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Preface

“THE question ‘What makes things seem alike or seem different?’
is one so fundamental to psychology that very few psychologists have
been näıve enough to ask it.”

In 1950 Fred Attneave preluded his article Dimensions of Similarity [16] with
this provocative statement. Much has changed since that time and a lot
of progress has been achieved by psychologists investigating the essence of
perceived similarity. However, in computer science there is often still a large
gap between the modeling of similarity on the one side and the real-world
behavior of what should have been modeled on the other side. The author of
the present work does not claim that he is able to close, or even narrow this gap
but wants to bring it a little bit more to awareness. In order to do so, the basic
properties of perceived similarity and the main misconceptions are discussed in
the first chapter, before the actual topic, namely comparing figurative images
based on the depicted shapes, is treated in Chapters 2 to 4.

I would like to thank all those who accompanied me on my way, who gave me
support and made all this possible. . .
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Introduction

The free online dictionary Wictionary [240] defines similarity as the “close-
ness of appearance to something else”. Assuming that the closer two objects’
appearances are, the more properties they share, it becomes obvious that
perceiving visual similarity is a very fundamental and important ability: It
is an evolutionary advantage to be able to derive the properties of an object,
e. g., whether an animal is dangerous or not, by comparing its appearance with
the appearances of known objects.

The fields object recognition (identifying a known object), classification (iden-
tifying an unknown object as a member of a known class of objects), and
similarity estimation are closely related as the connection between similarity
and confusability suggests (see section 1.3.3.1). However, there is a crucial
difference: Normally, the question whether a scene contains a specific object
(or whether a scene contains an instance of a class of objects, respectively)
has a definite answer which is yes or no—even if finding the correct answer
may be hard to achieve. The answer to the question whether two objects are
perceived similar on the other hand is of gradual nature and depends on the
observer. Things that have sufficiently many properties in common will be
perceived similar, but which properties do suffice and how does the number
and the selection of common properties affect the magnitude of perceived
similarity? This topic has been subject to ambitious research but is not yet
fully understood.

In many domains of object recognition and classification, human judgement is
superior to current automatic systems1, in some domains deficiencies of human
judgement became apparent and other criteria were desired2, but there are
also domains where determining perceived similarity is by definition the main
objective. One of these domains is trademark image retrieval.

1 For this reason some approaches for automatic object recognition have been inspired
by nature see, e. g., [75, 155]

2 For example for identifying persons based on passport photographs, visual inspec-
tion is replaced by automatic comparison of biometric features.
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Introduction

Trademark images are invented to increase the recognition value of a company,
its goods or services. In order to establish the wanted linkage between a
trademark image and the owning company, the image has to be distinctive,
non-confusable. Due to the growing number of marks—in some databases it
has reached millions, and hundreds of new marks are added every day—services,
such as finding trademark images confusingly similar to a given one, or making
sure that no such similar ones exist, become more and more important and at
the same time, offering such services becomes more and more challenging.

The most prominent features of many trademark images are the depicted shapes
whereas color and texture are only used to form these shapes. Therefore,
trademark image retrieval would benefit a lot from the ability to extract and
compare shapes automatically. Unfortunately, shape seems to be a feature hard
to handle and many generic image retrieval systems using shape information
produce results that do not conform to perceived shape similarity [219].
However, limiting the domain to figurative images such as trademark images
makes the detection of shapes easier and therefore facilitates the development
of retrieval systems which produce reasonable results.

In Chapter 1 basic concepts used in connection with content-based image
retrieval are introduced and an overview of the state of knowledge on human
perception and perceived similarity is given. Chapter 2 deals with the
extraction of shapes, which serves as a basis for the comparison of figurative
images. Several issues that have to be considered in this context are discused,
an overview of the approaches that have been proposed for solving the
problems is given, and new algorithms that especially allow for the demands
of shape extraction from figurative images are presented. Chapter 3 deals
with the comparison of shapes, which is the main focus of this work. An
approach for measuring the similarity is presented, which is based on techniques
originally used for object recognition instead of similarity estimation. Finally,
in Chapter 4 all the presented approaches are combined in a framework for
automated trademark image retrieval. In order to demonstrate their usability
in practice, all the presented algorithms have been implemented and tested on
various sets of figurative images and real-world trademark images.

14
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CHAPTER 1

Fundamentals

In this chapter the basic concepts used in the context of content-based image
retrieval are introduced. It gives an overview of the mathematical and
psychological basics of similarity estimation and outlines the special needs of
trademark image retrieval.

1.1. Images

Nowadays, images are ubiquitous. Along with their usage in, e. g., advertise-
ments, newspapers, on television, in the internet, in computer games etc. there
is a huge number of different forms of appearance: digitally, printed, painted;
as photographs, artwork, drawings, illustrations, pictograms. . .

What do they all have in common, and how do they differ?

1.1.1. Generic Images

Formally, a two-dimensional image can be seen as a function that maps every
point of a (for simplicity rectangular) region R ⊂ IR× IR to an element of some
color space C. Depending on this color space an image is called color image in
the most general case, gray level image for C = [0, 1] (spuriously often referred
to as black-and-white image), or bi-level black-and-white image for C = {0, 1};
in both cases 0 standing for black and 1 standing for white.

17



1. Fundamentals

This abstract definition allows to code arbitrary information in an image, but in
the given context the visual effects of images on human viewers are of interest.
Therefore, an image informally is associated with a content (what it depicts—
which itself may be something abstract), with one or several representations
(how it is coded or materialized), and with its perception (what is evoked in the
viewer’s mind). The perception of an image clearly also depends on the actual
representation since the information has to be made available to the viewer’s
eye somehow. A criterion for the quality of a given representation, therefore,
might be the accuracy with which viewers would be able to reconstruct the
original image based on this representation.1

In information technology generic images are mostly represented as raster
graphics where the function mapping to some color space is only defined
for discrete points, so called pixels, of a rectangular grid G ⊂ IN × IN.
Depending on the device used to visualize such raster graphics, a pixel p with
coordinates (x, y) can be interpreted, e. g., as the square [x, x + 1[×[y, y + 1[
or as a disc with center (x, y) and some fixed radius r. Based on the first
interpretation, two pixels will be called edge-neighboring if the corresponding
squares’ boundaries share an edge, or corner-neighboring if the corresponding
squares’ boundaries share a point. Common formats for storing such raster
graphics are among others

• PNG (Portable Network Graphics) which is a format using lossless
compression of raster graphics with up to 248 colors (cf. [124]).

• JPEG (Joint Photographic Experts Group) [125] which is actually not a
file format but a description of methods for the compression of raster
graphics. One important technique is based on partitioning the grid
into blocks of 8 × 8 pixels. After the color information of each block
has undergone a discrete cosine transform, it gets quantized which—
depending on the compression rate—causes the typical jpeg-artefacts (an
example can be seen in Figure 2.2 on page 69).

In order to represent an image by a raster graphic it has to be discretized. This
should be done in a way that the resulting representation (in conjunction with
an appropriate output device, such as a screen or a printer) has a maximum
quality in the sense outlined above. Some techniques for discretization have
gained broad acceptance. For example in bi-level black-and-white raster
graphics a one-dimensional object l, for instance a straight line segment, is

1 Please recall that the visual effects on viewers are considered here. In this sense
a paper with the written words “black square” on it is not regarded as a good
representation for an image depicting a black square although a viewer with
knowledge about the English language and geometric concepts might perfectly
reconstruct the original image.

18



1.1. Images

typically represented by a chain of connected pixels such that no four of them
are pairwise edge-neighboring and the distances of the pixels to l are small.
A quite simple algorithm for this problem was invented by Bresenham [34].2

Depending on the resolution, the inevitable stair-case behavior of these chains
of pixels may be irritating. In gray level images so called anti-aliasing
techniques can be applied to achieve a smoothed representation with higher
quality. The color of a pixel is interpolated between black and white depending
on the pixel’s distance to the object or depending on the ratio of its area
that is covered by the object3. A very common algorithm for the anti-aliased
rasterization of lines or edges was presented by Wu [247]. Some examples of
rasterized straight line segments are shown in Figure 2.2 on page 69.

Another challenge is the conversion of a gray-level image to a bi-level black-
and-white image. The illusion of having different gray levels can be created
by blending black and white pixels4 using different densities. One of the first
and still commonly applied solutions to this problem is the Floyd-Steinberg
dithering [87] (an example can be seen in Figure 1.1). Moreover, the ideas of
this algorithm can also be utilized when the number of different colors in a
raster graphic is to be reduced.

Unfortunately, rasterization and some of the techniques that are utilized to
facilitate better—with respect to perception—representations of images make
the automated analysis of the content more difficult.

1.1.2. Shapes

Shape plays a crucial role in human object classification and identification [174],
and it is also regarded as being one of the predominant features determining
the perceived similarity of images [231]. The term shape, however, is used in a
variety of meanings.

In [99] a shape is formally defined as a subset of a Euclidean space. Sometimes
this subset is also required to be compact. According to this definition
a two-dimensional shape s can be described by its characteristic function
fs : IR2 → {0, 1}.

2 Bresenham’s algorithm was originally intended for drawing straight line segments
with digital plotters, but the idea applies to raster graphics as well. Moreover, it
has also been generalized to other classes of curves.

3 In practice, the area ratios are often estimated using multiple discrete sample points
per pixel (supersampling).

4 This technique is usually applied to raster graphics, but using an appropriate tiling
it might of course also be applied to images with a continuous domain.

19



1. Fundamentals

In geometry, on the other hand, a shape is defined as an equivalence class,
meaning that two sets have the same shape if one can be transformed to the
other by a combination of translations, rotations, and uniform scalings.5

Actually, the common meaning of shape is less precisely defined: The term
is used for the “appearance of something, especially its outline” [240]. As an
object is not restricted to have a single color, in a depiction the object’s shape
does not necessarily equal a region of homogeneous color. This is why the
self-evident equality of the definition of a bi-level black-and-white image and
the characteristic function of a shape does not correspond to human perception
(see Figure 1.1 for an example).

(a) (b) (c) (d)

Figure 1.1. Image and shape:
(a) color image depicting a square, (b) the image converted to
gray level, (c) the image converted to bi-level black-and-white
using Floyd-Steinberg dithering6 (and two scaled up details),
(d) the perceived shape.

Two things have to be differentiated between: firstly, the definition of shape,
and secondly, the questions in which ways such shapes are depicted in images,
how visual stimuli lead to the perception of shapes, and how shapes can be
extracted from images.

In the present work the term shape is used in a rather restrictive sense according
to the following definitions:

• A line shape is a simple plane curve. Analogously, a polygonal line shape
is a simple piecewise linear plane curve (polyline).

5 This point of view will be used for shape similarity estimation in chapter 3.

6 Images (a) and (b) as you actually see them, might—depending on the used output
device—also be dithered, but at a higher resolution than image (c) so hopefully, it
will not be as apparent.
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1.1. Images

• A simple region shape is a compact two-dimensional region bounded by
a simple closed curve. Analogously, a simple polygonal region shape, or
simple polygon for short, is a compact two-dimensional region bounded
by a simple closed polyline.

• A region shape may be seen as a simple region shape (eventually) with
holes. Formally, it can be defined by induction:

– Every simple region shape is a region shape.

– Let S be a region shape with boundary ∂(S) and let H be a simple
region shape with boundary ∂(H) such that ∂(S) ∩ ∂(H) = ∅, then
S \ (H \ ∂(H)) is a region shape.

Polygonal region shapes may be defined analogously.

In the following, whenever the type of shape is not explicitly stated, shape
is meant to refer to simple region shapes. Since a specific polyline P can be
characterized by the sequence (p1, . . . , pn) of points (the vertices) where the
linear pieces (the edges) are connected, the notation P = (p1, . . . , pn) will be
used here.

1.1.3. Figurative Images

Unlike in figurative art, in the present context the term figurative does not refer
to the question what is depicted in an image, but how it is depicted. Figurative
images differ from natural images like, e. g., photographs by the fact that the
content is artificially produced, stylized, and that shape is emphasized. Most
figurative images are of low complexity: only a few colors are used, boundaries
between different colors are clear cut, and the number of depicted objects is
small. On the other hand, since they are artificially produced, figurative images
may be designed using stylistic methods such as, e. g.,

• depicting a shape only by its outline,

• depicting a shape by a textured region,7

• hatching (some special form of texture),

• depicting a shape implicitly.

7 The region is filled with some pattern. In the given context texture differs from
dithering by the fact, that structures are explicitly perceptible. They just do not
lead to the perception of distinct shapes, but are seen as feature of shapes they
form.
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1. Fundamentals

Exemplary instantiations of these stylistic methods can be seen in Figures 1.2
and 1.3. Some real-world trademark images using some of these stylistic
methods can be seen in Figure 1.4.

(a) (b) (c) (d)

Figure 1.2. Depiction of shapes:
(a) square depicted by a filled region, (b) square depicted by its
outline, (c) square depicted by a textured region (small filled
circles), (d) square depicted by its outline and a hatched region.

(a) (b) (c) (d)

Figure 1.3. Implicit shapes:
(a) square formed by two triangles that are separated by a thin
stripe, (b) the same square formed by four triangles that are
separated by a region, (c) square formed by the space inbetween
two other shapes, (d) implicit square formed by seemingly
occluded shapes (adaption of the Kanizsa triangle).

Figurative images may appear, e. g., as icons (pictograms), trademark images,
coats of arms, clip-art images, etc. The purpose of pictograms is to convey a
simple, straightforward message. As to do so, they often contain well known
symbols or stylized depictions of real-world objects. Trademark images often
also depict totally abstract geometrical shapes (see Figures 1.4 and 1.16 for
some examples).
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1.1. Images

Figure 1.4. Stylistic methods in trademark images:
eight real-world trademark images essentially depicting the same
square in different ways.

The databases of trademark registries still contain lots of old bi-level black-and-
white images that have been scanned; some of them containing a huge amount
of so called salt-and-pepper noise (erroneous white and black pixels) or artefacts
from the scanning (see Figure 1.5 (a) for an example). Nowadays trademark
images are often made available in digital form, which means that automated
image retrieval could benefit from straight and high quality images. However,
these images are often of low resolution and contain compression artefacts (see
Figure 1.5 (b) for an example).

(a) (b)

Figure 1.5. Poor quality images:
details from images of poor quality due to (a) scanning the
image, (b) low resolution and compression artefacts.
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1. Fundamentals

1.2. Perception

Goldmeier [96] stated that similarity is a relation not between the physical
stimuli but between the perceptions of these stimuli.8 Mach [158] gave the
simple example that two triangles with side lengths a, b, c and a + m, b + m,
c + m, respectively, are not necessarily perceived similar although there is a
very simple relation between the side lengths. On the other hand, patterns
that are maximally dissimilar in some mathematical models may be perceived
as virtually the same.9 A serious consideration of visual similarity, therefore,
cannot ignore the factor perception.

1.2.1. Basics

For simple stimuli the dependence of the perceived intensity p on the physical
magnitude s is described by the psychophysical function p = f(s). The smallest
difference in the physical magnitude s that is detectable by a human is called
just noticeable difference (jnd) ∆s. Based on Weber’s [237] observation, that
in a limited range the quotient W (s) = ∆s

s is almost constant, Fechner [79]
inferred that the perceived intensity is logarithmically depending on the
physical magnitude: p = k · log(s/s0) for some constant k and a minimum
perceivable magnitude s0. Stevens [211], on the other hand, claimed that the
psychophysical function can be described by a power law: p = k · sα for some
constant k and an exponent α depending on the type of stimuli at hand. In
recent years the psychophysical function has also been analyzed by means of
mathematical constraints (see, e. g., [157]).

Stevens already mentioned that his power law would not hold for the complete
range of magnitudes [211], however, it also seems questionable whether such
constrained classes of functions can be appropriate for all different kinds of
stimuli. Moreover, also contextual factors might influence the perception of a
stimulus which is demonstrated by a very simple experiment (as carried out,
e. g., in high school): A subject lays one hand in a basin filled with cold water,
the other one in a basin filled with warm water. After putting both hands in
a third basin filled with water of medium temperature—actually not knowing
that it is a single basin—virtually every subject states that on one side the
water has higher temperature than on the other side. The impact of context
on the perception of abstract stimuli was confirmed, e. g., in an experiment
where subjects were to categorize the area of squares. The categories subjects
chose changed depending on the frequency of small and large squares [212].

8 “Die Ähnlichkeit ist eine Beziehung, die nicht zwischen den Reizkomplexen,
sondern zwischen deren anschaulichen Bildern besteht.”

9 For example random patterns with same parameters under some transformational
models (see Section 1.3.4 page 52 and Figure 1.12).
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1.2. Perception

The visual stimuli evoked by images may be composed of many simple stimuli
and therefore may be very complex. The input we get by our senses has to be
‘compressed’ somehow—otherwise we would have to store something like 10 000
terabytes for visual stimuli alone [168]. Attneave [17] mentions as an example
for such a compression or abstraction, that two random patterns with same
parameters would be perceived as being virtually the same (see Figure 1.12 on
page 52). He states that “Any sort of physical invariance whatsoever constitutes
a source of redundancy for an organism capable of abstracting the invariance
and utilizing it appropriately, but we actually know very little about the limits
of the human perceptual machinery with respect to such abilities.”

According to feature integration theory, perception can be subdivided into
different stages. Simple visual features like color, orientation, and spatial
frequency are registered in an early, preattentive stage and are combined in a
later stage to form the perception of objects [217]. Moreover there is empirical
evidence, that even objects have cognitive representations on several levels of
abstraction: Among others, a viewpoint-dependent representation of the object
as currently seen, called object token, and an object-centered representation
from which the object’s appearance from other viewpoints can be predicted,
called structural description [218]. Such a structural description is, of course,
not uniquely determined by the stimuli, so the question arises, which structural
description(s) brain chooses.

One tendency seems to be obvious: The simpler a structural description is,
the more likely it will be chosen. A popular example that encourages this
assumption is the Kanizsa triangle (an adaption of it can be seen in Figure 1.3):
The image explicitly depicts 3 disks each of which has a circular sector cut
off, and 3 angles. Interpreting this pattern as originating from 3 complete
discs and a triangle, all partially occluded by an additional triangle, reduces
the complexity of the structural description; the number of objects is reduced
from 6 to 5 and all the shapes have more symmetries.

This tendency, called the minimum principle, was also confirmed experimen-
tally, e. g., by using patterns of straight line segments that could either be
interpreted as edges of two-dimensional shapes in the plane, or as projection of
the edges of a three-dimensional object. Sequences of patterns were generated,
such that for a complete sequence the three-dimensional interpretations were
the same object just seen from different viewpoints, and the corresponding two-
dimensional interpretations were of different complexity (in terms of number
of angles and continuous lines). With increasing complexity of the two-
dimensional interpretations the tendency to perceive the pattern as a three-
dimensional object also increased [111]. In general, simple patterns which have
a high degree of internal redundancy, called good gestalt [17], are easier to
recognize; they are, e. g., associated with shorter classification reaction times
(see [30] for an overview).
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However, external redundancy (conformance with known patterns or concepts)
may also affect perception. The so called Helmholtz principle [107] states that a
stimuli configuration leads to the perception of an object which normally would
cause this stimuli configuration.10 A conclusion drawn from this principle is,
that we perceive what is most likely [111].11,12 The adaptation of the perceptual
system to stimuli that frequently occur (imprinting) has been confirmed in
many studies (see [98] for an overview), but also higher level regularities may
influence the further processing of patterns: For example sequences of words
are easier to remember if they form a correct sentence than if they are ordered
arbitrarily [164].

1.2.2. Perception of Shapes

The perception of a distinct shape may be evoked by very different depictions.
An object might be discernable because it has a homogeneous color such that
its projection appears to be a region with no abrupt changes in the color
gradient on a background of different color. However, an object might also
be discernable because it has a homogeneous texture such that its projection
appears to be a region with no abrupt changes in the texture gradient on a
background of different texture (see [94] for a detailed discussion). In both
cases the information about the object is concentrated along the contour of
its projection (especially at those points where the direction of the contour
changes most rapidly) [17]. Objects are already quite recognizable from only
these contours [195] and therefore, simplified line drawings serve as good
(concerning reaction times and error rates in recognition tasks) as full color
photographs [29].

Shapes are normally rather perceived as objects that may have additional
attributes such as color or texture, however, also contour parts discernable in
an image—even if not continuous and not bounding closed regions—may lead

10 “Die allgemeine Regel, durch welche sich die Gesichtsvorstellungen bestimmen die
wir bilden, wenn unter irgend welchen Bedingungen oder mit Hülfe von optischen
Instrumenten ein Eindruck auf das Auge gemacht worden ist, ist die, dass wir stets
solche Objecte als im Gesichtsfelde vorhanden uns vorstellen, wie sie vorhanden
sein müssten, um unter den gewöhnlichen normalen Bedingungen des Gebrauchs
unserer Augen denselben Eindruck auf den Nervenapparat hervorzubringen.”

11 Another interpretation of the Helmholtz principle is sometimes formulated in the
following way: “We perceive what is most unlikely,” meaning that the patterns
that reach consciousness are the ones that could not come into being by chance.
For a detailed discussion of this point of view see, e. g., [61].

12 The observation that simple structural descriptions are preferred, might also be
brought into accordance with the Helmholtz principle by assuming simplicity to
increase the likeliness.
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to the perception of a shape. Different parts, possibly depicted in different
ways, are somehow grouped together to form shapes. In the beginning of the
nineteenth century a number of principles were formulated that predict certain
perceptions to be more likely than others. These principles are subsumed under
the name Gestalt theory and are based on the holistic point of view, that—in
simple terms—the whole is more than the sum of its parts.

Among psychologists, Gestalt theory has been criticized for only describing,
but not explaining the observed phenomena. In the given context, however,
knowing the principles may help to improve automated image analysis and
therefore, some of them are listed in the following (see [35] for a more detailed
overview).

proximity Things that are close together are grouped together.

similarity Things that are similar are grouped together.

good continuation Things (for example contours) that can be glued together
smoothly without abrupt changes in direction, are grouped together.

closure Groupings that produce closed contours are preferred.

symmetry Symmetric contours, rather than others, lead to the perception of
shape (figure).

These principles describe very general tendencies. For getting adequate—
in terms of estimating the perceived similarity of images—representations,
however, it would be important to know how the resulting patterns are further
processed. For example a group of discrete elements that are very small
compared to the whole are not perceived as individuals, but contribute to
the perception of texture (material) rather than shape (form). This effect was
observed in experiments for some instances with 7 up to 9 identical elements
and for most instances with more than 9 identical elements [96].
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1.2.3. Prototypicality and Salience

According to prototype theory, the objects we perceive are classified and
assigned to categories, so that nonidentical stimuli can be treated as equivalent.
Categories are formed such that they are maximally differentiable from each
other—the number of attributes shared by members of the same category is
maximized, the number of attributes shared by members of different categories
is minimized [195]. The categories are highly structured internally and do not
have well defined boundaries. There may be a prototype or clearest case which
represents the core meaning, ‘surrounded’ by other category members with
decreasing similarity to that core meaning [193].

In experiments, such prototypes, e. g., perfect circles and perfect squares, were
better recognized than distorted versions. Prototypes are also used to describe
other category members by verbalizing the basic form plus the variation, e. g.,
“It’s a square with a hole in it.” [193]. If long-term memory works in a similar
way, fading of memory could even cause a tendency towards the prototype
when the additional information about variations gets lost.

The same experiments revealed that also the recognition across categories
differs. Circles were learned with fewer errors than squares, and squares with
fewer errors than triangles [193]. This might be explained by the goodness of
the gestalts as mentioned above. It is argued that when two figures are roughly
equivalent with respect to goodness of gestalt, the more complex figure is likely
to be more salient, but that a good gestalt is likely to be more salient than a
bad gestalt although the latter is generally more complex [222].

In connection with the salience of parts of figurative images the concept of
frames is very important. In [70] the border of a symbol is defined as “a
boundary that completely surrounds a symbol, with no parts of the symbol
extending beyond that boundary. Various elements of the symbol may touch
the border.” Squares, rectangles, rhombi, triangles, circles, and ellipses (ovals)
are listed as possible shapes of such borders. A frame might be characterized
in a very similar way, as a convex shape (preferably from the list above)
containing the actual content of the image. Even though frames normally
are good gestalts, their salience is supposed to be very low, meaning that
they do only have a very small impact on the perceived similarity of figurative
images (see Figure 4.2 on page 165 for an example). The distinction between
more important content and less important frames (outline/background) is also
made in [245] and the validity is underpinned by the following observation:
In an experiment described in [112], subjects were instructed to redraw their
perceptions of figurative images presented to them. For four of the five (out
of 50) published images that have a frame, most of the subjects completely
ignored the frame as if it was not a part of the actual image at all.
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1.2.4. Completion of Good Form

Since objects have to be recognized also when the sensed information is
incomplete, perception is supported by some ‘repairing’ mechanisms: “To
complete unfinished forms, people will ignore gaps, filling in the missing parts
with a familiar pattern in order to complete the form.” [85] (cited in [45]).
Adapting the sensed stimuli to well known patterns, again leads to simpler
structural descriptions of what is perceived.

Experiments by Warren [235] confirm, that under certain circumstances data
that is not compatible with higher level patterns is repaired before it reaches
consciousness. Mumford [169] reports on an experiment with recorded speech
where a single phoneme was replaced by noise such that a word became
irrecognizable. However, subjects did not perceive the defect but believed they
had heard the one phoneme which made the sentence semantically consistent:13

actual sound perceived words

the Feel is on the shoe the h-eel is on the shoe
the Feel is on the car the wh-eel is on the car
the Feel is on the table the m-eel is on the table
the Feel is on the orange the p-eel is on the orange

A similar mechanism was explored in visual perception: The missing visual
information of the region corresponding to the blind spot is somehow completed
using the information from the surrounding areas. Gaps in straight lines and
even more complex figures are filled extending the borders, whereas the corner
of a square is not filled in when falling into the blind spot. This suggests that
the mechanism intervenes at an early stage of perception, because it is not
based on the viewers expectation and on learned concepts. However, patients
that have a sharply localized damage in their visual cortex resulting in a small
island of blindness in the visual field (called scotoma) tend to see the corner of
the square after some seconds [188].

Another repairing mechanism that goes beyond filling in missing information
was also observed in experiments with scotoma patients. When they were
presented with images of two vertical, non collinear line segments such that
the lower endpoint of the upper segment and the upper endpoint of the lower

13 The table is taken from an article by Mumford [169]. He refers to an article
by Warren [235] which does actually not report on that special experiment.
Independently, the result is also mentioned by Barsalou [21]. He refers to another
article by Warren et al. [236]—unfortunately, that one also does not report on the
experiment. The author of the present work, however, tends to believe that the
observations really have been made.
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segment both fell into the blind region, they reported that both segments
seemed to move towards each other to form a single segment [189]. This
replacement of two line segments by a single line again supports the assumption,
that simple structural descriptions are preferred over more complex ones.

1.2.5. Superiority over Automated Detection

By means as described above, our perception enables us to recognize objects
even under obfuscated conditions. An extreme example is shown in Figure 1.6:
In this image there is no obvious cue that helps to distinguish between figure
and ground, but after a little while we manage to see the Dalmatian dog that
is depicted, and then it remains obvious. For automatic detection, however,
such images will remain hard cases in the near future.

Figure 1.6. Concealed shape:
The depicted patterns are seemingly
meaningless at first sight, but once
the shape of the Dalmatian dog
is recognized, it seems to be obvi-
ously there (Photograph by Ronald
C. James published in [101]).

Figurative images might even be tailored to perception. Knowledge of the
human visual system is, e. g., used to improve the presentation of scientific
data [105]. But even without such knowledge, by trial and error, figurative
images may be created that employ the mechanisms of the visual system to
evoke a specific perception. It is not necessary to know why or how the
perception is evoked, the fact that it is evoked suffices. For this reason, images
might be suited to perception rather than to automated detection which even
increases the difficulties in emulating visual perception.
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The superiority of perception to automatic detection may also be utilized.
Offering nonpaid services in the internet entails the risk of massive automated
(mis-)usage. If the service shall be publicly available, but usage shall be
restricted to natural persons, so called CAPTCHA14 systems can be employed:
The prospective user is confronted with a task that can relatively easy be solved
by a natural person but is believed to be hard to be solved (within reasonable
time bounds) automatically. Typically this task is to read and retype a random
text which is depicted in a distorted and noisy way (see Figure 1.7 for some
examples).

(a) (b) (c)

Figure 1.7. CAPTCHAs taken from social networking websites:
(a) MySpace 2008, (b) StudiVZ 2008, (c) Facebook 2010.

14 CAPTCHA stands for ‘Completely Automated Public Turing test to tell
Computers and Humans Apart’.
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1.3. Similarity

Similarity is a very fundamental concept. Therefore, using the name in a
formal way still often evokes connections to properties that simply need not be
fulfilled. Perceived similarity, and similarity with respect to some mathematical
model are two different things and the values may (and in many cases do) differ
considerably.

1.3.1. Generic Definitions

In many publications the terms ‘similarity’ and ‘distance’ are used synony-
mously, which seems not to be appropriate for two reasons: firstly, according
to linguistic usage similarity is a closeness and thus the value of similarity of
two things is high if they (nearly) equal each other and it gets lower the more
they differ, and secondly, the term distance is formally used for functions that
fulfill the metric properties (as defined below). For the sake of clarification,
the following two very basic definitions are used here:

A similarity measure σ on a set S is a real valued function σ : S × S → IR.

A dissimilarity measure δ on a set S is a real valued function δ : S × S → IR.

In these generic definitions the words ‘similarity’ and ‘dissimilarity’ have no
real meaning—based on linguistic usage, only some properties such a measure
should have are indicated. The actual meaning is given by the definition of a
concrete measure of similarity (or dissimilarity) and it should not be confused
with the task at hand, for which this measure seems to be appropriate.

Surprisingly, this distinction is often left out of consideration which leads to
questionable conclusions. In [203], e. g., the fact that an algorithm is employed
to identify persons based on passport photographs (which was traditionally
done by visual inspection), is interpreted as evidence that this algorithm
computes the perceived similarity of the depicted persons.

Naming two real valued functions ‘similarity measure’ formally does not imply
common properties. Nevertheless, perceived similarity and similarity according
to arbitrary mathematical models are often mixed up, so whenever there is the
risk of ambiguity, the formulation “objects a and b are similar” needs to be
supplemented with the specification of the concrete similarity measure that is
referred to.
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1.3.2. Possible Properties of Measures

Range of Values, Conversion A similarity measure is typically supposed to
assign the maximum value 1 to a pair of identical objects, and a dissimilarity
measure is typically supposed to assign the minimum value 0 to a pair of
identical objects.15

A measure of similarity (or dissimilarity respectively) is called normalized if its
co-domain is the unit interval [0, 1].

Given a normalized similarity measure σ, a canonical way to define a
corresponding normalized dissimilarity measure δ could surely be δ(s1, s2) :=
1 − σ(s1, s2) and vice versa—at least the function that transforms one value
into the other should be strictly monotone decreasing. A detailed discussion
on how to derive a similarity measure from a dissimilarity measure can be
found in [203]. In general, however, for a given similarity measure and a given
dissimilarity measure such a function transforming the values need not exist,
because similarity and dissimilarity are defined on pairs of objects.

Metric Properties A real valued function d : S × S → IR on a set S is
called metric or distance measure if the following conditions are fulfilled for
all s1, s2, s3 ∈ S (terminology according to [54]16):

1. non-negativity
d(s1, s2) ≥ 0

2. small self-distance
d(s1, s1) = 0

3. isolation
s1 6= s2 implies d(s1, s2) > 0

4. symmetry
d(s1, s2) = d(s2, s1)

5. triangle inequality
d(s1, s3) ≤ d(s1, s2) + d(s2, s3)

15 For some measures used in connection with perceived similarity this is surprisingly
not the case—see Section 1.3.3.3 for details.

16 In this definition 2. and 3. imply 1. but mostly the two conditions are merged
to: ‘d(s1, s1) = 0 if and only if s1 = s2’. Sometimes 1. and 2. are merged to
‘minimality : d(s1, s2) ≥ d(s1, s1) = 0’ which does not imply 3.

33



1. Fundamentals

A real valued function that fulfills 1.–4. but does not fulfill the triangle
inequality, is sometimes called semimetric, a real valued function that fulfills
1.–2. and 4.–5. but does not fulfill the isolation criterion is sometimes
called pseudometric—the common usage of these notations, however, is not
consistent.

The metric axioms can easily be satisfied, e. g., by letting δ(a, b) := 0 if a = b
and δ(a, b) := 1 if a 6= b, but such a measure is normally not useful in practice
as it gives no information about the degree of differentness. Useful measures
of dissimilarity, on the other hand, are often desired also to fulfill the metric
properties, because that facilitates the use of indexing structures (see [48] for
an overview).

Invariance Mostly it is not differentiated between two possible ways of
defining the term invariance but here, both definitions are listed separately:
Given a class T of transformations t : S → S and a real valued function
f : S × S → IR

• f is called invariant with respect to synchronous transformation under
the class T if for all t ∈ T and for all s1, s2 ∈ S the transformation t does
not change the value of f when applied to both elements:
f
(
t(s1), t(s2)

)
= f(s1, s2).

• f is called invariant with respect to asynchronous transformation under
the class T if for all t1, t2 ∈ T and for all s1, s2 ∈ S the transformations
t1 and t2 do not change the value of f when applied to the elements:
f
(
t1(s1), t2(s2)

)
= f(s1, s2).

Given a measure of similarity σ (or dissimilarity δ respectively) that is
not invariant with respect to asynchronous transformation under a class of
transformations T , a measure of similarity σT (or dissimilarity δT respectively)
that is in fact invariant under the class T may be derived by taking the optimum
over all pairs of transformations in T :

σT (s1, s2) = max
t1,t2∈T

{
σ
(
t1(s1), t2(s2)

)}
,

δT (s1, s2) = min
t1,t2∈T

{
δ
(
t1(s1), t2(s2)

)}
.
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Robustness In [229] four kinds of robustness for distance measures on patterns
were defined. For arbitrary measures (which do not necessarily fulfill the
triangle inequality) of dissimilarity and similarity on sets of shapes these
definitions have to be slightly adapted: Let S be a collection of sets of shapes
(in the following a shape set s ∈ S is interpreted as the union of its elements),
and let f : S × S → IR be a real valued function.

• Deformation robustness is the property that small deformations of shapes
only result in small changes of the result. Let T be the maximal group of
homeomorphisms under which S is closed. f is called deformation robust
(with respect to the second argument)17 if for each s1, s2 ∈ S and ε > 0
there is a µ > 0, such that |f(s1, t(s2)) − f(s1, s2)| < ε for all t ∈ T
satisfying ‖x− t(x)‖ < µ for all x ∈ ∂(s2).

• Blur robustness is the property that additions close to the boundary of
shapes do not cause discontinuities. f is called blur robust (with respect
to the second argument)17 if for each s1, s2 ∈ S and ε > 0 an open
neighborhood U of ∂(s2) exists, such that |f(s1, s

′
2) − f(s1, s2)| < ε for

all s′2 ∈ S satisfying s′2 \ U = s2 \ U and ∂(s2) ⊆ ∂(s′2).

• Crack robustness is the property that changes within a small neighbor-
hood of a (non singleton) boundary point only result in small changes
of the result, regardless whether the connectedness is preserved or not.
Given a shape set s, a singleton point q ∈ s is a point such that an open
neighborhood V of q exists with V ∩ s = {q}. Let ς(s) denote the set of
singleton points of s. f is called crack robust (with respect to the second
argument)17 if for each s1, s2 ∈ S, each p ∈ ∂(s2) \ ς(s2), and ε > 0 an
open neighborhood U of p exists, such that |f(s1, s

′
2)− f(s1, s2)| < ε for

all s′2 ∈ S satisfying s′2 \ U = s2 \ U .

• Noise robustness is the property that changes within small regions in the
complement of the shapes only result in small changes of the result. f is
called noise robust (with respect to the second argument)17 if for each
s1, s2 ∈ S, for each finite point set P ⊆ IR2 \ ∂(s2), and ε > 0 an open
neighborhood U of P exists, such that |f(s1, s

′
2) − f(s1, s2)| < ε for all

s′2 ∈ S satisfying s′2 \ U = s2 \ U .

Distributivity A dissimilarity measure δ : S × S → IR on a set S is called
distributive (with respect to the second argument)17 if for all s1, p, q ∈ S such
that p ∩ q = ∅, the value for s1 and the union of the parts does not exceed the
sum of values for s1 and the parts: δ(s1, p ∪̇ q) ≤ δ(s1, p) + δ(s1, q). [230]

17 The definition with respect to the first argument is analogous.
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Sensitivity Sensitivity is the property that changes of parts where two items
equal each other increase the value of a dissimilarity measure. Let δ : S×S → IR
be a dissimilarity measure on a set S. δ is called sensitive (with respect to
the second argument)17 if for all s1, s2, s

′
2 ∈ S such that s1 ∩ U = s2 ∩ U ,

s′2 \ U = s2 \ U , and s′2 ∩ U 6= s2 ∩ U for some U , δ(s1, s
′
2) > δ(s1, s2). [230]

Monotonicity Monotonicity means that for 2 non-counteracting changes the
minimum dissimilarity caused by one of them alone has to be smaller than
the dissimilarity caused by the combined change. Let δ : S × S → IR be a
dissimilarity measure (that fullfills the symmetry property) on a set S. δ is
called strictly monotone if for all s1, s2, s3 ∈ S such that s1 ⊂ s2 ⊂ s3,
δ(s1, s2) < δ(s1, s3) or δ(s2, s3) < δ(s1, s3). [230]

1.3.3. Perceived Similarity

The way stimuli are perceived and how similarities are judged is not entirely
understood, but there has been extensive research and some of the results and
interpretations might help to improve the quality of automatically computed
ratings of similarity.

1.3.3.1. Measurements

Perceived similarity σp cannot be measured directly, but there are some
quantities that are used to explore its nature. Most of the experimental
approaches can be grouped together in three classes:

judged similarity Subjects make statements about their judgements on simi-
larity. Either

• quantifying by giving ratings of judged similarity σj of two given
stimuli on a scale, or

• comparative by choosing from a given set of stimuli either the one
that is judged most similar to a reference stimulus or the pair of
stimuli that is judged most similar.

The ratings of judged similarity σj are typically assumed to agree only
ordinally with perceived similarity. It is commonly assumed, however,
that σp = f

(
σj
)

with f being a monotonic function [15].
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confusability In so called recognition experiments, subjects have to recognize
or classify stimuli. Properties of perceived similarity are then derived,
e. g.,

• from reaction times or

• from the relative frequency %s,r of the event that presenting stimulus
s results in response r. The diagonal entries %i,i correspond to
correct recognition, off-diagonal entries %i,j with i 6= j correspond
to erroneous recognition.

Subjects tend to generally prefer some answers to others—a phenomenon
known as biased choice. It is assumed, however, that in the absence of
such response bias, perceived similarity is proportional to the empirical
probability of confusion (erroneous recognition) [15].18 The diagonal
entries %i,i are regarded as indicators for the perceived similarity of stimuli
to themselves. These values may differ from stimulus to stimulus. In [138]
it is argued that (self) similarity also depends on the density of stimuli
and therefore, on the stimulus domain.19

transfer An organism that has been trained to respond in some predictable
manner to a particular stimulus-situation is presented with a modified
stimulus-situation. The relative frequency of the original response under
the modified conditions gives an indication of perceived similarity [16].

The different natures of the experiments are also reflected in the data that is
generated. Therefore the derived results are not always consistent. For example
digits and have been rated more similar than and although the latter
were more often confused in recognition tasks [92].

Ignoring the problems mentioned above, in the following there will be made
no difference between perceived similarity and the measures it is derived from,
because the authors of the original papers mostly don’t.

18 Please note, that the motivation behind the present work is to automatically
identify trademark images that are similar in the sense that they have the potential
for getting confused.

19 The phenomenon might be examined in a very simple imaginary experiment: Given
the three stimuli equilateral triangle, circle, and circle with dot in the center; since
the circles with and without dot are hard to distinguish, their diagonal entries
will be much lower than for the triangle. On the other hand, given the three
stimuli equilateral triangle, equilateral triangle with dot in the center, and circle,
the diagonal entries for the triangles will be much lower than for the circle. The
relative numbers of correct recognitions of triangle and circle are supposed to be
very different depending on the domain.
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1.3.3.2. Determining Factors

The parameters that determine the perception of similarity are numerous and
their interaction might be very complex. However, a few important factors can
be identified.

Inherent Features Due to Goldmeier [96], the degree of perceived visual
similarity depends on the ratio of identical parts, as well as on the degree
of variation of the non-identical parts. However, in addition to that he
also mentions higher order features, such as the relationships of the parts,
symmetries, and regularities.

Semantic Similarity Apart from the similarity between the actual stimuli,
there is also a similarity between the meanings of stimuli (or the objects
associated with the stimuli) which is in some cases in no way dependent on
common physical elements [16]. Nevertheless these meanings—as additional
features—may also influence the perceived similarity. For example an image
depicting a conventional telephone may be rated similar to an image depicting
a mobile phone although both images may not have much in common regarding
the optical stimuli.

Selective Attention Composed stimuli might be perceived similar because
they share some characteristics or features, whereas properties they do not
have in common are neglected [16]. James [128] gave a simple example: The
moon and a flame (gas-jet) are similar in respect of luminosity, whereas the
moon and a football are similar in respect of rotundity.20 For an example of
this phenomenon with respect to perceived similarity of shapes, see Figure 1.8
on page 43.

It is argued, that not our complete knowledge of an object, but only a limited
list of relevant features is used in a similarity assessment [222], and that these
lists of features may even depend on the pair of objects under consideration [83].
Moreover, similarity judgements may even involve an active search for ways in
which the two objects are similar, meaning that subjects search for features to
justify high similarity ratings (see [210] cited in [138]).

It is also conceivable, that subjects do not only search for features, but also
for ways of comparing them; that subjects choose the model which yields the
highest similarity values. On the other hand, the active search might also

20 As a flame and a football are not similar at all, this example is often invoked in
order to question whether perceived dissimilarity fulfills the triangle inequality.
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be performed in dissimilarity judgements. Two objects that have conspicuous
features in common and differ in other conspicuous features, might—at the
same time—get higher judgements of similarity and dissimilarity than two
objects not having such conspicuous features (see also 1.3.3.3).

A special case of selective attention which deserves to be mentioned separately,
is called partial similarity : the objects under consideration are divided into two
complementary regions. The features contained in the first region are relevant
for similarity assessment, and the features contained in the second region are
almost ignored. An example which is often used to illustrate this phenomenon
is a centaur (see, e. g., [230]), it is similar to a man because of its upper body
and at the same time it is similar to a horse because of its lower body.

Context The assessment of similarity and dissimilarity of two objects is not
only depending on these two objects alone, but also on extrinsic factors which
are often subsumed under the term context. A general claim is, that any
complete theory of similarity must account for context [15]. However, there
are different types of such extrinsic factors affecting similarity judgements:
stimuli noticed in connection with the perception of the actual objects under
consideration, other objects under consideration, and the subject’s empirical
knowledge.

The dependence on additional stimuli was, e. g., shown in [22]. In an experiment
on judged similarity, two objects like, e. g., ‘flashlight’ and ‘rope’ got much
higher ratings of similarity when they were presented with an additional
caption such as ‘taken on camping trips’. This was explained with the context
dependent activation (or increase of the weights) of properties such as ‘fits in
a suitcase’ 21 that have influence on the similarity judgement.

The dependence on other objects under consideration was, e. g., shown in [223].
In an experiment subjects were to select from a list of three countries the one
most similar to two reference countries. The following results (percentages of
being chosen) were obtained:

Portugal + Spain: France 45 % Argentina 41 % Brazil 14 %
Portugal + Spain: France 18 % Belgium 14 % Brazil 68 %

According to the diagnosticity principle, the weight of a feature depends on
its potential to be used for discriminating between objects. A feature that
is shared by all the objects under consideration cannot be used to distinguish
between these objects and has, therefore, relatively small influence on similarity
judgements. When the set of objects under consideration is enlarged or

21 In the present example properties such as ‘needed to explore a cave’ or ‘useful in
the wilderness’ are also conceivable.
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changed, such that the same feature is not shared by all the objects, then
this feature acquires diagnostic value, gets a higher weight, and increases the
similarity of the objects that share it [222].

The fact that France got significantly more votes than Brazil when presented
together with Argentina, whereas France got significantly less votes than Brazil
when presented together with Belgium, could be explained by such a different
valuation of features. In the first triple, France is the only country also located
in Europe, but language cannot be used to opt for either Argentina or Brazil.
In the second triple, Brazil is the only country also using an Iberian Romance
language, but the continent cannot be used to opt for either France or Belgium.

The dependence on the subject’s empirical knowledge (perspectival context)
was, e. g., shown in an experiment on judged similarity: Subjects that were
either experts for clothing or experts for dogs rated the similarity between
pairs of cloth and between pairs of dogs. To pairs from their own domain of
expertise, the subjects gave lower similarity ratings ([210] cited in [97]).

All these examples refer rather to semantic similarity, but the inferences seem
to be transferable to perceived similarity as well.

1.3.3.3. Properties

Regarding similarity, the aim of psychological research is to get a better
understanding of how perceived similarity is judged and to find models that
explain all observable phenomena. For automatically computed ratings of
similarity on the other hand, deviations from reality are acceptable, as long
as they are small. Therefore, in the following, the properties of perceived
similarity reported by various researchers, are also rated according to their
quantitative impact.

Range of Values, Conversion As perceived similarity cannot be quantified
directly, the resulting range of values might be set almost arbitrarily. However,
there are studies investigating the relation between perceived similarity and
perceived dissimilarity. In [222], e. g., one group of subjects was asked to choose
from two pairs of countries the pair being more similar than the other pair.
Another group of subjects was asked to choose the pair more dissimilar. The
sum of percentages of being chosen more similar and of being chosen more
dissimilar was significantly greater than 100 for some pairs of countries, namely
for the more prominent ones. This result is explained with different weightings
of the common and the distinctive features in judgements of similarity and in
judgements of dissimilarity.
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Experiments with visual stimuli also confirm that perceived similarity and per-
ceived dissimilarity are not complementary measures of the same psychological
facts [162]: Stimuli were composed patterns either sharing more attributes, or
sharing an internal relation between attributes. Subjects were asked to select
the pattern more similar to, or the pattern more dissimilar from a reference
pattern. Again the sum of percentages of being chosen more similar and of being
chosen more dissimilar was significantly greater than 100 for some patterns,
namely for the ones sharing an internal relation with the reference. Sharing
internal relations seems to be a feature that is more important in similarity
judgements, whereas the number of different attributes is more important in
dissimilarity judgements.

However, in many cases the assumption that perceived similarity and perceived
dissimilarity are complementary, meaning that there is a linear dependency
with slope -1, is quite reasonable [222].

Metric Properties While mathematicians and computer scientists often
prefer dissimilarity measures which fulfill the metric properties, among psychol-
ogists it is widely suspected that standard distance-based similarity measures
do not provide an adequate account of perceived similarity [15]. An extensive
examination of perceived dissimilarity with respect to the metric properties
was presented in the heavily cited article ‘Features of Similarity’ by Tversky
[222]. He actually comes to the conclusion that perceived dissimilarity is surely
not a metric.

non-negativity As the range of values of perceived dissimilarity might be set
almost arbitrarily, non-negativity by its own is virtually not confutable.
However, if also small self-distance (meaning that the dissimilarity of
an item to itself is 0) is assumed, there are indications that non-
negativity does not hold: In recognition experiments often some off-
diagonal recognition frequencies exceed the diagonal entries [222], which
implies that some items are less dissimilar to a reference than the reference
to itself.

small self-distance Also the claim that for every item the dissimilarity to itself
is 0, conflicts with the results of recognition experiments: Often the
frequencies of correct recognition differ from item to item [222].

isolation For isolation (meaning that if two items are not the same, their
dissimilarity has to be greater than 0) the same arguments as for
non-negativity hold: For its own it is virtually not confutable but in
connection with small self-distance it is challenged by the results of
recognition tasks. Moreover, according to the fact that sufficiently small
differences are not noticeable (see 1.2.1), it is questionable whether
isolation could be assumed at all.
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symmetry Linguistic usage knows basically two ways of making statements
about similarity, namely a way differencing roles: “object a is similar to
object b”, and a way not differencing roles: “objects a and b are similar”.
The claim of symmetry is, however, that the result does not change when
both objects change the roles—in particular if roles are differentiated
between.

Experiments on the similarity between countries showed that the judged
similarity of country a to country b exceeded the judged similarity of
country b to country a, if b was the more salient one [222]. In recognition
tasks on shapes (polygons) performed by humans and by pigeons such
asymmetries or response biases were also observed [168]. Moreover,
investigating reference points (prototypes) in natural categories, it was
observed that non prototypical stimuli were judged more similar to the
prototype of their own category, than vice versa [194].

Obviously, perceived similarity is not inherently symmetric. However, the
symmetry assumption seems to be adequate in many contexts [222].22

triangle inequality Dissimilarity data derived from experiments can easily
be transformed into a measure that fulfills the triangle inequality by
adding a sufficiently large offset to any value for a pair of different
objects [224]. However, it is widely suspected that perceived dissimilarity
may sometimes violate the triangle inequality [15]. In connection with
some standard assumptions, the triangle inequality implies properties
that have been tested in [224]. The results of this study also suggest not
to expect the triangle inequality to hold for perceived dissimilarity.

There are many examples that, although they do not formally disprove
the triangle inequality, obviously seem to violate it. Most of these
examples are based on selective attention, like the one given in [222]:
Jamaica is similar to Cuba (because of geographical proximity); Cuba
is similar to Russia (because of their political affinity)23; but Jamaica
and Russia are not similar at all. Figure 1.8 shows an example where the
triangle inequality seems not to hold for the perceived similarity of shapes.

22 Please note, that trademark image retrieval, nevertheless, may require definitions
of (dis-) similarity measures that are not symmetric (see 1.4.3.3).

23 At the time the article was published, at least the Sowjet Union and Cuba used to
be socialist states.
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(a) (b) (c)

Figure 1.8. Shapes challenging the triangle inequality:
Shapes (a) and (b) look similar because of their square-
like global appearance and shapes (b) and (c) look similar
because of their star-like inner structure, but shapes (a)
and (c) seem to have nothing in common at all.

Since they are so counter intuitive, the violations of non-negativity, small self-
distance, and isolation might be dismissed as being based on weak assumptions
about the relation of perceived similarity and confusability. Moreover, the
consequences in practice—also of non-symmetry—might be very limited.
However, the violation of the triangle inequality is a substantive problem in
practice.

Invariance In everyday life, objects have to be recognized even if the viewpoint
changes. Therefore, the influence of the corresponding transformations on
perceived similarity should be small. However, experiments are conceivable
that guide the attention to the effects of the transformations and therefore,
strict invariance of perceived similarity will be disprovable for virtually every
class of transformations. In practice, on the other hand, it is important to
know, whether the differences can be expected to be very small or whether
they are substantial.

translation Due to the lack of a fixed reference point, in most cases, perceived
similarity might be assumed to be invariant (with respect to synchronous
transformation) to translations. In experiments where stimuli are
presented side by side, even the relative positions will often not be
considered as being features of the stimuli. In an experiment on judged
similarity, where triangles were displayed simultaneously, a dependence
on the relative positions, however, was observed [16]. It is liable that in
this special case the variations were not caused by shifting the attention
towards the relative position, but by mutual influence on the perception
(of the slopes) of the triangles. Nevertheless, in most applications it is
surely reasonable, to assume perceived similarity to be invariant (with
respect to asynchronous transformation) to translations.
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uniform scaling Changes in the proximity of an object to the observer directly
correspond to changes of the scaling. The size of the projection on
the retina is first of all not perceived as an absolute feature of the
object but only relative to other objects. If stimuli are presented
consecutively, changes in size, therefore, have nearly no influence on
perceived similarity [96].

rotation Although one might assume that perceived similarity is also invariant
(with respect to synchronous transformation) to rotations, a counter
example was given in [96]. Figure 1.9 shows a reconstruction of the
stimuli. In the experiment the parallelogram (a1) was rated less similar
to the square (a2) than the rectangle (a3) was, because the difference
in slopes is more obvious than the difference in aspect ratios when the
sides are almost horizontal and vertical. However, after rotation, the
parallelogram (b1) was rated more similar to the square (b2) than the
rectangle (b3) was.24

(a)

(b)

(1) (2) (3)

Figure 1.9. Shapes challenging rotation invariance:
Among the original shapes in row (a), the shape chosen as
most similar to shape (a2) is usually shape (a3). Among
the rotated shapes in row (b), the shape chosen as most
similar to shape (b2) is usually shape (b1).

It seems to be obvious that perceived similarity is not invariant (with
respect to asynchronous transformation) to rotations. Formally it can
be deduced from the observations above or from the asymmetries due to
different prototypicality of line orientations as reported in [194].

24 It seems, that in the original experiment, the parallelogram (1) was rotated
by 45◦ in clockwise direction, whereas the rectangle (3) was rotated by 45◦ in
counterclockwise direction. However, the observations are expected to coincide.
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General findings about the dependence of perceived similarity on the
angle of rotation are hard to achieve, because the similarity also heavily
depends on rotational and reflectional symmetries of the stimuli under
consideration [96]. However, in most cases the influence of rotations on
perceived similarity should be relatively small.

reflection For a discussion of strict invariance to reflections, the same argu-
ments as for rotations hold—as the stimuli used there are axially
symmetric, corresponding results can be achieved, by replacing the
rotation with an adequate reflection.

In general, the influence of a reflection on perceived similarity heavily
depends on the axis of reflection. The smallest changes are expected for
reflections at vertical lines [158]. Concerning reflections at a vertical and
at a horizontal line, a possible reason for the differences is given in [96]:
a vertical axis separates regions that are conceptually equivalent (left
and right which are even confused quite often) whereas a horizontal axis
separates regions that are conceptually different (top and bottom). As a
consequence, shapes mirrored at the vertical axis are very similar to the
original—which was, e. g., also observed in [16].

Selectivity As discussed in Section 1.2.1, the ability to distinguish between
simple stimuli that only differ slightly is limited and the magnitudes of the
maximal differences that cannot be detected depend on the magnitude of the
stimuli themselves. There is evidence, that also changes in the difference
between two stimuli become less noticeable when the total difference between
the stimuli is increased [16]. Analogously to Fechner’s claim about the
perception of simple stimuli [79], a conceivable implication would be that
perceived dissimilarity is also sublinearly depending on the difference of the
stimuli. Figure 1.10 shows the results of an experiment which seem to confirm
this assumption.
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Figure 1.10. Size and dissimilar-
ity: dissimilarity ratings for par-
allelograms (?), squares ( b), and
triangles ( r), plus fitting curves
that are essentially logarithmic25.
Within each category the figures
only varied in their sizes as mea-
sured by the area (raw data taken
from [16]).

25 parall.: 6.2 ·
(
log10(×)

)1/3
, squares: 4.6 ·

(
log10(×)

)0.9
, triangles: 3.5 · log10(×)
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1.3.4. Some Examples of Measures and Models

There are mainly two types of (dis-)similarity measures. Firstly, measures mo-
tivated by mathematical considerations, which do not take the peculiarities of
perceived similarity into account. Secondly, models motivated by psychological
considerations, which are virtually not computable because of their complexity
or because of their dependence on various unknown parameters. In [15] the
attempts to bridge this gap were commented as follows: “In many models, the
process of adding simplifying assumptions is guided by mathematical simplicity
rather than empirical validity”.

As mentioned above, in the given context such simplifying assumptions are
acceptable, as long as the resulting deviations from reality are small. However,
some measures used in practice show a considerably different behavior. In this
section a few selected measures of similarity and dissimilarity are presented and
analyzed with respect to their mathematical properties and their applicability
to the problem of emulating perceived (dis-)similarity. Further approaches to
measure the (dis-)similarity of region shapes are described in Section 3.3.1.

Minkowski Distance Given two points x, y ∈ IRd, their Minkowski distance
of order p ≥ 1 is defined as

distp(x, y) :=

( d∑
i=1

∣∣x[i]− y[i]
∣∣p)1/p

.

Since the Minkowski distance can be defined via the Lp norm by distp(x, y) =
‖x − y‖p, it is often called Lp metric. The Minkowski distance of order 1 is
also known as the Manhattan distance, and the Minkowski distance of order 2
is also known as the Euclidean distance. The limit of the Minkowski distance
when p goes to infinity equals the so called Tschebyscheff distance or maximum
metric:

lim
p→∞

distp(x, y) = max
1≤i≤d

{∣∣x[i]− y[i]
∣∣}.

These distance measures either may be directly applied to estimate the
dissimilarity between objects that are given as (usually high-dimensional)
vectors of feature values, or may serve as the underlying distance26 in the
computation of measures of dissimilarity between sets of points (for example
in the plane).

26 If not stated differently, in the remainder of this work always the Euclidean distance
will be used as underlying distance measure. In any case, it will be assumed, that
the underlying distance measure can be computed in constant time.
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As the name implies, any Minkowski distance of order ≥ 1 fulfills the metric
properties (for 0 < p < 1 the triangle inequality would be violated). Any
Minkowski distance is invariant (with respect to synchronous transformation)
to translations. Furthermore, the Euclidean distance is also invariant (with
respect to synchronous transformation) to rotations and reflections.

It is also possible to define a weighted Minkowski distance as

distwp (x, y) :=

( d∑
i=1

wi ·
∣∣x[i]− y[i]

∣∣p)1/p

with wi ≥ 0 and

d∑
i=1

wi = d.

This variant still fulfills the metric properties and is invariant (with respect
to synchronous transformation) to translations, but the weighted Euclidean
distance in general is not invariant to rotations and reflections anymore.

Dynamic Partial Function For objects that are given as vectors of feature
values, a measure of dissimilarity which is based on the Minkowski distance,
but gives better results with respect to perceived dissimilarity27 was presented
in [151]. The observation, that the way in which two objects are perceived
similar is depending on the objects at hand (see also Section 1.3.3.2 on
selective attention), led to the idea of dynamically selecting a limited number
of dimensions for measuring the objects’ dissimilarity with.

Given two vectors x, y ∈ IRd, and a fixed positive integer m ≤ d. Let ∆i =∣∣x[i]−y[i]
∣∣ be the distance in dimension i and let (∆π1

, . . . ,∆πd
) be the sequence

of these distances ordered such that ∆πi
≤ ∆πj

for i < j. Let furthermore
I = {πi|i ≤ m} be the indices of the m smallest distance values. Then the
dynamic partial function of order p is defined as

δm,p(x, y) :=

(∑
i∈I

∣∣x[i]− y[i]
∣∣p)1/p

.

As it violates the triangle inequality and the isolation criterion, the dynamic
partial function is not a metric. However, it fulfills the non-negativity, small
self-distance, and the symmetry criterion. The dynamic partial function is
invariant (with respect to synchronous transformation) to translations, but—
different from the Euclidean distance—not to rotations and reflections.

27 In the original work actually not perceived dissimilarity but a predefined, unverified
equivalence relation was used as reference for the experiments. See Section 1.6.1
for a discussion.
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Taking account of the characteristics of perceived (dis-)similarity that are
caused by selective attention seems to be a step in the right direction. However,
totally ignoring the (d − m) worst dimensions may cause other problems:
Whenever objects equal in m dimensions, their dissimilarity according to the
dynamic partial function is 0. No matter how big the distance in the remaining
dimensions are, the dynamic partial function is incapable of differentiating
between the objects. Moreover, an object equaling a reference in m dimensions
but having maximal distance in the remaining ones, will be rated more similar
to the reference, than an object with only infinitesimal distance in all—or even
(d−m+ 1)—dimensions.

Instead of multiplying the m best dimensions with 1 and the (d − m) worst
dimensions with 0 it is also conceivable to use a profile of dynamically assigned
weights (ω1, . . . , ωd) with ωi > 0 and

∑d
i=1 ωi = d. The resulting measure

δω,p(x, y) :=

( d∑
i=1

ωi ·
∣∣x[πi]− y[πi]

∣∣p)1/p

could still emulate selective attention, but on the other hand would fulfill the
isolation criterion and avoid the counterintuitive behavior described above.

Hausdorff Distance Given two compact point sets X,Y ⊂ IRd and an
underlying distance measure dist : IRd × IRd → IR, the Hausdorff distance
between X and Y is defined as

dH(X,Y ) := max
(
d ~H(X,Y ), d ~H(Y,X)

)
with

d ~H(X,Y ) := max
x∈X

{
min
y∈Y

{
dist(x, y)

}}
being the directed Hausdorff distance. Informally, the Hausdorff distance
measures to which extent each point of X lies near some point of Y and vice
versa.

The minimum Hausdorff distance with respect to a class T of transformations
t : IRd → IRd is defined as

dTH(X,Y ) := min
t1,t2∈T

{
dH
(
t1(X), t2(Y )

)}
.

The Hausdorff distance of sets of n and m points in IR2, as well as of sets of n
and m non crossing straight line segments in IR2 respectively, can be computed
in time O((n+m) · log(n+m)) using Voronoi diagrams [6].
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For sets of n and m points in IR2 the minimum Hausdorff distance with
respect to translations can be computed in time O(nm · log2(nm)) if the
underlying distance measure is either the Manhattan distance or the maximum
metric [51], and in time O(nm(n + m) · log(nm)) for any other Minkowski
distance [118]. For sets of n and m non crossing straight line segments in IR2

the minimum Hausdorff distance with respect to translations can be computed
in time O((nm)2·α(nm))—with α being the inverse Ackermann function—if the
underlying distance measure is either the Manhattan distance or the maximum
metric [118], and in time O((nm)2·log3(nm)) if the underlying distance measure
is the Euclidean distance [2].

The Hausdorff distance fulfills the metric properties and it adopts invariances
from the underlying distance measure. The Hausdorff distance is robust against
deformation, blur, and crack. However, since its value is determined by a single
point pair, the Hausdorff distance is not robust against noise.

As the Hausdorff distance does only consider the positions of points, it is a
very generic measure and accepts any compact point set as input. On the
other hand, it cannot take account of any internal structures or relationships
between the points. These internal structures and relationships, however,
may be essential for the perception of similarity. Apart from the lack of
noise robustness, this is one reason why the Hausdorff distance may provide
results, that conflict with human perception (see Figure 1.11 for an example).
Nevertheless, the minimum Hausdorff distance has also been considered for the
comparison of images (see, e. g., [119]).

Fréchet Distance A simple curve is a special set of points which is homeomor-
phic to a straight line segment. A distance measure that—unlike the Hausdorff
distance—does take account of the continuous, one-dimensional nature of
curves is the Fréchet distance (as introduced in [89]). Given two parameterized
curves f, g : [0, 1]→ IRd and an underlying distance measure dist : IRd× IRd →
IR, the Fréchet distance between f and g is defined as

dF (f, g) := inf
ω1[0,1]→[0,1]
ω2[0,1]→[0,1]

{
max
t∈[0,1]

{
dist

(
f(ω1(t)), g(ω2(t))

)}}
where ω1 and ω2 range over continuous monotone increasing functions with
w1(0) = w2(0) = 0 and w1(1) = w2(1) = 1. Informally, a common
parameterization of f and g is looked for, such that the maximum distance
at any time t is as small as possible [197]. Numerous variations of this problem
have also been studied, e. g., a generalization to surfaces (see [95, 36]) and the
so called weak Fréchet distance dwF which is defined in the same way as the
Fréchet distance, except that the reparametrizations ω1 and ω2 are not required
to be monotone increasing.
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The minimum Fréchet distance with respect to a class T of transformations
t : IRd → IRd is defined as

dTF (f, g) := min
t1,t2∈T

{
dF
(
t1 ◦ f, t2 ◦ g

)}
.

For two polygonal curves of n and m vertices the Fréchet distance can be
computed in time O(nm · log(nm)) [5]. This result has also been generalized
to piecewise smooth algebraic curves [197]. For two polygonal curves the
minimum Fréchet distance with respect to translations can be computed in
time O((nm)3(n+m)2 · log(n+m)) if the underlying distance measure is the
Euclidean distance [7].

The Fréchet distance fulfills the metric properties and it adopts invariances
from the underlying distance measure. The Fréchet distance is robust against
deformation, but as it is defined on pairs of single curves, the terms blur
robustness, crack robustness, and noise robustness are not applicable.

Since the Fréchet distance takes account of the courses of the curves, it is
superior to the Hausdorff distance in discriminating between curves that are
not perceived similar. On the other hand, patterns perceived similar may be
formed by curves that consist of parts which are locally very similar (with
respect to the Fréchet distance), but which are connected in different ways. In
these cases, modelling the whole patterns by curves in combination with using
the Fréchet distance is not compatible with human perception of similarity (see
Figure 1.11 for an example).

(a) (b) (c) (d)

(e)

Figure 1.11. Applicability of Hausdorff distance and Fréchet distance:
Assume that the line segment (e) has length 1, and that the
origin is always marked by the dot. The Hausdorff distance
between curves (a) and (c) equals 1 whereas the Hausdorff
distance between curves (b) and (c) is only

√
1/2. The

Fréchet distance between curves (a) and (c) on the other hand
equals

√
2 whereas the Fréchet distance between curves (b)

and (c) is much larger. However, the Fréchet distance between
curves (c) and (d) is even greater than 2 and can be made
arbitrarily large by such a construction.
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Set-Theoretic Models Various models of similarity are based on the assump-
tion that each object under consideration can adequately be represented by a set
of discrete features. Given two such object representations A andB, approaches
range from simply counting the number of common elements, to the so called
contrast model σ(A,B) := α·f(A∩B)−β ·f(A\B)−γ ·f(B\A) with α, β, γ ≥ 0
as proposed by Tversky [222]. The latter can be brought into accordance with
many observations that have been made in experiments on perceived similarity,
however, the restriction to discrete features entails the fundamental problem of
finding representations that are adequate for estimating perceived similarity.

Many stimuli are of gradual nature (e. g., color, length, curvature, etc.) and
there is no obvious way to represent them by sets of discrete features. In
addition, a discretization of perceivable stimuli usually leads to pairs of pairs
of different features for which the influence on the perceived similarity is
different.28 Moreover, there might also be other influences. The perceived
similarity of nonsense-syllables, e. g., does not only depend on the occurrence
of common letters, but also on their position, and equality of relations between
elements as, e. g., the height-width ratio of rectangles may be more important
than the equality of the elements themselves [16].

Geometric Models Various models of similarity are based on the assumption
that each object under consideration can adequately be represented by a fixed
number of numerical values (which define a vector or point). The dissimilarity
of two objects is then assumed to correspond to some value of distance between
the two points. Such models can be used in two ways: either for analyzing
existing dissimilarity data, or for deriving values of dissimilarity from the
numerical representations (see also Section 3.3.1 page 138).

Given two such object representations a, b ∈ IRd, according to the weighted
Euclidean multidimensional scaling model the dissimilarity between a and b
simply equals their weighted Minkowski distance of order 2. Various general-
izations of this model have been proposed in order to achieve conformance with
data from experiments on perceived similarity (see, e. g., [15] for an overview).
In the distance-density model introduced in [138], e. g., the dissimilarity of the
objects represented by the points a and b is assumed not only to depend on
their distance d, but also on the spatial density of other object representations
near a and b.

28 In spoken English, e. g., a word containing the letter ‘w’ and the same word
containing the letter ‘v’ instead, will be perceived more similar than words where
‘m’ has been replaced by ‘x’. In written English, on the other hand, a rep1acement
of the letter ‘l’ by the numeral 1 sometimes is not even noticed (especially when
typeset in a small font like used in footnotes) whereas replacing it by ‘w’ lowers the
similarity significantly (‘replacement’ vs. ‘repwacement’).
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Transformational Models The basic assumption behind transformational
models as stated in [121] is, that objects (patterns) are similar if they can
be made identical by a few basic transformations. A well known measure of
dissimilarity following this idea is the so called Levenshtein distance or edit
distance: Given an alphabet Σ and two strings s1, s2 ∈ Σ∗, the Levenshtein
distance dL(s1, s2) is defined as the minimum number of insertions, deletions,
and replacements needed to transform s1 into s2 (cf. [150]). Instead of just
counting the number of basic transformations it is also possible to define an
arbitrary cost function on the set of transformations.

In addition to replacements, deletions, and insertions also other basic transfor-
mations are conceivable, e. g., rotations, reflections, and—if the patterns are of
binary nature—inversion. Images might also be considered similar if colors are
replaced by others, as long as relations of the colors stay the same [96].

Of course, the applicability of such a measure highly depends on the set of
permitted basic transformations [121], and on the definition of the cost function.
However, in connection with perceived similarity it is also very important to
define under which conditions two patterns are considered equal. Demanding
that the two patterns have to become identical is too restrictive as Figure 1.12
illustrates: For transforming a pattern into an arbitrary random pattern, no
predefined set of basic transformations can yield a result essentially better than
replacing every improper bit of information. However, the depicted patterns
are perceived as very similar (if they are realized as being different at all)—a
fact that was already pointed out in [17].

(a) (b)

Figure 1.12. Random patterns:
(a) pseudo random pattern generated based on the first 211

decimal digits of π, (b) random pattern generated based on
211 random bits taken from [190].

The observation that perceived (dis-)similarity is not necessarily symmetric,
namely, that non-prototypical stimuli are perceived more similar to prototypical
stimuli than vice versa [194], can easily be brought into accordance with
transformational models: Normalizing transformations (with respect to pro-
totypicality) might be easier to perform cognitively, than their inverses [138]—
discarding information about the variation from the basic form might be easier
than adding such information.
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Adaptive Resonance Theory and Beyond Mumford [168] sketched a scenario
that seems to be a reasonable description of the processes involved in animal
(and surely also human) object recognition: “A new scene or shape, after
some pre-processing, first activates a set of features bottom-up. These features
stimulate various higher-level categories of objects, and, in a top-down channel,
templates of prototypes of these objects are produced. The lower-level tries to
match these to the scene and this triggers new features describing the ’residuals’,
the mismatched features. Meanwhile the higher area also stores data on the
range of allowable variations for each class of objects, and, on receiving these
residuals, modifies the template reconstructions: the template is better thought
of as a ‘flexible template’. [. . .] In this architecture, ‘similarity’ is totally
customized to the type of object being recognized: for each category of object,
the degree of similarity with a stimulus depends on how much variation is built
into the template, and how strong are the features of the ultimate residual.”

Details of this scenario of course may be questioned, however, it gives an idea
of how complex the processes probably are and how hard it probably is to
correctly emulate the perception of similarity.

1.4. Retrieval

Generally speaking, retrieval is the process of searching a set of items for the
ones having a property as specified by a given query. However, this process
might be realized in very different ways, depending on the type of items a set
may contain, and depending on the ways a query may be formulated.

1.4.1. Basic Concepts

Given a set S of n items and a query q, it is often assumed that the query
uniquely partitions the set into two disjoint subsets: the so called query set Sq
containing the items having the property queried for (relevant items), and the
set Sq̄ = S \ Sq containing the ones not having that property.

Based on S and q a binary classification retrieval system computes a return
set Sr which should ideally equal the (normally) unknown query set Sq. Entities
belonging to the return set Sr although not being relevant are called false
positives. Entities not belonging to the return set Sr although being relevant
are called false negatives.
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A retrieval system for images may make use of different kinds of information
about the items in the set (see also [203]).

independent information Additional information that is not related to the
contents of the images such as, e. g., their origin. It cannot be derived or
inferred from the images only.

content-based information Information that can automatically be derived
from the images. Content-based information typically describe images
on a very low semantic level.

descriptive information Additional (typically externally provided) interpreta-
tions of the contents such as, e. g., which natural objects the image
depicts. Till now, descriptive information mostly cannot be computed
automatically, so usually it has to be gathered manually. The incapability
to extract descriptive information automatically is often referred to as the
semantic gap.

Retrieval using externally provided descriptive information is called annotation
based retrieval (in contrast to content-based retrieval), even though the
annotations may describe the contents of the images. Annotation based
retrieval systems usually allow the formulation of Boolean queries of the kind
“has the following annotation: . . . ”. Content-based retrieval systems on the
other hand usually allow to search for images similar (with respect to some
predefined measure of similarity) to an image provided by the user. This is
called query by example (QBE) or similarity retrieval.

Normally, systems for similarity retrieval originally do not make a binary
classification, but compute a ranking—a sorted sequence of the items—
according to the similarity to the query item. A binary classification may
then be derived from that ranking by taking a prefix of the ranked sequence as
result set. The length of the prefix might either be fixed, or might depend on
a threshold for the similarity.

Since automatic extraction of content-based information is often imprecise,
content-based retrieval itself has to be robust against such imprecisions [203].
One way to make the retrieval more robust, is to use several measures of
similarity based on different features which are extracted independently from
each other, and to combine the results. This combination of results can be done
either by normalizing the values of similarity in a predefined way and combining
the resulting values (see [203] for an overview), by normalizing the values of
similarity according to their actual distribution and combining the resulting
values [13], or by computing the different rankings and then combining the
ranks.
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1.4.2. Retrieval Performance

The quality of a retrieval system is often estimated by applying it on sets and
queries for which the query sets are known—so called ground truth. Typically
these query sets have been compiled manually.

Given a set S and a query q, the effectiveness of a binary classification retrieval
systems is mostly valued using the following measures or combinations of them:

Recall R The number of correctly returned items divided by the number of
relevant items R := ‖Sr ∩ Sq‖�‖Sq‖.

Precision P The number of correctly returned items divided by the cardinality
of the return set P := ‖Sr ∩ Sq‖�‖Sr‖.

Fallout F The number of false positives divided by the number of all non-
relevant items F := ‖Sr ∩ Sq̄‖�‖Sq̄‖.

Given a ranking, the values for recall, precision, and fallout depend on the
length k of the prefix that is taken as the result set. The recall R(k)
monotonically increases as the length of the prefix is increased, but the
precision P (k) typically tends to get smaller with increasing length of the prefix.
The plot of the function that assigns to each length k the point

(
R(k), P (k)

)
is called the precision-recall graph and connecting consecutive points gives the
precision-recall curve.

Let n = ‖S‖ be the number of all items under consideration and m = ‖Sq‖ be
the number of all relevant items. Let r(i) be the rank of the ith-best ranked
relevant item and rl := r(m) be the rank of the least-best ranked relevant item.
The effectiveness of a retrieval system computing a ranking can be valued using
the following measures as defined in [199, 72, 37].

Normalized Recall Rn Value in the range from 0 (worst case) to 1 (perfect
retrieval). The normalized recall gives a higher weight to success in
retrieving the first few items.

Rn := 1−
∑m

i=1 r(i)−
∑m

i=1 i

m(n−m)

Normalized Precision Pn Value in the range from 0 (worst case) to 1 (perfect
retrieval). The normalized precision gives equal weight to all retrievals.

Pn := 1−
∑m

i=1 log(r(i))−
∑m

i=1 log(i)

log
(

n!
(n−m)!·m!

)
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Normalized Last Place Ln Value in the range from 0 (worst case) to 1 (perfect
retrieval). The normalized last place indicates the cardinality of a result
set (as obtained from a prefix of the ranking) which has reasonable
expectation of containing all relevant items.

Ln := 1− rl −m
n−m

Average Precision Pa Value in the range from 0 (worst case) to 1 (perfect
retrieval). The average precision is the mean of the precision values
obtained after each relevant item is included in the result set when the
length of the prefix is increased one by one.

Pa :=
1

m

m∑
i=1

i

r(i)

1.4.3. Trademark Image Retrieval

The application that motivated this research is the automated retrieval of
trademark images: Given a set of trademark images and a query image (the
order image), one wants to find all images within the set that are likely to get
confused with the query image. The possibility of confusion occurs, whenever
images as a whole look very similar, or when one image resembles a part of
another image.

1.4.3.1. Services

Trademark images are usually registered as intellectual property of a company.
Serving as cues for the company, its goods or services, the images have to be
distinctive, non-confusable. Companies therefore have a big interest in making
sure that their newly designed trademark images do not look similar to existing
ones and, having trademark images in use, that no similar new trademark
images are introduced by other companies.

Agencies having access to the trademark registries, offer respective services.
Sifting through a whole database of trademark images so as to find the ones
similar to a newly given order image is called a trademark search. Sifting
through the newly incoming trademark images so as to find the ones similar to
a given order image is called a trademark watch [202].

In many image retrieval scenarios it suffices to return at least some images
fulfilling the conditions queried for. That is why the results provided, e. g., by
Google Images [100] are often experienced as being very imposing. However, in
trademark image retrieval one important objective is, not to miss any similar
image.
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1.4.3.2. Common Practice

As for databases containing hundreds of thousands of trademark images it is not
feasible to manually compare an order to every image, the set of potentially
similar images has to be restricted before manual inspection. One way to
achieve this is to represent every image by a set of codes describing the image’s
content. The codes are typically assigned manually once a trademark is inserted
into the database. Given an order, the database is then automatically searched
for all images having one or more codes in common with the order image.

One of the most commonly used schemes for assigning codes to trademark
images is the so called Vienna Classification [233] developed by the World
Intellectual Property Organization [244]. The Vienna Classification defines
a hierarchical system that divides figurative elements into 29 categories,
144 divisions, and 1 887 sections in total (state of fifth edition). A part of
the hierarchy can be seen in Figure 1.13.

1.
Celestial bodies

2.
Human beings

26.
Geometrical
figures

29.
Colors

26.1
Circles, ellipses

26.3
Triangles

26.13
Indefinable
designs

26.15
Geometrical
solids

26.3.1
One triangle

26.3.2
Two triangles,
one inside
the other

26.3.3
More than
two triangles,
inside one another

26.3.23
Lines or bands,
forming an angle

Figure 1.13. Part of the Vienna Classification

Using this classification scheme, the number of images that have to be inspected
manually, can usually be reduced drastically for device marks depicting concrete
objects such as, e. g., animals (category 3), household utensils (category 11), or
musical instruments (category 22). However, many device marks are totally
abstract and get classified as other geometrical figures, indefinable designs
(code 26.13.25). Moreover some codes appear very frequently, such that for
many searches several thousand images have to be considered.
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1.4.3.3. Automated Similarity Estimation

Due to the variety of ways in which a specific content might be depicted and
due to the variety of ways in which two images might be perceived similar, with
our present knowledge it is completely unrealistic to try and build a system
that is able to handle all images correctly. Whatever the system looks like,
there will always be images that have to be inspected by humans—which are
the highest authority.

Instead of inaccurately handling all images—including also the difficult ones—
and trying to slightly improve the rather poor quality, the goal should be to
accurately handle most of the images and to reliably detect the difficult ones
in order to sort them out. Improvements can then be made in increasing the
number of images that actually can be handled.

With that fact in mind, one also may consider algorithms and techniques,
that perform good on most images, but have an asymptotically bad worst case
complexity—being able to automatically process a large fraction of the images
in a database is actually a gain.

Possibilities to improve the trademark image retrieval by automatic support
are

• reliably identifying very similar images,

• reliably identifying unsimilar images,

• speeding up the manual inspection by grouping the trademark images
before the presentation to the trademark examiners,

• increasing the quality of the manual inspection (reducing the number of
inconsistent decisions) by identifying duplicates within the database.

These different tasks, require different types of similarity measures: For an
image to be rated very similar to a given query image, it suffices if it contains a
part that almost looks like the query image, but it may also contain additional
features (shapes, text, etc.). Therefore, a similarity measure σcp that considers
the query image completely and the other image partially is needed. Duplicates
on the other hand have to look almost the same completely. Therefore, a
similarity measure σcc that considers the query image and the other image
completely is needed.

58



1.4. Retrieval

1.4.3.4. Types of Images

Two types of trademark images can be differentiated: Text marks are images
depicting only letters. The most important information contained in text marks
are the words these letters form. Typeface, emphasis, or color are only of
subordinate (or even of no) importance. Device marks on the other hand are
images depicting no text, but graphic symbols, abstract graphics et cetera. For
these kind of images shape is the most important feature. Color and texture
are less important and are mostly only used to form the shapes.29 Of course
the boundary between text marks and device marks is not clear cut, textual
and graphical elements might be mixed, single characters might be replaced
by graphical elements, or letters might be distorted such that they become
graphical elements rather than text (see Figure 1.14), but pure text marks need
other treatment than pure device marks and for marks with mixed content a
decomposition into textual elements and graphical elements would be desirable.

(a) (b) (c) (d)

Figure 1.14. Text marks and device marks:
artificial images depicting (a) the word ‘star’—classified as text
mark, (b) the word ‘star’ with part of a letter replaced by a
star (c) a star plus the abbreviation ‘sr’, (d) a distorted version
of the abbreviation ‘sr’—classified as device mark

29 Exceptions exist; sometimes even a color itself gets registered.
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1.5. Significance of Heuristic Approaches

Generally speaking, a heuristic is a method that achieves good (but not
necessarily optimal) results at low expense. However, which results are to
be considered good heavily depends on the application at hand.

1.5.1. Basics

Let f : I → O be a problem specification that assigns to every input i ∈ I a
set R(i) ∈ O of possible results, and let c : R(i) → IR be a measure indicating
the costs/quality of a result. For example if the problem is to find vertex
covers30 for graphs, I is the set of all graphs; for a given graph G, R(G) is the
set of vertex covers of G, and the cardinality of a vertex cover could be used
as measure c.

If the task is to find for every input i ∈ I the result ropt(i) ∈ R(i) such
that c

(
ropt(i)

)
is minimal (or maximal respectively), then f and c define

an optimization problem. Given such an optimization problem it might be,
that no algorithm computing an optimal result in reasonable time bounds
is known. Many relevant problems are NP-hard, which means that they are
strongly believed not to be computable in polynomial time at all—the example
from above is such a case: Finding a vertex cover of minimum cardinality
is NP-hard [56]. Moreover, for other optimization problems even the known
polynomial time algorithms might not be applicable in practice because of too
large exponents. In all these cases it might be helpful to have algorithms that
do not necessarily find the optimal results, but results with specific properties.

Let f : I → O and c : R(i) → IR define a minimization problem and for a
given input i ∈ I let ropt(i) be the optimal result such that c

(
ropt(i)

)
≤ c(r)

for any r ∈ R(i). An algorithm A that for any given input i computes a
result rA(i) ∈ R(i) such that c

(
rA(i)

)
≤ α · c

(
ropt(i)

)
for a fixed constant α,

is called constant factor approximation algorithm with factor α (definition for
maximization problems analogous). For the problem of finding a vertex cover
for a given graph, e. g., there is a factor 2 approximation algorithm.31

Besides approximation algorithms there is another group of algorithms called
heuristics. They do usually not give provable guarantees for every result they
produce, but however, are used if they perform well on the average, or on
most of the (reasonable) inputs. One example is the randomized quicksort
algorithm as introduced in [110].32 In the worst case it has quadratic running

30 A vertex cover for a graph G = (V,E) is a set C ⊆ V of vertices such that any
edge e ∈ E is incident to at least one vertex v ∈ V .

31 Greedily select an edge e = {u, v}, add both incident vertices u and v to the
covering, remove all edges incident to u or v from the graph and recurse [56].

32 To make it fit the scheme above, one can consider it to output the sorted list plus
the number of comparisons made, for using it as measure indicating the costs.
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time, so there is no guarantee for every run, but the average running time is in
O
(
n · log(n)

)
and the algorithm is widely used because of its good performance.

1.5.2. Heuristics in the Context of Similarity Estimation

It might seem surprising to mention, e. g., the Hausdorff distance in this
context, as it is well studied and has many nice, provable properties. In fact
it is really not a heuristic, however, not because of its provable properties, but
because it is a problem definition, not an algorithm. On the other hand, using
the Hausdorff distance to model perceived similarity is nothing more than a
heuristic—one amongst others.

As long as it is not completely understood how humans rate similarity, the
suitability of a given measure cannot be proved. On the contrary, for the
Hausdorff distance—as for many other measures—it is easy to find examples,
where it does absolutely not conform to perception. This does not mean, that
it might not be useful for modelling perceived similarity in certain applications.
However, the applicability of a given measure has to be confirmed based on its
accordance to perceived similarity (rather than to other mathematical models)
for expected real-world data.

1.5.3. No Free Lunch

There are many optimization problems for which no (applicable) algorithms
are known that directly compute a result that is close to being optimal. To
tackle such problems, a variety of search heuristics have been invented, such
as, e. g., hill climbing in several variants (see [198]), simulated annealing [136],
and evolutionary algorithms [192]. In order to be applicable to a whole range
of different problems, these algorithms are often kept very generic, not making
any assumptions on the problems at hand, which also leads to simple and
transparent models.

In different tasks, the different generic search algorithms perform differently
well. However, analyzing the general performance it was shown that aver-
aged over all possible cost functions, all search algorithms (even a random
search) exactly perform the same—a result which is called a no free lunch
theorem [242, 243]. In other words: Whether a distinct search/optimization
algorithm performs well, heavily depends on the cost function at hand.

There are many examples, where a generic search heuristic does actually yield
good results, but according to the no free lunch theorems these are cases
where the generic model (coincidentally) fits the optimization problem. As a
consequence, it is suggested to explicitly tailor algorithms to particular problem
classes by exploiting domain knowledge [187].
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1.6. Data

As long as the ways in which perception and cognition work are not completely
understood, the applicability of similarity measures to perceived similarity
cannot be theoretically proved, but has to be confirmed in experiments using
real-world data. Of course, the outcome of such experiments highly depends
on the data used.

1.6.1. Requirements

There are mainly three reasons why experiments may produce unjustifiably
good results:

• If the algorithm is tailored towards a specific data set instead of being
tailored towards the general problem,

• if the used data set is tailored towards the algorithm,

• if the used data set enables algorithms to make right decisions for the
wrong reason.

In order to eliminate these sources of misleading results, algorithms should be
tested with real-world data, which cover the whole bandwidth and constitute
a fairly representative cross-section of the data that occur in practice—a
requirement that is often not fulfilled (see [184] for a detailed discussion).

Along with the data that serve as input for the algorithms, also information
about the correct output is needed. This makes the generation of adequate
data for testing algorithms with respect to their conformity with perceived
similarity a laborious task: The values of similarity (or the information which
items are perceived similar) have to be determined manually, which makes it
almost impossible to get complete ratings for large data sets.

Automatically generated data may be used additionally, e. g., for the purpose
of getting a first, rough idea about the performance of an algorithm, or to
systematically search for limitations. However, care has to be taken to avoid
misinterpretations of the results. In [46], e. g., from each image of a set of
60 000 images, 24 variants were generated by applying transformations such
as rotations, scalings, cropping, and downsampling. The resulting sets of
25 images each, were supposed to be perceived similar—a strategy by which
“individual’s subjectivity” was intended to be “safely excluded”.33 A strategy
which is very questionable, because it is targeted on identifying (transformed)
duplicates of an image but has no verifiable connection to perceived similarity
at all.

33 The same data apparently also served as test set for the evaluation of the dynamic
partial function in [151]
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1.6.2. Employed Data Sets

Throughout this work mainly the following sets of data have been used to test
the performance of the algorithms:

1.6.2.1. MPEG 7 CE-Shape-1 part B

The Motion Picture Expert Group (MPEG) [167], a working group of ISO/IEC,
provided a data set that consists of 1 400 (mostly) silhouette bi-level black-and-
white images—the MPEG-7 core experiment CE-Shape-1 part B set. The set
is subdivided into 70 classes containing 20 related images each. The images
of some classes depict silhouettes of real objects, such as apples, birds, or
cars. Other classes contain totally abstract images. Figure 1.15 shows some
examples.

(a) (b) (c) (d) (e) (f)

Figure 1.15. MPEG 7 images:
examples of shapes from 6 different classes, namely (a) ‘apple’,
(b) fly’, (c) ‘guitar’, (d) ‘spoon’, (e) ‘misk’, (f) ‘device6’

For every image, the other 19 related images of the same class are supposed to
be the ones most similar to that image meaning that all 20 images of the class
are relevant in a similarity retrieval. Therefore, it is possible to perform 1 400
queries, one for each image. After the compilation of the set, the perceived
similarities between the images have not been determined—at least not to the
knowledge of the author. The set is therefore actually dedicated to be used
in classification tasks, rather than in similarity estimation tasks. In addition,
in some classes also semantics play a role. Nevertheless, the set serves as a
good starting point for the evaluation of similarity measures. Moreover, it is
commonly used to assess the performance of shape descriptors and retrieval
systems and therefore there is quite a large number of published results for this
set (see, e. g., [32] and [143]).
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1.6.2.2. Trademark Images from the UK Trade Marks Registry

The UK Trade Marks Registry provided a data set that consists of 10 745
bi-level black-and-white trademark image files—mostly device only marks.
Figure 1.16 shows some examples.

Figure 1.16. UK trademarks:
The first row contains 6 of the query images, the second row
contains corresponding relevant images.

Most of the images depict abstract geometrical shapes. Some trademark logos
are depicted in several image files and in several variations. Most of the images
depict black figures on white background, but in some images the figures are
hatched or have texture. For about 2 000 image files (19 %) the number of
closed contours (distinguishable black and white areas) exceeds 100. For about
800 image files (7 %) the number exceeds 1 000 and the maximum observed is
even 92 436. The images are supposed to depict a single trademark each. Some
of the images however contain several versions of the same trademark. For a
very low percentage of the images it is even hard to say what they contain at
all (Some extreme examples are shown in Figure A.1 on page 173).

A set of 24 image queries is used as ground truth. Each query consists of a
query image (out of the collection of 10 745 images) and a list of relevant image
files34 from the test set (including the query image file itself). The lists of
relevant image files had been compiled by experienced trademark examiners.35

34 Relevant means that trademark examiners judged an image sufficiently similar
to the query image to warrant detailed examination, not that infringement had
necessarily taken place [72].

35 First, the trademark examiners compiled initial lists. Then, with an early version
of the ARTISAN retrieval system the test set was searched for images similar to
the query images. The trademark examiners judged whether the automatically
retrieved images were indeed sufficiently similar to the respective query image. If
so, the list of relevant image files was augmented [72].
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The 24 queries contain 333 image files in total. A complete listing of the query
images and the respective relevant images is given in Table A.2 on page 176.
The set together with the ground truth was also used to test the ARTISAN
retrieval system [72].

Some decisions of the trademark examiners whether an image should be
contained in the list of relevant images or not, are hard to comprehend for
an outsider (Some examples are shown in Figures A.2 and A.3 on page 174).
But as the examiners have the expertise, their judgement has to be taken as
reference. However, the lists of relevant images are obviously not error-free:

• For 4 queries there exist image files depicting the original query trademark
(copy of original), that are not contained in the lists of relevant image
files: in total 5 additional image files.

• For 9 queries there exist image files depicting one of the relevant
trademarks (copy of relevant), that are not contained in the lists of
relevant image files: in total 30 additional image files contributed by
14 different trademarks.

Some of these inconsistencies might be caused by the later insertion of relevant
image files to the list. However, the fact that even image files depicting the
original query trademark were overlooked by experts (supported by a Vienna
Classification based system) emphasizes the relevance of a reliable automated
solution.

The experiments described in the present work were assessed based on the
original queries as well as on the queries where the lists of relevant images have
been corrected. Since the differences of the results were marginal, only the
results based on the original queries will be listed.

1.6.2.3. Trademark Images from Aktor Knowledge Technology

The company Aktor Knowledge Technology provided a data set that consists
of 20 894 trademark image files in total—device only marks as well as marks
containing graphical plus textual elements. Unlike the MPEG 7 data set and
the UK trademarks set, this set also contains color images: Based on the
segmentation described in Section 2.2.2, 38 % of the images (7 908) have been
classified as pure bi-level black-and-white images, another 2 % (486 images)
have also been classified as bi-level black-and-white images although containing
different gray levels due to compression artefacts and blurring, 19 % (3 974
images) have been classified as gray level images, and 41 % (8 526 images) as
color images. Details of some images from this set can be seen in Figures 1.5 (b),
2.4, and 2.5.
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CHAPTER 2

Extraction of Shapes

This chapter deals with the problem of extracting the perceptually relevant
shapes from figurative images given as raster graphics. Two images may be
perceived similar, just because of the fact that they contain a specific shape.
For the retrieval of photographic images, shapes may be represented implicitly,
using features or interest points based on local analysis of color distributions.
Approaches going in this direction are, e. g., corner detection (see [60] for an
overview) or the scale-invariant feature transform (SIFT) (see [155] and [156]).
In figurative images, however, the shapes may be depicted in different ways
and therefore it is essential to explicitly extract them.

In the following, the main aspects that have to be considered in automated
image processing are outlined one by one, and approaches for solving the
problems are developed. All the proposed algorithms have been implemented
and in Section 4.2 they are joint together in a framework for automated
extraction of shapes in figurative images.
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2.1. Basics

Since figurative images are artificially designed, the extraction of shapes is—
unlike in photographic images—normally not thwarted by, e. g., gradients of
brightness or vague edges. However, shapes cannot be extracted in a uniform
way, because of the different possibilities to depict them.

region vs. outline When a shape shall be depicted by its outline, any image
representation that is suitable for visual perception needs to depict this
outline by one ore more regions of some width. Since the ’line-width’
may vary from image to image and even from image representation to
image representation, and since line width is also subject to the design of
figurative images, there is no way to reliably discriminate between regions
depicting a region shape, and regions depicting the outline of a shape (see
Figure 2.1 (a) for an example).

textured regions When a shape is depicted by a textured region, the shape
extracted from the image should—of course—equal the original shape and
abstract from the details of the texture. Since there are no limitations
on the granularity of the texture, there is no way to reliably discriminate
between small regions1 forming the texture of the shape actually depicted,
and small regions that really depict small shapes (see Figure 2.1 (b) for
an example).

hatched regions When a shape is depicted by its outline plus a hatched
interior, the outline should to be discriminated from the lines that are
just hatching. One forms the shape, the others might totally be neglected
(see Figure 2.1 (c) for an example).

textured lines When a shape is depicted by its outline, even this outline might
be textured, e. g., using dots, using small line segments, or a mixture of
both (see Figure 2.1 (d) for an example).

(a) (b) (c) (d)

Figure 2.1. Challenges due to design:
(a) square or sharply bent strip, (b) textured square or cross
etc., (c) hatched square or comb, (d) square depicted by varying
discontinuous outline.
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In addition to these challenges due to the design of figurative images, the
representation as raster graphics and the use of lossy compression involve
further difficulties in correctly extracting the depicted shapes.

dithering In order to create the illusion of gray tones in bi-level black-
and-white raster graphics, black and white pixels may be blended—a
technique called dithering (see Figure 1.1 on page 20 for an example).
Moreover, patterns that consist of many different colors but are perceived
as homogeneous regions are sometimes even used in color images (see
Figure 2.5 for an example). In the following, this variant will be called
color disturbance.

antialiasing Where lines or boundaries of regions do not run parallel to the
horizontal or vertical axis, rasterization causes these lines and boundaries
to appear jagged. Antialiasing is the attempt to reduce the impact
of rasterization on perception. Typically, this is done by interpolating
the pixels’ colors depending on their nearness to the line (see Figure 2.2
for an example) or on their relative affiliations to the different regions,
respectively. Moreover, blurring of the boundaries between regions of
different colors is sometimes also used as a stylistic device.

compression artefacts To save storage or bandwidth, raster graphics typically
get compressed. Although loss-less techniques are available, a lossy
variant of the jpeg-compression [125] is often used even for figurative
images. This variant is quite adequate in some domains, but for images
with regions of homogeneous color and sharp boundaries between these
regions it is rather unsuitable (see Figure 2.2 for an example).

(a) (b) (c)

Figure 2.2. Challenges due to representation:
(a) line segment rastered without and with antialiasing, (b) same
line segments rastered at different resolution, (c) same line
segments rastered at different resolution and jpeg-compressed
with low quality.

1 In general the regions forming texture need not be small, of course. Any shape
or set of shapes filling the interior of the actually depicted shape sufficiently dense
with its boundary can act as texture.
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2.2. Vectorization of Figurative Images

For figurative images vectorization is essentially the reverse of the rasterization:
deducing shapes from the pixels’ colors.

2.2.1. Related Work

There are two opposing strategies for extracting shapes in images. The first
one is to determine the shapes’ interiors by looking for pixels that—according
to some criteria of uniformity—are presumably belonging to the same shape,
and to group these pixels together (see [104] for a comprehensive overview).
Approaches following this idea are, e. g., thresholding, region growing (see,
e. g., [254]), or mean shift analysis [55]. The other strategy is to determine the
shapes’ boundaries by looking for discontinuities. Two of the most widely used
approaches of this type are the Canny edge detection algorithm as presented
in [39], and the watershed transform [27] (see also [226]). Since uniformity and
discontinuity are inversely related, also combined methods have been proposed
such as energy minimization based on the Mumford-Shah functional as defined
in [170], and some graph based approaches (see, e. g., [80]).

2.2.2. Discretization of Colors

Based on the observation that most figurative images make use of only a few
distinct colors2, the strategy pursued here is to identify these colors and to
assign each pixel to one of these colors first (segmentation), and to detect
the boundaries between regions of different color afterwards. The proposed
approach, therefore, belongs to the first category of approaches mentioned
above. Smooth color gradients like, e. g., in Figure 1.1 (page 20) cannot be
handled properly this way, but the advantages of the selected strategy surpass
this deficiency, which only occurs occasionally.

Idea of the Proposed Approach Many figurative images are given as (almost)
bi-level black-and-white images, meaning that the colors occurring can be
grouped into two clearly distinguished groups and that the variation within
each group is not perceptible. For these images the discretization is trivial and
they may easily be identified before more involved analysis is carried out, just
by looking at the color histograms. Regions dithered with black and white

2 However, due to compression artefacts, antialiasing, and color disturbance, the
number of colors in a specific representation of such an image may be arbitrarily
large.
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2.2. Vectorization of Figurative Images

pixels cannot be handled properly (meaning that they are classified as kind of
homogeneous region of gray color) this way, but see Section 2.3.1 on texture
analysis for this issue.

The basic strategy for the remaining images is to successively identify pixels for
which a classification based on its color and context can be done with minimal
risk of making wrong decisions. The whole process is subdivided into several
steps. At first, the obvious cases are handled with moderate computational
effort and the fewer unclassified pixels remain, the more detailed the analysis
gets.

The proposed approach takes the following considerations into account:

• In regions with a high degree of variations (regions of color disturbance),
pixels are not perceived as being individual, whereas in homogeneous
regions even isolated pixels of different color may lead to the perception
of some structure.

• The usage of blurring as a stylistic device, antialiasing, and compression
artefacts may cause pixels at the boundary between two regions of
different color to have an intermediate color. These pixels are rather
perceived as belonging to one of the two regions, whereas in other areas
of the image pixels with the same intermediate color may be perceived as
individual structure.

• Near the boundary between two regions with colors that are perceived
very differently, comparatively small differences are rather ignored (even
when the additional colors are not intermediate ones), whereas in
homogeneous regions even small differences may lead to the perception
of some structure.

Description of the Algorithm The segmentation does not follow a single par-
adigm, but combines many ideas that appear to be helpful to overcome the
obstructions one is confronted with in many real-world trademark images. An
elaborate analysis of the performance and a systematic evaluation of optimal
parameters and combinations of techniques is desirable, however, it is not the
main focus of this work. In the following an overview of the ideas used to
obtain a segmentation that can form a proper basis for the subsequent stages
is given. A more detailed description of the algorithm is given in the Appendix
(Section B.1).
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The discretization of colors is done in 12 steps:

1st step: region growing The goal of the first step is to identify large regions
that have virtually no variation in perceived color, and to beware of all
unsafe areas such as, e. g., boundaries. One ofter the other, clusters are
grown greedily, but in a very cautious way, avoiding all pixels that are
not far away from any sensible change in color.

2nd step: enlarging and merging clusters Since in the first step the clusters
were grown one after the other this had to be done very cautiously. In
the second step the existing clusters are further enlarged concurrently
and—if possible—merged. The whole process of enlarging the clusters
and merging the clusters is repeated until no further changes occur.

3rd step: detecting border pixels In the first two steps, only pixels in homo-
geneous regions have been processed, pixels near significant changes of
color have been excluded. Two types of these pixels can be differentiated
between: first, pixels actually having almost the color of the shape they
depict; second, pixels located between two different regions and having
a color that is a mixture of these two regions’ colors, e. g., occurring
in blurred images. Assigning the latter pixels to such intermediate
colors would result in the detection of shapes that have no perceptual
counterpart—they should rather be assigned to one of the colors of the
regions they are located between. Therefore, for every unclassified pixel
the degree of being a border pixel is computed.

4th step: further enlarging and merging clusters The same enlarging of clus-
ters and merging of clusters as in step 2 is performed, however, whether
a pixel might be added to a cluster, now does also depend on the pixel’s
degree of being a border pixel.

5th step: uniqueness Unclassified pixels that have a color which differs a lot
from the colors of all the clusters in the vicinity more likely originate
from an independent colored region than pixels with colors only slightly
differing from the clusters in the vicinity do. In order to distinguish
between both cases, for every unclassified pixel its uniqueness—the degree
of having a color independent from existing clusters in the vicinity—is
computed.
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2.2. Vectorization of Figurative Images

6th step: merging In steps 1 to 4, only clusters that where grown from
homogeneous regions (although also reaching for pixels near abrupt color
changes) have been considered. Now, in order also to find thin clusters as
resulting from the depiction of lines, every unclassified pixel is seed of a
(preliminary) cluster and neighboring clusters of sufficiently similar color
are merged. However, since border pixels should not result in independent
clusters, and since pixels in the vicinity of other clusters that they
might belong to should not result in independent clusters, the merging
also depends on the borderness and on the uniqueness of the pixels.
After the merging, every pixel is member of a (preliminary) cluster,
however, not every preliminary cluster corresponds to an independent
perceptual entity—only sufficiently large clusters can be assumed to be
valid. Therefore, all pixels belonging to small clusters are marked as
unclassified again.

7th step: further enlarging and merging clusters After additional clusters
possibly have been introduced, the clusters again are enlarged and merged
as in step 4.

8th step: merging clusters based on color In order to reduce the number of
distinct colors, also clusters that do not share common edges are merged.

9th step: handling antialiasing Pixels that are located inbetween two different
regions (clusters) and that have an intermediate color ideally should be
assigned to one of the two regions. In order to do so, for every unclassified
pixel its vicinity—similarly to step 3—is searched for evidences that the
pixel is an intermediate one. If enough evidence is found the pixel is added
to the cluster for which essentially the difference in color is smaller.

10th step: aggressive assignment Similarly to step 4, the clusters are again
enlarged, however, since border pixel are already processed, the tolerated
differences in color are larger.

11th step: merging clusters based on color again Again, clusters are merged
based on their colors.

12th step: clustering rest The remaining pixels are clustered just based on
their distribution in color space. Repeatedly the largest cluster is
determined until no unclassified pixel remains.

73



2. Extraction of Shapes

Experimental Results Using an implementation with the set of parameters
described in the Appendix (Section B.1), the following results have been
achieved: Figure 2.3 shows the result of the segmentation for an exemplary
single image demonstrating several features of the segmentation process: A
region of homogeneous color with clear cut edges (a) is recognized as such and
left unchanged. Regions of homogeneous color with antialiased edges (c) are
recognized as such and the pixels of intermediate color are assigned one of the
colors of the adjacent regions. Pixels of the same intermediate color, but not
located inbetween different colors are recognized as filigree structure (b) or as
region (c). A region of color disturbance (e) is recognized as such and assigned
a single color. Moderate jpeg-artefacts are eliminated, whereas isolated noisy
pixels are left unchanged.

(a) (b) (c) (d) (e)

Figure 2.3. Segmentation—artificial image:
original image (top) and its segmentation (bottom). All at the
same time, the image contains region shapes, lines, dottet lines,
antialiased edges, texture, and color disturbance, as well as noisy
pixels and jpeg-artefacts3.

3 In a printed version of this thesis, the jpeg-artefacts might be hard to perceive due
to dithering. However, viewed on a screen they are obvious.
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Figures 2.4 and 2.5 show the results of the segmentation for two real-world
trademark images from the Aktor set (see Section 1.6.2.3). Figure 2.4
demonstrates the importance of a special handling of pixels at the boundaries:
The difference between the colors of pixels belonging to the same region may be
larger than the differences between the colors of pixels from different regions. In
the lower part, the colors on the edges are almost interpolated, whereas in the
upper part, there are also boundary pixels which do not have an intermediate
color. Figure 2.5 shows the massive differences in color that may occur within
a region that is actually perceived as having a single color.

ddeeeddeee ddeee

Figure 2.4. Segmentation—trademark image I:
original (left) and segmented (right) 90 × 60 pixel detail of a
510× 1 856 pixel trademark image. The average RGB values
of the red region in the upper part are (250, 8, 3) whereas
the boundary pixels marked by the black circles have RGB
values (255, 255, 222), (192, 43, 45), and (227, 255, 252), respec-
tively.

Figure 2.5. Segmentation—trademark image II:
original (left) and segmented (right) 90 × 60 pixel detail of a
967× 301 pixel trademark image.
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2.2.3. Boundary Detection

After the image has been segmented, meaning that each pixel has been assigned
to a color of the limited palette, ideally every depicted shape corresponds to a
maximal edge-connected set of pixels of homogeneous color. For the process of
extracting boundary polylines from the grid of pixels, every pixel (i, j) is seen
as covering the square [i, i+ 1[×[j, j + 1[ .

Having regions of homogeneous color, the determination of boundaries is then
almost trivial: every line segment separating two pixels of different color is
part of a boundary and for an edge-connected region of homogeneous color
its boundary segments form a closed polyline. These closed polylines can be
detected by

1. scanning the image for a pair of neighboring pixels having different colors,

2. following the discovered boundary until the starting point is reached
again, while gathering all passed vertices, and

3. marking the boundary as being processed, and continuing with the scan.

The image is scanned row by row. Whenever a pixel having a neighbor with
different color is found and the (half) edge separating the pixel from its neighbor
is not already marked as being processed, the boundary that separates the
pixel’s edge-connected region of homogeneous color from pixels of other colors
is followed until the starting boundary edge is reached again, marking every
traversed half edge. If the detected boundary is an outer boundary (decided
based on the sum of angles between boundary edges which is either +2π or
−2π) it is added to the list of shape boundaries. If the detected boundary is
an inner boundary (bounding a hole from the outside) it is rejected since it will
completely be represented by the outer boundaries of the hole’s content.

In the scan every pixel is only considered once. Every edge is traversed at most
twice (once for every half edge). Since the number of edges is linear in the
number of pixels, for a raster graphic of size w×h the whole process of detecting
boundary polygons between regions of different color can be completed in
time O(w · h).
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2.3. Merging of Small Shapes

The set of shapes resulting from the vectorization of a figurative image may
contain shapes that—in the image—are perceived as texture forming the
interior of another region shape, or as small patches forming a line shape (see
Figure 2.3 (d) and (b) for examples), rather than being perceived as individual
entities. Ideally, in both cases these shapes should be replaced by what they
form, i. e., the actually perceived region shape in the first case, and the actually
perceived line shape in the second case.

2.3.1. Textured Regions

In general, the term texture is used for the appearance of the surface of objects,
including fine grained differences in brightness due to coarseness of the surface,
as well as differences in color. Apart from color disturbance, in figurative
images the first aspect is mostly only of limited relevance. Moreover, fine
grained slight variations are assumed to be eliminated to a large extent already
in the vectorization phase. This section therefore concentrates on texture with
obvious variations in color due to dithering or stylistic methods used by the
designers of images.

Related Work An extensive overview of the literature dealing with texture
analysis is given in [221]: Approaches proposed in this context include
statistical methods like using gray level co-occurrence matrices (see, e. g., [255]),
geometrical methods like looking for placement patterns of some structural
elements (see, e. g., [253]), and using Voronoi diagrams (see, e. g., [220]), signal
processing methods like Fourier analysis (see, e. g., [248]), and Gabor filters
(see, e. g., [126]).

For the problem of replacing texture in figurative images by the shapes that are
formed, the approach used in [73] and in [113] was essentially blurring the image
and applying edge detection to the blurred image. However, a blurring that
is sufficient for equalizing the differences in textured regions, at the same time
may destroy thin structures. This method should, therefore, not be applied to
images that depict some shapes by textured regions and some shapes by their
outlines.
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Idea of the Proposed Approach In figurative images, detailed drawings of
real-world objects may be as complex as texture. Due to the influence of
semantics, automated systems may often not estimate the perceived similarity
of such drawings properly. Therefore, the goal pursued here is, in the first
place, only to detect regions of high visual complexity reliably. After that, the
shapes inside this regions may either be replaced by the shapes they actually
form, or the image may be marked for manual inspection (see Section 1.4.3.3).

The proposed approach differs from most of the existing methods due to
the fact that it is not based on an analysis of the pixel colors (intensities),
but on the boundaries extracted in the vectorization. Unlike in geometrical
methods, however, the boundaries are not treated as individual entities, but
are analyzed using techniques related to signal processing methods. The basic
idea is to use a low-pass filter on the image of edges to identify regions of
high visual complexity: The boundaries detected in the vectorization phase
are drawn into an initially empty image. Applying a low pass filter to this
image transforms regions containing lots of edges into regions of high intensity,
and regions containing only a few isolated edges into regions of low intensity.
The existence of regions that—in the original image—are textured or contain
detailed drawings, may then be detected by applying thresholding to the
intensity image. Moreover, using appropriate values for the blurring and for
the thresholding, such an intensity image may also be used to estimate the
boundaries of a textured shape, however it may not be used to distinguish
between regions of different textures having the same density of edges.

Description of the Proposed Algorithm A gray level image of the same size
as the original image is initialized with all pixels set to 0 (black). The boundary
edges detected in the vectorization phase are then drawn into this image with
maximal brightness (white).4 The low-pass filter applied here is a convolution
with a two-dimensional rectangular function with side lengths db. Thresholding
the smoothed image, again may result in a scattered set R+ of pixels with
brightness above a threshold θt. In order to counter this discretization effect,
small holes should be closed and small isolated groups of pixels, which might
also result from the crossing of jagged lines in the original image, should be
removed. This is achieved by applying two morphological operators on R+,
namely a closing and an opening.

4 Actually, the pixels that have the lower left corner covered by an edge are set
to the maximal brightness. As the edges pass between the pixels of the original
image, this re-drawing causes a shift by 0.5 in positive x-direction and in positive
y-direction. However, for detecting regions of high complexity this shift, of course,
is insignificant.
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Let A be a subset of the IR2. The dilation of A by a disc D of radius r, centered
at the origin, is—analogically to the Minkowski sum—defined as A ⊕ D :=
{a + v | a ∈ A, v ∈ D}. It corresponds to pushing the boundaries towards
the outside by r. The erosion of A by D is defined as A 	 D := {p |@ a′ ∈
IR2 \ A, v ∈ D such that p = a′ + v} = (Ac ⊕D)c.5 It corresponds to pushing
the boundaries towards the inside by r. The closing of A by a disc D is a
dilation followed by an erosion, namely (A ⊕D) 	D. The opening of A by a
disc D is an erosion followed by a dilation, namely (A	D)⊕D.

In case of raster graphics, the underlying space is not IR2 but Z2 so formally,
the disc D has to be replaced by D′ = D ∩ Z2. The union Rt of regions
that are assumed to contain texture or detailed drawings is derived from R+

by applying a closing and an opening: Rt = (((R+ ⊕ D′) 	 D′) 	 D′) ⊕ D′.
If Rt = ∅, there are no relevant regions of high intensity which indicates, that
there are no regions of high visual complexity. If Rt is not the empty set,
meaning that regions of high visual complexity do exist, either the image may
be marked for visual inspection, or further texture analysis techniques as listed
above may be applied to the parts of the image covered by Rt.

Experimental Results Using an implementation with the set of parameters
described in the Appendix (Section B.1), the following results have been
achieved: Figure 2.6 shows the result of the texture detection for the exemplary
image from Figure 2.3.

Figure 2.6. Texture—artificial image:
all shapes originally detected in the image (black) and region
classified as textured (gray).

5 Definition according to [206]. A slightly different definition is also commonly used
(see, e. g., [106]), however, for erosion by a disc centered at the origin, both versions
are equivalent.
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Figures 2.7 and 2.8 show the result of the texture detection for real-
world trademark images from the UK trademarks set (see Section 1.6.2.2).
Figure 2.7 (a) shows an image where the textured regions form shapes that are
not represented by any other detected shape, such that replacing the texture
by the region it forms reveals essential shapes. Figure 2.7 (b) shows an image
where the textured regions just fill the interior of already detected shapes,
however, replacing the texture significantly reduces the complexity of the image
description.

(a) (b)

Figure 2.7. Texture—trademark images I:
original images plus all shapes not classified as texture (black)
and regions classified as textured (gray).

Figure 2.8 (a) shows an image where filigree structures inside a textured
region—although easily perceptible—are also classified as being texture. Fig-
ure 2.8 (b) shows an image where a group of small shapes may be perceived as
forming a shape, however is not classified as being texture.

(a) (b)

Figure 2.8. Texture—trademark images II (limitations):
original images plus all shapes not classified as texture (black)
and regions classified as textured (gray).

Applying the algorithms to the UK trademarks set, textured regions have
been identified in 2 174 (20.2 %) of the 10 745 image files. Averaged over
all files, 313 shapes per file—which is 76.4 % of the total number of shapes
originally detected in the images—have been removed, but on the other hand
only 0.54 shapes per file have been added. That means, that the complexity of
the image descriptions is remarkably reduced.
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2.3.2. Broken Lines

When an image depicts line shapes or the outlines of region shapes, in raster
graphics these lines typically correspond to chains of pixels having the same
color. In the vectorization stage such a chain becomes a set of thin region shapes
some of which may even correspond to single pixels. Moreover, the elements
of such a set need not necessarily be connected, especially in case of dashed
or dotted lines. However, in order to get a representation that conforms with
perception, these chains should be re-connected and the sets of thin regions
should be replaced by the lines they correspond to.

Related Work If the line shapes are restricted to come from a limited set
of possible curve types, e. g., straight line segments or circular arcs, these
primitives can be detected based on the corresponding pixels using recognition
techniques such as the generalized Hough transform [115, 68] or alignment
based on the random sample consensus [84] (see Section 3.2.1 for a detailed
description). However, in the given context the line shapes may not be
restricted to such a limited set of primitives.

In the field of digitizing technical drawings, the same problem arises: lines have
to be detected although they might be depicted as dashed or dotted lines etc.
Algorithms have been proposed for straight lines (see, e. g., [131]) as well as
for arbitrary curved lines (see e. g., [228], [65], and [239]), but these approaches
make very restrictive assumptions about the line types: line thickness, actual
lengths of dashes and gaps, or repetition patterns (see also [137]). Since the
line types in technical drawings have been standardized (cf. [123]), exploiting
knowledge about the rules may be quite beneficial for recognition, however, in
the given context there are no such rules.

A problem that is closely related, is the so called curve reconstruction problem:
Given a set of points sampled from a curve, connect them according to their
adjacencies on the curve (see, e. g., [63]). Whether a curve may correctly be
reconstructed by a given algorithm, of course depends on the sample at hand.
For a curve C, let MC be the medial axis (as introduced in [31]), and for a
point p ∈ C let the local feature size lfs(p) := minm∈MC

{
‖p − m‖

}
be the

minimum distance of p to a point of the medial axis. A sample set S ⊂ C
is called ε-sample of C, if every point p ∈ C is within distance ε · lfs(p) of a
sample point s ∈ S (definition according to [12]).

Approaches that do not make use of information about the direction of the
curve like, e. g., using minimum spanning trees [82], using α-shapes (as defined
in [76]) [26], using the so called crust (defined based on the Voronoi diagram and
the Delaunay triangulation) [12], and using β-skeletons (as defined in [135]) [12],
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are rather restrictive with respect to the sampling conditions. The latter two
approaches have been shown to work correctly if the input is a 0.252-sample or
a 0.297-sample respectively.

By exploiting knowledge about the direction of edges that have already been
identified as belonging to the reconstruction of the curve, the restrictions on
the sample can be relieved considerably. In [62] the nearest neighbor graph of
the sample points is constructed and used as basis for the reconstruction. Any
point b with only one incident edge {a, b}, is then connected to the nearest
point c with the property that the angle spanned by ab and bc is greater
than π · 1/2 and smaller than π · 3/2. This algorithm was shown to work
correctly if the input is a 0.4-sample [147]. Reducing the range of allowed angles
to [π − 0.97, π + 0.97] even results in an algorithm capable of reconstructing
curves from 0.48-samples [147].

An algorithm that is capable of reconstructing also curves having corners or
intersections was presented in [146, 147]: Starting from the shortest edge, the
curve is traced by iteratively searching the next sample point based on the
direction and the endpoint of the edge previously added to the reconstruction.
The sensitivity to the direction is achieved by using a so called probe which is
a (typically symmetric and convex) shape with designated reference point and
reference direction. Let {a, b} be the last edge added to the reconstruction and
let b be its free endpoint. The probe is aligned such that its reference point
coincides with b and that its reference direction coincides with the direction
from a to b. Beginning with scaling factor 0, the probe is inflated until it touches
a point c from the (remaining) sample (see Figure 2.9 for an illustration). The
edge {b, c} is then added to the sample and used for the next iteration.

Figure 2.9. Curve reconstruction
using probe: example of a polygonal
probe (gray), plus self intersecting
curve (dotted) with sample that can
be used for reconstruction using the
given probe.
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The approaches based on detecting line primitives work even if the input is
noisy, but they cannot be used to reconstruct arbitrary line shapes. The
algorithms for curve reconstruction, on the other hand, usually require the
input to be sampled from the curves only. Since positional errors of the sample
points correspond to deformations of the curves, the algorithms are supposed
to be robust with respect to such errors. However, algorithms applied in the
given context have to be able also to deal with additional spurious points in the
input. In [63] this aspect was also considered, but unfortunately the approach
presented there, again waives any information about the direction of the curves.

Idea of the Proposed Approach The proposed approach extends the idea of
exploiting knowledge about the direction of the curve as done in [146], however,
also other features as, e. g., good continuation are exploited. Furthermore not
only a single curve is expanded greedily by locally searching for the next edge,
but all candidates are considered simultaneously.

Since the small or thin regions are supposed to represent line shapes—one
dimensional objects—re-connecting the pieces is not done based on the outlines
of the regions, but based on points of the skeletons. Due to discretization
artefacts these points need not correspond to smooth curves, and due to noise
pixels or other small shapes in the image the points need not all contribute to
line shapes. In [63], curve reconstruction is characterized as “connecting dots
with good reason”. For the proposed approach, the reasons include:

• proximity of the points

• analogy of the directions of a candidate edge and already reconstructed
parts

• “goodness” of form of the resulting reconstruction

A set of polylines is generated from the points by iteratively selecting the pair
of points with best priority, connecting them by an edge and updating the
priorities for the other points.
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Determining Suitable Sample Points—the Max-L∞-Skeleton For small
and thin region shapes that originate from the depiction of a curve, the points
used to represent them ideally should be points from the original curve. Given
a polygon, skeletons like the medial axis as introduced in [31], or the straight
line skeleton as introduced in [4] also reach for the boundary of the polygon,
namely for the convex vertices. Especially for polygons originating from raster
graphics this may result in skeletons that have many almost redundant edges
(see Figure 2.10 (a) and (b) for examples).

(a)

(b)

(c)

Figure 2.10. Undesirable proper-
ties of the medial axis: (a) rectilinear
shape that is essentially a square,
plus its medial axis with almost re-
dundant edges, (b) rectilinear shape
that is essentially a thin rectangle,
but with a small indentation and a
small protrusion, plus its medial axis,
(c) two different shapes having the
same medial axis.

In the context of shape retrieval, the relevant features of such a skeleton are
usually obtained by skeleton pruning (see [18] for an overview). In the given
context, however, not a representation capturing the characteristics of the
shape, but a representation that facilitates finding possible links to other shapes
is needed—for the left shape in Figure 2.10 (c), possible links are probably the
upper and the lower side of the rectangle, but not the corners; for the right
shape, however, possible links are probably the ends of the protrusions.

The input is supposed to consist of small or thin rectilinear polygons with
integer coordinates. The output should be a set of points simple to compute,
indicating the principal course of the shape and its protrusions, but not
overemphasizing every convex vertex. Although the medial axis in its original
form is unsuitable, the basic concept may be used in a slightly modified way.
The medial axis of a region shape R can be defined as the locus of the centers
of the (Euclidean) circles that are completely contained in R and that are
maximal in the sense that each such circle is not a proper subset of any other
circle completely contained in R. Having in mind the rectilinear nature of
the input, and the demand to suppress skeleton parts reaching for nonrelevant
corners of the polygon, the points used here are the centers of axis aligned
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squares (L∞-circles) that are completely contained in the polygon and being
maximal in the sense that each such square is not a proper subset of any other
axis aligned square lying completely inside the polygon.

Since a set of discrete skeleton points is needed, and since the input polygon has
integer coordinates, the squares are restricted also to have integer coordinates.
Furthermore, in order to eliminate points due to insignificant protrusions, the
longest consecutive part of the square’s boundary not touching the polygon’s
boundary is restricted to be smaller than 1/2 times the perimeter of the
square. This implies that such a square touches the polygon in at least 2
points on opposite sides, but moreover, ensures that inconspicuous protrusions
do not contribute to the skeleton. In order to also eliminate protrusions due
to single pixels (for which the inscribed square is automatically touched at 3/4
of its perimeter), squares of sidelength 1—as a special case—for contributing
to the skeleton, are demanded to be neighbored by another lattice square of
sidelength 1 if the polygon is larger than a single pixel. Figure 2.11 shows an
illustrative example of a rectilinear lattice polygon and its max-L∞-skeleton.

(a)

(b)

Figure 2.11. Definition of the
max-L∞-skeleton: polygon with its
skeleton points plus two maximal
axis aligned lattice squares where
the length of the longest consecu-
tive part not touching the polygon is
(a) 7/12 > 0.5, and (b) 6/16 < 0.5
times the perimeter.

For a rectilinear lattice polygon, the max-L∞-skeleton can easily be computed
starting from a convex vertex v. A square of sidelength 1 aligned to the corner
in v is inflated until it is maximal. Based on the information about the parts of
the squares boundary that do not touch the polygons boundary (and correspond
to regions that have not been explored so far), new maximal squares or new
inflatable squares are generated and processed recursively.

Each shape for which the maximum sidelength of a square corresponding to a
point of its max-L∞-skeleton is sufficiently small, does only consist of small or
thin parts. These shapes, therefore, are considered as potentially being part of
the depiction of a line shape. Shapes for which the value is large, on the other
hand, are classified as region shapes.
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Connecting the Points Given the set S = {p1, . . . , pn} of skeleton points of
thin shapes, the idea is to connect pairs of points from S according to their
likeliness of being consecutive points on some curve. A set of polygonal chains P
is grown by iteratively determining the pair of chain endpoints with the overall
highest likeliness and—if this likeliness is sufficiently high—connecting these
two endpoints. The initial set P0 = {(p1), . . . , (p2)} consists of polygonal chains
with only one point. The basic framework therefore is the same as in Kruskal’s
algorithm for computing the minimum spanning tree of a graph [139], however,
here the “lengths” of the edges may change from iteration to iteration.

The likeliness of two points pi and pj being consecutive points on some curve
is assumed to depend on the following features:

distance The Euclidean distance ‖pi − pj‖. The closer the points, the higher
the likeliness of being consecutive points on some curve.

distribution of nearest neighbors For every point the distribution of points in
its neighborhood is analyzed. For a point that actually does originate
from the depiction of a line shape, there are probably also other points
from that line shape contained in the neighborhood, situated in a rather
thin corridor containing the point itself. The thinner the corridor, the
higher the likeliness that a point is actually part of a curve

direction The direction of the edge between points pi and pj in relation to the
courses of the hitherto constructed chains that pi and pj belong to. Due
to the discrete nature of the original polygonal shape and its skeleton,
consecutive edges of a correct reconstruction might pretty well form a
right angle. The direction of an edge, therefore, is not rated on the
direction of a single predecessing edge only, but on a larger part of the
reconstruction.

goodness of form The goodness of form of the resulting chain. Human per-
ception tends to prefer simple figures over complex ones (see Section 1.2).
Edges leading to curves of low visual complexity therefore are preferred
over edges leading to erratic structures.

coverage The density of points on the resulting chain or more formally, the
ratio of the chain’s parts covered by shape (in contrast to the gaps). The
more of the line is actually depicted, the longer the gap between two
parts might be. In dashed lines, e. g., the gaps may surely be larger than
in dotted lines without destroying the perception of a line—especially in
the presence of noise.
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2.3. Merging of Small Shapes

A more detailed description of these features is given in the Appendix
(Section B.1). The list of features used is not claimed to be a complete list of
relevant features and, moreover, the influences of the features on the perception
of lines have not been studied quantitatively. However, the idea is to derive a
value of ‘weighted distance’ dw (which serves as an estimate of the inverse of
the likeliness of being consecutive points on some curve), and to use this value
in the Kruskal-like framework for computing polygonal reconstructions. The
basic structure is outlined in Algorithm 2.1.

Algorithm 2.1:

P ← init chains
E ← create (relevant) weighted edges
while minimum edge weight < threshold do

(pi, pj)← extract minimum
merge chains at pi and pj ; update P
if pi not singleton then

remove edges containing pi
end
if pj not singleton then

remove edges containing pj
end
update weights of edges containing opposite end of pi
update weights of edges containing opposite end of pj

end
return sufficiently long elements of P

Starting from the set P0 = {(p1), . . . , (p2)} of trivial chains, the weighted
distance for every (relevant) pair of end points is computed and used as
priority to store the pair in a priority queue. While the minimum priority
is sufficiently small, the corresponding pair is extracted from the queue and
connected by an edge. Let (pi1 , pj1) be this pair and let Pi = (pi1 , . . . , pik)
and Pj = (pj1 , . . . , pjl) be the chains the two points belong to (pairs containing
pik or pjl are handled accordingly). If Pi = Pj , meaning that pi1 and pj1
are opposite endpoints of the same chain, then the new edge closes this
chain and since pi1 and pj1 cannot be connected to further points, all pairs
containing either pi1 or pj1 are invalidated. If pi1 and pj1 are the endpoints
of different chains, then—provided that the respective chain did not consist of
a single point—all pairs containing either pi1 or pj1 are invalidated, and the
priorities (weighted lengths) of all relevant pairs containing one of the opposite
endpoints pik or pjl are updated.
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2. Extraction of Shapes

In the case that the deviation of the weighted distance dw from the Euclidean
distance d can be bounded such that cl·d < dw < cu·d with cl > 0 and c := cu/cl
being constant, the number of point pairs that have to be considered can be
reduced using the Delaunay triangulation (cf. [59]) of the points: For dw,min
being the current minimum weighted distance between two chain end points,
only point pairs with Euclidean distance smaller than c · dw,min have to be
considered.

Experimental Results The approach has been tested using an implementation
with the set of parameters described in the Appendix (Section B.1). Figure 2.12
shows the result of the line reconstruction for the exemplary image from
Figure 2.3.

Figure 2.12. Line reconstruction—artificial image I:
line shapes that have been detected (green) and small regions
that can be replaced (gray).

Figure 2.13 shows the result of the line reconstruction for a noisy image
depicting two curves6 in a scattered way. Except for one out of five crossings
the courses of both curves are correctly detected.

Figure 2.14 shows the result of the line reconstruction for real-world trademark
images from the UK trademarks set (see Section 1.6.2.2). The left part shows
an 832× 465 pixel image depicting thick dashed lines, the right part shows an
346×255 pixel detail of an 912× 1 269 pixel image depicting very thin lines by
discontinuous parts.

6 Straight line:
(
t, 1− t/3

)
, curved line:

(
t, sin(t2)

)
for t ∈

[
0,
√

4.5 · π
]
.
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2.3. Merging of Small Shapes

Figure 2.13. Line reconstruction—artificial image II:
noisy image (black and white) depicting two curves, plus line
shapes that have been detected (green).

Figure 2.14. Line reconstruction—trademark images:
two original images (black and white) plus line shapes that
have been detected (green).

Applying the algorithms to the UK trademarks set, line shapes have been
reconstructed in 3 439 (32.0 %) of the 10 745 image files. Averaged over all files,
14.3 shapes per file—which is 3.5 % of the total number of shapes originally
detected in the images—have been removed, while only 2.6 shapes per file have
been added. On the other hand, averaged over the files where line shapes have
actually been reconstructed, these line shapes constitute 32.4 % of the shapes
in the final image representations. That indicates that for these images line
shapes play an important role.
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2. Extraction of Shapes

2.4. Simplification

The data extracted from raster graphics usually contain a huge amount of
information that is actually not perceived in the images, e. g., shapes originating
from noise, or almost redundant vertices in the polygonal chains. The goal is,
to get representations that, on the one hand, have low complexity and, on the
other hand, capture the essence of the perceived shapes.

2.4.1. Polyline Simplification

The polylines generated in the vectorization step consist of axis aligned line
segments of length 1, since the vertices are just the corners of the pixels. For
further processing, the complexity (number of vertices) of these polylines has
to be reduced. All redundant vertices can be removed in time linear to the total
number of vertices by simply traversing the polylines and testing every triple of
consecutive vertices for collinearity. However, inclined edges depicted in raster
graphics result in stairlike lines (so called jaggies), and noise may also cause
additional vertices. The detected polylines therefore have to be simplified in a
lossy way.

2.4.1.1. Basics

Numerous methods have been developed for the task of polyline simplification—
replacing a polyline P by a polyline Q, such that the number of vertices of Q is
smaller than the number of vertices of P and that Q is a ‘good approximation’
of P (see [214] and [161] for an overview). The criteria for Q being a ’good
approximation’, of course, depend on the application at hand—in [160] even
30 possible criteria for polyline simplification only in the context of cartography
are listed.

Basic Quality Criteria Cartography is a typical field of application for polyline
simplification algorithms. The data about, e. g., frontiers, river courses, or
isohypsometric lines as originating from land surveying should be as detailed
as possible. However, for convenient visualization and efficient rendering
at a given scale, the polylines representing this data have to be simplified,
preferably in a way such that only the details visible at that scale are kept.
In this context the reference for evaluating the quality of an approximation Q
surely is the input polyline P . Therefore in many cases ‘good approximation’
means—although virtually never stated this way—that the weak Fréchet
distance dwF (P,Q) is small.
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2.4. Simplification

Justifiably, a major part of the research is focused at this criterion. In addition,
also topological constraints have been considered such as, e. g., that non self-
intersecting polylines are always approximated by polylines that are also non
self-intersecting [246], or for sets of polygonal chains (like topographic contour
lines) that the combinatorial structure of the induced planar subdivision is
preserved [25, 77].

However, when an artificially designed shape as given by a polyline P ∗ is
depicted in an image, the polyline P detected in this image may contain
rasterization artefacts, noise, and artefacts due to the re-vectorization. In this
case, the reference for evaluating the quality of an approximation Q should be
the original polyline P ∗ and not the input P of the polyline simplification.

Quality Ratings for Filtering Techniques A polyline simplification method
may either allow arbitrary points as vertices for the new polyline, or it may only
allow subsequences of the vertices of the input polyline. The latter are called
filtering techniques and for these methods the quality of the approximation
is often rated based on the following considerations. Let (p1, . . . , pn) be the
vertices of the input polyline P and let (a1, . . . , ak) with ai < aj for i < j be
the indices such that (pa1 , . . . , pak) are the vertices of the approximation Q.
A part ci = (pai , pai+1, . . . , pai+1−1, pai+1) of P can be associated to the line
segment si = paipai+1 of Q (see Figure 2.15 for an example).

pai pai+1

pai+1 pai+1−1

si
ci

δms(si, ci)
Figure 2.15. Definition of
the local error criterion δms.

Using a local error criterion δ that measures the quality of a line segment s with
respect to a part c, the overall quality of an approximation Q is often rated as
∆(Q,P ) := max1≤i<k

{
δ(si, ci)

}
. For a line segment s and its associated part c,

one of the most commonly used local error criteria is the maximum distance
of a vertex of c to s, but also other local error criteria have been considered
(see, e. g., [120] and [38]), and ∆(Q,P ) need not necessarily be defined by the
maximum. In the following the overall error criterion defined as the maximum
of the local errors will be referred to as ∆m and the local error criterion defined
as the maximum distance of a vertex to the line segment will be referred to
as δms.
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2. Extraction of Shapes

With s being a single straight line segment, the local error criterion δms

actually corresponds to the Hausdorff distance dH(s, c) and to the weak Fréchet
distance dwF (s, c). However, in general a single line segment might not be the
only one used to approximate the associated part. The (weak) Fréchet distance
of an approximation to the input polyline, therefore, might be smaller than the
maximum of the (weak) Fréchet distances of all the line segments to their
associated parts. So optimizing with respect to such a local error criterion
does not necessarily yield a globally optimal result (see Figure 2.16 for an
example). Therefore, a formulation like “simplification under the Fréchet error
measure” as used, e. g., in [3] must not be mistaken when it refers to the error
criterion ∆m derived from a local error criterion δ, instead of referring to the
Fréchet distance dF which is defined on the complete polylines.

(a)

(b)

Figure 2.16. Different optima:
polylines (black) for which approximations
optimal with respect to a local error criterion
(dashed red), differ from the corresponding
globally optimal approximation (thin green)
(a) Hausdorff / weak Fréchet distance,
(b) Fréchet distance.

Local Optimal Filtering Algorithms Given an input polyline P and an error
criterion ∆, there are two possible ways of formulating an optimization problem:

min-# approximation For a fixed bound ∆max on the error, find the approx-
imation Q with ∆(Q,P ) ≤ ∆max minimizing the number of vertices.

min-∆ approximation For a fixed number k of vertices, find the approxima-
tion Q with |Q| ≤ k minimizing ∆(Q,P ).7

If ∆ is defined using a local error criterion δ (combined by an operation that is
associative), the min-# approximation problem is often formulated in terms of
computing the shortest path in some directed acyclic graph and can be solved
using dynamic programming [120]. The vertices of the graph correspond to
the vertices of P and an edge (pi, pj) of the graph corresponds to the straight
line segment pi, pj . Depending on the definitions of ∆, of δ, and on the value
of ∆max, the graph might be weighted and might be incomplete (in the sense
that it need not contain every possible edge (pi, pj) with i < j).

7 In the literature this is often referred to as min-ε approximation.
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2.4. Simplification

Since a shortest path in a directed acyclic graph G = (V,E) can be
computed in time O

(
|E|
)
, the total running time of an algorithm solving a

min-# approximation problem for an open polyline is determined by the time
needed to construct the graph (or to compute the weights). For the local
error criterion δms, e. g., the trivial time bound of O

(
|P |3

)
can be reduced

to O
(
|P |2

)
[44]. A closed polyline might be split at |P | different vertices,

however, a min-# approximation can be computed solving an all-pairs-shortest-
paths problem on a graph with O

(
|P |
)

vertices.

If ∆ is defined as the maximum of some local error criterion δ for an edge
of the approximation, the resulting value really has to occur on some edge.
A min-∆ approximation may then be computed by determining the set of
all possible values that δ assumes, sorting them and performing a binary
search on the values with solving the corresponding min-# approximation
problem in every step [120]. This way, for the local error criterion δms a
min-∆ approximation of an open polyline can be computed in time O

(
|P |2 ·

log(|P |)
)
.

Local Suboptimal Filtering Algorithms In [161] the approaches for polyline
simplification have been divided into 5 categories:

1. independent point algorithms approaches that do not take account of the
topology or geometry of the polyline, e. g., selecting every (n/k)th vertex
or selecting k random vertices,

2. local processing routines approaches that take account of characteristics
of immediate neighboring vertices, e. g., distance or angular change,

3. constrained extended local processing routines approaches that take ac-
count of sections of the polyline constrained by, e. g., distance or number
of vertices,

4. unconstrained extended local processing routines approaches that take ac-
count of sections of the polyline constrained by geomorphological com-
plexity,

5. global routines approaches that take account of the entire line.

Algorithms of categories 1–3 are not appropriate in the context of extracting
shapes from figurative images. It is quite easy to generate polylines and also
to think of real-world examples where they produce poor results.

93



2. Extraction of Shapes

Pavlidis and Horowitz [179] proposed to use the general idea of split-and-merge
procedures also for polyline simplification. This idea will be briefly presented
in the following as it allows to create algorithms of category 4 and 5 that also
satisfy the need for adaptive simplification (see below). In terms of filtering
algorithms, a general split-and-merge approach works as follows: Given an
input polyline that is subdivided into parts, each of which is approximated by
a line segment, in the split-phase all parts which are not approximated with
appropriate quality get split into two parts. In the merge-phase consecutive
parts for which the union would be properly approximated by a single line
segment get merged. These two phases can also be iterated until no further
progress is achieved. Algorithms of this type may differ in the used quality
criterion and in the way the split vertex is selected.

One of the most commonly used methods for polyline simplification is the
Douglas-Peucker algorithm as presented in [66]. Due to its broadly acknowl-
edged good performance, the Douglas-Peucker algorithm will also be used as
a reference in the present work. The algorithm fits into the split-and-merge
scheme, but waives the merge-phase. Given an open polyline P = (p1, . . . , pn)
and an error bound ∆max the complete polyline is initially approximated
by the single line segment p1pn. As long as the approximation contains a
segment si = plpr with associated part ci such that δms(si, ci) > ∆max, the
chain ci is split at the vertex pj that maximizes the distance to si and the
approximating segment si is replaced by plpj and pjpr. A straightforward
implementation has a worst case running time quadratic in the number of
vertices of P , but there is also an improved version that achieves a worst case
running time of O

(
|P | · log(|P |)

)
by using information about the convex hulls

of the parts in order to find the split vertices more efficiently [109].

Adaptive Approximation Since figurative images are artificially designed,
many depicted shapes are bounded by long straight line segments or smooth
curves. Even when these boundaries get disturbed due to noisy representations,
the original shapes are usually unfailingly recognized by humans. That means,
that for approximating a polyline representing such a long straight line segment,
a relatively large error bound might be acceptable. However, in curved parts
of the shape, the same error bound could be to large so that the perception of
the shape would be changed. The error bound therefore should be adaptively
chosen, depending on the course of the polyline.

Adaptive approximation of polylines was already considered in a different
context, namely the simplification of hand drawings. As opposed to usual
digitalization artefacts, in hand drawings the deviation from a straight line
segment often increases with increasing length of the segment. Therefore,
it was suggested to concider errors normalized with respect to the length of
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the segment [178]. However, in the given context the same deviation from a
straight line segment might be perceived very differently, depending on the
overall goodness of the polyline to approximate. Figure 2.17 shows an example
from a real-world trademark (a), where a very ragged part of the boundary
would ideally be approximated by a single straight line segment. For a shape
with a very straight border (b) on the other hand, the same deviation—absolute
as well as relative—from a straight line would be perceived as feature, rather
than noise.

(a) (b)

Figure 2.17. Adaptive simplification:
(a) rotated detail of a real trademark image where the green
line would be a reasonable approximation, (b) constructed
shape where the red line would not be an acceptable approxi-
mation although the maximum deviation δms is not larger.

A different way to implement adaptive simplification is to break the given
polyline into pieces depending on the curvature8, and to independently choose
an appropriate level of simplification for each part [91]. However, figurative
images also often depict shapes where the curvature does not change abruptly,
which makes finding a usefull partition based on curvature difficult.

Split-and-merge approaches such as the Douglas-Peucker algorithm on the
other hand offer the opportunity to use the information about the raggedness
of a part for deciding whether the part needs to be split at all. That means
that no fixed partition of the polyline has to be applied.

Approximation with Respect to the Original Polyline As mentioned above,
in the given context it is not the goal to find a polyline approximating the
input polyline P , but approximating the original polyline P ∗. Assuming,
that P approximates P ∗ within some error bound ∆1, any polyline Q
that approximates P within some error bound ∆2 obviously guarantees to
approximate P ∗ within ∆1 + ∆2, however, the actual error might be even
smaller.

8 After smoothing, e. g., using a Gaussian filter.
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The Douglas-Peucker algorithm splits the parts at the points that have maximal
distance from the associated line segment. However, such a vertex need not
be perceived as being conspicuous. Especially when parts of the polyline are
almost parallel to the associated line segment, the vertex chosen by the Douglas-
Peucker algorithm might be a virtually redundant one which does not lie near
any vertex of the original polyline P ∗ (see Figure 2.18 for an example). Given
an input polyline P and a polyline Q that deviates from P by ∆2, there is
no indication whether the deviation is caused by noise which is eliminated
or whether the deviation is caused by a change of the polyline’s appearance.
However, evaluating the quality of the approximation, using the polyline P ∗

from which P originated from, reduces this uncertainty.

(a) (b) (c) (d)

Figure 2.18. Undesirable behavior of Douglas-Peucker algorithm:
(a) original shape, (b) distorted shape, (c) outline of distorted
shape simplified using Douglas-Peucker algorithm, (d) outline
of distorted shape simplified using coarsening algorithm as
described in Section 2.4.1.2.

Using some kind of original polyline instead of the input polyline for evaluating
the quality of an approximation was already considered in [102]. However, in
that work the deviations from the original polyline were modeled as resulting
from white noise, which is surely not an appropriate assumption for polylines
originating from raster graphics.

In the present work three types of errors—namely deformation, blur, and
individual erroneous pixels along the boundary—were considered to experi-
mentally evaluate the performance of different simplification strategies. Given
a bi-level black-and-white raster graphic depicting a simple shape, deformation
was emulated by walking along the countour of the shape and performing a
local dilation or erosion with a circle of variable diameter. Blurring of the
shapes was realized applying a simple binary low-pass filter on the image. The
addition and deletion of individual pixels along the boundary was realized in
a straightforward way. Figure 2.18 (b) shows a 6-gon distorted using all three
kinds of errors.
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2.4.1.2. Coarsening Simplification

Idea of the Proposed Approach By recursively splitting the polyline into
parts, the Douglas-Peucker algorithm selects vertices where the polyline should
not be simplified and the actual simplification is achieved by disregarding all
the vertices inbetween. A strategy that is opposed to that one, would be to
actively determine vertices where the polyline should be simplified and remove
them. While the Douglas-Peucker algorithm is a split-and-merge approach that
waives the merge phase, the proposed algorithm is a split-and-merge approach
that waives the split phase. For deciding whether two neighboring edges should
be merged, again the local error criterion δms is used. If the value is below a
given threshold, the single line segment connecting the unshared endpoints of
the two edges is supposed to be a good approximation for the whole part.

Algorithm The basic structure is outlined in Algorithm 2.2.

Algorithm 2.2:

E ← create pairs of neighboring edges
while minimum error of an edge pair < threshold do

(el, er)← extract minimum from E
e← merge el and er
create pair containing left neighbor of el and e, add to E
create pair containing e and right neighbor of er, add to E

end
return resulting chain of edges

Let the input polyline P be given by the sequence of its vertices (p1, . . . , pn).
For every pair of neighboring edges (plpm, pmpr) (initially l + 1 = m = r − 1)
the error δl,r := δms

(
plpr, (pl, . . . , pr)

)
is computed as the maximum distance

of a vertex from (pl, . . . , pr) to the segment plpr. Every such pair (plpm, pmpr)
is added to a priority queue using its error δl,r as priority.

While the minimum of the priorities is smaller than a given error bound ∆max,
the pair (pbpc, pcpd) belonging to that minimum is removed from the queue
and if it is still a valid pair of edges (a pair becomes invalid if its left or right
edge has been merged with another edge before) it is merged to the single edge
pbpd. For its current left neighbor papb and its current right neighbor pdpe
the errors δa,d and δb,e respectively are computed as described above, and the
corresponding pairs are added to the priority queue.

Finally, the approximating polygon Q is reconstructed from the edges present
after the merging phase. The whole algorithm can easily be generalized to be
used with closed polylines also.
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Analysis Since only a constant number of edge pairs (namely 2) is evaluated
after a merge is performed and since the number of merges is bounded from
above by the number of vertices of the input polyline P , the total number
of edge pairs considered during the algorithm is in O

(
|P |
)
. Using a heap as

priority queue, storing and retrieving an edge can be done in time O
(
log|P |)

)
.

A straightforward implementation of the evaluation of the errors δl,r leads to
a worst case total running time that is quadratic in the number of vertices
of P . However, following the ideas of [109], information about the convex hulls
of the merged parts can be used to achieve a worst case running time that is
in O

(
|P | · log(|P |)

)
.

2.4.1.3. Adaptive Coarsening Simplification

Idea of the Proposed Approach The need for adaptive simplification can
easily be met by a simple modification of the coarsening algorithm: Every
candidate edge plpr of an approximating polyline gets a quality rating
depending on its error. If this quality is higher than the combination of the
ratings of the best previously existing finer chain of edges (plpm1

, . . . , pmh
pr),

the chain may get replaced by plpr even if the error exceeds the primary error
bound ∆max. On the one hand, in this way ragged depictions of straight lines
may be replaced by a single line segment. On the other hand, curvilinear parts
and small features in straight regions are not destroyed, when the quality is
decreasing for coarser and coarser approximations. In order not to tolerate
errors that, due to their absolute values, are not perceived as resulting from
noise, the merging phase is stopped when a certain threshold ∆break > ∆max

is exceeded.

The general structure of the coarsening algorithm can be kept. However,
the merging of edges is now performed ignoring ∆max as an upper bound.
Edges with error smaller than ∆max are taken in any case. If the error is
larger, a quality rating for the single edge itself and for an alternative chain
of subordinate edges is computed. These ratings are used afterwards to decide
whether the merge led to a more appropriate representation or whether the
finer subdivision should not have been replaced. The construction of the
approximating polyline starts with the final edges and based on the quality
ratings decides whether an edge is part of the approximation or whether the
corresponding merge operation has to be ignored and subordinate edges are
recursively taken.
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Algorithm The basic structure is outlined in Algorithm 2.3.

Algorithm 2.3:

E ← create pairs of neighboring edges
while minimum error of an edge pair < ∆break do

(el, er)← extract minimum from E
e← merge el and er
rate whether e is favorable or not
create pair containing left neighbor of e and e, add to E
create pair containing e and right neighbor of e, add to E

end
recursively break unfavorable edges
return resulting chain of edges

Let the input polyline P be given by the sequence of its vertices (p1, . . . , pn).
For every pair of neighboring edges (plpm, pmpr) (initially l + 1 = m = r − 1)
the error δl,r := δms

(
plpr, (pl, . . . , pr)

)
is computed as the maximum distance

of a vertex from (pl, . . . , pr) to the segment plpr. Every such pair (plpm, pmpr)
is added to a priority queue using its error δl,r as priority.

While the number of performed merge operations is smaller than n − 2 and
the minimum priority is smaller than ∆break, the pair (pbpc, pcpd) belonging
to the minimum priority is removed from the queue and if it is still a valid
pair of edges (a pair becomes invalid if its left or right edge has been merged
with another edge before) it is merged to the single edge pbpd. For its current
left neighbor papb and its current right neighbor pdpe the errors δa,d and δb,e
respectively are computed as described above, and the corresponding pairs are
added to the priority queue.

Every new edge pbpd gets a reference to the two edges pbpc and pcpd that
it replaces, and a value ωbb,d describing the quality of the best representation
of (pb, . . . , pd). The quality of the edge itself is rated based on the relative
error as ωsb,d = ‖pb − pd‖ · %ac − δb,d with %ac being a parameter determining
the error tolerance. The quality ωab,d of the alternative chain is defined based
on the ratings for the two subordinate edges pbpc and pcpd as the maximum
of ωbb,c and ωbc,d. If the quality ωsb,d of the edge exceeds the quality ωab,d of the
alternative chain, then the merge (including all subordinate merges) leads to an
improved representation, the corresponding edge is marked favorable and ωbb,d
is set to ωsb,d. In the other case, the edge is not favorable and ωbb,d is set to
ωab,d. Edges with error smaller than ∆max are marked favorable by default. As
an illustration, Figure 2.19 shows two polylines, their simplifications and the
hierarchy of the edges considered by the adaptive coarsening algorithm.
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Figure 2.19. Adaptive coarsening:
the two examples from Figure 2.17 with rejected edges (dashed
red) and chosen edges (green), plus the corresponding tree
structures on the edges, where favorable edges are marked
with X.

Finally, the approximating polygon Q is reconstructed from the edges present
after the merging phase. Recursively, every edge that is not favorable is replaced
by the two edges it replaced. The whole algorithm can easily be generalized to
be used with closed polylines also.

Analysis For the computation of the errors and the merging of edges, the
same arguments as used in the analysis of the basic coarsening algorithm
hold. Furthermore, a quality rating can be derived from the errors in constant
time and the unfavorable edges form a forest which can be traversed in linear
time. The total running time therefore is—just like for the basic coarsening
algorithm—in O

(
|P | · log(|P |)

)
.
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2.4.1.4. Coarsening plus Corner Simplification

Idea of the Proposed Approach The depictions of shapes in figurative images
(given as raster graphics) often have pointed parts where the tip is actually
truncated. Reasons for the occurrence of such truncated tips include for
example rounding off corners during the design of a shape or discretization in
the vectorization of an image that contains antialiased or smoothed edges. A
pointed part of a geometrical shape, however, is normally perceived as a perfect
tip, even if it is slightly truncated. Therefore such parts may be replaced by a
perfect tip (like also proposed in [71]) without changing the visual appearance
of the shape. This leads to an additional approach for reducing the number of
vertices of a polyline.

Let e1 = pbpd and e2 = pspt be two non consecutive edges of a polyline such
that their supporting lines form a pointed angle and let p be the point where
both supporting lines intersect. If the distances of the endpoints pd and ps to p
are sufficiently small compared to the lengths of e1 and e2, and if all polyline
vertices (pd, . . . , ps) lie in an εcc-neighborhood of the triangle spanned by pd,
p and ps for a sufficiently small εcc, then the whole truncated tip (pb, . . . , pt)
may be replaced by the pointed tip (pb, p, pt). Figure 2.20 shows an example.

εcc
r

pb

pd

ppspt

Figure 2.20. Corner simplification:
polyline for which a truncated corner might
be replaced by a pointed tip.

Since detecting the tips in this way requires the edges forming a tip to be
long compared to the truncated part, the simplification of corners should not
be performed before a simplification of the edges is carried out. On the other
hand, the tip spanned by two edges pbpd and pspt might be unfavorably replaced
by a pair of edges (pbp′, p′pt) with p′ being any vertex from (pd, . . . , ps) and
therefore, refraining the simplification of corners until the simplification of the
edges is finalized also may lead to inferior results. However, the simplification
of corners can be integrated into the coarsening algorithm by searching the
parts left and right of any newly formed edge e for edges e′ that form a tip
with e. The proposed approach allows the approximating polyline to contain
vertices other than the ones from the input polyline. Therefore formally, it is
not a filtering technique. On the other hand, the vertices cannot be chosen
arbitrarily and in practice, most vertices will originate from the input polyline.
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2. Extraction of Shapes

Algorithm The basic structure is outlined in Algorithm 2.4.

Algorithm 2.4:

E ← create pairs of neighboring edges
while minimum error of an edge pair < threshold do

(el, er)← extract minimum from E
e← merge el and er
if ∃ edge ell forming a corner left of e then

adapt ell and e, remove edges inbetween
end
if ∃ edge err forming a corner right of e then

adapt e and err, remove edges inbetween
end
create pair containing left neighbor of e and e, add to E
create pair containing e and right neighbor of e, add to E

end
return resulting chain of edges

Let the input polyline P be given by the sequence of its vertices (p1, . . . , pn).
For every pair of neighboring edges (plpm, pmpr) (initially l + 1 = m = r − 1)
the error δl,r := δms

(
plpr, (pl, . . . , pr)

)
is computed as the maximum distance

of a vertex from (pl, . . . , pr) to the segment plpr. Every such pair (plpm, pmpr)
is added to a priority queue using its error δl,r as priority.

While the minimum of the priorities is smaller than a given error bound ∆max,
the pair (pbpc, pcpd) belonging to that minimum is removed from the queue and
if it is still a valid pair of edges (a pair becomes invalid if its left or right edge
has been merged with another edge before) it is merged to the single edge pbpd.

Let ps be one of the successors of pd in the current polyline and let pt be
the current right neighbor of ps. Let furthermore p be the point where
the supporting lines of pbpd and pspt intersect. If the distances ‖pd − p‖
and ‖ps − p‖ are smaller than r := %cc · min(‖pb − pd‖, ‖ps − pt‖) for a
predefined threshold %cc on the relative distance, and if all vertices (pd, . . . , ps)
are inside the εcc-neighborhood of the triangle spanned by pd, p and ps for
a predefined εcc, and if ps is the last successor of p with these properties,
then (pb, . . . , pt) is replaced by (pb, p, pt). Since r ≤ %cc · ‖pb − pd‖ and since
the triangle spanned by pd, p and ps is contained in an r-ball around p, it
suffices to incrementally test the successors of pd until the distance to pd
exceeds 2 · %cc · ‖pb − pd‖ + εcc. On the left side of the new edge pbpd the
predecessors of pb are processed analogously.
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2.4. Simplification

For the current left neighbor papb and the current right neighbor pdpe of the
new edge pbpd (or the corresponding surrogates if corners were replaced) the
errors δa,d and δb,e respectively are computed as described above, and the
corresponding pairs are added to the priority queue.

Finally, the approximating polygon Q is reconstructed from the edges present
after the merging phase. The whole algorithm can easily be generalized to be
used with closed polylines also.

Analysis The number of possible successors (and predecessors respectively)
for a new edge is of course in O(|P |) and each such vertex can be checked in
time O(|P |). With the linear bound on the number of merges that may be
performed, the overall running time therefore is in O(|P |3).

It is indeed possible to construct polylines such that checking m successors for
a special edge takes time Ω(m2) and no vertex gets replaced at all. However,
due to the constraints on the length of the gaps relative to the length of the
edges, at least for %cc < 1/3 and εcc = 0 such a polyline requires to contain
edges such that their length ratio is exponential in m, which is not possible for
polylines originating from raster graphics of polynomial size.

In experiments with real-world data9 for the newly merged edges, the average
number of other edges that were considered (successors plus predecessors) was
2.6. The average number of potential tips that had been examined, however,
was only 0.43. Furthermore, for the examined tips, the average number of
vertices that had to be tested was only 0.049 which means that most of the
potential tips would replace a single edge.

2.4.1.5. Adaptive Coarsening plus Corner Simplification

The ideas from the adaptive coarsening simplification and from the coarsening
plus corner simplification may also be realized in a single approach. As the
combination of the two algorithms is very straight forward, it will not be
described in detail here. The only thing that should be mentioned is that
since un-favorable edges either get rejected or replaced, corners only have to
be simplified for edges that are favorable.

9 For the UK trademarks set from each image the polylines were extracted, the
longest polyline was chosen, and redundant vertices were eliminated before applying
the coarsening plus corner simplification.
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The basic structure is outlined in Algorithm 2.5.

Algorithm 2.5:

E ← create pairs of neighboring edges
while minimum error of an edge pair < ∆break do

(el, er)← extract minimum from E
e← merge el and er
rate whether e is favorable or not
if e is favorable then

if ∃ favorable edge ell forming a corner left of e then
adapt ell and e, remove edges inbetween

end
if ∃ favorable edge err forming a corner right of e then

adapt e and err, remove edges inbetween
end

end
create pair containing left neighbor of e and e, add to E
create pair containing e and right neighbor of e, add to E

end
recursively break unfavorable edges
return resulting chain of edges

2.4.1.6. Experimental Results

For a given error threshold ∆max the actually achieved error as well as the
achieved reduction in complexity of the polyline may differ from algorithm to
algorithm. To avoid erratic interplay of the two measures, the evaluation was
carried out as follows: Using a fixed error threshold ∆max the Douglas-Peucker
algorithm was applied on the input polyline P in a min-# fashion to obtain
an approximation Qdp. The coarsening algorithms were then applied on P
in a min-∆ fashion using |Qdp| (which is actually assumed by the coarsening
algorithms).10

The performance of the proposed algorithms was evaluated with respect to
two different criteria. Firstly, the quality of the approximation with respect
to the input polyline, and secondly, the quality of the approximation with

10 A given target size k is exactly assumed for the basic coarsening algorithm. For the
adaptive coarsening algorithm and the corner simplification algorithm, since they
may reject several vertices in a bundle, in some cases the actual number of vertices
might be below the target k, however, the impact on the results is supposed to be
small.

104



2.4. Simplification

respect to the original polyline as outlined in Section 2.4.1.1 page 95. The
distance between two polylines P and Q was determined as the maximum of
the directed Hausdorff distances d ~H

(
V (P ), Q

)
and d ~H

(
V (Q), P

)
with V being

the vertex set of a polyline.11

The quality of the approximation with respect to the input polyline was
evaluated using three different sets of data: the MPEG 7 data set (see
Section 1.6.2.1), the UK trademarks set (see Section 1.6.2.2), and a set of 40 000
computer generated images each of which depicted a randomly distorted version
of a simple shape from a list of 40 geometric objects such as, e. g., triangles,
quadrilaterals, ellipses, or stylized letters (see Figure 2.18 for an example).
The polylines were extracted from the bi-level black-and-white images and
redundant vertices were eliminated. For images containing more than one
contour, the longest polyline was chosen.

Averaged over 20 different values12 of the error threshold ∆max, for all three
data sets the proposed algorithms performed worse than the Douglas-Peucker
algorithm (see Table 2.1 for the results). Having in mind that the Douglas-
Peucker algorithm is the preferred simplification method in many application
domains, and that the adaptive corner simplification algorithm is specifically
wanted to accept additional errors, this is not a surprise. However, looking
at the error with respect to the original polylines gives completely different
results.

The quality of the approximation with respect to the original polyline was
evaluated using the set of computer generated images as described above.
The explicitly present polylines of the 40 geometric objects served as original,
the polylines extracted from the distorted images served as input for the
simplification algorithms. Using exactly the same data and parameters as for
the evaluation with respect to the input polylines, compared to the results of the
Douglas-Peucker algorithm the averaged errors with respect to the original were
4 % lower for the basic coarsening algorithm, and 6 % lower for the adaptive
coarsening plus corner simplification.

The difference between the results of the Douglas-Peucker algorithm and the
coarsening algorithms is even more obvious when the error threshold ∆max

is chosen based on the—normally unknown—sizes of the features of the
original polylines. Let P ∗ = (p1, . . . , pn) be an original polyline and let

11 In the given context this measure is supposed to give a good approximation for the
Hausdorff distance dH(P,Q) and the weak Fréchet distance dwF (P,Q). Malicious
configurations for which the values differ can be constructed, however, are not
expected to occur frequently—if ever—in the used test data.

12 The error threshold ∆max was chosen relative to the image size with ∆max,rel rang-
ing from 0.001 to 0.02.
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with respect to: input P original P ∗

MPEG 7 UK generated generated

basic 1.08 1.05 1.02 0.96

adaptive + corner 1.79 1.45 1.50 0.94

Table 2.1. Performance of simplification algorithms:
average approximation errors of the basic coarsening algorithm
and of the adaptive coarsening plus corner simplification relative
to results of the Douglas-Peucker algorithm.

s(P ∗) := min1<i<n

{
dist(pi, pi−1pi+1)

}
denote the minimum distance of any

vertex pi to the segment spanned by its neighbors in P ∗. Since the definition
of s(P ∗) corresponds to the local error criterion δms used by the algorithms
under consideration, it gives an upper bound on the error threshold for which
simplifying P ∗ leaves it unchanged and therefore does not yield errors at all.

Choosing the error threshold ∆max relative to s(P ∗) shows that while
preserving the original features, the complexity of the approximating polyline
can be reduced more efficiently using the adaptive coarsening plus corner
simplification than using the Douglas-Peucker algorithm. Figure 2.21 shows
the average results for the set of 40 000 generated polylines.
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Figure 2.21. Performance of simplification algorithms:
errors relative to feature size for Douglas-Peucker algo-
rithm (?), and for adaptive coarsening plus corner simplifica-
tion ( b), plus complexity of approximating polylines relative to
original ( ).
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The actually achieved relative error of the Douglas-Peucker algorithm starts
to increase early and exceeds the value of 0.16 at a relative error tolerance
of 0.25 where the relative complexity of the approximating polylines is 1.76.
The actually achieved relative error of the adaptive coarsening plus corner
simplification on the other hand stays small until the (corresponding) relative
error tolerance reaches 0.50 where the relative complexity of the approximating
polylines is 1.21. That means, that while ensuring the same small approxima-
tion error, the adaptive coarsening plus corner simplification produces polylines
that on the average have 0.69 times the number of vertices compared to
polylines produced by the Douglas-Peucker algorithm. Only for values of the
relative error tolerance that should be avoided because of the risk of destroying
original features with either algorithm (near 1.0), the actually achieved relative
errors of the adaptive coarsening plus corner simplification exceed the values
of the Douglas-Peucker algorithm.

2.4.2. Deletion of Irrelevant Data

Erroneous pixels in the raster graphics as well as variations of color in
conjunction with deficiencies of the vectorization process may lead to the
detection of shapes that, however, are not perceived at all or that are not
perceived as being relevant. In order to reduce the complexity of the image
descriptions these shapes should be removed.

2.4.2.1. Isolated Small Shapes

A sufficiently small shape—if not contributing to texture or to a line shape
(see Section 2.3)—is normally considered to result from noise in the image.
However, whether a shape is sufficiently small does not only depend on the
size, but also on the arrangement of shapes. A shape that is perceived as being
noise when isolated, may be perceived as being a feature of the image when
close to other shapes (see Figure 2.22 for an example). However, if the union
of neighboring small shapes itself is not sufficiently large, the shapes may still
be perceived as noise.

Figure 2.22. Noise vs. feature:
three dots, two of them perceived as being eyes
in a face, one rather perceived as being noise.
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In the present work this observation is factored in by removing noise shapes
depending on a threshold θs on the minimum size of shapes, and a threshold θc
on the minimum size of groups of shapes: First, shapes with diameter smaller
than θs are removed. Then, based on the minimum distance between shapes
and a threshold on this distance, the shapes are grouped according to a single
linkage clustering.13 Each shape belonging to a group with diameter smaller
than θc is also removed.

2.4.2.2. Subordinate Shapes

A sufficiently small or sufficiently thin shape completely lying in a thin
neighborhood of the border of a larger shape is normally perceived as being a
feature of the borderline (increased line thickness, adumbrated shadow effect
etc.), rather than as a relevant shape. Moreover, if a shape is depicted by
its outline, but due to the connectedness of the pixels has been detected as
a region with a hole, the resulting couple of two almost equal shapes may be
replaced by a single shape. These facts may be exploited to further reduce the
complexity of an image representation: Let θn be a threshold on the maximum
distance. Every shape S such that its boundary is in the θn-neighborhood of
the boundary of a larger region shape R, meaning d ~H

(
∂(S), ∂(R)

)
< θn, is

removed.

13 Let G = (V,E) be the graph that has the set of (region) shapes under
consideration as vertex set V , and an edge for each two shapes with minimum
distance smaller than the threshold, or formally E =

{
{S1, S2} | ∃p1 ∈ ∂(S1), p2 ∈

∂(S2) such that ‖p1 − p2‖ < θd(S1, S2)
}

for θd(S1, S2) being the threshold on the
distance for shapes S1 and S2. The single linkage clusters correspond to the
connected components in G.
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2.4.2.3. Experimental Results

Figure 2.23 shows the simplified resulting shapes for the exemplary image from
Figure 2.3.

Figure 2.23. Irrelevant data—artificial image:
resulting shapes (black) after small and subordinate
shapes (gray) have been removed.

Applying the algorithms to the UK trademarks set, isolated small shapes have
been removed in 7 025 (65.4 %), and subordinate shapes have been removed in
3 515 (32.7 %) of the 10 745 image files. Averaged over all files, 62.4 isolated
small shapes and 3.0 subordinate shapes per file—summing up to 16.0 % of the
total number of shapes originally detected in the images—have been removed.
That means, that the complexity of the image descriptions is remarkably
reduced.

The Aktor set (see Section 1.6.2.3) also contains color images for which
boundaries between shapes are not as clear cut as for bi-level black-and-white
images. The number of subordinate shapes detected in images of this set,
therefore is considerably larger: subordinate shapes have been removed in
16 266 (77.9 %) of the 20 894 image files.
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2.5. Grouping

Since the shapes perceived in an image may be composed of smaller parts (see
Section 1.1.3 and Figure 1.3 on page 1.3), in many applications it is desirable
to group parts of the detected boundaries together such that they form the
shapes essentially depicted. Of course it might be, that parts may be grouped
in several ways. The boundaries in Figure 2.24 (a), e. g., can be seen as forming
four separate squares or forming a single cross-like shape with a hole inside.

(a) (b) (c)

Figure 2.24. Indeterminate Grouping:
(a) squares touching, (b) squares separated, (c) squares
merged.

Theoretically the number of possible groupings may be exponential in the
number of parts, however, there are general theories describing tendencies of
how humans group boundary parts together (see Section 1.2.2). In [200] an
automated approach for grouping lines in sketches and drawings was presented.
It uses a weighted directed graph where the vertices represent the boundary
parts and the edges represent possible linkages of two parts. Based on the local
geometry of the parts, the edges get weights according to predefined scores
reflecting the perceptual preferences of grouping. The same approach—with
slightly adapted preference scores—has also been used for figurative images
in [113].

If the task is to determine whether a specific shape is depicted in an image (as,
e. g., in Section 4.4), such an approach may be quite beneficial. However, if
the task is to find a good representation for similarity estimation, which rep-
resentation is the best heavily depends on the other images. Using all possible
representations is computationally infeasible, but if the similarity measure is
defined on single shapes, choosing one representation—or a limited number
of representations—a priori, entails the risk of rejecting a representation that
would have been needed for proper similarity estimation. Figure 2.24 shows an
example: deciding for representing image (a) by four squares is entirely suitable
for comparing it to the four square-like shapes in image (b), but absolutely not
for comparing it to the cross-like shape in image (c) and vice versa. However,
this dilemma may be resolved by using similarity measures that are robust with
respect to different representations (see Section 3.3).
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CHAPTER 3

Estimation of Shape-Similarity

This chapter deals with the problem of estimating perceived similarity of
figurative images based on the sets of depicted shapes. The shapes considered
here are (polygonal) line shapes and (polygonal) region shapes in the plane as
defined in Section 1.1.2.

3.1. Basics

There are various ways in which two figurative images may be perceived to be
similar: In the most obvious case the second image is almost a copy of the
first image—this copy may be translated, scaled, or rotated— but it may also
only contain a part that is almost a (translated, scaled, or rotated) copy of
(a part of) the first image. These aspects of similarity are closely related to
classical object recognition. However, in similarity estimation transformations
other than rigid motions, scalings and projections also have to be considered.
Moreover, there might also be further (shape-related) features that lead to the
perception of similarity, e. g., symmetry, connectedness, etc. [222].

In order to estimate the similarity of figurative images based on the sets of
depicted shapes, a suitable representation of these sets of shapes has to be
found. On the one hand such a representation should capture the essence
of the perception, on the other hand it should be of low complexity. The
question how the essence of a shape can appropriately be described has not yet
been answered satisfactorily. The fact that a shape may comprehensively be
characterized by its boundary, and the observation that perceived information
about a shape is concentrated along its contour (see Section 1.2.2), may lead
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to the assumption that the interior of a shape can totally be ignored. However,
in [168] it is claimed that no successful theory of shape description can ignore
either the boundary or the interior—Figure 3.1 shows an example underpinning
this claim: Although the boundaries of the two shapes equal each other to
a large extent, the shapes are not perceived to be very similar because the
different spatial arrangement of the boundary parts induce different interiors.

Figure 3.1. Interior vs. contour:
The depicted shapes have almost the same
contours—which differ only in the parts
marked red—but due to their interior they
are perceived differently.

There are primarily two ways to reduce complexity which lead to different
types of representations, namely selective representations and accumulative
representations. Selective representations use a limited number of features of
equal type selected from a larger set of these features, e. g., a limited number
of points from the shapes boundaries. Accumulative representations, on the
other hand, use information gathered by summarizing properties over a shape
or even the whole set of shapes, e. g., the average distance of shape points from
the center.

Selective attention (see Section 1.3.3.2) and the need to detect also partial
similarities pose problems for both of these approaches. By selecting a
limited number of features, too many features originating from the part that
contributes to the perception of similarity might be dismissed because of a large
total number of features. By accumulating over the whole set of shapes1 the
resulting representation might be totally different from the one for the part
that contributes to the perception of similarity.

Further reasons why defining representations suitable for similarity estimation
of shapes or of sets of shapes is problematic, come from the fact that shapes
may be depicted in different ways. For instance, Figure 2.1 on page 68 shows
a sharply bent strip that is perceived similar to (the outline of) a square.
Figure 2.24 on page 110 shows sets of shapes that are topologically different
while they are perceived similar. Moreover, even single shapes that almost
equal each other geometrically may have very different internal structures (see
Figure 3.2).

1 The same effect may also occur for single shapes, of course.
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(a) (b) (c) (d) (e)

Figure 3.2. Difficulties in defining suitable shape representations:
Shapes differing in various ways, but perceived as being very
similar.

Perceived similarity can be assumed to be invariant with respect to asyn-
chronous transformation under translations and scalings. Representations used
in the context of similarity estimation, therefore, are often wanted also to be
invariant under translations and scalings. This is often achieved by normalizing
position and size of the input before computing the representation. This
normalization can, e. g., be done with respect to the smallest axis aligned
rectangle containing the input as in [132], or with respect to the smallest circle
containing the input as suggested in [114]. However, if the estimation of the
reference frame may be influenced by other shapes or even by noise, this heavily
limits the applicability of such a normalized representation.

In order to safely preclude undesirable effects of all these issues, the approach
for estimating the similarity between sets of shapes presented in the following,
uses the boundary polygons of the region shapes plus polygonal lines just as
they are given. It works in two phases: Firstly, promising transformations for
aligning the two shape sets are determined. Secondly, the similarity of the
aligned sets of shapes is estimated using a similarity measure that, therefore,
does not need to be invariant with respect to asynchronous transformation.

The problems of determining an optimal transformation, or finding a constant
factor approximation, have extensively been studied for commonly used
measures of (dis-)similarity. However, most of the results are restricted to a
very limited class of transformations, namely translations, or they are restricted
to a very limited class of possible inputs, e. g., convex shapes. Here, while
making no guarantees on optimality, the input may consist of arbitrary sets
of polygonal shapes, and the classes of allowable transformations include—
among others—translations, similarity transformations, and even generic affine
transformations.
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3.2. Mapping

This section addresses the following problem: Given two sets P1 and P2 of
polylines in the plane, and a class T of allowable transformations from the IR2

to the IR2, find a transformation t ∈ T mapping P1 onto P2. The proposed
approach computes transformations that comply with an intuitive notion of
matching, that is, they map parts of one polyline set close to similar2 parts of
the other polyline set.

3.2.1. Related Work

The mapping problem is often stated as follows: Given a model M (in the
given context a set of shapes) which is described by a set FM of m features,3

an image D from which a set FD of n features has been extracted, and a class T
of allowable transformations, detect an occurrence of the model in the image
by finding a transformation t ∈ T that maps as many features of FM close to
(corresponding) features of FD as possible. There are two types of errors that
have to be considered in this context. Firstly, positional errors of the correctly
detected features. Secondly, so called outliers (as opposed to inliers) which are
either features present in the model that have not been detected in the image,
or features that spuriously have been detected in the image although they are
not present in the model. Various methods to solve the mapping problem
have been proposed, which differ in the ways candidate transformations are
generated and how they are rated:

Alignment Methods and the Random Sample Consensus Let k < m be
the minimum number of feature pairs from FM × FD uniquely defining a
transformation from T that exactly maps the pairs’ first elements to the
corresponding second elements. The idea behind alignment methods as
described in [116, 117] is to use a k-tuple of features from FM and a k-tuple
of features from FD to form a sample set S ⊂ FM × FD that defines a
transformation tS , to apply the transformation to the model features and
to rate the transformation based on some measure of similarity on the set
of transformed model features and the set of image features. In the original
version, every possible k-set of feature pairs has been considered independently.
There are

(
m·n
k

)
= Θ

(
(m · n)k

)
such sets, but for any proper occurrence of

the model in the image
(
m
k

)
= Θ

(
mk
)

sample sets result in combinatorially
equivalent transformations which are then unnecessarily re-rated.

2 Here, conflicting with the demand formulated in Section 1.3.1, no specific measure
of similarity is referred to.

3 Of course also the features detected in an image may serve as a model.
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In order to reduce the number of re-ratings, it has been proposed to randomize
the selection of the sample sets, for instance by applying the so called random
sample consensus (RANSAC) as introduced in [84]. The random sample
consensus is a general paradigm for determining the parameters of an arbitrary
model (not necessarily shapes) from a given set P of data points. Again, let k
be the minimum number of data points needed to determine the free parameters
of a given model. The random sample consensus works as follows: Repeatedly
a random set S of k sample points from P is selected, based on that set an
instantiation MS of the model is computed such that it exactly fits S, and the
so called consensus set CS , the set of points in P that are within some error
tolerance of MS , is determined.4 Using the consensus set of largest cardinality
the instantiation of the model is recomputed, or if the largest cardinality is too
small at all it is assumed that no instantiation is present in the data.

In [172] the random sample consensus has been applied to the mapping problem
in the following way: Repeatedly a random tuple SM of k features from FM
is selected, for every tuple SD of k features from FD the corresponding
transformation tSMSD

is computed and applied to the model features in order
to compute the cardinality of the consensus set. Given the ratio α of inliers
in FM , the failure probability is below a threshold θ if the number of rounds
is greater or equal

⌈
log θ

log(1−αk)

⌉
. This means that for a constant bound on the

failure probability the number of transformations considered is in O(k! · nk).
For an unknown ratio of inliers an adaptive algorithm is also given. In [122]
the overall running time on realistic inputs is reduced even more by choosing
a random set of model features for estimating the consensus set. All these
analyzes, however, only take the existence of outliers into account but do not
consider positional errors.

Geometric Hashing Given a class T of allowable transformations, the idea
behind geometric hashing as introduced in [142, 141] is to use a representation
of the set of model features FM that is invariant under the class T . This is
achieved by expressing each feature relative to a coordinate frame defined by a
tuple of model features. For example, in the case of translations a single point p0

may serve as reference and every other point p is then uniquely determined
by the relative coordinates (p − p0). In the case of affine transformations
three (non-collinear) points p0, p1, and p2 may serve as reference. Every other
point p is then uniquely determined by two coordinates λ1, λ2 such that p =
p0 +λ1 · (p1− p0) +λ2 · (p2− p0). A very similar idea was also suggested in the
context of comparison of biometric landmarks [33].

4 The authors also propose a variation of their paradigm, namely that the sample
set S might be enlarged by adding all new data points of the consensus set CS

to S and that the model might then be recomputed based on this enlarged set. A
similar idea will be pursued in the present work.
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Let k be the number of points needed to define such a reference frame invariant
under the class T . Geometric hashing works in two stages: preprocessing of
the model, and voting. In the preprocessing stage every k-tuple RM of features
from FM is used as reference, the coordinates with respect to RM of each
remaining feature from FM \ RM are computed and (after quantization) are
used as key for storing the reference RM in a hash table. In the voting stage
every k-tuple RD of features from FD is used as reference, the coordinates
with respect to RD of each remaining feature from FD \ RD are computed
and (after quantization) are used as key for looking up the corresponding
reference tuples of the model in the hash table. If a reference tuple RM
of the model gets sufficiently many votes from a reference tuple RD of the
image, the transformation exactly mapping RM to RD is assumed to indicate
an occurrence of the model in the image.

The preprocessing needs Ω
(
mk+1

)
time and space, but the voting can be done

in O
(
nk+1

)
time, independent from the complexity of the model. Moreover, for

a given threshold on the probability of failure, the running time of geometric
hashing also can be decreased by randomization [122]. However, just as for the
alignment methods, only the existence of outliers is taken into account but the
effects of positional errors are neglected.

The Generalized Hough Transform and Pose Clustering In its original
version, the Hough transform as described in [115] was used to recognize
straight lines in images, but the idea has also been generalized to the recognition
of other shapes (see [68], [163], and [20]).

The (generalized) Hough transform determines the free parameters of a given
model (for example slope and distance from origin for straight lines, coordinates
of the center and radius for circles, or the parameters describing the pose of an
explicitly given shape) by gathering evidences in the space of free parameters.
A bounded region of the parameter space is usually discretized by some grid,
each cell acting as an accumulator for evidences. For each sample of image
features (in the original version just single points) every cell corresponding to a
feasible set of parameters receives a vote. Cells with a sufficiently large number
of votes are supposed to correspond to occurrences of the model in the image.

The Hough transform in its original version uses samples of image features
(points) such that for each sample the corresponding parameters of the model
are under-determined. Hence, for each sample the space of feasible parameters
has dimension greater than zero and a whole set of accumulators receives votes.
Due to the trade-off between effort in image space and parameter space as
discussed in [20], most generalizations of the Hough transform, however, use
samples such that for each sample the feasible parameters are uniquely defined
and form a single point in the parameter space.
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3.2. Mapping

The term pose clustering is used for generalizations of the Hough transform
that assume the model to be given as a set of features plus a class of allowable
transformations, and that use samples such that each sample uniquely defines a
transformation (see, e. g., [213] and [173]). These approaches are closely related
to geometric hashing, however, the way the votes are accumulated is different.

The idea of using samples from a set of features, to compute the corresponding
transformations, and to cluster these transformations has also been successfully
applied for the problem of symmetry detection [165].

Probabilistic Shape Matching The features considered in probabilistic shape
matching as described in [201] are single points of the shapes. Let k be
the minimum number of point pairs from FM × FD uniquely defining a
transformation from T that exactly maps the pairs’ first elements to the
corresponding second elements. Probabilistic shape matching applies the
same mechanisms as pose clustering: repeatedly a k-tuple of feature points
from FM and a k-tuple of feature points from FD is chosen to form a sample
set S ⊂ FM × FD, the corresponding transformation tS constitutes a vote,
and clusters of votes (small regions in transformation space with sufficiently
many votes) are assumed to indicate an occurrence of the model in the image.
However, probabilistic shape matching differs in the generation of the samples:
Unlike the other methods it does not assume finite sets of features, but uses
randomly chosen points of the shapes—in [201] of polygonal curves in the plane,
in [8] of arbitrary two-dimensional regions in the plane.

3.2.2. Idea of the Proposed Approach

All the methods listed above have in common that they use samples of
minimum cardinality to determine a hypothesis (transformation) which gets
either evaluated directly, or is gathered up to form a cluster. This minimality,
however, implies that the data used to determine a hypothesis does not contain
any redundancy and that the hypotheses are therefore maximally prone to
positional errors. In the context of object recognition the positional errors are
usually small, however, in the context of similarity estimation also distortions
have to be considered.

One possible way (suggested, e. g., in [84]) to reduce the impact of individual
positional errors is to use larger samples that contain redundancies.5 The
courses of the polygonal curves may be very helpful in identifying larger
consistent sets of feature pairs. On the other hand, different representations of
essentially the same shape (see Figures 1.11 on page 50 and 2.24 on page 110
for examples) may even thwart the identification.

5 For the problem of recognizing 3d objects in 2d images using point samples,
a detailed analysis of the impact of positional errors, and of the improvements
achieved by enlarging the samples is given in [9].
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3. Estimation of Shape-Similarity

In order to achieve both—robustness against combinatorial differences and
robustness against positional errors—the approach presented in the following
combines the voting of probabilistic shape matching with enlarging the samples:
Repeatedly an initial sample of minimum cardinality is drawn randomly from
the shapes, the corresponding transformation is computed and the sample
is iteratively enlarged while the corresponding transformation is updated.
The enlarging of the sample is stopped when the gathered data becomes
inconsistent. In this way each initial sample constitutes the starting point
for a sequence of sample-transformation pairs, the best of which is weighted
according to the size of the sample and the quality of the mapping. The
weighted votes are clustered according to a distance measure defined on
transformation space, and clusters with large total weight are assumed to
indicate the existence of correlating parts in the two shape sets. Using enlarged
samples does not only facilitate robustness against positional errors, but it also
reduces the number of necessary votes drastically compared to probabilistic
shape matching in its basic form. The structure of the proposed approach is
shown in Algorithm 3.1. A detailed description is given in the following sections
and a set of suitable values for the parameters described there is given in the
Appendix (Section B.2).

Algorithm 3.1:

T ← ∅
for number of samples do

S0 ←(random vertex of first set, random vertex of second set)
tbest ← tS0

repeat
Si ← grow(Si−1)
if tSi better than tbest then

tbest ← tSi

end

until Si inconsistent
compute weight of tbest
T ← T ∪ {tbest}

end
compute clusters of T
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3.2.3. Sampling

Idea Conspicuous features of shapes arise from (boundary) regions of high
curvature [17]. Regarding polylines, these regions are the vertices. However,
not every vertex—even though its turning angle may be large—needs to
constitute a feature recognizable by a human observer. Therefore, the samples
will primarily be drawn from the sets of polyline vertices, but also points in
the interior of edges will be considered if they correspond to vertices of the
other polyline. Given a polyline P ∈ P1 and a polyline Q ∈ P2, starting
from a randomly chosen vertex of P and a randomly chosen vertex of Q, the
polylines are explored in both directions and pairs of corresponding vertices (or
vertex surrogates) are added to the sample. When the sample starts to become
inconsistent the exploration is stopped and the best sample set found so far is
used.

Initial Samples For a set P of polylines, let V (P) be the union of the sets
of vertices of the polylines in P. An initial sample S0 consists of a randomly
chosen vertex pi from a polyline of P1 and a randomly chosen vertex qj from a
polyline of P2. On the one hand, choosing vertices uniformly at random would
immoderately favor small complex structures. On the other hand, choosing
vertices according to the length of the adjacent edges (which corresponds
to uniformly choosing any point of the polyline like in probabilistic shape
matching, and then taking the next vertex) would immoderately favor vertices
of large, simple structures like, e. g., rectangular frames (see Section 1.2.3
page 28 for a discussion). In order to keep these two effects in balance, the
two strategies are combined: For a vertex v ∈ V (P) let ω(v) be the sum of the
length of the two edges incident to v and let ωsum =

∑
ω(v) be the sum the

these values. Furthermore let n be the number of vertices of P. Each vertex v
is chosen with probability 0.5 · 1/n + 0.5 · ω(v)/ωsum. In this way, informally
speaking, half of the vertices are chosen according to the complexity and half
of the vertices are chosen according to the size.

If the class of allowable transformations does permit scalings, also a prescaling
factor c is randomly chosen, based on which further correspondences for the
augmentation of the initial sample will be determined. Since similar shapes
presumably contain similar configurations of features, a factor cs is determined
based on the initial sample (pi, qj) and two additional random vertices pi′ ∈
V (P1) and qj′ ∈ V (P2) as cs := ‖qj−qj′‖/‖pi−pi′‖ such that cmin ≤ cs ≤ cmax
for given thresholds on the minimum and maximum scaling of a reasonable
transformation. Since the configurations of features may slightly differ, also
a purely random factor cr is chosen such that log(cr) is normally distributed
with mean zero and small variance. The overall prescaling factor is then defined
as c := cs · cr.
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3. Estimation of Shape-Similarity

Augmenting a Sample Let P = (p1, . . . , pm) and Q = (q1, . . . , qn) be
two polylines. If the part (pa1 , . . . , pa2) ⊂ P corresponds to the part
(qa3 , . . . , qa4) ⊂ Q, the predecessing vertices pa1−1, qa3−1 and the succeeding
vertices pa2+1, qa4+1 would surely be candidates for finding additional corre-
spondences. However, a vertex need not necessarily have a corresponding vertex
on the other polyline, but may also correspond to a point in the interior of a
long edge (see Figure 3.3).

s5
s2

s0

s1 s3 s4

qj−1

qj
qj+1

qj+2

qj+3

pi−2
pi−1

pi
pi+1

pi+2

c·dP,4

dP,4

Figure 3.3. Growing of sample:
polyline vertices ( r), and vertex surrogates ( ) for growing an
initial sample

{
s0

}
=
{

(pi, qj)
}

to
{
s0, s1, . . . , s5

}
.

The initial sample S0 contains only the pair s0 consisting of a vertex pi ∈ P and
a vertex qj ∈ Q randomly chosen as described above. Furthermore, a forward
direction for exploring P and a forward direction for exploring Q (without loss
of generality the forward direction will be assumed to correspond to ascending
indices in the following) are randomly chosen. Let sf = (sf,1, sf,2) be the last
sample added to S originating from a forward exploration (initially sf = s0)
and let df accumulate the distances on Q explored in forward direction
(initially df = 0). Accordingly, let sb = (sb,1, sb,2) be the last sample added to S
originating from a backward exploration and let db accumulate the distances
on Q explored in backward direction. Lengths concerning P and lengths
concerning Q are compared based on the assumption that the transformations
mapping P to Q isotropically scale all lengths with factor c.6

In the case of forward exploration, let p be the vertex on P succeeding to sf,1
and let dP be the scaled distance c · ‖p − sf,1‖. Accordingly, let q be the
vertex on Q succeeding to sf,2 and let dQ := ‖q − sf,2‖. If |dP − dQ| ≤
θa ·min(dP , dQ) for a threshold θa (meaning that the relative difference between
the two distances is sufficiently small) the vertices p and q are assumed to be
corresponding and form a new sample pair. The new pair replaces sf , is added
to S, and df is incremented by dQ. If the relative difference between the two
distances is larger than the threshold, then a vertex surrogate is introduced (see

6 For general affine transformations this need not be the case, but see Section 3.2.4
page 128 for a discussion.
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Figure 3.3 for an example): In case dP < dQ the vertex p has no corresponding
vertex on Q and therefore a point on the edge from sf,2 to q with distance dP
from sf,2 is determined as q′ := (1−dP /dQ)·sf,2+(dP /dQ)·q. The vertex p and
the vertex surrogate q′ form a new sample pair which replaces sf and is added
to S. The accumulated distance df is incremented by dP . Accordingly, in case
dQ < dP a vertex surrogate on P is determined as p′ := (1 − dQ/dP ) · sf,1 +
(dQ/dP ) ·p and the pair (p′, q) replaces sf and is added to S. The accumulated
distance df is incremented by dQ then.

Backward exploration works accordingly. Exploration is always performed in
the direction for which the accumulated distance is smaller, unless the end of a
polyline is reached in this direction. The augmentation of the sample is stopped
when forward and backward exploration both reached endpoints of a polyline
(or in case of closed polylines, meet in a common vertex) or when the sample
starts becoming inconsistent.

Checking Consistency The consistency of a sample S is rated based on a
constant number of pairs of corresponding points, namely on s0 and, since
inconsistencies may only be introduced by newly added pairs, on sf and sb.
Let tS be the transformation mapping P to Q that has been computed based
on the sample S (as will be described below), then the error measure used to
check the consistency is δ̄

′
(S) :=

(
‖s0,2− tS(s0,1)‖+ ‖sf,2− tS(sf,1)‖+ ‖sb,2−

tS(sb,1)‖
)
/3.

Whether a sample is consistent, however, cannot be decided on the value of this
error alone: For samples representing large explored parts of polylines higher
values may be tolerated than for a sample representing a short single edge.
One important factor influencing the size of the maximum tolerated error is
the spatial spread of the sample measured by the sum dbox of the side lengths
of the smallest axis aligned rectangle containing the sampled points from Q.
If the sampled part of a polyline grows, but stays in the same bounding box,
however, the sample also gains significance and therefore also the length df +db
of the explored part is considered.

Given a threshold θe, the relative error that is still tolerated is computed
as δtol(S) := θe ·

(
df (S) + db(S) + dbox(S)

)
. In this way, the augmentation

of the sample induces a sequence of tolerable errors and a sequence of
actually occurring errors. The sample is considered to be inconsistent and
the augmentation of the sample is stopped if δ̄

′
(S) > δtol(S). However, at this

point unsuitable data has already been incorporated into the sample—unless
it would not be inconsistent. The sample that is chosen, therefore, is the one
corresponding to the largest difference between tolerable error and actual error
(see Figure 3.4 for an illustration).
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Figure 3.4. Checking consistency:
(top) parts explored during the augmentation of a sample for
determining a translation, plus the shapes superimposed using
the resulting translation; parts contributing to the final sample
in green, parts explored but not contributing in dotted red;
(bottom) corresponding plot of actual error δ̄

′
in green/dotted

red, plus tolerable error δtol in dashed black.

3.2.4. Computing Transformations

Let T be a class of transformations from the IR2 to the IR2 and let k be the
minimum number of point pairs from IR2 × IR2 needed to uniquely determine
a transformation from T that maps the pairs’ first points exactly to the
corresponding second points. For a set

{
(s1,1, s1,2), . . . , (sn,1, sn,2)

}
of n > k

pairs, in general there is no such transformation exactly mapping every si,1 to
the corresponding si,2 or in other words, there is no transformation t ∈ T such
that ‖t(s1,1)− s1,2‖ = · · · = ‖t(sn,1)− sn,2‖ = 0.

The basic approach applied in the following is to minimize the sum of the
squared errors. As introduced in [145] and [93], this method can be used
to determine the parameters of a model from measured values that contain
random errors. In the context of the present work, the distortions are mostly
not caused by random errors, however, the results achieved by applying the
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method of least squares are convincing. Compared to minimizing the maximum
error, the method of least squares has the advantage that the point pairs with
small errors are not ignored, but do also contribute to the result. In fact this is
favorable when a transformation is looked for, that maps as much of the edges
of one set of polylines as close as possible to (corresponding) edges of the other
set of polylines.

Treating all sample pairs as equally important could lead to counterintuitive
results, because the perceived importance of a part of a polyline is first of all
not determined by the number of vertices—which also may heavily depend on
the actual representation—but on the expanse. The sample pairs are therefore
weighted according to the lengths of the incident edges (that have been explored
so far). Let sa1 , sa2 , and sa3 be three sample pairs such that a1 < a2 < a3 and
the points sa1,2, sa2,2, and sa3,2 appear consecutively on polyline Q. Before
pair sa3 is added to the sample set, the pair sa2 is weighted with ‖sa1,2 −
sa2,2‖/2. After pair sa3 has been added to the sample set, the pair sa2 is
weighted with ‖(sa1,2 − sa2,2‖/2 + ‖(sa2,2 − sa3,2‖/2. Let ωi be the weight
for sample pair si in the sample set S and let n = |S|. The transformation
computed for S is tS = arg mint∈T

∑n
i=1

(
ωi · ‖t(si,1)− si,2‖2

)
.

For all the classes of transformations considered in the following it is possible
to organize the calculation of the optimal transformations for a sequence
(S1, . . . , Sm) of sample sets with |Si+1| = |Si| + 1 and Si ⊂ Sj for i < j,
such that having computed the optimal transformation tSi

, the optimal
transformation tSi+1

can be computed in constant time.7

All the classes of transformations considered here are (not necessarily proper)
subclasses of affine transformations. That means that such a transformation t
can be characterized by a 2×2-matrix M and a translation vector v, such that
for a point p

t(p) = (M · p) + v =

(
M [1][1] · p[x] +M [1][2] · p[y] + v[x]
M [2][1] · p[x] +M [2][2] · p[y] + v[y]

)
.

Given a sample set Sn = {(s1,1, s1,2), . . . , (sn,1, sn,2)}, in the following,
xi,1 := si,1[x] denotes the x-coordinate of the i-th sample pair’s first point,
yi,1 the y-coordinate and analogously xi,2 and yi,2 denote the coordinates of
the corresponding second point.

7 Please note that also the change of weight for the predecessing sample pair has to
be considered, but this can also be dealt with in constant time.
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Translations For translations, M is the identity matrix
(

1 0
0 1

)
and v is an

arbitrary vector. Since there are only 2 degrees of freedom, k equals 1. The
translation vector of the translation that minimizes the sum of the weighted
squared distances for the sample set Sn = {(s1,1, s1,2), . . . , (sn,1, sn,2)} can
easily be computed as

v =
1

ω(S)
·
n∑
i=1

ωi(si,2 − si,1)

with ω(S) being the sum of all weights.

Homotheties A homothety is a combination of a uniform scaling and a
translation. M is the matrix

(
c 0
0 c

)
with c being the scaling factor, and v is an

arbitrary vector. Since there are 3 degrees of freedom, at least 2 sample pairs
are needed to define a homothety, however, in general there is no homothety
exactly mapping the pairs’ first points to the corresponding second points. The
homothety that minimizes the sum of the weighted squared distances for the
sample set Sn = {(s1,1, s1,2), . . . , (sn,1, sn,2)} can easily be computed by solving
the following system of linear equations:

n∑
i=1

ωi

xi,12 + yi,1
2 xi,1 yi,1

xi,1 1 0
yi,1 0 1

 ·
 c
v[x]
v[y]

 =

n∑
i=1

ωi

xi,1xi,2 + yi,1yi,2
xi,2
yi,2


.

Rigid Motions A rigid motion is a combination of a rotation and a translation.
M is the matrix

(
cosϕ − sinϕ
sinϕ cosϕ

)
with ϕ being the angle of rotation around the

origin, and v is an arbitrary vector. Since there are 3 degrees of freedom, at least
2 sample pairs are needed to define a rigid motion, however, in general there
is no rigid motion exactly mapping the pairs’ first points to the corresponding
second points.

The rotation matrix M ′ and the translation vector v′ of the rigid motion that
minimizes the sum of the unweighted squared distances for the sample set
Sn = {(s1,1, s1,2), . . . , (sn,1, sn,2)} can be computed as described in [43]: Let
s̄1 = 1

n

∑n
i=1 si,1 and s̄2 = 1

n

∑n
i=1 si,2 denote the centers of mass of the sets
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of sample points and let ŝi,1 = si,1 − s̄1 and ŝi,2 = si,2 − s̄2 be the coordinates
relative to these centers. Let furthermore a =

∑n
i=1 (x̂i,1x̂i,2 + ŷi,1ŷi,2) and

b =
∑n

i=1 (x̂i,1ŷi,2 − ŷi,1x̂i,2), then

M ′ =
1√

a2 + b2
·
(
a −b
b a

)
and v′ = s̄2 −M ′ · s̄1.

The rotation matrix M and the translation vector v of the rigid motion that
minimizes the sum of the weighted squared distances can be computed using the
method described above with slight modifications. The centers of mass s̄1 and
s̄2 are replaced by the weighted centers of mass and the rotation is computed
as if the radii (distance of a point to the weighted center of mass) were scaled
according to the weights: ŝi,1 =

√
ωi · (si,1 − s̄1), and ŝi,2 =

√
ωi · (si,2 − s̄2).

Detailed analysis shows that by reorganization of the terms, the explicit
computation of the (weighted) centers of mass s̄1 and s̄2 can be avoided such
that having computed the optimal transformation for the set Si, the optimal
transformation for the set Si+1 can be computed in constant time.

Similarity Transformations A similarity transformation (preserving the ori-
entation of closed paths) is a combination of a uniform scaling, a rotation, and
a translation. M is the matrix

(
c·cosϕ − sinϕ
sinϕ c·cosϕ

)
with c being the scaling factor

and ϕ being the angle of rotation around the origin. v is an arbitrary vector.
Since there are 4 degrees of freedom, k equals 2. The similarity transformation
that minimizes the sum of the weighted squared distances for the sample
set Sn = {(s1,1, s1,2), . . . , (sn,1, sn,2)} can easily be computed by solving the
following system of linear equations:

n∑
i=1

ωi


xi,1

2 + yi,1
2 0 xi,1 yi,1

0 xi,1
2 + yi,1

2 yi,1 −xi,1
xi,1 yi,1 1 0
yi,1 −xi,1 0 1

 ·

M [1][1]
M [1][2]
v[x]
v[y]



=

n∑
i=1

ωi


xi,2xi,1 + yi,2yi,1
xi,2yi,1 − yi,2xi,1

xi,2
yi,2


.
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General Affine Transformations An affine transformation is a transformation
that maps parallel lines to parallel lines. M is an arbitrary matrix and v is an
arbitrary vector. Since there are 6 degrees of freedom, k equals 3. The affine
transformation that minimizes the sum of the weighted squared distances for
the sample set Sn = {(s1,1, s1,2), . . . , (sn,1, sn,2)} can easily be computed by
solving the following system of linear equations:

n∑
i=1

ωi


xi,1xi,1 xi,1yi,1 xi,1
xi,1yi,1 yi,1yi,1 yi,1 0
xi,1 yi,1y 1

xi,1xi,1 xi,1yi,1 xi,1
0 xi,1yi,1 yi,1yi,1 yi,1

xi,1 yi,1 1

 ·

M [1][1]
M [1][2]
v[x]

M [2][1]
M [2][2]
v[y]



=

n∑
i=1

ωi


xi,2xi,1
xi,2yi,1
xi,2

yi,2xi,1
yi,2yi,1
yi,2


.

There are shapes perceived similar, for which an affine transformation gives a
better mapping than a similarity transformation because the former also allows
for non-isotropical scaling and shearings. On the other hand, non-isotropical
scaling and shearings can be used to exactly map shapes which are not perceived
similar at all. For example any circle, square, or triangle can be mapped onto a
single line segment by choosing the scaling factor in the direction perpendicular
to the line segment equal to zero.8 The class of allowable transformations
therefore should be restricted to affine transformations that do not deviate too
much from a similarity transformation. Since a similarity transformation maps
circles to circles and an affine transformation maps circles to ellipses (any two of
which can be made equal by applying a homothety), one possibility to measure
how much an affine transformation t deviates from a similarity transformation
is to take the quotient dev(t) of the lengths of the minor axis and the major
axis of such an ellipse.

Given two vectors v1, v2, the ratio of lengths of these two vectors after applying
an affine transformation t is bounded as follows:

dev(t) · ‖v1‖
‖v2‖

≤ ‖t(v1)‖
‖t(v2)‖

≤ 1

dev(t)
· ‖v1‖
‖v2‖

.

8 Of course, also a similarity transformation can be used to map any shape to a single
point. However, please note that the estimation of similarity as described in the
present work is based on values that are defined relative to the size of the shapes.
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This means that for affine transformations not deviating much from similarity
transformations (which is assumed for proper mappings of shapes that are
perceived similar), the changes in ratios of lengths are rather small which
facilitates the augmentation of samples as described in Section 3.2.3.

Reflections A reflection at a line is a transformation for which M is an
orthogonal matrix with determinant -1 and therefore it changes the orientation
of closed paths. Since a reflection at an arbitrary line can be replaced by
a combination of a reflection at a fixed line and a rigid motion, reflections
and similarity transformations changing the orientation of closed paths are
computed by first reflecting P1 at the y-axis (replacing every x-coordinate
by its negation) and then computing the optimal rigid motion or similarity
transformation respectively.

3.2.5. Weighting Transformations

Besides reducing the impact of individual positional errors, the other main
motivation for using augmented samples is the possibility to distinguish
between substantial and unsubstantial samples. Two factors are of importance
in this context, namely the expressiveness of the sampled parts and the quality
of the match. The expressiveness of a sample depends on the geometrical size
and on the visual complexity. The weight ω(S) of a sample set S of cardinality n
therefore is determined as the product of three factors, namely a factor ωL(S)
for the length of the parts, a factor ωV (S) for the visual complexity, and a
factor ωE(S) for the quality of the match. The weight ω(S) is defined in such
a way that all computations building on it are invariant to scaling the input P1

or P2, which is desired in most applications.

Depending on the application at hand, the length of the explored part of P1 and
the length of the explored part of P2 may be of different importance. Let c(S)
be the prescaling factor for the sample S and let L1(S) =

(
df (S)+db(S)

)
/c(S)

and L2(S) =
(
df (S) + db(S)

)
be the lengths of the explored parts of P1 and

of P2 respectively. The idea is to use some kind of weighted geometric mean
of the relative lengths:

ωL(S) :=

((
L1(S)

L(P1)

)e1
·
(
L2(S)

L(P2)

)e2) 1
e1+e2

with L(P) denoting the total length of a set P of polylines, and e1 and e2

being two parameters for adjusting the relative importances (in the case of
complete-complete matching typically e1 := e2 := 1). Since in the further
process decisions are based on linear combinations of the ωL only, and since
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no value but L1 and L2 depends on the sample, the above definition can be
replaced by ωL(S) := L2(S) · c(S)−e1/(e1+e2) without changing the results of
the process.

The factor ωV (S) for the visual complexity is intended to penalize samples that
essentially span only one dimension like a single line segment does, compared to
samples that really span two dimensions like, e. g., a square does. The spatial
distribution of the sample can be described using principal component analysis
as introduced in [180]. Let D(S) be the covariance matrix of the coordinates of
the sample pairs’ second points and let dmax(S) be the larger and dmin(S) be
the smaller of the two eigenvalues of D(S). The quotient dmin/dmax equals 0 if
all points are on a line and it equals 1 if two dimensions are really spanned. In
order to get a factor linearly decreasing with increasing ‘one-dimensionality’ of
the sample, ωV (S) :=

(
1− dmin(S)/dmax(S)

)
·ωV,min +

(
dmin(S)/dmax(S)

)
· 1

with ωV,min < 1 being the factor of maximal penalization.

The quality of a match clearly depends on the size of the mapping errors relative
to the spatial extent of the sample. Still, distortions of small shapes are less
obvious to perceive than distortions of large shapes. Therefore also the mapping
errors relative to the spatial extend of the whole set of polylines are considered.

Let δ̄(S) :=
(
1/ω(S) ·

∑n
i=1

(
ωi · ‖tS(si,1)−si,2‖2

))1/2
denote the weighted root

mean square error of the sample S. Furthermore let dbox(S) be the sum of
the side lengths of the smallest axis aligned rectangle containing the sampled
points (s1,2, . . . , sn,2), and let dimg(P2) be a measure for the geometrical size9

of the polyline set P2. The factor for the quality of the match is then defined
as

ωE(S) := 1− cE ·
(

δ̄(S)

dbox(S)
+

δ̄(S)

dimg(P2)

)
with cE being a parameter for adjusting the tolerance against errors.

3.2.6. Clustering Transformations

In the present context, a cluster is a region of limited diameter in trans-
formation space subsuming a considerable amount of weight of the enclosed
transformations. It is assumed that clusters with large total weight correspond
to transformations that map large parts of one polyline set to corresponding
parts in the other polyline set (see also [201, p 21]).

9 In the context of retrieval of figurative images this value should be defined based
on the size of the image, e. g., as proposed in Section 4.2.
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Basics Since in general a whole set of transformations approximately match a
set of sample pairs’ first elements to the corresponding second elements, ideally
a transformation contained in the maximum number of such sets10 should be
computed. For translations and rigid motions there has been work in this
direction [40], however, due to the high computational complexity, the given
algorithms are not applicable in the given context.

Most techniques proposed for clustering transformations, on the other hand,
are based on assigning a single transformation to a sample, partitioning
transformation space (typically independently partitioning every parameter
uniformly), and histogramming the transformations over the cells of the
partition [173]. These methods, however, completely discard the effects of
the transformations on the objects that are transformed.

Applied to a shape near the origin, two rotations may yield nearly the same
results, whereas applied to a shape far from the origin the same two rotations
may yield very different results (see Figure 3.5 for an example). Clustering two
given transformations may be absolutely reasonable for some inputs whereas it
might be inappropriate for others. The same problem may occur when scalings
(or other linear transformations) are involved.

A
∆ϕ = 5◦

B

Figure 3.5. Different transformations:
Shapes that are transformed by two rotations which differ only
by 5◦. The images of shape A are almost the same, whereas the
images of shape B strongly differ.11

Normalizing all input sets of polylines such that they are centered at the origin
would be one possible way to tackle this problem for affine transformations,
however, defining a distance measure on transformations based on their effects
on the transformed objects, allows to develop clustering algorithms that are
completely independent of the actual class of transformation at hand.

10 In the weighted case analogously a transformation contained in an intersection of
sets such that the sum of weights is maximal.

11 Please note that after applying an additional translation, the situation may also be
the other way round.
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Given a set P of polylines (or in general, shapes in the plane), let Pbox
be the set consisting of the 4 corner points of the smallest axis aligned
rectangle containing P (the bounding box). A distance measure on a class T
of transformations can then be defined as dP(t1, t2) := maxp∈Pbox

{
‖t1(p) −

t2(p)‖
}

. It is easy to see that dP satisfies the triangle inequality which will be
utilized in the clustering algorithm described in the following.12

Since in the given context the diameter of any reasonable cluster of trans-
formations is limited, the standard methods for clustering based on distance
information like, for instance k-means clustering [154] cannot be used. Com-
plete linkage clustering [58] possibly could yield good results. However, due to
the worst case time complexity Θ

(
n2 · log(n)

)
for clustering n transformations,

the given algorithm is also not favorable here.

Idea of the Proposed Approach Let T = {t1, . . . , tn} be a set of transfor-
mations intended to transform the set P of polylines, and let ω(ti) denote
the weight of transformation ti. For a fixed cluster radius r a cluster C(ti)
with center ti ∈ T is defined as the set of transformations with distance less
than r to the center: C(ti) =

{
tj ∈ T | dP(tj , ti) < r

}
. The weight of a cluster

is then defined as the sum of the weights of its elements. This definition is
closely related to what is called naive density estimator in statistics [209]. The
transformations that are considered as cluster centers are identified as follows:
ti ∈ T is called dominator of tj if and only if dP(ti, tj) ≤ r, ω(ti) > ω(tj), and
no other transformation is dominator of ti. Each transformation t ∈ T that has
no dominator is the center of a cluster Ct. In other words: a transformation t
either is the center of a cluster or it is contained in at least one cluster of its
dominators (see Figure 3.6 for an illustration).

t1 t2 t3

r
Figure 3.6. Definition of cluster centers:
Let ω(t1) > ω(t2) > ω(t3), then t1 is dominator of t2
and therefore t2 is not dominator of t3. Since neither
t1 nor t3 have a dominator, each of them defines a
cluster and t2 is contained in both of these clusters.

The clusters may be determined by iteratively taking the transformation with
highest weight as center of a cluster, removing the cluster’s members from the
set of potential centers and continuing with the reduced set. A naive algorithm

12 Given that the points of Pbox are not collinear, dP also satisfies the other metric
conditions for the class of affine transformations. For more general classes of
transformations the isolation condition might be violated.
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would need time quadratic in the number of transformation, but this can be
decreased by partitioning transformation space based on the distances dP and
organizing the partition in a rooted, ordered tree which holds the clusters.

Partitioning Transformation Space Let r be the cluster radius and let h be
the depth of the tree. A node u on level k represents a dP -ball b(u) with radius
rk = 2h−k · r around the center of the cluster that is stored in u. Every node u
on a level < h may have arbitrarily many children, each of which represents a
ball of half the radius, centered inside b(u). The root node represents a ball
with radius r0 such that all transformations from T lie inside this ball.

Since balls from the same levels as well as balls from different levels may
intersect, a hierarchy is defined as follows: A node u is responsible for that
part of transformation space its parent was responsible for, which lies inside
its own dP -ball and does not lie inside one of the dP -balls of its predecessing
siblings (Figure 3.7 shows an example). Formally, given a node u on level l, let
(v0, v1, . . . , vl = u) be the sequence of nodes on the path from the root to u.
Furthermore let ci(v) denote the i-th child of a node v and let (i1, . . . , il) be the
numbers such that vj is the ij-th child of vj−1. Then the part of transformation
space that u is responsible for is

b′(u) =
⋂l

k=1

(
b
(
vk
)
\
⋃ik−1

j=1
b
(
cj(vk−1)

))
.

The responsibility region of a node only refers to the centers of the clusters
stored in the node’s subtree, but the clusters themselves may protrude over
these responsibility regions by the cluster radius r. In an r-neighborhood of the
boundary between two responsibility regions, a transformation may therefore
belong to clusters stored in two different subtrees. However, given a node u
on level k, representing a dP -ball b(u) with radius rk around center tu, for any
transformation t′ such that dP(tu, t

′) < rk−r all the clusters containing t′ must
not be centered inside responsibility region of a succeeding sibling of u, and for
any transformation t′′ such that dP(tu, t

′′) > rk + r all the clusters containing
t′′ must not be centered inside the responsibility region of u.

In Figure 3.7, when searching for the clusters containing transformation t, the
subtree of node c1(v0) has to be considered but the search cannot be restricted
to it, because r1− r < dP

(
c1(v0), t

)
< r1 + r. The subtrees of the predecessing

siblings c2(v0) and c3(v0) = v1 can be excluded because the distance of t to the
respective centers exceeds r1 + r. Since dP

(
c4(v0), t

)
< r1 − r < r1 + r, the

subtree of node c4(v0) again has to be considered, but no further sibling has to
be looked at.
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v0

c1(v0)

c2(v0)

c4(v0)
c5(v0)

v1

c1(v1)
v2

tr1

Figure 3.7. Partition of
transformation space: example
showing responsibility regions
(bounded by continuous
arcs) relevant for a path(
v0, v1 = c3(v0), v2 = c2(v1)

)
,

plus a transformation t (marked
by ) that belongs to clusters
(gray) from different subtrees,
relevant outer boundaries
(dotted), and inner boundaries
(dashed).

Algorithm Let (t1, . . . , tn) be the transformations sorted such that their
weights are in decreasing order. The clustering is then done in two phases.
In the first phase the cluster centers are identified and the tree represent-
ing the partition of transformation space is constructed. Given the tree
for (t1, . . . , ti−1), whether ti constitutes a new cluster (whether it has no
dominator) can easily be determined by searching the tree for a cluster
covering t. If no such cluster exists, a new cluster with center ti is created
and inserted into the tree. In the second phase all the transformations of T are
assigned to the clusters. In order to do so, for every t ∈ T the final tree has
to be searched for all clusters covering t. The tree, therefore, needs to provide
two functionalities, namely searching for all clusters covering a transformation
(or deciding whether such a cluster exists) and inserting a cluster into the tree.

A (sub-)tree rooted at a node u can be searched for all clusters covering a
transformation t using Algorithm 3.2. If the cluster stored in u covers t, then
this cluster is contained in the return set (in the decision version the algorithm
may terminate then), and sequentially every child of u is tested whether it also
has to be searched and whether the succeeding siblings can be dropped.

Given a node u with ball bu covering a transformation t, a cluster with center t
can be inserted into the (sub-)tree rooted in u using Algorithm 3.3. If there
exists at least one child of u, representing a ball covering t the cluster is
recursively inserted into the first such child. Otherwise, a new child with
center t is created and appended to the list of child nodes.

If the ball of the current root node does not cover t, the root may be made
child of a new root node with doubled radius until this new root’s ball does
cover t.
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Algorithm 3.2: Search subtree of node u for clusters covering trans-
formation t

U ← (u) /*nodes to search*/, C ← ∅ /*clusters found*/

while U 6= ∅ do
v ← extract first element of U
if dP(v, t) ≤ r then

add v to C
end
rv ← radius of v, j ← number of children of v
for i = 1 to j do

if dP(ci(v), t) ≤ rv + r then
add ci(v) to U

end
if dP(ci(v), t) < rv − r then

break
end

end

end
return C

Algorithm 3.3: Insert cluster with center t into subtree of node u

v ← u /*current node*/

while true do
rv ← radius of v, j ← number of children of v
for i = 1 to j do

if dP(ci(v), t) ≤ rv/2 then
v ← ci(v), continue with outer loop

end

end /*no responsible child found*/

create new child cj+1(v) with center t storing the cluster
break loop

end
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3.2.7. Analysis

Generating Transformations Let n1 be the number of vertices of P1 and
let n2 be the number of vertices of P2. Using binary search on an array of
accumulated weights of the vertices, a random initial sample can be drawn
in time O

(
log(n1) + log(n2)

)
. Since every step of the augmentation of the

sample (determining next point pair, computing the transformation, and
checking consistency) can be done in constant time, a vote can be generated in
time O

(
n1 + n2

)
.

In experiments with real-world data13, the average number of augmentations
was significantly smaller than the total number of vertices. Regression analysis
resulted in 9.7 + 0.09 · (n1 + n2) for the MPEG 7 data set (one polyline per
image) and 7.0+0.004 · (n1 +n2) for the UK trademarks set (multiple polylines
per image).

Clustering Transformations Let d box1 , d box2 denote the diameters of the
bounding boxes of shape sets P1 and P2 respectively. Any transformation
t generated by the random experiments will fulfill the condition that the
transformed bounding box of P1 at least touches the bounding box of P2. Given
the definition of dP1 , it is therefore easy to see that for translations and rigid
motions, dP1(ti, tj) ≤ d box2 +2·d box1 for any pair of transformations ti, tj . With r
being the cluster radius, the maximum depth of the tree is then bounded from
above by

⌈
log
(
(d box2 + 2 · d box1 )/r

)⌉
. Since they are not length preserving, for

similarity transformations and general affine transformations, the space is not
bounded in such a natural way. However, if the application provides bounds on
the maximum scaling factor cmax and on the maximum deviation devmax from
a similarity transformation, the distance between any pair of transformations
can be bounded based on these values: dP1

(ti, tj) ≤ d box2 +2·d box1 ·cmax ·devmax
for any pair of transformations ti, tj . The maximum depth of the tree is then
bounded from above by

⌈
log
(
(d box2 + 2 · d box1 · cmax · devmax)/r

)⌉
.

Given a bounded set X and a distance measure d, a set Y ⊂ X is called an
ε-packing if and only if ∀y1, y2 ∈ Y : d(y1, y2) > 2ε. The size of the largest
ε-packing is called the packing number P (X , ε). For an m-dimensional ball b
with radius r, the packing number P (b, r/4) is in O(8m). In particular, for
m being a constant, the packing number P (b, r/4) is also constant (see [54]).
This observation can directly be applied to bound the maximal degree of a
node in the tree for T being the class of translations, since the children of a
node u define a Euclidean ru/4-packing of the ball b(u).

13 The mapping algorithm has been applied to 1 000 randomly chosen pairs of images
from the MPEG 7 data set and to 1 200 pairs (50 randomly chosen images for each
query) of images from the UK trademarks set, using similarity transformations.
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For transformations with more than 2 degrees of freedom, the bound on the
maximal degree of a node in the tree as derived from analog reasoning may
even be improved by exploiting the definition of dP . Since dP is defined as the
maximum of the distances of 4 point-pairs, every packing with respect to dP
in transformation space having cardinality P ′, induces 4 packings with respect
to the Euclidean distance in the IR2, having a total cardinality of at least P ′.14

The maximal degree of a node in the tree is therefore bounded by 4 · O(82)
which obviously is constant.

For transformations in the neighborhood of a responsibility region’s boundary
more than one node of a level may have to be searched. Therefore, the nodes
traversed during a search do not necessarily form a path, but may form a tree
(in the following called searching tree). Straightforward attempts to bound
the complexity of the searching trees based on packing arguments do not lead
to convenient results. However, in experiments with real-world data15, the
average degree of non-leaves in the searching trees was smaller than 1.2 and
the number of nodes in a searching tree was smaller than 1.1 times the depth
of the original tree on the average. Assuming the average complexity of the
searching tree to be bounded by a constant times the depth of the original
tree, the running time of clustering n transformations is in O

(
n · log(n) + n ·

log((d box2 + 2 · d box1 · cmax · devmax)/r)
)
.

14 Each point in transformation space corresponds to 4 points in Euclidean space
(1 for every element of Pbox), and each element of a packing in transformation
space has to contribute to at least 1 of the 4 packings in the IR2.

15 The mapping algorithm has been applied to 1 000 randomly chosen pairs of images
from the MPEG 7 data set using similarity transformations.
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3.3. Similarity Estimation

The aim of this section is to find a measure of similarity between sets of polylines
representing shapes in figurative images, that complies with the perceived
similarity of these images.

3.3.1. Related Work

Since estimating the similarity of shapes is an important task in a wide variety
of applications, there is also a wide variety of definitions of (dis-)similarity
measures. Given a specific application, whether a (dis-)similarity measure is
worth considering may depend on two very basic issues: First, whether it can
be applied to pairs of arbitrary sets of shapes or to pairs of single shapes only.
Second, whether it is invariant with respect to asynchronous transformation
under the classes of translations, rigid motions, etc. or not. In the following an
overview over some very different approaches is given.

Geometry-Based Measures Probably the most well known geometry-based
measure of dissimilarity is the Hausdorff distance dH (see Section 1.3.4). It
may be used for arbitrary sets of shapes by applying it either to the interiors of
the shapes or to the boundaries of the shapes. In order to reduce the sensitivity
to noise, several variants of the Hausdorff distance have been proposed, such
as the partial Hausdorff distance [119] (also called percentile based Hausdorff
distance) and the mean Hausdorff distance [67]—both of which do actually not
fulfill the metric properties. Other measures include the Fréchet distance dF
(see Section 1.3.4) which, however, is only defined for pairs of single shapes, and
the area of symmetric difference which is defined as ‖(S1∪S2)\ (S1∩S2)‖ and
may be applied to pairs of arbitrary sets of region shapes. These measures have
a simple and sound mathematical basis, but show only limited conformance
with perceived similarity (see, e. g., Figure 1.11 on page 50). In [103] a
distance measure has been introduced which is based on differences in the
area of visibility regions. This measure may be applied to arbitrary sets
of (boundaries of) region shapes, but it is not invariant with respect to
asynchronous transformations. It fulfills the metric axioms and moreover, is
robust against noise, crack, blur and deformation.

Statistical Measures Statistical measures are based on the representation of
a shape (or a set of shapes, respectively) by a high-dimensional vector (or
point in high-dimensional space), each dimension standing for some aspect of
the shapes. Once the vectors have been determined, two shapes S1 and S2 (or
sets of shapes S1 and S2 respectively) are then compared by applying some
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measure of (dis-)similarity on the corresponding vectors v1 and v2 (see also
Section 1.3.4 page 51). Possible measures are, e. g., the Minkowski distance,
the dynamic partial function (for both see Section 1.3.4), the cosine similarity
〈v1, v2〉 /(‖v1‖ · ‖v2‖), and the Mahalanobis distance (see, for instance [216]).

Given a polygonal region shape S with boundary P , some of the quantities
that may be used to describe S are listed in the following (taken from [10], for
a more comprehensive list see also [225]):

• circularity: 4 · π ·A/L2

• right-angleness: r/n

• sharpness: 1
n

∑
max

(
0, 1− (2 · |Θi − π|/π)2

)
• complexity: 10−(7/n)

• aspect ratio: l/w

• stuffedness: A/AR

• . . .

with A denoting the area of S, L the length of P , n the number of vertices of P ,
r the number of almost right angles between consecutive edges of P , Θi the
angle between the the i-th and the i+1-th edge of P , l the length, w the width,
and AR the minimum area of any rectangle enclosing S.

Apart from the questionable use of distance measures fulfilling the triangle
inequality (see Section 1.3.3.3 page 42 for a discussion) there are also other
issues that highten the risk of rating perceptually similar shapes dissimilar:
Shapes that are perceived as being very similar may—depending on the actual
bounding polylines—heavily differ in such quantities as, e. g., complexity and
right-angleness. Moreover, different groupings of shapes (see Section 2.5 and
Figure 2.24 on page 110) may lead to completely different representations.

Moment-Based Measures Given a two-dimensional function f : IR2 → IR
and two integers p and q, the (raw) moment is defined as

Mr
p,q(f) :=

∫ ∞
−∞

∫ ∞
−∞

xpyq · f(x, y) dx dy.

By using the characteristic function of a shape S (or a set of shapes S,
respectively), its moment is defined analogously as

Mr
p,q(S) :=

∫ ∫
S

xpyq dx dy.
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Let x̄ = Mr
1,0(S)/Mr

0,0(S) and ȳ = Mr
0,1(S)/Mr

0,0(S) be the coordinates of the
centroid of S, then the central moment is defined as

M c
p,q(S) :=

∫ ∫
S

(x− x̄)p(y − ȳ)q dx dy.

Some combinations of these moments may be used to define shape descriptors
that are invariant to translation, scaling, and rotation (see, for instance [245])
and even broader sets of geometric deformations have been considered [88]. In
the context of shape retrieval also moments based on Zernike polynomials as
defined in [251] are used (see, e. g., [23], [130], and [238]).

Moment-based descriptions of shapes are very commonly used in the retrieval
of figurative images (see Section 4.1). However, different depictions of shapes
(e. g., by a region or by the outline—see Figure 1.2 on page 22) may lead to
completely different representations when the moments are computed based
on pixel intensities. In addition, perceptually less important shapes such as
frames may dominate the representation by moments and may lead to unwanted
results.

Edge (Direction) Histograms The idea behind edge histograms is to partition
the plane—usually by a regular grid either in Cartesian coordinates or in polar
coordinates—and to measure the length of the part of the shape boundary16 in
each cell. The information about the spatial distribution of the shape boundary
can then be further processed to obtain shape representations that are invariant
to translation, scaling, and rotation and that can be used for shape retrieval
(see, for instance [42]).

For edge direction histograms on the other hand, not a partition of the plane,
but a partition of the possible directions of the shape boundary is used (see,
for example [52]). In order to get richer descriptions of the shapes/images,
also combinations of edge direction histograms with edge histograms [183] and
combinations with information about the neighborhood relations between the
edges [159] have been considered.

Edge (direction) histograms are almost robust with respect to differences in
the depiction of shapes and to differences in the actual grouping of shapes.
However, as a consequence of the partitioning translations and rotations may
completely change the representation of a shape or image. Normalization on

16 Most of the work concerning edge histograms or edge direction histograms actually
considers arbitrary sets of edges detected in raster graphics and, instead of
measuring lengths, just counts edge pixels. However, the approaches may also
be applied to explicitly given shapes.
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the other hand entails the risk of different representations for similar shapes or
images due to perceptually irrelevant additional features (e. g., noise, frames,
etc.).

Curvature-, Turning-, and Signature Functions A curve C is usually
specified by an explicit or implicit description of the points belonging to C.
However, given a reference point o on C and a reference direction v, the curve
is also completely determined by the curvature as a function of the arc-length,
as well as by the angle between the tangent and v as a function of the arc-length.
This fact has been exploited for shape recognition and similarity estimation:
For example, in [241] the curvature functions were used to derive sequences of
descriptions of discrete points, which were then compared using string matching
algorithms. In [14] some measures of dissimilarity for polygonal curves were
defined based on the turning function and arbitrary distance measures in
function space. Moreover, also other definitions of functions have been proposed
for similarity estimation. For example in [175] a so called signature function
assigning every point p on the curve the length of the part of the curve left
to the tangent in p was used. One major drawback of this approach is that
it cannot be used to distinguish between different convex shapes, since in this
case the signature functions equal 1 everywhere.

Curvature Scale Space The main idea behind shape matching based on
curvature scale space (cf. [166]) is to trace the zero-crossings of the boundaries’
curvature while the shapes are successively blurred. Let C be a closed boundary
curve given in parametric representation C(s) =

(
x(s), y(s)

)
with respect to

the arclength s, and let κ(s) be the signed curvature. The zero-crossings of κ
are the values of s such that the corresponding points on C separate convex
from concave pieces of the boundary. Applying one-dimensional Gaussian
kernels G(s, σ) with increasing standard deviation σ (scale) on C causes the
zero-crossings to move continuously, and pairs of them to meet and vanish. A
measure of shape similarity can be derived from a limited number of (s, σ)-pairs
where zero-crossings of the curvature vanish—namely the ones with largest
scale σ.

This approach is invariant with respect to asynchronous transformation under
the classes of translations, rotations, and scalings, however, it may only be
applied to pairs of single shapes. Moreover, it also suffers from the fact
that convex shapes (as the curvature does not change the sign) cannot be
distinguished between.

141



3. Estimation of Shape-Similarity

Skeletons Skeletons can be thought of as thinned versions of the shape.
Probably the most well known type of skeletons is the medial axis as introduced
in [31]. It is defined as the locus of the centers of circles that are bitangent (from
the inside) to the boundary of the curve. In association with the function that
assigns every point of the medial axis the radius of the corresponding circle, it
is called the medial axis transform which completely describes the shape. Also
other variants of skeletons have been introduced, as for instance the straight
line skeleton [4] and the closely related linear skeleton [215].

These skeletons are usually not directly used for similarity estimation of
polygonal shapes, because they are very sensitive to the occurrence of
convex vertices (see Figure 2.10 on page 84 for an example). More suitable
representations of the relevant features can be achieved by skeleton pruning
(see [18] for an overview), by determining a hierarchy on the skeleton features
(see, e. g., [176]), or by building the so called shock graph as defined in [208].

The nodes of the shock graph are pieces of the medial axis. Four types of
such pieces are distinguished: (1) maximal connected linear17 pieces where the
radii of the corresponding circles increase monotonically, (2) points where the
radius reaches a local minimum, (3) maximal connected linear pieces where
the radius is (almost) constant, and (4) points where the radius reaches a local
maximum. Starting from the vertices corresponding to local maxima of the
radius, edges are inserted directing to vertices corresponding to neighboring
pieces with smaller radius. For examples on how to derive a measure of shape
similarity based on these shock graphs see [208] and [204].

Skeleton pruning and using shock graphs reduce the dependence on the local
properties of the shapes’ boundaries. However, shapes perceived very similar
may have skeletons that also differ fundamentally (see Figure 3.2 (c), (d),
and (e) for an example) and this limits the suitability of skeleton-based
approaches especially for abstract geometric shapes.

3.3.2. Idea of the Proposed Approach

In order to be applicable in the context of perceived similarity, a similarity
measure on shape sets should be robust with respect to different representations
and groupings of the shapes (see Figure 1.11 on page 50 and Figure 2.24 on
page 110), but at the same time it should take account of the local geometry of
the shapes (see Figure 1.11). The basic idea applied here is to use a resemblance
function φ that is defined on the boundaries of the shapes and that assigns
to every boundary point belonging to one shape set S1 a value of how good

17 Here, linear means that no branch point (point where the corresponding circle
touches the boundary in more than 2 points) is included.
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it is represented by the other shape set S2. For rating how good a point
is represented, 2 perceptual factors are incorporated, namely proximity and
parallelism (that is, analogy in the courses of the boundaries). Deriving a value
of similarity from the integrals of the resemblance functions leads to measures
that are almost robust with respect to different representations, to crack, and
to noise.

3.3.3. Definition of the Similarity Measure

For a set P of polylines, let E(P) denote the union of the sets of edges of the
polylines in P. Given two sets P1 and P2 of polylines, let g be a straight line
segment from E(P1) with endpoints p0 and p0 + ~v, let h be a non-orthogonal
segment of E(P2) with endpoints q1, q2, and let g′ and h′ denote the supporting
lines of the segments g and h respectively. Furthermore, let lg be the length
of g.

The resemblance function takes two things into account, namely proximity and
analogy in slope. For evaluating the proximity, to every point of g a value
describing the distance to h is assigned as follows: For every λ ∈ IR let p(λ) :=
p0 + λ · ~v and let q(λ) be the point on h′ such that its orthogonal projection
onto g is exactly p(λ). Let furthermore λ1 be the value such that q(λ1) = q1

and λ2 be the value such that q(λ2) = q2 (without loss of generality λ1 < λ2).
Figure 3.8 shows an illustration.

A function dg,h(λ) that describes the distance18 of a point on g to the segment h
and that is—unlike the minimum Euclidean distance from p(λ) to a point of h—
piecewise linear in λ, can be defined as

dg,h(λ) :=


‖p(λ)− p(λ1)‖+ ‖p(λ1)− q1‖, 0 ≤ λ < λ1

‖p(λ)− q(λ)‖, λ1 ≤ λ ≤ λ2

‖p(λ)− p(λ2)‖+ ‖p(λ2)− q2‖, λ2 < λ ≤ 1 .

Since proximity and distance are inversely related, the values of dg,h(λ) have to
be converted (see Section 1.3.2 for general considerations). In [185] proximity
of shape boundaries was rated by an exponentially decreasing inverse distance
function. However, there it was intended to push solutions towards an exact
alignment in an optimization process. In the given context small deviations
in position should not result in an excessive decrease of the resemblance
function but instead should be tolerated. Therefore, the absolute value of
the derivative of the function converting distance to proximity should be

18 Please note that since d(λ) describes the distance between a point and a segment,
it cannot be a distance measure in the sense that it fullfills the metric properties.
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small for small values. Given a threshold dmax on the distance, a measure
of proximity that conforms to this demand can be defined as αg,h(λ) :=

max
(
1−

(
dg,h(λ)/dmax

)2
, 0
)
. Figure 3.8 shows the graph of the conversion

function.
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Figure 3.8. Distance function and proximity function:
notations used in the definition of d(λ), plus conversion function
used for the definition of α(λ) (continuous), and some exponen-
tially decreasing conversion function (dotted).

Apart from proximity, the resemblance of two line segments also depends on
their slopes. In order to take this into account, a slope factor is introduced
as βg,h := cos6

(
∠(g, h)

)
. This definition ensures that pairs of lines that look

almost parallel get high values (greater 0.9 for differences in slope less than 10◦)
and pairs with very different slope get low values (below 0.15 for differences in
slope greater than 45◦).

The resemblance function φg,P2
for a line segment g ∈ E(P1) is defined as

a combination of the proximity function and the slope factor: φg,P2
(λ) :=

maxh∈E(P2)

(
αg,h(λ)·βg,h

)
. With the given definitions of d and α, the function φ

is piecewise quadratic.

A directed measure of resemblance, rating how good the set P1 is represented
by P2 can then simply be defined as

Φ~(P1,P2) :=

∑
g∈E(P1)

(
lg ·

1∫
0

φg,P2
(λ) dλ

)
∑

g∈E(P1)

lg
.

Depending on the application at hand, several measures of similarity may be
derived from this directed measure of resemblance. For two sets Pi and Pj of
polylines, let P(i)

j be the parts of Pj that are located inside a limited region
around Pi.19
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All measures based on Φ~ will be subsumed under the name substitution
similarity. The measures used throughout this work are defined as follows:

• The symmetric complete-complete measure
Φcc(P1,P2) := 0.5 ·

(
Φ~(P1,P2) + Φ~(P2,P1)

)
may be used to rate how similar 2 sets of shapes are as a whole.

• The complete-partial measure
Φcp(P1,P2) := 0.5 ·

(
Φ~(P1,P2) + Φ~(P(1)

2 ,P1)
)

may be used to rate how similar the set P1 is to a part of P2, totally
ignoring additional parts of P2.

• The complete-semi-partial measure
Φcs(P1,P2) := 0.25 ·

(
2 · Φ~(P1,P2) + Φ~(P2,P1) + Φ~(P(1)

2 ,P1)
)

may be used to rate how similar the set P1 is to a part of P2, however,
not totally ignoring additional parts of P2.

Furthermore, from these similarity measures corresponding dissimilarity mea-
sures may be derived. However, in general they will not fulfill the triangle
inequality.

3.3.4. Computation of the Similarity Measure

Algorithm 3.4 is a straight forward implementation for computing Φ~(P1,P2).

Algorithm 3.4:

φsum ← 0 /*the integral*/, lsum ← 0 /*the length*/

forall the g ∈ E(P1) do
forall the h ∈ E(P2) do

compute φg,h
end
φg,P2 ← upper envelope of φg,h1 , . . . , φg,hm

φsum ← φsum + lg ·
∫
φg,P2

, lsum ← lsum + lg
end
return φsum/lsum

Since the resemblance function is piecewise quadratic, it can easily be
represented by lists of 4-tuples (3 coefficients, 1 boundary). The integrals for
every such piece may be computed directly.

19 Here, P(i)
j is defined based on the bounding box of Pi: Let Bi be the smallest

axis aligned rectangle containing Pi and let B′i be the rectangle obtained from
enlarging Bi by the factor 1.2, then P(i)

j := Pj ∩B′i.

145



3. Estimation of Shape-Similarity

3.3.5. Analysis

Let n be the number of edges in E(P1), and m be the number of edges in E(P2).
For a given segment g ∈ E(P1) every φg,h consits of at most 3 non-zero
quadratic pieces. Therefore φg,P2

is the upper envelope of at most 3m+1 pieces,
each pair of them (unless equal) intersecting at most twice. According to the
upper bound on the length of Davenport-Schinzel sequences the complexity of
the upper envelope of these 3m+ 1 pieces is bounded by O

(
m · 2α(m)

)
with α

being the inverse Ackermann function [1]. Using a divide and conquer algorithm
this upper envelope can be computed in time O

(
m ·α(m) · log(m)

)
[108]. Every

piece can be constructed and integrated in constant time, the overall running
time of the algorithm therefore is in O

(
n ·m · α(m) · log(m)

)
.

This analysis does not make use of the fact that the distances are derived from
line segments in the plane. However, please note that due to the influence of
the slope, two-dimensional Voronoi-diagrams may not be used to determine the
segment yielding the best resemblance value for a point p. Figure 3.9 shows an
example where the total complexity of the upper envelopes is in fact quadratic
in the number of segments.

n

{
P1· · ·

...

n

{
P2· · ·

... Figure 3.9. Quadratic complexity
of upper envelope: scopes of the end
points (gray) and of the interiors
alternate Ω(n) times.

3.3.6. Properties

Let δcc := 1 − Φcc be the measure of dissimilarity derived from Φcc. δcc is
normalized and it is a semimetric (in other words, it fulfills the properties
non-negativity, small self-distance, isolation, and symmetry). However, it does
not fulfill the triangle inequality. δcc is invariant with respect to synchronous
transformation under the classes of translations, rotations, reflections, and—
if dmax is chosen relative to the geometric extent of the input—also scalings.

With respect to the formal definitions of robustness, δcc is crack robust, but
not deformation, blur, and noise robust (see Figure 3.10). However, in practice
reasonable deformations and noise will only cause small changes of the results.
Moreover, violations of the noise robustness can only decrease but not increase
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3.3. Similarity Estimation

the dissimilarity value. This means that the addition of noise will not cause
similar sets of shape to become dissimilar. δcc is distributive, but not monotone
and with respect to the formal definition it is also not sensitive.

2µ

2µ dmax

(a) (b)

Figure 3.10. Counterexamples for deformation- and noise robustness:
(a) deformation of a straight line segment that, when com-
paring to a straight line segment, causes a difference of δcc

which is greater than 0.85, (b) “noise” that, when comparing
to a straight line segment, causes a difference of δcc which is
greater than 0.125.

Applying δcc to the contours detected in figurative images yields a measure of
dissimilarity on these images which is invariant with respect to changes of the
colors (as long as they are distinct), in particular to an inversion of black and
white. Moreover, also figurative images depicting shapes in different ways (by
regions or by outlines) can be compared adequately.
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3.4. Evaluation

In order to demonstrate its applicability to a broad range of problems, the
substitution similarity has been tested on three very different sets of data: a
set of Chinese characters, the MPEG 7 data set (see Section 1.6.2.1), and the
UK trademarks set (see Section 1.6.2.2).

Chinese Characters In [50], several distance measures for geometric graphs
were tested on a set of Chinese glyphs, namely 4 176 abstract Chinese characters
each one written in 6 different fonts. From each glyph a graph essentially
representing the basic strokes was extracted by simplifying its medial axis.
One font was used as reference and each of the remaining 5× 4 176 graphs was
queried for: The distance of each of the 4 176 reference graphs to the query
graph was computed and the rank of the graph belonging to the same abstract
Chinese character as the query graph was determined—a rank of 1 means that
the query glyph has correctly been identified. The results for the distance
measure that performed best (the landmark distance) are listed in Table 3.1.

For evaluating the substitution similarity the same experiment20 was carried
out: Every pair of graphs under consideration was aligned according to the
bounding boxes and then the substitution similarity Φcc was applied to the
edges of the graphs. In more than 97 % of the cases, the query glyph has
correctly been identified. The detailed results are listed in Table 3.1.

rank

1 2 10 20 200

landmark distance 85.3 91.5 97.2 98.1 99.2

substitution similarity 97.6 99.1 99.8 99.9 99.921

Table 3.1. Performance of substitution similarity and of landmark distance
on Chinese characters: percentage of items for which correct
reference glyph had specified or better rank.

20 The set provided by the authors actually consists of 4 178 characters in 6 fonts.

21 Value rounded down. Only a single item had a higher rank (actually 394).
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MPEG 7 As a benchmark test for shape descriptors and the corresponding
(dis-)similarity measures the MPEG 7 data set has been used to test and
compare the performance of a wide variety of approaches. Usually, each image
is queried for in the set of all 1 400 images—including itself. In the resulting
ranking the number of relevant items (images from same class) in a prefix of
predefined length is determined. The effectiveness of an approach is often rated
in terms of the so called bulls-eye performance, which is the overall percentage
of relevant items that have been found within the prefixes of double the class
size (prefix of length 40 in this case).

Table 3.2 shows results reported in [143] and [19] for some selected approaches:
CSS, the contour based curvature scale space (see Section 3.3.1 page 141); CA,
curve alignment via computing an edit distance as presented in [205]; ZM, the
pixel based Zernike moments (see Section 3.3.1 page 139); SC, a skeleton based
approach presented in [249]; ST, a hierarchical representation of the contour
as presented in [81]. For a more comprehensive list see [19].

Among the approaches ranking images based on comparisons of the query
image to each database image only, the best result (known to the author of
the present work) was achieved with the hierarchical representation of the
contour (ST). However, using also information about the (dis-)similarities
between the database images themselves, in [19] even a bulls-eye percentage
of 91.6 was achieved.

For evaluating the substitution similarity, as a preprocessing from every image
the shape was extracted and simplified (for images containing more than one
contour, the longest polyline was chosen). Then, for every pair (Pq, Pi) of
polylines under consideration, from the class of similarity transformations
(including transformations with reflections) a set T = {t1, t2, . . .} of candidate
transformations mapping Pq onto Pi was computed and the similarity was
estimated as σm = maxt∈T

{
Φcc
(
t(Pq), Pi

)}
.22 Based on the derived ranking,

the number of relevant items in the prefixes of length 40 was determined.
Table 3.2 shows the results.

CSS CA ZM SC ST SS

75.4 78.2 70.2 79.9 87.7 84.4

Table 3.2. Performance of substitution similarity (SS) and of some other
approaches on the MPEG 7 data set, measured by the bulls-eye
percentage.

22 For details on the generation of candidate transformations see Section 4.3
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UK Trademarks Finally, the substitution similarity was tested on the UK trade-
marks set. As a preprocessing, from each image the set of relevant shapes was
extracted as described in Section 4.2. Then, for each of the 24 query images the
set of 10 745 images was queried in the following way: For every pair (Pq,Pi)
of sets of polylines under consideration, from the class of similarity transfor-
mations (including transformations with reflections) a set T = {t1, t2, . . .}
of candidate transformations mapping Pq onto Pi was computed and the
similarity was estimated as σm = maxt∈T

{
Φcs
(
t(Pq),Pi

)}
.22 The derived

ranking was rated with respect to the relevant items (the ground truth list).
Table 3.3 shows the results achieved by the substitution similarity, as well as by
the ARTISAN retrieval system [72, 74] (the individual results for each query
image are listed in Table A.1 in the Appendix).

Rn Pn Ln

ARTISAN 0.94 0.70 0.72

substitution similarity 0.95 0.75 0.74

Table 3.3. Performance of substitution similarity and of the ARTISAN
retrieval system on UK trademarks set: normalized recall Rn,
normalized precision Pn, and normalized last place Ln averaged
over the 24 queries.

Conclusion Various experiments have shown that the substitution similar-
ity—in combination with the proposed algorithm for mapping—is applicable
to a broad range of problems: it outperforms other approaches in the retrieval
of Chinese characters and it yields reasonable results on the MPEG 7 data
set although it is not specifically dedicated and restricted to the comparison
of single shapes. Moreover it yields results that are even better than the ones
achieved by the ARTISAN retrieval system on trademark images.

However, apart from the good results achieved, there are some cases—especially
among the trademark images—that are problematic for this approach:

frames If the important part of a trademark image is surrounded by some kind
of a simple frame, most humans do not pay much attention to that frame.
The similarity measure however is influenced by it, because the frames
naturally are larger than the part contained in it.

spatially independent parts Comparing two images that consist of two or more
spatially independent parts and the corresponding parts are similar but
arranged in slightly different ways, most humans do not observe the
differences. However, it may be that there is no affine map aligning
all parts properly at the same time.
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3.4. Evaluation

In Section 4.4 a framework that is specifically dedicated to the retrieval of
trademark images is presented. It overcomes these limitations by partitioning
the images and applying the substitution similarity to the individual parts then.
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CHAPTER 4

A Framework for Automated
Trademark Image Retrieval

In this chapter a framework for content-based image retrieval is presented. The
framework incorporates the algorithms presented in Chapters 2 and 3, as well
as an approach specifically dedicated to the comparison of trademark images.

Due to the the challenges described in Section 1.2.5 on the one hand, and
the demands on trademark image retrieval described in Section 1.4.3 on
the other hand, commercially offering services such as trademark search
and trademark watch that rely on fully automated retrieval systems only,
seems far out of sight—there is always the risk that some images cannot
be recognized properly. However, automated systems may of course support
human trademark examiners, for example by identifying and processing the
easy cases.

The framework described in the following can be used in two ways: First,
images which cannot reliably be identified as easy cases may be sorted out
and handed over to manual inspection, which is recommendable in business
applications. Second, all images may be processed automatically, which is
the usual modus operandi in research in order to be able to compare the
performance of different approaches.
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4.1. Related Work

The growing need for solutions to content-based image retrieval has induced
extensive research. QBIC (Query By Image Content), one of the first systems
reaching broad publicity, was presented in 1993 (cf. [171], see also [78, 86]).
Not even ten years later in [232] already 58 systems were listed. However, most
of these systems focus on photographic images rather than figurative images
and do not meet the demands of trademark image retrieval.

Approaches for Content-Based Trademark Image Retrieval There is a huge
number of approaches that have been proposed for trademark image retrieval.
For many of them it is easy to construct examples where they fail to conform
to perceived similarity:

On the one hand, approaches considering individual shapes may fail when
perceptually irrelevant differences in the topology lead to combinatorially
relevant differences in the extraction of shapes. On the other hand, approaches
considering every image as a whole may fail when frames are added or the
background color is changed. On the one hand, approaches that do not
consider changes in position, scale or orientation may fail when position,
scale or orientation do change. On the other hand, approaches that rely on
normalizing the images with respect to position, scale or orientation may fail if
this normalization is affected by noise, frames or even perceptually irrelevant
changes of the shapes. Approaches based on pixel intensities like using moments
or histograms reflecting the spatial distribution of black and white pixels, e. g.,
may fail when images differ in the way of depicting the shapes (region vs.
outline).

In order to reduce the impact of single failures, different approaches are
often combined. Since there are no theoretical proofs for the applicability
to trademark image retrieval, the effectiveness of the (combined) approaches
has to be evaluated in experiments. However, there is no set of trademark
images plus ground truth (query images and information about relevant images)
that has been widely accepted and used for the experimental evaluation of
the approaches. Therefore, an objective comparison of the effectiveness is not
possible (see also [73] for a discussion). In addition, insufficient documentation
of the used datasets often make an assessment of the published results
impossible.

In the following, some publications dealing with content-based trademark image
retrieval are shortly presented in almost chronological order.

In [57] the contours of the shapes in each image are represented by strings over
a finite alphabet and images are compared using string matching techniques.
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Experiments on trademark images have been carried out, but no representative
results have been published.

In [245] a System for Trademark Archival and Retrieval named STAR was
presented. Within this system, the shapes depicted in the images are semi-
automatically extracted and each image is represented by Fourier descriptors,
moment invariants, and gray level projections of the depicted shapes. Apart
from annotation based retrieval, images are compared based on the individual
shapes. Experiments on a set of 3 000 and on a set of 500 trademark images
have been carried out, but no representative results have been published.

In [227] and [127] each image is represented by an edge direction histogram,
by moment invariants, and by the contours extracted from the image. After
pruning based on the comparison of the edge direction histograms and the
moment invariants, two images are compared according to some kind of
transformational model, namely by essentially determining the costs (energy)
needed to deform the first image’s edges such that they match the second
image’s edges. The published experimental results on a set of 1 100 trademark
images hardly allow to assess the effectiveness of the approach, because
neither the ground truth sets nor comprehensive performance indicators for
the rankings have been published.

In [181] from each image the essential closed contours are extracted based
on the boundaries between black and white pixels, and these contours are
represented by strings over a finite alphabet coding the angles between
consecutive edges. Two images are compared based on similarity values for
the individual boundary strings. The published experimental results on a
set of 250 trademark images hardly allow to assess the effectiveness of the
approach, because they are essentially based on retrieving artificial variations
of an original trademark, but no additional ground truth was used.

In [133] and [134] for the comparison, each image is represented by Zernike and
pseudo Zernike moments based on the pixel intensities. Experiments that have
been carried out on a set of 3 000 trademark images give the impression that
the approach only retrieves images with a similar global appearance, however,
not distinguishing between frames and content.

In [191] apart from annotation based retrieval, images are compared using
histograms based essentially on the derivatives of pixel intensities. Although
experiments were carried out on a set of 63 718 trademark images, the published
results hardly allow to assess the effectiveness of the approach, because
apparently, no ground truth sets were available.

In [11] based on the edges detected in an image, shapes are extracted. Two
images are compared based on the shapes using neural networks. The published
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experimental results on a set of 1 000 trademark images do not allow to assess
the effectiveness of the approach, because no images other than the query
images have been published.

In [52] and [53] for comparison, each image is represented by an edge direction
histogram, by moment invariants and by information derived from a wavelet
transformation. Comparison results are adapted by a relevance feedback
mechanism. Experiments have been carried out using the same 1 100 trademark
images as in [127]. However, the published results hardly allow to assess the
effectiveness of the approach, because the ground truth sets were compiled by
the authors and have not been published at all.

In [47] after normalizing with respect to translation and rotation, two images
are compared based on a two-dimensional pseudo hidden Markov model. The
published experimental results on a set of 401 trademark images hardly allow
to assess the effectiveness of the approach, because they are essentially based on
retrieving artificial variations of original trademarks, but no additional ground
truth was used.

In [207] the shapes depicted in the images are semiautomatically extracted and
each image is represented by feature vectors—one for each shape—containing
moments, information essentially about the distances of the boundary points
to the center, and an edge direction histogram. Based on these feature vectors
single shapes instead of images are compared. In experiments the approach
was used to retrieve deformed versions of shapes extracted from trademarks,
and was tested on the MPEG-7 core experiment CE-Shape-1 set (including the
part B set used in the present work). However, the published results do not
allow to assess the applicability of the approach to trademark image retrieval.

In [250] for the comparison, after normalizing with respect to translation
and scale, each image is represented by a vector of statistical measures plus
representations of the contours by strings over a fixed alphabet. The published
experimental results on a set of 1 000 trademark images hardly allow to assess
the effectiveness of the approach, because apparently, the ground truth sets
were not compiled properly and have not been published.

In [149] from the shapes (connected black regions) in the images either their
outlines or their skeletons are extracted. For each shape a degree of being one of
the types straight line segment, circle, polygon, or undesignated is determined.
Two images are compared based on shape-type-depending similarity values of
the individual shapes and on the spatial layout. The published experimental
results on a set of close to 2 000 trademark images hardly allow to assess the
effectiveness of the approach, because apparently, they are essentially based on
retrieving artificial variations of original trademarks and no ground truth sets
have been published.

156



4.1. Related Work

In [24] from each image a finite set of contour points (possibly with uniform
spacing) is sampled and for each such point a histogram reflecting the spatial
distribution of the other points is determined. For comparing two images,
a transformation mapping one image onto the other is computed based on
matching the histograms. The similarity of two aligned images is then
estimated based on the histograms, based on the differences in brightness
between matched points, or based on properties of the mapping transformation.
The published experimental results on a set of 300 trademark images hardly
allow to assess the effectiveness of the approach, because apparently, no ground
truth sets were available.

In [153] for the comparison, after normalizing with respect to translation,
rotation, and scale, each image is represented by a two-dimensional histogram
reflecting essentially the spatial distribution of black or white pixels in polar
coordinates. The published experimental results on a set of more than
1 000 trademark images hardly allow to assess the effectiveness of the approach,
because apparently, they are essentially based on retrieving artificial variations
of original trademarks and no ground truth sets have been published.

In [130] each image is represented by Zernike moments based on the pixel
intensities and by a set of geometric primitives (circles, rectangles, triangles,
circular arcs, straight line segments) extracted from the edges detected in the
image. Two images are compared based on the moments, based on edge
direction histograms, and based on the individual primitives. The approach
has been tested on a set of 3 000 trademark images with manually compiled
queries and has been compared with the approach presented in [24]. However,
the published results hardly allow to assess the effectiveness of the approach,
because apparently, the ground truth sets were compiled by the authors and
have not been published at all.

In [182] the content of each image is represented by moment invariants
and two histograms, one reflecting pixel intensities and the other reflecting
essentially the spatial distribution of inhomogeneity. Two images are compared
based on these representations of the content as well as based on additional
textual information. Comparison results are adapted by relevance feedback
mechanisms. Experiments focussing on the performance of different relevance
feedback mechanisms have been carried out on a set of more than 250 000
trademark images and logos collected from the web. However, with respect to
content-based image retrieval no representative results have been published.

In [41] for the comparison, each image is represented by size functions computed
based on (binary) pixel intensities. The approach has been tested on the same
dataset (UK trademarks set) that was used in the present work. The published
results, however, are not competitive.
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In [252] for the comparison, after normalization with respect to translation,
rotation and scaling, each image is represented by moment invariants and
by a histogram reflecting the spatial distribution of black and white pixels.
The published experimental results on a set of 1 000 trademark images hardly
allow to assess the effectiveness of the approach, because apparently they are
essentially based on retrieving artificial variations of original trademarks and
no ground truth sets have been published.

In [49] for the comparison, after normalizing with respect to translation (and
supposedly to rotation), each image is represented by a histogram essentially
reflecting the spatial distribution of black and white pixels. The published
experimental results on a set of more than 2 000 trademark images hardly allow
to assess the effectiveness of the approach, because apparently, no ground truth
sets were available.

In [152] for the comparison, after normalization with respect to translation
and scale, each image is subdivided into concentric annuli each of which is
represented by Zernike moments. The published experimental results on a
set of 1 000 trademark images hardly allow to assess the effectiveness of the
approach, because no information about the ground truth is given.

In [114] for the comparison, after normalizing with respect to translation, scale,
and rotation, each image is represented by a histogram reflecting the spatial
distribution of black and white pixels, and a histogram based on angles in
a triangulation of boundary corner points. The approach was tested on the
MPEG 7 data set (which was also used in the present work), and on a manually
compiled set of trademark images. However, the published results on the set
of trademark images hardly allow to assess the effectiveness of the approach,
because apparently, the ground truth sets were not compiled properly and have
not been published.

In [129] for the comparison, each image is represented by wavelet based features
that essentially capture information about edge directions. The published
experimental results on a set of manually collected trademark images hardly
allow to assess the effectiveness of the approach, because apparently, no ground
truth sets were available.

In [132] for the comparison, after normalizing with respect to translation, scale,
and rotation, each image is represented by edge direction histograms and by
Zernike moments. Apparently, the approach was not tested on any set of
trademark images at all.

In [234] for comparison each image is represented by moment invariants and
by a color histogram. Experiments were carried out on some (apparently bi-
level black-and-white) trademark images, but no representative results were
published.
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In [238] the images are normalized with respect to translation and scale, and
the contours are extracted. For the comparison, each image is represented by
Zernike moments, by the variance of curvature, and by a histogram on the
boundary to centroid distances. The published experimental results on a set of
1 003 trademark images hardly allow to assess the effectiveness of the approach,
because apparently, the ground truth sets were compiled by the authors and
have not been published.

In [186] the contours in the images are extracted and for the comparison each
image is represented by a histogram on the boundary to centroid distances,
and a histogram based on circumcircles in a triangulation of boundary points.
Experiments have been carried out on the MPEG 7 data set, but apparently
not on trademark images.

The ARTISAN Project ARTISAN (Automatic Retrieval of Trademark
Images by Shape ANalysis) was a project with the goal to develop and evaluate
a system for automated trademark image retrieval [71] (see also [72, 73, 74]).
The ARTISAN system is “regarded as one of the most comprehensive trademark
retrieval system in the current literature” [130] because of the sophisticated
extraction of perceptually relevant shapes and the elaborate evaluation of the
effectiveness of different approaches to measure similarity.

From the boundaries detected in the images (at different levels of blurring),
perceptually relevant image elements are extracted by grouping the boundaries
according to rules based on Gestalt psychology. Two images can be compared
based on shape features for the entire image as a whole, for each image element,
and for each individual boundary. The shape features considered include
statistical measures, Fourier descriptors, moment invariants, angular radial
transform (ART) coefficients, and a curvature scale space representation. In
addition, several distance measures can be chosen.

The effectiveness of the different approaches has been tested on the same
dataset—the UK trademarks set (see Section 1.6.2.2)—that was used in the
present work. For a comparison of the performances of the ARTISAN retrieval
system and the retrieval system proposed in the present work see Table 4.1 on
page 169.
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4. A Framework for Automated Trademark Image Retrieval

4.2. Extraction of Shapes

Within this framework, the extraction of the perceptually relevant shapes in
figurative images is organized as a pipeline (see Figure 4.1 for an illustration):
images are vectorized by discretizing the colors and detecting boundaries of
the resulting regions. Then textured regions are identified and broken lines are
reconstructed. Then noise is deleted, polylines are simplified and redundant
shapes are deleted.

input

pixel
image

vectorization

discret.
of colors

boundary
detection

merging

texture lines

simplification

noisepolylinesredundant
shapes

output

set of
polylines

Figure 4.1. Segmentation pipeline

In order to make the process of extracting the shapes in an image independent
from the resolution of the actual pixel image, respective values are computed
relative to the size of the image. For trademark images the smaller of
the two side lengths seems to be more relevant. However, for images with
extremely large (or extremely small) aspect ratio this might give unwanted
results. Therefore, in the following the size of an image I is defined as
s(I) := max

(
min(w, h), 0.25 ·max(w, h)

)
with w being the width and h being

the height of the image in pixels.

4.2.1. Vectorization

The vectorization is carried out as described in Section 2.2. A set of
suitable values for the parameters described there is given in the Appendix
(Section B.1). An image classified as bi-level black-and-white based on its
color histogram is segmented by thresholding. All other images run through
the extensive segmentation.

In order to be classified as reliably being correct, a segmented image has to fulfill
two properties: First, for any pixel the difference between its original color and
its newly assigned color has to be small. Second, any edge between regions
of different colors in the segmented image has to be near a large difference
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4.2. Extraction of Shapes

of original colors. Therefore, with a Sobel operator (see [69, pp 271–272])
edges are detected based on the gradients,1 and the consilience with the edges
resulting from the actual segmentation is checked.2 If both conditions are
fulfilled—the discrepancy between colors is small and edges from different
approaches do correspond—then the image is classified as reliably being
correctly segmented.

4.2.2. Merging

Texture Regions of high complexity which may result from texture as well
as from detailed drawings are detected as described in Section 2.3.1. A set
of suitable values for the parameters described there is given in the Appendix
(Section B.1). If regions of high complexity have been detected, the image is
classified as possibly not correctly represented.

However, in order to allow for a completely automated extraction of shapes
also, the essentially perceived shapes inside the regions of high complexity
should be extracted as well. This is tried using the same approach as for
the detection—with different parameters (see Section B.1) that allow for an
analysis more sensitive to details—applied only to the regions detected in the
first stage. Let Rt be the set of pixels classified as belonging to a textured
region in the second stage. Every originally detected shape with most of its
boundary (the threshold is actually set to 90 %) covered by Rt, is deleted. In
return, the shapes extracted from Rt are added.

Broken Lines As a preparation for the detection of line shapes, for every shape
in the image its max L∞-skeleton (as defined in Section 2.3.2) is computed.
Let Ss be the set of thin shapes—meaning that the maximum radius of an
L∞-ball is smaller than a threshold which is actually set to 1/40 · s(I). Let
furthermore Ps be the set of skeleton points of these shapes. From this set of
points a set Sl of line shapes is constructed as described in Section 2.3.2. A set
of suitable values for the parameters described there is given in the Appendix
(Section B.1). Every originally detected shape with most of its skeleton points
contained in a line shape of Sl, is deleted. In return, the shapes in Sl are added.

1 For each of the three dimensions of the RGB color space, edges are detected
independently and then are accumulated.

2 Please note that edge detection with the Sobel operator is not assumed to be reliable
in any case, but that it is assumed to confirm the other method for the easy cases.
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4. A Framework for Automated Trademark Image Retrieval

4.2.3. Simplification

Deletion of Noise Small isolated shapes are identified and deleted as
described in Section 2.4.2. The threshold θs on the diameter of a shape is
set to the maximum of s(I)/100 and d75/1.5 with d75 being the diameter
of the 75th-biggest shape in the Image. The threshold θd(S1, S2) on the
distance between two shapes S1 and S2 is set to 3 · min

(
diam(S1),diam(S2)

)
with diam(×) being the diameter. The threshold θc on the diameter of a cluster
is set to s(I)/40.

Polyline Simplification The polylines representing the shapes are simplified
using the adaptive coarsening plus corner simplification as described in
Section 2.4.1 page 103. A set of suitable values for the parameters used within
the algorithm is given in the Appendix (Section B.1).

Given a polyline P in an image I, the error threshold ∆max for the polyline
simplification is basically chosen depending on the image size s(I). However,
to prevent distorting small shapes and small features too much, a factor fs ≤ 1
considering the relative size, and a factor fl ≤ 1 considering the expected
richness of detail is introduced. Let d(P ) be the maximum extent of P in x or
in y direction, then fs :=

(
1− d(P )/s(I)

)
· 0.2 + d(P )/s(I) · 1 restricted to the

range [0, 1]. Let furthermore l(P ) be the length of P , then fl := 4 · d(P )/l(P )
restricted to the range [0.25, 1]. Finally, the error threshold ∆max is determined
as the minimum of 0.01 · s(I) · fs · fl and 0.25 · d(P ). With these values, for
instance the depiction of a circle is represented by a polygon with 18 edges if
its diameter is 1/2 times the image size, 14 edges if its diameter is 1/8 times
the image size, and 8 edges if its diameter is 1/32 times the image size.

Deletion of Redundant Shapes Shapes subordinate to bigger shapes are
identified and deleted as described in Section 2.4.2. The threshold θn on
the distance of the boundary of a—potentially—subordinate shape S to the
boundary of the shape R that it might be subordinate to, depends on the the
size of the shape R. It is set to be the minimum of s(I)/50 and d(R)/20 with
d(R) being the maximum extent of R in x or in y direction.

4.3. Similarity Estimation based on Mapping

In order to build a general purpose retrieval system for figurative images, the
polyline sets obtained from the extraction pipeline described in Section 4.2
are directly used as input for the estimation of similarity based on mapping

162



4.3. Similarity Estimation based on Mapping

and the substitution similarity according to Sections 3.2.2 and 3.3.3. A set
of suitable values for the parameters described there is given in the Appendix
(Section B.2).

Given two sets P1 and P2 of polylines, from the class of similarity transfor-
mations (including transformations with reflections) a set T = {t1, t2, . . .} of
candidate transformations mapping P1 onto P2 is computed and the similarity
is estimated as σm = maxt∈T

{
Φcs
(
t(P1),P2

)}
.

For determining similarity transformations, the number of votes is set to
250 · max(n1, n2) with n1 = |V (P1)| and n2 = |V (P2)| being the numbers of
vertices of the two shape sets. Although the number of vertex pairs is n1 · n2,
informally speaking, for a pair of polylines (Pi, Pj) from P1 × P2 that is
sufficiently similar, there are min(|Pi|, |Pj |) pairs that may lead to the same
augmented sample. In the experiments performed on the MPEG 7 data set
and on the UK trademarks set the chosen number of votes proved to be high
enough to yield reasonably good results (see Section 3.4).

In order to obviate the evaluation of spurious transformations, the number of
candidates in T has to be bounded: For ωmax being the maximum cluster
weight, only clusters with weight greater than 0.1 · ωmax and rank smaller or
equal to 50 are considered. Of course, there is no guarantee that no promissing
transformation gets excluded by that. However, on average for relevant images3

the best transformation is among the first 50 clusters in 72% of the cases,
and the increase of the similarity value achieved by considering more than
50 clusters is below 5 % in 92 % of the cases. For relevant images that are in
fact similar with respect to the substitution similarity (maximum value of at
least 0.8) the best transformation is among the first 50 clusters even in 86 %
of the cases, and the possible increase is below 5 % in 98 % of the cases. This
also indicates that the algorithm for finding candidate transformations and the
substitution similarity do fairly well harmonize.

Although the definition of the substitution similarity is not specifically dedi-
cated to the retrieval of trademark images, the results achieved in experiments
on the UK trademarks set (see Section 1.6.2.2) are better than the ones achieved
by the ARTISAN retrieval system [72, 74] (see Table 4.1 on page 169 for the
average values and Table A.1 on page 175 for the individual results for each
query image).

3 For the UK trademarks set every query image was compared to the respective
relevant images 50 times. For the MPEG 7 data set every image was compared
to the 20 images from the same class. In both cases the first 500 candidate
transformations were evaluated.
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4. A Framework for Automated Trademark Image Retrieval

4.4. Similarity Evaluation based on Image
Primitives

In order to build a retrieval system specialized on trademark images, further
domain knowledge on figurative images, particularly on trademark images, is
exploited for the estimation of similarity:

• Trademark images may be perceived as being virtually the same when
they contain the same basic shapes, just with different gaps inbetween.
Moreover, trademark images may also be perceived to be similar because
they contain the same basic shapes, even when the spatial arrangement
and/or the relative sizes of the shapes are different.

• Trademark images may be perceived as being virtually the same,
regardless of the existence or the shape of frames (see Section 1.2.3,
page 28).

• Trademark images may be perceived to be similar because they contain
the same arrangements of shapes, even when the shapes are different
(see [148]).

• In trademark images, basic geometric figures such as triangles, rectangles,
circles, etc. are identified and may lead to the perception of similarity even
if they are slightly distorted, incomplete, or composed of several parts.

Figure 4.2 shows examples of trademark images illustrating some of the
statements above: the images in the top row are query images from the UK
trademarks set (see Section 1.6.2.2), the images in the bottom row are relevant
(similar) images with (a) a different arrangement, (b) an additional frame,
(c) composed figures, (d) a different number of copies, and (e) different relative
sizes.

4.4.1. Idea of the Proposed Approach

The idea is to decompose the trademark images into their basic perceptual
units (as has also been recommended by the ARTISAN project [74]), to identify
frequently used geometric figures, and to determine the relationships between
the units within each image. Images may then be compared based on such a
representation by comparing individual units and corresponding relationships
and to derive an overall similarity value from the individual results. However,
since the extraction of high level features is generally not robust and may lead
to different representations of similar images, the estimation of similarity based
on the decompositions is backed by the similarity estimation based on mapping
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4.4. Similarity Evaluation based on Image Primitives

(a) (b) (c) (d) (e)

Figure 4.2. Similar trademarks that pose a challenge to straightforward
application of standard (dis-)similarity measures.

as described in Section 4.3. In the following, the main ideas of the approach
are described, while minutiae of the implementation are given in the Appendix
(Section B.3).

4.4.2. Basic Perceptual Units and Relationships

According to the recognition-by-components theory, humans recognize three-
dimensional objects based on partitioning them into simple components and
identifying basic primitives, called geons, plus their relationships [28]. There
is also a huge literature on describing two-dimensional scenes based on image
primitives and their relationships (see, e. g., [177] and [90]). Using a finite
alphabet of symbols describing primitives and relationships, a shape or an
image is then described by a string over this alphabet. In order to get small
alphabets that are still capable of describing arbitrary shapes the primitives are
usually chosen to be very simple, e. g., straight line segments or circular arcs.
Forming representations of shapes that are suitable for similarity estimation
from these simple primitives, however, is very challenging (see [177] for a
discussion).

As opposed to approaches using such restricted alphabets, the target pursued
here is to allow arbitrary units that are perceptually relevant. These
units might be spatially independent shapes (or sets of shapes), as well
as salient geometric figures. Analyzing a collection of 1 762 395 trademark
images showed that the most frequently occurring two-dimensional figures are
rectangles (in 23 % of the images), circles (15 %), irregular quadrilaterals (12 %),
ellipses (9 %), squares (8 %), and triangles (≥ 4 %).4

4 Counted based on the assigned Vienna codes. Results were kindly provided by
Aktor Knowledge Technology.
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4. A Framework for Automated Trademark Image Retrieval

In the following an instantiation of a primitive will be called figure. The image
primitives considered here are:

• rectangles (as a generalization of squares)

• ellipses (as a generalization of circles)

• triangles

• arbitrary convex polygons

• arbitrary sets of polylines

When a shape is depicted by its outline, the extraction of shapes from the
image may result in two equidistant polylines rather than a single one. Since
line thickness is subject to the designing of figurative images, the distance
between these two polylines may take an almost arbitrary value. Therefore—
analogously to concentric circles—‘concentric’ ellipses, rectangles, triangles,
and convex polygons respectively, are conflated to a single figure with multiple
layers.

For a pair (Fi, Fj) of figures the relationship Ri,j stores information about

• the size of Fj relative to Fi

• the relative distance between Fi and Fj

• whether Fi and Fj are similar (with respect to substitution similarity)
under translations, rotations (actually under rigid motions) and under
reflections, respectively.

4.4.3. Extraction of Figures

Given a set P of polylines representing the shapes in a figurative image, a set F
of figures is extracted as described in the following. Based on the minimum
distance between points on the polylines, and a threshold on this distance, the
polylines from P are grouped according to a single linkage clustering.5 Let C
be the cluster with largest perimeter of the convex hull of its elements. Four
different options are considered:

1. Introducing a figure representing the convex hull of the polylines in C.
Possible types of figures are rectangle, ellipse, triangle, and convex
polygon.

5 Let G = (P, E) be the graph that has the set of polylines under consideration
as vertex set, and an edge for each two polylines with minimum distance smaller
than the threshold, or formally E =

{
{P1, P2} | ∃p1 ∈ P1, p2 ∈ P2 such that ‖p1 −

p2‖ < θd
}

for θd being the threshold on the distance. The single linkage clusters
correspond to the connected components in G.

166



4.4. Similarity Evaluation based on Image Primitives

2. Introducing a figure for a perceptually relevant geometric primitive that
has been detected at an arbitrary position. Possible types of figures are
square, circle, or equilateral triangle.

3. Introducing an individual figure for each polyline in C. Possible types
of figures are rectangle, ellipse, triangle, convex polygon, and arbitrary
polyline.

4. Introducing a single figure representing the whole cluster.

The option that is supposed to lead to the most appropriate decomposition of
the image is chosen and the respective figures are added to F . The polylines
belonging to C are removed from P, and in the first two cases, the parts of
the polylines belonging to C but not properly represented by the figure are
added to P again. This process is repeated until P is empty. Finally, for every
pair (Fi, Fj) ∈ F × F with i 6= j a relationship Ri,j is created. Figure 4.3
shows some examples of trademark images and their representations by image
primitives.

(a) (b) (c) (d) (e)

Figure 4.3. Representation by image primitives:
(a), (b) images for which introducing a figure representing the
convex hull was rated best in the first step, (c) image for which
introducing a figure for a geometric primitive at an arbitrary
position was rated best in the first step, (d) image for which the
representation by 4 individual figures was rated best, (e) image
for which the representation by a single set of shapes was rated
best.

The threshold on the distance in the clustering, as well as the valuation of the
different options are adapted in such a way that the number of figures in F does
not exceed a certain threshold—in the current implementation this threshold
is set to 8. On the one hand, an arbitrary large number of figures would lead
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to unfeasible effort during the comparison of images (see Section 4.4.4), on
the other hand, in a figurative image the number of distinct entities that are
perceptually relevant may not be arbitrarily large.

Every figure and every relationship gets a weight that shall reflect the
perceptual importance. The weight ω(F ) of a figure F depends on its size
(the greater diameter and length, the more important), on whether it might be
a frame (frames are less important), and on whether it is a translated copy of
another figure (copies are less important). The weight ω(R) of a relationship R
depends on the weight of the two figures it relates and on the relative distance
between the two figures (the farther apart two figures, the less important the
relationship between them).

4.4.4. Comparison of Images

Let I1 = (F1,R1) and I2 = (F2,R2) be two image representations with n1

and n2 figures, respectively. Furthermore, without loss of generality, let n1 ≤ n2

and for both images let ωF :=
∑

F∈F ω(F ) and ωR :=
∑

R∈R ω(R) such
that ωF + ωR = 1.

A matching between F1 and F2 is an injective function m : {1, . . . , n1} →
{1, . . . , n2}. It uniquely assigns every figure F1,i of F1 exactly one figure F2,m(i)

of F2 and therefore, implicitly also assigns every relationship R1,i,j of R1 a
relationship R2,m(i),m(j) of R2.

Based on an underlying measure σF : F × F → IR of similarity between
figures (here basically the substitution similarity as defined in Section 3.3.3
is used), and a measure σR : R ×R → IR of similarity between relationships,
the similarity of I1 and I2 is then defined as the maximum sum of individual
weighted similarities over all matchings:

σp
(
I1, I2

)
:= max
m:matching

{∑
1≤i≤n1

σF
(
F1,i, F2,m(i)

)
·
ω
(
F1,i

)
+ ω

(
F2,m(i)

)
2

+

∑
1≤i≤n1

∑
1≤j≤n1

j 6=i

σR
(
R1,i,j , R2,m(i),m(j)

)
·
ω
(
R1,i,j

)
+ ω

(
R2,m(i),m(j)

)
2

}

For arbitrary measures σF and σR of similarity, the problem of deciding
whether the best matching yields a value that is greater or equal a given
threshold is an extension of the so called quadratic assignment problem6 which
is known to be NP-complete (see, e. g., [144]). However, due to the bound on the

6 Given two n×n matrices A,B over IR+
0 , find an n×n permutation matrix X such

that
∑

i,j A[i][j] · (XBXT )[i][j] is minimized.
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number of figures in an image representation, the asymptotic time complexity of
algorithms computing the best matching is not an issue. The optimal value can
simply be determined by enumerating and evaluating all possible matchings.

4.4.5. Experimental Results

The similarity estimation based on image primitives was tested on the
UK trademarks set (see Section 1.6.2.2). As a preprocessing, from each image I
the set P of relevant polylines was extracted as described in Section 4.2 and
from these polylines, the sets F and R of figures and relationships were
determined.

Then, each of the 24 query images was queried for in the set of 10 745 images in
the following way: First, for every pair (Iq, Ii) of images under consideration,
using Pq and Pi the substitution similarity σm based on mapping was computed
according to Section 4.3. Second, for every pair (Iq, Ii) of images under
consideration, using Fq, Fi, Rq, and Ri the primitive based similarity σp
was computed. Both values were combined following an idea derived from
the dynamic partial function (see Section 1.3.4 page 47). A high value of either
one measure of similarity gives evidence that the two images are perceived to
be similar. A low value, on the other hand, may correspond to low perceptual
similarity or to a weakness of the similarity measure. Therefore, a weighted
sum is computed where the weight ω depends on the similarity value itself:
σc := (σm · ωm + σp · ωp)/(ωm + ωp), with ωm := σm and ωp := σp. The
derived ranking was rated with respect to the relevant items (the ground
truth list). Table 4.1 shows the results achieved by the substitution similarity
based on mapping, by the combined approach, and by the ARTISAN retrieval
system [72, 74] (the individual results for each query image are listed in
Tables A.1 and A.2 in the Appendix).

Rn Pn Ln

ARTISAN 0.94 0.70 0.72

substitution similarity 0.95 0.75 0.74

combined approach 0.96 0.78 0.80

Table 4.1. Performance of the substitution similarity σm based on mapping,
of the combined approach σc, and of the ARTISAN retrieval sys-
tem on the UK trademarks set: normalized recall Rn, normalized
precision Pn, and normalized last place Ln averaged over the
24 queries.
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4.5. Conclusion and Future Work

A comprehensive framework for content-based trademark image retrieval has
been developed. The extraction of shapes copes with the main challenges of
real-world images, namely with colors, blurred edges, compression artefacts,
texture, broken lines and noise. The proposed combination of similarity
estimation based on image primitives and the substitution similarity shows a
high conformance with perceived similarity and it facilitates significantly better
retrieval results than previous approaches.

Possible directions for future work include the development of an additional
pruning stage like suggested in [227]. Entirely unsimilar images might be sorted
out based on a suitable set of simple shape descriptors, such that the highly
discerning but more expensive similarity measure only has to be applied to a
limited number of images.

Moreover, the set of primitives considered for the decomposition of images
might be augmented by other geometric figures. If the extraction of shapes is
carried out in a semiautomatic way, even arbitrary types of figurative elements
listed in the Vienna Classification (see Section 1.4.3.2) could be incorporated.
In this way it would be possible to fuse descriptive information and content-
based information in a single system for image retrieval, instead of using both
types of information separately.
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APPENDIX A

Experiments
on the UK Trademarks Set

(a) (b) (c) (d)

Figure A.1. Strange images:
Images where (a) not only a trademark is depicted, (b) a texture
pattern rather than a figurative image is depicted, (c) it is not
clear what is depicted, and (d) it is not clear if something is
depicted at all.
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(a) (b) (c) (d) (e)

Figure A.2. Strange reference query I:
(a) query image, (b), (c) images not contained in list of relevant
images, (d), (e) images contained in list of relevant images.

(a) (b) (c) (d) (e)

Figure A.3. Strange reference query II:
(a) query image, (b), (c) images not contained in list of relevant
images, (d), (e) images contained in list of relevant images.
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query σm σc
Rn Pn Ln Rn Pn Ln

1 1037814 0.97 0.84 0.86 0.97 0.82 0.86

2 1055261 0.94 0.86 0.41 0.98 0.89 0.69

3 1138103 0.97 0.77 0.84 0.97 0.83 0.77

4 1138293 0.87 0.79 0.00 0.87 0.79 0.00

5 1190540 0.92 0.57 0.74 0.99 0.82 0.97

6 1259886 0.97 0.91 0.49 0.97 0.88 0.57

7 1267206 0.98 0.74 0.91 0.99 0.76 0.96

8 1279931 0.98 0.82 0.88 0.96 0.76 0.83

9 1289047 1.00 0.97 1.00 1.00 0.97 1.00

10 1376861 0.93 0.65 0.78 0.95 0.64 0.78

11 1439229 0.98 0.89 0.81 1.00 0.91 0.99

12 1445511 1.00 1.00 1.00 1.00 1.00 1.00

13 1486213 0.91 0.47 0.69 0.93 0.50 0.78

14 1525429 0.97 0.75 0.89 0.98 0.71 0.93

15 1575268 1.00 0.89 0.99 1.00 0.93 0.99

16 2010916 0.99 0.84 0.96 1.00 0.88 0.99

17 2016658 0.93 0.59 0.61 0.95 0.62 0.67

18 2018809 0.97 0.56 0.93 0.99 0.87 0.96

19 2042822 0.59 0.22 0.02 0.63 0.24 0.04

20 3289 0.98 0.66 0.90 0.99 0.72 0.96

21 392632 1.00 0.94 0.99 1.00 0.90 0.99

22 665322 0.98 0.67 0.95 0.97 0.64 0.94

23 914 0.97 0.78 0.87 0.99 0.83 0.92

24 967049 0.90 0.82 0.33 0.95 0.85 0.50

average 0.95 0.75 0.74 0.96 0.78 0.80

Table A.1. Performance on UK trademarks set:
24 query images plus values of normalized recall Rn, normalized
precision Pn, and normalized last place ranking Ln for the sub-
stitution similarity σm based on mapping and for the combined
approach σc.
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1 rel.

ret.

2 rel.

ret.

3 rel.

ret.

Table A.2. Performance on UK trademarks set:
relevant images and first 10 images retrieved using the combined
approach σc (ignoring duplicates).
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4 rel.

ret.

5 rel.

ret.

6 rel.

ret.

Table A.2. Performance on UK trademarks set (continued):
relevant images and first 10 images retrieved using the combined
approach σc (ignoring duplicates).
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7 rel.

ret.

8 rel.

ret.

9 rel.

ret.

Table A.2. Performance on UK trademarks set (continued):
relevant images and first 10 images retrieved using the combined
approach σc (ignoring duplicates).
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10 rel.

ret.

11 rel.

ret.

12 rel.

ret.

Table A.2. Performance on UK trademarks set (continued):
relevant images and first 10 images retrieved using the combined
approach σc (ignoring duplicates).
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13 rel.

ret.

14 rel.

ret.

15 rel.

ret.

Table A.2. Performance on UK trademarks set (continued):
relevant images and first 10 images retrieved using the combined
approach σc (ignoring duplicates).
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16 rel.

ret.

17 rel.

ret.

Table A.2. Performance on UK trademarks set (continued):
relevant images and first 10 images retrieved using the combined
approach σc (ignoring duplicates).
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18 rel.

ret.

19 rel.

ret.

Table A.2. Performance on UK trademarks set (continued):
relevant images and first 10 images retrieved using the combined
approach σc (ignoring duplicates).
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20 rel.

ret.

21 rel.

ret.

22 rel.

ret.

Table A.2. Performance on UK trademarks set (continued):
relevant images and first 10 images retrieved using the combined
approach σc (ignoring duplicates).
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23 rel.

ret.

24 rel.

ret.

Table A.2. Performance on UK trademarks set (continued):
relevant images and first 10 images retrieved using the combined
approach σc (ignoring duplicates).
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APPENDIX B

Specification of Parameter Values

B.1. Extraction of Shapes

This section gives a set of suitable values for the parameters of the extraction
of shapes described in Chapter 2.

Vectorization

For simplicity, all computations concerning color and brightness are based
on an RGB model using the ranges [0, 255]. The distances between colors
are computed as Euclidean distances between RGB triples. Due to the non-
linearity of the perception of intensities (see Section 1.2.1) along with the
calibration of display devices it seemed to be beneficial to rescale all values
according to Irescaled = (Ioriginal/255)γ · 255 using γ = 1.25. However, all
computations might also be carried out based on distances between colors in
the Lab color space1. Distances between pixels are also computed as Euclidean
distances.

An image is classified as bi-level black-and-white image if the occurring colors
can be grouped into two classes B and W such that the minimum difference in
brightness between any element of B and any element ofW is greater than 128
(half the maximum possible brightness), the maximum difference in brightness

1 In Lab color space, as standardized by the International Commission on Illumi-
nation (Commission internationale de l’éclairage – CIE) in 1976, equal Euclidean
distances between representations of colors almost correspond to equal perceived
differences between colors (cf. [64]).
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within each color class is smaller than 10, and the maximum deviation of any
color from a gray tone (which corresponds to the chroma of the color) is smaller
than 20.

Given a pixel p0, the following notations and definitions for properties of this
pixel are used in this section:

• The neighborhood n(p0) is the set of (maximally four) pixels that are
edge-neighboring p0; the neighborhood n(C) of a set C of pixels is
the union of the pixels’ neighborhoods without C, formally n(C) :=⋃
p∈C n(p) \ C. The r-neighborhood nr(p0) is the set of pixels with

distance at most r (that means n(p0) is the 1-neighborhood of p0 without
p0 itself).

• colo(p0) is the original color of the pixel, whereas cold(p0) is the discrete
color the pixel has been assigned to. The blurred color colb(p0) is the
weighted average of the original colors of the rb-neighborhood of p0 for
some radius rb. Computing the blurred colors for the whole image simply
corresponds to applying a low-pass filter.

• A measure for the the variation of colors within the neighborhood of a
pixel can be derived from the differences of the original colors2 as
var(p0) := 1

4

∑
p∈n(p0) min

(
‖colo(p)− colo(p0)‖2/tv, 1

)
with tv being a

threshold on the maximal difference considered. For a given radius r,
the ditheredness varr(p0) of a pixel p0 may then be captured by the
average of the variations of the pixels in the r-neighborhood of p0. The
ditheredness var(C) of a set C of pixels may be captured by the average
of the variations of the pixels in C.

• The value sub(p0) as derived from the pixel’s closeness to another pixel
of very different color shall give an approximation for the degree of being
subordinate to a boundary between two regions of very different colors,
meaning to which extend small differences of colors are not perceived
because of a much bigger contrast in the vicinity.

For determining the blurred version of an image I with image size s(I) a conic
kernel with radius s(I)/400 (1.5 for small images) is used. For determining the
ditheredness of a pixel, the threshold tv is set to 48 · 48. For determining the
closeness of a pixel to a boundary between a great change in color, all pixels
with distance smaller than s(I)/75 (4 for small images) are considered.

2 The idea is similar to the concept of image energy as used in [113], however, only
a global value for the complete image was computed there.
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B.1. Extraction of Shapes

The 12 steps of the color discretization process are the following:

1st step: region growing Let the maximal blurred color distance cdr(p0) within
radius r of a pixel p0 be defined as the maximal distance between the
blurred color of any pixel in the r-neighborhood of p0, and the blurred
color of p0:

cdr(p0) := max
p∈nr(p0)

{
‖colb(p)− colb(p0)‖

}
Pixels with small maximal blurred color distance are candidates for seeds
of new clusters. All pixels are sorted according to their maximal blurred
color distance with respect to a radius rs, which is set to s(I)/150 (2 for
small images). As long as the minimum for the hitherto unclassified pixels
is sufficiently small (≤ 10), the corresponding pixel is taken as seed ps
of a new cluster C := {ps} and the color of that cluster—meaning the
discrete color of its elements—is set to colb(ps).

Once a cluster has been created it gets enlarged. While there is
a pixel with sufficiently small maximal blurred color distance in the
neighborhood of the cluster, such that the difference of the pixel’s color
to the cluster’s color is sufficiently small, the pixel is added to the cluster
and the neighborhood is updated. The threshold on the maximal blurred
color distance for adding a pixel to a cluster is set to 10 and—depending
on the seed pixel’s ditheredness—is increased by a factor between 1 and 4.
The threshold on the difference in color for adding a pixel to a cluster
is set to 20 and—depending on the seed pixel’s ditheredness and on the
candidate pixel’s closeness to a boundary between very different colors—
is increased by a factor between 1 and 8.

2nd step: enlarging and merging clusters For every unclassified (meaning not
belonging to any cluster) pixel p0 that has a sufficiently small maximal
blurred color distance, and that is adjacent to a cluster C (there might
be multiple such clusters), the priority for being added to C is computed.
While the minimum (best) priority is sufficiently small, the corresponding
pixel is added to the cluster and the priorities of its neighbors are updated.

The radius rg for computing the maximal blurred color distance is set
to s(I)/300 (1 for small images). The threshold on the maximal blurred
color distance for adding a pixel to a cluster is set to 10 and—depending
on the seed pixel’s ditheredness—is increased by a factor between 1 and 4.
The priority is computed as the maximum (the inferior one) of two values.
First, the difference between the cluster’s color and the pixel’s blurred
color which—depending on the number of common edges, on the cluster’s
ditheredness, and on the pixel’s ditheredness—gets decreased by a factor
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between 1 and 1/16. Second, the difference between the cluster’s color
and the pixel’s original color which—depending on the number of common
edges, on the cluster’s ditheredness, on the pixel’s ditheredness, and on
the pixel’s closeness to a boundary between very different colors—gets
decreased by a factor between 1 and 1/32. The threshold on the priority
for a pixel to be added to a cluster is set to 4.

After the clusters have been enlarged, neighboring clusters with suffi-
ciently small difference in color are merged. For any two neighboring
clusters, if the difference in color is smaller than a threshold which is
set to 5 and—depending on the clusters’ ditheredness—increased by a
factor between 1 and 4, the priority for the two clusters to be merged is
computed as the difference in colors which—depending on the clusters’
ditheredness and on the number of common edges—gets decreased by a
factor between 1 and 1/8. While there are still pairs of clusters that may
be merged, the pair with minimum priority is determined, merged, and
the priorities of the other clusters are updated. The color of a resulting
cluster is simply the average color of its pixels. In the end, clusters that
are smaller than 1/800 times the number of pixels in the image (smaller
than 2 for small images) are deleted.

3rd step: detecting border pixels In order to distinguish between border pix-
els and pixels from the inside of thin shapes, for each pixel (that has
not yet been assigned a color) its vicinity is searched for evidences that
the pixel is an intermediate one: For a pixel p0 with color c0 and
coordinates (x0, y0), the considered pairs are

(
(x0 − r, y0), (x0 + r, y0)

)
and

(
(x0, y0 − r), (x0, y0 + r)

)
with r ≤ s(I)/150 (≤ 2 for small images).

Let (p+, p−) be one of these pairs and let c+ and c− be the respective
colors. Based on the distance of c0 to the line segment c+c− in color
space, the degree of being border pixel between p+ and p− is determined
as b(p0, p+, p−) := max

(
0,min

(
1,
(
‖c+ − c−‖ − dist(c0, c+c−)/80

)))
.

Based on the evidences for all the pairs under consideration, a value b(p0)
for the degree of being a border pixel is determined from the maxi-
mum bmax(p0) for all considered pairs (p+, p−) and the average bavg(p0)
of the maxima for each considered distance r as b(p0) := sin8

(
π/2 · (0.75 ·

bmax + 0.25 · bavg)
)
.

4th step: further enlarging and merging clusters The computation of the pix-
els’ priorities and the clusters’ priorities is performed as in the 2nd step.
However, whether a pixel might be added to a cluster now does not
depend on its maximal blurred color distance any more, but on the pixel’s
degree of being a border pixel: The threshold on the priority of a pixel p0

to be added to a cluster is set to 4 ·
(
1− b(p0)

)
.
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B.1. Extraction of Shapes

5th step: uniqueness In order to determine how unique (meaning how inde-
pendent from ‘neighboring clusters’) a pixel is, the colors of the clusters
that are not far away and that are not blocked by other clusters are
examined. For an unclassified pixel p0 let N1(p0) := n(p0) be the
set of pixels that can be reached by crossing one edge. Furthermore,
let Nu

1 (p0) ⊆ N1(p0) be the unclassified ones and N c
1 (p0) ⊆ N1(p0)

be the classified ones. The set Nk(p0) of relevant pixels that can be
reached by crossing at most k edges is defined recursively as Nk(p0) =
Nk−1(p0) ∪ n

(
Nu
k−1(p0)

)
. The sequence

(
N c

1 (p0), N c
2 (p0), . . .

)
induces a

sequence of minimum color differences to p0 that is monotone decreasing.

The maximum distance ru of pixels considered is s(I)/50 (2 for small
images). For distance k, let the minimum normalized color dis-
tance cdk(p0) be minp∈Nc

k(p0)

{
min

(
‖colo(p0)−cold(p)‖/150, ‖colb(p0)−

cold(p)‖/100
)}

restricted to [0, 1]. The uniqueness of the color of a
pixel p0 is then determined as u(p0) = 1− 1/ru ·

∑ru
k=1 cdk(p0)4.

6th step: merging In addition to the existing clusters, every unclassified
pixel constitutes a (preliminary) cluster. For every pair of neighboring
clusters the priority of being merged is computed as the distance of the
clusters’ colors, which—depending on the clusters’ intern variation of
colors—is increased by a factor between 1 and 2, and—depending on
the sizes of the cluster—is decreased by a factor between 1 and 1/4,
and—depending on the clusters’ ditheredness—is decreased by a factor
between 1 and 1/4, and—depending on the number of common edges—
is decreased or increase by a factor between 0.5 and 2, and—depending
on the clusters’ pixels’ closeness to a boundaries between very different
colors—is decreased by a factor between 1 and 1/2, and—depending
on the clusters’ pixels’ uniqueness and degree of being border pixels—
increased by an additive value between 0 and the maximum allowed
priority (32). While the minimum priority is sufficiently small (≤ 32),
the corresponding two clusters are merged and the priorities of the pairs
containing one of them are updated.

In the end, all pixels belonging to clusters that are smaller than 1/8 000
times the number of pixels in the image (smaller than 2 for small images)
are marked as unclassified again.

7th step: further enlarging and merging clusters The same values as in the
4th step are used.

8th step: merging clusters based on color Maximal sets of clusters such that
the pairwise differences in color are sufficiently small are determined
greedily, and these clusters are merged. The threshold on the distance in
color is set to 20.
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9th step: handling antialiasing Let c0 be the color of pixel p0 and let V :=
{k · π/4 | k = 1, . . . , 8} be the (angles of the) directions under consid-
eration. Starting from p0, every direction is searched for the nearest
pixel belonging to a cluster. Let p+ and p− be two such pixels located
in opposite directions from p0, and let c+ and c− be the colors of
the corresponding clusters. If both, the distance of c0 from the line
segment c+c− in color space, and the distance ‖p+ − p−‖ are sufficiently
small, this gives an indication that p0 is a border pixel between colors c+
and c−. The threshold θd on the distance for determining whether a
pixel p0 with color c0 has an intermediate color is set to s(I)/75 (2 for
small images).

As a consequence of the fact that in many images, the colors have
reduced chroma3 near boundaries between different colors (see Figure 2.4
on page 75 for an example), not only the original colors are used to
interpolate between, but also colors with reduced chroma, namely colors ċ
and c̈ with chroma reduced by a factor of 3/4 and 2/3, respectively.

Let cd(p0, c+, c−) be the minimum distance of c0 from one of the
lines c+c−, ċ+ċ−, and c̈+c̈−. The color evidence is then computed
as ec(p0, c+, c−) := 1 − cd(p0, c+, c−)/

(
0.4 · ‖c+ − c−‖

)
. Let k be the

number of directions for which c+ is the color of the nearest classified pixel
and c− is the color of the nearest classified pixel in opposite direction,
and let d be the minimum sum of distances in which c+ and c− appear in
opposite directions. If d ≤ θd + 1, the position evidence ep(p0, c+, c−) is
computed as 1.0−0.25 · (d−2)/(θd−1) + 0.25 · (k−1) restricted to [0, 1],
which means that it is 1 if the distance is minimal or if there are at least
two directions. The overall evidence eo(p0, c+, c−) is computed as the
product of color and of position evidence.

If eo(p0, c+, c−) > 0.5, the pixel is candidate for being assigned to one of
the two clusters. Let d+ = ‖c0 − c+‖ and d− = ‖c0 − c−‖ be the color
distances and n+ and n− be the number of neighbors having color c+
and c− respectively. The priority for assigning p0 color c+ is computed
as d+/(d+ + d−) − 0.05 · n+ and the priority for assigning it color c−
is computed accordingly. Iteratively, the pixel with the overall smallest
priority value is assigned to the corresponding cluster and the priorities
of the neighboring pixels are updated.

10th step: aggressive assignment The priority for a pixel to be added to
a cluster is computed as the distance between the pixel’s and the
cluster’s colors, which—depending on the number of common edges—

3 Here, the chroma of a color is its distance from the nearest gray tone in RGB color
space. Reducing the chroma corresponds to simultaneously reducing saturation
and value in HSV color space.
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is decreased by a factor between 1 and 1/2, and—depending on the
cluster’s ditheredness—is decreased by a factor between 1 and 1/4, and—
depending on the pixel’s ditheredness—is decreased by a factor between 1
and 1/2, and—depending on the pixels’s closeness to a boundary between
very different colors—is decreased by a factor between 1 and 1/2. The
threshold on the priority is set to 25.

11th step: merging clusters based on color again The priority for two clus-
ters to be merged is computed as the distance of the clusters’ colors,
which—depending on the clusters’ ditheredness—is decreased by a factor
between 1 and 1/2. The threshold on the priority is set to 25.

12th step: clustering rest The colors of the pixels are subdivided using a
regular grid.4 According to the distance to the colors of existing clusters,
every grid cell gets a weight. The mean color of the pixels in the cell with
the largest weighted number of votes defines a new cluster, and all pixels
with a color that has a sufficiently small difference to this new cluster’s
color are assigned to it.

The grids used to partition color space are based on cubes of sidelength
16, one grid starting at the origin (black), one grid starting at (8, 8, 8).
As long as there are still unclassified pixels, the grid cell with the highest
product of number of pixels with color in it and minimum distance from
center to any existing cluster’s color is chosen as basis for a new cluster:
The average color of the pixels that have distance less than 8 from the
cell’s center is the new clusters color, and all pixels having distance smaller
than 50 to this color are classified.

Merging of Small Shapes

Textured Regions For the detection of regions of high complexity, the side
length db of the rectangular function used as low pass filter is set to 2·s(I)/25+
5.5 and the height is set to 1/(db ·db) such that the sum of all brightness values
in the image stays unchanged. In order to encounter, that for small images
the edge density of regions containing shapes that are perceived as individual
items may be significantly higher than for larger images, the threshold on the
brightness is set to θt = 255 ·

(
0.14 + 7/s(I)

)
. On the one hand this ensures

that for images with side lengths smaller than 8, the threshold is larger than
the maximum possible value and thus even groups of shapes consisting of single
pixels will not be classified as texture. On the other hand, the threshold is in
the range 0.15± 0.01 for images with side lengths larger than 350 which yields

4 In order to reduce unwanted quantization effects, actually two grids are used such
that the cells overlap.
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good results in practice. The radius of the disk used for the closing and the
opening is set to db/4 = 0.5 · s(I)/25 + 5.5. For the extraction of textured
shapes, the side length of the low pass filter is set to db/5, the threshold on
the brightness is left unchanged, and the radius of the disk used for the closing
and the opening is set to db/10.

Broken Lines For the reconstruction of line shapes, the weighted distance
between two points pi1 and pj1 belonging to the chains Pi = (pi1 , . . . , pik)
and Pj = (pj1 , . . . , pjl), respectively is determined based on the following
features:

distance The Euclidean distance ‖pi1 − pj1‖ between pi1 and pj1 . The closer
the points, the higher the likeliness of being consecutive points on some
curve.

distribution of nearest neighbors For every point the distribution of points in
its neighborhood is analyzed. For a point that actually does originate
from the depiction of a line shape, there are probably also other points
from that line shape contained in the neighborhood, situated in a rather
thin corridor containing the point itself. For a point that originates from
noise, on the other hand, the points in the neighborhood will usually be
scattered or—if the noisy point lies near a line shape passing by—will be
situated in a rather thin corridor not containing the point. The likeliness
of originating from a line shape is estimated using the idea of probabilistic
relaxation: The maximally consistent assignment of labels to objects is
determined by propagating local clues (see, e. g., [196] and [140]).

Every point p is assigned a direction v, and a value b indicating the belief
that v corresponds to the course of a line shape that the point originates
from. Initially v and b are computed using principal component analysis
(as introduced in [180]) of the nearest neighbors of p. In several rounds,
the directions as well as the beliefs are updated based on consistencies of
the directions of pairs of points. The higher the beliefs of two points, the
higher the likeliness of being consecutive points on some curve.

direction The direction of the edge between points pi1 and pj1 in relation to
the courses of the chains Pi and Pj . Due to the discrete nature of the
original polygonal shape and its skeleton, consecutive edges of a correct
reconstruction might pretty well form a right angle. The direction of
an edge, therefore, is not rated on the direction of a single predecessing
edge only. The longer a potential edge e, the longer the part of the
already reconstructed curve supporting the assumption that e belongs to
the curve should be.
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For the edge e = pi1pj1 of length d connecting chains Pi and Pj , let p̃(e, Pi)
be the point on the polyline Pi with geodesic distance d from pi1 (if the
length of Pi is smaller than d, then p̃(e, Pi) := pik). The degree to which a
part of Pi points into the direction of e may be estimated using the length
of its projection to e. The support from Pi for the edge e is therefore
determined as s(e, Pi) := 〈pi1 − p̃(e, Pi), (pj1 − pi1)/d〉 (see Figure B.1
for an illustration). The support from Pj for the edge e is determined
analogously. The greater the support for an edge, the higher the likeliness
that it connects consecutive points on some curve.

d

d

s

pj1
pi1

Pi

p̃(pi1pj1 , Pi)

Figure B.1. Direction of
edges and curves: notations
used in the definition of the
directional support.

goodness of form The goodness of form of the resulting chain. Human
perception tends to prefer simple figures over complex ones (see Sec-
tion 1.2). Edges leading to curves of low visual complexity therefore are
preferred over edges leading to erratic structures. The visual complexity
is estimated based on two features, namely the degree to which the part
of the resulting chain near the new edge is close to a straight line5, and
the ratio of the total length of the curve and its diameter. The closer to a
straight line the resulting chain is and the smaller the ratio of length and
diameter, the better the form. The better the form of the chain resulting
from connecting two points, the higher the likeliness that these points are
consecutive points on some curve.

coverage The density of points on the resulting chain or more formally, the
ratio of the chain’s parts covered by shape (in contrast to the gaps). The
more of the line is actually depicted, the longer the gap between two
parts might be. In dashed lines, e. g., the gaps may surely be larger than
in dotted lines without destroying the perception of a line—especially
in the presence of noise. An approximation of the covered parts can
be determined based on the vertices of the chain and the side lengths
of the corresponding squares as determined during the computation of

5 Please note that in the analysis of the distribution of nearest neighbors also the
degree of closeness to a straight line was rated, but there all points in a spacial
neighborhood of a point were considered, here only the points forming the chain
are considered
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the max-L∞-skeleton. For a point p of the max-L∞-skeleton of a shape,
let r(p) be half the side length of the corresponding square. The covered
part of a chain P = (p1, . . . , pm) is estimated as

∑m−1
i=0 max

(
‖pi+1 −

pi‖,
√

2
(
r(pi) + r(pi+1)

))
. Dividing this value by the chain’s length gives

the relative coverage. The higher the coverage of the chain resulting
from connecting two points, the higher the likeliness that these points
are consecutive points on some curve.

Simplification

Polyline Simplification For the adaptive coarsening plus corner simplification
the error threshold ∆break to stop further merges is set to 4 · ∆max and the
factor %ac determining the error tolerance is set to 0.1. The minimum angle
between edges to be considered for corner simplification is set to 10◦, the
factor %cc determining the maximum distance of the tip is set to 0.1, and
the width εcc of the additional neighborhood around the tip triangle is set
to min(∆max , r).

B.2. Similarity Estimation based on Mapping

This section gives a set of suitable values for the parameters of the comparison
of shape sets as described in Chapter 3.

Let s(I1) be the image size of image I1 and s(I2) be the image size of image I2,
respectively. For computing a similarity transformation, in case of a complete-
complete comparison the thresholds for the minimum and the maximum scaling
factor are set to cmin = 0.25 ·s(I2)/s(I1) and cmax = 4 ·s(I2)/s(I1). In case of a
complete-partial or a complete-semi-partial comparison the thresholds for the
minimum and the maximum scaling factor are set to cmin = 0.02 · s(I2)/s(I1)
and cmax = 2 · s(I2)/s(I1). The additional random scaling factor cr is chosen
such that log2(cr) is normal distributed with standard deviation 0.1. The
threshold θa for deciding whether two vertices are identified is set to 0.2. The
threshold θe for the relative error still tolerated during the augmentation of a
sample is set to 0.1.

In case of a complete-complete comparison the exponents used in the com-
putation of a samples weight are set to e1 = 1 and e2 = 1. In case of a
complete-partial or a complete-semi-partial comparison the exponents are set
to e1 = 2 and e2 = 1. The factor ωV,min of maximal penalization of samples
not spanning two dimensions is set to 0.25. The factor cE for adjusting the
tolerance against errors is set to 5.
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The cluster radius r is set to 0.05 · s(I2).

The threshold dmax on the distance in the computation of the substitution
similarity is set to 0.2 · s(I2).

B.3. Similarity Estimation based on Image
Primitives

This section gives a set of suitable values for the parameters of the comparison
of shape sets as described in Section 4.4.

Extraction of Figures Given a single polyline P , whether and how it may be
represented by one of the primitives is decided as described in the following:

rectangle Let P ′ be the polyline resulting from applying the coarsening plus
corner simplification to (a subdivision of) P , using 0.1 times the diameter
of P as error threshold. For every 4-subsequence of edges in P ′ such
that the angles of the supporting lines differ less than 10◦ from the
respective angles in a rectangle, the polyline P ′′ resulting from the
intersections of the supporting lines is constructed. If the substitution
similarity Φcc

(
{P ′′}, {P}

)
is sufficiently large, the rectangle generated

from P ′′ is assumed to be a good representation of P .

ellipse By principal component analysis of P , the direction ~v of the major
axis of a potential ellipse is determined. The maximum extents of P in
direction of ~v and perpendicular to ~v determine the first approximating
ellipse E. Using 100 equally spaced sample points on P , the best
similarity transformation t mapping corresponding points from E to
the points on P is computed according to Section 3.2.4. Let E′

be the ellipse resulting from applying t to E. If the substitution
similarity Φcc

(
{E′}, {P}

)
is sufficiently large, E′ is assumed to be a good

elliptical representation of P .

triangle Let P ′ be the polyline resulting from applying the coarsening plus
corner simplification to (a subdivision of) P , using 0.1 times the diameter
of P as error threshold. For every 3-subsequence of edges in P ′ such that
the supporting lines form a triangle with smallest angle greater than 10◦,
the polyline P ′′ resulting from the intersections of the supporting lines is
constructed. If the substitution similarity Φcc

(
{P ′′}, {P}

)
is sufficiently

large, P ′′ is assumed to be a good triangular representation of P .
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Given a set P of polylines, whether one of the basic primitives can be
extracted is decided based on comparing a square, a circle and an equilateral
triangle, respectively, to P using mapping under similarity transformations and
determining the directed substitution similarity Φ~ according to Chapter 3.

In the clustering of polylines the threshold on the distance is primary set
to θc := 0.2 · s(I), but whenever the number of resulting clusters exceeds the
envisaged number of figures it is adjusted to θc := θc · 1.2 and the polylines
are reclustered. Small clusters (diameter smaller than 0.1 times the diameter
of the largest figure extracted so far) are deleted.

For deciding which way of decomposing a given cluster C should be chosen,
for each of the four options a support value is computed. The support
for a figure Fch derived from the convex hull is determined as substitution
similarity Φ~(Fch, C) times a factor favoring figures with aspect ratio close to 1.
If there is no polyline in C that nearly equals the convex hull, the support for a
basic geometric figure Fa at arbitrary position is determined in the same way.
The support for the representation by the individual polylines is determined as
0.9 times the average over the individual factors for the aspect ratios. For Fch
and Fa, the part C′ of C that is not represented by the figure, is computed
based on an analysis of the resemblance function φ in the computation of the
substitution similarity Φ~(C, F ).

If the number of resulting figures (For Fch or Fa, respectively, it is 1 in case
that C′ = ∅ and 2 otherwise. For representation by individual polylines it
is |C|.) does not exceed the envisaged number of figures (which is 8 minus the
number of figures already extracted, minus the number of other clusters), and
the support is sufficiently large, the best of these representations is chosen.
Otherwise the cluster is represented by C as a single figure.

The conflation of ‘concentric’ figures is done based on scaling with respect to
the center of mass. If the two figures are of the same type, if the substitution
similarity of the scaled smaller figure and the larger figure is sufficiently large,
and if the scaling factor is not smaller than 0.5, then the two figures are
conflated.

A figure’s degree of being a frame is determined depending on the figure’s shape
and on its position relative to the other figures. A convex figure with all other
figures lying in the inside and an aspect ratio between 1/1.5 and 1.5 gets a value
of 1. A convex figure with all other figures except the first frame lying in the
inside and an aspect ratio between 1/1.5 and 1.5 gets a value of 0.5. In both
cases, if the aspect ratio’s deviation from 1 is greater, the value is decreased.

Given a pair (Fi, Fj) of figures, the relation Ri,j stores the relative size s(i, j),
the relative distance d(i, j) which is basically the distance of the centers divided

198



B.3. Similarity Estimation based on Image Primitives

by the sum of the sizes, and information about their similarity: simt(i, j) is the
average of the substitution similarity values when Fi and Fj are translated such
that their centers coincide and when they are scaled and translated such that
their centers and their sizes coincide; simr(i, j) is the average of the respective
two values under rigid motions and simm(i, j) is the average of the respective
two values under reflections.

Comparison of Images The importance ω′(Fi) of a figure Fi mainly depends
on the size, but—in order not to disregard small figures too much—sublinearly.
It is set to the 1.5th root of the relative size times a factor between 0.5
and 1 depending on the figure’s degree of being a frame, times a factor for
its uniqueness: If there are several figures having the same shape (as indicated
by the value simt(i, j)), for every such figure the importance of subsequent
copies is set to 0.5 times their prior value. This means that for 8 identical
figures, the importance of the 8th one is only 1/128 times its original value.
The importance ω′(Ri,j) of a relation Ri,j between figures Fi and Fj is set to
the average importance of Fi and Fj times a factor between 0.5 and 1 depending
on the relative distance of the figures.

For the comparison of images, the weight ratio for figures and for relations is
set to ωF = 0.9 and ωR = 0.1, respectively. The weights are then computed as
ω(Fi) := ωF · ω′(Fi)/

∑
F∈F ω

′(F ) and ω(Ri,j) := ωR · ω′(Ri,j)/
∑

R∈R ω
′(R).

The similarity value σF (F1i
, F2i′ ) is basically determined as Φcc(F1i

, F2i′ ).
However, for the basic primitives rectangle, ellipse, and triangle predefined
values are used. The similarity value σR(R1i,1j , R2i′ ,2j′ ) is composed of a
factor between 0.5 and 1 depending on the analogy of the values simt, simr,
and simm, a factor between 0.5 and 1 depending on the analogy of relative
sizes, and a factor between 0.5 and 1 depending on the analogy of relative
distances.
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[210] L. Sjöberg. A cognitive theory of similarity. Göteborg Psychological
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Summary

The goal of the present work was to develop a system for automated
similarity retrieval of figurative images—especially trademark images—which
gives results that resemble human similarity estimation.

In the first chapter, findings about the peculiarities of the perception of images
and about human similarity estimation are compiled and the special needs of
similarity retrieval of trademark images are explained.

As the depicted shapes play an important role for the estimation of similarity,
an approach for the detection of the shapes has been developed. It encounters
that shapes may be depicted in different ways (by regions, using textures, by
contour lines) and that images often contain compression artefacts and noise.

For the estimation of the similarity of images based on the detected shapes, an
approach has been developed that, in a first stage, computes transformations
which map the images and, in a second stage, compares the mapped images.
For the computation of the transformations an existing randomized approach
has been enhanced. It chooses appropriate transformations based on collecting
votes. For the comparison of the mapped images a new similarity measure
on the contour lines has been developed which takes the correspondences in
position and direction into account.

Based on these components a system for similarity retrieval has been developed
which also considers the special needs of similarity retrieval of trademark
images. The experimental results show a high conformance with human
similarity estimation. The results are significantly better than the ones achieved
by existing systems.
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Zusammenfassung

Ziel der vorliegenden Arbeit war es, ein System zur automatischen Ähnlich-
keitssuche von piktogrammartigen Graphiken, insbesondere von Firmenlogos,
zu entwickeln, welches möglichst gute Übereinstimmung mit dem menschlichen
Ähnlichkeitsempfinden erzielt.

Im ersten Teil der Arbeit wurden Erkenntnisse über die Besonderheiten der
Wahrnehmung von Bildern und über das menschliche Ähnlichkeitsempfinden
zusammengetragen sowie die speziellen Anforderungen bei der Ähnlichkeits-
suche von Firmenlogos erläutert.

Da die dargestellten Formen die wichtigste Rolle spielen, wurde ein Verfahren
für die Detektierung dieser Formen entwickelt. Dabei wurde unter anderem
berücksichtigt, dass Formen auf unterschiedliche Art und Weise dargestellt
werden können (Flächen, Texturen, Konturlinien) und dass Bilder häufig Fehler
wie Kompressionsartefakte und Bildrauschen enthalten.

Zur Ähnlichkeitsbestimmung von Bildern anhand der detektierten Formen
wurde ein Verfahren entwickelt, welches im ersten Schritt Transformationen
bestimmt, die die Bilder möglichst gut zur Deckung bringen, und im zweiten
Schritt die so zur Deckung gebrachten Bilder miteinander vergleicht. Für
die Bestimmung der Transformationen wurde ein bestehendes, randomisiertes
Verfahren weiterentwickelt, das darauf basiert, anhand von gesammelten
Indizien Kandidaten für geeignete Transformationen auszuwählen. Für den
Vergleich der zur Deckung gebrachten Bilder wurde ein neues Ähnlichkeitsmaß
entwickelt, welches Übereinstimmungen in Position und Richtung der Kon-
turlinien berücksichtigt.

Darauf aufbauend wurde dann ein System zur Ähnlichkeitssuche entwickelt,
welches zusätzliche Besonderheiten von Firmenlogos berücksichtigt. Die Ergeb-
nisse der durchgeführten Experimente zeigen eine große Übereinstimmung mit
dem menschlichen Ähnlickeitsempfinden und die erzielten Kennzahlen sind
deutlich besser als die, bestehender Systeme.
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