Inhaltsverzeichnis

1. Einleitung	1
2. Grundlagen der Rasterkraftmikroskopie	7
2.1. Entwicklung der Rastersondenmikroskopie	7
2.2. Kräfte in der Rasterkraftmikroskopie	8
2.3. Meßprinzip	10
2.4. Spitzeninduzierte Meßfehler	11
2.5. Meßmethoden, die über Topographiemessungen hinausgehen	13
2.5.1. Phasenverschiebungen	13
2.5.2. Force Modulation und Pulsed Force Mode	17
2.6. Optische Nahfeldmikroskopie (SNOM)	18

3 Adsorbierte synkinetische Membransysteme als Untersuchungsobjekte	
von Oberflächen	20
3.1. Verwendete Oberflächen	20
3.2. Kräfte zwischen Oberfläche und Probensubstanz	22
3.3. Stabile Vesikel und Micellen und deren Wechselwirkungen mit der	
Oberfläche	24
3.3.1. Polymere Vesikel aus Bixinporphyrinen	25
3.3.2. Multischichtige Micellen	35
4. Strukturierung von Oberflächen mittels sequentiellem Aufbau	49
4.1. Faseraggregate	50
4.1.1. N-Octyl-D-Gluconamid	51
4.1.1.1. Doppelschichten aus N-Octyl-D-gluconamid	51
4.1.1.2. Faseraggregate aus N-Octyl-D-gluconamid	54

4.1.1.3. Untersuchungen zum Einsatz von Fasern aus N-Octyl-D-gluconamid	
zur Strukturierung von Oberflächen	57
4.1.2. Bolaamphiphile mit Alanin- und Lysin-Kopfgruppen	62
4.1.2.1. 6-Amino-2L-[13-(1L-carboxy-ethylcarbamoyl)-tridecanoylamino]-	
hexansäure 3	62
4.1.2.2. 6-Amino-2L-[13-(1D-carboxy-ethylcarbamoyl)-tridecanoylamino]-	
hexansäure 4	65
4.1.2.3. 6-Amino-2L-{12-[8-(1L-carboxy-ethylcarbamoyl)-octanoylamino]-	
dodecanoyl-amino}-hexansäure 5	69
4.1.2.4. 6-Amino-2L-{12-[9-(1L-carboxy-ethylcarbamoyl)-nonanoylamino]-	
dodecanoyl-amino}-hexansäure 6	72
4.1.2.5. Untersuchungen zum Einsatz von Fasern aus Bolaamphiphilen	
mit Alanin- und Lysin-Kopfguppen zur Strukturierung von	
Oberflächen	75
4.2 Hyaluronsäure	76
4.3 Lochfolien auf Cellulosebasis	78

5. Gemischte Monoschichten aus β -Tetraethyl- β -tetrapyridyl-porphyrin	
und Tetracosansäure	83
5.1. Langmuir-Blodgett-Filme der Einzelkomponenten	85
5.1.1. Tetracosansäure	85
5.1.1.1.Isothermen und Phasenübergänge	85
5.1.1.2. Langmuir-Blodgett-Film aus Tetracosansäure bei 20 mN/m	89
5.1.1.3. Langmuir-Blodgett-Film aus Tetracosansäure bei 15 mN/m	90
5.1.1.4. Langmuir-Blodgett-Film aus Tetracosansäure bei 10 mN/m	91
5.1.1.5. Interpretation des Phasenverhaltens des bei 10 mN/m übertragenen	
Tetracosansäurefilms	96
5.1.1.6. Messungen eines bei 10 mN/m übertragenen Tetracosansäurefilms	
bei hohem Auflagedruck	100
5.1.2. β-Tetraethyl-β-tetrapyridyl-porphyrin	102
5.2. Gemischte Monoschichten	113
5.2.1. Charakterisierung mittels Isothermen	113

5.2.2. Charakterisierung der gemischten Filme mit dem Rasterkraftmikroskop	115
5.2.3. Manipulation der Fettsäuredomänen bei verschiedenen Auflagedrücken	120
5.2.4. Rasternahfeldmikroskopische Untersuchungen	123

6. Mehrschichtige Langmuir-Blodgett-Filme 125

6.1. 2-Octadecyl-chinon-5-sulfonsäure	126
6.2. Schichtstruktur aus einer β -Tetraethyl- β -tetrapyridyl-porphyrin-	
Monoschicht und einer Monoschicht aus 2-Octadecyl-chinon-	
5-sulfonsäure	135
6.2.1. Charakterisierung im Rasterkraftmikroskop	137
6.2.2. Fluoreszenzuntersuchungen	139

7. Beispiele für nanoskopische und polymere mesoskopische	
Strukturierung	142
7.1. Molekulare Lücken in Thiolmonoschichten	142
7.1.1.Synthese von Porphyrinen mit schwefelhaltigen funktionellen Gruppen	144
7.1.2. UV/vis-Spektren	149
7.1.3. Cyclovoltammetrische Untersuchungen	150
7.2 Polymere Porphyrindrähte	155
7.2.1. Elektrochemische Darstellung des Polymers	155
7.2.2. Charakterisierung des Polymers aus Zink-5-[4,4'-bipyridinium-	
perchlorat]-porphyrin 22	158
7.2.3. Elektrochemische Darstellung der Porphyrindrähte	161

8. Zusammenfassung	165
8.1. Deutsche Zusammenfassung	165
8.2 English Conclusion	169

9. Experimenteller Teil	172
9.1. Meßgeräte und Präparationsmethoden	172
9.2 Verwendete Abkürzungen	178
9.3 Synthesen	179

10. Literaturverzeichnis	189