IN-VITRO- UND IN-VIVO-STUDIEN ZU IL-12-DEFIZIENTEN DENDRITISCHEN ZELLEN VON PRIMATEN

Dissertation

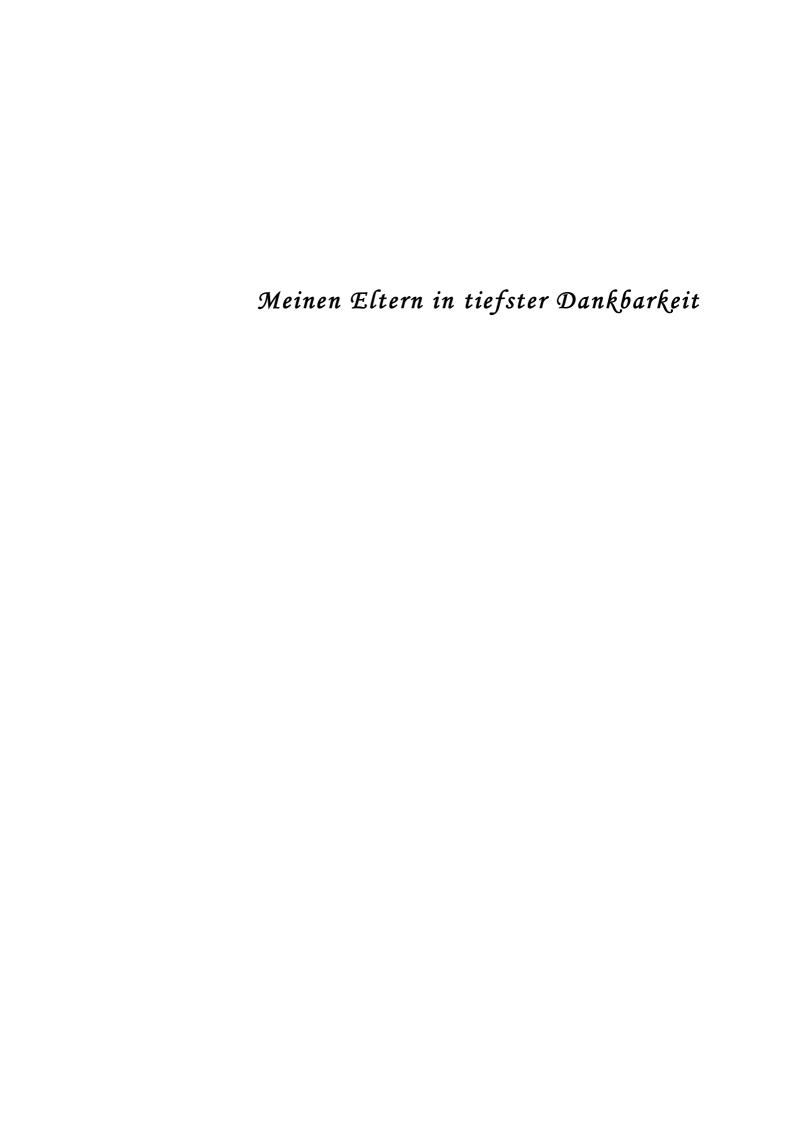
zur Erlangung des akademischen Grades

des Doktors der Naturwissenschaften (Dr. rer. nat.)

eingereicht im Fachbereich Biologie, Chemie, Pharmazie

der Freien Universität Berlin

vorgelegt von


EDITH JASNY aus Ratibor

Berlin, Mai 2007

1. Gutacher: PD Dr. Ralf Ignatius

2. Gutacher: Prof. Dr. Volker Haucke

Disputation am 20.09.2007

DANKSAGUNG

Die vorliegende Arbeit wurde an der Charité-Universitätsmedizin Berlin am Institut für Infektionsmedizin in der Abteilung Mikrobiologie und Infektionsimmunologie unter der Anleitung von PD Dr. Ralf Ignatius angefertigt.

An dieser Stelle möchte ich mich herzlich bei allen Personen bedanken, die mich auf unterschiedliche Weise unterstützt und zu dieser Dissertation beigetragen haben.

Mein ganz besonderer Dank gilt PD Dr. Ralf Ignatius für die exzellente Betreuung meiner Arbeit, stete Unterstützung, ständige Diskussionsbereitschaft und kreativen Anregungen, wertvollen Ratschläge aus dem Forschungsalltag, sowie inspirierenden und motivierenden Einfluss, von dem ich immens viel habe lernen können.

Herrn Prof. Dr. Volker Haucke danke ich für die Übernahme des mit Sicherheit zeitaufwendigen Zweitgutachtens.

Danke sagen möchte ich auch meinen Kollegen im Labor, die mir immer hilfreich zur Seite standen. Dr. Martin Eisenblätter möchte ich für die kollegiale Arbeitsatmosphäre, tatkräftige Hilfe bei theoretischen und praktischen Fragen, Einarbeitung in immunologische und zellbiologische Techniken, hilfreichen Diskussionen und wertvollen Anregungen danken. Mein Dank gilt auch Pablo Renner-Viveros, Ursula Rüschendorf und Petra Huck für ihre immer freundliche Unterstützung, ein hervorragendes Arbeitsklima und kompetente technische Assistenz.

Dr. Kerstin Mätz-Rensing und Dr. Christiane Stahl-Hennig vom Deutschen Primaten Zentrum in Göttingen danke ich für die gute und zuverlässige Kooperation.

Bei Dr. Klara Tenner-Racz und Prof. Dr. Paul Racz, sowie Gudrun Großschupff vom Bernhard-Nocht-Institut in Hamburg möchte ich mich für die großartige Immunhistologie der Lymphknoten bedanken.

Diese Arbeit wurde finanziell von der Deutschen Forschungsgemeinschaft, Klinische Forschergruppe 104 unterstützt.

Nicht zuletzt bin ich meinen Eltern, meiner Familie und Freunden für die Unterstützung in allen Lebenslagen und moralische Stärkung dankbar.

INHALTSVERZEICHNIS

			Seite
1.	EINLEITUN	VG	1
	1.1 T-zellvern	nittelte Immunantworten	1
	1.2 IL-12-Fan	nilie von heterodimeren Zytokinen	2
	1.2.1 Stru	ktur von IL-12 und IL-23	2
	1.2.2 Reg	ulation der IL-12- und IL-23-Produktion	4
	1.2.3 Biol	ogische Funktion von IL-12 und IL-23	7
	1.3 Dendritisc	he Zellen	8
	1.4 Zielsetzun	g der Arbeit	14
2.	MATERIAL	und METHODEN	16
	2.1 Material		16
	2.1.1 Very	wendete Chemikalien	16
	2.1.2 Very	wendete Verbrauchsmaterialien	17
	2.1.3 Very	wendete Puffer und Zellkulturmedien	17
	2.1.4 Very	wendete Geräte	19
	2.2 Methoden		20
	2.2.1 Zell	biologische Methoden	20
	2.2.1.1	Isolierung mononukleärer Zellen aus peripherem Blut	20
	2.2.1.2	Isolierung von Monozyten und Differenzierung zu DCs	21
	2.2.1.3	Stimulierung von DCs	22
	2.2.1.4	GM-CSF-Neutralisationsassay	23
	2.2.1.5	Isolierung von T-Zellen	23
	2.2.1.6	Isolierung naiver CD4 ⁺ T-Zellen	24

			Seite
	2.2.1.7	Endozytoseassay	24
	2.2.1.8	Antigenspezifischer Proliferationsassay	25
	2.2.1.9	Allogene gemischte Leukozytenreaktion	26
	2.2.1.10	ELISPOT-Assay	26
	2.2.1.11	Stimulierung von T-Zellen durch antigenbeladene DCs	27
	2.2.1.12	Priming und Polarisierung naiver T-Zellen	28
	2.2.1.13	Gewinnung KLH-spezifischer T-Zelllinien	28
	2.2.1.14	Behandlung von Rhesusaffen mit GM-CSF und G-CSF	29
	2.2.1.15	Reinjektion fluorochrommarkierter oder antigenbeladener DCs	29
	2.2.1.16	Immunhistochemische Färbung von Lymphknoten	30
	2.2.1.17	Durchflusszytometrie	31
	2.2.1.18	Bestimmung der Zytokinproduktion	34
	2.2.1.19	Isolierung mukosaler Leukozyten aus Bioptaten oder Resektaten	
		von Rhesusaffen	34
	2.2.2 Protei	nbiochemische Methoden	37
	2.2.2.1	Analyse der p38 MAP-Kinase-Aktivierung	37
	2.2.2.2	SDS-Polyacrylamid-Gelelektrophorese	37
	2.2.2.3	Western-Blotting und Detektion	38
	2.2.2.4	Nachweis von anti-GM-CSF-Antikörpern bei GM-CSF-	
		behandelten Rhesusaffen	39
	2.2.3 Statist	tische Auswertungen	39
3.	ERGEBNISS	SE	41
_		1 37 1 %	4.1
3		he Vorarbeiten	41
	3.1.1 Isolier	rung mukosaler Leukozyten	41

			Seite
3.	1.2	Behandlung von Rhesusaffen mit GM-CSF oder G-CSF zur In-Vivo-	4.5
		Mobilisierung von DC-Vorläuferzellen	45
3.2 In-Vitro-Gewinnung und Charakterisierung reifer IL-12-defizienter Mensch und Rhesusaffe			47
2			
3.	2.1	Einfluss von Glatirameracetat auf die Aktivierung von DCs	47
3.	2.2	cAMP-Enhancer als DC-Aktivierungsstimuli	49
3.	2.3	GA und d-cAMP aktivieren Rhesusaffen-DCs	51
3.	2.4	Reduzierte Antigenaufnahme durch GA/d-cAMP-aktivierte DCs	53
3.	2.5	Die p38-MAP-Kinase ist bei GA/d-cAMP-Stimulierung von DCs	
		inaktiv	55
3.	2.6	GA/d-cAMP-aktivierte DCs zeigen eine reduzierte IL-12-Sekretion	56
3.	2.7	Induktion antigenunspezifischer T-Zellproliferation durch GA/d-cAMP-	
		aktivierte DCs in xenogenen MLRs	56
3.	2.8	Antigenspezifische Aktivierung peripherer T-Zellen durch GA/d-cAMP-	
		stimulierte DCs	57
3.	2.9	Th-Polarisierung naiver T-Zellen durch GA/d-cAMP-aktivierte DCs	59
3.3	In	n-Vivo-Untersuchung GA/d-cAMP-stimulierter DCs	60
3.	3.1	In-Vivo-Migration GA/d-cAMP-stimulierter DCs	60
3.	3.2	Periphere Immunantworten nach Applikation antigenbeladener GA/d-	
		cAMP-aktivierter DCs	65
	3.3	.2.1 Frequenz CD4 ⁺ Foxp3 ⁺ peripherer regulatorischer T-Zellen	66
	3.3	.2.2 Antigenspezifische T-Zellproliferation und Zytokinsekretion	67
	3.3	.2.3 Zytokinproduktion KLH-spezifischer T-Zelllinien	69
	3.3	.2.4 GA/d-cAMP-stimulierte DCs sezernieren IL-12p40 und IL-23	
		nach Restimulierung mit CD40-Ligand	70

			Seite
	3.3.2	2.5 IL-17-Sekretion in den Zellkulturüberständen KLH-spezifischer T-	
		Zelllinien	72
4.	DISKU	SSION	73
	4.1 Gew	vinnung und In-Vitro-Untersuchungen IL-12-defizienter humaner und	
	Rhesusaffen-DCs		
	4.2 In-V	ivo-Charakterisierung IL-12-defizienter DCs	77
	4.2.1	Behandlung der Rhesusaffen mit rekombinanten Zytokinen zwecks	
		Steigerung der Monozytenzahlen	77
	4.2.2	In-Vivo-Migrationskapazität GA/d-cAMP-aktivierter DCs	79
	4.2.3	Immunologische Eigenschaften GA/d-cAMP-aktivierter DCs in vivo	81
5.	AUSBL	ICK	88
6.	ZUSAM	IMENFASSUNG	89
	SUMM	ARY	92
7.	LITERATURVERZEICHNIS		94
8.	. ABKÜRZUNGSVERZEICHNIS		
Ω	Labordouf		