
1 Background and theory

1.1 Towards quantum size effects

The presentation “There is plenty of room at the bottom” given by Richard Feynman on December 
26, 1959 at the annual meeting of the American Physical Society�, serves to demonstrate the 
possibilities of miniaturization and is one of the leading driving forces for nanotechnology. 
Especially in combination with Moore’s law�, the predictions of which, relating to the increase of 
electronic circuit packing density on silicon chips, have held for more than for decades now. This 
law provides an impressive demonstration of the fact that, with features on commercial electronic 
circuits now reaching a line width of 65 nm, nanotechnology is rapidly advancing. Many other 
aspects of modern technology are also based on dimensions getting ever smaller, and increasing 
the storage and information density. Nobody is surprised any more by the notion that all the books 
ever written would fit on the head of a pin, and we have come to expect the next generation of 
computers to be much faster and smaller than the one before. Ever since 1989, when IBM scientist 
Don Eigler spelt the letters “IBM” with individual xenon atoms by using a scanning tunnelling 
microscope�, it is only the atom that is the limit. Where the IBM experiment primarily served to 
show the possibility of manipulating individual atoms, it also indicated the limitations. To make 
any technologically useful object with such a method would require by far too much time. So it 
seemed that although we are capable of manipulating individual atoms, this will not provide the 
final step for Feynman’s prophecy. Luckily, nature herself provides a solution here in the form of 
self-organization. In a way similar to how large organic molecules such as DNA are spontaneously 
formed from their individual molecular building blocks, atoms also tend to arrange themselves on 
surfaces in an ordered fashion. A recent example of  how self-organization of atoms at a surface can 
be used to create a technologically useful object was presented by the group of Himpsel�. The group 
created a regular array of individual silicon atoms, with the possibility to store information on an 
atomic scale by either the presence or absence of an atom, this can be regarded as an atomic bit. For 
every silicon atom, 19 substrate atoms are needed in order to prevent the interaction between two 
individual storage sites. This yields an information density close to the theoretical limit of one bit 
per 1.5 nm. Figure 1.1 shows a comparison between this information density and that of a common 
compact disc; note that the scale of the two images differs by three orders of magnitude. Due to 
fundamental physical limitations the read/write speed of this atomic memory is however very low 
and in this respect it may not be directly technologically relevant. It may therefore be concluded 
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Figure 1.1: Comparison between 
the information density of a normal 
CD (left) and the “atomic CD” 
made from individual Si atoms 
from Himpsel and co-workers4 
(right). Note the difference in scale 
between the images.

that, although for nano-technology there is still plenty of room at the bottom, fundamental nano-
research today is reaching its lower limit of data storage and the manipulation of individual atoms. 
Hence the focus of this thesis is not to try to make even smaller structures, but the understanding 
of the physics governing the self organization and other processes at these length scales.
Just as the dimensions of individual atoms define the transition from nano- to atomic-scale physics, 
for metallic structures the electron coherence length dictates another important transition. Below 
this length scale the electrons will retain their phase information and can therefore no longer be 
regarded as a continuum or sea of electrons. This may result in many effects that are not observed 
in macroscopic systems, the most pronounced being the formation of standing electron waves. 
The first observation of these so-called quantum well states (QWS) in metals was made in 1971 
by electrons tunnelling from thin lead films of around 250 Å through an oxide layer in transport 
measurements�. These and similar observations raised the interest of theoretical physicists in 
size dependent quantum mechanical effects in such metal films. In 1976 Schulte� predicted that 
the work function, Fermi energy, charge spilling, and electron density oscillates as a function of 
thickness. These calculations were performed within a jellium model, and therefore ignored the 
atomic structure of the metal layer. To compensate for this, Feibelman� included in his calculations 
the fact that the thickness of the layer can only increase with an integer number of atomic distances, 
and that the outer layers of a film relax. The general picture, however, did not change much, 
primarily adding the interlayer relaxation to the list of properties that will oscillate with thickness. 
Since most properties of a crystal depend directly on the electron distribution and density of states 
around the Fermi level, almost all other physical properties of the film will oscillates with thickness 
if this property does.
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This oscillatory behaviour, and other properties that arise from the standing electron waves in thin 
metal films, are generally referred to as quantum size effects (QSE). One of the most striking results 
of QSE is the formation of “magic” or preferred island heights and the self-organization of the metal 
layer into these heights, addressed in more detail below. However, the most direct manifestation of 
an oscillation of the electron density around the Fermi level is the variation of  the conductivity of the 
films. For thin lead films, this has been observed both by resistance measurements in combination 
with reflection high energy electron diffraction (RHEED)� and by directly measuring the current 
through the layer in a four probe measurement�. A very intriguing QSE is the oscillation of the 
magnitude and the sign of the Hall coefficient as a function of Pb coverage10. This observation can 
only in part be explained by taking a detailed look at the band structure for a three-dimensional 
solid11. Other recently measured consequences of quantum size effects are the oscillations in the 
magnitude of electron phonon coupling, and in the critical temperature for superconductivity12. 
Moreover, the electronic properties directly influence the chemical reactivity of a thin film. This 
is nicely illustrated in a recent photoemission electron microscopy (PEEM) experiment on the 
oxidation of atomically flat magnesium films13. The reactivity is maximum when a quantum well 
state is close to the Fermi level and decreases when the density of states at the Fermi level is low.

Summarizing the influence of quantum size effects, one may say that they are responsible for the 
oscillatory behaviour of many physical properties of thin films as a function of thickness. One of 
the goals of the present work is to gain a better understanding of the processes involved and their 
causes. 

1.2 Quantum well states: “textbook physics in the lab”

One of the standard teaching problems in introductory quantum mechanics is the “particle in a 
box”, often used as a comparison for the allowed energies of electrons in a hydrogen atom. In the 
simplest approach, consider the potential well to be one dimensional and with infinite potential 
barriers. The main results is that the electrons in this well form standing waves, with a node at the 
barriers of the well. If the width of the well is called d, the electron wavelength λn can be described 
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as
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where n is an integer. The probability density of these standing waves is schematically depicted on 
the left-hand side of Figure 1.2 (adapted from Milun14. By taking the de Broglie relation between 
the wavelength and the energy E of an electron with mass m into account, one can determine the 
quantised energy levels in the well as
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where h is Planck’s constant. The use of infinite barriers is an approximation that does not 
correspond to the physical reality of thin metal films. In all the systems discussed in this work, 
the potential barriers are defined by the metal-vacuum interface on one side, and by the barrier 
between the metal overlayer and the substrate on the other. Especially the latter can be very 
complex, and depends on the electronic structure of the substrate and the interface properties 
between substrate and deposited material.
Before dealing with the complexities of electrons in an asymmetric finite potential well, it is useful 
to first take a closer look at the effect of exchanging the infinite barriers for finite ones. One of the 
most striking consequences of the quantum mechanical treatment of electrons is that of tunnelling 
of those electrons through or into barriers. When the barrier is lowered, the wavefunction of the 

14	 M. Milun, P. Pervan, and D.P. Woodruff, Rep. Prog. Phys. 65, 99, (2002).

Figure 1.2: (left) Infinite quantum well 
with width d, the first four energy levels 
are schematically indicated. The standing 
waves have their nodal points at the well 
boundaries. (right) Quantum well with finite 
potential barriers and width d. Spilling of the 
wave function is indicated by the phase shifts 
ΦB and ΦC. Figure adapted from Milun14.
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electron will decay more slowly and penetrate further into the barrier. Mathematically this problem 
can be solved by requesting that the amplitude and gradient of the wavefunction at the boundary 
be continuous, i.e. the standing waves inside the well match the exponential tails outside. As can 
be seen in the right-hand part of Figure 1.2 this means that the wave function has extended, and 
that the effective width of the well is increased. From Equation 1.2 it follows directly that this will 
result in a lowering of the energy of the quantum well states. This dependence of the QWS energies 
on the height and shape of the boundary and therefore on interface conditions can be used to obtain 
an intuitive feeling for the processes at the interface.

Due to the asymmetry of the potential barriers, the exponential decay of the wavefunction will be 
different at both boundaries, and has to be treated separately. Since the exact atomic structure at the 
interface is usually not known, and even if it is known the resulting electron potential is difficult to 
describe analytically, one should look for an alternative solution of the problem. This alternative 
solution is provided in the form of the “phase accumulation model” first presented by Echenique 
and Pendry15 for the description of surface states of metals, and later refined by Smith16. Because 
of the analogy with the motion of an electron around an atom core, it is also often referred to as the 
Bohr-Sommerfeld quantization rule17. This model states that, for standing electron waves to exist, 
the total phase of the electron accumulated on a complete round trip has to be equal to an integer 
multiple of 2π. If we now treat the tunnelling of the electrons as a phase shift at the respective 
interface, this can be summarized as follows:

	 nmkd CB π22 0 =Φ+Φ+ ,							       (1.3)
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16	���������������������������      N.V. Smith, Phys. Rev. B, 32, 3549 (1985).
17	������������������������������      T-C. Chiang, Surf. Sci. Rep. 39, 181 (2000).

Figure 1.3: Schematic potential for a thin 
metal film on a crystal substrate. Quantum 
well states are formed due to the reflection 
of the electron wave at the image potential 
at the vacuum side, and the interface 
potential at the substrate side. ΦB and ΦC 
denote the phase shift at the vacuum and 
the interface, respectively. The situation 
for a surface state is given by d = 0. Figure 
from Echenique and Pendry15.

1.2 Quantum well states: “textbook physics in the lab”
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where ΦB and ΦC are the phase shifts at the metal-vacuum and the substrate-metal interface 
respectively, k is the electron wavevector in the direction perpendicular to the surface, and 2mkd0 
is therefore the phase accumulated by an electron travelling back and forth through the film. The 
factor md0 arises from the fact that the thickness of the layer can only be an integer m times the 
interlayer spacing d0. In Figure 1.3, adapted from Echenique and Pendry, the phase accumulation 
model is schematically illustrated. The phase shift on the vacuum side is determined by the image 
potential and can be calculated in the WKB approximation by18
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where EV is the energy of the vacuum level and En the QWS energy, both expressed in eV. The 
beauty of this model is that it is valid for all thicknesses; when the thickness of the layer is reduced 
to zero the resulting energy levels with n>0 are the image potential states and the n=0 solution is 
the Shockley surface state. At intermediate thicknesses the energy levels are the quantum well 
states previously discussed, and for very large thicknesses when k┴ becomes a valid quantum 
number these will merge to form the bulk band structure of the metal.
For noble metals or other substrates with a Shockley-inverted band gap along the ��������������� Γ�������������� -L direction, 
the upper edge (L1) has s-character and the lower edge (L′2) has p-character, and the phase shift at 
the substrate-metal interface will vary accordingly. At the bottom of the band gap, the phase shift 
will be –�������������������������������������������������������������������������������������������                 π������������������������������������������������������������������������������������������                  and 0 at the top. The behaviour in between can then be described by the purely empirical 
formula
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where EL and EU are the energies of the lower and upper edge of the bandgap, respectively. In 
practice, the usefulness of this formula often proves to be rather limited and the phase shift at 
the substrate-metal interface cannot be predicted a priori. However, when the QWS energies are 
known from experimental data, the total phase shift can be determined as follows: consider layers 
with known thicknesses d1 and d2 and QWS with quantum numbers n1 and n2 at the same energy. 
Then subtraction of  Equation 1.3 for both cases will yield

	
( )

21

21

dd

nn
kz −

−
=

π .								        (1.6)
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Figure 1.4: (left) Theoretical probability density for the n = 1 - 3 quantum well states in a 24 ML thick 
Ag(111) film sandwiched between two semi-infinite Au crystals (left hand panel), and with one Au crystal 
replaced by vacuum (right hand panel). The vertical lines indicate the Au-Ag and Ag-vacuum interfaces. 
(right) Band structure of Ag and Au along the (111) direction, QWS in the Ag overlayer can only form above 
the Au valence band maximum, indicated by the dashed line. Both figures from Chiang17.

1.2 Quantum well states: “textbook physics in the lab”

In this way, the perpendicular electron wavevector kz at energy En1,2 can be determined. Repeating 
this procedure for a wide variety of energies will give the band structure that the QWS are derived 
from. This band structure will be entirely free of assumptions, in contrast to the free electron final 
state model. Using the obtained k-values in Equation 1.3 will give the total phase shift at both 
interfaces, and subtraction of the ΦB derived from Equation 1.4 will result in a value for ΦC. One 
of the major practical problems in this respect is that a very extended data set is needed in order 
to use enough QWS that belong to different coverages but have the same energy. When these 
prerequisites are fulfilled, the abovementioned analysis will provide valuable results, as has been 
shown for aluminium films on silicon19 where the phase shift is shown to have a profound effect 
on the electron wavevector in the direction perpendicular to the film. For more complex systems, 
the phase shift at the interface between the substrate and the overlayer will not just show a linear 
dependence on the binding energy as often reported17, but also depends on the density of states of 
the substrate and the exact arrangement of the atoms at the interface. A more detailed description 
of the influence of the interface will be given in Section 1.4.
If we extend the simple results for the particle in a box model shown in Figure 1.2 to electron 
states confined in a metal film, the electron wavevector in the quantum well consists of the 
rapidly oscillating Bloch wave derived from the inter-atomic distance, modulated by the envelope 
wavefunction from the standing quantum well wave. The phase shifts introduced in Equation 1.3 

19	�����������   L. Aballe et al, Surf. Sci. 482-485, 488-494 (2001).
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refer to the spilling of the envelope function, therefore several wavelengths of the Bloch state of the 
QWS can still exist in the substrate. This is illustrated in Figure 1.4 where the theoretical probability 
density for the first three quantum well states of 24 layers of Ag on Au(111) is displayed, with 
and without a vacuum barrier17. Especially for the higher binding energy state (n = 3), the effect 
of the phase shift is quite profound. The QWS will spill several monolayers into the substrate, 
making the quantum well effectively much wider. This QWS is actually only just inside the band 
gap of the Au(111) crystal, in contrast to the two other states that are well inside this band gap, 
therefore the confinement is not effective. If the binding energy were a little higher, thus outside 
the band gap, the confinement barrier would be too low and the state would not be confined at all. 
For the other two states that are inside the bandgap and further from this confinement threshold, 
the charge spilling is less and the confinement is better defined.

So far, the influence of the reduced dimensionality on the electron wavevector in the direction 
perpendicular to the surface has been discussed, and it has been shown that this wavevector will 
be quantised. In the direction parallel to the film, the electron should not experience any influence 
of the confinement, and a free-electron like behaviour comparable to the bulk material is expected. 

In order to obtain a feeling for the in-plane band structure, density functional theory (DFT) 
calculations for free standing metal slabs are very helpful. In Figure 1.5 a comparison between a 
DFT calculation for a free-standing Pb slab and the band structure for a film of Pb on single crystal 
hexagonal graphite measured by angle-resolved photoemission, is shown. Due to the negligible 
interaction with the substrate, the Pb layer can be regarded as a quasi free-standing slab allowing 
a direct comparison to the calculations. At the centre of the surface Brillouin zone (SBZ) (see 
inset in Figure 1.5), corresponding to the Γ point in the image, the quantization in the direction 
perpendicular to the film is most obvious, and this results in the individual sharp lines. For Pb these 
bands are derived from the 6pz states. The 6px,y states are also quantised, and disperse downwards 

Figure 1.5: Band structure for an ultrathin Pb film on single crystal hexagonal graphite measured by 
photoemission along the Γ - M direction. Lighter colours indicate a higher photoemission intensity. The solid 
lines projected on the image show the band structure obtained by DFT calculations for a 2 and 4 ML thick 
free-standing Pb slab. Further details about the image and how such images are acquired are discussed in 
Section 3.1.1. (inset) Surface Brillouin zone for the Pb layers.
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halfway through the surface Brillouin zone near the M point. A further description of all features 
in this image will follow in Section 3.1.1. The match between calculation and measurement is 
striking, indicating that DFT calculations for free standing layers provide an adequate starting 
point for band structure determinations in quantum well systems.

1.3 Electronic growth model and self-organized growth

It has recently been shown, both in theory and experiment, that the influence of confinement on 
the electronic structure discussed in Section 1.2, also has a profound influence on its growth mode. 
This is referred to as “electronic growth”, a term coined by Zhang20 in 1998. The motivation for 
this model was the observation of a growth mode that could be classified as “inverse Stranski-
Krastanov” growth. Regular Stranski-Krastanov growth is characterized by the initial formation 
of a smooth layer of the overlayer material on the substrate, followed upon further deposition by 
island growth. In contrast, for Ag growth on GaAs(110) at a certain critical thickness the films 
become atomically flat, after an initial island-like growth21. This rules out the influence of stress 
as the major driving force, as is often observed for systems with a lattice mismatch, and raises the 
question as to the origin of this growth mode.
The three main ingredients of the electronic growth model are quantum confinement, charge 
spilling, and interface-induced Friedel oscillations. Quantum confinement of electrons in the film 
initiates a repulsive force between the overlayer and the substrate that will try to stabilize the 
layer. Charge spilling results in electron transfer from the overlayer to the substrate, destabilizing 
the layer. Friedel oscillations are charge density oscillations in the direction perpendicular to the 
surface of a crystal that arise due the breaking of the translational symmetry at the surface. The 
general shape will be a damped sinusoidal function, where the charge density oscillations are most 
intense close to the surface. These oscillations result in a rearrangement of the position of the 
metal ions in the layers closest to the surface, which can either improve or lower the stability of 
the total layer. Therefore, the three above mentioned elements will compete to either make the film 
critically, magically, or marginally stable or completely unstable against breaking up in islands of 
different heights.
The characteristic measure for the film stability is the behaviour of the total energy of the layer as 
a function of thickness. Stable films are characterised by a second derivative of their total energy 
with respect to the thickness that is positive. A negative second derivative will make the films 
unstable, because the system can then achieve a lower total energy by breaking up into islands 

20	  Z. Zhang et al, Phys. Rev. Lett. 80, 5381 (1998).
21	������������   A.R. Smith et al, Science 273, 266 (1996).
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Figure 1.6: Total energy per surface area as a 
function of layer thickness for several classes 
of metals on GaAs(110). The films are stable 
where the curvature of the line is positive, and 
unstable when the curvature is negative. Figure 
from Zhang20.
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of adjacent coverages. The difference between magically and critically or marginally stable films 
is defined by the behaviour in the surroundings of the stable film. A critically stable thickness Lc 
can be defined when the film is stable for L ≥ Lc and unstable for L < Lc or the other way around, 
indicating the first or the last stable height of the system. The magic height Lm occurs when the 
film is unstable at both sides of Lm. This is a regional or absolute minimum in the total energy of 
the layer. Films are called marginally stable in all situations that do not correspond to the stabilities 
described above. Figure 1.6 (from Ref. 20) shows total energy calculations for a wide variety of 
metals on a GaAs(110) substrate, taking all the competing influences into account.

The fact that alkali metals cannot be grown as a smooth film at coverages larger than 1 ML on 
GaAs(110) is directly obvious from Figure 1.6. For all coverages the curvature is negative and 
all heights are unstable. The first stable height for Ag is at 5 ML, and after this the curvature 
remains positive for all coverages, reproducing the experimental observations21 that triggered 
the development of the model. One way to determine stable thicknesses is to carefully study the 
growth behaviour of the film by using surface sensitive techniques. An elegant counterpart of this 
is to determine the stability from the destruction of the layer. For Ag films grown on Fe(100)22 
the structural stability is studied by examining the photoemission signal of a QWS for a specific 
layer height while annealing the system. In this way, the temperature at which the layer breaks up 
into islands of adjacent heights could be determined. This “bifurcation” temperature is plotted as 
a function of layer thickness in Figure 1.7(a) and it is clear that the 5 ML thick film is extremely 
stable. In a more simple manner than described above, the energy of the layer was calculated 
by performing a summation over all valence electrons, with (Figure 1.7(b)) and without (Figure 
1.7(c)) a summation over the in-plane electron wavevectors. The energy difference between 
adjacent layers can be calculated as a discrete derivative

22	�����������   D.-A. Luh et al, Science 292, 1131 (2001).
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Figure 1.7: (a) Temperature at which the Ag 
layer on Fe(100) splits into adjacent island 
heights. The arrow for the 5 ML film indicates 
that this “bifurcation” temperature has not 
been reached. (b) Energy difference between  
layers per site according to Eq. 1.7, calculated 
for the full k range, and (c) by considering 
only the energies at k|| = 0. Figure from Luh21.
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where E(N) is the total energy of a layer with thickness N. From the energy difference, plotted as a 
function of the coverage in the respective figures (a) and (b), the correlation between total energy 
difference and layer stability is obvious. These results also show that, to a first approximation, the 
total energy at the zone centre can be used as a measure for stability. The total energy at the zone 
centre is lowest when the highest occupied quantum well state is furthest away from the Fermi 
level. Whenever stability is discussed in the present work the relative position of the QWS with 
respect to the Fermi level is used, and systems with a density of states close to the Fermi level are 
considered to be less stable.
In Figure 1.6 Be and Pb are chosen as representatives for other classes of metals; the total energy 
of these materials shows oscillations with thickness. For a study of preferred or stable heights, this 
will be the most interesting behaviour because individual magic heights may be isolated. From the 
rapid oscillation of the total energy of Pb, it is expected that every second layer is stable/unstable. 
This is what was initially observed for Pb on Cu(111) by means of helium scattering23. It is important 
to realize that in helium scattering, the outmost electron density rather than the absolute position of 
the atoms is probed. For metallic quantum wells, the spilling of this charge into the vacuum also 
depends on coverage. For Pb on Si(111), a wide variety of experimental data exists where magic 
heights are observed. The first clear observation was made with the use of spot profile analysis low 

23	  B.J. Hinch et al, Europhys. Lett. 10, 341 (1989).
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energy electron diffraction (SPALEED) in the group of Tringides, who found that up to a coverage 
of 7.5 ML, lead grows primarily in 7 ML high islands on Si(111)7x724. This observation was 
later confirmed by scanning tunnelling microscopy25 (STM), which data showed that the islands 
had steep walls and flat tops. Almost just as striking as the initial observations of magic height 
Pb islands, is its dependence on the interface reconstruction. If the surface reconstruction of the 
silicon substrate is changed from (7x7) to Pb-induced (√3x√3) before deposition, the preferred 
height changes from 7 to 5 ML26. In order to understand this change, it is useful to consider 
the total energy calculations as a function of layer thickness for both Pb on Si(111)7x7 and on 
Si(111):Pb√3x√3 as displayed in Figure 1.8. The general trend of the oscillations is similar for 
both interfaces. However, the relative depth of the minima is different, and this is what determines 
the magic thickness. For the √3x√3 phase the minimum at 5 ML is lower than the one at 8 ML. For 
the 7x7 reconstructed interface, the relative depth of the minima is reversed, explaining the change 
in magic height. Some remarks concerning magic height Pb islands are necessary here. First of 
all in some publications the heights are measured with respect to a wetting layer (SPALEED and 
STM) while in others the absolute height is used (theory and photoemission). For Pb on Si(111) 
7x7, the wetting layer has been determined to be one single monolayer thick27 which is consistent 
with the difference between measurement and calculation in reference 26. 

Substrate temperature plays an important role in the formation of magic heights, and thus needs to 
be taken into account. When the temperature is low enough, the mobility of the atoms is suppressed, 

24	� ���������  K. Budde et al, Phys. Rev. B, 61, 10602 (2000).
25	  S.H. Chang et al, Phys. Rev. B, 65, 245401 (2002).
26	  V. Yeh et al, Phys. Rev. Lett. 85, 5158 (2000).
27	 A. Mans, J.H. Dil, A.R.H.F. Ettema, H.H. Weitering, Phys. Rev. B, 66, 195410 (2002).

Figure 1.8: Calculated film energy vs 
film thickness L for the Si(111)7x7 and 
Si(111) √3x√3:Pb interfaces. The energy 
curve for the √3x√3 phase lies lower 
and has a lower minimum at L = 5 than 
the next minimum L = 8; for the (7x7) 
curve the order of the minima is inverted. 
Figure from Yeh26.
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resulting in a closed film with a narrow height distribution. At even lower temperatures this films 
will posses a fair amount of disorder. Above a temperature of 270 K, atom mobility for Pb will be 
high enough to overcome all barriers between stable and unstable heights; the electronic growth 
model will then no longer apply, and large clusters of a wide range of island heights form. The 
intermediate temperature range is where the magic height, steep-edge, flat-top islands occur. The 
mobility of the Pb atoms is then high enough to only form magic height islands, but too low to 
escape this energy minimum. The behaviour as a function of temperature depends on the substrate 
and the type of metal that is deposited. So far an extensive study has only been performed for Pb 
on Si(111)7x7, resulting in a complex phase diagram28.

Calculating the total energy of a film by using the simple approximation of summing the QWS 
energies at the zone centre might not reproduce the subtle difference caused by the two different 
interface reconstructions mentioned above. However, this simple model does have one major 
advantage, i.e. it is possible to make a rough estimate of the stable and unstable heights when 
only the bulk band structure is known. In a quantum well, the bulk bandstructure is quantized 
into equal parts corresponding to the number of monolayers, as indicated in Figure 1.9 for a 8 ML 
thick film of Pb grown in the (111) direction. This way, the energies of the resulting QWS can be 
approximated, and thicknesses where the QWS are close to the Fermi level will be less stable. The 
position where the upper branch of the sp-band crosses the Fermi level relative to the full Brillouin 
zone determines the number of monolayers that are needed to add one extra QWS to the upper 
branch. For Pb this is at 0.46 times the distance of  Γ-L, resulting in one extra QWS approximately 

28	�����������������������������������������       M. Hupalo and M.C. Tringides, Surf. Sci. 493, 526 (2001).

Figure 1.9: Schematic representation for a 
8 ML thick Pb(111) film of how the QWS 
binding energies can be obtained by cutting 
up the bulk band structure along the Γ-
L direction. Only in the vicinity of EF the 
spacing of the QWS is regular.
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every two layers, which explains the overall trend of bilayer oscillations of stability also seen in 
Figure 1.6 for Pb. For layers thinner than 9 ML, the coverages with an even number of layers 
are more stable, between 9 and 16 ML the odd coverages are more stable. Beyond this coverage 
the “even” coverages are more stable again, oscillating with a period of 7 ML. This period can 
be explained by looking at the reduced quantum number p = 3N - 2n, where N corresponds to 
the number of atomic layers and n is the quantum number from Equation 1.3. When a branch of 
constant p crosses the Fermi level, the stable heights switch from even to odd or vice versa.

Self-organization is regarded as the formation of well-organized structures due to energy minimizing 
processes. Feynman’s examples of nanoprinting or the manipulation of individual atoms to make 
a molecule1, are the exact opposite of the self-organization principle discussed above. For possible 
technical applications, self-organization of metal or semiconductor structures on surfaces is most 
interesting because it could eliminate or reduce lithography steps. Electronic growth can thus be 
used to control the height of metallic nanostructures on surfaces, and therefore provides a self- 
organization pathway for the formation of such structures. Furthermore, electronic growth causes 
the islands to have steep edges and flat tops. Other experiments have shown that it is also possible 
to control the lateral size, orientation and distance of nano-objects29.

1.4 Influence of the substrate and interface

When the size of a system is reduced, the surface-to-volume ratio increases, hence the boundary 
conditions become more and more important. In metallic quantum wells, the boundary is several 
atomic monolayers thick, causing an even larger influence of the boundaries. In the previous 
paragraph, the influence of the substrate-metal interface has been mathematically summarized 
into the phase shift at the interface. For the determination of the overall binding energy of the 
quantum well states, this is the correct approach; it does, however, not give any information about 
the physical effects taking place at the interface.

Figure 1.10 illustrates the three processes that can happen when an electron approaches an interface: 
(1) transmission of the electron across the interface, (2) incoherent backscattering whereby all 
phase information is lost, and (3) coherent backscattering. Only the last possibility will result 
in standing electron waves that constitute the quantum well states. In this paragraph, possible 
reasons why the first two processes might become important and limit coherent backscattering are 
discussed.

29	���������������������������������������������          M. Hupalo and M. C. Tringides, Phys. Rev. B 73, 041405 (2006).
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Figure 1.10: The three major events that 
can occur when an electron approaches an 
interface: (1) transmission of the electron across 
the interface, (2) incoherent backscattering 
whereby all phase information is lost, and 
(3) coherent backscattering. Only coherent 
backscattering can result in standing electron 
waves.

1.4 Influence of the substrate and interface

A necessary but not sufficient condition for the transmission of electrons across the metal-substrate 
interface is that, in the substrate, energy bands should exist that overlap with the energy of the 
QWS. This is the background for the common assumption that QWS can only exist within the 
bandgap of the substrate, and need to be referred to as quantum well resonances when they are 
outside the bandgap17. The reasoning behind this is illustrated by the n = 3 QWS in Figure 1.4, 
which is located just inside the Au(111) band gap. When the QWS moves a little lower, it can 
couple to the states in the substrate and will no longer be confined. That the presence of states in the 
substrate is not enough to allow for transmission into the substrate is illustrated for example by Al 
on Si(111)19 where QWS can be seen until about 4 eV below the Fermi level, whereas the valence 
band maximum (VBM) of silicon and therefore the theoretical confinement threshold is located at 
around 0.5 eV below EF. Similar observations have been made for other systems that do not have 
a perfect lattice match. This directly indicates the second condition for transmission of an electron 
across an interface: the interface has to provide a smooth transition from the overlayer lattice to the 
substrate one. For systems with a different interatomic distance, a smooth transition is nevertheless 
possible through some intermediate phase. This intermediate range can be a surface reconstruction 
of the substrate mediated by the overlayer material, or a disordered interface. An example of the 
first case is the √3x√3 reconstruction of Si(111) caused by Pb. On this reconstructed substrate, 
atomically flat layers can be grown30. The confinement threshold is defined by the VBM of the 
Si(111) and no QWS are observed outside this bandgap. On Si(111)7x7 the first layer of Pb grows 
with a 7x7 unit cell as well, but for higher coverages there is no well-defined crystalline structure 
at the interface. The electrons do, however, travel through the interface because the change in 
crystal structure is only gradual. This is indicated by the fact that there are again no QWS outside 
the silicon band gap27. States below the Si valence band maximum that are assigned as QWS are 
actually a result of the direct transition in the bulk band structure of Pb; this is obvious from the 
fact that the energy position does not change with coverage.

At first it seems counterintuitive that the bulk band can still be observed in a quantum well system, 
but this can be readily explained by considering Figure 1.4. From this figure it is clear that the 
wavefunction in the quantum well is composed of a rapidly oscillating Bloch wave derived from 

30	�������������������     ������ �����������  M.H. Upton et al, Phys. Rev. Lett. 93, 26802 (2004).
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the Pb interatomic spacing, modulated by the quantum well envelope wave function. One of the 
consequences of this is that in photoemission a direct transition from the QWS to the final state 
will occur at the same position where it would occur in the valence band in the kz direction of 
the bulk crystal. This direct transition can also occur in thin films when no QWS is present at 
that energy position, stimulated by the disorder at the interface. Although a gradually changing 
interface will allow for transmission of the electron through the interface, it also limits coherent 
backscattering and therefore the formation of QWS. The bulk-derived Bloch wave does not depend 
on the interface structure; this will show up in photoemission spectra as features comparable to 
those for bulk Pb. This may lead to erroneous assignments of features in photoemission; in recent 
photoemission measurements for Pb on Si(111), broad features outside the bandgap are interpreted 
as QWS27,31 although they do disperse with photon energy and do not shift with coverage.

This summarizes the two main processes that will limit coherent backscattering, and therefore 
adversely affect the formation of QWS. The degree of confinement of electrons depends only 
partly on the presence of a band gap in the substrate: it is the combination of lattice (mis)match 
and the electronic structure of the substrate and overlayer that matters. Controlling the interface 
structure is therefore an essential step towards the control of quantum wells structures.

31	  M.H. Upton et al, Phys. Rev. B, 71, 033403 (2005).
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