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Abstract
Reliable information about position and attitude is an essential requirement for

many applications. The work expounded in this paper aims at a tight integration

of low-cost inertial navigation and stereo vision to obtain this information. The

method I present here is based on passive measurements and does not rely on

external referencing. Thus, it provides a navigation solution for unknown indoor

and outdoor environments.

Special attention is paid to a stereo vision-based system, capable of providing

egomotion measurements with six degrees of freedom. Natural landmarks are

extracted and tracked in consecutive image pairs aided by inertial measurements

to constrain the correspondence problem. This effectively reduces the computa-

tional effort and avoids uncertainties that stem from mismatches, resulting in a

robust tracking algorithm that runs in real time. In turn, the extracted egomotion

is used to constrain the inertial sensor drift. In addition, the measured gravity

serves as a vertical reference, stabilizing the navigation solution.

Based on dead reckoning, inertial navigation is widely used and has been stud-

ied in almost every aspect. To correct the inertial sensor errors, these systems are

periodically provided with external data, e.g. a Global Positioning System (GPS)

signal. The reliable short term properties of inertial data are complemented by the

long-term stability of the external measurement. Although such methods do work

very well, a similar solution is needed for navigating in difficult environments

with erroneous or no external reference whatsoever. In such situations, using

independent measurement systems like barometers, odometers, or vision-based

systems is especially advantageous.

Hence, I present an approach for a heterogeneous multi-sensor system that

involves both hardware and software, wherein aspects like synchronization,

registration, and calibration of the sensor system are considered. As the optical

system is of major importance, I’ve developed a new method that provides fast

and reliable camera calibration. Herein, I also present my extensive analysis

of possible error sources throughout the system. The result of this integration

of stereo vision and inertial navigation is then proven in various pedestrian

navigation tasks.



Zusammenfassung
Das Wissen um Position und Lage spielt für viele Anwendungen eine entschei-

dende Rolle. Diese Arbeit zeigt die enge Verknüpfung von inertialer Navigation

und optischen Informationen, um dieses Wissen zu gewinnen. Die vorgestellte

Methode basiert auf rein passiven Messungen und ist unabhängig von externen

Referenzen. Damit eignet sie sich für die Navigation in unbekannten Umgebun-

gen sowohl in Innen- als auch in Außenbereichen.

Ein Hauptaugenmerk liegt auf der Gewinnung von Bewegungsinformationen

aus optischen Systemen. Unterstützt durch inertiale Bewegungsdaten werden

natürliche Merkmale einer Umgebung verfolgt, um daraus die Eigenbewegung

einer Stereokamera abzuleiten, die dazu beiträgt, die inertiale Sensordrift zu

kompensieren. Die Nutzung der inertialen Messungen liefert eine signifikanten

Beitrag zur Vermeidung von Fehlzuordnungen und zur Reduzierung von Rechen-

leistung. Die gemessene Erdbeschleunigung dient als vertikale Referenz, welche

die Navigationslösung zusätzlich stabilisiert.

Die inertiale Navigation, ein Koppelnavigationsverfahren, hat eine große Be-

deutung und ist Gegenstand vieler Forschungsarbeiten. Bei der Koppelnavigation

wird aus der zuletzt bekannten Position sowie der gemessenen Geschwindigkeit

und Zeit die aktuelle Position bestimmt. Zusätzliche langzeitstabile externe Mes-

sungen, wie z.B. GPS, ergänzen die guten Kurzzeiteigenschaften der inertialen

Navigation und begrenzen aufsummierte Fehler. Obwohl das Verfahren für viele

Anwendungen sehr gut funktioniert, zeigt es Schwächen, wenn die stützende

Messung fehlerhaft oder nicht verfügbar ist. Der Einsatz unabhängiger Systeme

wie z.B. optischer Sensoren, Barometer oder Odometer stellt daher eine sinnvolle

Ergänzung dar.

Zunächst stelle ich einen allgemeinen Ansatz für ein Multisensor-System zur

Positions- und Lagemessung vor. Hierbei beleuchte ich die gesamte Systemkette,

beginnend mit der Auslegung der Hardware-Komponenten über die Datenerfas-

sung und die Kalibrierung bis zur Ableitung höherwertiger Informationen aus

fusionierten Sensordaten. Insbesondere die detaillierte Betrachtung möglicher

Fehlerquellen liefert ein wichtigen Beitrag zum Systemverständnis. Anhand eini-

ger Navigationsaufgaben im Innen- und Außenbereich stelle ich beispielhaft das

Ergebnis einer Integration von optischen- und inertialen Messdaten dar.
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Notation

Throughout this thesis the following notation is used:

- M: Matrices are denoted in upper case bold letters.

- v: Vectors are denoted in lower case bold letters.

- Mb
n: Matrix transforming from n-frame to b-frame.

- vn: Vector given in n-frame coordinates.

- vn
ab: Quantity of the b-frame w.r.t the a-frame, given in n-frame coordinates.

- Operators:

˜[·] homogeneous vector
ˆ[·] apparent quantity (estimated value, measured value)
˙[·] temporal derivative
˘[·] augmented vector/matrix

‖ · ‖ euclidean norm

[·]−1 matrix inverse

[·]T matrix transposed

[·]∗ quaternion conjugate

◦ quaternion multiplication

? convolution

× cross product

[·]× skew-symmetric matrix from vector

vii



Chapter 1

Introduction

Reliable information about position and attitude, also referred to as pose or ori-

entation, is an essential requirement for many applications, especially those

accomplishing navigation1 tasks. Combined dead reckoning and position fixing is

the preferred method for achieving reliable navigation solutions. Dead reckoning

estimates the current position using a previous position fix and measurements

of velocity, direction, and time traveled. Based on dead reckoning, an Inertial

Navigation System (INS) calculates orientation from a known initial position,

velocity, and attitude using inertial sensors – accelerometers and gyroscopes –

which measure acceleration and angular velocity with respect to an inertial refer-

ence frame. Due to integrated errors, this leads to unbound error growth if not

corrected by position fixes, which can be obtained by line of position measurements

or radio navigation, e.g. Global Navigation Satellite System (GNSS).

If such fixes are unavailable or not accessible, vision can provide valuable

information in terms of passive measurement to serve as a reference. Visual

information is increasingly at navigation’s disposal due to recent advances in

image sensor technology, which enable affordable, lightweight, high resolution

cameras. Therefore, I pay particular attention to a stereo vision system here,

which can be used for egomotion estimation. My method leverages the com-

plementary strengths of inertial and visual measurements by combining them,

thereby reducing inertial sensor drift while supporting the visual system with

inertial information.

1 Navigation: The process of planning, recording, and controlling the movement of a craft or

vehicle from one place to another. (Bowditch, 1802)
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1.1 Motivation

A very strong indication for the efficacy of inertial measurements combined

with vision is the fact that human evolution, and that of some animals, has

developed inline with this strategy for perception and control of bodily movement.

Figure 1.1 shows the inner ear and the vestibular system, while the latter consists

of semicircular canals and the otolith organ (Gillingham and Previc, 1993). The

three semicircular canals sense angular velocities and are arranged at mutually

perpendicular angles. Linear acceleration and angular position (inclination) are

sensed by the otoliths (utricle and saccule).

Figure 1.1: Vestibular system with lateral semicircular canal (Lat.), posterior semicircular

canal (Post.), superior semicircular canal (Sup.), utricle (Utr.) and saccule. (Schubert and

Minor, 2004)

Inertial sensors can be seen as an equivalent to the vestibular system. Humans

use vision, reinforcing the inertial sensing system, for a reliable navigation.

Without visual information or auditory aid, humans are unable to walk straight

for longer distances; instead, they start walking in circles (Souman et al., 2009).

If blindfolded, most people, when asked to cross a soccer field, will drift to a

sideline before reaching the other end of the field. Bestaven et al. (2012) rules

out any biomechanical asymmetries and supposes that this behavior is caused

by the vestibular system. Similar to an inertial navigation system without aid,
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accumulated noise causes erroneous navigation. On the other hand, the vestibular

sensory organ helps stabilize vision when the head moves (Schubert and Minor,

2004). Therefore, combining very frequent inertial measurements – which are

prone to large drift errors – with longer-term stable visual measurements is only

a natural step.

Although my major objective is to achieve local navigation for indoor scenarios,

I intend to advance a general solution as well. This requires the basic condition

that no a priori knowledge about the environment can be assumed. It also implies

a passive system that neither interferes with other systems nor modifies the

environment. The incorporation of additional sensors must be supported by a

flexible and open framework. This ensures reliability, robustness, and integrity

for the navigation solution.

1.2 Contributions

My work put forth in this publication focuses on the aspect of navigation that is

concerned with determining position and attitude. The main contribution I make

is a low-cost Vision-Aided Inertial Navigation System (VINS), which provides

local navigation in unknown environments. No a priori assumptions about the

environments are made, e.g. no maps or pre-installed equipment are required.

• My method takes low-cost inertial sensors and couples them with stereo

vision systems to take advantage of the complementary properties of both

systems. The visual data aids the inertial navigation solution, while the in-

ertial measurements are used to constrain the correspondence problem and

track feature points simultaneously. Possible difficulties and solutions with

respect to calibration and registration of the sensor systems are discussed

below.

• I approach the matter from a systemic perspective, describing the complete

processing chain for a tight integration of inertial measurements and visual

data. Special emphasis is given to an overall error modeling. Reliable

measures of uncertainty are derived throughout the data processing chain.

I also show how the propagation of uncertainties for visual measurements

can be greatly simplified.
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• Furthermore, I have developed essential contributions for a novel calibration

method for optical systems, which uses a holographic pattern. This method

allows for accurate, fast, and reliable camera calibration. I also refer to an

extension for stereo systems.

• To process a high level navigation solution from low level sensor data in

real time, I present a scalable framework for a heterogeneous multi-sensor

system with regard to hardware and software integration. The system is

designed to be easily enhanced with either additional hardware or software.

1.3 Organization of the Thesis

This publication is organized as follows: Chapter 2 reviews state-of-the-art meth-

ods available in the field of navigation with an emphasis on visual and inertial

navigation. I discuss possible solutions, including their assets and drawbacks.

Determining position and attitude by means of inertial navigation is recapitu-

lated in chapter 3. I give an overview of inertial sensor technologies and their

properties. Methods of sensor characterization and calibration are discussed

based on a generalized sensor model.

Chapter 4 describes the overall process for extracting egomotion information

from a stereo vision system. This includes a new method for intrinsic camera

calibration with holographic patterning, camera registration, and egomotion

determination as well as feature extraction and matching methods. Here, I show

the advantage of deeply integrating visual and inertial measurements.

The combination of inertial and vision data leads to a VINS. Chapter 5 shows

the registration of the sensor systems including synchronization issues. Solving

these is an important prerequisite for fusing the data within a Kalman filter.

I propose a design for a heterogeneous multi-sensor system in chapter 6.

It includes a hardware concept as well as a software framework for real time

data handling and data processing. It is appropriate for calculating complex

hierarchical data flows to produce high level information from low level sensor

data. The capabilities of the proposed VINS are demonstrated with real data on

a pedestrian indoor navigation task.

I draw conclusions and discuss directions for possible future work in chapter 7.
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Chapter 2

Related Work

Navigation is defined as having two elements. The first is the determination

of position and attitude, called positioning or localization; whereas, the second is

mainly used in a topological sense. The second refers to routing and guidance.

It deals with path planning and obstacle avoidance and leading an object to

a given destination (Hofmann-Wellenhof et al., 2003). My work addresses the

first element, which is concerned with positioning, particularly with methods

appropriate for indoor applications.

Navigation has been the subject of research for many years which has produced

a huge amount of contributions for a wide field of applications. They can be

classified with the following categories:

• with or without external reference (infrastructure)

• map-based or map-less methods

• active or passive measurements

Although this publication focuses on positioning from passive measurements in

non-cooperative indoor environments, I also give a general overview of different

positioning methods and their possible shortcomings. For a comprehensive

overview of these techniques, however, please refer to Mautz (2012). Inertial and

visual navigation methods are reviewed here in greater detail.
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2.1 General Navigation

Many solutions proposed for indoor navigation require infrastructure. Local area

networks, which work with pseudolites (pseudo-satellites), RFID1 Tags, UWB2, or

BLE3, have to be established first. Others make use of existing infrastructure, e.g.

IEEE 802.11
4 networks. Both may use fingerprint-based methods and need an

offline procedure to create a probability radio map of the environment. Position

is then determined by mapping the online measurement to this fingerprint

(Kjærgaard, 2010). Dynamic environments require radio map updates and thus

cause problems for positioning. Non-fingerprint-based solutions usually work

with pseudolites or UWB systems and use triangulation for positioning. This

method may suffer from occlusions and multi-path effects.

Another method is map matching in which a set of features, a map, determined

by radar, vision, or other measurements is matched with a known map (Kayton

and Fried, 1969). Elfes (1987) proposes using sonar range measurements for

mapping and navigation. Laser range scanners that use a rotating laser beam to

measure distances, have been applied in outdoor environments (Guivant et al.,

2000) as well as for indoor scenarios (Fox et al., 1999). Clark and Dissanayake

(1999) propose using millimeter wave radar for land vehicle navigation tasks.

An active vision system is presented with the Kinect sensor from Microsoft

(2011), which uses the PrimeSense 3D sensing technology (PrimeSense, 2010). A

dense depth map of the environment is derived from infrared vision observing

a coded diffractive infrared pattern that is projected onto the scene. Biswas

and Veloso (2012) propose to extract planes from the derived 3D point cloud

and map them to a known 2D representation of the environment to determine

one’s own position. Very recently, Google released the Project Tango (Google,

2014), a mobile-phone-based 3D reconstruction development kit which uses a

PrimeSense-like technology optimized for low power consumption. The outdoor

use of these active infrared solutions is very restricted due to interference from

normal daylight. Generally, active systems are less scalable as they may interfere

with similar signal sources, e.g. in case of multiple devices. Systems that either

need infrastructure or use active measurements are not in the scope of this thesis,

please refer to S. Chao (2009) and Torres-Solis et al. (2010) for further reading.

1 Radio-Frequency Identification 2 Ultra-Wideband 3 Bluetooth Low Energy 4 WLAN
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Inertial navigation has been used for many years in aerospace and naval

navigation (Kayton and Fried, 1969; Stovall, 1997; Titterton and Weston, 2004).

A deep integration of GPS and strapdown-INS for airborne applications was

demonstrated by Wendel (2003). Although this works very well, it shows major

weaknesses in GNSS-denied environments with erroneous or no GNSS data, e.g.

in urban or dense structured areas. Furthermore, this method does not work in

indoor environments as needed for robotic applications or indoor navigation.

With the development of small, lightweight, and low-cost Microelectromechanical

System (MEMS) inertial sensors and their increasing performance (Schmidt, 2010),

inertial navigation is finding ever greater robotic and consumer applications

(Viéville and Faugeras, 1989). MEMS-based INS have to deal with difficult error

characteristics, e.g. large bias instabilities, high noise, and g-sensitive gyroscopes

resulting in poor navigation if left uncorrected (Walchko, 2002; Woodman, 2007).

Redundant measurements have to be employed to restrain inertial sensor drift.

2.2 Visual Navigation

Increasing computational power and tremendous improvements in camera tech-

nology have opened the doors for vision-based navigation. To maintain an

overview of the numerous contributions, DeSouza and Kak (2002) suggested a

taxonomy which subdivides vision-based navigation into map-based, map-building-

based, and map-less navigation. Solutions with single cameras – including omnidi-

rectional cameras –, stereo cameras, or trifocal systems have been set up. Visual

navigation techniques for mobile robots are reviewed by Bonin-Font et al. (2008).

Map-based Map-based navigation or map matching depends on a metric or

topological map of the environment which has to be matched with an observed

scene for localization. Map features can be represented as landmarks (Atiya

and Hager, 1993) or occupancy grid cells (Moravec and Elfes, 1985; Cox, 1991).

Dellaert et al. (1999) proposed using the condensation algorithm (conditional

density propagation) also called Monte Carlo localization or particle filter for

global self-localization. This probabilistic approach allows for non-Gaussian

probability distributions and therefore provides multi-hypothesis tracking. A

comprehensive review is found in Thrun et al. (2000) and Filliat and Meyer (2003).

7



Map-building-based If a map does not exist, the SLAM5 problem can be ad-

dressed (Durrant-Whyte and Bailey, 2006). Besides of using laser-range scanners,

sonar, or radar sensors, visual SLAM systems have been set up with single cam-

eras (Burschka and Hager, 2004; Karlsson et al., 2005; Davison et al., 2007) and

stereo camera systems (Sim and Little, 2006; Konolige et al., 2010). Although the

SLAM technology can be considered mature, there are still unsolved problems,

e.g. regarding computational complexity or the handling of dynamic scenes. For

a good overview of SLAM and possible problems, refer to Thrun (2002) and

Aulinas et al. (2008).

Map-less Map-less navigation neither needs an a priori description of the

environment nor builds a map for navigation purposes. The main techniques

used are optical flow, appearance-based navigation, and feature-based tracking.

With optical flow, single pixels are tracked in consecutive images (Horn and

Schunck, 1981). Inspired by insects’ flight, the resulting optical flow field is used

for reactive navigation strategies, e.g. for obstacle detection or to achieve corridor

centering (Coombs and Roberts, 1993). An overview of insect-inspired navigation

strategies is found in Srinivasan et al. (2004). The application of optical flow for

robotic navigation is reviewed in H. Chao et al. (2014).

The appearance-based method usually consists of an offline learning phase and

an online navigation phase. Matsumoto et al. (1996) store an image view sequence

in a trial run. To achieve position and attitude, the current image is matched to

the image sequence with a template matching technique. Cummins and Newman

(2007) proposed extracting an observation model, e.g. SIFT6 descriptors from

the learning images. A Bayesian network is later used to estimate the location,

including the detection of loop closures. The additional learning phase of this

method is a disadvantage.

Feature-based methods extract distinctive points or lines from an image and

track them in consecutive images. In similarity to the term wheel odometry, the

egomotion determination from these features is called Visual Odometry (VO)

(Nistér et al., 2004). Single view approaches apply the eight-point algorithm

(Longuet-Higgins, 1981) or the five-point algorithm (Nistér, 2004) to solve for the

essential matrix (eq. (4.2.2)), which can be decomposed to recover the relative

5 Simultaneous Localization and Mapping 6 Scale-Invariant Feature Transform
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pose up to a scale factor. The absolute scale factor has to be known initially or

estimated from additional measurements, e.g. by a laser altimeter (E. Johnson

and Mathies, 1999).

Using stereo vision avoids scale ambiguity and allows for extraction of the

complete egomotion. The work of Moravec (1980) is one of the first describing

a typical workflow, including feature extraction, stereo matching, triangulation,

feature tracking, and egomotion estimation. This approach was extended with

advanced modeling of triangulation errors by Matthies and Shafer (1987). Olson et

al. (2003) included a compass for periodical orientation updates to achieve linear

error growth in the accumulated position. Feature tracking, finding a homologous

point set in two images, has to deal with the correspondence problem caused by

potentially unknown and unrestricted egomotion. To solve it in real time, the

possible search areas have to be constrained, either by restricting the motion or

predicting it with additional information. Another way is to use multi-resolution

pyramids for a more efficient tracking.

Hirschmüller (2003) and Nistér (2004) proposed to use feature matching rather

than feature tracking. Features are extracted in every image and only matches

between these features are allowed. Furthermore, an outlier detection scheme

was included to increase the robustness of the algorithm. An adoption is shown

by Howard (2008), which operates directly on dense disparity images. Assuming

a constant velocity motion model, Kitt et al. (2010) applied a Kalman filter for

further accuracy improvements.

2.3 Vision-Aided Inertial Navigation

Besides the advantages in the field of visual navigation in the last decade, consid-

erable efforts have been made in the development of inertial sensor technology

(Schmidt, 2010). The potential benefits of combining inertial and visual infor-

mation was already recognized by Viéville and Faugeras (1990). The authors

proposed using the two complementary sensing modalities to achieve a more

accurate and robust navigation. In general, systems can be distinguished between

loosely coupled ones where the visual module works independently and tightly

coupled systems in which the inertial measurements are used to support the

tracking process and vice versa.
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Single Camera View You et al. (1999) proposed a tight coupling of gyroscopes

and vision for augmented reality. The gyroscope data was used to predict

feature positions in order to constrain the correspondence problem. The result

of the optical-flow-based tracking module is used to correct for accumulated

drift in the inertial data. Huster (2003) demonstrated a system using gyroscopes,

acceleration sensors, and bearing observation from a single feature for underwater

vehicle navigation. A more complex approach, fusing inertial sensors, a laser

altimeter, and visual information from multiple features for a planetary lander

was shown in Roumeliotis, A. Johnson, et al. (2002). Some authors proposed

using visual information to bridge GPS drop-outs in a GPS-aided INS for airborne

and terrestrial vehicle applications (A. Brown and Sullivan, 2002; George and

Sukkarieh, 2007; Randeniya et al., 2010). Another single view approach is using

inertial sensors and omnidirectional vision with optical flow (Stratmann and

Solda, 2004) or feature tracking methods (Strelow, 2004; Diel, 2005).

Stereo Camera View The study of human vision and vestibular system reveals

an analogy to stereo vision and inertial sensors (Lobo, 2002). Inertial clues can be

used as a vertical reference for ground plane estimation and vertical line detection

or to estimate the focal distance of the camera (Lobo, 2002; Lobo and Dias, 2003,

2004). Based on this work, Corke et al. (2007) proposed a framework for Structure

from Motion (SfM) aided by inertial information. Zhu et al. (2006) integrated a

loosely coupled system with GPS, Inertial Measurement Unit (IMU), and stereo

vision fused within an extended Kalman filter for outdoor applications. Oskiper

et al. (2007) employed an additional rearview stereo system in order to increase

the robustness of the visual measurement for indoor environments. To bridge

failing visual measurements, a loosely coupled IMU is used. A tightly coupled

SfM system used for indoor environments is demonstrated in Veth and Raquet

(2007) and Miller et al. (2010). In this approach a few feature points are selected,

incorporated to the filter, and tracked as long as they are visible. Their positions

and uncertainties are projected onto the image to constrain the search area.
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Chapter 3

Inertial Navigation

Based on dead reckoning, inertial navigation is orientation by means of known

initial position, velocity, and attitude. It uses inertial sensors – accelerometers

and gyroscopes –, which measure acceleration and angular velocity with respect

to (w.r.t.) an inertial reference frame. In an inertial frame, inert objects move

rectilinearly with constant velocity through space. According to Newton’s First

Law an external force is needed for a change of motion. Newton’s Second Law

states that this force is proportional to the acceleration.

The main advantage of inertial sensors and thus inertial navigation is that

they are self-contained, robust, and independent from external signals and

disturbance. On the other hand, dead reckoning accumulates small errors in the

inertial measurements, leading to unbound error growth. This chapter looks at a

simplified navigation approach for short-term, local navigation that is suitable for

indoor environments. For a more detailed reading refer to Titterton and Weston

(2004), which served as a basis for this chapter.

3.1 Inertial Navigation System

An INS consists of accelerometers, gyroscopes, and a computer for continuous

calculation of position and attitude. Three accelerometers, and respectively three

gyroscopes, are mounted with their sensitive axes at mutually perpendicular

angles within an IMU. Accelerometers measure the specific force to which acceler-

ation and the gravitational force contribute. Changes in velocity and position are

calculated by integrating the measured accelerations w.r.t. time. These changes
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are added to the previously known position to obtain the present position.

Rotational motion of the accelerometers w.r.t. the inertial reference frame have

to be sensed in order to resolve the accelerometer measurements in terms of

the reference frame for integration. Gyroscopes measure the angular velocity

or rotation rate. Integrating this measurement w.r.t. time gives the change in

attitude, which is added to the previously known attitude to determine the

present attitude.

Accelero-
meters

Gyroscopes

Trans-
formation

Gravity
correction

Attitude Position

Velocity

 



Figure 3.1: Schematic strapdown INS

An INS rigidly attached to the measured object is called a strapdown-INS. In

comparison to platform-stabilized systems, these are not isolated from rotational

movements, which provides lower mechanical complexity, but increases the

computational effort. An additional problem is the need for gyroscopes that

measure the full dynamic range of the body rotation with the same accuracy as

platform-stabilized systems. With small, lightweight, and low-cost MEMS inertial

sensors, navigation systems become possible for a wide range of applications.

3.1.1 Coordinate Frames

The definition of different reference frames is essential for the derivation of

inertial navigation equations. Subscripts, e.g. for inertial sensors measuring

the b-frame w.r.t the i-frame, have been omitted for a better readability in the

following.

Earth-centered Inertial Frame (i-frame) This coordinate frame has its origin at

the center of the Earth, with non-rotating axes w.r.t. the fixed stars. The z-axis is

the rotational axis of the Earth which is assumed to be invariant.
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Earth-centered Fixed Frame (e-frame) Similar to the inertial frame, it is earth-

centered but has fixed axes w.r.t. the earth. The x-axis points to the intersection

of the Greenwich meridian and the Earth’s equatorial plane.

Navigation Frame (n-frame) This local coordinate system has an arbitrary ori-

gin and its axes are aligned north, east, and down (NED), also referred to as

Local Tangent Plane (LTP). An alternative convention uses axes aligned to east,

north, and up (ENU).

Body Frame (b-frame) This coordinate frame is aligned to the roll, pitch, and

yaw axes of the measured device.

3.1.2 Attitude Algorithm

The relative rotation between two coordinate frames can be described in various

ways (see appendix A). Using the quaternion representation for the attitude

update algorithm has some advantages. It is more precise, easier to check

for consistency and computationally less demanding. Small numerical errors

induced by the update process are corrected by normalizing the quaternion. For

the quaternion update with an angular velocity ω, the following differential

equation has to be solved:

q̇ =
1
2

q ◦ p, (3.1.1)

with p = (0, ωT). The quaternion multiplication is expressed in matrix form as

q̇ =
1
2

Wq, (3.1.2)

with

W =


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 . (3.1.3)

Assuming the angular velocity to be constant over the update interval, the

equation (3.1.2) is solved by using the exponential, where y(t) = C exp(kt) is a

solution to the differential equation dy/dt = ky.

qk+1 = exp
(

1
2

W∆t
)

qk (3.1.4)
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Expanding the exponential term and writing it in quaternion form again leads to

qk+1 = qk ◦ rk, (3.1.5)

with rk forming a quaternion for a rotation about a vector σ = ω∆t, of magnitude

σ = |σ| with

rk =

(
ac

asσ

)
, (3.1.6)

where

ac = cos
(σ

2

)
= 1− (0.5σ)2

2!
+

(0.5σ)4

4!
− . . . (3.1.7)

as =
sin(σ/2)

σ
= 0.5

(
1− (0.5σ)2

3!
+

(0.5σ)4

5!
− . . .

)
. (3.1.8)

3.1.3 Position Algorithm

According to fig. 3.1, the position is obtained by integrating the velocity which

itself is determined from accelerations ab. For an observer moving in the vicinity

of earth the following differential equation (Titterton and Weston, 2004) has to be

solved:

v̇n = Rn
b ab −

(
2ωn

ie + ωn
en
)
× vn

eb + gn. (3.1.9)

It includes a correction for the Coriolis acceleration with ωn
ie, the angular velocity

of the earth frame w.r.t the inertial frame and the transport rate ωn
en, the angular

velocity of the navigation frame w.r.t the earth frame. Both can only be determined

if the position of the navigation frame w.r.t the earth frame and the direction

north is known. In case the navigation task is restricted to a short period within

a local area, they can be neglected, especially when using low-cost MEMS inertial

sensors with high noise levels.

An incremental velocity is derived by integrating the measured acceleration for

the interval tk to tk+1 with

∆vn =
∫ tk+1

tk

Rn
b abdt. (3.1.10)
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As the rotation matrix varies continuously within the update interval, the integral

is approximated as follows:

∆vn ≈ Rn
b,k

(
∆vb

k+1 +
1
2

αb
k+1 × ∆vb

k+1

+
1
2

∫ k+1

k

(
∆αb × ab −ωb × ∆vb

)
dt

) (3.1.11)

with

∆vb =
∫ t

tk

abdt (3.1.12)

∆αb =
∫ t

tk

ωbdt, (3.1.13)

where ∆vb
k+1 = ∆vb and ∆αb

k+1 = ∆αb evaluated over the interval tk to tk+1. It

contains the velocity change measured by the IMU, a rotation correction term

and a dynamic integral term. The dynamic term equals zero if ab and ωb remain

constant over the update interval. A detailed derivation of eq. (3.1.11) can be

found in Titterton and Weston (2004). Using the simplified eq. (3.1.9), the velocity

vector is updated as follows:

vn
k+1 = vn

k + ∆vn + g∆t (3.1.14)

= vn
k + Rn

b,k

(
ab

k+1∆t +
1
2

ωb
k+1∆t× ab

k+1∆t
)
+ g∆t. (3.1.15)

The position within the navigation frame can now be obtained by integrating the

velocity w.r.t the navigation frame.

pn =
∫ t

0
vndt (3.1.16)

For the interval tk to tk+1, the integral is approximated with the trapezoidal rule.

pn
k+1 = pn

k +
vn

k + vn
k+1

2
∆t (3.1.17)

3.2 Inertial Measurement Unit

An IMU consists of three gyroscopes and three accelerometers, each set with

their sensitive axes placed at mutually perpendicular angles. Recently, sets
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of magnetometers and a barometer have been added to boost performance

of attitude and height calculation. All measurements are synchronized and

preprocessed within the IMU and provided via a common interface to the user.

The manufacturer usually provides a calibration sheet quantifying the error

characteristic of the build in sensors. For the experimental part, the tactical

grade MEMS-IMU ADIS-16488 from Analog Devices Inc. is used here. A detailed

characterization is given in tables 3.1 and 3.2.

3.2.1 Sensor Error Model

All inertial sensor data are measurements and therefore subject to errors. Mea-

surements of both sensor sets show deterministic and stochastic errors (IEEE,

2004, R2010). The measurement x̂ is modeled with

x̂ = SMx + bx + n, (3.2.1)

where the bias term bx is added to the true value x. Zero-mean Gaussian noise

is subsumed in n. The linear error in the ratio between input and output signal,

called scale factor error, is described by the matrix S with

S = I3×3 +


sx 0 0

0 sy 0

0 0 sz

 10−6, (3.2.2)

where s(.) are the scale factor errors of the particular axes, given in parts per

million (ppm). Derivations from the linear error approximation are resumed

as a scale factor non-linearity. The misalignment matrix M corrects for non-

orthogonality of the sensor axes, given as small angle approximation from

eq. (A.2.1) with

M =


1 −ψ θ

ψ 1 −φ

−θ φ 1

 . (3.2.3)

Defining the output coordinate system, so that the z-axis coincides with the

sensor z-axis and the output y-axis lies in the plane spanned by the sensor y-axis
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and z-axis, this can be simplified according to Grewal et al. (1990) with

M =


1 −ψ θ

0 1 −φ

0 0 1

 . (3.2.4)

Furthermore, a constant bias term xb is added. It is the average over a specified

time of signal output, measured at specified operating conditions that have no

correlation with input rotation or acceleration (IEEE, 2001).

So far, the model only includes fixed error components obtained by a calibration

procedure. It does not take into account temperature dependent variations,

switch-on to switch-on variations, and in-run variations. They all influence the

navigation system’s accuracy. In fact, they define the performance of the system.

Especially in-run variations of bias and scale factor, called bias stability and scale

factor stability, are limiting factors and therefore used to classify inertial sensors

(see fig. 3.3 and fig. 3.6). Compensation mechanisms are shown in chapter 5.

Allan Variance

To determine the character of a random process, the Allan variance method is

used as a measure of frequency stability. A sequence of stationary sampled data

is divided in n bins with time τ and averaged. The Allen variance is calculated

similar to the common variance computation:

σ2(τ) =
1

2(n− 1)

n

∑
i=1

(
y(τ)i − y(τ)i−1

)2
. (3.2.5)

Doing this with increasing averaging times, a log-log Allan deviation plot, show-

ing the square root of the Allan variance, can be produced.

Figure 3.2 shows an example plot for a fiber optic gyroscope with different noise

terms defined by characteristic slopes. For short averaging times the white sensor

noise, often referred to as random walk, dominates. It can be read directly from

the log-log plot at τ = 1. With increasing averaging time the variance decreases

but increases again at some point. The minimum point on the curve is defined

to be the bias instability. A more detailed explanation is found in IEEE (1997,

R2008).
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Figure 3.2: Allan deviation sample plot (IEEE, 1997, R2008)

3.2.2 Gyroscope

For the measurement of angular rates w.r.t. an inertial frame, various sensor types

with different measurement principles are used. Although MEMS gyroscopes are

central for consumer applications, Ring Laser Gyroscopes (RLG) and Interfero-

metric Fiber Optic Gyroscopes (IFOG) are very important technologies, still used

for high accuracy applications.
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Figure 3.3: Gyroscopes technologies (Schmidt, 2010)

The RLG contains a laser source and three or more mirrors to form an optical

path that functions as an optical oscillator. Two independent laser beams travel

clockwise and anti-clockwise on this path. An induced rotation perpendicular to
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the optical path changes the optical path’s length, which is called Sagnac effect.

This also changes the frequency of each beam, resulting in a frequency difference,

proportional to the angular displacement induced.

IFOGs were developed as a less expensive alternative to RLGs. They also use

the Sagnac effect but measure the phase difference of two beams traveling in

opposite directions along an optical path. The optical path is defined by a wound

coil of optical fiber to increase the length of the path. A more detailed description

of both technologies can be found in Titterton and Weston (2004).

MEMS gyroscopes work by detecting the Coriolis force acting on a vibrating

proof mass m when rotated with angular rate ω perpendicular to the axis of

vibratory motion v.

Fc = −2m(ω× v) (3.2.6)

The mass is pushed out of the oscillation plane, which is detected by capacitor

plates in silicon sensors or by piezoelectric sensing element in Quartz Rate

Sensors (QRS). Figure 3.4 shows a realization of a balanced oscillator or tuning

fork gyroscopes.
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Figure 3.4: Tuning fork principle (IEEE, 2004, R2010)

Although performance has improved continually in recent years (Perlmut-

ter and Robin, 2012), MEMS inertial gyroscopes still show significantly higher

amounts of noise as well as a less stable bias and scale factor compared to optical

gyroscopes (see fig. 3.3). Zero mean random noise is integrated to angle random

walk, expressed in °/
√

h. Furthermore, the bias from eq. (3.2.1) causes the angular
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error to grow linear with time, if not compensated for. It consists of a constant

and a random component that varies from switch-on to switch-on, but then

remains constant. Due to flicker noise in the electronics the bias wanders over

time. This in-run bias stability, given in °/ h is specified by means of the Allan

variance. It is a non-stationary process characterized by a 1/f power spectral

density (IEEE, 2001).

Unlike optical gyroscopes, MEMS devices show a significant error when

exerted on by acceleration. This is caused by mechanical design asymmetry and

micro-machining inaccuracies (Weinberg, 2011). The g-sensitivity is a linearly

dependent error expressed in °/s/g. Equation (3.2.1) has to be extended with

∆ωb = Gab, where G is a 3 × 3 g-sensitivity matrix and ab is the applied

acceleration. Some IMUs compensate for that error on-line with their built-

in accelerometers. Bancroft and Lachapelle (2012) proposed to estimate the

sensitivity matrix dynamically.

The IMU ADIS-16488 is used for the experimental setup. It consists of silicon

gyroscopes with capacitive sensing elements (Zumbahlen, 2005). The measured

Allen deviation shown in fig. 3.5 verifies that all three axes lay within the given

specification (table 3.1).
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Figure 3.5: ADIS-16488 gyroscope Allan deviation
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ADIS-16488

Range [°/ s] 450

Bandwidth [Hz] 330

Angle random walk [°/
√

h] 0.3

Bias stability [°/ h] 6.25

Scale-factor stability [ppm] 10 000

g-Sensitivity [°/s/g] 0.009

Table 3.1: Gyroscope specifications

3.2.3 Accelerometer

Inertial navigation mainly relies upon integrating acceleration measurements to

obtain velocity and position changes. An acceleration a is measured indirectly by

measuring the force F acting on a proof mass m with

F = ma (3.2.7)

and

a = f + g, (3.2.8)

where g is the gravitational acceleration and f a non-gravitational component

produced by the specific force applied to the sensor. A good knowledge of the

gravitational field is therefore essential for the use of inertial measurement.

Mechanical accelerometers usually work as mass-spring devices. In open-

loop systems, the deflection of the spring, when exerted on by acceleration, is

a measure of the applied force. Closed-loop or torque-balanced devices, hold

the proof mass in null position by torque, which is generated proportional to the

displacement. The current for producing that torque is a measure of the applied

force. This method is preferred to open-loop devices as it is far more accurate.

Solid state MEMS devices measure acceleration primarily in two ways. Silicon

micro-fabricated pendulous-mass accelerometers detect the displacement of a

hinged proof mass by a change in capacitive, piezoelectric or piezoresistive

readouts. They can be operated in open-loop or closed-loop mode. Vibratory

accelerometers make use of the resonant frequency modulation of a vibrating

element when put under tension or compression. A common implementation
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is the dual beam mechanization in quartz crystal technology as described in

Albert (1994). Without external force, both beams vibrate at the same frequency.

When acceleration is applied, one beam becomes compressed and its frequency

decreased, the other is stretched increasing its frequency. The difference in

frequency is proportional to the applied acceleration.

Driven by automotive industry, the quality of MEMS acceleration sensors

has reached a level sufficient for lower-grade tactical applications as well as

commercial applications (Schmidt, 2010). Mechanical acceleration sensors are still

used if high performance is needed, e.g. for military applications (see fig. 3.6).
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Figure 3.6: Accelerometer technologies (Schmidt, 2010)

Zero mean random noise is specified as velocity random walk, given in

m/s/
√

h or equivalent in mg/
√

Hz. If integrated twice, it creates a second

order position random walk with zero mean and standard deviation

σs(t) ≈ σat3/2
√

∆t
3

, (3.2.9)

with sample time ∆t (Woodman, 2007). A constant bias causes the position error

to grow quadratically with time.

∆s(t) = ab
t2

2
(3.2.10)

Similar to gyroscopic measurement, the bias stability produces a second order

velocity random walk resulting in a third order position random walk that grows
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proportional to t5/2 (Woodman, 2007). An overview of different accelerometers

types and their error characterization can be found in IEEE (1998, R2008).

The used ADIS-16488 provides silicon MEMS capacitive accelerometers, speci-

fied in table 3.2. Again, measured Allen deviation confirms the given specification.

Figure 3.7 shows that the y-axis accelerometer has a significant increased bias

stability. Magnetometer and barometer measurements are also available but not

used in the current setup.
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Figure 3.7: ADIS-16488 accelerometer Allan deviation

ADIS-16488

Range [g] ±18

Bandwidth [Hz] 330

Velocity random walk [m/s/
√

h] 0.029

Bias stability [mg] 0.1

Scale-factor stability [ppm] 5000

Table 3.2: Accelerometer specifications
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3.3 Inclination Sensor

Acceleration sensors used in inclination devices are realized with a force balance

(closed-loop) design. A dampened magnetic permeability mass is hold in null

position with a counter force provided by a magnetic coil. The coil current is a

measure for the force acting on the mass. This design provides an excellent bias

stability and a high sensitivity with a limited input range. It is also very stable

against changing thermal conditions. As it aims to measure static accelerations,

the output is filtered to remove any picked up high frequent content.

In case no specific force is applied, only the gravitational acceleration g is mea-

sured. An inclinometer, with two perpendicular accelerometer axes, measures the

inclination angles α = arcsin(ax/g) and β = arcsin(ay/g) w.r.t the local tangent

plane of the earth. This can be expressed as a rotation Ri
n transforming from the

navigation frame to the inclination sensor frame. According to appendix A.2,

Euler angles in the representation for body-fixed axes are extracted as follows:

1
g


ax

ay

az

 = Ri
n


0

0

1

 =


sin(θ)

− sin(φ) cos(θ)

cos(φ) cos(θ)

 . (3.3.1)

This leads to:

φ = − arctan
( ay

az

)
(3.3.2)

θ = α = arcsin
(

ax
g

)
, (3.3.3)

with a virtual z-axis component az = ±
√

g2 − a2
x − a2

y. The sign depends on the

mounting orientation of the inclinometer. The dual-axis inclinometer ADIS-16209

from Analog Devices Inc. was used in the experimental sensor head.

ADIS-16209

Range [°] ±90

Relative accuracy [°] ±0.1

Sensitivity [°/LSB] 0.025

Table 3.3: Inclinometer specification
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Chapter 4

Computer Vision

In this chapter, I describe how to extract motion information from stereo vision.

Measuring with images requires having an exact knowledge of the geometrical

properties of the camera system. I introduce a novel calibration method using

diffractive optical elements for gaining information of the camera model and lens

distortion. Furthermore the registration of the stereo camera system is needed

as a prerequisite step for the reconstruction of 3D image points used for pose

estimation.

Throughout the complete processing chain the uncertainties of calibration,

registration, triangulation, and pose estimation are reviewed. This is essential to

derive an accuracy measure for the estimated egomotion.

4.1 Single Camera View

Looking at an image, every pixel represents a ray with a distinct direction,

passing through the center of projection, eventually meeting some 3D object point.

A single camera image therefore shows a 2D projection of the world without

the depth information, which can not be retrieved again without additional

information. In the following, the world is modeled in projective space P
n, equal

to Euclidean space R
n along with points at infinity. A Euclidean object point

M = (X, Y, Z)T ∈ R
3 is written as homogeneous coordinate M̃ = (X, Y, Z, 1)T ∈

P
3. Because (X, Y, Z, 1)T ∼ (X ·W, Y ·W, Z ·W, W)T, it is in fact defining a ray

with an origin at (0, 0, 0, 1)T. Points at infinity are stated as (X, Y, Z, 0)T. An

overview regarding projective space is found in Mohr and Triggs (1996).
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4.1.1 Camera Model

The pinhole model describes the central projection of an object point in world

coordinates M̃w to image coordinates m̃i = (u, v, 1)T ∈ P
2 on a image plane π.

Starting at the virtual projection center c, the image plane is defined parallel to

the xy-plane of the camera coordinate frame as shown in fig. 4.1.

x
z

c

y

π

m

v

u

M

Figure 4.1: Camera coordinate frame

In the following, the successive transformation of a 3D object point to a 2D

image point and vice versa is shown. Every transformation step, except the

projection, can introduce errors which increases the overall uncertainty.

Normalized 
Camera

Camera ImageWorld Exteriour
Orientation

Interiour
Orientation

Triangulation
/Projection

Figure 4.2: Coordinated frames and transformations

World Frame↔ Camera Frame An object point is brought from world frame

to camera frame with a homogeneous transformation matrix Tc
w, containing the

parameters of exterior orientation. The inverse transformation matrix reverses

this operation. See appendix A.1 for a detailed description.

M̃c = Tc
wM̃w (4.1.1)
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Camera Frame↔ Normalized Camera Frame A projection of the object coor-

dinate M̃c = (X, Y, Z, W)T using the normalized projection matrix P = [I3|0]
gives normalized camera coordinates m̃c.

m̃c = PM̃c (4.1.2)

The transformation from homogeneous coordinates to Cartesian coordinates

finally projects to a virtual image plane at z = 1 .

mc =
(

x, y
)T

=
(

X/Z, Y/Z
)T

(4.1.3)

Non-linear error propagation from eq. (B.1.11) maps the object point uncertainty

ΣM̃c to the uncertainty Σxy for the normalized camera coordinates. It uses the

partial derivation of the image point w.r.t. the homogeneous object point stated

in the Jacobian

J =
∂mc

∂M̃c =
1

Z2

[
Z 0 −X 0

0 Z −Y 0

]
. (4.1.4)

The reverse transformation requires the triangulation of two normalized camera

coordinates, which is described in section 4.2.2.

As can be seen in the following, core algorithms like distortion correction, trian-

gulation, or pose estimation are calculated with normalized coordinates. This is

very convenient because they are independent from exterior and interior camera

orientation, which greatly simplifies uncertainty calculations.

Normalized Camera Frame ↔ Image Frame By applying the camera matrix

K, containing the parameters of interior orientation, ideal image coordinates

m̃i = (u, v, 1)T are obtained.

m̃i = Km̃c, (4.1.5)

with

K =


α 0 u0

0 α v0

0 0 1

 , (4.1.6)

where α = f /d is expressed in pixels, with the camera constant f and pixel size d.

With the lens focused at infinity, the camera constant is equal to the focal length,

otherwise it is slightly less. The principal point (u0, v0)
T is defined to be the point
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on the image plane that is at the base of the perpendicular of the center of the

lens (T. Clarke and Fryer, 1998).

The uncertainty Σuv of an image point depends on the uncertainty Σxy of

the normalized camera coordinate as well as from errors within the interior

orientation Σio = diag(σ2
α , σ2

u0
, σ2

v0
). From eq. (B.1.11) follows

Σuv = J

[
Σxy

Σio

]
JT, (4.1.7)

with partial derivation of eq. (4.1.5)

J =
∂mi

∂(mc, K)
=

[
α 0 x 1 0

0 α y 0 1

]
. (4.1.8)

For the reverse direction m̃c = K−1m̃i error propagation gives

Σxy = J

[
Σuv

Σio

]
JT, (4.1.9)

with

J =
∂mc

∂(mi, K)
=

1
α

[
1 0 −x −1 0

0 1 −y 0 −1

]
. (4.1.10)

If normalized image coordinates are not needed, a direct mapping from world-

frame-object points to ideal image points is realized by a 3×4 projection matrix

P, containing the parameters of interior and exterior orientation

m̃i = PM̃w, (4.1.11)

with

P = K
[

Rc
m|t

c
w

]
. (4.1.12)

4.1.2 Lens Distortion

Real lenses, however, usually do not sufficiently fit into the pinhole camera

model. Optical aberrations, such as distortion, chromatic aberration, astigmatism,

coma, etc. can occur. Distortion is geometrically the most significant and can

be corrected with polynomial model functions by applying normalized camera

coordinates.
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Camera
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Camera
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Image
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Distortion

Interiour
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Figure 4.3: Coordinated frames and transformations for real lenses

Normalized Camera Frame ↔ Distorted Image Frame Applying a distortion

model to normalized camera coordinates gives distorted normalized camera

coordinates m̂c = (x̂, ŷ, 1)T. Similar to eq. (4.1.5), distorted image coordinates

m̂i = (û, v̂, 1)T are obtained by a transformation with the camera matrix K.

m̂i = Km̂c (4.1.13)

Most common is the correction with the distortion model of D. Brown (1971),

which models radial symmetric distortion δr and decenteric distortion δt.(
x̂

ŷ

)
=

(
x

y

)
+ δr(x, y, k) + δt(x, y, p) (4.1.14)

(a) Pincushion distortion (b) Barrel distortion

Figure 4.4: Polynomial lens distortion

To date, this model has been and continues to be used in many applications

(Weng et al., 1992; Zhang, 1996; Heikkilä and Silven, 1997; T. Clarke, Fryer,

and Wang, 1998; Zhang, 2000; Devernay and Faugeras, 2001). The uncertainty

of a distorted camera coordinate depends on the covariance of the normalized

camera coordinate itself but also on the uncertainty of the model parameters

29



Σk, Σp obtained from a calibration process:

Σx̂ŷ = JxyΣxy JT
xy + JkΣk JT

k + JpΣp JT
p , (4.1.15)

with

Jxy =
∂m̂c

∂mc =

[(
1

0

)
+

∂δr
∂x

+
∂δt
∂x

(
0

1

)
+

∂δr
∂y

+
∂δt
∂y

]
(4.1.16)

Jk =
∂m̂c

∂k
=

[
∂δr
∂k1

∂δr
∂k2

∂δr
∂k3

]
(4.1.17)

Jp =
∂m̂c

∂p
=

[
∂δt
∂p1

∂δt
∂p2

]
. (4.1.18)

Radial Distortion Usually it is sufficient to correct for radial lens distortion,

which is caused by thick lenses in connection with an aperture stop. If the

magnification decreases with distance from the optical center, it is called nega-

tive distortion or barrel distortion. Positive distortion or pincushion distortion

show increasing magnification. Equation (4.1.19) describes the symmetric radial

distortion as a polynomial with coefficients k = (k1, k2, . . . , kn).

δr(x, y, k) =

(
x

y

)
·

∞

∑
n=1

(
knr2n

)
(4.1.19)

with

r2 = x2 + y2. (4.1.20)

The partial derivatives of the radial distortion w.r.t. normalized camera coordi-

nates x, y and the distortion coefficients are given with

∂δr
∂x

=

(
1

0

)
·

∞

∑
n=1

(
knr2n

)
+

(
x

y

)
· 2x

∞

∑
n=1

(
nknr2(n−1)

)
(4.1.21)

∂δr
∂y

=

(
0

1

)
·

∞

∑
n=1

(
knr2n

)
+

(
x

y

)
· 2y

∞

∑
n=1

(
nknr2(n−1)

)
(4.1.22)

∂δr
∂kn

=

(
x

y

)
knr2n. (4.1.23)
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Decentric Distortion If the optical centers of different lenses are shifted, decen-

teric distortion occurs. It contains radial parts as well as tangential parts and is

modeled with coefficients p = (p1, p2, . . . , pn]. This model might be useful for

very cheap lenses, like those used for mobile phones or web cams.

δt(x, y, p) =

(
p1(3x2 + y2) + 2p2xy

p2(x2 + 3y2) + 2p1xy

)
(1 + p3r2 + · · · ) (4.1.24)

With Jacobians w.r.t. normalized camera coordinates and distortion coefficients.

∂δt
∂x

= 2

(
3p1x + p2y

p2x + p1y

)
(4.1.25)

∂δt
∂y

= 2

(
p1y + p2x

3p2y + p1x

)
(4.1.26)

∂δt
∂p1

=

(
3x2 + y2

2xy

)
(4.1.27)

∂δt
∂p2

=

(
2xy

x2 + 3y2

)
(4.1.28)

4.2 Stereo Camera View

We have seen that the depth information gets lost in a single camera view. One

way to avoid this loss is with stereo vision. An object point can be reconstructed

by triangulation of correspondent image points m↔ m′ from two cameras with

known exterior orientation. An uncertainty evaluation shows the importance of

an accurate camera calibration and registration.

4.2.1 Epipolar Geometry

Epipolar geometry describes the essential geometry between two camera views.

As seen in fig. 4.5, the object point M̃w, both image points mi1, mi2, and the centers

of projection c, c′ are coplanar, spanning the epipolar plane. The intersection

of the epipolar plane with the image planes are the epipolar lines. Given only

the baseline between c1 and c2 with an image point mi1 in the first image, the

correspondent image point mi2 in the second image must lie on the epipolar line

l2 = Fmi1.
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Figure 4.5: Epipolar geometry

The fundamental matrix F, which is dependent on the cameras’ interior and

exterior orientation, connects correspondent image points with (m̃i2)TFm̃i1 = 0.

For a stereo setup with orientations P1 = K1[I|0] and P2 = K2[R
c2
c1|t

c2
c1] applies

F = K−T
2 [tc2

c1]×Rc2
c1K−1

1 . (4.2.1)

When using normalized camera coordinates, the interior orientation of the

cameras is removed giving normalized projection matrices P1 = [I|0] and

P2 = [Rc2
c1|t

c2
c1]. A fundamental matrix for normalized cameras is called essential

matrix

E = [tc2
c1]×Rc2

c1, (4.2.2)

satisfying the epipolar constraint (m̃c2)TEm̃c1 = 0.

4.2.2 Triangulation

The co-planarity of correspondent points and their projection centers, satisfying

the epipolar constraint (m̃c2)TEm̃c1 = 0, is illustrated in fig. 4.5. Measurement

errors, occurring in real scenarios make it necessary to think about optimization

methods for the object point reconstruction. Many different methods are proposed

(Hartley and Sturm, 1995).

The linear method minimizes the norm ‖ε‖ = ‖Ax|| in projective space P
3,

which is geometrically less meaningful but very fast and handles points at infinity.
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With a normalized projection matrix, an object point is projected to a normalized

camera coordinate with m̃ = PM̃w. Using the cross product m̃ × PM̃w = 0

eliminates the scaling factor and gives

x
(

p3T M̃w
)
−
(

p1T M̃w
)
= 0

y
(

p3T M̃w
)
−
(

p2T M̃w
)
= 0

x
(

p2T M̃w
)
− y

(
p1T M̃w

)
= 0,

with m̃ = (x, y, 1)T andpiT denoting the rows of the matrix P. Two of the three

equations obtained are linearly independent.

The combination of the two measurements m̂c1 × P1M̃w and m̂c2 × P2M̃w leads

to a homogeneous set of equations of the form Ax = 0, with

A =


x̂p3T

1 − p1T
1

ŷp3T
1 − p2T

1

x̂′p3T
2 − p1T

2

ŷ′p3T
2 − p2T

2

 , (4.2.3)

with m̂c1 = (x̂, ŷ, 1)T and m̂c2 = (x̂′, ŷ′, 1)T. A non-zero solution to this ho-

mogeneous equation is given in appendix B.2.3. It also shows the uncertainty

calculation giving a 4× 4 covariance matrix.

A better way is minimize a geometrical distance in image space R
2. The

noisy measurements m̂c1, m̂c2 are corrected to satisfy the epipolar constraint.

Besides the complete polynomial solution, which involves finding the root of a

polynomial of sixth order an approximation is given with
x

y

x′

y′

 ≈


x̂

ŷ

x̂′

ŷ′

− (m̂c2)TEm̂c1

(Em̂c1)2
1 + (Em̂c1)2

2 + (ETm̂c2)2
1 + (ETm̂c2)2

2


(ETm̂c2)1

(ETm̂c2)2

(Em̂c1)1

(Em̂c1)2

 ,

(4.2.4)

where (Em̃)i is the i-th vector element. The Sampson-approximation (Hartley and

Zisserman, 2000) corrects for first order measurement errors. It can also be used

for a consistency check as bigger corrections are an indication for mismatched

points. After correction, the object point is calculated accordingly to eq. (4.2.3).
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Figure 4.6: Geometric error correction

4.3 Pose Estimation

Homologous image points in two successive stereo frames are used to estimate

the egomotion of a stereo system as seen in fig. 4.7. Object points triangulated

 

c11 c21 
 

 

Figure 4.7: Camera frames for pose estimation

from both stereo frames are connected by the transformation T .

M̃c12 = T M̃c11 (4.3.1)

Minimizing for T in projective space P
3 does not provide a meaningful error

measure. Therefore, it is better to minimize distances in R
2, e.g. in normalized

camera coordinates. The transformed object coordinates have to be projected to

get normalized camera coordinates

mc12 =
(

M̃c12
x /M̃c12

z , M̃c12
y /M̃c12

z

)T
. (4.3.2)
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To find the relative transformation T = f (ω, ϕ, κ, tx, ty, tz) between both frames,

these coordinates are compared to measured normalized camera coordinates m̂c12

from the reference camera of the second stereo frame.

min
T

∥∥m̂c12 −mc12∥∥2 (4.3.3)

This non-linear least square optimization problem is solved accordingly to ap-

pendix B.2.2 with the Jacobian

JT =
∂mc12

∂T
=

∂mc12

∂M̃c12
∂M̃c12

∂T
, (4.3.4)

with partial derivatives of the normalized camera coordinate w.r.t. the transformed

object point from eq. (4.1.4) and the object point w.r.t. to T .

The quality of the pose estimation depends not only on the quality of the

calibration and registration of the cameras; the number of homologous feature

points, their distance, and their distribution within the observed scene also have

a strong influence. Therefore, the uncertainty of the solution can vary widely,

which has to be taken into account for the successive data processing. As stated

in appendix B.2.2 the Jacobians of the shift vector w.r.t. the error sources have to

be determined. A major sources of error will be the triangulated object point of

the first stereo frame, with the Jacobian

JMc11 =
∂mc12

∂M̃c11 =
∂mc12

∂M̃c12
∂M̃c12

∂M̃c11 . (4.3.5)

In general, it is sufficient to use only image points of the reference camera

of the second stereo frame for the estimation process. By using feature points

from the second camera as well, the number of measurements and therefore the

accuracy of the solution is increased. The procedure is similar to that of the

reference camera, only the relative transformation of both cameras Tc2
c1 has to be

added.

M̃c22 = Tc2
c1 T M̃c11 (4.3.6)

It has to be noted that the triangulated object point M̃c11 is already dependent

on Tc2
c1 . Instead of using the covariance of the object point directly, it is therefore

necessary to use the Jacobians of the object point w.r.t. the sources of error within

the triangulation.

JTc2
c1
=

∂mc22

∂Tc2
c1

=
∂mc22

∂M̃c22

(
∂Tc2

c1

∂Tc2
c1

T M̃c11 + Tc2
c1 T

∂M̃c11

∂Tc2
c1

)
(4.3.7)
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Besides the error of the relative orientation, errors of the normalized camera

coordinates mc11, mc21 in the left, respective right image of the first stereo frame

are considered. Jacobians are as follows:

Jmc11 =
∂mc22

∂mc11 =
∂mc22

∂M̃c22
∂M̃c22

∂M̃c11
∂M̃c11

∂mc11 (4.3.8)

Jmc21 =
∂mc22

∂mc21 =
∂mc22

∂M̃c22
∂M̃c22

∂M̃c11
∂M̃c11

∂mc21 (4.3.9)

To solve eq. (4.3.3), a perfect data set of homologous image points is needed.

This can not be guaranteed due to mismatching at repetitive structures or low

textured areas. Single outliers can be crucial as they introduce significant errors to

the solution or can even cause the minimization to fail. Even more, the proportion

of mismatched points can be quite high.

Therefore, the Random Sample Consensus (RANSAC) introduced by Fischler

and Bolles (1980) is used to estimate model parameters in the presents of outliers.

Instead of using all points of the data set, the model parameters are estimated

with a randomly chosen minimum data set. The solution is then applied to the

complete data set, which allows for the counting data points that are compatible

to said solution. The number of iterations needed to find the optimal data set

with a probability of p is given with

k =
log(1− p)

log(1− wn)
(4.3.10)

where w is the proportion of in-liners with respect to the complete data set and n

being the minimum number of data points to find the model parameters.

4.3.1 Feature Extraction

To perform the aforementioned steps, it is necessary to extract a selection of

feature points that are reliably detectable over consecutive frames. Natural land-

marks, such as corners, isolated points or line endings, meet these requirements.

Harris and Stephens (1988) proposed to locate these feature points by analyzing

the autocorrelation matrix

A =

[
I2

x Ix Iy

Ix Iy I2
y

]
. (4.3.11)
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with the partial derivatives of the image intensity Ix = ∂I/∂x and Iy = ∂I/∂y.

Convolving the image with the Sobel operator approximates the image intensity

gradients with a slightly higher weight in the direction of the gradients.

∂I/∂x ≈ I ?


−1 0 1

−2 0 2

−1 0 1

 (4.3.12)

∂I/∂y ≈ I ?


−1 −2 −1

0 0 0

1 2 1

 (4.3.13)

The eigenvalues λ1, λ2 of the matrix A serve as a rotational invariant measure of

the curvature of the autocorrelation matrix. For both eigenvalues being small

the region looked at is of constant intensity. If one eigenvalue is higher than the

other, this indicates an edge; whereas, both eigenvalues being high specifies a

corner. Shi and Tomasi (1994) proposed that a corner is found if

min(λ1, λ2) > λ, (4.3.14)

with λ as a threshold value. A non-maximum suppression follows, which keeps

only local maximums to guarantee a minimum distance between each feature.

In practical applications, a constant threshold turns out to be a problem for

differently textured scenes. Therefore, an automatic adaptation similar to an

automatic exposure is needed. This can be done by defining the desired number

of features to be found. Starting with some initial threshold, the current number

of features is determined. If too many features are found, the threshold is

increased for the next image, respectively decreased if too few features are found.

4.3.2 Feature Matching

A prerequisite for triangulation or pose estimation is the identification of homol-

ogous feature points in multiple images. Template-based approaches, describing

a feature according to its local neighborhood, can be used for matching. The best

match can be determined through convolution of the template with the region

of interest within the search image. Although different correlation methods are

used, Normalized Cross Correlation (NCC) will be applied here because of its
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robustness against changes in lighting and exposure. The matching coefficient is

calculated as follows:

γ(u, v) =
1
n ∑

i,j

(
S(u + i, v + j)− S

) (
T(i, j)− T

)
σSσT

, (4.3.15)

with the search image S, the template T with n = i · j pixels and the mean S, T,

respective to the standard deviation, σS, σT of the templates in both images.

Having real-time applications in mind, the restricting the region of interest

within the search image is a main objective. This not only speeds up the matching

process, it also avoids mismatching, often encountered in indoor environments,

e.g. at repetitive structures. Dependent on the available information, two types of

regions of interests can be distinguished (see fig. 4.8).

iintra

in
ter

in
ter

tk

tk+1

Figure 4.8: Paths for intra-frame and inter-frame matching with search areas

Intra-frame matching For known orientation between both views but unknown

object points, the epipolar geometry is used to confine the search area to the

epipolar line (see section 4.2.1). The search for corresponding features within a

stereo frame with a precisely known calibration can be confined to a one-pixel-

thick epipolar line. For dedicated applications, the minimum and maximum
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distance of considered object points can be limited. This also limits the length of

the epipolar line, resulting in a further reduction of the search area.

Inter-frame matching With known object points, e.g. from triangulation and

known relative orientation, the image point in the second frame could be cal-

culated directly with eqs. (4.1.1) and (4.1.3), which would render the matching

obsolete. Still, large uncertainties on these input parameters cause a signifi-

cant uncertainty on the calculated image point. Matching is needed again. The

resulting covariance is now used to determine the size of the search area.

Figure 4.9: Elliptical 95 % confidence region

J. Clarke (1998) stated that the elliptical confidence region for a point m =

(x, y)T with covariance Σm is given by points x satisfying

χ2 = (x−m)TΣm(x−m). (4.3.16)

The size of the region is determined by the χ2-distribution, which is used to

calculate the confidence interval for multiple independent standard normal

distributed variables. For two degrees of freedom, it is given with

χ2 = −2 log(1− p), (4.3.17)

where p is the probability of a value to be within the confidence interval. The

points x from eq. (4.3.16) are calculated as follows:

xi = m + χ
√

d1 sin(θi)v1 + χ
√

d2 cos(θi)v2, (4.3.18)
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with θi = 0...2π and v, d being the eigenvalues and eigenvectors of the eigen-

decomposition Σm = V DV−1. As covariance matrices are symmetric, eigenvalues

and eigenvectors can be calculated more efficiently with the singular value

decomposition Σm = V DV T.

4.4 Calibration and Registration

Measuring in images requires exact knowledge of the camera model and an

additional non-linear distortion model. Several methods for calibrating camera

systems have been proposed. Many of them use predefined calibration grids to

extract camera parameters with a complex bundle adjustment (Tsai, 1987; Zhang,

2000; Strobl et al., 2005). To separate all parameters safely, several observations

with different viewing angles and distances are needed. Although this method is

very common, it is prone to errors if not conducted properly. Because the size of

the target is limited, it is also not suitable for telephoto lens calibration.

A way to eliminate those difficulties is the use of collimated light to illuminate

single pixels. Rotating either the light source or the camera by known angles

produces a well defined grid of points at infinity (Schuster and Braunecker,

2000). These points are invariant against translation, an important advantage as it

makes multiple pose observations obsolete, resulting in a more stable estimation

process. As this method is rather time consuming and mechanically challenging,

a holographic pattern produced by an Diffractive Optical Element (DOE) is used

to achieve a fast and reliable camera calibration (Grießbach et al., 2008; Grießbach,

Bauer, et al., 2010).

4.4.1 Diffractive Optical Element

The advantages of the classical calibration grid approach and the single pixel

illumination method are combined by using a DOE. It works as a beam splitter

with precisely known diffraction angles. The virtual sources of the diffracted

beams are points at infinity, which yields an image that is invariant against

translation.

A collimated laser beam with wavelength λ is split in well known propagation
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Figure 4.10: Schematic DOE calibration setup

directions denoted with

M̃d =


λ fx

λ fy√
1− λ2( f 2

x + f 2
y )

0

 , (4.4.1)

where fx, fy are spatial frequencies encoded in the DOE, which is given by

fx = nx/g and fy = ny/g, with n denoting the particular diffraction orders and

the grating period g. The grating vectors define the x-axis and y-axis of the DOE

coordinate frame. Table 4.1 shows the specification of the DOE used.

Diameter [mm] 75

Grating period [µm] 41.1

Angular spacing [°]1 0.82–1.17

Table 4.1: DOE specification

Equation (4.4.1) holds if the incident light wave is a plane wave with uniform

intensity distribution, perfectly perpendicular to the DOE surface. In a real setup,

the beam is finite in extension and often has a non-uniform intensity profile,

which is typically Gaussian. Deviations from the beam profile result in a certain

spot size, which is not critical in terms of geometry. A slight tilt of the DOE with

regard to the incident beam is technically almost unavoidable. The incident beam

is therefore given by r = (sin(β),− sin(α) cos(β), cos(α) cos(β))T with α and β

representing a rotation of the x-axis and y-axis of the DOE coordinate frame w.r.t.

1 for λ = 632.8 nm and diffraction orders 0–50
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the collimator coordinate frame. The directions of the diffracted beams are now

obtained as follows (McPhedran et al., 1980).

M̃d =


λ fx + rx

λ fy + ry√
1− (λ fx + rx)

2 − (λ fy + ry)
2

0

 (4.4.2)

Diffraction pattern uncertainty A main advantage of the DOE method is the

high accuracy of the diffraction pattern that is produced without involving a

mechanical device, e.g. a goniometer. But still, any error induced by a varying

wavelength has a direct impact on the accuracy of the pattern. From eq. (4.4.1)

follows the resulting diffraction angle:

Θ = arccos
(√

1− λ2( f 2
x + f 2

y )
)

. (4.4.3)

Error propagation for the angular error w.r.t. the wavelength leads to

σΘ =
∂Θ
∂λ

σλ, (4.4.4)

with

∂Θ
∂λ

=

√
f 2
x + f 2

y

1− λ2( f 2
x + f 2

y )
. (4.4.5)

A helium-neon laser with a wavelength of 632.8 nm and a frequency instability of

10 MHz is used. With λ = c/ fλ and

σλ =
∂λ

∂ fλ
σfλ

=
λ2

c
σfλ

, (4.4.6)

where c denotes the speed of light, the wavelength uncertainty σλ is calculated to

0.0133 nm. In combination with the DOE given in table 4.1, this leads to a angle

uncertainty of 0.0012° at the maximum seen diffraction order (n = 50).

4.4.2 Single View Calibration

Because the projection of the diffraction pattern onto the image plane is invariant

against translation, the complete camera calibration can be done with a single

image as seen in fig. 4.11. Complex bundle adjustments with multiple poses are

42



avoided. The exterior orientation of the DOE frame w.r.t. the camera frame only

consists of the rotation matrix Rc
d. From eq. (4.1.11) ideal camera coordinates of a

diffraction point are given with

(x, y, 1)T = [Rc
d|0] · M̃

d. (4.4.7)

By using eq. (4.1.14), the mapping to distorted image coordinates (û, v̂)T is

subsumed to(
x

y

)
7→
(

û

v̂

)
=

(
u0

v0

)
+ f

(
x

y

)(
1 + δr(x, y, k) + δt(x, y, p)

)
. (4.4.8)

Given a set of correspondent points (x, y)T ↔ (û, v̂)T, we seek to minimize the

non-linear cost function

min
m

∥∥∥∥∥
(

û− u0

v̂− v0

)
− f

(
x

y

)(
1 + δr(x, y, k) + δt(x, y, p)

)∥∥∥∥∥
2

, (4.4.9)

where m = ( f , u0, v0, k, p, ω, ϕ, κ, α, β)T describes the interior and exterior orien-

tation of the camera Rc
d(ω, ϕ, κ), a possible rotation Rd

col(α, β) of the DOE frame

w.r.t. the collimation coordinate frame as well as the coefficients of the distortion

model. The cost function is minimized using the Jacobians from eqs. (4.1.16)

to (4.1.18), (4.1.21) to (4.1.23) and (4.1.25) to (4.1.27).

4.4.3 Stereo Registration

When estimating the parameters of interior orientation, the exterior orientation

of the camera w.r.t. the DOE frame Rc
d is also estimated as a by-product. Suppose

that the stereo rig movement between separate camera calibrations is a pure

translation than the relative rotation is calculated with

Rc2
c1 = Rc2

d (Rc1
d )T. (4.4.10)

It is not possible to obtain the relative translation because the target with points

at infinity is invariant against translation. For this reason, a single view of

a chessboard pattern is used to complete the registration (Grießbach, Bauer,

et al., 2010). The chessboard rows and columns define the x-y-plane of the

chessboard coordinate frame. All corners of the pattern can therefore be given
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Figure 4.11: DOE calibration image for a wide angle lens

as homogeneous coordinates M̃ch = (X, Y, 0, 1)T w.r.t. an arbitrary origin. By

applying eq. (4.1.11) they are projected to image points of the left and right

camera as follows:

m̃c1 = Kc1

[
Rc1

ch|t
c1
ch

]
M̃ch (4.4.11)

m̃c2 = Kc2

[
Rc2

c1Rc1
ch|R

c2
c1tc1

ch + tc2
c1

]
M̃ch (4.4.12)

A bundle block adjustment minimizes the squared difference to the measured

image points m̂c1 and m̂c2 of both cameras by estimating the orientation of the

left camera w.r.t. the chessboard and the unknown translation from left to right

camera.

min
Rc1

ch,tc1
ch,tc2

c1

∥∥m̂c1 − m̃c1∥∥2
+
∥∥m̂c2 − m̃c2∥∥2 (4.4.13)

It is also possible to estimate the rotation between the cameras in the same process.

In practice this should be avoided because of strong correlations between rota-

tional and translational parameters. For a good parameter separation, multiple

poses are necessary.
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4.5 Experimental Setup

The stereo system consists of two panchromatic CCD-cameras with 4.8 mm

Schneider-Kreuznach lenses as shown in table 4.2. A highly sensitive CCD allows

for low noise images even in difficult lighting conditions. To support high data

rates for full resolution images, a GigaBit Ethernet interface is provided.

Prosilica GC1380H

Sensor 2/3” CCD

Resolution [pixel] 1360×1024

Frame rate [Hz] ≤ 30

Pixel size [µm] 6.45

Focal length [mm] 4.8

Instantaneous field of view [°] 0.077

Field of view [°] 85×69, 98 (diagonal)

Table 4.2: Camera specifications

In combination with the DOE shown in table 4.1, a very dense pattern with

about 9000 diffraction points can be used for calibration (see fig. 4.11). Corre-

spondent points are found with an iterative approach constantly refining the

model parameters. The residual error after optimization is about 0.15 pixel for

both cameras. Due to the strong pincushion distortion, the real field of view is

expanded to 95°×76° and 110° in diagonal.

Camera 1 Camera 2

f [pixel] 776.07± 0.05 772.87± 0.05

u0 [pixel] 711.58± 0.04 680.24± 0.04

v0 [pixel] 547.89± 0.03 546.95± 0.04

k0 −259.39± 0.15× 10−3 −254.95± 0.25× 10−3

k1 113.79± 0.16× 10−3 107.48± 0.38× 10−3

k2 −25.91± 0.04× 10−3 −23.26± 0.16× 10−3

points 6893 7204

Table 4.3: Camera calibration results
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Both cameras are mounted on an optical bench to provide a stable setup. The

registration of the cameras is a two step process. First, the rotation is calculated

from the DOE calibration results according to eq. (4.4.10). A single checker board

image is finally needed to determine the translation between both cameras using

eq. (4.4.13).

ω [°] 0.335± 0.002

φ [°] 0.464± 0.003

κ [°] 0.384± 0.002

tx [m] −200.89 ± 0.06 × 10−3

ty [m] −0.04 ± 0.06 × 10−3

tz [m] 0.38 ± 0.03 × 10−3

Table 4.4: Stereo registration results

The chosen configuration with a stereo base line of 0.2 m is optimized for

indoor environments. It gives an usable stereo range from 0.55 m with an image

overlap of 80 % to 10 m with reasonable uncertainties from triangulation of about

0.6 m.
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Chapter 5

Sensor Fusion

This chapter shows how inertial data and visual measurements can be integrated

to achieve an optimal estimate of the sensor system motion. A very important

prerequisite for data fusion is an exact model of the sensor system. This includes

single sensor calibration, registration, and synchronization. Difficulties and possi-

ble solutions regarding these issues are pointed out. I have chosen a Kalman filter

approach for optimal fusion of different sensor measurements in the presents of

noise.

5.1 Sensor Registration

The term registration refers to the determination of the spatial relation between

sensor systems. All sensors are registered w.r.t. the IMU because it is the main

sensor in the system. What the following methods have in common is that they

use static poses to estimate the rotational alignment of the IMU acceleration

vector w.r.t. the local tangent plane (navigation frame). For the translational part,

it would be necessary to look at the fictitious forces that are seen in a rotating

reference frame with angular rate ω and displacement t.

a′ = a−ω×ω× t︸ ︷︷ ︸
centrifugal

− ω̇× t︸ ︷︷ ︸
Euler

− 2ω× v︸ ︷︷ ︸
Coriolis

(5.1.1)

As the expected accuracy with the low-cost IMUs used is rather low, the sensor

displacements are measured manually or taken from a mechanical drawing.
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5.1.1 IMU to Inclination Sensor

According to section 3.3 the inclination or tilt measurement can be rewritten as

an acceleration ât. Since the construction of the inclination sensor guaranties an

absolute accuracy, no relevant scaling or bias errors will be assumed. Therefore,

ât ≈ at applies. This measurement is connected to the IMU acceleration âi by

the rotation Rt
i(φ, θ, ψ) of the IMU coordinate frame w.r.t. the tilt sensor frame.

The translational displacement can be omitted since only rotations are measured.

With the sensor error model from eq. (3.2.1) follows:

at = Rt
i

(
S−1(âi − ba

))
. (5.1.2)

The unknown Euler angles φ, θ, ψ, scaling factors S, and acceleration bias ba are es-

timated in a non-linear minimization process. Again, independent measurements

have to be provided to achieve uncorrelated results.

min
φ,θ,ψ,S,ba

∥∥∥at − Rt
i

(
S−1(âi − ba

))∥∥∥2
(5.1.3)

5.1.2 IMU to Camera

The rotation Rc
i of the IMU coordinate frame w.r.t. the camera frame can be

registered by means of acceleration measurements âi from static poses. When

placed in front of a chessboard, the rotation Rch
c of the camera frame w.r.t. the

chessboard frame is determined as shown in section 4.4.3. With the sensor error

model from eq. (3.2.1) follows:

gn = Rn
chRch

c Rc
i

(
S−1(âi − ba

))
, (5.1.4)

where gn = (0, 0, g)T is the gravitational acceleration. The rotational alignment,

along with the inclination Rn
ch of the checker board w.r.t. the navigation frame,

and the acceleration bias ba are determined in a non-linear estimation process.

min
Rn

ch,Rc
i ,ba,(S)

∥∥∥gn − Rn
chRch

c Rc
i

(
S−1(âi − ba

))∥∥∥2
(5.1.5)

Optionally, the scaling factors S of the acceleration sensors may also be estimated

if unknown. It is of great importance to choose the appropriate poses to guarantee

the observability of the unknown parameters.
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5.1.3 Time Line Registration

Beside the spatial registration, it might be necessary to take latency times of

different sensor systems into account. The time shift or phase τ between two

signals f , g is determined by calculating their cross-correlation with

R f g(τ) = ( f ? g)[τ] (5.1.6)

=

∞∫
−∞

f ∗(t)g(t + τ)dt, (5.1.7)

where f ∗ is the conjugate complex function which is f for real functions. Equa-

tion (5.1.7) is given in the time discrete form with

( f ? g)[n] =
∞

∑
m=−∞

f ∗[m]g[m + n]. (5.1.8)

The time shift is given at the maximum value of the correlation function where

both signals are best aligned.

τlatency = arg max R f g(τ) (5.1.9)

To determine the time delay of the IMU – caused by their internal signal pro-

cessing – w.r.t. the camera, both sensors have to provide a similar signal. This is

found with the magnitude of the IMU angular velocity ωi = |ωi|. The camera

signal is derived from the quaternion of the egomotion Tc(t, q) by using eq. (3.1.7).

ωc = 2 arccos(q0)/dt (5.1.10)

This formulation has the advantage to be invariant to a possible spatial transfor-

mation between both systems.

5.2 Navigation Filter

To fuse inertial sensor measurements with vision data, an inertial navigation filter

has to be designed. This means incorporating the strapdown equations from

section 3.1 and the sensor error model given in section 3.2. The objective is to

aid the inertial navigation with relative egomotion data from the stereo camera

system. While doing this, the inertial sensor biases – part of the sensor model –

are estimated.
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5.2.1 Error State Filter

One possibility for the optimal fusing of sensor data is the Kalman filter (see

appendix B.3). Instead of filtering the total states, it is a common approach to

filter error states. Wendel (2003) showed that the application of an error state

filter has no disadvantages compared to a total state filter. On the contrary, the

dynamic of the errors can often be described in a linear model rather than highly

non-linear total state equations.

IMU Strapdown

Aiding 
Sensor

Filter

x-

y Δy Δx x+

ω,a

-+-+

Figure 5.1: Error state spatial navigation filter design

Figure 5.1 shows the principal design of an error state spatial navigation

filter. The inertial measurements are integrated in a strapdown manner and –

although they are measurements – treated as known input values. This means

they are only processed within the Kalman filter time update, with the error

state predicted as zero. The error state covariance is propagated by adding the

sensor noise through the system noise term. This is very efficient as the rather

time-consuming measurement update is only applied for aiding measurements.

Using the measurement y and the a priory state x− an error measurement is

calculated with ∆y = x− − y. The estimated error state is used to correct the a

priory state and reset to zero. According to Wendel (2003) the following error

state vector is estimated:

∆x =
(

∆αn
b , ∆pn

b , ∆vn, ∆bb
ω, ∆bb

a

)T
. (5.2.1)

It includes the attitude error ∆α, the position error ∆p, and the velocity error ∆v.

The angular rate bias error ∆bω and the acceleration bias error ∆ba are needed

for a dynamic estimation of the inertial sensor bias terms.
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5.2.2 State Transition Model

To begin, the continuous-time error states are derived, using the inertial navigation

equations seen in section 3.1.

Attitude Error The change of the attitude error ∆α is expressed according to

Wendel (2003) with

∆α̇n = −ωn
in × ∆α− ∆ωn

in + R̂n
b ∆ωb, (5.2.2)

where ωn
in is the sum of the angular velocity of the earth and the transport rate.

Again, this term is neglected as described in section 3.1.3, leaving

∆α̇n ≈ R̂n
b ∆ωb. (5.2.3)

According to the error model from eq. (3.2.1): ωb = ω̂b − bω + nω, the angular

velocity bias error depends from the measured angular velocity error with

∆ωb =
∂ωb

∂bω
∆bω + nω (5.2.4)

= −∆bω + nω, (5.2.5)

leading to

∆α̇n ≈ R̂n
b (−∆bω + nω) . (5.2.6)

Position Error The change of the position error is given directly by the velocity

error with

∆ṗn
b = ∆vn. (5.2.7)

Velocity Error With the simplified velocity differential equation from eq. (3.1.9)

v̇n = Rn
b ab + gn, (5.2.8)

the velocity error differential is given with

∆v̇n =
∂v̇n

∂α
∆α +

∂v̇n

∂ab ∆ab. (5.2.9)

Using the small angle approximation given in eq. (A.2.1) to relate the estimated

attitude R̂n
b to the real attitude Rn

b with

Rn
b ≈ R̂n

b (I + [∆α×]) , (5.2.10)
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leads to an approximation for the attitude error dependency with

∂v̇n

∂α
∆α ≈ −[an×]∆α. (5.2.11)

The dependency to the acceleration bias error is given with the sensor error model

from eq. (3.2.1): ab = âb − ba + na with

∂v̇n

∂ab
∆ab ≈ Rn

b (−∆ba + na) . (5.2.12)

Inertial Bias Error For the modeling of the inertial sensor bias, a random walk

process which use the bias stabilities nbω
and nba

was chosen.

ḃω = nbω
(5.2.13)

ḃa = nba
(5.2.14)

Using eq. (B.3.1), the above continuous-time error states are summarized as

∆ẋ = F∆x + Gw, (5.2.15)

with the continuous-time system matrix F, the noise transition matrix G, and the

inertial sensor noise w = (nω, na, nbω
, nba

)T.

F =



0 0 0 −R̂n
b 0

0 0 I 0 0

−[an×] 0 0 0 −R̂n
b

0 0 0 0 0

0 0 0 0 0


(5.2.16)

G =



R̂n
b 0 0 0

0 0 0 0

0 R̂n
b 0 0

0 0 I 0

0 0 0 I


(5.2.17)

According to Woodman (2007), the noise terms are given with n = RW/
√

δt and

nb = BS
√

δt/τ, with the device sampling period δt, random walk RW, and bias

stability BS, derived from the Allan Variance as shown in section 3.2.1.

Using eq. (B.3.5), the discrete-time system is given with

∆xk+1 = (I + F∆t)∆xk + G∆twk (5.2.18)

= Φk∆xk + Gkwk. (5.2.19)
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Stochastic Cloning

A Kalman filter assumes that the measurement is only related to the current

system state at time tk+1. Since the camera egomotion is a relative measurement,

which also depends on a previous state at time tk, this turns out to be a problem.

Roumeliotis and Burdick (2002) therefore propose a method called stochastic

cloning to take correlations between the previous and current state into account.

Cloning means augmenting the filter state at time tk with

∆x̆k =

(
∆xk

∆xk

)
. (5.2.20)

As both states contain the same information, the covariance of the augmented

system is

P̆k =

[
Pk Pk

Pk Pk

]
. (5.2.21)

The discrete-time state propagation has to be rewritten to keep the cloned state

∆xk stationary.

∆x̆k+1 = Φ̆k∆x̆k + Ğkwk (5.2.22)

=

[
Φk 0

0 I

]
∆x̆k +

[
Gk

0

]
wk (5.2.23)

From eq. (B.3.14) the propagated covariance is given by

P̆k+m =

[
Pk+m PkF

T

FPk Pk

]
, (5.2.24)

with F = ∏m
i=0 Φk+i. The augmented state vector is kept small by only cloning

the states showing a dependency to the relative measurement (Schmid et al.,

2012).

5.2.3 Measurement Model

Aiding sensors are needed to correct the inertial strapdown solution, which

degrades over time due to noise and uncompensated bias drifts. The measurement

matrix H projects the filter error-state ∆x to an error-measurement ∆y.
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Vision Measurement As given in section 4.3, the camera egomotion is a relative

measurement T̂cam. It relates the current pose Tk+1 to a previous pose Tk.

Tcam = T−1
k Tk+1 (5.2.25)

The error measurement ∆ycam =
(

∆α̂, ∆p̂
)T

is extracted from the relative pose

error ∆T̂cam, found by

∆T̂cam = T̂−1
camTcam. (5.2.26)

Because the vision measurement only depends on attitude and position, the

state vector is augmented at time tk with (∆αk, ∆pk)
T. The error measurement

is derived from eq. (5.2.25) with the partial derivatives of Tcam w.r.t to the pose

error for time k+1 and the augmented pose error at time k.

∆ycam =
∂Tcam

∂(α, p)k

(
∆α

∆p

)
k

+
∂Tcam

∂(α, p)k+1

(
∆α

∆p

)
k+1

. (5.2.27)

This leads to the augmented measurement matrix H̆cam, which projects the

augmented state to the error measurement.

H̆cam =
[

∂Tcam
∂(α,p)k+1

06×9
∂Tcam

∂(α,p)k

]
(5.2.28)

Inclination Measurement An inclination sensor is designed to measure R̂xy,

the absolute attitude w.r.t. the earth tangential plane without relevant bias terms

(see section 3.3). With the attitude Rn
b derived from the strapdown solution, the

attitude error is calculated with

∆R = R̂−1
xy Rn

b . (5.2.29)

To derive the inclination measurement error ∆yinc = [∆φ, ∆θ]T, the Euler angle

decomposition for body fixed axes (see appendix A.2.1) is applied.

∆φ = − arctan

(
∆R(1,2)

∆R(2,2)

)
(5.2.30)

∆θ = − arcsin
(

∆R(0,2)

)
(5.2.31)

The augmented observation matrix H̆inc projects the augmented filter state to the

measurement error.

H̆inc =
[

I2×2 02×19

]
(5.2.32)
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Chapter 6

System Integration and Application

In this chapter, I introduce a design for a heterogeneous multi-sensor system with

a hardware concept as well as a software framework for real-time data handling

and processing. The minimal configuration for this VINS consists of a stereo

camera, an IMU, and an inclination sensor.

A solution based on a Field Programmable Gate Array (FPGA) is used to

reference the asynchronous sensor measurements. Successive processing steps can

now be applied on standard computing systems. A software framework allows

for particular tasks to be encapsulated and provides standardized interfaces. It

is appropriate for dealing with complex, hierarchic data flows to produce high

level information from low level data. Altogether the system is designed in a way

that facilitates both hardware and software extension.

I set up a prototype for the system to demonstrate the application of the

proposed VINS with real data. Various pedestrian navigation tasks were used to

test its capabilities, which are discussed below.

6.1 Hardware Concept

The heterogeneous character of the multi-sensor system delivers an optimal

solution regarding space and energy constraints on the one hand and the compu-

tational demands on the other (Grießbach et al., 2012). For flexibility in various

application requirements, different types of off-the-shelf FPGAs can be used.

They range from small low-cost devices to more expensive and more powerful

ones. An important requirement is system’s flexibility for changes and extension.
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During the design process, a hardware operation system (Krutz, 2006) has been

used. It increases the potential re-usability of hardware modules by standardizing

their interface descriptions. This makes the system design more dependable while

easing development. Major interface standards are provided by custom-made

add-on cards. These include low bandwidth interfaces, like SPI1, CAN2, RS-232,

and digital inputs/outputs as well as high data-rate standards like CameraLink,

Gigabit Ethernet, PCI Express, and USB for more sophisticated applications.

Figure 6.1: Spartan 6 FPGA board

Generally, each device in a multi-sensor system delivers its data to the captur-

ing device asynchronously. To guarantee referenced sensor data, measurements

have to be aligned along a common timeline, a necessary step for any further

processing. In many cases, CPU-based or MPU3-based systems with standard

or real-time operating systems are used, for which the timing behavior is either

unknown or only defined by upper bounds.

The FPGA-based solution allows for a precise and deterministic referencing

of all sensor data to a local timeline. A high-precision clock generates time

stamps that are attached to all of the incoming measurements. Using external

trigger signals is common practice for aligning external measurements that are

not captured by the FPGA. The signals in this system are realized as either inputs

1 Serial Peripheral Interface 2 Controller Area Network 3 Micro Processor Unit
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or outputs and each receives a time stamp. If a GPS signal is available, the clock

signal of the built-in GPS receiver is used to refer the internal FPGA time to a

global time scale. This allows for synchronization to many external systems also

equipped with a GPS receiver.

The actual data processing is conducted on a CPU-based non-real-time oper-

ating system. The data handling is supported by a software framework, which

allows to set up a data processing chain.

6.2 Software Framework

A hierarchical data processing chain is required for processing of the high level

information from low level data, e.g. to get a navigation solution from raw sensor

measurements. Ideally, particular tasks are encapsulated within a container with

defined inputs and outputs. Connecting those containers, called feeders in the

following, enables flexible and efficient data handling.
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Display
(Text, Plot) 
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Configuration 
(XML)

Output 
Port
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Port

Input
Port

Output 
Port

Input
Port

Input
Port

Figure 6.2: Feeder concept

A feeder, as shown in fig. 6.2, provides the base structure for data exchange,

processing, and recording. It is also possible to monitor the processed data via

text display and graphical output. Each feeder is configured by a standardized

XML-node, which also contains individual settings. Because a feeder provides

its own working thread, the workload of the processing chain is automatically

distributed across a multi-core architecture. An additional logging thread is used

to save the processed data to a binary file.
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As stated above, synchronized data is a prerequisite for further data processing

steps. Therefore, a structure containing a time stamp and an arbitrary data type

is defined and used for data exchange between feeders. By using Runtime Type

Information (RTTI), any type of data can be exchanged, e.g. an array of double

values, images, or more complex types.

Each feeder can have multiple output ports for different data types. Succeeding

feeders instantiate an input port that is connected to the output port of a preceding

feeder. Multiple input ports per single output port provide for the sharing of

data between different feeders. An input port is an adjustable FIFO4 buffer for

holding the data. Buffer capabilities are important, because a working thread

may not be ready to process new data immediately upon arrival.

The separation of different tasks to dedicated feeders aids in handling the

complexity of a workflow. Complex tasks can be divided into subtasks and

distributed within a feeder network. Loops provide even more possibilities to

split the process. Figure 6.3 shows the realization of a feeder network for a VINS.

It is divided up within a hardware part, including sensors, grabbing devices and

a software part, containing middleware feeders and application feeders. The

output may be used again for consecutive processing steps.

Sensors Grabbing Middleware Application Network

Camera

Camera

Trigger

IMU

Tilt

FPGA

Switch

Camera

Camera

Trigger

IMU

Tilt

Stereo Matcher

Tracker

Filter

Figure 6.3: Feeder chain for a VINS

4 First In, First Out
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6.2.1 Middleware

Middleware feeders are responsible for the communication with a hardware

device. They grab data, preprocess it, feed the processing chain and save the

received data as a binary file. For offline data processing, each middleware feeder

is replaced by its file feeder counterpart. They load previously saved sensor data

from the hard disk and feed it to the feeder network. Succeeding feeders are not

affected.

Each sensor connected to the FPGA is fed into the processing chain by a FPGA

feeder, which sets up communication channels for monitoring the connected

sensor and receiving sensor data. The particular feeder knows the sensor protocol,

allocates memory and fills the output data structure.

The camera feeder handles the communication with a particular camera. It

configures the camera, e.g. controls the exposure settings, starts the image ac-

quisition and grabs the images from the camera. Since image grabbing may not

be delayed, a logging thread with additional buffer capacities is used for image

saving. The camera is triggered by a FPGA-generated trigger event, which is

counted and attached to the corresponding image. A trigger feeder controls the

hardware trigger and also provides a counter with a corresponding time stamp.

The time stamp is associated to the camera image by comparing the different

frame counters, including the detection of lost frames.

6.2.2 Application Network

Application feeders are responsible for the actual data processing. Algorithm

implementation is greatly simplified due to the fact that data grabbing and

synchronization issues have already been dealt with.

The stereo feeder is connected to two camera feeders. Both image streams’

individual time stamps are compared, which allows for the streams to be fused.

Lost frames are even detected in the process. The feeder also contains the stereo

registration information, which may be needed for successive feeders.

In accordance with section 4.3.1, distinctive feature points are extracted in the

stereo reference camera. These points are matched to the second camera by using

the epipolar constraint (see section 4.3.2). Preceding feeders are provided with a

list of matched points for further processing steps.
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In order to apply the pose estimation algorithm, corresponded feature points

are found by inter-frame matching (see section 4.3.2). This process is supported by

inertial measurements which are integrated using the dead reckoning algorithm

shown in section 3.1. An additional input is provided to set the strapdown state

from an external source, e.g. the filter feeder.

The filter feeder implements the final sensor data fusion as described in

section 5.2. It receives measurements from IMU, inclination sensor, and stereo

tracker to calculate an optimal 6-DOF motion estimation. After each filter cycle,

the updated state is fed back into the tracker feeder to ensure the best possible

feature prediction.

6.3 Experimental Results

A prototype sensor head as shown in fig. 6.4 was set up to evaluate the proposed

VINS for accuracy, robustness, and repeatability. The head includes the FPGA

with an interface board to connect the sensor system, a power supply unit,

and a computing unit. The sensor system itself consists of the stereo cameras

(section 4.5), the MEMS-IMU (tables 3.1 and 3.2), and an inclination sensor

(table 3.3) mounted on an optical bench for stability. Additional near infra-red

illumination is available for very dark environments.

Figure 6.4: Sensor head prototype

60



The system’s capabilities were demonstrated on various pedestrian navigation

tasks and are discussed here. A smoothed post-processed trajectory is used

to assess the real-time navigation solution. To illustrate the benefits of fusing

the input measurements, both inputs are also processed separately, giving the

following trajectories:

• unaided inertial navigation (INS)

• visual odometry (VO)

• real-time navigation solution (VINS)

• post-processed ground truth (RTS)

6.3.1 Ground Truth Data

Lacking a real ground truth, each run is started and finished at a fixed reference

point. This closed loop scenario is used to determine the accumulated position

and rotation error for each run.

Furthermore, a verification dataset is created by including the closed loop

information as an absolute position and heading angle measurement at the end

of the run. To make this measurements known to the past filter states as well,

a backward pass of the Kalman filter is needed. An efficient solution to this

problem is the Rauch-Tung-Striebel (RTS) smoother, presented by Rauch et al.,

1965. It uses the saved a priori and a posteriori filter estimates x̂−k , x̂+k and its

covariances P−k , P+
k from the Kalman filter forward pass to calculate smoothed

state estimates:

x̂k = x̂+k − Kk

(
x̂−k+1 − x̂k+1

)
(6.3.1)

Pk = P+
k − Kk

(
P−k+1 − Pk+1

)
KT

k , (6.3.2)

with

Kk = P+
k ΦT

k

(
P−k+1

)−1
. (6.3.3)

6.3.2 System Initialization

The strapdown states as well as the Kalman filter states need to be initialized

prior to each run. Since the navigation frame has an arbitrary origin, the position

can be set to zero. The navigation frame is aligned to the LTP, which allows direct

pitch and roll angle measurement by the inclination sensor. As it is rather difficult
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and time consuming to determine north with the MEMS-IMU used, the heading

direction is assumed to be zero. With the device at rest, the initial velocity is zero

as well. Omitting the rotation rate of the earth, the angular rate biases are the

direct measures of the gyroscopes. Leaving the acceleration biases, which are

determined using eqs. (3.1.9) and (3.2.1) with

ba = âb + Rb
ngn. (6.3.4)

Applying the small angle approximation, it can be seen that the limited accuracy

of the inclination sensor directly effects the accuracy of the acceleration biases.

∆ba = [∆α×]gn (6.3.5)

If leveled, an inclination angle error of 0.1° leads to a bias error of about 1.7 mg

for both horizontal acceleration axes.

Having finished this pre-initialization step, the Kalman filter is started. With

the IMU roughly leveled to the LTP, the accuracy of the horizontal acceleration

biases is only slightly improved, as can be seen in fig. 6.5a. However, the rotation

of the device around its pitch and roll axes increases their observability, which

results in greater acceleration bias accuracy. As a consequence, the precision

of the measured gravitation vector – acting as an absolute vertical reference –

increases. Figure 6.5b shows that this supports the horizontal angles quite well.

The heading angle uncertainty is growing with time as it is not affected by the

vertical reference.
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Figure 6.5: Initialization phase using the inclination sensor
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Initializing the system without the inclination sensor is also feasible. In that

case, the specified acceleration bias repeatability of 16 mg is used to initialize

the bias covariance, as can be seen in fig. 6.6a. This results in a horizontal Euler

angle accuracy of about 1°. By rotating the sensor head, the acceleration bias

and Euler angle covariances are refined to the same level of accuracy as in the

latter case. Using the inclination sensor will therefore only be advantageous if,

for some reason, it is not possible to apply the initial roll and pitch rotations. It

also turns out that its absolute accuracy of 0.1° is above the 0.02° reached by the

initialization procedure and therefore not sufficient to serve as a reference for the

filtering. After the filter states have run in, the measurement can be started.
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Figure 6.6: Initialization phase without inclination sensor

6.3.3 Experimental Data Sets

I chose three scenarios to demonstrate the capability of the proposed system, each

challenging under different aspects: The first is a pedestrian indoor navigation

task. Second, a combined indoor/outdoor run shows that the method is not

restricted to indoor scenarios. The third task provides a data set to demonstrate

the system’s robustness against inconsistent aiding measurements.

All three runs began at the same starting point, determined manually on the

floor plan overlay plots. A slight offset rotation was applied for the heading angle.

This is to be expected as the produced trajectory is in reference how the device

was initially positioned, which is not necessarily aligned with the map.
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Indoor Environment

A typical office building was chosen for the indoor scenario. The run shown in

figs. 6.7 and 6.8 covers four floors with an absolute path length of 310.8 m. This

includes staircases, narrow corridors, and a wider entrance area with challenging

light conditions; thus, the features varied greatly throughout the run. It was

repeated ten times under real-life conditions, at normal walking speed of about

1.2 m/s, during working hours with people interfering with the visual measure-

ment. To avoid systematic errors, the system was carried by several different

people and initialized for each trial.
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Figure 6.7: Indoor run floor plan overview

The unaided INS solution diverges quickly, resulting in an error of several

hundred meters. Although the inertial sensor biases are determined in the initial-

ization phase, an error in the bias estimation would cause the position error to

grow quadratically with time, as can be seen from eq. (3.2.10). Even if it could

have been estimated perfectly, white noise and bias instability causes random

walk processes, making longer periods of unaided navigation prone to error.
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Figure 6.8: Indoor run building side view

The visual odometry performs better but suffers from unaided horizontal

rotation axes as seen in fig. 6.9. Their increased uncertainty is propagated to the

position, leading to a less accurate position. Dependent on the distance from the

starting point, a small angular error may results in a large position error, reflected

in the position uncertainty as shown in fig. 6.10.

Moreover, the integration only works for gapless visual data, which can usually

not be guaranteed. Indeed, the VO for the majority of trials fails due to such gaps,

caused by difficult light conditions or sections with very low texture. The absolute

closed loop position Root Mean Square (RMS) error for the VO accumulates to

4.31 m. This corresponds to an absolute distance error of about 1.4 % related to

the total path length.
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Figure 6.9: Indoor run Euler angle uncertainties
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Figure 6.10: Indoor run position uncertainties

Altogether, the filtered navigation data shows the best performance. It uses

the visual data to aid the inertial measurement, constantly adjusting the inertial

biases. At the same time, the gravity measured acts as a vertical reference,

stabilizing the horizontal rotation axes. In case the visual measurement fails

due to bad light conditions or occlusions, the inertial navigation runs unaided,

bridging the gaps.

The results of the ten independent trials are evaluated to get a statistical

measure of the error distribution. Table 6.1 summarizes the closed loop errors of

the averaged VINS with a 1 σ uncertainty measure as well as the results of the

VO and filtered VINS for the shown run.

VO VINS avg. VINS

φ [°] −2.49± 5.85 −0.03± 0.02 −0.03± 0.05

θ [°] 4.91± 7.07 0.01± 0.02 0.07± 0.06

ψ [°] 5.84± 6.28 −0.17± 0.27 −0.21± 0.86

sx [m] −0.66± 2.57 −0.35± 0.45 −0.32± 0.39

sy [m] −0.22± 1.47 −0.07± 0.43 0.08± 0.32

sz [m] −0.30± 3.14 −0.24± 0.41 0.36± 0.22

Table 6.1: Indoor run closed loop errors

66



While directly supported by the vertical reference, the error of the horizontal

rotation axes of the VINS remains at the low level, reached by the initialization

process. In comparison, the yaw angle accumulates a higher error with time when

aided merely by relative visual measurements. The same is true for the absolute

position RMS error, which reaches 0.74 m or 2.3 ‰ of the total path length for the

given run. This equals a position random walk of about 2.7 m/
√

h. The filtered

uncertainties are very close to the averaged results of the experimental data,

showing the good consistency of the Kalman filter.

Combined Indoor/Outdoor Environment

The run shown in figs. 6.11 and 6.12 has a total path length of 410.9 m and

includes two outdoor sections. Although the stereo system is optimized for a

measuring range of 0.5 m to 10 m, the performance attained for the indoor run

could be confirmed.
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Figure 6.11: Indoor/outdoor run floor plan overview
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Figure 6.12: Indoor/outdoor run building side view

Even with a changed feature distribution, providing less features in the dedi-

cated measuring range but an overall increased number of features, the visual

measurement shows a consistent quality. The key for this rather unexpected

behavior is the well textured floor in the outdoor sections, which delivers a suffi-

cient number of close by features. Without those, the uncertainties of the relative

position measurements from the stereo system would increase. In the long run,

this leads to a decreased overall positioning accuracy. The uncertainty of the

estimated relative rotations are not affected by the features distances. However,

the possibility of integrating GNSS in outdoor environments should compensate

for the potential limited accuracy of the visual measurements.

VO VINS avg. VINS

φ [°] −2.71± 4.44 −0.06± 0.02 0.00± 0.05

θ [°] −5.52± 5.58 0.02± 0.02 0.03± 0.03

ψ [°] 12.22± 4.80 0.00± 0.27 −2.26± 1.52

sx [m] −1.44± 3.02 0.25± 0.37 0.21± 0.22

sy [m] 1.97± 4.48 −0.45± 0.36 −0.13± 0.26

sz [m] 5.32± 5.04 −0.34± 0.36 −0.44± 0.25

Table 6.2: Indoor/outdoor run closed loop errors

Table 6.2 shows the results for the VINS, averaged over ten trials, together with

the closed loop errors of the VO and the filtered VINS for the shown run. An

absolute position RMS error of 0.65 m or 1.6 ‰ of the total path length could be

achieved. This equals a position random walk of about 2.1 m/
√

h.
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Except from the heading angle, the predicted uncertainties from the Kalman

filter are very close to the experimental data. The heading angle error reflects the

systematic error introduced by omitting the Earth rotation of 15 °/h to simplify

the state transition model of the Kalman filter. Further work will address this

issue as shown in the next chapter.

Again, the VO solution could not be calculated in most cases due to occasional

gaps in the visual data. For the shown run, a closed loop distance RMS error of

7.39 m, corresponding to an error of 1.8 % of the total path length was achieved.

Although it is not fully comparable, this is in accordance with some results shown

for the KITTI Vision Benchmark Suite (Geiger et al., 2012). Unfortunately, their data

sets do not provide inertial measurements. Thus, the slightly different setup with

a increased stereo base could not be tested with the current approach.

Indoor Environment with Elevator

All of the incoming aiding measurements are checked for consistency with the

inertial data. This is particularly important for the visual measurement as it may

deliver misleading data. The effect is illustrated nicely in an elevator trial, as can

be seen in fig. 6.13. While the inertial sensor measures the moving elevator, the

visual data signals a resting observer.
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Figure 6.13: Elevator run trajectories
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The inconsistent visual data is discarded within the Kalman filter, causing the

velocity uncertainty to grow in a period of unaided inertial navigation (figs. 6.14

and 6.15). This is corrected with the next valid visual measurement when leaving

the elevator. The accumulated height error shows the limits of the unaided

inertial navigation.
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Figure 6.14: Elevator run velocity
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Figure 6.15: Elevator run velocity uncertainties
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Chapter 7

Conclusion and Future Work

7.1 Summary

In this publication, I have investigated the use of low-cost inertial navigation

aided by stereo vision to provide local navigation in unknown environments.

The system created uses neither active measurements nor external references or

a priori assumptions about the environment.

The proposed method takes advantage of the complementary properties of

inertial sensors and stereo-vision measurements. Visual data aids the inertial

navigation solution, while the inertial measurements are used to constrain the

correspondence problem and track feature points simultaneously. Possible issues

and solutions with respect to synchronization and registration of the sensor

systems have been discussed above. I lay out a hardware concept as well as a

software framework that allows for real-time data processing.

I give special emphasis to modeling of the stereo-vision system and present a

novel calibration method for optical systems, which uses a holographic pattern.

This method allows for accurate, fast, and reliable camera calibration. It is an

important prerequisite for the successive overall error modeling, which derives

uncertainties throughout the whole data processing chain.

This local navigation solution is obtained by fusing inertial measurements and

vision data within an error state Kalman filter, incorporating an error model for

the inertial sensor. It has been shown that the complementary character of both

measurements support one another quite well. The stability and accuracy was

significantly increased compared to the original sensor data.
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To demonstrate the capability of the proposed method, a prototype sensor

head has been set up. The complete data processing chain was evaluated with an

indoor navigation task as well as for a combined indoor and outdoor environment.

Although the quality of the visual measurement strongly depends on the given

environment, an overall accuracy of about 2 m/
√

h could be achieved. This equals

1-2 ‰ of the accumulated path length for the given trial runs.

The presented results are accepted for publication at the 5th International Con-

ference on Indoor Positioning and Indoor Navigation (Grießbach et al., 2014).

Meanwhile, the presented method already plays an important role for various

applications, e.g. for the assistance of industrial inspection tasks. The state of

the art practice provides printed maps for the inspection team, which are used

to take notes on damages, positions of measurements, or photographs. These

informations have to be transfered to a data base in an expensive and error

prone post-processing step. With the indoor navigation solution, the trajectory of

the inspector is always known. Each photograph of a camera, which is rigidly

attached to the navigation device, is spatially referenced and may later be easily

related to a digital model. Another application under way is the support for large

scale indoor surveyings with multiple laser scans. This actually is completing the

circle as a similar task has once been the starting point for this work.

7.2 Future Work

The design of a vision-aided inertial navigation system involves many different

areas of expertise, including computer vision, inertial navigation, and multi

sensor fusion. My work outlined here, provides a baseline in each area and will

be subject to further investigations and improvements.

• Currently, the visual odometry is derived from immediately adjacent images

combined with the cadence of the camera update rate. If the observer is not

moving or only slowly rotating, the observed scene will not significantly

change. Thus, additional odometry could be achieved with a key frame

that is updated at a lower rate. This method would correct for short-term

accumulated noise.
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• A more advanced approach would be to include real-time loop closing

to correct for long-term accumulated drift. Using SfM for offline post-

processing is also a conceivable solution.

• Potential for further work lies in feature extraction; computational costs

may be avoided with different types of extractors. Moreover, the quality of

the VO depends on the distribution of features within the image. Artificial

environments often exhibit poorly distributed features, a situation that

could be countered by partitioning the image. This would open up the

possibility of handling low texture areas differently than areas with a lot of

texture.

• The current implementation provides local navigation without true north di-

rection. Static methods to find true north hardly work with the MEMS-IMU

employed here. As a consequence, the earth’s rotation has to be neglected,

which is reasonable for short-term navigation. To avoid systematic errors

for long-term observations, dynamic north finding methods that use visual

measurements have to be investigated.

• Additional effort should be put into the modeling and calibration of the

MEMS inertial sensors. This would increase the ability to navigate inde-

pendently from the visual measurements, which may fail in difficult light

conditions. It would also enable the use of even lower quality sensors as

those used in many consumer grade devices.

• Finally, the filter design has to be extended to include GNSS measurements

for global navigation. This would open the door for outdoor applications

where GNSS drop-outs have to be bridged, e.g. in urban or forested areas.

• Additional work could be done regarding system applications. Dense depth

maps that are created from the stereo images can be used in conjunction

with the navigation solution as an input for 3D modeling of indoor environ-

ments. Furthermore, guidance can be provided based on positioning and

environmental analysis.
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Appendix A

Coordinates Transformation

A Cartesian coordinate v ∈ R
3, given in the reference frame, can be transformed

to another frame by applying

v′ = Rv + t.

The orientation of the reference frame w.r.t. the destination coordinate frame is

described by a translation t and a rotation matrix R which can be parametrized,

e.g. by a unit quaternion or Euler angles (see appendix A.2).

In accordance with appendix B.1, partial derivatives of v′ to map uncertainties in

v, t are as follows:

∂v′

∂v
= R

∂v′

∂t
= I3

∂v′

∂x
=

∂R
∂x

v.

The partial derivative of R = f (x) depends on the parametrization of the rotation

and is shown in detail in appendices A.2.1 and A.2.3.

A.1 Homogeneous Coordinates Transformation

For homogeneous coordinates v ∈ P
3, the transformation is given with

v′ = Tv,
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with

T =

[
R t

0 1

]
.

The inverse transformation is defined to be

T−1 =

[
RT −RTt

0 1

]
.

A.2 Attitude Representations

A matrix is called a rotation matrix if it preserves the length of a vector and the

angles between vectors. They are orthogonal with determinant 1, yielding

R−1 = RT.

A.2.1 Euler Angle

Euler angles in the x− y− z convention, also referred to as Tait-Bryan angles or

nautical angles (roll, pitch, yaw), are used to parametrize a counter-clockwise

rotation (mathematically positive) about the particular axis with the rotation

matrices

Rx =


1 0 0

0 cos(φ) − sin(φ)

0 sin(φ) cos(φ)

 ,

Ry =


cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

 ,

Rz =


cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 .
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Euler Angle to Rotation Matrix

The combined rotation R = RxRyRz describes a rotation about body-fixed

principal axes.

R =


cos(θ) cos(ψ) − cos(θ) sin(ψ) sin(θ)

cos(φ) sin(ψ)+
sin(φ) sin(θ) cos(ψ)

cos(φ) cos(ψ)−
sin(φ) sin(θ) sin(ψ)

− sin(φ) cos(θ)

sin(φ) sin(ψ)−
cos(φ) sin(θ) cos(ψ)

sin(φ) cos(ψ)+
cos(φ) sin(θ) sin(ψ)

cos(φ) cos(θ)


whereas R = RzRyRx represents a rotation about space-fixed axes.

R =


cos(θ) cos(ψ) − cos(φ) sin(ψ)+

sin(φ) sin(θ) cos(ψ)
sin(φ) sin(ψ)+

cos(φ) sin(θ) cos(ψ)

cos(θ) sin(ψ) cos(φ) cos(ψ)+
sin(φ) sin(θ) sin(ψ)

− sin(φ) cos(ψ)+
cos(φ) sin(θ) sin(ψ)

− sin(θ) sin(φ) cos(θ) cos(φ) cos(θ)


Partial derivatives w.r.t. Euler angles are

∂Rx
∂φ

=


1 0 0

0 − sin(φ) − cos(φ)

0 cos(φ) − sin(φ)

 ,

∂Ry

∂θ
=


− sin(θ) 0 cos(θ)

0 1 0

− cos(θ) 0 − sin(θ)

 ,

∂Rz
∂ψ

=


− sin(ψ) − cos(ψ) 0

cos(ψ) − sin(ψ) 0

0 0 1

 .

Combined rotations, e.g. for body-fixed axes w.r.t. φ, are derived as follows:

∂R
∂φ

=
∂Rx
∂φ

RyRz.

The rotation matrix can be approximation for small angles α = [φ, θ, ψ] with

R ≈ I + [α×] =


1 −ψ θ

ψ 1 −φ

−θ φ 1

 . (A.2.1)
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Rotation Matrix to Euler Angle

With a rotation matrix

R =


a00 a01 a02

a10 a11 a12

a20 a21 a22

 ,

the factorization of a body-fixed rotation is given with

φ = − arctan
(

a12
a22

)
,

θ = arcsin (a02) ,

ψ = arctan
(

a01
a00

)
.

Space-fixed rotations are factorized as follows:

φ = arctan
(

a21
a22

)
θ = − arcsin (a20)

ψ = arctan
(

a10
a00

)

A.2.2 Quaternion

Quaternions were first introduced in Hamilton (1844-1850, 1853). Good reads

for their practical use can be found in Shoemake (1994), Dam et al. (1998), Vicci

(2001), and Eberly (2002). The general quaternion is defined as follows:

q ≡
(

s, v
)T

, s ∈ R, v ∈ R
3

Multiplication Let q′ = (s′, v′)T, then

q ◦ q′ =
(

ss′ − v · v′, v× v′ + sv′ + s′v
)T

=


s −vx −vy −vz

vx s −vz vy

vy vz s −vx

vz −vy vx s




s′

v′x
v′y
v′z

 .
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Conjugate

q∗ ≡
(

s,−v
)T

Norm

‖q‖ =
√

s2 + v · v

Inverse

q−1 =
q∗

‖q‖2

A.2.3 Unit Quaternion

Unit quaternions are a subset of quaternions satisfying the condition ‖q‖ = 1 and

thus q−1 = q∗. A rotation is represented by an angle 2Θ about an axis u ∈ R
3

with

q =
(

cos(Θ), u sin(Θ)
)T

.

If q = (1, 0)T, then Θ = 0 and u can be an arbitrary chosen vector. For general

rotations in R
3, a vector quaternion qv = (0, v)T is defined and rotated as follows:

q′v =
(

0, v′
)T

= q ◦ qv ◦ q∗

Successive rotations about q1 and q2 are done by

q′v = q2 ◦ (q1 ◦ qv ◦ q1
∗) ◦ q2

∗

= (q2 ◦ q1) ◦ qv ◦ (q1
∗ ◦ q2

∗)

= q21 ◦ qv ◦ q21
∗.

Unit Quaternion to Rotation Matrix

R =


s2 + v2

x − v2
y − v2

z 2(vxvy − svz) 2(vxvz + svy)

2(svz + vxvy) s2 − v2
x + v2

y − v2
z 2(vyvz − svx)

2(vxvz − svy) 2(svx + vyvz) s2 − v2
x − v2

y + v2
z


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Partial derivatives w.r.t. the unit quaternion are

∂R
∂s

= 2


s −vz vy

vz s −vx

−vy vx s

 ,

∂R
∂vx

= 2


vx vy vz

vy −vx −s

vz s −vx

 ,

∂R
∂vy

= 2


−vy vx s

vx vy vz

−s vz −vy

 ,

∂R
∂vz

= 2


−vz −s vx

s −vz vy

vx vy vz

 .

Rotation Matrix to Unit Quaternion

To extract a unit quaternion, the trace of the rotation matrix shown in ap-

pendix A.2.3 is used. If the trace is greater than zero, it can be seen that

4v2
x = 1 + a00 + a11 + a22 and therefore

s =
√

1 + a00 + a11 + a22/2,

vx = (a21 − a12)/4s,

vy = (a02 − a20)/4s,

vz = (a10 − a01)/4s.

For a trace less or equal to zero, the largest component of the quaternion vector

part v is extracted first. If a00 is the maximum diagonal value, then vx is the

largest component and 4v2
x = 1 + a00 − a11 − a22, therefore

vx =
√

1 + a00 − a11 − a22/2,

s = (a21 − a12)/4vx,

vy = (a01 + a10)/4vx,

vz = (a02 + a20)/4vx.
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With a11 being the maximum diagonal value, 4v2
y = 1 + a11 − a00 − a22 and

therefore

vy =
√

1 + a11 − a00 − a22/2,

s = (a02 − a20)/4vy,

vx = (a01 + a10)/4vy,

vz = (a12 + a21)/4vy.

For a22 being the maximum diagonal value, 4v2
z = 1+ a22− a00− a11 and therefore

vz =
√

1 + a22 − a00 − a11/2,

s = (a10 − a01)/4vz,

vx = (a02 + a20)/4vz,

vy = (a12 + a21)/4vz.

Unit Quaternion to Euler Angle

Euler angles for body-fixed rotations are extracted with

φ = arctan

(
2(vyvz − svx)

s2 − v2
x − v2

y + v2
z

)
,

θ = arcsin
(
2(vxvz + svy)

)
,

ψ = arctan

(
2(vxvy − svz)

s2 + v2
x − v2

y − v2
z

)
.

Space-fixed rotations are factorized as follows:

φ = arctan

(
2(svx + vyvz)

s2 − v2
x − v2

y + v2
z

)
,

θ = arcsin
(
2(vxvz − svy)

)
,

ψ = arctan

(
2(svz + vxvy)

s2 + v2
x − v2

y − v2
z

)
.
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Euler Angle to Unit Quaternion

Euler angles for body-fixed rotations are transformed as follows:

q =


cos(φ

2 ) cos( θ
2) cos(ψ

2 )− sin(φ
2 ) sin( θ

2) sin(ψ
2 )

cos(φ
2 ) sin( θ

2) sin(ψ
2 ) + sin(φ

2 ) cos( θ
2) cos(ψ

2 )

cos(φ
2 ) sin( θ

2) cos(ψ
2 )− sin(φ

2 ) cos( θ
2) sin(ψ

2 )

cos(φ
2 ) cos( θ

2) sin(ψ
2 ) + sin(φ

2 ) sin( θ
2) cos(ψ

2 )

 ,

whereas Euler angles for space-fixed rotations are given as

q =


cos(φ

2 ) cos( θ
2) cos(ψ

2 ) + sin(φ
2 ) sin( θ

2) sin(ψ
2 )

sin(φ
2 ) cos( θ

2) cos(ψ
2 )− cos(φ

2 ) sin( θ
2) sin(ψ

2 )

cos(φ
2 ) sin( θ

2) cos(ψ
2 ) + sin(φ

2 ) cos( θ
2) sin(ψ

2 )

cos(φ
2 ) cos( θ

2) sin(ψ
2 )− sin(φ

2 ) sin( θ
2) cos(ψ

2 )

 .
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Appendix B

Uncertainty Calculus

B.1 Uncertainty Mapping

B.1.1 Linear Equations

Having a linear equation system with y = Ax and uncertainties in x denoted by

Σx =


σ2

1 σ12 · · ·
σ21 σ2

2 · · ·
...

... . . .

 , (B.1.1)

uncertainties in y are given by

Σy = AΣx AT. (B.1.2)

B.1.2 Non-Linear Single Valued Equations

A non-linear equation y = f (x) with x ∈ R
1, y ∈ R

1 is linearized with a Taylor

series about the mean x0.

y = f (x0) +
∂ f
∂x

∣∣∣∣
x0

(x− x0) +
1
2

∂2 f

∂x2

∣∣∣∣
x0

(x− x0)
2 + . . . (B.1.3)

y = a0 + a1(x− x0) +
1
2

a2(x− x0)
2 + . . . . (B.1.4)

The mean x0 is defined by the expectation value E[X] with

E[X] =
∫ ∞

−∞
x fX(x)dx, (B.1.5)
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where fX(x) is the Probability Density function (PDF) of X. The second central

moment is the variance, which is given with

Var(X) = E[(x− x0)
2]

= E[x2]− 2x0E[x] + E[x]2

= E[x2]− E[x]2. (B.1.6)

Its square root is the standard deviation σ.

First Order Approximation For a Taylor series (see eq. (B.1.4)) truncated after

the first term the following approximations for mean and variation hold (Mekid

and Vaja, 2008).

y0 = E[y]

= a0 + a1E[(x− x0)]

= a0 + a1E[x]− a1x0

= a0 (B.1.7)

σ2
y = E[(y− y0)

2]

= E
[
(a0 + a1(x− x0)− a0)

2
]

= a2
1E
[
(x− x0)

2
]

= a2
1σ2

x (B.1.8)

B.1.3 Non-Linear Vector Valued Equations

A more general Taylor series formulation for the non-linear equation y = f (X)

with X ∈ R
n, y ∈ R

m is found with

y = f (x0) +
n

∑
i=1

∂ f
∂xi

∣∣∣∣
x0,i

(x− x0,i)+

1
2

n

∑
i=1

n

∑
j=1

∂2 f
∂xi∂xj

∣∣∣∣
x0,i,x0,j

(x− x0,i)(x− x0,j) + . . . (B.1.9)
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First Order Approximation Arras (1998) showed the derivation of mean and

variance for first order Taylor series truncation.

y0 = f (x0) (B.1.10)

Σy = JΣx JT, (B.1.11)

with covariance matrices Σ (B.1.1) and Jacobian matrix J with Jij = ∂ fi/∂xj

defining the partial derivatives of f (x) w.r.t. x.

B.2 Least Square Solutions

B.2.1 Linear Equations

Linear equations of the form My = b are solved by minimizing the sum of

squared residual errors.

min
y

= ‖b−My‖2 (B.2.1)

A solution is given with

y = (MT M)−1MTb. (B.2.2)

With covariances Σb for errors in b and Σx for errors in M, the covariance of the

solution is given with

Σy = JbΣb JT
b + JxΣx JT

x , (B.2.3)

with the Jacobian of f w.r.t. b = f (z)

Jb =
∂y
∂z

= (MT M)−1MT ∂b
∂z

(B.2.4)

and the Jacobian of f w.r.t. M = f (x).

Jx =
∂y
∂x

=
∂(MT M)−1

∂x
MTb + A−1 ∂MT

∂x
b (B.2.5)

This is simplified using the differentiation rule

∂A−1

∂x
= −A−1 ∂A

∂x
A−1 (B.2.6)

and the property of idempotent matrices that B = B2 with

B = A(AT A)−1AT (B.2.7)
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yielding

Jx = −(MT M)−1MT ∂M
∂x

y. (B.2.8)

B.2.2 Non-Linear Equations

A set of m non-linear equations

bi = f (xi, y) i = 1, ..., m (B.2.9)

with unknowns in y is solved by minimizing the sum of squared residual errors.

min
y

= ‖b− f (x, y)‖2 (B.2.10)

Starting with an initial value y0, the solution is iteratively refined with

yk+1 = yk + ∆yk. (B.2.11)

The shift vector ∆y is found similar to equation (B.2.2) with

∆y = (JT J)−1 JT∆b, (B.2.12)

with ∆b = b− f (x, y) and the Jacobian

J =


∂ f (x1,y)

∂y1

∂ f (x1,y)
∂y2

. . . ∂ f (x1,y)
∂yn

∂ f (x2,y)
∂y1

∂ f (x2,y)
∂y2

. . . ∂ f (x2,y)
∂yn

...
...

∂ f (xm,y)
∂y1

∂ f (xm,y)
∂y2

. . . ∂ f (xm,y)
∂yn

 , (B.2.13)

which is the linearization of f (x, y) w.r.t. the n unknowns in y. As this method is

a gradient-based local optimization, the choice of a good initial value, which is

close to the true value is important. Otherwise the method can diverge or end up

in a secondary minimum.

After the iteration has finished, the covariance of the solution Σy is calculated

analogous to eq. (B.2.3).

Jb =
∂∆y
∂b

= (JT J)−1 JT ∂∆b
∂b

(B.2.14)

Jx =
∂∆y
∂x

= (JT J)−1 JT
(
−∂J

∂x
∆y +

∂∆b
∂x

)
(B.2.15)

As for the last iteration step ∆y is close to zero, Jx can be simplified, leaving

Jx ≈ (JT J)−1 JT ∂∆b
∂x

. (B.2.16)
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B.2.3 Homogeneous Equation

A non-zero solution to the homogeneous equation My = 0 is found by a con-

straint minimization

min
y

C = ‖My‖2, (B.2.17)

with

‖y‖ = 1, (B.2.18)

which is also used to find the uncertainty of the solution (J. Clarke, 1998). C is

minimized by the smallest eigenvalue of A = MT M, obtained by a singular value

decomposition.

The covariance of the solution is gained from Φ = Ay with

Σy = JΣx JT (B.2.19)

where the Jacobian is given by

J = −
(

∂Φ
∂y

)−1 ∂Φ
∂x

, (B.2.20)

using the pseudo-inverse with (∂Φ
∂y
)−1 ≈ A+ (B.2.21)

and

U =
∂Φ
∂A

=


∂Φ1
∂a11

. . . ∂Φ1
∂a1n

∂Φ1
∂a21

. . . ∂Φ1
∂ann

...
...

∂Φn
∂a11

. . . ∂Φn
∂a1n

∂Φn
∂a21

. . . ∂Φn
∂ann

 (B.2.22)

V =
∂A
∂x

=
[

∂a11
∂x . . . ∂a1n

∂x
∂a21
∂x . . . ∂ann

∂x

]T
(B.2.23)

yielding

J = −A+UV . (B.2.24)

B.3 Kalman Filter

The Kalman filter gives an optimal state estimate of a linear dependent system

with measurements in the presents of noise. A good introduction to Kalman

filters is given by Welch and Bishop (1995). The derivation of the Kalman filter

equations from the Bayesian point of view can be found in Ribeiro (2004).
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B.3.1 Continuous System Model

A continuous time, linear system is described by the differential equation

ẋ = Fx + Bu + Gw, (B.3.1)

with the system matrix F, state vector x, input matrix B, input vector u, noise

transition matrix G and system noise w. According to Simon (2006), the solution

for eq. (B.3.1) is given with

xk+1 = eF(tk+1−tk)xk +

tk+1∫
tk

eF(tk+1−τ)Bukdτ +

tk+1∫
tk

eF(tk+1−τ)Gwkdτ. (B.3.2)

Using the substitution α = τ − tk and the discretization step size ∆t = tk+1 − tk

this can be rewritten to

xk+1 = eF∆txk + eF∆t
∆t∫

0

e−FαdαBuk + eF∆t
∆t∫

0

e−FαdαGwk. (B.3.3)

If the matrices F, B, G and vectors u, w are assumed to be constant within the

integration interval, a discrete-time, linear approximation can be obtained by

xk+1 ≈ Φkxk + ΦkB∆tuk + ΦkG∆twk (B.3.4)

≈ Φkxk + Bkuk + Gkwk, (B.3.5)

with the time-discrete system matrix

Φk = eF∆t =
∞

∑
j=0

(F∆t)j

j!
(B.3.6)

= (F∆t)0 + (F∆t)1 +
(F∆t)2

2!
+

(F∆t)3

3!
+ . . . (B.3.7)

≈ I + F∆t. (B.3.8)

A complete derivation of the above equations is found in Simon (2006).

B.3.2 Linear Kalman Filter

The Kalman filter approach addresses the recursive estimation of the state x ∈ R
n

from the stochastic difference equation given in eq. (B.3.8)

xk+1 = Φkxk + Bkuk+1 + Gkwk (B.3.9)
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and a measurement y ∈ R
m, which is

yk+1 = Hxk+1 + vk+1. (B.3.10)

The propagation of the state from the previous time step k to the current time

step k + 1 is described by n× n state transition model Φ. An optional control

input u ∈ R
l can be included with the n× l control-input model B. The n×m

observation model H relates the measurement y to the state x. The process noise

w and the measurement noise v are assumed to be zero mean, independent,

white, and normal distributed:

p(w) ∼ N(0, Q) (B.3.11)

p(v) ∼ N(0, R), (B.3.12)

with the process noise covariance Q and the measurement noise covariance R.

The Kalman filter equations consists of a time update and a measurement update.

First, the time update propagates an a priori state estimate x̂−k+1 with the a priori

covariance P̂−k+1.

x̂−k+1 = Φk x̂k + Bkuk+1 (B.3.13)

P−k+1 = ΦkPkΦT
k + GkQGT

k (B.3.14)

In the second step, called measurement update, a measurement is included by

means of the innovation: updating the a priori state estimate to an a posteriori

state x̂k+1 with covariance Pk+1.

x̂k+1 = x̂−k+1 + Kk+1

innovation︷ ︸︸ ︷
(yk+1 − Hx̂−k+1) (B.3.15)

Pk+1 = (I − Kk+1H)P−k+1 (B.3.16)

The n×m Kalman gain K weights the innovation to the a priori state estimate

and minimizes the a posteriori error covariance.

Kk+1 = P−k+1HT(HP−k+1HT + R)−1 (B.3.17)
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