ′⟩ and |ϕ′′⟩, respectively. However, the calculation

of the coupling term H12 = ⟨ϕ1| Ĥ |ϕ2⟩ cannot be achieved via the MoI, since it does not explicitly

treat the wave function, but rather deals with corrections to energy only. In order to overcome this

problem, one can simply neglect the corrections necessary for describing the full correlated system

and use the value ⟨ϕ′ | Ĥ |ϕ′′⟩ instead. As discussed in Paper M5, for the chosen system under study,

the results are rather satisfactory despite the use of this constant coupling. Moreover, although our

main interest is to calculate the ground-state energy in a size-consistent manner, it is remarkable that

the solution of Eq. 2.44 yields two energy values, EGS and EXS corresponding to the ground and first

excited state, respectively. Although it is not as accurate as EGS, the calculated EXS is in reasonable

agreement with a benchmark calculation.
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Finally, since each of the two diagonal elements H11 and H22 requires a single reference (|ϕ′⟩ and

|ϕ′′⟩), they can be calculated by applying any MoI formalism discussed so far, including CCSD(T)-,

CAS- and MRCI-MoI. According to the method employed in this step we distinguish CCSD(T)-,

CAS- and MRCI-TSCC-MoI.

Figure 2.2 In the TSCC-MoI two orbitals of two configurations |ϕ′⟩ and |ϕ′′⟩ are used separately for
the incremental calculations. For applying a CAS-TSCC-MoI the occupied and some of the virtual
orbitals are localized and used for the calculation of the increments. These are indicate by blue and
red curves for |ϕ′⟩ and |ϕ′′⟩, respectively. Full lines indicate occupied orbitals, while the dash curves
represent virtual orbitals. The ellipses and circles represent natural and localized orbitals (LOs),
respectively. In this sketch each body used in CAS-TSCC-MoI constists of an occupied and a virtual
LO. The red, yellow and green areas highligth the groups of orbitals used for one-, two- and three-
body calculations. For including the remaing dynamical correlation by means of MRCI-TSCC-MoI,
excitations into the delocalized virtual orbitals are included. If CCSD(T)-TSCC-MoI is employed
only occupied orbitals are localized and excitations into the delocalized virtual orbitals are performed.
Independetly on the level of theory employed, the two energies obtained by the this approach are then
used as diagonal elements of a 2× 2 Hamiltonian matrix.
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2.4 Density matrix renormalization group

In this section we will give a brief overview of the quantum-chemical density matrix renormalization

group (QC-DMRG) method as applied in this work and we will depict the machinery of quantum

information theory used both by the DMRG algorithm and as a tool for investigating the wave function.

The reader interested in more details is referred to the reviews[84–91].

Introduced by Steven R. White in 1992[82, 83], DMRG is a powerful tool for treating quantum many-

body systems, in particular for one-dimensional systems. The method is based on the renormalization

group (RG) whose first applications in the field of solid state physics dates back to the 1970s, when

Kenneth Wilson used it to solve the long-standing Kondo problem[160]. The mathematical machinery

of the RG allows us to systematically investigate a physical system by partitioning it into different

subsystems and analyzing how the properties under study converge as the subsystem size increases.

Original applications of the renormalization group were formulated around truncations of the Hilbert

space based on the selection of lowest eigenvalues of subsystem Hamiltonians, but such strategy

was not successful for quantum-chemical systems. On the other hand, as we will discuss, DMRG

applies a clever machinery, which selects bases according to their importance in the wave function, by

analyzing the reduced density matrix.

As described in section 2.2.2, truncated CI methods aim to approximate the FCI wave function by

selecting some of the n-electron bases that span the whole Hilbert space H based on the order of

excitation with respect to the HF reference. DMRG aims to truncate the Hilbert space as well, but

following a quite different approach based on the approximation of subspaces of H corresponding

to different partitions of the quantum system. Therefore, before introducing DMRG itself, it is first

necessary to describe some useful concepts regarding quantum entanglement and its relation to the

density matrix, which, as we will see, plays a key role in identifying the most important bases to be

considered.

Consider two subsystems A and B with corresponding Hilbert spaces H(A) and H(B) spanned by

basis functions |ψ(A)
αA ⟩ and |ψ(B)

αB ⟩ so that H = H(A) ⊗H(B). In these bases the FCI wave function

(Eq. 2.4) can be expressed in a state product form as:

|Φ⟩ =
∑
αA,αB

CαA,αB |ψ(A)
αA ⟩ ⊗ |ψ(B)

αB ⟩ (2.45)

Herein the CI coefficients CαA,αB are the elements of the rectangular matrix C which correspond to a

remapping of the coefficient matrix presented in section 2.2.2, where the indices αA and αB run over

all the possible states that A and B can assume.

By applying a proper unitary transformation, Eq. 2.45 can be rewritten in a much more convenient
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form, the Schmidt form:

|Φ⟩ =
rsch∑
i

√
ωi |ζ(A)

i ⟩ ⊗ |ζ(B)
i ⟩ (2.46)

where the Schmidt bases |ζ(A)
i ⟩ and |ζ(B)

i ⟩ are orthonormal functions which span the Hilbert spaces

of A and B. This is clearly a more compact form than Eq. 2.45, not only because only a single sum is in-

volved, but also since the Schmidt rank rsch always obeys the relation rsch ≤ min(dim(H(A)), dim(H(B))).

The singular valuesωi can be calculated by singular value decomposition (SVD) of C:

C = UΩV (2.47)

where U and V are unitary matrix and the singular matrix Ω is a diagonal matrix with elements

ωi (the singular values). It should be noted that it is equivalent to state that the singular values are

the eigenvalues of the reduced density matrix (RDM) of subsystem A (or B). Indeed, the RDM

of each subsystem contains the complete information regarding the entanglement between the two

blocks. It has to be underlined that the size of the Schmidt rank is strongly related to the quantum

entanglement of the two subsystems, since only in the case where rsch = 1 can the wave function

be exactly factorized in terms of bases of A and B, and the two subsystems are not entangled. It

should be clear then, that the Schmidt form becomes more compact as the entanglement between

the subsystems reduces. There exist different measures that allow us to quantify the entanglement

from the reduced density matrix. The analysis of such quantities constitutes the basics of quantum

information theory (QIT)[42, 92–101], which not only allows the study of the physics of a system,

but is also essential for improving the performance of DMRG. We will focus on these aspects in

subsections 2.4.3 and 2.4.4 after describing the method itself.

It is maybe worthwhile to stress the fact that Eq. 2.46 does not represent any approximation per se.

However, it is clear that having access to the reduced density matrix and therefore to its eigenvalues

allows us to truncate this expansion by selecting the most important bases which correspond to the

largest ωi. This a key point for understanding the machinery of DMRG and constitutes a strong

criterion for the truncation of the Hilbert space.

2.4.1 Two-site DMRG in quantum chemistry

Although there are different formalisms of DMRG, here we will only describe the one applied in this

work, which employs the two-site formulation within the finite-lattice method. Consider a system

composed of d sites, each of which can show q possible states, so that the dimension of the whole

Hilbert space will be qd. In the realm of quantum chemistry, these sites are spatial orbitals φν with

q = 4 possible states |φ(ν)
αν ⟩ = |−⟩, |↑⟩, |↓⟩, or |↑↓⟩. As shown in Fig. 2.3, this d-orbital Hilbert

space, arranged in a one-dimensional topology, is decomposed into a left and a right block, composed
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respectively of l and r = d − l − 2 orbitals and two other orbitals between them. The presence of

these two sites is fundamental for truncating the Hilbert space during the DMRG procedure. At each

iteration, respectively Ml and Mr of the ql and qr bases of the left and right block are chosen. We will

refer to these as |ψ(l)
αl
⟩ and |ψ(r)

αr ⟩, respectively. The MlMrq
2-dimensional Hamiltonian matrix of the

whole system (the superblock) is then constructed in the basis |ψ(l)
αl
⟩ ⊗ |φ(l+1)

αl+1
⟩ ⊗ |φ(l+2)

αl+2
⟩ ⊗ |ψ(r)

αr ⟩
and diagonalized. This gives one an approximated solution of the FCI problem in a truncated Hilbert

space of dimension MlMrq
2 << qd. The aim of DMRG is to improve the quality of this solution by

selecting the best truncated bases via a series a successive iterations. This is done by diagonalizing

the RDM of the subsystem spanned by the bases |ψ(l)
αl
⟩ ⊗ |φ(l+1)

αl+1
⟩. By applying a SVD, one can then

write the wave function in a Schmidt form. Referring to Eq. 2.46, the two subsystems A and B will

be constituted by l + 1 and r + 1 orbitals, respectively. At this point, one can perform a truncation by

selecting Mkept
l < Mlq Schmidt bases corresponding to the largest eigenvalues of the RDM. These

new truncated bases have to then be renormalized and will be used in the next iteration.

A new partition of the Hilbert space can then be performed by including a site more into the left

block (called system block) and excluding one from the right one (called environment). A new basis

can be constructed and the procedure can start again. These iterations will run as described until the

environement constists of one site only. When this happens, the roles of system block and environment

are switched and the process is repeated in the opposite direction. This procedure is called sweeping.

The very first iteration of such procedure will involve a system block with only one orbital, so that

the environment involves d− 3 orbitals. The choice of the bases of the environment turns out to be

crucial not only for speeding up the method, but also for ensuring to be targeting the correct state.

The dynamically extended active space (DEAS) procedure allows us to make such choice by selecting

some of the d− 3 orbitals that will be treated as active in the given DMRG iteration step.

2.4.2 The matrix product state ansatz

The iterative procedure described above requires an ansatz of the wave function which allows us

to construct and truncate the Hilbert spaces of different partitions of the system with ease. Tensor

networks offer such a powerful mathematical formalism since they allow the decomposition of high

order tensors into smaller order ones. Although different forms of the tensor networks exist and can

be used as ansatz for the DMRG wave function, in the following we will limit ourselves to the easiest

form, the matrix product state (MPS) formalism[90, 91, 102–106]. Let us start by expressing the FCI

wave function in a slightly different form:

|Φ⟩ =
∑
{αν}

Cα1,α2,··· ,αd
|φ(1)
α1 , φ

(2)
α2 , · · · , φ

(d)
αd

⟩ (2.48)
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Figure 2.3 Schematic representation of the one-dimensional topology employed in the two-site DMRG
in the finite-lattice method. Each dot represents a site or orbital in the quantum-chemical version of
DMRG. The system block (of dimension Ml) and the environment (of dimension Mr) are indicated
by the blue and red full boxes, respectively.The subsystems indicated by dashed lines have dimension
Mlq and Mrq. At any iteration, the DMRG procedure select only some of these bases. Then, the
system block is enlarged by including one more site. This repeats until the environment consists of
one site only. When this happens the sweeping process starts in the opposite direction.

Here the CI coefficients Cα1,α2,··· ,αd
are the elements of the FCI tensor C.2 The indices αν run over

the four states that each orbital φν can assume, which gives rise to a tensor of order d with a total of

4d elements. In order to decompose this tensor it is convenient to remap it first into a different form,

namely a 4× 4d−1 matrix with elements

Cα1,α2,··· ,αd
= Cα1;(α2,··· ,αd) (2.49)

This allows us to easily apply a singular value decomposition to C:

Cα1;(α2,··· ,αd) =
∑
m1

U
(1)
α1,m1Ω

(1)
m1

V
(1)
m1;(α2,··· ,αd)

(2.50)

=
∑
m1

A
(1)
α1,m1V

(1)
m1;(α2,··· ,αd)

(2.51)

2The tensor C is equivalent to the coefficient matrix presented in section 2.2.2 with the only difference being that a
different remapping is employed.
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By repeating a similar operation on V
(1)
m1;(α2,··· ,αd)

and again on each other emerging matrix, one can

finally achieve an expression that decomposes the tensor in terms of d of smaller order:

Cα1,α2,··· ,αd
=

∑
m1

∑
m2

· · ·
∑
md−1

A
(1)
α1,m1A

(2)
m1,α2,m2 · · ·A

(d)
md−1,αd

(2.52)

where A
(1)
α1,m1 and A

(d)
md,αd

are tensors of order 2, while the remaining d − 2 A
(ν)
mν−1,αν ,mν tensors

are of order 3. In Eq. 2.52 the dimension of the bond indices mν grows exponentially towards the

center of the chain as dim(mν) = min(4ν , 4d−ν). Therefore, in order to make the MPS ansatz of

practical use, a threshold to mν has to be employed so that the FCI tensor can be approximated.

The selected threshold M is called bond (or virtual) dimension or number of block states and it is a

central parameter in DMRG since it determines the accuracy of the results and, as can be proven, the

approach is variational with respect to M .

The MPS ansatz is particularly advantageous since it allows us to construct the complete space

and subspaces in a hierarchical way. Indeed, one can start defining the bases for the 4-dimensional

subspace H(1) as:

|ψ(1)
m1

⟩ =
∑
α1

A
(1)
α1,m1 |φ

(1)
α1 ⟩ (2.53)

From this, one can construct the 16-dimensional tensor product space H(1,2) = H(1) ⊗H(2) which is

spanned by the bases:

|ψ(1,2)
m2

⟩ =
∑
m1

∑
α2

A
(2)
m1,α2,m2 |ψ(1)

m1
⟩ ⊗ |φ(2)

α2 ⟩ (2.54)

In a similar way one can construct the bases spanning any subspace of H. This is very convenient for

the DMRG procedure described in the previous section.

2.4.3 Quantum information theory in DMRG

The orbital ordering in the one-dimensional topology employed in QC-DMRG plays a huge role in

the effectiveness of the method. In order to apply this approach as a black box method the analysis of

quantum entanglement achievable by the machinery of quantum information theory is applied. As

already stated, there are different measurements of the entanglement of quantum subsystems. The

one which we employed is the mutual information[93, 161, 162]. Let us start by defining the von

Neumann entropy[163]. Given a subsystem A whose reduced density matrix has eigenvaluesω(A)
i ,

the von Neumann entropy of A is given by:

sA = −
∑
i

ω
(A)
i lnω

(A)
i (2.55)
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If A is constituted by a single orbital ν the one-orbital entropy s(1)ν can be defined. This quantifies

the contribution of an orbital to the total electron correlation. Similarly the two-orbital entropy s(2)νµ

can be calculated by considering the two-orbital reduced density matrix. From this, the mutual

information can be defined as

Iνµ = s(2)νµ − s(1)ν − s(1)µ (2.56)

Iνµ describes how the two orbitals ν and µ are correlated. This includes both classical correlation

and quantum entanglement. In order to improve the effectiveness of DMRG, the MPS should be

constructed in such a way that highly entangled orbitals are closer. This way, during the sweeping

process the system can be bi-partitioned in such a way as to reduce the Schmidt rank. We introduce

the cost function Icost which evaluates the localization of entanglement:

Icost =
∑
ν<µ

Iνµ|ν − µ|η (2.57)

where |ν − µ| expresses the distance between the orbitals arranged in the one-dimensional topology.

As explained in Paper M2, choosing the exponent η equal to 2 allows us to employ the mathematical

tools of spectral graph theory[164] according to which the Fiedler ordering[165, 166] minimizes

Eq. 2.57. In the same publication we focused on the effect of the one-electron basis on the overall

entanglement by comparing the efficiency of DMRG with canonical and localized orbitals. Clearly

the basis which allows a reduction of Icost will favour the speeding up of the process.

Also the information provided by s(1)ν is employed to speed up DMRG convergence, by allowing

the selection of the initial bases of the environment in the first sweeping. This is done by selecting the

orbitals with larger one-orbital entropy and using them to construct excited CSFs from the HF CSF.

Since it is similar to a CI formalism, the procedure is denoted as CI-DEAS[92, 94].

Another way of improving DMRG performances is the dynamic block state selection (DBSS)[96, 167].

As discussed, DMRG is variational with respect to the number of block states which is kept constant in

any cycle in the general formalism. However, depending on the entanglement between the subsystems

in a particular cycle of DMRG, the choice of a different M can cause tremendous changes in the

performances. The DBSS procedure emploies a different number of block states at every step by

fixing a threshold for the quantum information loss χ:

χ = 1−
∑
i

ωi (2.58)

This quantity measures the error introduced by the truncation of the Hilbert space, since for the FCI

wave function
∑

iωi = 1.
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2.4.4 Entanglement analysis

Although QIT arguments are used as tools to improve the mathematical algorithm in the DMRG

procedure, they can also be employed to study the physics of a system. Of course, it is true that they

depend on the orbital basis so this information must be examined with care. However, especially

in simple one-dimensional systems which can be compared with model Hamiltonians, information

about the entanglement of localized orbitals can be connected to the delocalization of the overall

wave function. For instance, in Paper M2 we discussed the dependence of Iνµ from the distance

between the center of charges of the involved localized orbitals. In fact, for an insulator the orbital

entanglement is expected to decay faster than for a metal whose wave function is far more delocalized.

Moreover, the information regarding entanglement contained in Iνµ can be further analyzed by

studying the elements of the two-orbital reduced density matrix[168]. These express the probabilities

of the possible transitions |φ(ν)

α
′
ν
⟩ ⊗ |φ(µ)

α
′
µ
⟩ → |φ(ν)

α
′′
ν
⟩ ⊗ |φ(µ)

α
′′
µ
⟩. In a localized orbital basis, these

transition probabilities can be interpreted as hopping and spin-flipping terms. This distinction of these

different contributions is crucial since the study of the decay of the hopping terms with the distance is

clearly connected with charge transport. As discussed, the comparison with a physical model, i.e. the

Hubbard chain, can be used to rationalize such observations.

Finally, the von Neumann entropy of segments of a finite chain (the block von Neumann entropy) can

be used to study critical and gapped phases[95, 96, 169]. Indeed, as the block size increases the block

entropy is expected to logarithmically diverge for critical systems and to saturate for gapped ones.

This connection to the energy spectrum was exploited for investigating metal-insulator transitions.



2.5 The total position-spread tensor 39

2.5 The total position-spread tensor

As discussed in the introduction, the Kohn’s theory of the insulating state led to the development of

the localization tensor (LT) by Souza and Resta[44, 45] as a tool for quantifying the localization of

the wave function and therefore the metallic/insulating character. The total position-spread (TPS)

tensor Λ introduced by Evangelisti et al.[49] is essentially the same as the LT with the difference

that Λ is not a value per electron. The name ‘spread’ rather than ‘localization’ was chosen since it

better reflects the property of this quantity, since larger values of the tensor correspond to a higher

delocalization of the wave function.

The TPS tensor shows a size-extensive behavior and its trace is invariant under rotation and translation

of the whole molecule. These properties make the TPS tensor an invariant quantity that can be

associated to a physical system. By definition, Λ is the second-moment cumulant of the total

electron-position operator r̂ =
∑

i r̂i:

Λ = ⟨Φ|̂r2|Φ⟩ − ⟨Φ|̂r|Φ⟩2 (2.59)

From the three cartesian components of r̂, nine elements of Λ originate:

Λpq = ⟨Φ|Ŝpq|Φ⟩ − ⟨Φ|p̂|Φ⟩⟨Φ|q̂|Φ⟩ with p, q = x, y, z (2.60)

The second-moment operator Ŝpq is defined as:

Ŝpq =
n∑
i

n∑
j

p̂iq̂j (2.61)

where the summation indices run over all electrons. It has to be underlined that this two-electron

operator is very different from the ‘second-moment’ operator ŝpq[50] defined in codes such as

MOLPRO[157] and DALTON[170, 171]:

ŝpq =

n∑
i

p̂iq̂i (2.62)

Differently from ⟨Φ| ŝpq |Φ⟩, which is an one-electron property, the total position-spread tensor

contains information about electron correlation. Indeed, this two-electron property accounts for the

position of all pairs of electrons. The diagonal elements of the TPS tensor measure the variance of

electron positions, while a non-diagonal element is the covariance of two different components p and

q of the total position.

The TPS tensor is a powerful tool for monitoring the electronic wave function for molecular systems
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which involve charge transfers[49, 50, 172, 173]. Indeed, by analyzing how its different elements

change along a dissociation curve, one can easily investigate bond formations and breakings. For

instance, when studying the dissociation of H2 one observes different behaviors for the longitudinal

component of the TPS tensor (Λ∥) in different regions of the dissociation curve. While at dissociation,

because of its size-extensive behavior, Λ∥ reaches a plateau, for shorter internuclear distances a

maximum appears indicating the maximum delocalization of the wave function. This is interpreted

as evidence of the formation of the H-H bond. As the nuclei get closer to each other, the TPS value

significantly drops since the effective nuclear charge makes electrons more localized.

As discussed in Papers m1 and m2, the behavior of the TPS tensor at large internuclear distance

reflects the presence or absence of charge entanglement in the system. Indeed, while in systems such

as H2 a plateau is reached, molecular systems with large charge delocalizations (for instance H−
2 ) will

present a divergent behavior of the TPS. This highlights the strong connection between entanglement

and localization.

Finally, as already stated, the TPS tensor is a quantity of particular importance in the framework

of metal-insulator transitions. Indeed, the cumulant divided by the number of electrons diverges in

the thermodynamic limit for a conductor while it converges for an insulator. It is remarkable that,

exploiting this rule of thumb, the metallic/insulating behavior of an infinite system can be deduced by

studying the TPS tensor of finite chains[172, 174–177].

In the following, we will often refer to the TPS tensor as spin-summed (SS)-TPS tensor to distinguish

it from the novel formalism of the spin-partitioned TPS tensor which is introduced in the next section.

2.5.1 The spin partition of the TPS tensor

In this work, besides focusing on the application of the SS-TPS tensor, we developed a new formalism

which provides information about the mobility of individual spins, the spin-partitioned (SP)-TPS

tensor. Since r̂ can be described as the sum of two terms arising from the α and β electrons, r̂α and

r̂β , each term in Eq. 2.59 can be split into four contributions:

Λ = Λαα +Λββ +Λαβ +Λβα (2.63)

where the different components of the SS-TPS tensor are:

Λαα = ⟨Φ|̂r2α|Φ⟩ − ⟨Φ|̂rα|Φ⟩2 (2.64)

Λββ = ⟨Φ|̂r2β|Φ⟩ − ⟨Φ|̂rβ|Φ⟩2 (2.65)

Λαβ = ⟨Φ|̂rαr̂β|Φ⟩ − ⟨Φ|̂rα|Φ⟩⟨Φ|̂rβ|Φ⟩ (2.66)

Λβα = ⟨Φ|̂rβ r̂α|Φ⟩ − ⟨Φ|̂rβ|Φ⟩⟨Φ|̂rα|Φ⟩ (2.67)
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Because r̂α and r̂β commute, Λαβ and Λβα components are equal, while further symmetry relations

occur depending on the system and spin symmetry.

This spin partition is remarkable since it allows us to study how the electron mobility is affected

by other same-spin and opposite-spin electrons. In other words, the effects due to Fermi (same

spin) and Coulomb correlation (opposite spin) can be separated and analyzed. This provides deeper

information about the structure of the wave function and allows the investigation of systems where

changes in the electron mobility are related to strong magnetic couplings. Moreover, analogously to

the SS-TPS tensor, which gives information concerning charge entanglement, the asymptotic behavior

of the SP-TPS is strongly related to the spin entanglement. These properties are briefly explained in

Chapter 4 and in details in Papers m1, m2 and M1 where this formalism was introduced and applied

to study hydrogen chains, Hubbard chains and Heisenberg chains.





Chapter 3

Models and computational details

For the realization of this work, different correlation methods were employed with a particular focus

on the method of increments (MoI) and the density matrix renormalization group (DMRG). Each step

of the MoI procedure was performed within the quantum-chemical package MOLPRO[157], while the

DMRG calculations were carried out by employing the QCDMRG-Budapest program package[178]

written by the group of Prof. Dr. Örs Legeza. Finally, the calculations of the total position-spread

(TPS) tensor and its spin partition were done by means of different programs including MOLPRO,

the FCI code NEPTUNUS[179–181] and the code HEISENBERG[182] written by Dr. Muammar El

Khatib and myself. Further specifications concerning the computational details of each investigation

are reported in the publications presented in Chapter 5. There exhaustive descriptions of the systems

under study are also provided. In the present chapter a brief overview of the models employed in this

work is provided.

The main focus of this work was the investigation of strongly correlated one-dimensional and pseudo-

one-dimensional model systems, that is, chains and rings. Clearly, reducing the dimensionality limits

the complexity of the problem, allowing the investigation of relatively large (in one dimension)

systems with accurate approaches, which are necessary for correctly describe electron correlation

in the thermodynamic limit, i.e. infinite chains. Of course, these models do not aspire to represent

realistic systems, but they provide rather good test cases for different methods and for studying

correlation effects as system size increases and more complexity is introduced into the model.

As described in Chapter 2, in a non-relativistic framework, the most accurate description of a many-

electron problem is given by the full electronic Hamiltonian (Eq. 2.3), which in second quantization
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is:

Ĥe =
∑
ν,µ
σ

Tνµĉ
†
νσ ĉµσ +

∑
ν,µ,τ,υ
σ,σ′

Vνµτυ ĉ
†
νσ′ ĉ

†
µσ ĉτσ′ ĉυσ with

Tνµ = ⟨φν | ĥ |φµ⟩

Vνµτυ = ⟨φνφµ| ĝ |φτφυ⟩

(3.1)

Here ĉ†νσ and ĉνσ are the creation and annihilation operator for the spatial orbitals φν with spin

function σ (see Eq. 2.7). Tνµ and Vνµτυ are one- and two-electron integrals, respectively. Extreme

approximations of Eq. 3.1 can be obtained by neglecting specific interactions leading to model

Hamiltonians. Although the accuracy of these approaches does not reach the level of quantum-

chemical correlation methods, they often provide surprisingly good predictions (considering the level

of approximations) about physical phenomena which can be then understood in terms of simple

pictures. In particular, the Hubbard Hamiltonian ĤHUB is a useful model for describing metal-

insulator transitions (MITs)[10, 11, 183, 184]. Here, only hoppings between nearest-neighbor sites

are allowed and the Coulomb interaction between electrons occupying the same site are considered. In

its most simple form, which describes half-filled single-band linear systems, the Hubbard Hamiltonian

is:

ĤHUB = −t
n−1∑
ν=1

∑
σ

(ĉ†νσ ĉν+1σ + h.c.) + U
∑
ν,σ,σ′

σ ̸=σ′

ôνσôνσ′ (3.2)

Herein, t and U are the next-neighbor hopping integral and the intrasite Coulomb integral, respectively,

while ôνσ = ĉ†νσ ĉνσ. The importance of the Hubbard Hamiltonian lies in the fact that it allows one to

describe MITs simply by tuning the strength of the electron correlation by changing the ratio −t/U .

Indeed, the equilibrium between the hopping between neighboring sites and the strength of Coulomb

electron correlation is the key to determine whether electrons can be prompted to move along the

chain and behave as charge carriers. In this work, Hubbard chains were used as test case for the

spin-summed (SS)-TPS and the spin-partitioned (SP)-TPS tensor (see section 2.5 Paper m1). Also,

in Paper M2 this model Hamiltonian is referred to in order to explain the entanglement analysis

obtained for more complex systems in terms of a simple picture.

The limits −t/U → ∞ and −t/U → 0 constitute two particularly interesting situations. In the first

case the simple tight-binding Hamiltonian arises, which neglects electron correlation by considering

the electron-electron interactions only at a mean-field level. This one-electron model yields qualita-

tively satisfying results for those systems where the interactions between electrons and the nuclear

potential play the major role in determining the metallic/insulating behavior, which can be analyzed

in terms of a one-electron band structure. On the other hand, the −t/U → 0 limit of the Hubbard

model yields the Heisenberg model[185–187]. Here electrons are fully localized and only interact by

magnetic coupling. In its easiest form, which considers a magnetic coupling Jν equal in any direction,
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it becomes:

ĤHEI =

n−1∑
ν=1

Jν

[
1

2

(
Ŝ+ν Ŝ

−
ν+1 + Ŝ−ν Ŝ

+
ν+1

)
+ Ŝzν Ŝ

z
ν+1

]
(3.3)

By allowing different values of Jν for alternate pairs in the Heisenberg chain, the formation of spin

pairs can be studied. This effect can be considered, to some extent, as reflective of the formation of

dimers as in the Peierls insulator. These and other aspects of this model are explored in Paper M1
where it was used as test case for the calculation of the SP-TPS tensor.

It is useful to refer to these models in order to better understand the results of more complex cal-

culations obtained via quantum-chemical methods. For instance, the quantum chemistry ‘analog’

of a Hubbard chain is a one-dimensional arrangements of hydrogen atoms with only a 1s atomic

function per hydrogen. This introduces more complexity into the system since it does not only involve

next-neighbor interactions. Despite their simplicity, these are good model systems for studying MITs.

In the thermodynamic limit, these systems behave as metals in the bound regimes according to an

one-electron picture, since they have a half-filled band. On the other hand an insulating behavior

occurs by changing the distance between the hydrogen atoms: Peierl insulators occur if dimers form

which force the electronic band to split into a valence fully occupied band and a virtual empty band,

while at dissociation the system behaves as an insulator since hoppings from one site (atom) to another

cannot be promoted. Once again, simplified pictures of such a system can be understood in term of

a model Hamiltonian. In Papers m1 and m2 the SS-TPS and SP-TPS tensor of these systems were

calculated and discussed.

More and more complexity can be added to the models by adding more electronic bands, that is, by

using larger one-electron basis sets and/or by employing an analogous system consisting of lithium

atoms, where the excitations into the low-lying 2p bands play an important role in the electronic

structure (see Paper M2). However, static correlation becomes much more important for the de-

scription of beryllium, which is given particular attention in this work. Beryllium systems show

some interesting features which made them good candidate for test studies. Formally described

by the configuration [He]2s2, the electronic ground state of beryllium atom 1Sg presents a high

static correlation which constitutes the 93 % of its total correlation energy and can be described by

excitations into the 2p-orbitals. Static correlation plays a major role in the description of Be clusters

as well. For instance, the bond of the dimer cannot be described properly if a multireference approach

is not employed[188–193]. As described more in details in Paper M4, this is true also for larger

systems.

Beryllium is also particularly interesting in the framework of electrical conductivity since according

to a one-electron picture it should be expected to be an insulator with a full valence 2s band. Clearly,

the near degeneracy of the 2s and 2p shells play a key role in the metallic/insulating character of

this material. Moreover, the role of dimensionality is also of particular interest. Indeed, while bulk
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beryllium is clearly a conductor, this is not necessarily the case for one-dimensional beryllium chains.

The complexity of this behavior and yet the simplicity of the system make it a perfect subject for

low-time-consuming tests.

Figure 3.1 Representation of the valence localized orbitals (LOs) of the Be6 ring as obtained by two
main HF configurations, 2a21g2e

4
1u2e

4
2g1b

2
2u (Conf1) and 2a21g2e

4
1u2e

4
2g2b

2
1u (Conf2). For each Be

atom four orbitals are obtained, one of which is doubly occupied at the HF level, while the others
are virtual orbitals. In different regions of the dissociation curve, one of the two configurations is
dominant and the corresponding set of LOs is employed by the standard method of increments.

In order to exploit symmetry at its best, ring structures can be treated rather then linear chains. This

allows a significant reduction of the number of calculations required when using the MoI and to

avoid border effects which can cause problems in the localization procedure. Moreover, the use of

cyclic systems allows one to artificially reproduce the Born von Karman boundary conditions[24] and

connect the results obtained for finite systems to the limit corresponding to a periodic chain. Papers
M2-5 are dedicated to the investigation of beryllium rings.

In order to describe the whole dissociation of such Be rings in their ground state 1A1g, two main config-

urations have to be considered. This is shown by the analysis of the CI vectors presented in Paper M4
and by the occupation patterns reported in Paper M5. At dissociation, the n atoms with main configu-

ration 1s22s2 give rise to the HF wave function with valence configuration 2a21g2e
4
1u2e

4
2g2e

4
3u . . . 2b

2
1u

(labeled as Conf2) according to the IRREPs of the point group Dnh . However, as the distance de-

creases, the LUMO, which has a pure p character (1b2u), approaches the HOMO (2b1u) until a crossing

between these two orbitals occurs. Here an avoided crossing between two 1A1g states is expected and

in the short internuclear distance regime the ground configuration becomes 2a21g2e
4
1u2e

4
2g2e

4
3u . . . 1b

2
2u

(Conf1). As a consequence, a size-consistent (see section 2.2.5) result cannot be achieved via HF

and at least a CAS(2,2) which involves Conf1 and Conf2 has to be used instead. Moreover in order

to ensure size-extensivity and give a meaningful description of the dissociation, a reference CAS(2n ,

4n) is necessary. Since this becomes prohibitive as system size grows, the MoI was applied to treat
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large systems (see Papers M3-5). Because Conf1 and Conf2 are predominant in different regions

of the dissociation curve and they give rise to very different localized orbitals (see Fig. 3.1), both

had to be employed in the MoI. As described in Chapter 4, in order to ensure size-consistency a

reference consisting of both configurations was employed and tested in the two-state constant-coupling

(TSCC)-MoI formalism to which section 2.3.2 and Paper M5 are dedicated.





Chapter 4

Results

This chapter briefly summarizes the results presented in the scientific publications produced during

the preparation of this thesis. For a more detailed description the reader is referred to Papers m1-2
and M1-5, which are collected in Chapter 5. In section 4.1 some preliminary results which have not

yet been published are also presented.

Let us start by describing the publications regarding the analysis of the total position-spread (TPS)

tensor and its spin partition, Papers m1 and m2, and M1 which were produced in collaboration

with the groups of Prof. Dr. Stefano Evangelisti and Prof. Dr. Thierry Leininger. As described

in section 2.5, the spin-summed (SS)-TPS tensor allows us to describe the localization of the wave

function by achieving information about the mobility of electrons in molecules and extended systems.

As described, this is important for understanding phenomena that involve charge transfer. Moreover,

in the framework of the MIT, the analysis of the convergence/divergence of the SS-TPS as the system

size grows towards the thermodynamic limit, allows us to distinguish between an insulating and a

metallic state. The power of the this formalism can be further enhanced by splitting the total electronic

position operator according to spin variables as described in section 2.5.1 and in details in Paper m1,

where the formalism of the spin-partitioned (SP)-TPS tensor was first introduced. While the SS-TPS

gives information about charge mobility, the SP-TPS tensor is related to spin fluctuations.

We first focused on the simple case of hydrogen molecule and ions in different electronic states, and

demonstrated that the behavior of the tensor at large internuclear distances is strongly related to the

presence or absence of entanglement. In particular, we observed that for those states characterized by

a distinct charge entanglement, the SS-TPS tensor diverges towards dissociation. In a similar way

spin-entangled states present a diverging SP-TPS tensor.

Equally spaced hydrogen chains (up to H16) were also investigated and the results were compared

with the ones obtained for a Hubbard Hamiltonian. As expected, the analysis of the SS-TPS for the

latter shows that the charge mobility increases as the ratio −t/U goes to infinity, which corresponds to
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the non-correlated limit (see Chapter 3). The metallic behavior in this regime, reflected by a vanishing

energy gap in the thermodynamic limit, is highlighted by the linear growth of the normalized SS-

TPS as a function of system size. Similarly, the SS-TPS of hydrogen chains presents a maximum

corresponding to a high charge mobility, whose value diverges as the number of H atoms increases.

On the other hand, for shorter internuclear distances and towards dissociation the normalized SS-TPS

tensor converges with the number of atoms. This change in the trend of the SS-TPS as a function of

system size in different regions of the dissociation curve is an evidence of a transition between an

insulating and a metallic character as the interatomic distance decreases.

The SP-TPS of an hydrogen chain shows a very different behavior. In fact, it presents a quadratical

growth at long distances, which once again is related to a large spin mobility in these strongly

entangled systems. To confirm these relations, in Paper m2 the SP-TPS formalism was also applied

to dimerized hydrogen chains, which represent a model for Peierls insulators. As expected, the

formation of spin pairs as a consequence of dimerization causes the SP-TPS to drop with respect to

the equally spaced chains. In Paper M1 a further study of the behavior of the SP-TPS was performed

by focusing on another model Hamiltonian which explicitly describes spin interaction, the Heisenberg

Hamiltonian. By varying the coupling between neighboring spins in order to describe spin pairing

and by focusing on different spin states, we analyzed some interesting behaviors. In particular both

the ferromagnetic (high-spin) and the anti-ferromagnetic (low-spin) state were studied. By increasing

the number of sites, a clear relation between the energy-gap closure-rate and the divergence of the

SP-TPS was observed, which is remarkably reminiscent of the trend observed for the SS-TPS, which

diverges for gapless systems. Moreover, by performing a full diagonalization of the Heisenberg

Hamiltonian we were able to gain information about the SP-TPS for the whole energy spectrum.

Although neither the ferromagnetic nor the antiferromagnetic state constitute a lower or an upper

bound to the the SP-TPS, it is interesting to note how the average value increases with the energy,

indicating an increase of the spin delocalization in the wave function. Also, for the high-spin case we

derived an analytical expression of the dependence of the SP-TPS on the number of sites and on the

z-projection of the total spin.

For the low-spin case, the use of alternating magnetic couplings allowed us to investigate the effect

of spin pairing. This demonstrated analogous results to what was observed for dimerized hydrogen

chains, where a lower spin-delocalization occurs as the spin pairing increases. Also in this case a

strong relation to the energy gap could be observed.

Although the analysis of SS-TPS and SP-TPS for hydrogen chains and model Hamiltonians led

to interesting observations and highlighted the kind of informations that it embodies, in order to

make predictions on realistic systems we need to apply the formalism to more complex situations

as done by Bendazzoli et al.[174–177] at the CAS-SCF and FCI level of theory. However, since

these sophisticated descriptions of the wave function are unfeasible for extended systems, different
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approaches have to be applied. As described in Chapter 3, our model systems consisting of beryllium

rings require an accurate description of static and dynamical correlation effects. Our goal was to

correctly describe the dissociation curves of such systems by means of the method of increments

(MoI). We focused on this approach in particular because of its favorable scaling that allows the

calculation of the correlation energy for very large systems and can be succesfully applied to periodic

systems as well. For this reason the MoI is a perfect candidate for approaching the thermodynamic

limit. We focused on the application of the MoI and on the difficulties arising by its application for

describing a dissociation curve in Papers M3-5.

However, as a first step we applied another sophisticated method with favorable scaling to obtain

useful benchmarks for the MoI, the density matrix renormalization group (DMRG), which is briefly

described in section 2.4. The DMRG results obtained for both beryllium and lithium in collaboration

with Prof. Dr. Örs Legeza’s group are presented in Paper M2. There, besides obtaining a full

dissociation curve for Be rings, we focused on different aspects of both the calculation procedure and

the entanglement analysis which can be achieved by the use of quantum information theory (QIT)

and used to better understand metal-insulator transitions. As stated in section 2.4.4, by analyzing the

orbital entanglement the changes occurring in the wave function between a metallic-like state and an

insulating state can be investigated. This was done by studying the von Neumann entropy and the

elements of the two-orbital reduced density matrix in a localized orbital basis. In this analysis the

main distinction between the two states lies in the different decays of the entanglement with distance.

This is particularly straightforward for the lithium rings, whose behavior is particularly reminiscent of

the half-filled Hubbard Hamiltonian and shows the expected decay of the hopping matrix elements.

Also the block von neumann was employed as index for MITs. Indeed, by studying its dependence on

the block size we could estimate whether the system evolves towards a gapless or gapped situation. In

the case of Be rings the situation is complicated by multiband effects, but also here the entanglement

analysis shows an evident change in the structure of the wave function in different regions of the

dissociation curve as well.

Finally, we took on the challenge offered by the system as a chance to study the role played by

the orbital basis onto the performance of the code. By comparing canonical orbitals with localized

orbitals (LOs), we showed that the latter performed much better than the canonical one-electron

bases since LOs lead to a strong reduction of the orbital entanglement which has a crucial effect in

quantum-chemical DMRG.

The DMRG results obtained for Be rings of different sizes were used as precious benchmarks for

testing the method of increments in Paper M3. The CAS-MoI formalism (see section 2.3.1) was first

applied using a minimal basis set. Although this did not provide an accurate description of the system,

it was a valuable case study for testing whether the method is reliable for the calculation of a whole

dissociation curve. The CAS-MoI allows us to describe the dissociation curve, but it has limitations
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where an avoided crossing occurs. Indeed, this approach is based on localized one-electron functions

obtained by a single configuration. Since for this system in different regions of the dissociation curve

two different HF configurations are dominant, a choice had to be made, which led to discontinuities

in the dissociation curve. In other words, the approach is not fully size-consistent (see section 2.2.5).

Nevertheless, since the MoI looses accuracy only at the crossing, as was shown by the comparison

with DMRG results, we could use it to investigate the size dependence of the correlation energy

in order to extrapolate the values for the periodic chain. These results encouraged us to use the

same procedure in order to achieve a better description of the system by using better basis sets and

including dynamical correlation through MRCI-MoI calculations on top of CAS-MoI results, as

detailed described in Paper M4. By doing so, we underlined to importance of accurate size-extensive

corrections. Indeed, if these are not correctly described the high-order increments accumulate a

substantial error which diverges as system size increases. Finally, by describing the evolution of the

electronic structure of beryllium chains and rings, which gained an overview of the system from the

dimer to the infinite chain.

Finally, we addressed the problem of the lack of full size-consistency in Paper M5 where we

introduced the two-state constant-coupling (TSCC)-MoI. As described in section 2.3.2 the approach

employs the MoI formalism in order to calculate diagonal matrix elements of a 2× 2 Hamiltonian

matrix constructed by starting from the two main configurations. In the TSCC-MoI the off-diagonal

elements are simply approximated by using the results of a SA-CAS-SCF calculations. We applied

this procedure to Be rings of different sizes by employing different methods to calculate the diagonal

elements via the MoI formalism. DMRG was once again used as a benchmark for testing the validity

of the approximation and showed a very good agreement for the ground state.

Once that we were able to achieve accurate results via the MoI formalism for Be rings, we decided to

apply the method to calculate other properties besides the energy, in particular the SS-TPS. Analogous

equations to the ones used to expand the correlation energy can be used for calculating other properties

as shown in the following section, where we also report the preliminary data obtained in such a way

for the TPS tensor of the Be6 ring.
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4.1 Calculation of the SS-TPS via the method of increments

As discussed, the MoI allows us to express the correlation energy as a many-body expansion (see

section 2.3.1). In principle, very similar equations can be applied to the calculations of other

properties which are not scalars as the energy[80, 81]. In this section, we discuss how this can be

done to calculating tensorial properties like the SS-TPS tensor, Λ. Let us consider a system for which

a single HF configuration, with associated TPS tensor ΛHF, is a good first approximation of the wave

function and the MoI expansion. Just as we can associate to the ith body a contribution ϵi to Ecorr,

we can also calculate a contribution Li to Λ−ΛHF:

Li = Λi −ΛHF (4.1)

where Λi is calculated by correlating the electrons of the ith body only. Once again this is analogous

to the definition of ϵi and similarly to Eq. 2.35, one 1-body level approximation of the TPS as:

Λ(1) =
N∑
i

Li +ΛHF (4.2)

Moreover, in a similar way to what expressed in Eqs. 2.36 and 2.37 for the correlation energy, one can

define tensorial 2-body and 3-body increments as:

∆Lij = Λij −ΛHF −Li −Lj (4.3)

∆Lijk = Λijk −ΛHF −∆Lij −∆Lik −∆Ljk −Li −Lj −Lk (4.4)

By summing up all the contributions one can finally calculate the TPS for the whole system. The main

difference with respect to the application of the MoI for the calculation of scalar properties arises from

the fact that the tensors Li are not equal if the corresponding bodies are symmetry equivalent, which

is the case for ϵi. Nevertheless, point group theory allows us to relate these tensors with each other by

applying unitary transformations involving the symmetry operations of the group. For instance if the

jth and ith body are connected by the operation represented by the matrix R, one can write:

Lj = RTLiR (4.5)

Let us consider the special case where all bodies are related by symmetry operations. This is for

example the case of the ring structures under study where the bodies are clearly related by rotations,

as well as periodic chains, in which translations have to be considered instead. In this situation the
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sum occurring in Eq. 4.1 can be rewritten as:

N∑
i

Li =
∑
R

RTLiR (4.6)

This helps reduce the amount of calculations that have to be performed, as a single 1-body increment

has to be calculated. Analogous equations can be written also for higher order increments.

We performed some preliminary calculations on the Be6 ring with a minimal [9s, 4p] → (2s, 1p)

basis set in order to test this approach. In Fig. 4.1 the data for internuclear distances 2.10 Å and

3.00 Å are reported. These particular structures were chosen because they are representative of the

two regimes of the dissociation curve. As was done in Papers M3 and M4 the two configurations

Conf1 and Conf2 were used for the localization in the two regimes and CAS-MoI was applied.

As one can see, as more and more increments are included, both the xx and zz components of the

TPS tensor unequivocally converge towards a value very close to the one obtained via RAS(4,24).

Unfortunately the convergence is not monotonic and, especially for 2.10 Å, the two body contribution

strongly overestimates the contribution given by electron correlation. Nevertheless, considering how

much the HF values deviate from the correlated ones, it is very promising that the data obtained via

the CAS-MoI deviate with respect to the RAS data by 4 % in the long distance regime and less than

1 % in the short distance regime.
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Figure 4.1 Total position-spread (TPS) tensor of the Be6 ring calculated for two different internuclear
distances (2.10 Å and 3.00 Å) with the method of increments employing a minimal [9s, 4p] → (2s, 1p)
basis set. Both Λxx and Λzz components of the TPS tensor are reported as a function the incremental
order and compared with the values achieved via a RAS(4,24).

Since we are mostly interested in the crossing region of the dissociation curve, a slightly different

approach based on the TSCC-MoI was applied. Once again the mathematics is very similar to what
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done for the energy with a few differences. As in section 2.3.2 consider a ground-state wave function

which requires a linear combination of two determinants for a size-consistent description (Eq. 2.41).

After applying the TSCC-MoI one can calculate the expansion coefficients of the bases implied by

Eq. 2.44, cGS
1 and cGS

2 :

|ΦGS⟩ = cGS
1 |ϕ1⟩+ cGS

2 |ϕ2⟩ (4.7)

This allows us in principle to evaluate other expectation values of |ΦGS⟩. In the case of the TPS tensor,

we can write:

ΛGS = cGS
1

2
Λ11 + cGS

2
2
Λ22 + 2cGS

1 cGS
2 Λ12 (4.8)

where Λ11 and Λ22 are calculated as described above:

Λ11 = Λ
′
+
∑
i

L
′
i +

∑
i<j

∆L
′
ij +

∑
i<j<k

∆L
′
ijk + · · · (4.9)

Λ22 = Λ
′′
+
∑
i

L
′′
i +

∑
i<j

∆L
′′
ij +

∑
i<j<k

∆L
′′
ijk + · · · (4.10)

Here Λ
′

and Λ
′′

are the TPS tensors for the references |ϕ′⟩ and |ϕ′′⟩, respectively. Each of these

determinants is localized and two different sets of increments are calculated as was done for the

energy in section 2.3.2. Following the same approximation that we used for the energy, the term

Λ12 = ⟨ϕ1| r̂2 |ϕ2⟩ can be approximated as ⟨ϕ′ | r̂2 |ϕ′′⟩. However this is zero in the case under study.

The absence of a value for the coupling is unfortunate and will have strong repercussions on the

accuracy of the results.

Nevertheless, we used this approach to calculate the change in the TPS around the crossing region.

For the sake of testing a minimal basis set was used and in absence of a definitive benchmark, different

RAS-SCF results were used for comparison. Such data and the ones obtained via TSCC-CAS-MoI at

the 3-body level are reported in Fig. 4.2. As one can see, as the description of electron correlation

improves, the TPS drops and an evident shift in the position of the crossing occurs, which corresponds

to the position of the maximum of the TPS. In general the MoI results follow the correct trend

both of TPS value and maximum position. However, these results are still preliminary and further

investigation to evaluate a coupling term within the MoI approach are necessary before moving on to

the calculation of the TPS for larger rings in order to estimate its behavior in the thermodynamic limit.

Nevertheless, these results are promising and the chance of calculating such an interesting quantity

via a local approach warrants further study.
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Figure 4.2 Λxx component of the TPS tensor of the Be6 ring calculated with the TSCC-CAS-MoI
approach at the three-body level in comparison to different RAS-SCF calculations. A minimal
[9s, 4p] → (2s, 1p) basis set was employed.
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Publications

In this chapter the scientific publications composing this dissertation are presented. These works are

divided into two groups according to the importance of my contribution, i.e. minor (m) or major

(M). For Paper m1 and m2, I was mainly involved in the interpretation of the data and I partially

contributed to the writing of the publications. My contribution to the production of Paper M1-5 was

much larger: I personally produced most of the data reported therein, together with Dr. Muammar El

Khatib (Paper M1), Dr. Gergely Barcza (Papers M2, M3 and M5) and Daniel Koch (Papers M4
and M5). Moreover, I did most of the data analysis and of the writing of these papers.
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Chapter 6

Conclusions and outlook

An ab-initio description of the conducting properties of an electronic quantum system requires an

accurate treatment of electron correlation. Indeed, the electron-electron Coulomb repulsion plays a

key role in determining whether electrons behave as free carriers or whether they are strongly localized.

The connection between a vanishing electrical conductivity and the many-body localization of the

electronic wave function was highlighted by Kohn in his seminal work of 1964[37] and is reflected

by the findings of Nevill Mott[9, 30–33], regarding the nature of the insulating state. Achieving

an insight into the many-body wave function is crucial in order to characterize the metallic and

insulating behavior. This requires a quantitative measure of the electron mobility and of the quantum

entanglement, which are strongly connected concepts. In this work different tools which allow such

investigations were presented. As test cases, one-dimensional systems were selected, which consist of

both model Hamiltonians (i.e. Hubbard’s and Heisenberg’s) and linear and ring-shaped monoatomic

clusters described by means of quantum-chemical methods.

The total position-spread (TPS) tensor constitutes a powerful formalism to study the electron mobility

and it yields an indirect measure of electron correlation. Since a larger value of the TPS tensor

corresponds to a larger delocalization of the wave function, this formalism is particularly useful

for investigating charge transfers in molecular and extended systems and it is strongly connected

to the theory of conductivity. Indeed, a key property of the TPS tensor in the framework of metal-

insulator transitions (MITs) is that it diverges for metals while it converges for insulators as system

size increases towards the thermodynamic limit[44, 45, 174–177]. In this work we analyzed this

behavior for one-dimensional model systems, starting from Hubbard chains (see Paper m1), which

constitute the simplest model for studying MITs[10, 11, 183]. As electron correlation is gradually

switched off by increasing the ratio −t/U , the electron mobility increases reaching a maximum in the

uncorrelated limit (−t/U → ∞). By studying the behavior of the TPS tensor as a function of chain

length, the divergence predicted for a metallic character is observed. A similar behavior was observed
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for hydrogen chains described by quantum-chemical methods. Once again, as system size increases,

the TPS tensor diverges, which is a symptom of a metallic character. This occurs, however, only

in a restricted region of the dissociation curve, while at dissociation and for very short internuclear

distances the TPS tensor reveals a reduced electron mobility. This indicates that these are insulating

regimes.

As stated, the TPS tensor provides information about entanglement. This connection was highlighted

by studying the behavior of the TPS tensor in the long interatomic-distance regime. For instance, the

TPS tensors of the H2 molecule and ions (H+
2 and H−

2 ) were studied for different states. A divergent

behavior for long interatomic distances was observed for those states where the electron mobility

increases because of charge entanglement (see Paper m2).

In this work, a new formalism of the TPS tensor was developed and applied. By means of the novel

spin-partitioned (SP)-TPS tensor, the mobility of individual spins can be analyzed. In particular, we

defined its equal-spin and different-spin components and studied their behavior for hydrogen chains,

Hubbard chains and Heisenberg spin chains (see Paper M1). As discussed, this tool is particularly

useful for investigating those systems where large spin fluctuations occurs. This deeper insight into

the electronic wave function allows the analysis of spin transfers and spin entanglement. This is

analogous to the role played by the spin-summed (SS)-TPS tensor for the study of charge transfers and

charge entanglement. Moreover, the partition into equal-spin and opposite-spin components offers

the chance to distinguish pure Coulomb-correlation (opposite spins) from Fermi-correlation effects

embodied by the equal-spin terms.

The study of the SP-TPS tensor for Heisenberg chains gave us the chance to investigate how different

spin states affect the electron mobility. It has to be noted that we demonstrated a rule of thumb which

connects the closure of the energy gap with divergence of the SP-TPS tensor. Moreover, an analytical

expression was derived for the SP-TPS tensor of a Heisenberg chain as a function of system size and

the z-projected spin quantum number sz .

A quantitative description of quantum entanglement can be achieved by means of an other machinery,

that is, quantum information theory (QIT)[42, 92–101], which allows a direct analysis of the reduced

density matrix. Although these tools are strongly dependent on the orbital basis employed, we

discussed how they can be employed to gain information regarding the metallic/insulating character

of the wave function in one-dimensional quantum-chemical systems (see Paper M2). In order to

investigate intrinsic changes in the wave function in different regimes, we first studied the orbital

entanglement, which can be measured by the mutual information. A deeper insight into the processes

responsible for entanglement was achieved by the analysis of the elements of the two-orbital reduced

density matrix, which describe the different transition probabilities. In a localized-orbital basis, these

could be understood as spin-flipping and hopping terms. The latter are connected to the electric

conductivity. We also analyzed the block von Neumann entropy of a segment of finite chains. Indeed,
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for gapless systems this diverges logarithmically with block size, while converges for gapped systems.

Therefore we could investigate this behavior and use it as an index of MITs. Lithium rings with s-like

localized basis only were investigated as a quantum-chemical analogous of the Hubbard chain, which

is the minimal model to describe MITs. Also more complex systems, beryllium rings, were studied

for different internuclear distance regimes, where they present different metallic/insulating behaviors.

Particular focus was also given on the role played by the orbital basis on the performance of the

ab-initio density matrix renormalization group (DMRG)[82–91]. By using both canonical orbitals and

localized orbitals for the description of beryllium rings, we realized that using the latter requires less

computational effort to achieve the same accuracy. This is because of the lower entanglement between

localized orbitals with respect to canonical orbitals. Understanding the dependence of entanglement

on the orbital basis is fundamental for improving the performance of tensor-product based methods

such as DMRG. Indeed, the results of these investigations on beryllium rings were exploited in

recent works[194] to develop an automatized algorithm which optimizes the orbital basis for reducing

entanglement and speeding up the DMRG procedure. Future investigations are being carried out in

this direction.

Accurate DMRG results were used as benchmark for another quantum-chemical method, the method

of increments (MoI)[64–76] . The power of this approach lies in its reduced scaling, which allows

very accurate electron-correlation calculations of extended and periodic systems. The description of

strongly correlated systems with pronounced multireference character is, however, problematic via the

standard formalism of the MoI. Therefore, in this work we presented some novel variants of the method

of increments using beryllium rings, as test studies which required an accurate description of both

static and dynamical correlation (see Papers M3 and M4). First, we discussed the complete active

space (CAS)-MoI formalism which yields most of the correlation energy that can be obtained at the

CAS-SCF level. On top of such calculations, any nearly size-extensive multireference (MR) method

can be applied in order to calculate the remaining dynamical correlation energy. The applicability of

this MR-MoI was shown to be strongly dependent on the method applied for large systems, since if

size-extensivity is not correctly described, large errors are introduced in the individual increments.

After discussing the accuracy of these methods for the Be6 ring, we applied them to much larger

rings, for which standard methods are not applicable. This allowed the extrapolation of the correlation

energy for an infinite chain.

Through these strategies we achieved very accurate correlation energies, but we could not describe the

whole dissociation curve in a size-consistent manner. To overcome this problem, we introduced a more

sophisticated approach, the two-state constant-coupling (TSCC)-MoI (see Paper M5). This novel

method allows accurate calculations (in comparison to DMRG) of ground-state dissociation curves

for extended systems. Moreover, the TSCC-MoI gives access, in principle, to excited states, which is

an appealing perspective, although for the moment the results are not as accurate as they are for the



168 Conclusions and outlook

ground state. The analysis of the correlated DMRG wave function revealed that this discrepancy is

mainly due to a poor choice of the reference for the excited state. Work is in progress in the workgroup

Paulus to improve the accuracy of the TSCC-MoI for excited states and to extend the procedure to

a larger number of states. This is a fascinating prospective since the TSCC-MoI would allow the

investigation of a part of the excitation spectrum via a low scaling local approach. Another interesting

perspective for the development of the method of increments is given by its possible combination with

DMRG, which could be applied to estimate the most suitable orbital basis for the MoI many-body

expansion.

Finally, exploiting the power of the MoI formalism to calculate properties for extended systems, we

proposed a strategy to calculate the SS-TPS tensor via the MoI. Indeed, the calculation of the TPS

tensor requires an accurate description of electron correlation for extended systems in order to yield

important information regarding the electron conductivity. The MoI allows that. The preliminary

results which were presented here show how such a strategy yields good results for the Be6 rings.

This is an appealing direction which will be investigated further in the future.

In conclusion, one of the main points of this thesis concerned the analysis of the effects of electron

correlation in the framework of metal-insulator transitions. This was done by studying the TPS

tensor, which yields an indirect evaluation of entanglement by measuring the electron mobility, and

by directly analyzing the reduced density matrix through quantum information theory. A consistent

part of this work dealt with the development of new approaches. Firstly, we introduced and tested

the novel SP-TPS tensor, which investigates spin mobility and spin entanglement. Its application to

different spin states of Heisenberg chains allowed us to derive some interesting relations for the TPS

tensor. Secondly, the MoI was extensively applied and new formalisms to treat strongly correlated

systems were developed. In particular the novel TSCC-MoI solved the lack of size-consistency of the

standard MoI and allowed the description of whole dissociation curves. Finally, a new scheme for the

calculation of the TPS tensor via the MoI was presented and succesfully tested.
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[126] J. Čížek, The Journal of Chemical Physics 45, 4256 (1966).

[127] J. Cizek and J. Paldus, Physica Scripta 21, 251 (1980).

[128] R. J. Bartlett, The Journal of Physical Chemistry 93, 1697 (1989).

[129] J. Gauss, Coupled-cluster Theory, John Wiley Sons, Ltd, 2002.

[130] R. J. Bartlett and M. Musiał, Reviews of Modern Physics 79, 291 (2007).
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