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Abstract

X-ray crystallography is one of the main methods to establish the three-dimensional
structure of biological macromolecules, which is an essential base of structural bi-
ology and modern biotechnology.
In an X-ray experiment, one can measure only the magnitudes of the complex
Fourier coefficients of the electron density distribution under study, but not their
phases. The problem of recovering the lost phases is called the phase problem. As
the information provided by the X-ray diffraction experiment is not sufficient to
solve this problem, additional information about the electron density distribution
has to be considered.
In this work binary integer programming approaches to model different topological
properties of proteins are developed. Especially the connectivity constraint, enforc-
ing that the calculated structure consists of at most a given number of connected
components, is considered. Using graph theoretical methods and a separation al-
gorithm, a model is worked out. The details of the implementation of the presented
additional constraints are described and computational results are presented.
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Introduction

Crystallography: (from Greek)

κρυσταλλoς (krustallos) - ice,crystal

+ γραϕειν (graphein) - to write

IUCR Online Dictionary of Crystallography

Crystallography is the branch of science devoted to the study of molecular and
crystalline structure and properties, with far-reaching applications in mineralogy,
chemistry, physics, mathematics, biology and material science [IUCR, 2006].

Knowledge about the three-dimensional structure of biological macromolecules is
an essential foundation of structural biology and biotechnology. In X-ray crystal-
lography the arrangement of atoms within a crystal is determined from a three-
dimensional representation of the electron density. Various molecules and espe-
cially proteins can form crystals and X-ray crystallography is actually one of the
main experimental methods to determine such structures. From X-ray experiments
one gets diffraction data depending on the molecular structure. Then a relation
between the this data and the crystal structure, which can be described by the
electron density distribution, is searched. With the help of the diffraction data and
the usage of mathematical as well as experimental methods, the electron density
can be calculated. Direct methods use mathematical techniques to compute an
electron density map from the diffraction data without any further experiments.
The main problem here is the phase problem: experiments provide only the inten-
sities of the X-rays diffracted in different directions. With their help the structure
factors’ magnitudes can be calculated, whereas the information about the phase
shift of the structure factors is lost. If the structure factors were known, the elec-
tron density could be calculated.
X-ray crystallography can, for example, help to design pharmaceuticals, to un-
derstand enzyme mechanisms or different chemical processes or to analyse new
materials.

1



Introduction

In the first chapter some basics and especially mathematical background of direct
methods are presented. Later, methods for solving the phase problem are worked
out. A binary integer programming approach, suggested in [Lunin et al., 2002b],
is developed in chapter 2. Based on this approach, methods to increase the quality
of the solutions are worked out in the following chapters. Information about topo-
logical properties of proteins is used and formulated as a binary integer program.
In discrete tomography, topological properties of the considered objects are taken
into account. In [Bockmayr and Hooker, 2005] some of them are formulated for
two-dimensional objects via a binary integer program. In chapter 3 these, as well
as new formulations are presented and extended for three-dimensional objects.
In chapter 4, topological properties suitable for proteins, are regarded and binary
integer programming models are worked out using methods from graph theory. In
the subsequent chapter 5, a model for the whole phasing problem taking topolog-
ical properties of proteins into account is derived. A different approach to model
one of the topological constraints is shown in chapter 7. This approach is based
on singular value decomposition and ellipsoidal methods.
A first model has been implemented, the details about the implementation are
described in 6. Here, also computational results using real protein data are pre-
sented. The effectiveness of the presented model and the increase in the quality of
the solutions of the phasing problem, reached by this new method, is shown.

2



Chapter 1

Some Crystallographic and
Mathematical Basics

Willst Du ins Unendliche schreiten,
Geh nur im Endlichen nach allen Seiten.
Willst Du Dich am Ganzen erquicken,
So musst Du das Ganze im Kleinsten
erblicken.

Johann Wolfgang von Goethe

1.1 Introduction to X-ray Crystallography

1.1.1 X-ray-scattering

X-ray crystallography is a method to construct three-dimensional structure models
of crystals by determining the arrangement of electrons. A crystal is a homoge-
neous solid in which a particular arrangement of atoms is repeated along all three
spatial dimensions. From experiments one gets diffraction data depending on the
molecular structure of the regarded crystal. X-rays are scattered exclusively by
the electrons in the atoms, so a relation between the measured intensities of the
beams diffracted at the object in question and the crystal structure which can be
described by its electron density distribution is searched. Electron densities rep-
resent probabilistically where electrons can be found in the considered molecule.
Crystallography can also be used to solve crystal structures of proteins, which are
irregular and can be very large. Max Perutz and Sir John Kendrew were the first
scientists to solve protein structures by X-ray crystallography. They were awarded

3



Introduction to X-ray crystallography

the Nobel prize in chemistry in 1962 for finding the structure of sperm whale myo-
globin [Kendrew, 1964; Perutz, 1964].
Crystallography is nowadays used as a technique in structure determination and
structure-based drug design. The knowledge about the three-dimensional struc-
ture of a protein can be used for the retrieval and design of ligands. More detailed
information about drug design based on crystallography containing also concrete
examples can be found in [Mannhold et al., 2003].

The first step on the way to estimate a crystal’s electron density is the collecting
of crystallographic data. This data is obtained with the help of a diffractome-
ter or a synchrotron: an X-ray beam is diffracted by the crystal of interest into
many discrete beams, each of them produces a reflection on a detector, which
leads to a diffraction pattern, see Figure 1.1. The crystal and the film are rotated,
the reflections are recorded, such that the resulting diffraction pattern is a three-
dimensional one. With the help of this diffraction–data and using mathematical
as well as experimental methods, the electron–density distribution can be derived.

Figure 1.1: Diffractometer

Direct methods use mathematical methods to derive the electron-density map from
the diffraction data without any further experiments. The main problem here is
the phase–problem which will be the main topic of this work. In 1985, Hauptmann
and Karle were awarded the Nobel prize in chemistry for their work on solving the
phase–problem with direct methods, [Hauptman, 1992; Karle, 1992].
The basics about X-ray diffraction presented in this chapter are further devel-
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Introduction to X-ray crystallography

oped e.g. in [Barrow, 1979; Borchardt-Ott, 2002; Drenth, 1994; Giacovazzo, 1998;
Giacovazzo et al., 2002; Rhodes, 1993; Sherwood, 1976].

1.1.2 Unit cell, real and reciprocal space

Vectors, matrices as well as higher-dimensional arrays will be noted with bold
letters, xT is the transpose of an array x, as well as AT is the transpose of a
matrix A. The scalar product of two vectors x and y is denoted by xTy.

An ideal crystal consists of identical molecules, respectively complexes of molecules
repeated periodically in all three dimensions, cf. Figure 1.2b. This means that a
3-dimensional parallelepiped can be found containing such a complex of molecules
which builds up the whole crystal if it is repeatedly stacked together in all three
dimensions. This parallelepiped, in general, is not unique. It is defined by the
length of its edges as well as the angles between them and is called unit cell (see
Figure 1.2). These base units generate a 3-dimensional crystal lattice.

(a) Unit cell (b) Crystal

Figure 1.2: Unit cells building a crystal: a) a unit cell, b) crystal built of unit cells

The unit cell’s volume will be denoted with Vcell. Let a,b, c ∈ R3 span the unit
cell. Then every vector r ∈ R3 can be written in this basis, i.e., r = x1a+x2b+x3c,
where x = (x1, x2, x3)

T ∈ R3 is the vector of coordinates of r with respect to the
basis {a,b, c}. The vector space defined by this basis is called real space. A vector
x ∈ R3 is inside the unit cell, see Figure 1.2a, if and only if x ∈ V = [0, 1]3.

5



Introduction to X-ray crystallography

The electron density distribution in a crystal can be described by a real function
ρ(r) : R3 → R. The electron density distribution function has three linearly
independent periods corresponding to the length of the unit cell’s edges, i.e.,

ρ(r) = ρ(r+ k1 · a+ k2 · b+ k3 · c), k1, k2, k3 ∈ Z. (1.1)

This means, if the electron density distribution values in the unit cell are known,
its values in the whole crystal are known, due to periodicity.

For the vector of coordinates x = (x1, x2, x3), the electron density function has
integer periods in all three directions:

ρ(x) = ρ(x + k), ∀x ∈ V, ∀k ∈ Z3. (1.2)

The crystal lattice defined by the lattice points p ∈ R3

p = ra+ sb+ tc, r, s, t ∈ Z (1.3)

is called real lattice, in contrast to the reciprocal lattice which will be introduced
later.

a

b

c

(101)

(110)

(001)

Figure 1.3: Unit cell with the basis vectors of the real lattice
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Introduction to X-ray crystallography

1.1.3 Bragg’s law

A reflection on the diffraction pattern is only produced by reflected waves of signif-
icant intensity. To reach significant intensities, maximal constructive interference
of the diffracted X-ray-waves is necessary. Therefore we will now derive a condition
ensuring maximal constructive interference.
According to Figure 1.4 let d be the interplanar distance, i.e., the minimal dis-
tance between the layers of the regarded crystal. The path distance of two waves,
diffracted at two different layers will be denoted by δ . As one can easily see, the
path distance δ is given by

δ = 2d sin θ. (1.4)

θ θ

θθ d

δ

2

λ

δ

2

Figure 1.4: Bragg’s law

Maximal constructive interference is reached, if the path distance is an integer
multiple of the wavelength λ.

2d sin θ = nλ, n ∈ Z. (1.5)

Only waves satisfying this condition result in a reflected wave of significant inten-
sity which can produce a reflex on the film for the diffraction pattern. Notice, that
the interplanar distances have to be in the same order of magnitude like the wave
lengths of the X-rays to get diffraction [Barrow, 1979]. The smaller the interplanar
distance, the bigger is the resolution of the diffraction pattern.
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Introduction to X-ray crystallography

1.1.4 Ewald sphere

Figure 1.5 shows Bragg’s law for the incoming X-ray rin and the outgoing X-ray
rout, both having an angle of θ to the reflecting Bragg plane B. As the angle
between the incoming X-ray and the corresponding Bragg plane B varies between
0◦ and 90◦, the vector rout representing the outgoing X-ray ends on the surface
of a sphere, the Ewald sphere. Figure 1.5 shows a spheric section of the Ewald
sphere. Due to this construction σ is perpendicular to the plane B.

θ

θ

2θ

1

λ

rin

rout

B

0

σ

incoming

X-ray
outgoing

X-ray

21

λ
sin θ = 1

d

Figure 1.5: Construction of Ewald sphere

Each reflection of the X-ray-beam can be assigned three coordinates in the three-
dimensional space of the diffraction pattern, the reciprocal space. The reciprocal
lattice, consisting of the reflection points, is defined to be the set of vectors S =
(a∗,b∗, c∗) satisfying

e2πiS·X = 1 for all real lattice vectors X = (a,b, c). (1.6)

The reciprocal basis vectors a∗,b∗, c∗ spanning the reciprocal space and identify-
ing the reciprocal lattice are therefore given by

8



Introduction to X-ray crystallography

a∗ =
b× c

a · (b× c)
, (1.7)

b∗ =
a× c

a · (b× c)
, (1.8)

c∗ =
a× b

a · (b× c)
. (1.9)

The reciprocal lattice points are given by s = ha∗ + kb∗ + lc∗, h, k, l ∈ Z. Due to
its definition, the vector σ is pointing to the reciprocal lattice point (hkl). Here
0 is the origin of the reciprocal space. The reciprocal lattice is rotated around
its origin. If a reciprocal lattice point cuts the sphere, Bragg’s law is fulfilled
and the diffracted X-ray has maximal intensity. So we get a reflection on the
film. If a crystal is put into a X-ray beam, only some of the Bragg planes will be
in the correct orientation to show diffraction and produce reflections on the film.
If the crystal is rotated, other Bragg planes will produce reflections [Barrow, 1979].

After describing the physical background of X-ray crystallography, now its math-
ematical basics will be presented.

1.2 Fourier analysis

The phase problem is one of the most important problems in X-ray crystallogra-
phy. To understand its origin, it is necessary to know some basics about Fourier
transforms and especially about 3-dimensional Fourier transforms. These will show
a correlation between the intensities measured in the X-ray-experiment and the
electron density distribution one tries to calculate.
Fourier series were introduced by Joseph Fourier who made important contribu-
tions to the study of trigonometric series and published his results in [Fourier,
1822].
The problem of calculating the electron density distribution in the unit cell will
later on be simplified to the problem of calculating it on discrete grid points in
the cell. Then Discrete Fourier Transforms will be needed and therefore also be
introduced in this chapter.

9



Introduction to X-ray crystallography

1.2.1 Fourier series

First, some useful notations necessary for the introduction of Fourier series will
be given. Fourier series and coefficients will be introduced and the convergence
of Fourier series will be examined. Our introduction to Fourier series is based on
[Gasquet and Witomski, 1999; Vretblad, 2003].

Definition 1.1. (Periodic function), [Gasquet and Witomski, 1999]

A function f : R → C is called periodic with period P > 0, if

f(t+ P ) = f(t), ∀t ∈ R. (1.10)

Notation 1.2. (L1
p(0,P))

Let L1
p(0, P ) be the set of Lebesgue-integrable functions of period P , i.e.

L1
p(0, P )

def
=







f : R → C | f has period P and

P
∫

0

|f(t)|dt <∞







.

Notation 1.3. (L2
p(0,P))

Let L2
p(0, P ) be the set of periodic and square integrable functions, i.e.

L2
p(0, P )

def
=







f : R → C | f has period P and

P
∫

0

|f(t)|2dt <∞







. (1.11)

Every function contained in L2
p(0, P ) is also contained in L1

p(0, P ), i.e.,

L2
p(0, P ) ⊆ L1

p(0, P ). (1.12)

10



Introduction to X-ray crystallography

Definition 1.4. (Fourier series), [Vretblad, 2003]

The Fourier series of a function f ∈ L1
p(0, P ) in t ∈ R is defined by

∞
∑

n=−∞
cn(f)e

−2iπn t
P , (1.13)

where the Fourier coefficients cn(f), n ∈ Z are given by

cn(f) =
1

P

P−1
∫

0

f(t) exp(2πi · n t
P
)dt. (1.14)

The following classical theorem and corollary investigate the convergence of Fourier
series, proofs can be found in [Gasquet and Witomski, 1999].

Theorem 1.5. [Gasquet and Witomski, 1999]

Let f : R → R be a continuous function with period P that is differentiable on R,
except possibly at a finite number of points. Assume that f ′ is piecewise continuous.
Then

1. the Fourier series of f ′ is obtained by differentiating the Fourier series of f
term by term.

2. the Fourier coefficients cn(f) of f converge absolutely, i.e., they satisfy

∞
∑

n=−∞
|cn(f)| <∞, (1.15)

3. the Fourier series of f converges uniformly to f on R.

Corollary 1.6. [Gasquet and Witomski, 1999]

If f ∈ L2
p(0, a) and if its Fourier coefficients cn(f) satisfy

∞
∑

n=−∞
|cn(f)| <∞, (1.16)

then f coincides with a continuous function f̃ almost everywhere and the Fourier
series of f converges uniformly to f̃ on R.

11



Introduction to X-ray crystallography

1.2.2 Discrete Fourier Transform

As the original problem of finding the entire electron density distribution will
be simplified later on to searching the electron density only for a set of given
discrete points, we need to introduce the Discrete Fourier Transform, cf. [Briggs
and Henson, 1995]. For clarity, first the one-dimensional case will be regarded
and later on extended to the three-dimensional case, which is the one needed in
crystallography.

Definition 1.7. (Discrete Fourier Transform (DFT))

Let N be a positive integer and let (fn), n ∈ {0, . . . , N − 1} be a sequence of N

complex numbers. The value
1

N
is called intersample distance. Then the Discrete

Fourier Transform Fk, k ∈ {0, . . . , N−1} of (fn) is another sequence of N complex
numbers given by

Fk
def
=

1

N

N−1
∑

n=0

fne
2πink

N , 0 ≤ k ≤ N − 1. (1.17)

Definition 1.8. (Inverse Discrete Fourier Transform (IDFT))

Let N be a positive integer and let (Fk), k = 0, . . . N − 1 be a sequence of N
complex numbers. Then the Inverse Discrete Fourier Transform of (Fk) is another
sequence of N complex numbers given by

fn
def
=

N−1
∑

n=0

Fke
−2πink

N , 0 ≤ n ≤ N − 1. (1.18)

The Inverse Discrete Fourier Transform of the Discrete Fourier Transform of fn
is again fn and vice versa, the Discrete Fourier Transform of the Inverse Discrete
Fourier Transform of Fk is again Fk.

1.2.3 Multidimensional Fourier analysis

The electron density distribution is a function ρ : R3 → R, so multidimensional
Fourier series will be needed. These are introduced in [Tolstov, 1962] as well as in
[Vretblad, 2003], a survey on the investigations on the theory of multi-dimensional
Fourier series including convergence questions is given in [Golubov, 1984] and
[Vretblad, 2003]. Multidimensional Discrete Fourier Transforms are mentioned in
[Briggs and Henson, 1995; Vretblad, 2003].

12



Introduction to X-ray crystallography

Definition 1.9. (Periodic function in R3)

A function f(x, y, z) : R3 → R is called periodic with period (M,N, P ) ∈ R3,
M,N, P > 0, if

f(x+M, y +N, z + P ) = f(x, y, z), ∀(x, y, z) ∈ R3. (1.19)

Definition 1.10. (Fourier series)

The Fourier series of a continuous periodic function f(x, y, z) : R3 → R with period
(M,N, P ) in Z3, M,N, P > 0, is defined by

∞
∑

m,n,p=−∞
cmnp(f)e

−2iπ(mx
M

+ny

N
+ pz

P ). (1.20)

The Fourier coefficients cmnp are given by

cmnp(f) =
1

MNP

M−1
∫

0

N−1
∫

0

P−1
∫

0

f(x, y, z)e2iπ(
mx
M

+ny

N
+ pz

P )dx dy dz,

∀m,n, p ∈ Z. (1.21)

For better readability the following notations will now be used:

x = (
x

M
,
y

N
,
z

P
)T ∈ R3, h = (m,n, p)T ∈ Z3, (1.22)

U = [0,M − 1]× [0, N − 1]× [0, P − 1] ⊆ R3, U =MNP, (1.23)

so the Fourier series can now be written in the form

∑

h∈Z3

ch(f) exp(−2iπ(hTx)), ∀x ∈ U. (1.24)

and the Fourier coefficients are

ch(f) =
1

U

∫

U

f(x) exp(2iπ(hTx)) dx, ∀h ∈ Z3. (1.25)

13
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Definition 1.11. (Three dimensional Discrete Fourier Transform)

Analogous to (1.7), let (f(h)) be a complex-valued three-dimensional array,

h ∈ Π, Π = [0,M − 1]× [0, N − 1]× [0, P − 1] ⊆ Z3. (1.26)

Let M be the diagonal matrix M = diag(M,N, P ), M,N, P ∈ N. The three
dimensional Discrete Fourier Transform F of f(h) is given by

F (j) =
∑

h∈Π
f(h) exp(2πi(hTM−1j)), ∀j ∈ Π. (1.27)

For the inverse three dimensional Discrete Fourier Transform analogously to (1.8)
one gets:

Definition 1.12. (3D inverse Discrete Fourier Transform)

The three dimensional Inverse Discrete Fourier Transform f(h) is given by

f(h) =
1

U

∑

j∈Π
F (j) exp(−2πi(hTM−1j)), ∀h ∈ Π. (1.28)

1.2.4 Properties of Fourier series and DFT

Some mathematical properties of the Fourier series as well as the Discrete Fourier
Transform can directly be used in the reconstruction process in crystallography.
The electron density distribution is a real-valued function, while the structure
factors are complex values.

Definition 1.13. (Magnitude, phase)

Every complex number z ∈ C can be written in polar form, i.e., z = |z|eiφ, φ ∈
[0, 2π[; |z| is called magnitude and φ the phase angle or simply phase of z.

Hermitian symmetry

If f : R3 → R is a real function with period P ∈ Rd, d ∈ N, then the Fourier
coefficients cn show Hermitian symmetry, [Gasquet and Witomski, 1999], meaning
that cn and c∗n have the same magnitudes but opposite phase angles, i.e.,

c−n = c∗n, ∀n ∈ Z3, (1.29)

where c∗n is the complex conjugate of cn.

Analogous, if f(h) is real-valued, the Discrete Fourier Transform shows Hermitian
symmetry [Briggs and Henson, 1995], i.e.

F ∗(k) = F (−k), ∀k ∈ Z3. (1.30)

14
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Real values

If f(h) is real-valued for all h = (m,n, p) ∈ Π , then F (0, 0, 0) is real, as well as

F (
M

2
, 0, 0), F (0,

N

2
, 0), F (0, 0,

P

2
), ..., F (

M

2
,
N

2
,
P

2
). (1.31)

This property will be shown exemplarily for F (
M

2
, 0, 0). Let be h = (m,n, p) ∈ Π,

then:

F (
M

2
, 0, 0) =

∑

h∈Π
f(h) exp(2πi(

mM

2M
)) =

∑

h∈Π
f(h) · (−1)m. (1.32)

Periodicity

The complex sequences defined in Definition (1.11) and (1.12) are periodic se-
quences with period P = (M,N, P ) ∈ Z3 satisfying:

F (x+M, y +N, z + P ) = F (x, y, z) ∀(x, y, z) ∈ Z3 (1.33)

and
f(x+M, y +N, z + P ) = f(x, y, z) ∀(x, y, z) ∈ Z3. (1.34)

This can easily be shown using that exp(2πi(hTM−1(M,N, P )T )) = 1:

F (x+M, y +N, z + P )

=
∑

h∈Π
f(h) exp(2πi(hTM−1(x+M, y +N, z + P )T )

=
∑

h∈Π
f(h) exp(2πi(hTM−1(x, y, z)T ) + 2πi(hTM−1(M,N, P )T ))

=
∑

h∈Π
f(h) exp(2πi(hTM−1(x, y, z)T ))

= F (x, y, z), ∀(x, y, z) ∈ Z3,

and analogous for the IDFT.

Parseval’s theorem

A fundamental property of the DFT is described by Paseval’s relation [Briggs and
Henson, 1995]:

∑

h∈Π
|f(h)|2 = 1

MNP

∑

j∈Π
|F (j)|2. (1.35)
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1.2.5 Protein crystallography

Proteins form crystals under certain circumstances. Crystallographers are able to
grow crystals of proteins without denaturing the proteins [Rhodes, 1993]. In 1934,
Dorothy Hodgkin and John Desmond Bernal recorded the first X-ray diffraction
pattern of a protein crystal. In 1962, Max Ferdinand Perutz and John Kendrew
were awarded the Nobel Prize for Chemistry for their studies of the structures
of globular proteins. They determined the three-dimensional structure of protein
crystals from their X-ray diffraction patterns [Kendrew, 1964; Perutz, 1964].

Figure 1.6: Protein G, picture made with PYMOL [DeLano, 2002]

1.2.6 The phase problem

According to the theory of quantum mechanics, the position of an electron can only
be described in probabilistic terms, see e.g. [Barrow, 1979]. The electron density
of an electron is the probability for this electron to be at a specific location. The
structure of a crystal calculated from diffraction data is represented by electron
density maps.

We are searching for the electron density distribution ρ(x) : V → R in a crystal
with V being the unit cell of the crystal. In the X-ray experiment, the X-ray
beam is scattered by the electrons in the crystal. Due to the crystal structure,
ρ : R3 → R is a periodic function and therefore can be developed into a Fourier
series, cf. (1.24), [Drenth, 1994; Sherwood, 1976]

ρ(x) =
1

Vcell

∑

h∈Z3

F(h) exp(−2πi(h · x)), ∀x ∈ V. (1.36)
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Figure 1.7: Electron density map of Protein G, picture made with PYMOL [De-
Lano, 2002]

If we knew the structure factors F(h) for all h ∈ Z3, using formula (1.36) the elec-
tron density distribution could be calculated. The Fourier coefficients F(h),h ∈
Z3, which are called structure factors in crystallography, are given by the formula

F(h) =

∫

V

ρ(x) exp(2πi(h · x))dx, ∀h ∈ Z3, (1.37)

cf. (1.25). Since the structure factors are complex numbers, they can be written
in the form

F(h) = F (h) exp(iϕ(h)), (1.38)

with magnitude F (h) = |F(h)| and phase ϕ(h) ∈ [0, 2π[.

The electron density map resolution specifies the size of distinguishable details in
the diffraction pattern. For the calculation of the electron density distribution
using equation (1.36), an infinite number of structure factors F(h), h ∈ Z3 would
have to be known. The restriction to a finite number of structure factors, taken into
account for the calculation of the electron density values, defines the resolution.
Assume, that the lengths of the edges of the considered unit cell are given by
a, b, c ∈ R. For the simple case that the edges of the considered unit cell all are
orthogonal, the resolution d(h, k, l), (h, k, l) ∈ Z3 is defined as

d(h, k, l) =

(

h2

a2
+
k2

b2
+
l2

c2

)− 1

2

. (1.39)

If an electron density distribution is calculated with a set of structure factors
F(h, k, l), such that

dhigh ≤ d(h, k, l) ≤ dlow, (1.40)
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the resolution of the electron density map is dhigh. The value dlow is the low-
resolution cut-off limit. The smaller dhigh, the higher the resolution. The value
dlow specifies if the structure factors with small absolute index values (h, k, l) are
included and should therefore be large, if they should be included. The range
dhigh − dlow is called resolution range.

The intensity I(h), I : R3 → R≥0 of a diffraction is proportional to the squared
structure factors with a known constant of proportionality [Drenth, 1994; Rhodes,
1993; Sayre, 1951]. This means

C · I(h) = F(h) · F∗(h), ∀h ∈ Z3, (1.41)

for some constant C > 0. and so, knowing the intensities, the magnitudes of the
structure factors can be calculated by

|F(h)| =
√

C · I(h), ∀h ∈ Z3. (1.42)

In the following, I(h) = C · I(h), ∀h ∈ Z3 will be used.

The X-ray diffraction experiment provides only the intensities I(h), for some
h ∈ Z3 of the X-rays diffracted in different directions. Due to equation (1.42)
the magnitudes of the corresponding structure factors F (h) can be calculated,
whereas the information about the phase shift is lost. If we knew the intensities
I(h), for all h ∈ Z3, all structure factor magnitudes could be calculated. Knowing
additionally all structure factor phase shifts, using equation (1.36) we could cal-
culate the electron density distribution.
The phase problem is the problem to find the lost phase shift of the structure fac-
tors belonging to the measured intensities. Due to the observations made above,
it is an important step on the way to determine a structure model. As the infor-
mation provided by the X-ray diffraction experiment is not sufficient to solve the
problem to find the lost phases, additional information about the electron density
distribution will be considered.

1.2.7 Symmetries

Friedel’s law

As the electron density is always real, one can derive that I(h) = I(−h), ∀h ∈ Z3.
This property is called Friedel’s law and was first published in [Friedel, 1913].
It is based on the structure factors’ Hermitian symmetry, already mentioned in
(1.29), meaning that F(h) and F(−h) have the same magnitudes but opposite
phase angles:
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F(h) = |F(h)| exp(iϕ((h))), (1.43)

F(−h) = |F(h)| exp(−iϕ((h))) = F∗(h), ∀h ∈ Z3. (1.44)

I(h) = F(h) · F∗(h) (1.45)

=

(

N
∑

j=1

fj exp(2πirj · h)
)(

N
∑

k=1

fk exp(−2πirk · h)
)

=

N
∑

j=1

N
∑

k=1

fjfk exp(2πi(rj − rk) · h), ∀h ∈ Z3,

I(−h) = F(−h) · F∗(−h) (1.46)

=

(

N
∑

j=1

fj exp(−2πirj · h)
)(

N
∑

k=1

fk exp(2πirk · h)
)

=
N
∑

k=1

N
∑

j=1

fjfk exp(2πi(rk − rj) · h), ∀h ∈ Z3,

and therefore

I(h) = I(−h), ∀h ∈ Z3. (1.47)

This is equivalent to saying that the reciprocal lattice is always centro-symmetric,
i.e., in case there is no anomalous dispersion present, there is always a centre of
symmetry in the reciprocal lattice, even if there is no such centre of symmetry in
the crystal structure [Dove, 2003].

Space group symmetries

The unit cells can contain symmetry elements defining the arrangement of mole-
cules inside the cell. The combination of the 14 Bravais lattices [Stöcker, 1994]
with the 32 point groups leads to 230 different space group symmetries [Aroyo
et al., 2006; Borchardt-Ott, 2002]. The possible point group symmetry operations
are reflection, rotation and rotoinversion, screw axis and glide plane symmetry
operations [Borchardt-Ott, 2002]. Due to the existence of asymmetric C-atoms in
proteins and nucleic acids, only some rotation, screw axis and glide plane symme-
tries can occur in those, reducing the number of possible space groups for proteins
to 65 ones [Borchardt-Ott, 2002].

19



Introduction to X-ray crystallography

These symmetries appear also in the electron density distribution. Let us assume,
that the distribution ρ(x), x ∈ V displays the symmetries of a space group

Γ = {(Rν , tν)}nsym

ν=1 . (1.48)

Here nsym ∈ N is the number of symmetries in a unit cell, Rν , ν ∈ {1, . . . , nsym}
are rotational matrices and tν, ν ∈ {1, . . . , nsym} translation vectors [Borchardt-
Ott, 2002; Zachariasen, 1945].
This means, that the following equation holds for all x ∈ V, ν ∈ {1, . . . , nsym}:

ρ(Rνx+ tν) = ρ(x). (1.49)

In Figure 1.8 protein G is shown, which shows the symmetries of the space group
P 21 21 21. This space group is defined by the rotational matrices

R1 =





1 0 0
0 1 0
0 0 1



 , R2 =





1 0 0
0 −1 0
0 0 −1



 ,

R3 =





−1 0 0
0 1 0
0 0 −1



 , R4 =





−1 0 0
0 −1 0
0 0 1



 (1.50)

and the translation vectors

t1 =





0
0
0



 , t2 =





0.5
0.5
0



 , t3 =





0
0.5
0.5



 , t4 =





0.5
0

0.5



 . (1.51)

From (1.49) and equations (1.37) and (1.36) one can derive (cf. [Waser, 1955]):

exp(2πi(h · tν))F(RT
ν h)

= exp(2πi(h · tν))
∫

V

ρ(x) exp(2πi(RT
ν h · x))dx

=

∫

V

ρ(x) exp(2πi(h ·Rνx)) exp(−2πi(h · tν))dx

=

∫

V

ρ(x) exp(2πi(h ·Rνx+ tν))dx

=

∫

V

ρ(Rνx+ tν) exp(2πi(h ·Rνx + tν))dx

= F(h), ∀h ∈ Π, ν ∈ {1, . . . , nsym}.
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(a) Protein 1igd with unit cell (b) Unit cell with two proteins

(c) Unit cell with four proteins (d) Proteins in neighbouring unit cells

Figure 1.8: Crystallized protein G belonging to space group P 21 21 21
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So the structure factors show the symmetry

F(RT
ν h) = F(h) exp(−2πi(h · tν)), ∀h ∈ Π, ν ∈ {1, . . . , nsym}. (1.52)

Equation (1.52) implies for all h ∈ Π and ν ∈ {1, . . . , nsym} the conditions

if RT
ν h = h,

and therefore F(h) = F(RT
ν h) = F(h) exp(−2πi(h · tν)),

then F(h) = 0 or exp(−2πi(h · tν)) = 1,

respectively F(h) = 0 or (h · tν) ∈ Z. (1.53)

So, if RT
ν h = h and (h, tν) /∈ Z then F(h) = 0. For the intensities I(h) one gets:

I(h) = F(h) · F∗(h) (1.54)

= F(h) exp(−2πi(h · tν)) · F(h) exp(2πi(h · tν))
= F(RT

ν h) · F∗(RT
ν h)

= I(RT
ν h), ∀h ∈ Π, ν ∈ {1, . . . , nsym}.

These symmetry properties of the electron density and the structure factors provide
information that can be used in the reconstruction process.
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Chapter 2

A Binary Integer-Programming
Approach to the Phase Problem

The lack of real contact between
mathematics and biology is either a tragedy,
a scandal, or a challenge, it is hard to decide
which.

Gian-Carlo Rota, 1986

Mathematics is biology’s next microscope,
only better; biology is mathematics’ next
physics, only better.

J.E. Cohen, 2004

2.1 Solving the phase problem with a binary in-

teger programming approach

In practice, the search for electron-density values is usually restricted to the values
calculated in the nodes of a grid in the unit cell of the regarded molecule and to the
corresponding subset of structure factors. The resulting numerical errors can be
neglected if the grid dimensions are large enough and high-resolution diffraction
data is involved [Lunin et al., 2002b]. If one is only interested in the position
and the shape of the region with density values above a certain level, a binary
function can be used to represent this region. This restriction may reduce the
number of solutions of the phase problem significantly [Lunin et al., 2002b]. At
a low resolution, this function represents the part of the unit cell occupied by
protein molecules, namely a molecular mask or an envelope. When the resolution
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is increased this binary function may represent elements of the secondary structure
or the trace of the polypeptide chain. The equations connecting the searched
binary electron density values with the experimental structure factors will not
be strictly valid after the restriction and require some corrections. This chapter
is based on the work of Vladimir Lunin, Alexandre Urzhumtsev and Alexander
Bockmayr, published in [Lunin et al., 2002b].

2.1.1 The Sayre equation

Restricting the density values ρ(x), x ∈ V to {0, 1} is equivalent to the condition:

ρ(x) = ρ2(x), ∀x ∈ V. (2.1)

The Sayre equation, introduced in [Sayre, 1952], plays an important role in X-ray-
crystallography. It can be derived from the formula (1.36) describing the electron
density.
Squaring any function is equivalent to self-convoluting its array of structure fac-
tors, so for the squared electron density function we get the Patterson-function:
[Patterson, 1931], [Patterson, 1934], [Patterson, 1935]

ρ2(x) =

(

1

Vcell

∑

h∈Π
F(h) exp(−2πi(h · x))

)2

(2.2)

=
1

V 2
cell

∑

h∈Π

∑

h′∈Π
F(h′) exp(−2πi(h′ · x))F(h− h′) exp(−2πi((h− h′) · x))

=
1

V 2
cell

∑

h∈Π

∑

h′∈Π
F(h′)F(h− h′) exp(−2πi(h · x)), ∀x ∈ V. (2.3)

Since ρ2(x) like ρ(x) is a periodic function, using the Fourier transform it can be
written as

ρ2(x) =
1

Vcell

∑

h∈Π
Fsq(h) exp(−2πi(h · x)), ∀x ∈ V, (2.4)

where Fsq is the structure factor of the squared electron density.
So the structure factors of the squared electron density Fsq are given by

Fsq(h) =
1

Vcell

∑

h′∈Π
F(h′)F(h− h′), ∀h ∈ Π. (2.5)

Setting h− h′ = h′′ and using equations (2.1) and (1.36) we can derive the Sayre
equation for the structure factors:

F(h) = Fsq(h) =
1

Vcell

∑

h′

F(h′)F(h′′), ∀h ∈ Π. (2.6)

24



A Binary Integer-Programming Approach to the Phase Problem

ϕ(h)

F(h)

F (h) sin(ϕ(h))

F (h) cos(ϕ(h)) F (h’)F (h”) cos(ϕ(h’) + ϕ(h”))

ϕ(h’) + ϕ(h”)

F(h’)F(h”)

F (h’)F (h”) sin(ϕ(h’) + ϕ(h”))

Figure 2.1: Tangent-formula

This equation leads us to the so-called tangent-formula [Karle and Hauptman,
1956]:

tanϕ(h) =

∑

h∈Π
F (h′)F (h′′) sin(ϕ(h′) + ϕ(h′′))

∑

h∈Π
F (h′)F (h′′) cos(ϕ(h′) + ϕ(h′′))

, ∀h ∈ Π, (2.7)

which is illustrated in figure 2.1.

2.1.2 Grid structure factors

Instead of calculating the electron density distribution in the whole unit cell, a grid
covering the unit cell will be introduced (cf. Figure 2.2). Using discrete Fourier
transforms only the electron density on grid points will be calculated. The chosen
division numbers along the unit-cell axes represent the resolution of the searched
electron density map.

Consider a grid Π = [0,M1 − 1]× [0,M2 − 1]× [0,M3 − 1] ⊆ Z3, M1,M2,M3 ∈ N,
where M = M1M2M3 is the total number of grid points. Let M be the diagonal
matrix M = diag(M1,M2,M3). Given the values yj of a periodic function f on
the grid points j, i.e.,

yj = f(
j1
M1

,
j2
M2

,
j3
M3

), j = (j1, j2, j3) ∈ Π (2.8)

the three dimensional discrete Fourier transform F calculates the Fourier coeffi-
cients of a trigonometric polynomial interpolating f in these grid points [Walker,
1991]:

F(h) =
1

M

∑

j∈Π
yj exp(2πi(h ·M−1j)), ∀h ∈ Π. (2.9)
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(a) Protein (b) Discretisation
Figure 2.2: Discretisation of a protein crystal structure

The values yj, j ∈ Π, can be recovered from the Fourier coefficients F(h),h ∈ Π,
by the inverse discrete Fourier transform:

yj =
∑

h∈Π
F(h) exp(−2πi(h ·M−1j)), ∀j ∈ Π. (2.10)

The values of the electron density function ρ(x), x ∈ V at the grid points are
described by the grid electron density function

ρg(j) = ρ(M−1j), ∀j ∈ Π. (2.11)

The grid structure factor Fg(h) is defined by the discrete Fourier transform

Fg(h) =
1

M

∑

j∈Π
ρg(j) exp(2πi(h ·M−1j)), ∀h ∈ Π. (2.12)

Just like the structure factors, the grid structure factors are complex numbers and
thus can be written in the form

Fg(h) = Fg(h) exp(iϕg(h)), (2.13)

with magnitude Fg(h) = |Fg(h)| and phase ϕg(h) ∈ [0, 2π[.

If the grid structure factors are known, the grid electron densities ρg(j) : Π → R

can be restored using the inverse discrete Fourier transform.

ρg(j) =
∑

h∈Π
Fg(h) exp(−2πi(h ·M−1j)), ∀j ∈ Π, (2.14)

Here, only the values of Fg(h), h ∈ Π have to be known to calculate the grid
electron density values, while in (1.36) all values of F(h), h ∈ Z3 would be needed

26



A Binary Integer-Programming Approach to the Phase Problem

to calculate the electron density values. Obviously, from the experiments only
finitely many intensity values and thus finitely many structure factor values can
be obtained.
As the electron density ρ(j) is periodic, by its Definition 2.11 the grid electron
density ρg(j) is also periodic (cf. equation (1.33)):

ρg(j+Mk) = ρg(j), ∀k ∈ Z3, ∀j ∈ Π. (2.15)

As already mentioned in (1.34), the grid structure factors, represented by the in-
verse discrete Fourier transform of the electron density, are also periodic, satisfying

Fg(h+Mk) = Fg(h), ∀k ∈ Z3, ∀h ∈ Π. (2.16)

So, the definition of ρg(j), as well as Fg(h), at the grid points can be periodically
extended to all integer vectors j ∈ Z3 and h ∈ Z3.

2.1.3 Structure factors vs. grid structure factors

In order to clarify the relation between the structure factors and the grid structure
factors, we start with equation (2.12) and use (1.36), see also [TenEyck, 1977]:

VcellFg(h) =
Vcell
M

∑

j∈Π
ρ(M−1j) exp(2πi(h ·M−1j))

=
1

M

∑

j∈Π
(
∑

p∈Z3

F(p) exp(−2πi(p · (M−1j)))) · exp(2πi(h ·M−1j))

=
1

M

∑

p∈Z3

F(p)
∑

j∈Π
exp(2πi((h− p) ·M−1j))

=
∑

k∈Z3

F(h+Mk). (2.17)

The last equation holds due to

∑

j∈Π
exp

(

2πi
(

(h− p) ·M−1j
))

=

{

M, if h− p = Mk, for k ∈ Z3

0, otherwise.
(2.18)

Introducing R(h)
def
=

M

Vcell

∑

k∈Z3\{0}
F(h+Mk) we can write

Fg(h) =
F(h)

Vcell
+
R(h)

M
. (2.19)
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The value of R(h) depends on the magnitudes and phases of all structure factors
and is generally unknown. But, it may be negligibly small if the grid is fine enough
and if the indexes h are relatively small in comparison with the grid dimensions.

Still, it may be significant if one of the indices is close to
M1

2
,
M2

2
or
M3

2
, cf. [Lunin

et al., 2002b].

2.1.4 Inequalities for the grid electron density values

Using (2.12) grid density values ρg(j) can be obtained from the grid structure
factors Fg(h) by solving the system of equations

Fg(h) =
1

M

∑

j∈Π
ρg(j) exp(2πi(h ·M−1j)), ∀h ∈ Π. (2.20)

The relation (2.19) between the unknown grid structure factors Fg(h) and the
structure factors F(h), whose magnitudes can be observed in the X-ray experiment,
will now be used to estimate a linear programming formulation to solve the phase
problem.
Given an upper bound ε1(h) ∈ R≥0, satisfying

|R(h)| ≤ ε1(h), ∀h ∈ Π, (2.21)

the following system of inequalities for the grid density function can be derived:

∣

∣

∣

∑

j∈Π
ρg(j) exp(2πi(h ·M−1j))− M

Vcell
F(h)

∣

∣

∣
≤ ε1(h), ∀h ∈ Π (2.22)

2.2 Recovering the phases

Now, further constraints restricting the possible phases of the structure factors
F(h) will be deduced.

Assuming first that the magnitudes of the grid structure factors were known (which
normally will not be the case, as the experiments provide only the magnitudes of
the real structure factors), the following equality system can be derived. The
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formula for the grid structure factors (2.12) yields

MFg(h) =
∑

j∈Π
ρg(j) exp(2πi(h ·M−1j)),

∀h ∈ Π (2.23)

M · Fg(h) exp(iϕg(h)) =
∑

j∈Π
ρg(j) exp(2πi(h ·M−1j)),

∀h ∈ Π (2.24)

M · Fg(h) · (cos(ϕg(h)) + i · sin(ϕg(h))) =
∑

j∈Π
ρg(j) cos(2π(h ·M−1j))

+i · sin(2π(h ·M−1j))),

∀h ∈ Π (2.25)

and thus

0 =
∑

j∈Π
ρg(j) cos(2π(h ·M−1j))−M · Fg(h) · cos(ϕg(h)), ∀h ∈ Π (2.26)

0 =
∑

j∈Π
ρg(j) sin(2π(h ·M−1j))−M · Fg(h) · sin(ϕg(h)), ∀h ∈ Π. (2.27)

Taking into account, that only the real structure factors are known, equality (2.19)
has to be considered.

M · Fg(h) =
M

Vcell
F(h) +R(h), ∀h ∈ Π. (2.28)

ReplacingM ·Fg(h) in the latter equation (2.23) and using (2.26) and (2.27) yields

M

Vcell
F(h) +R(h) =

∑

j∈Π
ρg(j) exp(2πi(h ·M−1j)), ∀h ∈ Π (2.29)

R(h) =
∑

j∈Π
ρg(j)(cos(2π(h ·M−1j)) + i · sin(2π(h ·M−1j)))

− M

Vcell
F (h) · (cos(ϕ(h)) + i · sin(ϕ(h))), ∀h ∈ Π (2.30)

and thus

−|R(h)| ≤
∑

j∈Π
ρg(j) cos(2π(h ·M−1j))

− M

Vcell
F (h) cos(ϕ(h)) ≤ |R(h)|, ∀h ∈ Π, (2.31)

−|R(h)| ≤
∑

j∈Π
ρg(j) sin(2π(h ·M−1j))

− M

Vcell
F (h) sin(ϕ(h)) ≤ |R(h)|, ∀h ∈ Π. (2.32)
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Estimating R(h) by |R(h)| ≤ ε1(h) according to (2.21) leads to

−ε1(h) ≤
∑

j∈Π
ρg(j) cos(2π(h ·M−1j))

− M

Vcell
F (h) cos(ϕ(h)) ≤ ε1(h), ∀h ∈ Π, (2.33)

−ε1(h) ≤
∑

j∈Π
ρg(j) sin(2π(h ·M−1j))

− M

Vcell
F (h) sin(ϕ(h)) ≤ ε1(h), ∀h ∈ Π. (2.34)

2.2.1 Symmetries

Like already mentioned in section 1.2.7, different symmetries can appear in the
electron density distribution. Possible symmetry groups of a crystal can be esti-
mated from the diffraction pattern and are thus known in advance. This additional
information can be used in the phasing process. Every crystal can be assigned to
exactly one of the 230 crystallographic space groups. However, due to measuring
uncertainties a unique assignment only based on experimental data is not always
possible.
The density distribution ρ(x) of a crystal displays the symmetries of a space group,

Γ = {(Rν, tν)}nsym

ν=1 , nsym ∈ N, (2.35)

with Rν being a rotation matrix and tν a translation vector if and only if the
following holds, cf. also section 1.2.7:

ρ(Rνx+ tν) = ρ(x), ∀x ∈ R3, ∀ν ∈ {1, . . . , nsym}. (2.36)

From (2.36) and (1.37) the following symmetries for the structure factors can be
derived [Waser, 1955]:

F(h) = exp(2πi(h · tν)) F(RT
ν h), ∀h ∈ Π, ∀ν ∈ {1, . . . , nsym}. (2.37)

If RT
ν h = −h for some ν, h is called centric reflection, otherwise it is called

acentric.

2.2.2 Properties of grid structure factors

The problem with introducing binary variables is, that the X-ray experiment pro-
vides magnitudes corresponding to a real electron density and not to a binary
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function approximating it. But in [Lunin et al., 2002b] it was shown that there
is a high correlation between initial structure factors and those calculated from
binary envelopes.

Using (2.37) and the Hermitian symmetry F(−h) = F∗(h) of the structure factors,
cf. (1.29), the following phase restrictions for centric reflections can be obtained:

if RT
ν h = −h, then ϕ(h) = ψ(h) or ϕ(h) = ψ(h) + π, ∀h ∈ Π, (2.38)

whereby ψ(h)
def
= π(h · tν), ∀h ∈ Π. This can be derived from equation (2.37):

F(RT
ν h) = F(h) exp(−2πi(h · tν)),

∀h ∈ Π (2.39)

⇒ F (RT
ν h) · exp(iϕ(RT

ν h)) = F (h) · exp(−2πi(h · tν)) · exp(iϕ(h)),
∀h ∈ Π (2.40)

⇒ F (−h) · exp(iϕ(−h)) = F (h) · exp(−2πi(h · tν)) · exp(iϕ(h)),
∀h ∈ Π. (2.41)

With the help of the Hermitian symmetry of the structure factors and the phases
(1.43) one sees

F (h) · exp(−iϕ(h)) = F (h) · exp(−2πi(h · tν)) · exp(iϕ(h)),
∀h ∈ Π (2.42)

⇒ exp(−iϕ(h)) = exp(−2πi(h · tν)) · exp(iϕ(h)), ∀h ∈ Π

⇒ exp(−2iϕ(h)) = exp(−2πi(h · tν)), ∀h ∈ Π

⇒ exp(−2iϕ(h)) = exp(−2iψ(h)), ∀h ∈ Π

⇒ ϕ(h) = ψ(h) ∨ ϕ(h) = ψ(h) + π, ∀h ∈ Π.

So, if the reflection is centric, only two values of the phase, ψ(h) or ψ(h) + π,
with ψ(h) being known, are possible. Thus, a new variable α(h) ∈ {0, 1} can be
introduced, representing the phase ambiguity, which yields

F(h) = F (h) exp(iϕ(h)) = F (h)(2α(h)− 1) exp(iψ(h)), ∀h ∈ Π. (2.43)

In the inequality system (2.22), F(h) can be replaced:

∣

∣

∣

∑

j∈Π
ρg(j) exp(2πi(h ·M−1j)) − M

Vcell
F (h)(2α(h)− 1) exp(iψ(h))

∣

∣

∣

≤ ε1(h), ∀h ∈ Π. (2.44)
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Taking real and imaginary parts, this results in the following inequalities for centric
reflections h ∈ Π:

∣

∣

∣

∑

j∈Π
cos(2π(h ·M−1j))ρg(j) − (2α(h)− 1)

M

Vcell
F (h) cosψ(h)

∣

∣

∣

≤ ε1(h), ∀h ∈ Π, (2.45)
∣

∣

∣

∑

j∈Π
sin(2π(h ·M−1j))ρg(j) − (2α(h)− 1)

M

Vcell
F (h) sinψ(h)

∣

∣

∣

≤ ε1(h), ∀h ∈ Π. (2.46)

As the structure factor magnitudes F (h) are known from experiment, these in-
equalities are linear in ρg(j) and α(h).

2.2.3 Acentric reflections

For the acentric reflections, the phase can take any value from 0 to 2π. [Lunin
et al., 2002b] suggests for this case to restrict the phase of the structure factor

to one of four possible values ϕ(h) ∈
{

±π
4
, ±3π

4

}

, ∀h ∈ Π. So, cos(ϕ(h)) and

sin(ϕ(h)) take the values ± 1√
2
, for all h ∈ Π. This simplification results in a phase

sampling error ε2(h) ∈ R≥0, which can be estimated by

ε2(h) ≤
1√
2
, ∀h ∈ Π. (2.47)

We introduce two new variables α(h), β(h) ∈ {−1, 1} for every grid point h ∈ Π.
Taking the phase error ε2(h) for the phase values ϕ(h), ∀h ∈ Π into account yields

cosϕ(h) = α(h)
1√
2
± ε2(h), ∀h ∈ Π, (2.48)

sinϕ(h) = β(h)
1√
2
± ε2(h), ∀h ∈ Π. (2.49)

Assuming that the magnitudes of the grid structure factors are known and start-
ing with equations (2.26) and (2.27) leads to the following equalities for acentric
reflections h ∈ Π:

0 =
∑

j∈Π
ρg(j) cos(2π(h ·M−1j))

−M · Fg(h) ·
(

α(h)
1√
2
± ε2(h)

)

, ∀h ∈ Π (2.50)
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0 =
∑

j∈Π
ρg(j) sin(2π(h ·M−1j))

−M · Fg(h) ·
(

β(h)
1√
2
± ε2(h)

)

, ∀h ∈ Π. (2.51)

This equation system would be linear in ρg(j) if the grid structure factors magni-
tudes were known.
The system can be changed into a binary integer program by replacing the variables
α(h) and β(h) by binary variables yR(h) ∈ {0, 1} and yI(h) ∈ {0, 1}, satisfying

α(h) = 2yR(h)− 1

⇒ (α(h) = −1 ⇔ yR(h) = 0, α(h) = 1 ⇔ yR(h) = 1) , ∀h ∈ Π(2.52)

β(h) = 2yI(h)− 1

⇒ (β(h) = −1 ⇔ yI(h) = 0, β(h) = 1 ⇔ yI(h) = 1) , ∀h ∈ Π. (2.53)

Thus,

0 =
∑

j∈Π
ρg(j) cos(2π(h ·M−1j))

−M · Fg(h) ·
(

(2yR(h)− 1)
1√
2
± ε2(h)

)

, ∀h ∈ Π (2.54)

0 =
∑

j∈Π
ρg(j) sin(2π(h ·M−1j))

−M · Fg(h) ·
(

(2yI(h)− 1)
1√
2
± ε2(h)

)

, ∀h ∈ Π. (2.55)

This results in

−M · Fg(h)ε2(h)

≤
∑

j∈Π
ρg(j) sin(2π(h ·M−1j))−

√
2M · Fg(h)yR(h) +M · Fg(h)

1√
2

≤ M · Fg(h)ε2(h), ∀h ∈ Π, (2.56)

−M · Fg(h)ε2(h)

≤
∑

j∈Π
ρg(j) sin(2π(h ·M−1j))−

√
2M · Fg(h)yI(h) +M · Fg(h)

1√
2

≤ M · Fg(h)ε2(h), ∀h ∈ Π (2.57)
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and considering ε2(h) ≤ 1√
2
yields

−M · Fg(h)
√
2 ≤

∑

j∈Π
ρg(j) cos(2π(h ·M−1j))

−
√
2M · Fg(h)yR(h) ≤ 0, ∀h ∈ Π, (2.58)

−M · Fg(h)
√
2 ≤

∑

j∈Π
ρg(j) sin(2π(h ·M−1j))

−
√
2M · Fg(h)yI(h) ≤ 0, ∀h ∈ Π. (2.59)

In the usual case that only the magnitudes of the real, but not the binary structure
factors are known, the calculation, here starting with inequalities (2.33) and (2.34)
is quite similar. The binary variables yR(h) ∈ {0, 1} and yI(h) ∈ {0, 1} are
introduced for the phase sampling, the phase sampling error ε2(h) is estimated by

ε2(h) ≤
1√
2
, ∀h ∈ Π. (2.60)

−ε1(h) ≤
∑

j∈Π
ρg(j) cos(2π(h ·M−1j))

− M

Vcell
F (h)

(

(2yR(h)− 1)
1√
2
± ε2(h)

)

≤ ε1(h), ∀h ∈ Π, (2.61)

−ε1(h) ≤
∑

j∈Π
ρg(j) sin(2π(h ·M−1j))

− M

Vcell
F (h)

(

(2yI(h)− 1)
1√
2
± ε2(h)

)

≤ ε1(h), ∀h ∈ Π. (2.62)

Thus,

−ε1(h)−
M

Vcell
F (h)ε2(h)

≤
∑

j∈Π
ρg(j) cos(2π(h ·M−1j))−

√
2
M

Vcell
F (h)yR(h)

+
1√
2

M

Vcell
F (h) ≤ ε1(h) +

M

Vcell
F (h)ε2(h), ∀h ∈ Π, (2.63)
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−ε1(h)−
M

Vcell
F (h)ε2(h)

≤
∑

j∈Π
ρg(j) sin(2π(h ·M−1j))−

√
2
M

Vcell
F (h)yI(h)

+
1√
2

M

Vcell
F (h) ≤ ε1(h) +

M

Vcell
F (h)ε2(h), ∀h ∈ Π (2.64)

Estimating the phase sampling error, like in (2.60) leads to

−ε1(h)−
√
2
M

Vcell
F (h)

≤
∑

j∈Π
ρg(j) cos(2π(h ·M−1j))−

√
2
M

Vcell
F (h)yR(h)

≤ ε1(h), ∀h ∈ Π, (2.65)

−ε1(h)−
√
2
M

Vcell
F (h)

≤
∑

j∈Π
ρg(j) sin(2π(h ·M−1j))−

√
2
M

Vcell
F (h)yI(h)

≤ ε1(h), ∀h ∈ Π. (2.66)

As the error ε1(h), resulting from the scaling of the observed magnitudes to the
magnitudes of the binary functions, can not be estimated easily, [Lunin et al.,
2002b] suggest a different way to take this error into account. Here, it is assumed,
that the number of non-zero values K in the binary electron density map is already
known. K can e.g. be specified by claiming a fixed number of non-zero grid electron
density values.
Given binary electron density values on the regarded grid points B(j) ∈ {0, 1},
∀j ∈ Π, the corresponding structure factors B̂(h), ∀h ∈ Π are given by

B̂(h) =
1

M

∑

j∈Π
B(j) exp(2π(h ·M−1j)), ∀h ∈ Π. (2.67)

Parseval’s relation (1.35), shows

M
∑

h∈Π
B̂2(h) =

∑

j∈Π
B2(j). (2.68)

Considering that B(j) ∈ {0, 1}, ∀j ∈ Π and therefore B(j) = B2(j), ∀j ∈ Π leads
to:

M
∑

h∈Π
B̂2(h) =

∑

j∈Π
B2(j) =

∑

j∈Π
B(j) = K. (2.69)
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The value of B̂(0) can easily be estimated:

B̂(0) =
1

M

∑

j∈Π
B(j) =

K

M
. (2.70)

Assuming that the binary structure factors B̂(h) are approximately proportional
to the observed structure factor values F (h), a proportionality factor κ can be
introduced

B̂(h) ≈ κF (h), ∀h ∈ Π. (2.71)

So,

κ2
∑

h ∈ Π,
h 6= 0

F 2(h)
(2.71)≈ ∑

h ∈ Π,
h 6= 0

B̂2(h) =
∑

h∈Π
B̂2(h)− B̂2(0)

(2.69)
=

K

M
− B̂2(0)

(2.70)
=

K

M
−
(

K

M

)2

. (2.72)

The proportionality factor κ can thus be estimated by

κ =













K

|M | −
(

K

|M |

)2

∑

h ∈ Π
h 6= 0

F (h)2













1

2

. (2.73)

So, κ ≥ 0 is a scaling factor reflecting that the magnitudes F obs(h) obtained
from the analysis of the diffraction pattern correspond to a real electron density
distribution, and not to a binary one [Lunin et al., 2002b]. Equations (2.65) and
(2.66) can now be reformulated using the scaling factor κ

−ε1(h)−
√
2κF (h) ≤

∑

j∈Π
ρg(j) cos(2π(h ·M−1j))−

√
2κF (h)yR(h)

≤ ε1(h), ∀h ∈ Π, (2.74)

−ε1(h)−
√
2κF (h) ≤

∑

j∈Π
ρg(j) sin(2π(h ·M−1j))−

√
2κF (h)yI(h)

≤ ε1(h), ∀h ∈ Π. (2.75)

[Lunin et al., 2002b] suggest also the introduction of a gap

0 ≤ G ≤ 1 (2.76)
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to take into account a smaller range of solutions. For G = 1 this formulation
equals the above equations. If additionally we set κ =M it equals the formulation
for given binary structure factors (2.58) and (2.59).

−(1 +G)
1√
2
κF (h) ≤

∑

j∈Π
ρg(j) cos(2π(h ·M−1j))−

√
2κF (h)yR(h)

≤ (G− 1)
1√
2
κF (h), ∀h ∈ Π, (2.77)

−(1 +G)
1√
2
κ ≤

∑

j∈Π
ρg(j) sin(2π(h ·M−1j))−

√
2κF (h)yI(h)

≤ (G− 1)
1√
2
κF (h), ∀h ∈ Π. (2.78)

In [Lunin et al., 2002b], it is shown, that the restriction to only four possible
values already yields useful results. In the bachelor thesis [Bode, 2010], the
improvement in the solution quality by using the eight different phase values,

ϕ(h) ∈
{

0, ±π
4
, ±π

2
, ±3π

4
, π

}

, ∀h ∈ Π has been investigated. But, increasing

the number of variables also significantly increases the running time of the imple-
mentation described in Chapter 6, so there the phase values will be restricted to
four possible ones.

2.3 Constraint-based modelling of the phasing

problem

2.3.1 Constraint system

In the context of direct phasing, it may be sufficient to find a binary envelope of
the regarded molecules, i.e., a binary function indicating areas where the electron
density is above a certain level [Lunin et al., 2002b]. Using this idea, the unknowns
ρg(j) may be replaced by binary variables zj ∈ {0, 1}, for each grid point j ∈ Π.
The value of zj should be 1 if the electron density ρg(j) is above a certain level
and 0 otherwise, so the solution of the problem provides a binary envelope of the
regarded molecules.

This leads to a system of linear inequalities in 0-1 variables for representing the
electron density values at grid points. The following notations are used for simpli-
fication (the superscripts R and I stand for the real and imaginary part resp.)

aRj (h)
def
= cos(2π(h ·M−1j)), aIj (h)

def
= sin(2π(h ·M−1j)), (2.79)
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For centric reflections, set

yRh = yIh
def
= α(h), (2.80)

bRh
def
= 2κF (h) cosψ(h), bIh

def
= 2κF (h) sinψ(h), (2.81)

cRh
def
= κF (h) cosψ(h), cIh

def
= κF (h) sinψ(h), (2.82)

and for acentric reflections

yRh = α(h), yIh
def
= β(h), (2.83)

bRh
def
= 2κF (h)2−1/2, bIh

def
= 2κF (h)2−1/2, (2.84)

cRh
def
= κF (h)2−1/2, cIh

def
= κF (h)2−1/2. (2.85)

For further simplification, we introduce

AR(h, z,y(h))
def
=

∑

j∈Π
aRj (h)zj −

(

bRhy
R
h − cRh

)

, (2.86)

AI(h, z,y(h))
def
=

∑

j∈Π
aIj (h)zj −

(

bIhy
I
h − cIh

)

. (2.87)

Then the binary variables zj, y
R
h , y

I
h, with j,h ∈ Π have to satisfy (cf. (2.74) and

(2.75))
|AR(h, z,y(h))| ≤ εh and |AI(h, z,y(h))| ≤ εh, ∀h ∈ Π, (2.88)

where εh = ε1(h) for centric and εh = ε1(h) +
1√
2
κF (h) for acentric reflections.

The phase problem then can be stated by the following system of linear inequalities
in 0-1 variables:

−εh ≤ AR(h, z,y(h)) ≤ εh, ∀h ∈ Π, (2.89)

−εh ≤ AI(h, z,y(h)) ≤ εh, ∀h ∈ Π, (2.90)

zj, y
R
h , y

I
h ∈ {0, 1}, ∀h, j ∈ Π. (2.91)
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2.4 The objective function

One possibility to work with the inequality system (2.88) is to apply a penalty
method, [Brinkmann and Bockmayr, 2008]. Whenever |AR(h, z,y(h))| > εh,
we include |AR(h, z,y(h))| as a penalty term, similarly for |AI(h, z,y(h))|. If
AR(h, z,y(h)) respectively AI(h, z,y(h)) satisfy −εh ≤ AR(h, z,y(h)) ≤ εh re-
spectively −εh ≤ AI(h, z,y(h)) ≤ εh the penalties are equal to zero.

εh−εh 0

rR
h , rI

h

AR(h, z,y(h)),

AI(h, z,y(h))

Figure 2.3: Penalty function

This can be modelled as a mixed-integer optimisation problem with the help of
additional positive real variables rRh , r

I
h ∈ R≥0, ∀h ∈ Π representing the penalties:

min
∑

h∈Π
(rRh + rIh) (2.92)

subject to 0 ≤ rRh , 0 ≤ rIh, ∀h ∈ Π, (2.93)

−εh − rRh ≤ AR(h, z,y(h)) ≤ εh + rRh , ∀h ∈ Π, (2.94)

−εh − rIh ≤ AI(h, z,y(h)) ≤ εh + rIh, ∀h ∈ Π, (2.95)

zj, y
R
h , y

I
h ∈ {0, 1}, ∀h, j ∈ Π. (2.96)

Whereas in this approach for every grid point h ∈ Π penalties rRh and rIh are added
and therefore the introduction of 2M (M is the number of grid points) penalty
variables is required, the following model requires only the introduction of 2 new
variables. Here, not the sum of the deviations in the grid points is minimized, but
the maximal deviation.
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min rR + rI (2.97)

subject to 0 ≤ rR, 0 ≤ rI , ∀h ∈ Π, (2.98)

−εh − rR ≤ AR(h, z,y(h)) ≤ εh + rR, ∀h ∈ Π, (2.99)

−εh − rI ≤ AI(h, z,y(h)) ≤ εh + rI , ∀h ∈ Π, (2.100)

zj, y
R
h , y

I
h ∈ {0, 1}, ∀h, j ∈ Π. (2.101)

In this chapter a mixed integer programming approach to the phase problem has
been developed. Due to the lack of information about the structure factors’ phases
and the different simplifications made, this approach does not yield an unique
solution, but a set of solutions. In order to increase the quality of those solutions,
in the following chapters programming formulations to model additional properties
of the crystallized proteins are derived.
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Chapter 3

3-D Polyominoes

The purpose of models is not to fit the data,
but to sharpen the questions.

Samuel Karlin

In order to increase the quality of the solutions of the optimization problem for-
mulated in section 2.4, we will add information about the geometric properties of
proteins by adding appropriate constraints. The problem how to describe topo-
logical properties of binary pictures arises also in discrete tomography, so that we
can revert to the methods developed in that context. In this chapter some of these
methods will be described and extended for three-dimensional pictures.

3.1 Two-dimensional reconstruction problem

The two-dimensional reconstruction problem from orthogonal projections can be
described in the following way:

Definition 3.1. (Two-dimensional reconstruction problem)

Given two vectors h = (h1, . . . ,hm) ∈ Nm, m ∈ N and v = (v1, . . . ,vn) ∈ Nn, n ∈
N, find a binary matrix X ∈ {0, 1}m×n, also called binary picture, satisfying

n
∑

j=1

Xi,j = hi, ∀i ∈ {1, . . .m} (3.1)

m
∑

i=1

Xi,j = vj, ∀j ∈ {1, . . . n} (3.2)
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The vectors h and v are called projections of X.

Some basic properties of binary pictures are, for example, convexity and connec-
tivity [Bockmayr and Hooker, 2005].

Definition 3.2. (Horizontally convex)

A binary picture X ∈ {0, 1}m×n is horizontally convex, if and only if for all
i ∈ {1, . . . , m} and for all j1, j2 ∈ {1, . . . , n}:

Xi,j1 = Xi,j2 = 1 ⇒ Xi,j = 1, ∀j ∈ {j1, . . . , j2} : j1 < j2. (3.3)

So, the reconstruction problem is to reconstruct the original binary picture from
the number of ones in every row and every column of the corresponding matrix.

Definition 3.3. (Vertically convex)

A binary picture X ∈ {0, 1}m×n is vertically convex, if and only if for all j ∈
{1, . . . , n} and for all i1, i2 ∈ {1, . . . , m}:

Xi1,j = Xi2,j = 1 ⇒ Xi,j = 1, ∀i ∈ {i1, . . . , i2} : i1 < i2. (3.4)

Definition 3.4. (Convex)

A binary picture is called convex, if and only if it is horizontally and vertically
convex.

For the description of connectivity, we need to define a neighbour relation.

Definition 3.5. (Adjacency relation)

Two positions j = (i, j) and j̃ = (̃i, j̃), j, j̃ ∈ {1, . . . , m}×{1, . . . , n} in the matrix
X ∈ {0, 1}m×n×p are called adjacent or neighbouring, if and only if

‖ j− j̃ ‖2= 1. (3.5)
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Definition 3.6. (Connected / Polyomino)

A binary picture X ∈ {0, 1}m×n is connected, if and only if for all is, it ∈
{1, . . . , m} × {1, . . . , n} with Xis = Xit = 1 there exists a sequence is, i1, . . . , ik, it,
k ∈ N with Xi1 = . . . = Xik = 1, such that every two consecutive points of the
sequence are adjacent.
A connected binary picture is called a polyomino.

The complexity of the reconstruction problem depending on the additional proper-
ties of the picture introduced above has been examined by Woeginger [Woeginger,
2001]. Tabular 3.1 shows the complexity of pattern reconstruction under differ-
ent constraints. These are the polyomino-constraint as well as vertical (v) and
horizontal (h) convexity.

P
P
P
P
P
P
P
P
P

v & h convex v convex h convex no restriction

Polyomino P NP-complete NP-complete NP-complete
No restriction NP-complete NP-complete NP-complete P

Table 3.1: Computational complexity of pattern reconstruction [Woeginger, 2001]

Bockmayr and Hooker in [Bockmayr and Hooker, 2005] introduced linear inequali-
ties for the modeling of convexity and connectivity properties as well as constraint
programming formulations. They suggested the following integer linear program-
ming formulations.
A binary picture X ∈ {0, 1}m×n with projections h ∈ Nm and v ∈ Nn is horizon-
tally convex if and only if

hiXi,k +
n
∑

j=k+hi

Xi,j ≤ hi, ∀i ∈ {1, . . . , m}, ∀k ∈ {1, . . . , n− hi}. (3.6)

This inequalities describe that if there is a 1 in row i, the subsequent hi entries in
the row can be either 0 or 1, but the entries following afterwards all have to be 0.
Vertically convexity can be described similarly. A binary picture X ∈ {0, 1}m×n

with projections h ∈ Nm and v ∈ Nn is vertically convex if and only if

vjXk,j +
m
∑

i=k+vj

Xi,j ≤ vj, ∀j ∈ {1, . . . , n}, k ∈ {1, . . . , m− vj}. (3.7)

For the modeling of connectivity it is assumed, that hi,vj ≥ 1, ∀i ∈ {1, . . . , m},
∀j ∈ {1, . . . , n}. In this chapter only models for connectivity of pictures that are
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convex in at least one direction will be regarded.
The following formulation of connectivity presented in [Bockmayr and Hooker,
2005] requires the picture to be either horizontally or vertically convex. It is based
on the idea, that in the case of horizontal convexity, if there is a convex set of ones
in a row, the set of ones in the subsequent one has to overlap with those. If the
picture is vertically convex, a convex set of ones in a column has to overlap with
the set of ones in the subsequent column.
A horizontally convex binary picture is connected if and only if

k+hi−1
∑

j=k

Xi,j −
k+hi−1
∑

j=k

Xi+1,j ≤ hi − 1,

∀i ∈ {1, . . . , m− 1}, ∀k ∈ {1, . . . , n− hi + 1}. (3.8)

Analogous, a vertically convex binary picture is connected if and only if

k+vj−1
∑

i=k

Xi,j −
k+vj−1
∑

i=k

Xi,j+1 ≤ vj − 1, ∀j ∈ {1, . . . , n− 1}, ∀k ∈ {1, . . . , m−vj +1}.

A different, quite natural approach for the modeling of connectivity of horizontally
convex pictures is the following one. It is based on the idea, that if there is a convex
set of subsequent ones in a row, in the next row, not all ones are allowed to be on
positions not overlapping with them. A horizontally convex picture is connected
if and only if

k+hi−1
∑

j=k

Xi,j +
k−1
∑

j=1

Xi+1,j +
n
∑

j=k+hi

Xi+1,j < hi + hi+1,

∀i ∈ {1, . . . , m− 1}, ∀k ∈ {1, . . . , n− hi + 1}. (3.9)

Equality of the left and right hand side in the inequality above will only be reached
if all entries of row i+1 are placed either left or right of all the entries of row i, which
would contradict the connectivity property. In every other case the connectivity
is fulfilled.
The vertically convex case can be modeled equivalently. A vertically convex picture
is connected if and only if

k+vi−1
∑

i=k

Xi,j +
k−1
∑

i=1

Xi,j+1 +
m
∑

i=k+vi

Xi,j+1 < vi + vi+1,

∀j ∈ {1, . . . , n− 1}, ∀k ∈ {1, . . . , m− vj + 1}. (3.10)
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3.2 Three-dimensional reconstruction problem

Now, the formulations for the two-dimensional reconstruction problem will be
extended for three-dimensional reconstruction problems and supplemented by ad-
ditional constraints.
The three-dimensional reconstruction problem from orthogonal projections is de-
fined analogous to the two-dimensional one:

Definition 3.7. (Three-dimensional reconstruction problem)

Given three matrices h ∈ Nn×p, n, p ∈ N, v ∈ Nm×p, m, p ∈ N and w ∈ Nm×n,
m,n ∈ N find a three-dimensional binary array X ∈ {0, 1}m×n×p, also called
three-dimensional binary picture, satisfying

m
∑

i=1

Xi,j,k = hj,k, ∀j ∈ {1, . . . , n}, ∀k ∈ {1, . . . , p}, (3.11)

n
∑

j=1

Xi,j,k = vi,k, ∀i ∈ {1, . . . , m}, ∀k ∈ {1, . . . , p}, (3.12)

p
∑

k=1

Xi,j,k = wi,j, ∀i ∈ {1, . . . , m}, ∀j ∈ {1, . . . , n}. (3.13)

The matrices h, v and w are called projections of X.

Once again, convexity will be regarded in each of the main directions:

Definition 3.8. (Convexity of three-dimensional binary pictures)

A binary picture X ∈ {0, 1}m×n×p is convex if it is directionally convex in every
direction, i.e., if and only if for all

Xi1,j,k = Xi2,j,k = 1 ⇒ Xi,j,k = 1, ∀i1, i2 ∈ {1, . . . , m} : i1 < i2,

∀i ∈ {i1, . . . , i2}, ∀j ∈ {1, . . . , n}, ∀k ∈ {1, . . . , p} and (3.14)

Xi,j1,k = Xi,j2,k = 1 ⇒ Xi,j,k = 1, ∀j1, j2 ∈ {1, . . . , n} : j1 < j2,

∀j ∈ {j1, . . . , j2}, ∀i ∈ {1, . . . , m}, ∀k ∈ {1, . . . , p} and (3.15)

Xi,j,k1 = Xi,j,k2 = 1 ⇒ Xi,j,k = 1, ∀k1, k2 ∈ {1, . . . , p} : k1 < k2,

∀k ∈ {k1, . . . , k2}, ∀i ∈ {1, . . . , m}, ∀j ∈ {1, . . . , n}. (3.16)

If only one of the properties (3.14), (3.15) or (3.16) holds, the binary picture is
called convex in x−, respectively y− or z− direction.
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An integer linear programming formulation for the convexity constraints can be
formulated analogous to the two-dimensional case:

• in x-direction:

hj,kXl,j,k +

m
∑

i=l+hj,k

Xi,j,k ≤ hj,k, ∀l ∈ {1, . . . , m− hjk},

∀j ∈ {1, . . . , n}, ∀k ∈ {1, . . . , p},
(3.17)

• in y-direction:

vi,kXi,l,k +
n
∑

j=l+vi,k

Xi,j,k ≤ vi,k, ∀l ∈ {1, . . . , n− vik},

∀i ∈ {1, . . . , m}, ∀k ∈ {1, . . . , p},
(3.18)

• in z-direction:

wi,jXi,j,l +

p
∑

k=l+wi,j

Xi,j,k ≤ wi,j, ∀l ∈ {1, . . . , p−wi,j},

∀i ∈ {1, . . . , m}, ∀j ∈ {1, . . . , n}.
(3.19)

Now, the connectivity-relation will also be introduced for three-dimensional binary
pictures. Therefore, a suitable adjacency relation is needed. Each point in the
three-dimensional picture is adjacent to its vertical and horizontal as well as to ist
upper and lower neighbours. A three dimensional picture is called connected, if
and only if the set of ones in the binary picture is connected with respect to the
adjacency relation.

Definition 3.9. (Adjacency relation in 3d binary pictures)

Two positions j and j̃ in Nm×n×p in the three-dimensional array X ∈ {0, 1}m×n×p

are called adjacent or neighbouring if and only if

‖ j− j̃ ‖2= 1. (3.20)

The notation jñj will be used for adjacent points j and j̃ in Nm×n×p.
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Definition 3.10. (Connected 3d binary picture)

A three-dimensional binary picture is connected, if and only if for all is and for
all it, with is, it ∈ {1, . . . , m}× {1, . . . , n}× {1, . . . , p} with Xis = Xit = 1, there
exists a sequence is, i1, . . . , il, it with l ∈ N, such that Xi1 = . . . = Xil = 1 where
every two consecutive elements of the sequence are adjacent.

In order to model connectivity for x−convex pictures, two different approaches
have been made. These approaches can directly be reformulated for y− and
z−convex pictures.
One is an extension of the 2d-model (3.8) and (3.9) of Bockmayr and Hooker,
the other is an extension of the new 2d-model introduced in (3.9) and (3.10). In
contrast to the 2-dimensional approach, in the 3-dimensional one, an additional
direction has to be considered for the modelling of connectivity.
An extension of the 2d-modeling approach in [Bockmayr and Hooker, 2005] leads
to constraints to model connectivity in the three-dimensional case.
A three-dimensional x-convex binary picture X ∈ {0, 1}m×n×p is connected if and
only if for every j ∈ {1, . . . , n− 1} and for every k ∈ {1, . . . , p− 1} with hj,k > 0
and hj+1,k + hj,k+1 > 0 at least one of the following constraints holds:

• for k fixed:

l+hj,k−1
∑

i=l

Xi,j,k−
l+hj,k−1
∑

i=l

Xi,j+1,k ≤ hj,k−1, ∀l ∈ {1, . . . , m−hj,k +1}, (3.21)

• for j fixed:

l+hj,k−1
∑

i=l

Xi,j,k−
l+hj,k−1
∑

i=l

Xi,j,k+1 ≤ hj,k − 1, ∀l ∈ {1, . . . , m−hj,k+1}. (3.22)

As the compliance of one of the above inequalities is sufficient, they can be
combined in the following way: A three-dimensional x-convex binary picture
X ∈ {0, 1}m×n×p is connected if and only if for every j = 1, . . . , n − 1 and
for every k = 1, . . . , p− 1 with hj,k > 0 and hj+1,k + hj,k+1 > 0 at least one of the
following constraints holds:

l+hj,k−1
∑

i=l

Xi,j,k −
l+hj,k−1
∑

i=l

Xi,j+1,k −
l+hj,k−1
∑

i=l

Xi,j,k+1 ≤ hj,k − 1,

∀l ∈ {1, . . . , m− hj,k + 1}. (3.23)
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These constraints can be reformulated analogous regarding the projections vi,k or
wi,j, if the picture is convex in y- or z-direction.

The second approaches to model connectivity (3.9) and (3.10) in the two-dimensio-
nal case can also be extended to the three-dimensional case in order to get a system
of constraints to model connectivity for pictures being convex in x-direction.
A three-dimensional x-convex binary picture X ∈ {0, 1}m×n×p is connected if and
only if for every j ∈ {1, . . . , n− 1} and for every k ∈ {1, . . . , p− 1} with hj,k > 0
and hj+1,k + hj,k+1 > 0 at least one of the following constraints is fulfilled:

l+hj,k−1
∑

i=l

Xi,j,k +

l−1
∑

i=1

Xi,j+1,k +

m
∑

i=l+hj,k

Xi,j+1,k ≤ hj,k + hj+1,k − 1,

∀l ∈ {1, . . . , m− hj,k + 1}, (3.24)

l+hj,k−1
∑

i=l

Xi,j,k +
l−1
∑

i=1

Xi,j,k+1 +
m
∑

i=l+hj,k

Xi,j,k+1 ≤ hj,k + hj,k+1 − 1,

∀l ∈ {1, . . . , m− hj,k + 1}. (3.25)

These two constraints can also be combined into one ensuring, the a three-dimen-
sional x-convex binary picture X ∈ {0, 1}m×n×p is connected. This is fulfilled if
and only if for every j = 1, . . . , n− 1 and for every k = 1, . . . , p− 1 with hj,k > 0
and hj+1,k + hj,k+1 > 0 at least one of the following constraints holds:

l+hj,k−1
∑

i=l

Xi,j,k +
l−1
∑

i=1

Xi,j+1,k +
m
∑

i=l+hj,k

Xi,j+1,k +
l−1
∑

i=1

Xi,j,k+1 +
m
∑

i=l+hj,k

Xi,j,k+1

≤ hj,k + hj+1,k + hj,k+1 − 1,

∀l ∈ {1, . . . , m− hj,k + 1}. (3.26)

In this chapter some geometric constraints used in discrete tomography like convex-
ity and connectivity for two- and three-dimensional pictures have been formulated
as integer linear programs. The connectivity constraints developed here are only
valid for directionally-convex pictures. As proteins in general do not necessarily
satisfy this convexity-constraint, in the next chapter geometric constraints not
needing this additional restriction are introduced. Also, there can be more than
one connected component in a unit cell, so the connectivity constraint will be
extended appropriately.
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Chapter 4

Additional Geometric Constraints

The bigger the real-life problems, the greater
the tendency for the discipline to retreat into
a reassuring fantasy-land of abstract theory
and technical manipulation.

Tom Naylor

In general, the linear program for solving the phase problem, introduced in Chap-
ter 2.1, does not have a unique optimal solution but a set of different optimal
solutions. In order to reduce the number of those and at the same time increase
the quality of the remaining ones, additional constraints can be added. These con-
straints take into account different geometric properties of crystals. In this chapter
two of them will be introduced: one to exclude isolated points in the binary elec-
tron density pattern and a connectivity constraint, ensuring that the number of
connected components in the unit cell does not exceed a given bound.

4.1 Additional constraints

The electron density distribution is binarised as described in the previous chapters,
such that the value of zj should be 1 if the electron density ρ(j) is above a certain

level and 0 otherwise for all grid points j ∈ Π, Π
def
= [0,M1 − 1] × [0,M2 − 1] ×

[0,M3 − 1] ⊆ Z3, M1 ∈ N, M2 ∈ N, M3 ∈ N. So, introducing the cut off-level κ
the binary electron density values zj satisfy

zj =

{

0, ρ(j) ≤ κ

1, ρ(j) > κ

, ∀j ∈ Π. (4.1)
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4.1.1 Exclusion of Isolated Points

In the electron density distribution of a protein no peaks of very high or very low
electron density occur, if an appropriate resolution is used. This means, in the grid
electron density distribution no isolated points of high electron density surrounded
by low electron density values as well as no isolated points of low electron density
surrounded by high electron density values are expected to occur.
Regarding a set of grid points Π

Π
def
= [0,M1−1]×[0,M2−1]×[0,M3−1] ⊆ Z3, M1 ∈ N, M2 ∈ N, M3 ∈ N, (4.2)

inside a unit cell, it can be distinguished between border points and interior points
of the unit cell (here we assume M1, M2, M3 ≥ 3) :

Π0 def
= [1,M1 − 2]× [1,M2 − 2]× [1,M3 − 2] ⊆ Π (4.3)

is the set of interior points,

δΠ
def
= Π \ Π0 ⊆ Z3 (4.4)

is the set of border points. Unit cells are just a part of the whole crystal which
is generated by them. So, the grid inside the unit cell can be extended to a grid
underlying the whole crystal. In this grid, the border points of one unit cell are
also border points of an adjacent one.

Therefore we introduce an extended version of the neighbour relation (3.20):

Definition 4.1. (Neighbour relation)

Two grid points j = (j1, j2, j3) ∈ Π and j̃ = (j̃1, j̃2, j̃3) ∈ Π are neighbours in the
extended sense of the neighbour relation, if and only if:

∥

∥

∥

∥

∥

∥





(j1 + 1 mod M1)− (j̃1 + 1 mod M1)

(j2 + 1 mod M2)− (j̃2 + 1 mod M2)

(j3 + 1 mod M3)− (j̃3 + 1 mod M3)





∥

∥

∥

∥

∥

∥

2

= 1. (4.5)

We will use the notation jnext̃j for two grid points j ∈ Π and j̃ ∈ Π that are
neighbours in the extended sense.

In figure 4.1 the extended neighbour relation in the whole grid an for one unit cell in
two dimensions is illustrated. Neighbours are connected by edges. In the extended
neighbour relation also the border points j = (0, j2, j3) and j̃ = (M1 − 1, j2, j3) are
neighboured for all j2 ∈ {0, . . . ,M2 − 1} and all j3 ∈ {0, . . . ,M3 − 1} as well as
j = (j1, 0, j3) and j̃ = (j1,M2−1, j3) are neighboured for all j1 ∈ {0, . . . ,M1−1} and
all j3 ∈ {0, . . . ,M3 − 1} and j = (j1, j2, 0) and j̃ = (j1, j2,M3 − 1) are neighboured
for all j1 ∈ {0, . . . ,M1 − 1} and all j2 ∈ {0, . . . ,M2 − 1}.
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Figure 4.1: Extended neighbour relation

Definition 4.2. (Isolated point)

A binary grid point zj ∈ Π is called isolated point, if and only if

zj = 0 ⇒ zi = 1, ∀ inextj, (4.6)

zj = 1 ⇒ zi = 0, ∀ inextj. (4.7)

Using appropriate resolutions it can be assumed, there are no peaks in the electron
density distribution. This means for the binary case, there are no isolated points
zj, j ∈ Π of value 1 or 0.

Every interior grid point has 6 neighbours and every grid point has 6 neighbours
in the extended sense. A grid point j with value zj is isolated if and only if all
neighbours of j take a different value. In consequence, there are no isolated points
if for zj = 1, it is assured that

∑

j̃nextj

z̃j ≥ 1 and if zj = 0, then
∑

j̃nextj

z̃j ≤ 5.

This leads to the following condition for the exclusion of isolated points. Due to
the use of the extended neighbour relation, the condition also excludes isolated
border points.

−5 ≤ zj −
∑

j̃nextj

z̃j ≤ 0, ∀j ∈ Π. (4.8)

4.1.2 Minimum covering

Another possibility to exclude unwanted solutions is to specify a minimum cover-
ing, i.e., a minimum percentage of points of value 1 in the resulting binary picture.
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Figure 4.2: Unit cell of Protein G

Given a percentage p specifying the minimum number of grid points with a binary
electron density of value 1 in the grid, this constraint can be formulated as follows:

p

100
·M1M2M3 ≤

∑

j∈Π
zj, ∀j ∈ Π. (4.9)

4.2 Connectivity

4.2.1 Introduction

At low resolution and a high enough high cut-off level κ, the high-level region Ωκ

def
=

{j : ρ(j) > κ} is expected to consist of a small number of connected components,
which should be equal to the number of molecules inside the unit cell. At lower
cut-off level these components merge into fewer regions. In some cases the number
of components could be smaller than the number of molecules in the unit cell. This
happens if neighbouring molecules are close to each other [Lunin et al., 2002a]. So,
it is possible to estimate an upper bound for the number of molecules in advance.
This property can be used to choose appropriate solutions among the possible
solutions and thus increase the quality of the set of solutions. At low resolution
this connectivity approach is one of the most efficient methods [Lunin et al., 2000;
Lunina et al., 2003; Müller et al., 2006].
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4.2.2 Constraint programming

For modeling the connectivity property, constraint programming methods are used.
A general constraint programming problem consists of given variables, constraints
and, in case an optimization and not only a satisfiability problem is regarded, an
objective function. A feasible solution is an assignment of values to the variables
satisfying all the given constraints. An optimal solution is a feasible solution of
a constraint programming problem for which the objective function takes a maxi-
mum respectively minimum value.
Constraint Programming in general can handle arbitrary constraints. One can dis-
tinguish between arithmetic constraints, like linear and also non-linear constraints,
and symbolic constraints. A symbolic constraint can be every subset of the set of
all assignments of values to variables. One symbolic constraint can also include
large families of linear constraints. Such symbolic constraints can not only simplify
the declaration of constraints, but also improve the efficiency of the solving pro-
cess, [Apt, 2003; Bockmayr and Hooker, 2005]. Figure 4.3 shows the dependencies
of different types of arithmetic constraint problems.

The special types of Constraint Programming Problems shown here, each leading
to special solution strategies, are

• Finite Domain Programming (FD)
In Finite Domain Programming, the possible values the given variables can
take are restricted to a finite set.

• Linear Programming (LP)
In linear programming, all constraints are linear inequalities and the ob-
jective function is also linear, i.e., a linear program can be written in the
form

max{cTx | Ax ≤ b} with A ∈ Rm×n, b ∈ Rm, c ∈ Rn. (4.10)

• Integer Programming (IP)
In integer programming, linear programs are regarded with the additional
restriction that all variables have to be integral:

max{cTx | Ax ≤ b} with A ∈ Rm×n, b ∈ Rm, c ∈ Rn, x ∈ Zn. (4.11)

• Mixed Integer Programming (MIP)
In mixed integer programming only some of the variables are restricted to
be integral.

• Binary Integer Programming (BIP)
In binary integer programming (BIP) the variables can only take the values
0 or 1.
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CP

CIP

MIP

LP

IP

BIP

Figure 4.3: CP: Constraint Programming, CIP: Constraint Integer Programming,
LP: Linear Programming, MIP: Mixed Integer Programming, IP: Integer Program-
ming, BIP: Binary Integer Programming

4.2.3 Graph-theoretical approach

In this section, integer linear programming formulations to restrict the number of
connected components in a unit cell based on graph theory will be deduced. A
binary grid electron density distribution satisfies the ’K-component-constraint’ if
and only if it contains at most K ∈ N components. 0-1-integer linear programming
formulations for this problem are deduced and different results concerning these
different models and the polytopes described by the appropriate inequalities are
presented.
First, the necessary graph-theoretical terms will be defined [Grötschel et al., 1988;
Korte and Vygen, 2000]. We will only regard undirected graphs, thus an edge
(v1, v2) for two distinct vertices v1 and v2 is equal to the edge (v2, v1).
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Definition 4.3. (Induced subgraph)

A subgraph G∗ = (V ∗, E∗) of the graph G = (V,E) is called induced by the vertices
V ⊆ V , if

V ∗ = V and E∗ = {(v1, v2) ∈ E|v1, v2 ∈ V }. (4.12)

The subgraph G∗ of G = (V,E), induced by the vertices V ⊆ V will be denoted by
G[V ∗], the set of edges E∗ in the induced subgraph will be denoted by E(G[V ∗]).

Definition 4.4. (Walk, Path, Cycle)

Let G = (V,E) be a graph.
A sequence v1, e1, v2, e2, . . . , vk, ek, vk+1, such that k ≥ 0, vi ∈ V, ∀i ∈ {1, . . . , k}
and ei = (vi, vi+1) ∈ E, ∀i ∈ {1, . . . , k} where all edges are distinct, i.e., ei 6=
ej , ∀i, j ∈ {1, . . . , k}, is called a walk in G.
If additionally all vertices are distinct, i.e., vi 6= vj , ∀i, j ∈ {1, . . . , k + 1}, the
sequence is called a path.
A walk with identical endpoints v1, e1, v2, e2, . . . , vk, ek, v1 with vi 6= vj , ∀i, j ∈
{1, . . . , k} is called cycle or subtour.

Definition 4.5. (Cut, cutset)

Let V ∗ ⊆ V be a subset of the vertices of a graph G = (V,E). Then δ(V ∗) is
defined as

δ(V ∗)
def
= {e = (v1, v2) ∈ E|v1 ∈ V ∗, v2 ∈ V \ V ∗)} . (4.13)

A subset E∗ ⊆ E of the edges of G is called a cut or cutset, if E∗ = δ(X) for
some X ⊆ V .
A minimum cut δmin(G) in an unweighted graph G = (V,E) is a cut δ(V ∗),
V ∗ ⊆ V , such that the number of edges in the cut |δ(V ∗)| is minimal amongst
all cuts in G.

Obviously, δ(V ∗) = δ(V \ V ∗).

Definition 4.6. (Connectivity)

A graph G = (V,E) is connected, if and only if there is a v1 − v2–path for all
v1, v2 ∈ V , otherwise G is disconnected.
The maximal connected subgraphs of G are its (connected) components.
A subset of the vertices in a graph will be called connected, if and only if the
subgraph induced by them is connected.
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A graph G consists of exactly K components Gi, i ∈ {1, . . . , K}, if G =
⋃· K

i=1Gi,
i.e., G is the disjoint union of the subgraphs Gi of G, and each subgraph is con-
nected.

Notation 4.7.

Let be V ∗ ⊆ V , then G[V ∗] is the subgraph of G that is induced by the set of
vertices V ∗. E(G[V ∗]) is the set of edges in G[V ∗]. The vector yE

∗ ∈ {0, 1}|E| is
the incidence vector of the set E∗ ⊆ E(G[V ∗]).

yE
∗

e =

{

1, for e ∈ E∗

0, for e /∈ E∗.
(4.14)

(0, 0, 0) (M1 − 1, 0, 0)

(0, M2 − 1, 0) (M1 − 1, M2 − 1, 0)

(M1 − 1, M2 − 1, M3 − 1)
(0, M2 − 1, M3 − 1)

(M1 − 1, 0, M3 − 1)(0, 0, M3 − 1)

Figure 4.4: The graph GΠ = (VΠ, EΠ)

In the crystallographic context, a graph representing properties of the binary grid
electron density maps has to be defined.
Let GΠ = (VΠ, EΠ) be an undirected graph withM =M1 ·M2 ·M3 vertices denoted
by vj, j ∈ Π. Vertices vj ∈ VΠ and ṽj ∈ VΠ with j and j̃ being neighbours are
connected by edges, i.e.,

EΠ =
{

e = (vj, ṽj) | jñj
}

. (4.15)

Let V ∗
Π ⊆ VΠ be the set of vertices with a corresponding electron density above

the cut-off level, i.e., the set of vertices satisfying

V ∗
Π = {vj | zj = 1, j ∈ Π}. (4.16)

We will use the formulation, the three-dimensional binary picture representing the
binary grid electron density distribution contains of K ∈ N components, if and
only if the corresponding graph G∗

Π = (V ∗
Π , E

∗
Π) contains K components.

Figure 4.5 shows the graph representing the binary grid electron density distribu-
tion. Black filled vertices represent grid electron density values above the cut-off
level, neighboured black vertices are connected by solid edges.
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(0, 0, 0) (M1 − 1, 0, 0)

(0, M2 − 1, 0)
(M1 − 1, M2 − 1, 0)

(M1 − 1, M2 − 1, M3 − 1)
(0, M2 − 1, M3 − 1)

(M1 − 1, 0, M3 − 1)(0, 0, M3 − 1)

Figure 4.5: The graph G∗
Π = (V ∗

Π , E
∗
Π)

4.2.4 Linear programming

In this section, some basics about linear programming will be presented, which
will be needed in the following sections [Korte and Vygen, 2000; Schrijver, 2003].
We start with the definition of a linear programming problem.

Definition 4.8. (Linear programming)

Given a matrix A ∈ Rm×n and vectors b ∈ Rm, c ∈ Rn, find a vector x ∈ Rn

• such that Ax ≤ b and cTx is maximum,

• decide that {x ∈ Rn : Ax ≤ b} is empty,

• or decide that for all α ∈ R there is an x ∈ Rn with Ax ≤ b and cTx > α.

Definition 4.9. (Polyhedra, polytopes)

A subset P ⊆ Rn, n ∈ N is called a polyhedron if there exists a matrix A ∈
Rm×n, m ∈ Z≥0 and a vector b ∈ Rm such that

P = {x | Ax ≤ b}. (4.17)

So, P is a polyhedron if and only if it is the intersection of finitely many affine
halfspaces.
P is a polytope if and only if P is a bounded polyhedron.
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Definition 4.10. (Halfspace)

A subset H of Rn is called an affine halfspace if H = {x | cTx ≤ δ}, for some
c ∈ Rn with c 6= 0 and some δ ∈ R.

Definition 4.11. (Hyperplanes, face, vertex)

A hyperplane in Rn is a set H with H = {x ∈ Rn | cTx = δ} for some c ∈ Rn

with c 6= 0 and some δ ∈ R.
Let P = {x | Ax ≤ b} be a polyhedron in Rn. If c is a non-zero vector and
δ = max{cTx | Ax ≤ b}, the hyperplane {x | cTx = δ} is called supporting
hyperplane of P .
A subset F of P is called a face if F = P or if F = P ∩H for some supporting
hyperplane H of P .
For z ∈ P , let Azx ≤ bz be the system consisting of those inequalities from Ax ≤
b that are satisfied by z with equality. Then z is a vertex of P if and only if
rank(Az) = n.

Definition 4.12. (Integral polyhedra and polytopes)

A polyhedron P is called integral polyhedron if each vertex of P is integer.
A polytope P is called integral polytope if each vertex of P is integer.

4.2.5 Spanning tree polytopes

As mentioned above, it is possible to estimate an upper bound for the number of
molecules in a unit cell. Thus, it seems to be useful to derive conditions implying
that there are at most K ∈ N components in the graph representing the molecules
in the unit cell. Starting with the presentation of some results concerning the
well-known travelling salesman problem, see e.g. [Magnanti and Wolsey, 1995;
Nemhauser and Wolsey, 1988] and spanning tree polytopes [Bertsimas and Tsit-
siklis, 1997; Korte and Vygen, 2000], such conditions are deduced in the following.
Some new results concerning the description of this component number restriction
by inequalities and the properties of the resulting polyhedra will be presented.

We start with the basic definitions of forests, trees and spanning trees [Bertsimas
and Tsitsiklis, 1997; Korte and Vygen, 2000].
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Definition 4.13. (Forest, tree, spanning tree)

A forest is a graph, which does not contain a cycle. A connected forest is called a
tree. A spanning tree of a graph is a tree containing all nodes of the graph.

Theorem 4.14. (Spanning tree)

The following statements are equivalent for a graph G = (V,E):

• GT = (V,ET ) is a spanning tree of the graph G

• GT = (V,ET ) is a subgraph of G containing |V | − 1 edges and no cycles.

• GT = (V,ET ) is a connected subgraph of G containing |V | − 1 edges.

Theorem 4.15. Subtour elimination formulation for spanning trees,

Spanning tree polytope

The vector y ∈ {0, 1}|E| is the incidence vector of the edges of a spanning tree
GT = (V,ET ) of the graph G = (V,E), if and only if the following conditions hold:

∑

e∈ET

ye = |V | − 1, (4.18)

∑

e∈ET (G[X])

ye ≤ |X| − 1, ∀ X : ∅ 6= X ⊂ V. (4.19)

Given a connected undirected graph G = (V,E), the polytope

Pspan
def
= { y ∈ [0, 1]|E| ⊆ R|E| :

∑

e∈E
ye = |V | − 1,

∑

e∈E(G[X])

ye ≤ |X| − 1,

∀ X : ∅ 6= X ⊂ V } (4.20)

is the spanning tree polytope as its vertices are exactly the incidence vectors of
spanning trees of G. The spanning tree polytope is integral.

The conditions (4.19) are called subtour elimination constraints as they assure the
absence of subtours. Every graph satisfying these conditions therefore particularly
is a forest.
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Theorem 4.16. (Forest polytope), [Korte and Vygen, 2000]

The convex hull of the incidence vectors of all forests in an undirected graph
G = (V,E), i.e., the set of convex combinations of these incidence vectors, is
the polytope

Pforest
def
= { y ∈ [0, 1]|E| ⊆ R|E| :

∑

e∈E(G[X])

ye ≤ |X| − 1,

∀ X : ∅ 6= X ⊆ V } . (4.21)

With the help of cuts, a different description of spanning trees can be formulated.
Calculating one minimal cut will then directly show if a given vector is an inci-
dence vector of a spanning tree of G.

Proposition 4.17. (Connectivity), [Korte and Vygen, 2000]

A graph G = (V,E) is connected, if and only if δ(X) 6= ∅, ∀∅ 6= X ⊂ V .

The description of spanning trees using cutsets is equivalent to the characteriza-
tions given in Theorem 4.14. It is based on the formulation that a spanning tree is
a connected subgraph of an undirected graph G = (V,E) containing |V |−1 edges.

Theorem 4.18. Cutset formulation for spanning trees

[Bertsimas and Tsitsiklis, 1997]

The vector y ∈ {0, 1}|E| is the incidence vector of the edges of a spanning tree
GT = (V,ET ) of the graph G = (V,E), if and only if the following conditions hold:

∑

e∈E
ye = |V | − 1, (4.22)

∑

e∈δ(X)

ye ≥ 1, ∀ X : ∅ 6= X ⊂ V. (4.23)
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Theorem 4.19. (Cutset polytope), [Korte and Vygen, 2000]

The polytope Pcut defined by

Pcut
def
= { y ∈ [0, 1]|E| ⊆ R|E| :

∑

e∈E
ye = |V | − 1,

∑

e∈δ(X)

ye ≥ 1,

∀ X : ∅ 6= X ⊆ V } . (4.24)

is the cutset polytope.
Then, Pcut ⊇ Pspan. In general, the vertices of Pcut are fractional.

Both formulations, the subtour elimination (4.18) and (4.19) as well as the cutset
formulation (4.22) and (4.23) for spanning trees have a number of constraints which
is exponential in the number of nodes.
Theorem 4.19 conveys, that in general, the subtour elimination formulation is
stronger than the cutset formulation, since the feasible region of the LP-relaxation
of the cutset formulation includes the feasible region of the LP-relaxation of the
subtour elimination formulation.
Now, we will use minimal cuts to derive a different description of spanning trees.

Theorem 4.20. [Bertsimas and Tsitsiklis, 1997]

The vector y ∈ {0, 1}|E| is the incidence vector of the edges of a spanning tree
GT = (V,ET ) of the graph G = (V,E), if and only if the following conditions hold:

∑

e∈E
ye = |V | − 1, (4.25)

∑

e∈δ(X0)

ye ≥ 1, (4.26)

with some X0, ∅ ⊂ X0 ⊂ E, such that
∑

e∈δ(X0)

ye
def
= min

∅6=X⊂V

∑

e∈δ(X)

ye.

Then δ(X0) is a minimum cut in G.

The definition of cuts will now be generalised by the introduction of K-cuts re-
spectively multicuts [Magnanti and Wolsey, 1995]. Based on those, first a polytope
equal to Pspan and later on a description of a polytope describing forests containing
at most K trees can be derived.
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Definition 4.21. (K-cut, multicut)

Given a partition of the nodes V of an undirected graph G = (V,E) into K ∈
{2, . . . , |V |} disjoint sets Vi, i ∈ {1, . . . , K} with

K
⋃

i=1

Vi = V , the K-cut (respec-

tively multicut) δ(V1, . . . , VK) is the set of all edges connecting two different sets
Vi, Vj with i 6= j ∈ {1, . . . , K}.

Definition 4.22. (Minimum K-cut)

A minimum K-cut δmin(G) in an unweighted graph G = (V,E) is a K-cut

δ(V1, V2, . . . VK), V1, V2, . . . VK ⊂ V, (4.27)

such that the number of edges in the cut |δ(V1, V2, . . . VK)| is minimal amongst all
K-cuts in G.
If the edges of the graph G are weighted with weights we ∈ R∀e ∈ E(G), a minimum
K-cut δmin(G) is a K-cut δ(V1, V2, . . . VK), V1, V2, . . . VK ⊂ V , such that the sum of
the weights of the edges in the cut

∑

e∈|δ(V1,V2,...VK)|
we is minimal amongst all K-cuts

in G.

Let GΠ = (VΠ, EΠ) be an undirected graph with M = M1 · M2 · M3 vertices.
In Figure 4.6, this graph is shown. The black vertices represent points with an
electron density above a certain threshold. The set of black vertices V ∗

Π ⊆ V
induces a subgraph G∗

Π = (V ∗
Π , E

∗
Π). In this induced subgraph a 3-cut is shown,

the cut is empty and therefore also a minimum 3-cut.

(0, 0, 0) (M1 − 1, 0, 0)

(0, M2 − 1, 0)
(M1 − 1, M2 − 1, 0)

(M1 − 1, M2 − 1, M3 − 1)
(0, M2 − 1, M3 − 1)

(M1 − 1, 0, M3 − 1)(0, 0, M3 − 1)

Figure 4.6: A minimum 3-cut

Using K-cuts, another description of the spanning tree polytope can be given.
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Definition 4.23. (Multicut polytope)

The multicut polytope PK
mcut of an undirected graph G = (V,E) for a given K ∈

{1, . . . , |V |} is defined by

PK
mcut

def
= { y ∈ [0, 1]|E| ⊆ R|E| :

∑

e∈E
ye = |V | − 1,

∑

e∈δ(V1,...,VK)

ye ≥ K − 1,

∀ ∅ 6= V1, . . . , VK ⊂ V } . (4.28)

4.2.6 Connected components in a graph

Therefore, we regard the problem to partition the node set of a given graph into
at most K ∈ N subsets, such that the number of edges with end points in two
different elements of partitions is minimized.

Based on the presented fundamentals about spanning trees, some new results about
spanning forests consisting of K ∈ N trees will be proved.

Theorem 4.24. (Subtour elimination formulation)

An undirected graph G = (V,E) consists of at most K ∈ N components, if and
only if there exists y∗ ∈ {0, 1}|E|:

∑

e∈E
y∗e ≥ |V | −K, (4.29)

∑

e∈E(G[X])

y∗e ≤ |X| − 1, ∀ X : ∅ 6= X ⊆ V. (4.30)

Corollary 4.25.

The graph G = (V,E) consists of exactly K ∈ N components, if and only if
there exists y∗ ∈ {0, 1}|E| for which the inequalities (4.30) are valid and the first
inequality (4.29) holds with equality, i.e.

∑

e∈E
y∗e = |V | −K, (4.31)

∑

e∈E(G[X])

y∗e ≤ |X| − 1, ∀ X : ∅ 6= X ⊂ V. (4.32)

Every y∗ ∈ {0, 1}|E| satisfying these constraints is the incidence vector of a span-
ning forest of G.
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(0, 0, 0) (M1 − 1, 0, 0)

(0, M2 − 1, 0)
(M1 − 1, M2 − 1, 0)

(M1 − 1, M2 − 1, M3 − 1)
(0, M2 − 1, M3 − 1)

(M1 − 1, 0, M3 − 1)(0, 0, M3 − 1)

(0, 0, 0) (M1 − 1, 0, 0)

(0, M2 − 1, 0)
(M1 − 1, M2 − 1, 0)

(M1 − 1, M2 − 1, M3 − 1)
(0, M2 − 1, M3 − 1)

(M1 − 1, 0, M3 − 1)(0, 0, M3 − 1)

Figure 4.7: a) The graph b) A spanning forest

Figure 4.7 shows a graph with three connected components and a spanning forest
in this graph.
The number of the subtour elimination constraints (4.30), i.e.

∑

e∈E(G[X])

ye ≤ |X| − 1, ∀ X : ∅ 6= X ⊆ V (4.33)

grows exponentially in the number of nodes |V | in the underlying graph G.

Proof: (of Theorem 4.24 and Corollary 4.25)
For every undirected graph G = (V,E) consisting of exactly K̃ components a
spanning forest GF = (VF , EF ), VF ⊆ V , EF ⊆ E with K̃ spanning trees TI =

(VI , EI), I ∈ {1, . . . , K̃}, VI ⊆ VF ,
K̃
⋃

I=1

TI = GF can be found and for y∗ being the

incidence vector of this spanning forest we get

∑

e∈E
y∗e =

K̃
∑

I=1

∑

e∈EI

y∗e =
K̃
∑

I=1

(|VI | − 1) = |V | − K̃. (4.34)

So, (4.31) is only fulfilled for K = K̃, (4.29) is fulfilled for K̃ ≤ K.

Let K̃ be the exact number of components in the graph G. Let CI = (VI , EI),
I ∈ {1, . . . K̃} be the components of G.
An arbitrary y∗ satisfying (4.29) and (4.30) respectively (4.32) fulfills

|V | −K ≤
∑

e∈E
y∗e =

K̃
∑

I=1

∑

e∈CI

y∗e ≤
K̃
∑

I=1

(|VI | − 1) = |V | − K̃ (4.35)
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For K = K̃,
∑

e∈E
y∗e =

K̃
∑

I=1

(|VI | − 1) directly follows, thus y∗e is the incidence vector

of a forest. As |V | −K ≤ |V | − K̃, the exact number of components in the graph
G is less or equal to K.

Definition 4.26.

P≤K
sub

def
= {y ∈ [0, 1]|E| ⊆ R|E| | ∑

e∈E
ye ≥ |V | −K,

∑

e∈E(G[X])

ye ≤ |X| − 1,

∀ X : ∅ 6= X ⊆ V } (4.36)

is the polytope corresponding to the subtour elimination formulation for a graph
with at most K components.

P=K
sub

def
= {y ∈ [0, 1]|E| ⊆ R|E| | ∑

e∈E
ye = |V | −K,

∑

e∈E(G[X])

ye ≤ |X| − 1,

∀ X : ∅ 6= X ⊂ V }. (4.37)

is the polytope corresponding to the subtour elimination formulation for a graph
with exactly K components.

Theorem 4.27.

The polytope P=K
sub is integral. Its vertices are exactly the incidence vectors of

forests with exactly K trees in the underlying graph G.

For the proof of Theorem 4.27, the following results will be used.

Theorem 4.28. [Schrijver, 2003]

Let P be a rational polyhedron in Qn. Then P is integral if and only if for each
c ∈ Rn, the linear programming problem max{cTx | Ax ≤ b}, A ∈ Rm×n, b ∈ Rm

has an integer optimum solution if it is finite.
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Lemma 4.29. (Complementary slackness), [Korte and Vygen, 2000]

Let min{cTy | Ay ≤ b, y ≥ 0} be a primal linear program and max{zT b | zTA ≥
c, z ≥ 0} its dual. For feasible solutions y and z the following statements are
equivalent:

• y and z are both optimal solutions of the primal respectively the dual linear
program,

• yT (c− zTA) = 0 and zT (b− Ay) = 0.

In the proof of Theorem 4.27 the basic ideas of the proof of Theorem 4.15 presented
in [Korte and Vygen, 2000] will be used.

Proof: (of Theorem 4.27)

The proof will be presented in three steps. First it is shown, that every incidence
vector of a forest with exactly K trees in the graph G is a vertex of P=K

sub . Then,
every integral vertex of P=K

sub is proven to be the incidence vector of a forest with
exactly K trees. Finally, the integrality of the vertices of P=K

sub is shown.

1. Let F = (V,EF ) be a forest in G = (V,E) consisting of exactly K trees and
yF the incidence vector of its edge set EF . Let Ti, i ∈ {1, . . . , K} be the

trees in F , Ti = (Vi, Ei) ⊆ F , i ∈ {1, . . . , K},
K
⋃

i=1

Ti = F . Thus,

∑

e∈EF

ye =

K
∑

i=1

∑

e∈Ei

ye =

K
∑

i=1

(|Vi| − 1) = |V | −K, (4.38)

i.e., equation (4.31) is fulfilled.
F is a forest, so it does not contain any circles and the subtour inequalities
(4.32) hold and therefore yF ∈ P=K

sub .
As yF ∈ {0, 1}|E|, it is a vertex of P=K

sub .

2. Let y ∈ {0, 1}|E| be an integral vertex of P=K
sub . Then, y ∈ {0, 1}|E| is the

incidence vector of an edge set of a subgraph of G containing exactly |V |−K
edges and no circuit. Thus, y is the incidence vector of a forest with exactly
K trees.

3. Let w : E → R be an arbitrary edge-weight function on G. Applying
Kruskal’s algorithm [Kruskal, 1956] on the weighted graph G provides an
edge-weight-minimum spanning forest F = (V,EF ) ⊆ G containing as many
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trees as G has components. K ∈ N is the number of components of G.
Let EF = {f1, . . . , f|V |−K} be the edges chosen by Kruskal’s algorithm, i.e.,
w(f1) ≤ w(f2) ≤ . . . ≤ w(f|V |−K).
Let Xk be the connected component of (V, {f1, . . . , f|V |−K}) containing fk,
k ∈ {1, . . . , |V |−K}. As fk is the edge chosen in the k− th step of Kruskal’s
algorithm, the edges in Xk are the edges in G already chosen by the algo-
rithm and connected with fk by already chosen edges.
Let y∗ ∈ {0, 1}|E| be the incidence vector of EF . Consider the linear program

min
∑

e∈E
w(e)ye (4.39)

s.t.
∑

e∈E
ye = |V | −K, (4.40)

∑

e∈E(G[X])

ye ≤ |X| − 1, ∀X : ∅ 6= X ⊂ V, (4.41)

ye ≥ 0. (4.42)

Using Lemma 4.29 it will be shown that y∗ is an optimal solution to this LP
and with Theorem 4.28 the integrality of P=K

sub can be concluded.
For an edge e ∈ E, connecting the vertices v1 and v2, v1, v2 ∈ V the notation
e ⊆ V ∗, V ∗ ⊆ V will be used if and only if v1, v2 ∈ V ∗.
Now, by introducing dual variables zX for each X : ∅ 6= X ⊂ V and zK
for the component constraint

∑

e∈E
ye ≥ |V | − K, the dual problem can be

formulated:

max (|V | −K)zK −
∑

X:∅6=X⊂V

(|X| − 1)zX (4.43)

s.t. zK −
∑

X:e⊆X⊂V

zX ≤ w(e), ∀ e ∈ E (4.44)

zX ≥ 0. (4.45)

For k = 1, . . . , |V | −K − 1, define z∗Xk

def
= w(fl) − w(fk), where l is the first

index greater than k for which fl ∩ Xk 6= ∅. If no such index exists, set

z∗Xk

def
= −w(fk) + |w(f|V |−K)|. Note that by this choice z∗Xk

≥ 0 is satisfied

for every k. Furthermore define z∗K
def
= −|w(f|V |−K)| and

z∗X
def
=
{ z∗Xk

, if X = Xk, Xk ∈ {X1, . . . , X|V |−K},
0, if X ⊂ V, X /∈ {X1, . . . , X|V |−K}. (4.46)

The variable zK can take negative values as it is not restricted in the dual
problem.

67



Additional Geometric Constraints

Then, the equalities

z∗K −
∑

X:e⊆X⊂V

z∗X = w(fi), ∀ e ∈ E, (4.47)

hold, where i is the smallest index satisfying e ∈ Xi. Moreover, w(fi) ≤ w(e),
as otherwise in Kruskal’s algorithm e had been chosen instead of fi. So,
z∗ = (z∗K , z

∗
X1
, . . . , z∗X

2|V |
) is a feasible solution of the dual problem.

For every y∗e > 0, i.e., for every e belonging to the spanning forest created
by Kruskal’s algorithm the equality

z∗K −
∑

X:e⊆X⊂V

z∗X = w(e), ∀ e ∈ E, (4.48)

is fulfilled and thus

y∗e

(

w(e)−
(

z∗K −
∑

X:e⊆X⊂V

z∗X

))

= 0, ∀ e ∈ E. (4.49)

The variables z∗X take values greater than zero only if F [X ], i.e., the subgraph
of F induced by X , is connected. Then, for X the corresponding subtour
constraint is fulfilled with equality.
This implies, that

z∗X



(|X| − 1)−
∑

e∈E(G[X])

y∗e



 = 0, ∀X : ∅ 6= X ⊂ V. (4.50)

As

z∗K

(

(|V | −K)−
∑

e∈E
y∗e

)

= 0 (4.51)

for arbitrary z∗K , Lemma 4.29 can be applied, thus y∗ is an optimal solution
for the primal and z∗ for the dual linear program. With Theorem 4.28 the
integrality of P=K

sub can be concluded.

Theorem 4.30. (P≤K
sub is integral)

The polytope P≤K
sub is integral. Its vertices are exactly the incidence vectors of

forests with at most K trees in the underlying graph G.
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Proof: The forest polytope (4.21) is integral [Schrijver, 2003]. The polytope
P≤K
sub is an intersection of the halfspace defined by

H =

{

y ∈ R|E| |
∑

e∈E
ye ≥ |V | −K

}

(4.52)

and the forest polytope.
In the two special cases that this intersection is empty or consists of the whole
polytope Pforest, the polytope P≤K

sub is empty or is obviously integral as Pforest is
integral.
In the general case, where Pforest ∩H is a proper subset of Pforest, the hyperplane
defined by

HK =

{

y ∈ R|E| |
∑

e∈E
ye = |V | −K

}

(4.53)

is a supporting hyperplane of P≤K
sub .

Like illustrated in Figure 4.8, the vertices of P≤K
sub are the vertices of Pforest con-

tained in H united with the vertices of the face of P≤K
sub , that is defined by

F
def
=
{

y∗ ∈ [0, 1]|E| ⊆ R|E| | ∑

e∈E
y∗e = |V | −K,

∑

e∈E(G[X])

y∗e ≤ |X| − 1,

∀ X : ∅ 6= X ⊂ V } . (4.54)

P

(a) Polytope

H

P

P ∩ H

(b) Polytope ∩ Halfspace

Figure 4.8: Vertices of a) polytope, b) polytope ∩ halfspace

This face is exactly the polytope P=K
sub , of which is known, that it is integral 4.27.

So, the vertices of P≤K
sub are the union of a subset of the vertices of the two integral
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polytopes Pforest and P
=K
sub and therefore integral.

These integral vertices fulfil the subtour inequalities (4.30) as well as the inequality
(4.29), assuring that the induced subgraph consists of at most K trees. Thus, the
vertices are the incidence vectors of forests with at most K trees in the underlying
graph G.
Since all such incidence vectors of forests with at most K trees in G fulfil (4.29)
and (4.30) they are all contained in P≤K

sub and as y ∈ {0, 1}|E|, they are vertices of
P≤K
sub .

4.2.7 Cutset formulation

Now another description of a graph with at most K components will be derived,
which will help to find an integer linear programming formulation for restricting
the number of components in a graph and to design a separation algorithm (see
section 4.2.9).

Theorem 4.31. (Cutset formulation)

An undirected graph G = (V,E) consists of at most K ∈ N components, if and
only if every (K + 1)-cut is not empty.

Proof: The spanning forest of G consists of as many trees as G has components.
” ⇒ ”:
If G consists of exactly K̃ ≤ K components, the spanning forest consists of K̃
trees, thus every (K̃ +1)-cut contains at least one edge of the spanning forest. As
K̃ ≤ K, every (K + 1)-cut also contains at least one edge of the spanning forest.
” ⇐ ”:
If every (K + 1)-cut is not empty, the graph can not be partitioned into (K + 1)
or more unconnected components.

Definition 4.32.

The polytope corresponding to the cutset formulation of a graph with at most K
components is defined by

P≤K
cut

def
= { y ∈ [0, 1]|E| ⊆ R|E| |

∑

e∈δ(V1,V2,...,VK+1)

ye ≥ 1,

∀ ∅ 6= V1, V2, . . . , VK+1 ⊂ V } . (4.55)
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Corollary 4.33.

The graph G = (V,E) consists of at most K components, if and only if the number
of edges in a minimum (K + 1)-cut δ(G) is greater than zero, i.e.

|δ(G)| > 0 (4.56)

for a minimum (K + 1)-cut δ(G).

Proof: |δ(G)| > 0 for a minimum (K + 1)-cut δ(G) holds if and only if there is
at least one edge in every (K + 1)-cut. (A cut δ(G) containing no edge satisfies
|δ(G)| = 0.)
Then, Theorem 4.31 can be applied.

Theorem 4.34.

An undirected graph G = (V,E) consists of exactly K ∈ N components, if and only
if there exists y∗ ∈ {0, 1}E:

∑

e∈E
y∗e = |V | −K, (4.57)

∑

e∈δ(V1,V2,...,VK+1)

y∗e ≥ 1, ∀ ∅ 6= V1, V2, . . . , VK+1 ⊂ V. (4.58)

Proof: From Theorem 4.31 it is known that the second condition is equivalent
to G consisting of at most K components.
” ⇒ ”:
Assume, that G consists of exactly K components, then the incidence vector of
every spanning forest of G fulfils (4.57) (see proof of Theorem 4.24) and obviously
also (4.58).
” ⇐ ”:
Equation (4.57) ensures, that G does not consist of less than K components.

Definition 4.35.

The polyhedral description of the polytope corresponding to the cutset formulation
of a graph with exactly K components is

P=K
cut =

{

y ∈ [0, 1]|E| ⊆ R|E| |
∑

e∈E
ye = |V | −K,

∑

e∈δ(V1,V2,...,VK+1)

ye ≥ 1,

∀ ∅ 6= V1, V2, . . . , VK+1 ⊂ V } . (4.59)
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Corollary 4.36.

The graph G = (V,E) consists of exactly K components, if and only if there
exists y∗ ∈ {0, 1}E, being the incidence vector of the edges E∗ of a subgraph G∗ =
(V,E∗) ⊆ (V,E) of G, E∗ = {e ∈ E | y∗e = 1} and satisfying

∑

e∈E
y∗e = |V | −K, (4.60)

∑

e∈δ(G∗)

y∗e ≥ 1, for a minimum (K + 1)-cut δ(G∗). (4.61)

Proof: Condition (4.61) assures, that there is no empty (K + 1)-cut with and
Theorem 4.34 can be applied.

With the observations made above, the following theorem can be derived:

Theorem 4.37.

Let G = (V,E) be an undirected graph. The following properties are equivalent:

1. G is a forest with at most K components,

2. |E| ≥ |V | −K and there are no cycles in the graph,

3. There is no empty (K + 1)-cut and there are no cycles in the graph.

Proof: 1. (1) ⇔ (2) follows directly from Theorem 4.24, as the inequalities
(4.30) are exactly the subtour elimination inequalities, ensuring that there
are no cycles in the graph. Every acyclic graph is a forest and vice versa.

2. The second equivalence (2) ⇔ (3) can be derived from theorems 4.31 and
4.24.
” ⇐ ” : If there is no empty (K + 1)-cut, Theorem 4.31 shows that there
are at most K components in the graph and thus, there have to be at least
|V | −K edges.
” ⇒ ” : Theorem 4.24 shows, if (2) holds, G consists of at most K compo-
nents. With (4.31) it can be concluded that the cutset of all (K + 1)-cuts is
not empty.

The subsequent theorem describes the relationship between the different polytopes
introduced in this chapter.
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Theorem 4.38.

The polytopes satisfy the relationship P≤K
cut ⊇ P≤K

sub ⊇ P=K
sub and P=K

cut ⊇ P=K
sub .

Proof: 1. Obviously, P≤K
sub ⊇ P=K

sub .

2. To show P≤K
cut ⊇ P≤K

sub , it is assumed, that y ∈ P≤K
sub , but y /∈ P≤K

cut , i.e., there
exists a (K+1)-cut δ(V1, . . . , VK+1), that partitions the vertices V of a graph

G = (V,E) into K + 1 disjoint subsets, V =
K+1
⋃

i=1

Vi with
∑

e∈δ(S)
ye < 1. Then

|V | −K ≤
∑

e∈E
ye

=
∑

e/∈δ(S)
ye +

∑

e∈δ(S)
ye

=

K+1
∑

i=1

∑

e⊆Vi

ye +
∑

e∈δ(S)
ye

<
K+1
∑

i=1

∑

e⊆Vi

ye + 1

≤
K+1
∑

i=1

(|Vi| − 1) + 1

= |V | − (K + 1) + 1

= |V | −K.

This is a contradiction, so P≤K
cut ⊇ P≤K

sub .

3. Now it remains to show, that P=K
cut ⊇ P=K

sub .
With the hyperplane defined by

HK def
=

{

y ∈ R|E| |
∑

e∈E
ye = |V | −K

}

, (4.62)

the regarded polytopes can be written in the following way:

P=K
sub = P≤K

sub ∩H and P=K
cut = P≤K

cut ∩H. (4.63)

P≤K
sub ⊆ P≤K

cut (shown in (2)) implies, that P≤K
sub ∩H ⊆ P≤K

cut ∩H .
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In general, P≤K
sub is a proper subset of P≤K

cut . This is quite obvious, as P≤K
cut can

contain incidence vectors of graphs including subtours while P≤K
sub only contains

incidence vectors of forests.

4.2.8 Cutting plane algorithms

Cutting plane algorithms turned out to be very useful for solving integer linear pro-
grams, especially when combined with a branch and bound algorithm in a branch
and cut framework, cf. section 4.2.10.
These methods work by solving iteratively a sequence of linear programming relax-
ations of the integer programming problem. The linear relaxations are non-integer
linear programs. By improving those relaxations in every iteration, better approx-
imations of the integer linear problem can be found. If an optimal solution of
an relaxed problem turns out to be integer, a solution of the integer linear pro-
gramming problem has been found. If it is not, there exists a linear inequality
separating the current optimal solution of the relaxed problem from the convex
hull of the feasible set of the integer linear problem. So, this new inequality is
satisfied by the still unknown integer solution but not by the non-integer solution
already attained. Such an inequality is a cut.
The cut is added to the relaxed linear program to cut off the current non-integer
solution. By repeating this process iteratively, either an optimal integer solution
or an approximation of the optimal integer solution is found [Gomory, 1958].
The problem of finding such a cut is the separation problem.
Cutting plane algorithms are also used for solving linear programming problems
with exponentially many constraints. Here, first a subproblem of the original linear
problem is solved, ignoring most of the constraints. Then, iteratively some of the
firstly ignored constraints are added as cutting planes until a solution satisfying
all constraints of the original problem is found. The separation problem to find
these cutting planes is considered in the following section.

4.2.9 Separation

The restriction to a fixed maximum number of components in the regarded graph
is a subproblem in the more general model to find a binary electron density dis-
tribution defined in chapter 2.
A quite similar situation has to be considered in the Spanning Tree Problem to
find a spanning tree in a given graph. Here, given a graph G = (V,E), a vector
y ∈ {0, 1}|E| representing the edge weights and satisfying (4.18) and (4.19) has to
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be found.
In both problems the number of constraints grows exponentially in the number of
nodes of the underlying graph, so that an efficient way to solve these problems has
to be found. For the Spanning Tree Problem usually a cutting plane procedure is
used, which will be described subsequently. The problem of finding these cutting
planes is called separation problem [Korte and Vygen, 2000].

Definition 4.39. (Separation Problem)

Given a polytope P ⊆ Rn and a vector x∗ ∈ Rn, either

• decide that x∗ ∈ P

• or find a vector d ∈ Rn and δ ∈ R, such that dTx ≤ δ, ∀x ∈ P and dTx∗ > δ.

The hyperplane {x ∈ Rn | dTx = δ} is called cutting plane.

Using a cutting plane procedure, the general Spanning Tree Problem is solved
ignoring most of the subtour elimination constraints (4.30). So, for a given graph
G = (V,E)

∑

e∈E(G[X])

ye ≤ |X| − 1, ∀ X : ∅ 6= X ⊆ V, (4.64)

ye ∈ {0, 1} ∀e ∈ E, (4.65)

only the constraints for some X ⊆ V are considered first, not for all X ⊆ V .
If the solution of this reduced problem additionally satisfies all constraints that
had been ignored, a solution for the whole problem has been found. Otherwise
a violated constraint has to be found (separation problem) and is added to the
reduced problem. So, the procedure works as follows:
Given a solution of the reduced problem y∗ ∈ [0, 1]|E|, try to find a set X ⊆ V , for
which

∑

e∈E(G[X])

y∗e ≤ |X| − 1 is not fulfilled. If there is no such set, y∗ ∈ [0, 1]|E| is

feasible for the whole problem.

Now, we consider the separation problem to find such a set X violating a subtour
inequality.
A network N = (V,A, s, t) is a directed graph with two outstanding nodes s and
t, called the source and the sink of N and a capacity function c : A→ R≥0 on the
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arcs, a 7→ c(a).
A flow in this network is a mapping f : A→ R≥0 satisfying

f(a) ≤ c(a) ∀a ∈ A (4.66)
∑

a∈δ−(v)

f(a) =
∑

a∈δ+(v)

f(a) ∀v ∈ V \ {s, t}, (4.67)

with δ−(v)
def
= {a = (u, v) ∈ A | u ∈ V } and δ+(v)

def
= {a = (v, u) ∈ A | u ∈ V }.

The value of a flow θ is defined by θ =
∑

a∈δ+(s)

f(a) − ∑

a∈δ−(s)

f(a). The flow for

which the value of flow is maximal amongst all other flows is called maximum flow.

Regard the capacitated network we get from the given graph G = (V,E) by re-
placing every edge e, e ∈ E by two arcs pointing in opposite directions and setting
the capacity of each of both arcs to y∗e . Then define a root node and calculate the
maximum flow from the root node to every other node in this capacitated network.
If a maximum flow has value θ < 1, by the max-flow min-cut theorem, there exists
a cut of capacity less than 1 and this cut directly provides a set X0 ⊆ V with
∑

e∈E(G[X0])

y∗e > |X0|−1. The constraint
∑

e∈E(G[X0])

y∗e ≤ |X0|−1 then is added to the

reduced problem and the procedure will be started again with this new reduced
problem [Magnanti and Wolsey, 1995].

The number of constraints in the subtour elimination formulation (4.24) grows
exponentially in the number of nodes in the underlying graph, so a cutting plane
approach seems to be a suitable way to solve this problem. The advantage of the
subtour elimination constraints in contrast to the cutset-constraint is, that the
corresponding polytope is integral, therefore it is a stronger description than the
cutset-formulation and the optimal solutions all can be found in the vertices of the
polytope. The cutset-formulation can be related to a flow-problem by the max-
flow min-cut theorem, which can be solved efficiently [Magnanti and Wolsey, 1995].

In the context of the phasing problem, the constraints restricting the maximum
number of components in the regarded graph to a fixed value should be separated.
Given a solution y∗ ∈ [0, 1]|E| of one of the phasing problem formulations presented
in 2.4, consider the corresponding graph G = (V,E) like described in 4.2.3 and add
edge weights y∗e ∀e ∈ E. Using Corollary 4.33, separation constraints can be found
by evaluating the minimal (K + 1)-cut δ(V1, . . . , VK+1), V1, . . . , VK+1 ∈ V . There
exists a polynomial algorithm for evaluating the minimal K-cut in a graph with
only positive edge weights for fixed K, which has been presented in [Goldschmidt

76



Additional Geometric Constraints

and Hochbaum, 1994].
If (4.56) is fulfilled, the actual solution is valid and the graph consist of at most
K components. Otherwise, the cutset constraint

∑

e∈δ(V1,...,VK+1)

y∗e ≥ 1, (4.68)

for the actual minimal (K+1)-cut δ(V1, . . . , VK+1) can be added as a cutting plane.
Using a Breadth-First Search algorithm, the number of components K̃ of a given
graph and an assignment of the graph nodes to the components can be calculated.
This yields a K̃-cut, such that the sum of the edge values in the cut is smaller
than 1. If K̃ > K the constraint

∑

e∈δ(V1,...,VK̃
)

y∗e ≥ 1, (4.69)

can be added, which is even stronger than (4.68) in case K̃ > K + 1.
If the calculated solution y∗ ∈ [0, 1]|E| fulfills (4.29) and the sum of the edge
values of a minimal (K + 1)-cut δ(V1, . . . , VK+1) is equal to zero, this cut provides
also violated subtour constraints. Assuming, the subtour constraints (4.30) were
fulfilled, we get

|V | −K
(4.29)

≤
∑

e∈E
y∗e =

K+1
∑

i=1

∑

e∈Vi

y∗e (4.70)

(4.30)

≤
K+1
∑

i=1

|Vi| − 1 = |V | −K − 1, (4.71)

which is a contradiction. So, for at least one of the subsets Vi, i ∈ {1, . . . , K + 1}
the subtour constraint (4.30) is not fulfilled and the violated one can be added as
a cutting plane.

In the cutting plane approach described here, the graph for which the cutting
planes are generated, is assumed to be known. As in our approach to solve the
phasing problem, the regarded graph depends on the binary electron density dis-
tribution, which is not known in advance, only local cuts can be generated using
this approach. In section 5.1, a cutting plane procedure generating global cuts is
described.

4.2.10 Branch and Bound

For solving integer linear programs efficiently, a branch and bound algorithm is
useful as it preserves us from enumerating all possible solutions. We will now
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describe the general branch and bound algorithm and refer to the special case
of solving binary integer linear programs using branch and bound [Hillier and
Lieberman, 2001; Land and Doig, 1960].
The branch and bound procedure can be split into two parts - a branching and
a bounding step. We regard a linear programming problem with an objective
function that should be minimized. The set of all possible solutions of the integer
linear program is denoted by S.

In the branching step, S is split into smaller subsets S1 to Sk with
k
⋃

i=1

Si = S.

The optimal solution value of the minimization problem over S is equal to the
minimum value of the optimal solutions of the minimization problems solved over
the smaller sets S1 to Sk.
By recursively splitting these smaller sets into more subsets, a kind of tree structure
is created, where the nodes are the subsets of S.
Regarding binary variables, the branching procedure is applied by solving the LP-
relaxation of the considered integer linear program. This means, all variables are
regarded as being real variables with a lower bound of 0 and an upper bound of
1 and the optimization problem is solved over these real variables. If the solution
variables of the relaxed problem all take binary values, the integer linear program
is solved. Otherwise, in a branching step, one variable not taking a binary value
is chosen and the set of solutions is split into a set, where this variable takes the
value 0 and another set, where this variable takes the value 1.
In the bounding step, upper and lower bounds for the optimal solutions over some
subsets of S are calculated. If a lower bound of some subset Si is greater than
the upper bound of a subset Sj, Si and its subsets can be erased from the set of
possible optimal solutions. The algorithm stops, when the set of possible solutions
contains only one single solution or the upper bound of the optimal solution values
over S equals the lower bound.
The whole branch and bound procedure for a solving a binary linear program is
illustrated in the flow chart on the next page.

Branch and cut methods are a combination of cutting plane algorithms with branch
and bound algorithms. Starting with a cutting plane algorithm, relaxed linear
programs are solved and the solution is improved iteratively. If no more cutting
planes can be found or it becomes too expensive to search for them, a branch and
bound procedure is started.

4.2.11 Graph partitioning problems

The ’K-component-constraint’ is closely related to the partition problem in graph
theory, which occurs in different variations and has already been investigated in
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S0 set of all binary solutions
of the original problem

S := {S0}
z∗ := ∞ current lower bound

Problem solved S = ∅

z∗ = ∞:
problem infeasible,

otherwise:
z∗ optimal solution

Choose Si ∈ S
S := S \ Si

Solve relaxed LP over Si

Problem feasible and
optimal solution value z < z∗

Solution
is binary

z∗ := z

Choose branching variable zk
with real solution value

add new subproblems Si1 and Si2 to S:
Si1 := {Sj ∈ S|zk = 0}
Si2 := {Sj ∈ S|zk = 1}

S := S ∪ Si1

S := S ∪ Si1

yes

yes

n
o

yes

n
o

n
o

Figure 4.9: Branch and Bound algorithm
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different publications. In some of them, inequalities are described, that could be
used in branch and cut procedures for solving the phasing problem with the K-
component-constraint.
The problem to partition the node set of a given graph into K ∈ N subsets, such
that the number of edges with end points in two different subsets is minimized, is
known to be NP-hard in general [Garey and Johnson, 1979].
For K = 2 this problem has been studied e.g. in [Barahona and Mahjoub, 1986].
In [Goldschmidt and Hochbaum, 1994] it is shown that it is possible to find in
polynomial time a set of edges, that by its removal partitions the graph into ex-
actly K ∈ N components provided K is fixed and, in case the graph edges are
weighted, all edge weights are non-negative.
In [Sørensen, 2007] as well as [Ferreira et al., 1998], the problem to partition a
graph with edge weights as well as node weights into at most K ∈ N subsets,
while minimizing the weights of the edges between the subsets and restricting the
node weights in each subset, is regarded.
The problem to partition the node set of a given graph into at most K ∈ N subsets,
such that the number of edges with end points in two different subsets is mini-
mized has been considered in [Chopra and Rao, 1993]. The approach presented
there needs variables for edge weights as well as for node weights.
In [Chopra and Rao, 1995, 1993; Deza et al., 1992] several classes of valid in-
equalities for the polytopes that are the convex hulls of the incidence vectors of
all multicuts partitioning the complete graph with N ∈ N nodes Kn into at least
or at most K ∈ N subsets, are presented. If the regarded graph G = (V,E) is
not complete, [Chopra and Rao, 1993] suggest to add all missing edges E to this
graph, such that E ∪· E = E(Kn) and assign edge weights we = 0, ∀e ∈ E. Then
the ’K-component-constraint’ can be formulated using only edge variables.
Some of those inequality-classes are also profed to be facet-defining and polynomial-
time separable, such as the cycle inequalities for chordless cycles [Chopra and Rao,
1995]. Here, binary edge variables xe, e ∈ E(Kn) are introduced, taking the value
1 if an edge is cut by the partition and 0 otherwise. Then the cycle inequalities tell,
that if all nodes belonging to a cycle C = (V (C), E(C)) in the graph G = (V,E)
are in the same subset of a partition, then none of the edges of the cycle E(C) can
be in the cut:

xe ≤
∑

e∈E(C)\{e}
xe, (4.72)

for every cycle C of G and all edges e ∈ C.
Other classes of inequalities that are facet-defining and polynomial-time separable
are the q-wheel inequalities, if q is odd and K ≥ 4 as well as the q-bicycle-wheel
inequalities for odd q and K ≥ 3 [Chopra and Rao, 1993; Deza et al., 1992].
In further work, adding such inequalities could possibly decrease the running time
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needed for the solution of the phasing problem.
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Chapter 5

Modelling the Phase Problem

All models are wrong but some are useful.

George E.P.Box

Based on the previous chapter a modelling approach for the phase problem taking
into account the mentioned supplementary geometric constraints will be presented
here.
In section 2.4 the mixed integer program for the calculation of the phases has been
presented, without taking any topological properties of the regarded protein into
account. For this approach the following variables are necessary.
The electron density has to be calculated on a grid, so for every grid point j ∈ Π,

Π
def
= [0,M1 − 1] × [0,M2 − 1] × [0,M3 − 1] ⊆ Z3 a binary variable zj ∈ {0, 1}

representing the binary grid electron density in this point is introduced. For the
representation of the phase values, two binary variables yRh and yIh, h ∈ Π are
needed.
Additionally for every h ∈ Π two penalty variables rRh , r

I
h ∈ R≥0 are introduced.

These are the only variables occurring in the objective function (2.92).
Now, the topological properties of proteins discussed in chapter 4 will be incorpo-
rated and added to the optimization problem formulated in (2.92) to (2.96). So,
we are searching for an integer linear programming formulation for the following
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constraint program. The constants p ∈ R and K ∈ N are supposed to be known.

min
∑

h∈Π
(rRh + rIh) (5.1)

subject to −εh − rRh ≤ AR(h, z,y(h)) ≤ εh + rRh , ∀h ∈ Π, (5.2)

−εh − rIh ≤ AI(h, z,y(h)) ≤ εh + rIh, ∀h ∈ Π, (5.3)

zj, y
R
h , y

I
h ∈ {0, 1}, rRh ≤ 0, rIh ≤ 0, ∀j, h ∈ Π, (5.4)

zj = 1 for at least p% of the |Π| variables, (5.5)

the binary picture represented by the solution

• should not contain any isolated points, (5.6)

• contains at most K components. (5.7)

Using the linear programming formulation for the exclusion of isolated points (4.8)
as well as the specification of a minimum covering (4.9), without adding any ad-
ditional variables, we get the following problem description:

min
∑

h∈Π
(rRh + rIh) (5.8)

subject to −εh − rRh ≤ AR(h, z,y(h)) ≤ εh + rRh , ∀h ∈ Π, (5.9)

−εh − rIh ≤ AI(h, z,y(h)) ≤ εh + rIh, ∀h ∈ Π, (5.10)
p

100
·M1M2M3 ≤

∑

h∈Π
zj, (5.11)

−5 ≤ zj −
∑

j̃nh

z̃j ≤ 0, ∀j, j̃ ∈ Π, (5.12)

zj, y
R
h , y

I
h ∈ {0, 1}, rRh ≤ 0, rIh ≤ 0, ∀j,h ∈ Π, (5.13)

• the binary picture represented by the solution

contains at most K components. (5.14)

For the connectivity constraint introduced in section 4.2, supplementary variables
ej1,j2 ∈ {0, 1}, j1j2 ∈ Π are introduced for the edges of a graph with the nodes
j ∈ Π and an edge between every two neighboured points in Π.
These variables should be 1, if the corresponding edge connects two neighbouring
nodes j1 ∈ Π and j2 ∈ Π with zj1 = zj2 = 1 and 0 otherwise:

ej1j2 =

{

1, if zj1 = zj2 = 1 and j1 n j2
0, otherwise.

(5.15)
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The following constraints (5.16), (5.17) and (5.18) ensure, that the edge variables
satisfy (5.15).
For all j1, j2 ∈ Π with j1 n j2

ej1j2 ≤ zj1 , (5.16)

ej1j2 ≤ zj2 , (5.17)

zj1 + zj2 − 1 ≤ ej1j2 (5.18)

zj1 , zj2 , ej1j2 ∈ {0, 1}. (5.19)

In chapter 4, different ways have been introduced to model a constraint for the
maximum number of components K ∈ N in a graph, supposing that this graph is
already known. But, in the crystallographic context, the graph is defined by the
values of the binary grid electron density variables zj for all j ∈ Π and therefore not
known in advance. So, these connectivity models can only be used after a binary
electron density distribution has been found and thus, these constraints are only
valid locally, i.e., for one special electron density distribution. If this distribution
also satisfies the component-constraint, it will be accepted as solution, if not, a
no-good-cut can be used to get rid of this solution.
If a solution z∗ ∈ {0, 1}|Π| with the corresponding edge values ej1j2 , ∀j1, j2 ∈
Π with j1 n j2 of the optimization problem described above has been found, we
can test if this solution also fulfils the connectivity constraint. This is the case, if
the solution satisfies either of the following constraint systems (5.20) to (5.22) or
(5.24).
Using the subtour elimination constraints from Theorem 4.24, we get for all j ∈
Π, ∀j1, j2 ∈ Π with j1 n j2:

∑

j1,j2∈Π
ej1j2 ≥ |Π| −K, (5.20)

∑

j1, j2 ∈ Π
j1 n j2

ej1j2 ≤ |T | − 1, ∀ T : ∅ 6= T ⊆ Π (5.21)

zj, ej1j2 ∈ {0, 1}, (5.22)

(5.23)

or, using the cutset formulation from Corollary 4.33

|δmin(G
∗
Π)| > 0, for a minimum (K + 1)-cut δmin(G

∗
Π), (5.24)

with G∗
Π = (V ∗

Π , E
∗
Π), V

∗
Π = {j ∈ Π | zj = 1} and E∗

Π = {ej1j2 , | ej1j2 = 1,
∀ j1, j2 ∈ Π with j1 n j2}.
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In order to find global constraints that can be used without knowing the values of
the grid electron density variables, a new approach has been proposed.

We introduce three new binary variables uT , vT , pT ∈ {0, 1} for every subset of the
set of grid points T ⊂ Π. There are 2|Π|−1 − 1 such subsets.
The variable uT indicates, if the considered subset T contains grid points j ∈ Π
where the variable zj takes the value 1, vT indicates if Π \ T contains such grid
points, the variable pTi

indicates if both, T and Π \ T contain such grid points.

uT =

{

1, if
∑

j∈T
zj ≥ 1

0, otherwise.
(5.25)

vT =

{

1, if
∑

j∈Π\T
zj ≥ 1

0, otherwise.
(5.26)

pT =

{

1, if uT = vT = 1
0, otherwise.

(5.27)

If pT = 1, both subsets T and Π \ T partitioning Π contain grid points with a
binary grid electron density value of 1 and therefore it has to be ensured that in
case K = 1 these subsets are connected by at least one edge.

This approach is presented for the case that the graph representing the binary
grid electron density distribution consists of only one component. Afterwards it is
extended for ensuring that the graph representing the binary grid electron density
distribution consists of at most K ∈ N components.

Theorem 5.1.

Any binary grid electron density distribution z∗ ∈ {0, 1}M1×M2×M3 satisfying the
following constraints contains only one component. Additionally, no binary so-
lution z∗ ∈ {0, 1}M1×M2×M3 containing only one component is cut off by these
constraints.

∀ ∅ 6= T ⊂ Π, ∀j ∈ Π, j1, j2 ∈ Π with j1 n j2 :
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ej1j2 ≤ zj1 (5.28)

ej1j2 ≤ zj2 (5.29)

zj1 + zj2 − 1 ≤ ej1j2 (5.30)

1

|T |
∑

j∈T
zj ≤ uT ≤

∑

j∈T
zj (5.31)

1

|Π \ T |
∑

j∈Π\T
zj ≤ vT ≤

∑

j∈Π\T
zj (5.32)

pT ≤ uT (5.33)

pT ≤ vT (5.34)

uT + vT − 1 ≤ pT (5.35)

pT ≤
∑

j1∈T,j2∈Π\T
ej1j2 (5.36)

uT , vT , pT , zj, ej1j2 ∈ {0, 1}. (5.37)

Proof: 1. In a first step it is shown that an arbitrary binary picture z ∈
{0, 1}M1×M2×M3 satisfying the constraints above contains exactly one com-
ponent.
Assume that a given solution z∗ ∈ {0, 1}M1×M2×M3 satisfies all constraints,
but consists of more than one component. Consider a graph GΠ = (VΠ, EΠ),
every grid point j ∈ Π is identified with a node j ∈ V with a corresponding
variable z∗j ∈ {0, 1}, ∀j ∈ Π and there are edges (j1, j2) ⊆ EΠ between all
neighbouring grid points j1, j2 ∈ Π. There is a variable ej1j2 ∈ {0, 1} for each
edge (j1, j2).
Let G∗

Π = (V ∗
Π , E

∗
Π) be the subgraph of GΠ, defined by V ∗

Π = {j ∈ V | z∗j =
1} ⊆ VΠ and E∗

Π = {(j1, j2) ∈ EΠ | ej1j2 = 1} ⊆ EΠ.
If z∗ consists of more than one component, G∗

Π is not connected. Thus, there
exists a cut δ̃(T ) = ∅ in G∗

Π partitioning G∗
Π into 2 disjoint sets T and G∗

Π\T ,
each containing at least one vertex j with z∗j > 0.
Thus, the cut δ(T ) in GΠ partitioning GΠ into the 2 disjoint sets T and Π\T ,
contains only edges with corresponding variable-values of zero:

∑

(j1,j2)∈δ(T )

ej1j2 = 0, j1, j2 ∈ Π. (5.38)

Therefore,

0 =
∑

(j1,j2)∈δ(T )

ej1j2
(5.36)

≥ pT
(5.37)

≥ 0 ⇒ pT = 0. (5.39)
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Inequality (5.35) then shows

0 = pT ≥ uT + vT − 1 ⇒ uT + vT ≤ 1 (5.40)

⇒ uT = 0 ∨ vT = 0 (5.41)

and with (5.31) respectively (5.32) one gets
∑

i∈T
zi = 0 or

∑

i∈Π\T
zi = 0, (5.42)

each contradicting the assumption of T and Π \ T each containing at least
one vertex j with z∗j > 0.

2. Now, in a second step it will be proven that no integer solution will be cut
off by the constraints above.
For an arbitrary integer solution z∗ ∈ {0, 1}M1×M2×M3 containing only one
component, the variables ej1j2 ∈ {0, 1}, ∀j1, j2 ∈ Π with j1 n j2, as well as
uT , vT , pT ∈ {0, 1} are chosen in the following way:

ej1j2 =

{

1, if z∗j1 = z∗j2 = 1 and j1 n j2
0, otherwise.

(5.43)

uT =

{

1, if
∑

j∈T
z∗j ≥ 1

0, otherwise.
(5.44)

vT =

{

1, if
∑

j∈Π\T
z∗j ≥ 1

0, otherwise.
(5.45)

pT =

{

1, if uT = vT = 1
0, otherwise.

(5.46)

Then obviously the constraints (5.28) to (5.35) are satisfied for arbitrary
partitions T,Π \ T ⊆ Π.

Now, the remaining constraint (5.36) has to be considered. Assuming, for
the integer solution z∗ there exists a partition not satisfying (5.36), i.e.,

pT >
∑

j1∈T,j2∈Π\T
ej1j2 , (5.47)

then pT = 0 can directly be excluded as it implies
∑

j1∈T,j2∈Π\T
ej1j2 < 0, (5.48)
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which is a contradiction to

ej1j2 ∈ {0, 1}, ∀j1, j2 ∈ Π. (5.49)

So,

pT >
∑

j1∈T,j2∈Π\T
ej1j2 (5.50)

⇒ pT = 1 ∧
∑

j1∈T,j2∈Π\T
ej1j2 = 0. (5.51)

Using the inequalities (5.35) as well as (5.31) and (5.32) it can be deduced
that

pT = 1
(5.46)
=⇒ uT = vT = 1 (5.52)

(5.31),(5.32)
=⇒

∑

j∈T
zj ≥ 1 ∧

∑

j∈Π\T
zj ≥ 1 (5.53)

⇒ ∃̃j1 ∈ T : z∗
j̃1
= 1 ∧ ∃̃j2 ∈ Π \ T : z∗

j̃2
= 1. (5.54)

From
∑

j1∈T,j2∈Π\T
ej1j2 = 0 (5.51) it can be concluded that ej1j2 = 0, ∀j1 ∈

T, j2 ∈ Π \ T and thus ẽj1 j̃2 = 0.
Inserting these values in (5.30) then directly leads to a contradiction:

1 = z∗
j̃1
+ z∗

j̃2
− 1 ≤ ẽj1 j̃2 = 0. (5.55)

Thus, for an arbitrary integer solution z∗j , j ∈ Π and for every partition of Π
into T and Π\T , the values of the remaining variables can always be chosen
in a way, that all constraints are satisfied.

The number of new variables introduced in the approach above can be reduced to
just two new variables for each subset of Π. For every T ⊂ Π, there is a T̃ ⊂ Π
with T = Π \ T̃ and thus uT = vT̃ . So, we can replace vT̃ by uT for every T̃ ⊂ Π
with T = Π \ T̃ .
Now, this approach will be extended for a binary picture, containing at mostK ∈ N

components. The proof for this extension is quite similar to the one of Theorem
5.1. We introduce just one new variable uT for each subset T of Π, indicating if T
contains grid points j ∈ Π satisfying zj = 1.
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Theorem 5.2.

Any binary grid electron density distribution z∗ ∈ {0, 1}M1×M2×M3 satisfying the
following constraints contains at most K ∈ N components. Additionally no binary
solution z∗ ∈ {0, 1}M1×M2×M3 consisting of at most K ∈ N components is cut off
by these constraints.

∀∅ 6= T1, . . . , TK+1 ⊂ Π,

K+1
⋃

i=1

Ti = Π, Ti ∩ Tj = ∅, ∀i 6= j, i, j ∈ {1, . . .K + 1},

∀j, j1, j2 ∈ Π with j1 n j2 :

ej1j2 ≤ zj1 (5.56)

ej1j2 ≤ zj2 (5.57)

zj1 + zj2 − 1 ≤ ej1j2 (5.58)

1

|Ti|
∑

j∈Ti

zj ≤ uTi
≤
∑

j∈Ti

zj, ∀ i ∈ {1, . . .K + 1} (5.59)

K+1
∑

i=1

uTi
−K ≤

∑

(j1,j2)∈δ(T1,...,TK+1)

ej1j2 (5.60)

zj, ej1j2 , uTi
∈ {0, 1}, ∀ i ∈ {1, . . .K + 1}. (5.61)

Proof: 1. The proof is quite analogous to the one of the previous theorem. In
a first step it is shown that an arbitrary binary picture z ∈ {0, 1}M1×M2×M3

satisfying the constraints above contains at most K ∈ N components.
Assume that a given solution z∗ ∈ {0, 1}M1×M2×M3 satisfies all constraints,
but consists of more than K components. Consider a graph GΠ = (VΠ, EΠ),
every grid point j ∈ Π is identified with a node j ∈ V with a corresponding
variable z∗j ∈ {0, 1}, ∀j ∈ Π and there are edges (j1, j2) ∈ EΠ between all
neighbouring grid points j1, j2 ∈ Π. There are variables ej1j2 ∈ {0, 1} for
each edge (j1, j2).
Let G∗

Π = (V ∗
Π , E

∗
Π) be the subgraph of GΠ, defined by V ∗

Π = {j ∈ V | z∗j =
1} ⊆ VΠ and E∗

Π = {(j1, j2) ∈ EΠ | ej1j2 = 1} ⊆ EΠ.
As z∗ contains more than K components, a (K + 1)-cut δ̃(T̃1, . . . , T̃K+1)
exists, partitioning G∗

Π into K + 1 disjoint sets T̃1, . . . , T̃K+1, of which no
two of them are connected and each contains at least one vertex j with
z∗j > 0. Thus, in the graph GΠ a cut δ(T1, . . . , TK+1) can be found, satisfying

T̃1 ⊆ T1, . . . , T̃K+1 ⊆ TK+1 and
∑

(j1,j2)∈δ(T1 ,...,TK+1)

ej1j2 = 0. (5.62)
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Thus,

0 =
∑

(j1,j2)∈δ(T1,...,TK+1)

ej1j2
(5.60)

≥
K+1
∑

i=1

uTi
−K (5.63)

⇒
K+1
∑

i=1

uTi
≤ K (5.64)

⇒ ∃i ∈ {1, . . . , K + 1} : uTi
= 0 (5.65)

(5.59)⇒ ∃i ∈ {1, . . . , K + 1} :
∑

j∈Ti

z∗j = 0, (5.66)

contradicting the assumption of T1, . . . , TK+1 containing at least one vertex
j with z∗j > 0.

2. Now, in a second step it will be proven, that no integer solution consisting
of at most K ∈ N components will be cut off by the constraints above.
It can easily be seen that for an arbitrary integer solution z∗ ∈ {0, 1}M1×M2×M3

consisting of at most K ∈ N components, the variables ej1j2 ∈ {0, 1}, for all
j1, j2 ∈ Π with j1 n j2, as well as uT ∈ {0, 1} for all subsets T ⊂ Π can be
chosen in a way, that the constraints (5.56) to (5.61) are satisfied for arbi-

trary partitions of Π into nonempty subsets T1, . . . , TK+1 ⊆ Π,
K+1
⋃

i=1

Ti = Π,

Ti ∩ Tj = ∅, ∀i 6= j, i, j ∈ {1, . . .K + 1}:

ej1j2 =

{

1, if z∗j1 = z∗j2 = 1 and j1 n j2
0, otherwise,

(5.67)

uTi
=

{

1, if
∑

j∈Ti

z∗j ≥ 1

0, otherwise.
∀ i ∈ {1, . . .K + 1} (5.68)

So, only the remaining constraint (5.60) has to be regarded. Assuming, for
the integer solution z∗ there exists a partition not satisfying (5.60), i.e.,

K+1
∑

i=1

uTi
−K >

∑

(j1,j2)∈δ(T1 ,...,TK+1)

ej1j2 , (5.69)

then
K+1
∑

i=1

uTi
≤ K can directly be excluded as it implies

∑

(j1,j2)∈δ(T1,...,TK+1)

ej1j2 < 0, (5.70)
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which is a contradiction to (5.61).

So,
K+1
∑

i=1

uTi
> K and thus with (5.61)

K+1
∑

i=1

uTi
= K + 1. Applying (5.69)

yields
∑

(j1,j2)∈δ(T1 ,...,TK+1)

ej1j2 = 0, (5.71)

but (5.60) implies

∑

(j1,j2)∈δ(T1,...,TK+1)

ej1j2 ≥
K+1
∑

i=1

uTi
−K = 1, (5.72)

which is a contradiction.

For simplification and reduction of the number of constraints, the constraints
(5.28), (5.29) and (5.30) respectively (5.56), (5.57) and (5.58) can be combined
and replaced by a single one:

−1 ≤ 2ej1j2 − zj1 − zj2 ≤ 0, ∀j, j1, j2 ∈ Π with j1 n j2 (5.73)

asserting that ej1j2 = 1, if and only if zj1 = zj2 = 1. So, the whole system of
inequalities is given by

∀∅ 6= T1, . . . , TK+1 ⊂ Π,
K+1
⋃

i=1

Ti = Π, Ti ∩ Tj = ∅, ∀i 6= j, i, j ∈ {1, . . .K + 1},

∀j, j1, j2 ∈ Π with j1 n j2 :

−1 ≤ 2ej1j2 − zj1 − zj2 ≤ 0, (5.74)

1

|Ti|
∑

j∈Ti

zj ≤ uTi
≤
∑

j∈Ti

zj, ∀ i ∈ {1, . . .K + 1} (5.75)

K+1
∑

i=1

uTi
−K ≤

∑

(j1,j2)∈δ(T1 ,...,TK+1)

ej1j2 (5.76)

zj, ej1j2 , uTi
∈ {0, 1}, ∀ i ∈ {1, . . .K + 1}. (5.77)
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5.1 Cutting plane algorithm

As the number of constraints grows exponentially in the number of nodes of the
underlying graph, for the implementation of the constraints derived in this chap-
ter, a cutting plane algorithm is used.
Given a solution of one of the phasing problem formulations presented in 2.4, a
minimal K + 1-cut in the corresponding graph defined in 4.2.3 can be calculated,
for example using the K-cut algorithm presented in [Goldschmidt and Hochbaum,
1994].
Then, like described in 4.2.9, we can find constraints excluding solutions that
violate the inequalities (5.74) to (5.77). New variables ui ∈ {0, 1}, ∀ i ∈
{1, . . .K + 1} are created and the following constraints are added:

0 ≤ |Ti| · ui −
∑

j∈Ti

zj ≤ ∞, ∀ i ∈ {1, . . .K + 1}, (5.78)

−∞ ≤ ui −
∑

j∈Ti

zj ≤ 0, ∀ i ∈ {1, . . .K + 1}, (5.79)

−K ≤ ∑

(j1,j2)∈δ(T1,...,TK+1)

ej1j2 −
K+1
∑

i=1

ui ≤ ∞. (5.80)

These constraints are valid globally, i.e., they generate cutting planes that are
valid for the whole problem.

For the implementation, a different way to generate cutting planes has been chosen.
Given a solution of one of the phasing problem formulations presented in 2.4,
the current solution values of the variables corresponding to the graph nodes are
rounded to be integer. In general, these integer solutions are not feasible any
more, but instead of using the K-cut algorithm presented in [Goldschmidt and
Hochbaum, 1994], the faster Breadth-First-Search (BFS) algorithm can be used to
generate feasible cutting planes.
If there are graph node variables of value one, the number of components of this
current binary solution is calculated using a BFS algorithm. Starting with one node
with a binary solution value of 1, the BFS-algorithm is performed, considering the
graph G = (V,E) containing only nodes and edges with current solution values of
1. After one of the graph’s components is explored in this way, starting with an
unexplored node with solution value 1, a new BFS is started. Continuing this way,
the whole graph with each of its components can be explored and the number of
components K̃ ∈ N is determined as well as an assignment of the nodes zj, j ∈ Π
with current solution value 1 to the different components Ti, i ∈ {1, . . . , K̃}. The
running time of this algorithm obviously is O(|V |+ |E|).
Again, constraints can be found, excluding solutions violating the K-component-
constraint and are added after creating the necessary new variables. Instead of
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considering only K + 1 subsets of nodes, all K̃ subsets are considered in the
inequalities.

0 ≤ |Ti| · ui −
∑

j∈Ti

zj ≤ ∞, ∀ i ∈ {1, . . . K̃}, (5.81)

−∞ ≤ ui −
∑

j∈Ti

zj ≤ 0, ∀ i ∈ {1, . . . K̃}, (5.82)

−K ≤ ∑

(j1,j2)∈δ(T1 ,...,TK̃
)

ej1j2 −
K̃
∑

i=1

ui ≤ ∞. (5.83)

If the electron density solution values of the currently considered solution are
all binary and do not satisfy the component constraint, additionally this current
solution can be cut off as it is not feasible. Let Π1 be the set of nodes with a
current binary solution value of 1 and Π0 be the set of nodes with a current binary
solution value of 0. Then the following constraint cuts off the current solution and
only this one:

1− |Π1| ≤ −
∑

j∈Π1

zj +
∑

j∈Π0

zj ≤ |Π|. (5.84)

In this chapter we derived an integer linear program, such that the solution of
this problem represents a binary grid electron density distribution satisfying also
the topological constraints excluding isolated points, ensuring a minimum covering
and restricting the maximum number of connected components. Additionally, a
separation algorithm, which is used for the implementation is described. In chapter
6, solution strategies and their implementation will be described.
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Chapter 6

Implementation and
Computational Results

Constraint Programming represents one of
the closest approaches computer science has
yet made to the Holy Grail of programming:
the user states the problem, the computer
solves it.

Eugene C. Freuder

The integer linear programming model derived in chapter 5 has been implemented
and tested on real protein data. In this chapter, starting with a short overview
over several programming methods and solvers, the implementation, the different
tests and their results are presented.

The phase problem is modelled as a Binary Integer Programming Problem in (2.89)
to (2.91). After adding an objective function like described in chapter 5, we get the
Mixed Integer Programming Problem specified in (2.97) to (2.101), respectively
(2.92) to (2.96). Here the variables for the electron density values as well as for
the phases are binary, the penalty variables can be arbitrary real variables. The
connectivity property can be described by a symbolic constraint, involving a family
of linear constraints necessary for its description. Thus, for the implementation
a solver is needed, which can handle combined (symbolic) constraint and integer
programming problems efficiently.
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SCIP and CPLEX/SOPLEX - Combined Integer and Constraint Pro-
gramming

SCIP is a non-commercial framework for solving mixed-integer programming as
well as constraint integer programming problems developed at ZIB - Konrad-Zuse-
Zentrum für Informationstechnik Berlin [Achterberg, 2004, 2007; Achterberg et al.,
2008]. It is implemented as a C callable library. One main advantage of SCIP is
that the user is able to control every step of the solution process. SCIP needs
an IP-solver for the IP instances. Different ones are supported, the leading com-
mercial solver CPLEX [CPLEX, 2010], which recently is also free available for
academic purposes, as well as the non-commercial solver SOPLEX [Wunderling,
1996] also developed at ZIB have been used for this work.

6.1 Implementation

6.1.1 Data Extraction

In order to get significant results, real protein data have been used. The consid-
ered Protein G is shown in Figure 6.1. This is a small protein with 61 residues
containing one α-helix and one β-sheet. The protein was crystallized in the space
group P212121 with the unit-cell dimensions 34.9× 40.3× 42.2Å. Protein data can
be extracted from the Protein Data Bank [Protein Data Bank, 2010]. It contains,
amongst others, information about macromolecular structures determined by X-
ray diffraction, presented in pdb-format [Berman et al., 2003; Protein Data Bank
Contents Guide, 2008]. The pdb-format provides information about atomic coor-
dinates, names of protein molecules, primary and secondary structure information
as well as other details about the structures and their solution processes.

A software package ‘all calc map’ developed by A. Urzhumtsev, L. Urzhumtseva,
N. Lunina and V. Lunin has been used to extract atomic model information from
the Protein Data Bank, to generate a list of reflections for any desired resolution,
independently of the resolution in which the reflection data in experiment has been
measured, and to calculate the corresponding structure factors. The software also
provides the possibility to calculate the grid electron density values from these
structure factors for an arbitrary grid satisfying some conditions on the grid size.
Starting with these grid electron density files in xplor-format [XPLOR, 1999], the
grid structure factors on this grid are calculated. Alternatively a threshold can
be specified, absolute or procentual, then the corresponding binary grid electron
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Figure 6.1: Unit cell of Protein G

density values are calculated together with the grid structure values belonging to
the binary grid electron density values. A Matlab-program [MATLAB, 2010] has
been written, doing all these steps automatically after it has been provided with
the necessary informations like the used xplor-file and, if necessary, the threshold.
It also stores the structure factors in a *.fc file, which is structured as follows:

Entries in .fc-file Description
m n p grid dimensions
Vcell volume of unit cell
tnu dimensions of unit cell
κ proportionality factor (2.73)
components maximum number of components
symmetry symmetry of grid electron density values
a a=0 for acentric, a=1 for centric reflections
b b= 1 if isolated points constraint activated, 0 otherwise
c c= 1 if covering constraint activated, 0 otherwise
d d= 1 if component constraints activated, 0 otherwise
1 1 1 Fg(1, 1, 1) h Fg(h):
... array of structure factors
m n p Fg(m,n, p)

6.1.2 Program structure in SCIP

The SCIP-implementation is divided into the files cppmain.cpp, Readerfc.h, Read-
erfc.cpp, MyGraph.h, MyGraph.cpp, Conshdlrcomp.h, Conshdlrcomp.cpp, see Fig-
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ure 6.2.
In cppmain a reading method is specified, a SCIP-solving method is started and
in the end the output is specified.
In MyGomoryHuTree, data structures for a graph, the graph nodes and the graph
edges are defined. The structure for the graph contains arrays of graph nodes and
graph edges, the number of nodes and edges in the graph as well as the number of
components the graph is allowed to consist of. The structure for the graph nodes
contains entries necessary for a Breadth First Search in a given graph. Each grid
electron density variable is connected with a node. The structure for the graph
edges contains pointers to the nodes adjacent to an edge and to the next edge in
the incidence list of the node from which the edge emanates. Binary edge variables
are assigned to every edge in the graph.
In Readerfc the input file, which has to be in the fc-format described above, is
read. Then all necessary variables are created. There are |Π| binary variables
for the grid electron density values, one for every grid point of the grid Π. For
the phases, two variables for every grid point, i.e., 2|Π| variables, have to be in-
troduced. Additionally, there are 2|Π| real penalty variables, needed in the MIP-
formulation specified in (2.92) to(2.96). In a grid with |Π| = m×n×p grid points,
(m ∗ n ∗ (p− 1) +m ∗ (n− 1) ∗ p+ (m− 1) ∗ n ∗ p) edges are defined, connecting
neighboured grid points and therefore (m∗n∗(p−1)+m∗(n−1)∗p+(m−1)∗n∗p)
binary variables assigned to the edges are needed.
After that the constraints are specified, starting with the constraints for the phase
calculation specified in chapter 2, namely the constraints in (2.92) to (2.96). In
SCIP, the objective function is specified by adding the coefficient of every variable
in the objective function to the variable definition.
Depending on which constraints are activated in the input file, additional con-
straints are called. These are the covering (4.9) and isolated nodes constraints
(4.8).
The symbolic constraint ‘Kcomponents(X)’, X ∈ {0, 1}m×n×p, m,n, p ∈ N states,
that the binary picture X contains at most K components.
This constraint can be described by a set of ILP-constraints, developed in chapters
4 and 5. The component constraint is satisfied if these constraints are fulfilled.
If the component constraints are activated, for the ILP-constraints whose number
grows exponentially in the number of nodes, separation methods like described in
4.2.9 will be used. These separation methods are implemented in SCIP in so-called
constraint handlers. The constraints on the graph edges, specified in (5.74), are
added, ensuring, that the edges connecting two nodes with variables taking the
value 1 get also the value 1 and that the other edges get a value of 0. Then the
constraint handler Conshdlrcomp is called.
In Conshdlromp the global component constraints (5.74) derived in chapter 5 are
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implemented in a separation method. As the number of constraints is growing
exponentially in the number of nodes, the separation method does not add all
constraints, but only violated ones every time it is called.

6.1.3 Constraint handler

In SCIP, a constraint handler defines the algorithms necessary to process all con-
straints belonging to its constraint class. In the corresponding header-file, the
properties of the constraint handler can be adjusted, such as the priorities for sep-
arating or checking feasibility as well as the default frequency for separating cuts.
With the help of data structures, in C/C++ a set of data elements can be grouped
together under one name. In the constraint handler Conshdlromp, such a struc-
ture SCIP ConsData is defined containing the data that is needed for defining the
constraints belonging to the constraint handler. This data consists of the graph
on which the problem is defined and where every graph node and edge is linked to
the corresponding binary variable.
Then, different callback methods are defined in the constraint handler. The main
methods are scip sepalp and scip sepasol, which generate cutting planes for sepa-
rating the current solution at different times of the solution process. The method
scip sepalp is called, when already a valid LP-solution exists, while scip sepasol

separates an arbitrary primal solution. The cutting planes are created like de-
scribed in 5.1.
In the constraint handler, also a checking method is implemented. The method
scip check tests, if the component constraint is fulfilled for the current solution.
Here, also the BFS-algorithm is used to calculate the number of components in
the current solution and to compare it to the number of components allowed. The
return value of the method specifies if the component constraint is satisfied or not.

is then added, such that the K nodes, to which the flow from the startnode is
greatest and the startnode are separated by the cut. A checking method checking
if the component constraints are already fulfilled has been implemented, if they
are not, the separation method adding more constraints from (5.74) is called again.
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Breaking down the problem

For testing the approach for solving the phase problem introduced before, different
simplification steps have been made.
In order to show the effectivity of the described approach, we tried to reconstruct
known protein structures taken from the Protein Data Bank [Protein Data Bank,
2010]. The necessary working steps will now be described.

• A protein structure description in pdb-format is taken from the protein data
bank [Protein Data Bank, 2010].

• The corresponding electron density distribution is calculated via the software
package ‘all calc map’ mentioned above. With the help of these programs
one can pass from an atomic model of a crystal to the structure factors
corresponding to a given resolution and directly calculate the electron density
at given grid points.

• Via Fourier-transformation (cf. chapter 2, equation (2.9)) from this grid
electron density, magnitude and phase of the grid structure factors can be
calculated.

The reconstruction process will be started with the knowledge of only the magni-
tudes of the structure factors. Normally X-ray experiments provide intensities of
reflections, from which the magnitudes of structure factors can directly be calcu-
lated (1.41).
Given only the magnitudes of the structure factors in the reconstruction process,
the previously described simplifications during this process result in different errors
that will have to be taken into account.

• Grid structure factors belonging to a grid electron-density function are cal-
culated instead of structure factors belonging to the real electron density
distribution. This leads to the error estimated in (2.19).

• A binarized electron density distribution is searched for. As the known struc-
ture factors’ magnitudes belong to a real electron density distribution and
not to a binary one, here an error occurs that has to be taken into account
(2.73).

• Only a small number of phase values is allowed, resulting in errors (2.47).

• In the formulation of the ILP to be solved a splitting into a real and an
imaginary part of the regarded inequality has been done in (2.26) and (2.27).
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The other constraints should not lead to errors that have to be taken into account,
but only restrict the set of different solutions, satisfying the integer linear pro-
gramming constraints.

6.1.4 Testing the programs

In order to verify the correctness of the programs and to see, where the simplifi-
cations lead to significant errors, tests are made in different steps, each based on
the previous one.

1. The given electron density distribution is binarized by defining a threshold
and setting all electron density values above the threshold to 1. Starting with
this binary electron density distribution the corresponding grid structure
factors are calculated. Using the exact phases and magnitudes of the grid
structure factors, the picture is reconstructed. Here, the binary electron
density can be recalculated exactly.

2. Again starting with a binary electron density distribution, the corresponding
grid structure factor magnitudes are calculated. Using these magnitudes and
allowing only four different phase values, the reconstruction process is done.

3. In a next step the real electron density distribution is taken and the cor-
responding grid structure factor magnitudes are calculated. Again, only a
small number of phase values is allowed in the reconstruction process.

4. The last step is to take a protein structure description from the protein data
bank, calculate the structure factor magnitudes in an arbitrary resolution
and use them instead of the grid structure factor magnitudes. Again, only a
small number of phase values is allowed in the reconstruction process.

In each step, some or all of the additional constraints, described in chapters 4 and
5 can be added or left out.
Using the whole structure factor values, i.e., magnitudes and phases of the grid
structure factors, some tests have been run in order to find out the influence
of rounding on the results. Using rounded constants (e.g., using π = 3.14) has
great influence on the results, while rounding the values of the magnitudes of the
structure factors keeps the solution quite stable. In case the phases of the grid
structure factors are not known, this increases the running time significantly.
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6.2 Test results

For each of the 4 test scenarios in 6.1.4, a number of tests has been run with
the data of Protein G, using different grid sizes and different molecular volumes
specifying the number of non-zero grid values in the binary electron density dis-
tribution.
The number of independent grid points has been varied between 64 points (4×4×4-
grid) and 216 grid points (6× 6× 6-grid). Due to the increasing running time, no
larger grids have been considered. For the bigger grid size with 216 independent
grid points, different resolutions have been chosen, varying from 4 to 16Å, the low-
resolution cut-off limit is chosen in a way, that it does not exclude any structure
factor values, see (1.40). For the smaller grid size with 64 independent grid points,
the change of the resolution does not show any effect on the binary grid electron
density values and thus has not been considered.
In general, the asymmetric unit of a unit cell containing the independent grid
points is smaller than the whole unit cell. For e.g. space group P212121, the asym-
metric unit is only a quarter of the unit cell.
Depending on the space group, different choices of the unit cell origin are possible.
If only the amplitudes of the Fourier coefficients are known, different phase sets
may lead to identical images except that the origin is shifted from one point to
another [Lunin and Lunina, 1996]. These possible shiftings have not been taken
into account. Including them when evaluating the results could lead to even better
results.
For the implementation, SCIP Version 1.2.0 [Achterberg, 2007] has been used with
CPLEX [CPLEX, 2010], version 11.0 as IP-solver for the IP instances. The so-
lutions have been calculated on a i686 with 4 processors, a 3GHz CPU and 3GB
RAM. If we start with the magnitudes of grid structure factors belonging to a
binary electron density distribution, the running time to calculate a solution on a
4× 4× 4-grid, i.e., with 64 independent grid points, takes about 30 seconds CPU
time without additional constraints and about 40 seconds with all constraints
added. On a 6× 6× 6-grid, i.e., with 216 independent grid points, it takes about
10 minutes CPU time to calculate a solution without additional constraints and
about 50 minutes CPU time with all constraints added.
Starting with magnitudes of grid structure factors belonging to a real electron den-
sity distribution increases the running time significantly - also without additional
constraints, the calculation of a solution on a 4 × 4 × 4-grid with all constraints
takes 40 minutes and on a 6× 6× 6-grid 7,6 hours. The creation of a new cutting
plane for this grid size takes less than a second, such that the main amount of
time is taken by the ILP-solver.
For calculating a set of best solutions and not only one solution, a shell-script has
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been used which, each time a solution has been found, automatically changes the
file Reader fc.cpp. An additional constraint is added, cutting off the current solu-
tion for the grid electron density values. Here again, inequality (5.84) is used. Then
the SCIP-code is compiled again and a solution of the new problem is searched.
Figure 6.3 shows, which steps are necessary for the whole solution and evaluation
process and which programs and which file-formats are used.

6.2.1 Evaluation of the results

Once a set of solutions has been calculated, the quality of those solutions has to be
evaluated. Therefore, in a Matlab-program [MATLAB, 2010], the exact electron
density is calculated on the specified grid Π. Using the minimal molecular volume
that has been defined in the solution process to specify the number of non-zero grid
values, this electron density distribution is binarised. The distance D(ρexact, ρ

i
calc)

between the resulting binary electron density ρexact and the calculated ones ρcalc(i),
i ∈ {1, . . . , N}, N ∈ N, is defined using the Hamming distance:

D(ρexact, ρ
i
calc)

def
=
∑

j∈Π

∣

∣ρexact(j)− ρicalc(j)
∣

∣ . (6.1)

The smaller the distance value, the better the quality of the considered solution.

The smallest distance reached by one of the test runs isDmin
def
=

N

min
i=1

D(ρexact, ρ
i
calc).

As the exact solution normally is not known in advance, one solution has to be
calculated from the set of solutions we get. The methods we used are similar to an
approach suggested by V.Y. Lunin in [Lunin, 2003] for the one-dimensional case
and have been presented in [Heldt and Bockmayr, 2010].
One possibility to calculate such an average solution for the set of N ∈ N solutions
is the following one:

ρav(j)
def
=

1

N

N
∑

i=1

ρicalc(j), ∀j ∈ Π. (6.2)

Obviously, in general ρav is not a binary function. Using the defined molecular
volume value, it can be binarised, resulting in a solution ρbinav and it can be compared
to the exact solution:

Dav
def
= D(ρexact, ρ

bin
av ). (6.3)

Another possibility would be to choose the solution to which the distance of all
other solutions is smallest. Therefore, the distance of every solution to all others
has to be calculated. For every solution, the distances to all others are summed
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Program File format

all calc map:
calculate grid electron density

*.pdb

Matlab:
binarize grid electron density

*.xplor

Matlab:
calculate grid structure factors

Shell script:
calculate solutions with SCIP

*.fc

Matlab:
evaluate results

*.sol

Figure 6.3: Evaluation process and file formats
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up, the solution, for which this sum is the smallest, is chosen as reference solution
ρref :

Dsum(i)
def
=

N
∑

k=1

∑

j∈Π

∣

∣ρicalc(j)− ρkcalc(j)
∣

∣ , ∀i ∈ {1, . . . , N}, (6.4)

ρref = ρicalc, with Dsum(i)
def
=

N

min
k=1

{Dsum(k)}, Dref
def
= D(ρexact, ρref). (6.5)

Additionally, the number of connected components is counted for the binarised
original electron density distribution as well as for the best calculated binary so-
lution ρmin and for the solutions ρav and ρref .
In the tables below, the results of the tests on a 4× 4× 4-grid, i.e., a grid with 64
independent grid points and on 6×6×6-grids, i.e., grids with 216 independent grid
points are shown. In the latter case, different resolutions have been considered.
The first column of these tables specifies the grid size, the second the percent-
age of non-zero grid points, the third the resolution, the fourth the number of
connected components of the binarised original electron density distribution. In
the fifth column, the used topological constraints are specified - either none, or
only the constraint excluding isolated points (iso) or the connectivity constraint
(connected). If the connectivity constraint is activated, in brackets the maximum
number of components allowed is given.
The sixth column specifies the number of test solutions satisfying these constraints.
In columns seven to nine, the percentages of correct solution values using the dif-

ferent distance measures Dmin, Dav
def
= D(ρexact, ρav) and Dref

def
= D(ρexact, ρref)

are listed, i.e.

pmin =
|Π| −Dmin

|Π| , pav =
|Π| −Dav

|Π| , pref =
|Π| −Dref

|Π| . (6.6)

The numbers in brackets are the numbers of components in the corresponding so-
lutions.
For the small grid size of 4×4×4, the 100 best solutions and for the bigger 6×6×6
grid, the 70 best solutions were considered. While the exclusion of isolated points
does not seem to have much influence on the results, the restriction of the number
of components reduces the number of reasonable solutions significantly.
The tests in the tables 6.1 and 6.2 have been done starting with the magnitudes
of grid structure factors belonging to a binary electron density distribution.
In table 6.3, the results using the grid structure factors magnitudes belonging to
a real electron density distribution are presented and compared to the results we
get in the same test case using the ones belonging to a binary one.
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Grid size covering resolution Kexact constraints # sol pmin (Kmin) pav (Kav) pref (Kref)

4× 4× 4 10% 12-999 1 none 100 92% (1) 78% (1) 77% (1)
4× 4× 4 10% 12-999 1 iso 100 92% (1) 78% (1) 77% (1)
4× 4× 4 10% 12-999 1 connected (2) 90 92% (1) 78% (1) 77% (1)
4× 4× 4 10% 12-999 1 connected (1) 46 92% (1) 84% (1) 80% (1)
4× 4× 4 10% 12-999 1 iso, connected (2) 90 92% (1) 78% (1) 77% (1)
4× 4× 4 10% 12-999 1 iso, connected (1) 46 92% (1) 84% (1) 80% (1)

4× 4× 4 25% 12-999 1 none 100 89% (1) 69% (1) 64% (1)
4× 4× 4 25% 12-999 1 iso 100 89% (1) 69% (1) 64% (1)
4× 4× 4 25% 12-999 1 connected (2) 97 89% (1) 69% (1) 64% (1)
4× 4× 4 25% 12-999 1 connected (1) 74 89% (1) 81% (1) 83% (1)
4× 4× 4 25% 12-999 1 iso, connected (2) 97 89% (1) 69% (1) 64% (1)
4× 4× 4 25% 12-999 1 iso, connected (1) 74 89% (1) 81% (1) 83% (1)

4× 4× 4 30% 12-999 1 none 100 81% (1) 75% (2) 81% (1)
4× 4× 4 30% 12-999 1 iso 100 81% (1) 75% (2) 81% (1)
4× 4× 4 30% 12-999 1 connected (2) 96 81% (1) 75% (2) 81% (1)
4× 4× 4 30% 12-999 1 connected (1) 71 81% (1) 78% (1) 81% (1)
4× 4× 4 30% 12-999 1 iso, connected (2) 96 81% (1) 75% (2) 81% (1)
4× 4× 4 30% 12-999 1 iso, connected (1) 71 81% (1) 78% (1) 81% (1)

Table 6.1: Results on a grid with 64 independent grid points, calculation started with structure factor magnitudes
belonging to a binary grid electron density distribution

107



Im
p
lem

en
tation

an
d
C
om

p
u
tation

al
R
esu

lts

Grid size covering resolution Kexact constraints # sol pmin (Kmin) pav (Kav) pref (Kref)

6× 6× 6 30% 4-999 2 none 70 73% (1) 80% (2) 62% (2)
6× 6× 6 30% 4-999 2 iso 67 73% (1) 80% (1) 62% (2)
6× 6× 6 30% 4-999 2 connected (3) 55 73% (1) 74% (1) 67% (1)
6× 6× 6 30% 4-999 2 connected (2) 49 73% (1) 74% (1) 67% (1)
6× 6× 6 30% 4-999 2 iso, connected (3) 55 73% (1) 74% (1) 67% (1)
6× 6× 6 30% 4-999 2 iso, connected (2) 49 73% (1) 74% (1) 67% (1)

6× 6× 6 30% 12-999 1 none 70 72% (1) 56% (4) 54% (2)
6× 6× 6 30% 12-999 1 iso 67 72% (1) 62% (2) 54% (2)
6× 6× 6 30% 12-999 1 connected (2) 49 72% (1) 66% (1) 63% (1)
6× 6× 6 30% 12-999 1 connected (1) 28 72% (1) 74% (1) 65% (1)
6× 6× 6 30% 12-999 1 iso, connected (2) 47 72% (1) 69% (1) 68% (1)
6× 6× 6 30% 12-999 1 iso, connected (1) 26 72% (1) 74% (1) 70% (1)

Table 6.2: Results on a grid with 216 independent grid points, calculation started with structure factor magnitudes
belonging to a binary grid electron density distribution
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Grid size covering resolution Kexact constraints # sol pmin (Kmin) pav (Kav) pref (Kref)

4× 4× 4 30% 12-999 1 none 100 81% (1) 72% (1) 63% (1)
4× 4× 4 30% 12-999 1 iso 100 81% (1) 72% (1) 63% (1)
4× 4× 4 30% 12-999 1 connected (2) 100 81% (1) 72% (1) 63% (1)
4× 4× 4 30% 12-999 1 connected (1) 86 81% (1) 75% (1) 63% (1)
4× 4× 4 30% 12-999 1 iso, connected (2) 100 81% (1) 72% (1) 63% (1)
4× 4× 4 30% 12-999 1 iso, connected (1) 86 81% (1) 75% (1) 63% (1)

6× 6× 6 30% 12-999 1 none 30 72% (1) 53% (4) 55% (4)
6× 6× 6 30% 12-999 1 iso 30 72% (1) 53% (4) 55% (4)
6× 6× 6 30% 12-999 1 connected (2) 23 72% (1) 55% (4) 40% (2)
6× 6× 6 30% 12-999 1 connected (1) 6 72% (1) 63% (1) 72% (1)
6× 6× 6 30% 12-999 1 iso, connected (2) 23 72% (1) 55% (4) 40% (2)
6× 6× 6 30% 12-999 1 iso, connected (1) 6 72% (1) 63% (1) 72% (1)

Table 6.3: Results of a calculation started with structure factor magnitudes belonging to a real grid electron density
distribution
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The tables show that in general, the values of pav as well as pref increase by adding
stricter constraints, displaying the increasing quality of the regarded solutions. Es-
pecially the component-constraint reduces the number of reasonable solutions and
increases the quality of the remaining ones significantly.
The last table shows, that also starting with the structure factor magnitudes be-
longing to a real electron density distribution and, due to the running time, only
a small number of calculated solutions, quite good results can be expected.
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Chapter 7

A Different Approach: Integer
Points in Polyhedra

The best way to have a good idea is to have
lots of ideas.

Linus Pauling

This chapter covers an approach to find integer points in polyhedra. This differs
from the usual methods to solve integer linear programs, implemented in standard
ILP-solvers. Its main advantage is, that instead of finding one optimal solution,
we get all feasible solutions of the original phase problem stated in (2.89) to (2.91).
Starting with the phase problem defined in (2.89) to (2.91), it will be shown that
this problem can be described by a minimization problem, whose set of solutions
is an ellipsoid. Then two different methods to search for integer points in ellipsoids
are shortly presented and finally the whole procedure is illustrated in a flow chart.
The results presented in this chapter are especially of interest, if not only binary
values for the grid electron density distribution are searched, but a discretisation
ρ(j)g ∈ {1, . . . , k}, ∀j ∈ Π and a k ∈ N.

7.1 Application in X-ray crystallography

Using the notations from chapter 2, we define
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A
def
=



















aRj (h) diag(−2bRh ) 0

aIj (h) 0 diag(−2bIh)

In



















, (7.1)

b
def
=





−cRh
−cIh
1n



 , x
def
=









(z(j))

(yRh )

(yIh)









, ε
def
=

(

εh
1n

)

. (7.2)

Then the set of variables satisfying the constraints for the phase problem (2.89)
to (2.91) is described by

{x ∈ {0, 1}n | |Ax− b| ≤ ε}. (7.3)

The last n inequalities of the inequality system, namely

|Inx−
1

2
· 1n| ≤

1

2
· 1n, (7.4)

ensure, that all variables are bounded with 0 being the lower and 1 being the upper
bound.
Regarding each row of the inequality system |Ax− b| ≤ ε, we get

|aT1 x − b1| ≤ ε1,

|aT2 x − b2| ≤ ε2,
...

|aTmx − bm| ≤ εm.

This inequality system can also be written in the form

| 1
ε1
aT1 x − b1

ε1
| ≤ 1,

| 1
ε2
aT2 x − b2

ε2
| ≤ 1,

...

| 1
εm
aTmx − bm

εm
| ≤ 1,

112



A Different Approach: Integer Points in Polyhedra

which is equivalent to

max
i∈{1,...,m}

| 1
εi
aTi x−

bi
εi
| ≤ 1. (7.5)

So, using the maximum norm we can write

‖Aεx− bε‖∞ ≤ 1, (7.6)

with

Aε =



















a11
ε1

a12
ε1

. . .
a1n
ε1

a21
ε2

a22
ε2

. . .
a2n
ε2

...
...

. . .
...

am1

εm

am2

εm
. . .

amn

εm



















,

bTε = (
b1
ε1

b2
ε2

. . .
bm
εm

), (7.7)

xT = (x1 x2 . . . xn).

So, in the context of the phase problem, we search the integer points in the set

S = {x ∈ Rn | ‖Aεx− bε‖∞ ≤ 1} . (7.8)

Subsequently, in this chapter we will show methods to find the set

S = {x ∈ Zn | ‖Aεx− bε‖2 ≤ 1} . (7.9)

So, the relations between the euclidean norm used in those methods and the maxi-
mum norm, we used in (7.8) to describe the phase problem, have to be considered.
On Rn the euclidean and the maximum norm are equivalent and the following
estimations are valid for x ∈ Rn [Plato, 2000]:

‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞. (7.10)

So, every vector contained in the set

L2
def
= {x ∈ Rn | ‖Ax− b‖2 < ε} , (7.11)

is also contained in

L∞
def
= {x ∈ Rn | ‖Ax− b‖∞ < ε} . (7.12)
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Vice versa, every vector contained in

{x ∈ Rn | ‖Ax− b‖∞ < ε} (7.13)

is also contained in

L
√
n

2

def
=
{

x ∈ Rn | ‖Ax− b‖2 <
√
nε
}

. (7.14)

So, by deciding to calculate either L2 or L
√
n

2 one decides to get only vectors also
contained in L∞, but not all of them, or to get all vectors contained in L∞, but
also some others.

7.2 Singular value decomposition, normal pseu-

dosolution and perturbed systems

In the following, a diagonal matrix (aij) ∈ Rn×n, n ∈ N with entries

aij =
{

αk ∈ R, if i = j,
0, if i 6= j,

(7.15)

with 1 ≤ k ≤ n, will be written as diag(α1, . . . , αn).

Every matrix A ∈ Rm×n can be decomposed in the following way, this decom-
position is called singular value decomposition (SVD) [Hämmerlin and Hoffmann,
1994].

A = UΣV T , U ∈ Rm×m, Σ ∈ Rm×n, V ∈ Rn×n. (7.16)

U and V are orthogonal matrices, that means UUT = Im, where Im denotes the
m×m-identity matrix. Analogous for V , we get V V T = In. The columns vi of V
are the orthonormalized eigenvectors of ATA.
The matrix Σ is a diagonal matrix with

Σ = diag(σ1, σ2, . . . , σk, 0, . . . , 0), σ1 ≥ σ2 ≥ . . . ≥ σk > 0. (7.17)

The diagonal values σi, i ∈ {1, . . . k} of Σ are the singular values of A, i.e., the
square roots of the non-zero eigenvalues of ATA.

Now the following least-squares minimization problem will be regarded:

114



A Different Approach: Integer Points in Polyhedra

Definition 7.1. Minimization problem,

[Hämmerlin and Hoffmann, 1994]

Given A ∈ Rm×n, b ∈ Rm and using the spectral norm, which is the matrix norm
induced by the euclidean vector norm, the problem to find an x ∈ Rn fulfilling

‖Ax− b‖22 = inf
x∈Rn

‖Ax− b‖22 (7.18)

is called least-squares minimization problem.

Using singular value decomposition, A can be decomposed: A = UΣV T , U ∈
Rm×m, Σ ∈ Rm×n, V ∈ Rn×n. Due to the orthogonality of U , the equation

‖x‖2 = ‖UTx‖2 holds for all x ∈ Cn. Setting z
def
= V Tx, d

def
= UT b and taking into

account the orthogonality of U , one gets:

‖Ax− b‖22 = ‖UT (Ax− b)‖22 = ‖ΣV Tx− UT b‖22 = ‖Σz − d‖22. (7.19)

Let r be the rank of A. Due to [Hämmerlin and Hoffmann, 1994], the set of
solutions L2

min of the least-squares minimization problem can be determined by:

L2
min = { x ∈ Rn | ‖Ax− b‖22 = inf

x∈Rn
‖Ax− b‖22 ,

A ∈ Rm×n, b ∈ Rm } , (7.20)

=

{

x ∈ Rn | x =
r
∑

i=1

1

σi
div

i + ker(A)

}

. (7.21)

(7.22)

The set of solutions L2
min forms an affine vector space of dimension dim(ker(A)).

One of these solutions is the normal pseudosolution x+ given by

x+ =
r
∑

i=1

1

σi
div

i. (7.23)

There exists exactly one normal pseudosolution x+ of the minimization problem
[Hämmerlin and Hoffmann, 1994].
Therefore a linear mapping b 7→ x+, Rm → Rk can be defined via

x+ =

r
∑

i=1

1

σi
div

i =

r
∑

i=1

1

σi
(UT b)iv

i. (7.24)

This mapping is given by the pseudoinverse of A, denoted as A+ ∈ Rm×n and
satisfying A+b = x+.
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The matrix A+ ∈ Rm×n can be decomposed in the following way [Hämmerlin and
Hoffmann, 1994]:

A+ = V Σ+UT , (7.25)

with

Σ+ = diag(σ−1
1 , σ−1

2 , . . . , σ−1
k , 0, . . . , 0) (7.26)

and U and V defined like above in the singular value decomposition of A.

7.3 Inequalities

Now, the singular value decomposition will be applied to find integer solutions of
the phase problem defined in (2.89) to (2.91). We will show, that the set

Lε = {x ∈ Rn | ‖Ax− b‖2 < ε} , (7.27)

with A ∈ Rm×n, b ∈ Rm, ε ∈ R+ describes an ellipsoid and thus, methods for
finding integer points in ellipsoids can be used to find the integer solutions. The
inequalities (7.4) ensure, that the set Lε is bounded, as they force all variables to
take values between 0 and 1.

Theorem 7.2.

If the set

Lε = {x ∈ Rn | ‖Ax− b‖2 < ε} (7.28)

is bounded, it describes the inner part of the ellipsoid

E =
{

x ∈ Rn | xTQ−1x ≤ 1
}

, with Q−1 def
=

1

ε2
ATA. (7.29)

The center of the ellipsoid is given by x+.

Proof: Following the argumentation in [Überhuber, 1995], showing that a sphere
is mapped by linear mapping maps onto an ellipsoid, we show that the preimage
of the sphere {y ∈ Rn | ‖y‖2 < ε, y = Ax− b} is an ellipsoid, if this preimage is
assumed to be bounded.
With y

def
= Ax−b and A = UΣV +, we get ΣV Tx = UT (y+b). By defining x′ = V Tx
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and y′ = UT (y+b) and thus Σx′ = y′, we change the regarded coordinate systems.
Then



















σ1x
′
1

...
σrx

′
r

0
...
0



















=







y′1
...
y′m






. (7.30)

So,

x′i =
y′i
σi
, i ∈ {1, . . . , r}, x′i ∈ R, i ∈ {r + 1, . . . , n}. (7.31)

If the set Lε = {x ∈ Rn | ‖Ax− b‖2 < ε} is bounded, there are no eigenvalues of
value zero and thus r = n. The preimage of the set {y′ ∈ Rm | ‖y′‖2 < ε} is given
by

{x′ ∈ Rn |
r
∑

i=1

(

y′i
σi

)2

< ε}, (7.32)

which describes an ellipsoid.

‖Ax− b‖2 < ε, ε > 0

⇒ ‖Ax− b‖22 < ε2

⇔ (Ax− b)T (Ax− b) < ε2

⇔ (UΣV Tx− b)T (UΣV Tx− b) < ε2

⇔ (UΣV Tx− UΣV TV Σ+UT b)T (UΣV Tx− UΣV TV Σ+UT b) < ε2

⇔ (x− V Σ+UT b)T (UΣV T )T (UΣV T )(x− V Σ+UT b) < ε2

⇔ (x− A+b)TATA(x−A+b) < ε2

⇔ (x− x+)TATA(x− x+) < ε2

⇔ (x− x+)TQ(x− x+) < 1 (7.33)

The previous observations show that Lε = {x ∈ Rn | ‖Ax− b‖2 < ε} describes
the inner part of an ellipsoid and thus, the problem of finding the set of integer
points satisfying {x ∈ Zn | ‖Ax− b‖2 < ε} can be solved by methods to find in-
teger points in ellipsoids.
If we consider only binary vectors in the set Lε, i.e., we try to find the set
Lbin
ε = {x ∈ {0, 1}n | ‖Ax− b‖2 < ε}, then as

Lε = {x ∈ Rn | ‖Ax− b‖2 < ε}
=

{

x+ + y | y ∈ L̃
}

,
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with

L̃
def
=
{

y ∈ Rn | ‖Ay‖22 < ε′
}

with ε′
def
= ε2 − ‖Ax+ − b‖22,

we get

Lbin
ε =

{

(x+ + y) ∈ {0, 1}n | y ∈ L̃
}

=
{

(x+ + y), yi ∈ {−x+i , 1− x+i } | y ∈ L̃
}

.

7.4 Integer points in an ellipsoid

There exist different methods for finding integer points in ellipsoids. They esti-
mate the set Lbin

ε = {x ∈ Zn | ‖Ax− b‖2 < ε}.

These methods use transformations of the ellipsoid, such that an efficient algorithm
can be found allowing to find the points in the transformed object that correspond
to the searched integer values.

for any given linearly independent vectors b1, . . . , bl ∈ Ql, finds a reduced basis of
the lattice Λ(b1, . . . , bl) ⊆ Rn.

Reduced basis in non-euclidean norm

Let a positive definite rational n × n-matrix Q be given. Then a Gram-Schmidt
orthogonalization with respect to orthogonality ⊥ relative to the inner product
defined by Q and a norm ‖ · ‖Q defined by Q can be defined [Schrijver, 1989]:

‖x‖Q def
=
√

xTQx, ∀x ∈ Rn (7.34)

x ⊥ y ⇔ xTQy = 0, ∀x, y ∈ Rn. (7.35)

Such a reduced basis consists of basis vectors that are as parallel as possible to the
main axes of the ellipsoid described by

{x ∈ Rn | xTQx ≤ χ}, χ ∈ R, (7.36)

see [Aardal et al., 2002; Cook et al., 1993].
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Definition 7.3. Reduced basis with respect to the inner product

defined by Q

A basis b1, . . . bl of a lattice Λ ⊂ Rn is called reduced in the sense of Lovász with
respect to the inner product defined by Q, if and only if

|λij| ≤
1

2
for 1 ≤ i < j ≤ l (7.37)

‖b∗i + λi,i−1b
∗
i−1‖2Q ≥ 3

4
‖b∗i−1‖2Q for 1 < i ≤ l. (7.38)

Here, bi = λ1b
∗
1 + . . .+ λi−1b

∗
i−1 + b∗i .

Let be Bi the matrix with columns b1, . . . , bi, where b1, . . . , bi are the initial lattice
basis vectors. The Gram Schmidt orthogonalization process [Plato, 2000] itera-
tively calculates the Gram-Schmidt-basis vectors b∗1, . . . , b

∗
l :

b∗i = bi − Bi−1(B
T
i−1QBi−1)

−1BT
i−1Qbi. (7.39)

The calculated basis fulfils b∗i ⊥ b∗j , ∀i, j ∈ {1, . . . , n}, i 6= j.
The LLL-basis reduction method with respect to Q is a generalization of the LLL-
basis reduction method using the euclidean norm [Lenstra et al., 1982].

Branching on hyperplanes

There are different integer programming algorithms using basis reduction. The
main idea behind those is to enumerate the parallel hyperplanes containing the
regarded lattice in order to find out if there is a lattice point inside the regarded
area. Therefore a representation of the lattice hyperplanes is searched for, ensuring
that for a given dimension n only a polynomial number of hyperplanes has to be
enumerated. One of these algorithms is the algorithm of Grötschel, Lovász and
Schrijver [Aardal et al., 2002, 2005]. They proofed, that in polynomial time one
can either find an integer point in an regarded polytope or a non-zero integral
direction c, such that the width of the polytope in this direction is bounded by
a constant only depending on the dimension n. They show, that by applying the
shallow-cut ellipsoid method, cf. [Aardal et al., 2005], this theorem is also valid,
if an ellipsoid instead of the polytope is regarded.

If the algorithm does not lead to a feasible integer solution, but only to an integral
vector c, a ”branching on hyperplanes”-procedure can be applied to find feasible
integer solutions [Cook et al., 1993].
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7.4.1 The LAMBDA-method

The problem of searching for integer points in an ellipsoid also occurs in Geodesy
in the context of the development of Global Positioning Systems (GPS). It is intro-
duced in this context in [Teunissen, 1993], the theoretical background is explained
in detail in [Teunissen, 1997a,b,c,d] and the implementation aspects are described
in [de Jonge and Tiberius, 1996]. Here, the considered problem is to find x ∈ Zn

that solves

min
x∈Zn

(x− p)TQ−1(x− p), (7.40)

where Q−1 is a symmetric, positive definite real matrix and p ∈ Rn. To solve this
problem, first a reduction process is performed. Then a search algorithm on a
hyper ellipsoid will be used to evaluate the solution of (7.40).
The main idea of the algorithm is to calculate lower and upper bounds of every
variable in order to be able to perform an efficient integer point search in the
ellipsoid. The quality of the bounds is increased by calculating directly only the
bounds of one variable and then to calculate the other ones in dependence of the
already calculated. As only the previously calculated values of the variable-bounds
are known, a decorrelation step is necessary, so that only the already calculated
bounds are needed to find the ones for the next variable.
For a better efficiency of the algorithm a reduction process is used. The LAMBDA-
reduction is based on the ideas presented in [Lenstra, 1981] that also led to the
LLL-algorithm. Here also a reduction process is used to find grid basis vectors in
a way, that they are nearly orthogonal, as parallel as possible to the grid axes of
the ellipsoid, short and sorted in a decreasing order. As the process is performed
on the matrix defining the ellipsoid and not on some vectors defining a grid basis,
always the grid of integer points is regarded and one starts with the canonical
basis.
Performing the same transformation, that was used to reduce the grid, on the
ellipsoid leads to a new ellipsoid, that it is more sphere-like, without changing its
volume [Teunissen, 1993]. Figure 7.1 shows how this reduction process increases
the quality of the bounds.

Reduction process

An ellipsoid E is defined by a matrix Q−1, if and only if

E =
{

x ∈ Rn | (x− x+)TQ−1(x− x+) < χ, χ ∈ R
}

. (7.41)
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Figure 7.1: Two ellipsoids of the same volume with the best lower and upper
bounds for the variables x1 and x2

The Cholesky-decomposition can be used to decompose Q−1 into Q−1 = LTDL,
with a unit lower triangular matrix L and a diagonal matrix [Plato, 2000]

D = diag(d1, . . . dn), di > 0, ∀i ∈ {1, . . . n} . (7.42)

So, Q = L−1D−1LT−1

.
Then, [Teunissen, 1995] suggests to search for a transformation matrix Z, such
that

Ẽ
def
=
{

z ∈ Rn | (z − ẑ)T Q̃−1(z − ẑ) < 1
}

, (7.43)

with Q̃
def
= ZTQZ and z

def
= ZTx, ẑ

def
= ZTp is an ellipsoid where the number of

integer points is the same as in E, but with a different shape.
Z should be an integer approximation of L and unimodular, i.e.

| det(Z)| = 1, (7.44)

as unimodular matrices are volume-preserving, this means a transformation per-
formed by Z changes the shape but not the volume of the regarded ellipsoid.
Additionally, Z should be invertible and fullfill the following properties:

b = Za ∈ Zn ⇔ a ∈ Zn and (7.45)

a = Z−1b ∈ Zn ⇔ b ∈ Zn. (7.46)

As Z is integer-preserving, cf. (7.45), the number of grid points inside the ellipsoid
defined by Q̃ is the same as the number of grid points inside the ellipsoid defined
by Q−1.
By choosing a matrix Z approximating L, one tries to get a matrix Q̃ as diagonal
as possible, i.e., to decorrelate the unknown parameters.
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To search the ellipsoid for valid integer values, a kind of Depth First Search Algo-
rithm can be used.
The upper and lower bounds defining valid intervals for every variable zi can be
calculated recursively. Starting with zn the smallest integer value in the interval
is taken as value for zn, then go on and take the smallest integer value in the cor-
responding interval for zn−1 and so on. If there is no integer value in the interval
for a zi, return to zi−1 and choose the next integer value, which is the smallest,
not already chosen one, in this interval and continue. Getting a value for z1, an
integer solution has been found. Now go on with z1 and check, if there is another
integer value in the interval for z1, if there is one, it gives another integer solution.
When there is none left, go back to z2, take the next integer value and so on.

7.4.2 Flow chart

The main steps of the ways to determine the set L∞ = {x ∈ Zn | ‖Ax− b‖∞ < ε}
using the previously described methods are summarized in the following flow chart.
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Problem: Find L∞ = {x ∈ Zn | ‖Ax− b‖∞ < ε}

Consider Lε = {x ∈ Rn | ‖Ax− b‖2 < ε}
instead of L∞

Calculate x+, the normal pseudosolution of the minimization
problem, i.e., ‖Ax+ − b‖2 = infx∈Rn ‖Ax− b‖22

Lε describes interior of an ellipsoid,
Lε = {x ∈ Rn | (x− x+)TQ−1(x− x+) < 1,

Q−1 =
1

ε2 − ‖Ax+ − b‖2
ATA}

LLL-algorithm: calculate reduced
basis of the lattice Zn

with respect to the inner product
defined by Q−1

LAMBDA-algorithm:
change shape of the ellipsoid

Use branching on hyperplanes
algorithm to find lattice

points in ellipsoid

Use Depth First Search
algorithm to find lattice

points in ellipsoid

Get {x ∈ Zn | ‖Ax− b‖2 < ε}
by backtransformation of the calculated lattice points

{x ∈ Zn | ‖Ax− b‖2 < ε} ⊆ L∞
⊆ {x ∈ Zn | ‖Ax− b‖2 <

√
nε}
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Summary and Outlook

We can only see a short distance ahead,
but we can see plenty there
that needs to be done.

Alan Turing

The phase problem is the major problem in the field of X-ray crystallography. In
the context of direct methods, that use mathematical techniques to compute an
electron density map from the diffraction data without any further experiments,
binary integer programming models for solving the phase problem have been de-
veloped.
Based on descriptions of topological properties of 2-dimensional binary pictures
known from the field of discrete tomography, these models have been extended
for the 3-dimensional case. As the formulations are in general not sufficient to
describe the more complex properties of the shape of proteins, binary integer pro-
grams have been derived for describing different additional topological properties.
In general, the binary integer program for solving the phase problem, leads to a
set of different optimal solutions. The additional constraints increase the quality
of the solution set.
The main property considered is one restricting the number of components in the
resulting solution. Using graph theoretical methods and a separation algorithm, a
model to describe this property has been found and implemented. Computational
results have been presented and evaluated. It has been shown, that the added
topological constraints increase significantly the quality of the solution set.
In the last chapter, a method to find the solutions all at once based on singu-
lar value decomposition and methods to find integer points in ellipsoids has been
developed. In further work, the efficiency of this method for the phase problem
should be evaluated and the method could be implemented and tested.
In order to further increase the solutions’ quality, more additional constraints could
be formulated and added.
If the running time of the solving algorithm could be decreased, a refinement of
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the model would be possible. Bigger grids could be considered showing more de-
tails of the reconstructed protein. More phase values than just four ones could be
introduced. A restriction of the electron density distribution to a finite number of
states instead of regarding just the two binary ones would be a possible extension.
So, based on the promising results presented here, lots of further work extending
and refining the developed approaches is possible.
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Zusammenfassung

Röntgenkristallographie ist derzeit die Standardmethode zur Ermittlung der drei-
dimensionalen Struktur biologischer Makromoleküle, wie z. B. von Proteinen, und
liefert damit eine wichtige Basis der Strukturbiologie sowie der modernen Biotech-
nologie.
Aus Röntgenexperimenten erhält man Beugungsmuster, aus welchen dann die
Struktur des zu untersuchenden Kristalls berechnet werden soll. Diese wird durch
die zugehörige Elektronendichteverteilung beschrieben. Allerdings liefert das Beu-
gungsmuster nur die Beträge der komplexen Fourierkoeffizienten der Elektronen-
dichte, nicht die zugehörigen Phasenwerte. Das Problem, diese Phasenwerte zu
ermitteln, ist das Phasenproblem in der Röntgenkristallographie.
Die Informationen, welche aus dem Röntgenexperiment gewonnen werden können,
sind nicht ausreichend um dieses Phasenproblem zu lösen. Daher erhält man nicht
nur eine, sondern eine Menge zulässiger Lösungen. Zusätzliche Informationen über
die Elektronendichteverteilung können dann hinzugezogen werden um die Qualität
dieser Lösungen zu verbessern.
In dieser Arbeit wird ein ganzzahliger linearer Optimierungsansatz zur Lösung des
Phasenproblems entwickelt, in dem verschiedene topologische Eigenschaften von
Proteinen modelliert und als zusätzliche Informationen verwendet werden. Die
wichtigste Eigenschaft, die so modelliert und für die Problemlösung hinzugezogen
wird, ist die Zusammenhangseigenschaft von Proteinen. Diese sichert, dass die
berechnete Struktur nicht aus mehr als einer gegebenen Anzahl zusammenhän-
gender Komponenten besteht. Bei der Modellierung dieser Zusammenhangseigen-
schaft werden graphentheoretische Methoden sowie ein Separationsalgorithmus
genutzt.
Der Modellierungsansatz wurde implementiert und mit Daten von echten Pro-
teinen getestet. Die Testergebnisse zeigen, dass die Qualität der Lösungen des
Phasenproblems durch die Hinzunahme der topologischen Eigenschaften deutlich
verbessert wird.
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