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ABSTRACT

Two-phase flow plays a significant role in multiple technical applications and natural

phenomena. Therefore there is an increasing interest in numerical simulation of such

flows for both prediction and analysis purposes. Many of these processes can be mod-

eled as incompressible or zero Mach number flows. While there are many methods

for simulation of incompressible two-phase flow at constant density, only few meth-

ods can be found, that allow for a variable density and solve the governing equations

in conservative form. In principle there is no method, which consequently applies

discretely conservative approximations only wherever appropriate, while remaining

extendable to other flow regimes, such as the compressible or weakly-compressible

low Mach number flow regime, in a conceptually consistent way. The present work

is meant to serve as starting point for a Finite Volume method that satisfies these re-

quirements while remaining extendable to equations of state beyond the assumption

of a perfect gas. Within this generalized framework two key features of a numeri-

cal method for simulation of two-phase flow are focused on after deriving the zero

Mach number equations for immiscible chemically reacting two-phase flow at ar-

bitrary equation of state and presenting the underlying single-phase solver as basic

building block of the numerical method in detail: On the one hand an approach for

coupling of the discrete representation of the interface, sharply separating the differ-

ent fluid phases, and the conserved quantities representing the fluid flow is extended,

analyzed and adapted to the present framework for keeping the method stable and

discretely conserving the mass of each of the fluid phases. On the other hand an

approach for approximation of the influence of surface tension, which is singular at

the interface, is proposed, that allows for discretely conservative treatment of these

effects as well. The underlying numerical scheme for solving the resulting system of

differential equations is a generalized projection method, which imposes an elliptic

constraint on a hyperbolic-parabolic predictor solution in each time step. Due to the

fact that projection schemes – except for the solution of linear systems for individual

scalars – are iteration-free, the different building blocks presented in this work are

kept iteration-free as well.
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Part I

INTRODUCTION





1. NUMERICAL SIMULATION OF TWO-PHASE FLOW

Two- or multi-phase flows play a significant role in many technical applications, rang-

ing from fuel injection in engines of vehicles, cavitation at the blades of ship’s screws

or icing at wings of airplanes, over either boiling of water or water cooling in reactors

of larger scale power plants, flow of oil gas mixtures in pipelines, to production of

food or pharmaceutics.

Numerical simulation is one of the permanent companions of design and develop-

ment processes, optimization and operation of vehicles, devices or production fa-

cilities, in order to pre-estimate effects of certain actions and to reduce costs both

during development and operation. Due to the availability of more and more efficient

computers at moderate cost, attractiveness of numerical simulation is even gained in

order to avoid elaborate and expensive experiments and to only manufacture already

optimized configurations.

Two- or multi-phase flow and its numerical simulation is not only important for sev-

eral engineering applications, but also for environmental events, such as formation

of clouds and precipitation or flow of goundwater, free surface flows occurring dur-

ing eruption of volcanoes and gush springs or during flooding and tsunami events,

development and behavior of all kinds of foams, oil accidents in the sea and many

more.

Classification of two-phase flows can be done due to various aspects, for example:

‚ the physical condition of the two-phase flow: gas-liquid, liquid-liquid, liquid-

solid, gas-solid

‚ the way the different fluid phases combine1: separated (immiscible) flows,

mixed flows and dispersed flows
1 Also combinations of separated fluid phases, each being a mixture or a dispersion of different

non-immiscible phases, are possible.
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A larger number of these flows can be considered immiscible, consisting of differ-

ent mixtures of fluids, such as, for example, air2 and water3, separated by a fluidic

interface, at which surface forces act, arising due to surface tension. The latter can

vary along the interface due to local adsorption and desorption of molecules4 from

the bulk phases.

Numerous numerical methods of all common kinds have been developed in order

to simulate such two- or multi-phase flow systems and almost every combination of

flow solver, ranging from Finite Difference (FD) [167, 176] Methods (along with

Immersed Interface (e.g. [183], [108]) and Ghost Fluid (e.g. [115], [44]) Methods)

over Finite Element (FE) [64, 11], Finite Volume (FV) [26, 58, 132] and Discontinu-

ous Galerkin (DG) [122, 14] Methods to Boundary Integral Methods [78] or Particle

Methods, such as Lattice Boltzmann (LB) Methods [80] on the one hand, and inter-

face representation as classified below on the other hand can be found.

However, the computation of incompressible and variable density zero Mach number

two-phase flow with large ratios5 of the densities of the different fluid phases and

singular momentum sources due to surface tension at the interface plus transport

processes at the interface remains a challenging problem ([42]).

Due to the large variety of existing approaches, a complete overview of the field of

simulation of two- or multi-phase flows is almost impossible. An certainly incom-

plete but nevertheless good overview of such existing methods is, for example, given

in [143]. Also the introduction of [2] list several different methods. Nevertheless,

there are still quite large research associations, such as, for example, recently the

Priority Program (SPP) 1506 of the German research foundation (DFG) on transport

processes at fluidic interfaces this work has been part of, aiming for development,

enhancement and validation of such methods.

Due to more and more hybrid approaches, arising in order to overcome drawbacks

of standalone methods, even the classification of the existing numerical methods is

not straightforward: On the one hand, there are Lagrangian methods, which use mov-

ing grid points, that follow the fluid flow and distinguish between the different fluid

phases via identification and tracking of particles with different fluid properties. On

the other hand, there are Eulerian methods, which balance the change of the flow state
2 Air consists of nitrogen, oxygen and small concentrations of various other gaseous species.
3 In most of the natural cases many substances are dissolved in water, such as, for example, salt in

the sea, air or various types of other molecules in technical applications.
4 Molecules influencing surface tension of a fluidic interface are called surface active agents.
5 In this context large ratios are of the order of magnitude Op1000q or larger.
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at specified locations. In addition, hybrid Eulerian-Lagrangian methods, such as the

Arbitrary-Lagrangian-Eulerian (ALE) method (e.g. [11]), combine both approaches

by balancing at specific locations, the grid cells, which, however, are able to move.

In [174] the following classification6 is given:

‚ Fixed-grid methods solve the governing equations in the entire computational

domain on a predefined fixed computational grid, capturing the moving inter-

face implicitly. These capturing methods include

– Marker-and-Cell (MAC) methods, in which marker particles are used to

identify the different fluids [70, 69]

– Volume-of-Fluid (VoF) methods as enhanced integral form of the MAC

method, tracing regions of constant fluid identifier via a discrete function

representing the scalar volume fraction of a certain domain occupied by

a certain fluid [76, 29, 144, 146, 67, 57, 10]

– Level-Set (LS) methods as implicit interface representation via a smooth

scalar field [167, 156, 164, 131, 170, 39]

– Constrained Interpolation Profile (CIP) methods, which try to construct a

solution within each grid cell subject to certain constraints [138, 149]

– Phase Field methods, which substitute the boundary condition at the in-

terface by a partial differential equation for the evolution of a smooth

auxiliary variable, identifying the various fluid phases separated by a con-

tinuous transition zone of finite thickness [68, 189]

and hybrid combinations of the latter [152, 162, 169, 104] or with one of the

following [110].

‚ Tracking Methods solve the governing equations on a fixed grid in each fluid

phase, which is modified at the interface locally in order to align one of the

grid cell boundary segments to the local interface segment with a separate front

marking the interface

‚ Moving-mesh methods utilize separate moving and deforming interface fitted

grids in each fluid phase for solving the governing equations
6 Also combinations of the different types of methods can be applied: If, for example, the flow

system consists of two different immiscible fluid phases, one of them being a mixture of various
fluid phases and the other one being a dispersion of different fluid phases, then the sparse solid
phases in the dispersion can be treated by an Lagrangian approach, while the continuous phase
and the mixture on the other side of the interface of the two immiscible fluid phases can be treated
by one of the other approaches in an Eulerian way.
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‚ Lagrangian methods use moving grid points, that follow the fluid flow and

distinguish between the different fluid phases via identification and tracking of

moving particles with different fluid properties

An recent overview is given in [176], and up-to-date one is subject to be published

via [157].

While methods with changing interface aligned grids potentially offer higher accu-

racy at the interface, they are difficult and expensive to apply to problems involving

severe interfacial deformation and/or topological changes due to the necessity of re-

generation of the computational mesh in every time step (as for example, stated in

[116]) and procedures to project the present solution onto the newly generated grid.

Fixed grid methods, on the other hand, either only provide a diffuse interface repre-

sentation with the flow quantities smeared over several grid cells (e.g. [171]), result-

ing in a transition zone that is much thicker than the physical ones ([176]), or give rise

to cut grid cells, if the interface is treated as sharp discontinuity of fluidic properties

([169], [185], [158], [53], [54]). The latter branch is the one this work follows.

Most of the existing methods are restricted to either the incompressible or the com-

pressible flow regime without the option of a conceptually consistent extension to

the respective other regime, including the weakly compressible transition zone. Es-

pecially most of the various approaches for incompressible flow do not solve the

governing equations in conservative form, preventing straightforward extensions to

other regimes and conservative solutions of the governing equations by rigorously

applying discretely conservative Finite Volume methods with sharp interfaces for all

features that require conservation physically. In fact, there are only few approaches

dedicated to variable density zero Mach number flow in conservative form, that allow

for spatial inhomogeneity of the density within each fluid phase and for a conserva-

tive discretization of the conservation laws (e.g. [150], [105]). The latter is aimed

for in the present work, presenting building blocks of an unsplit numerical method

for Direct Numerical Simulation of immiscible zero Mach number variable density

two-phase flow based on an asymptotic low Mach number limit of the compressible

Navier-Stokes equations, building the present method on projection schemes as, for

example, given in [15], [17], [4], [150], [151], [92] and [180].

Projection methods7 are very attractive for large scale computations due to the de-

coupling of velocity and pressure, yielding low computer storage consumption per
7 A more detailed introduction to projection methods is given in chapter 4.1.



7

time step due to applicability of the fractional step8 concept, requiring determination

of solutions to linear systems for individual scalars only on the one hand, on the other

hand, in constrast to, for example, application of SIMPLE- of PISO-type algorithms,

there is no need for iterative procedures per time step. In this spirit all other features

presented in this work are kept iteration-free as far as possible as well.

While restricting to two-phase flow examples in the incompressible regime of small

length scales, focusing on the crucial issues in two-phase flow simulation of fluid

phase separation, interface transport and discretization of the singular contributions

due to surface tension, the present work is meant as a starting point for a discretely

fully conservative Eulerian fixed Cartesian grid Finite Volume projection scheme

for immiscible liquid-liquid and gas-liquid zero Mach number variable density two-

phase flow, solving the governing equations in conservative form using conservative

discretiztions only, additionally providing a framework that allows for conceptually

straightforward transition to other flow regimes comparable to [119], [118] and [19]

and equations of state9 and consistent discretely conservative error correction in the

corrector steps of the underlying predictor-corrector projection method by combining

ideas from [92] and [150] and references therein.

The topicality of the present subject is emphazied by recent developments, which

in principle are in line with the present approach: In [25] both incompressible and

compressible two-phase flow of perfect gases is simulated using a Discontinuous

Galerkin method for Direct Numerical Simulation at constant surface tension coef-

ficient based on the Euler equations in both regimes. Another recent Discontinuous

Galerkin Method for solving the low and zero Mach number equations for multi-

phase flows is presented in [88]. Additional literature is cited during description of

the various topics covered in the following.

Since this work is intended for serving as basis for subsequent work on open issues,

extensions, enhancements and (more advanced) applications, it contains various de-

tailed derivations and algorithms, repeating selected preliminary work by other au-

thors in the present notation as well, if required. An overview of the content of this

document is given in the next chapter.

8 See, for example, [65] for an overview of fractional step methods, to which the projection methods,
in the present context as incremental pressure correction method, belong.

9 Especially for incompressible flows the equation of state is obsolete in the present formulation, as
long as no temperature information is required and in this case potential temperature degenerates
to a measure for tracking of the divergence error during the predictor step of the present predictor-
corrector projection method. Therefore no discrete velocity divergence needs to be evaluated when
correcting velocity divergence errors in the advective fluxes during the corrector step.





2. FRAMEWORK OF THIS THESIS

This chapter gives an overview of the scientific contributions of this work and an

outline of what follows in the subsequent parts, chapters and sections.

2.1 Scientific Contributions of this Work

The following major and minor topics are covered within this work:

‚ presentation of the zero Mach number equations for chemically reacting two-

phase flow at arbitrary equation of state

‚ integration of the formulation of the governing equations in [92] into the two-

phase flow setting

‚ detailed description of the enhancement of the hybrid volume-of-fluid/level-

set correction strategy from [28], advanced in [150], and its adaption to the

setting of the present formulation of the governing equations and the applied

numerical method as already sketched roughly in [182]

‚ derivation and application of a derived conservative discretization of the inter-

face surface stress tensor as momentum boundary condition between different

fluid phases via flux formulation

‚ proposition of a non-iterative level-set penalty strategy for keeping the absolute

value of the level-set gradient close to unity

‚ presentation of an analytical solution for the signed distance function for ellip-

tic contours

‚ presentation of the derivation of the analytical pressure solution for a test case

used in [86]
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‚ derivation of a Helmholtz-type equation for the boundary normal pressure gra-

dient on the boundary for no-slip boundaries at variable density, corresponding

to the work from [102] for constant density (see appendix section D)

The following associated research projects already have used or are about to benefit

from this work and the related implementation of the newly developed flow solver1:

‚ implementation of the presented single-phase solver served as basis for other,

already published, theses [18] and [133] as well as related publications [134]

and [19]

‚ implementation of the presented solver is intended to serve as basis for differ-

ent projects with in the German Research Foundation Collaborative Research

Center 1114 "Scaling Cascade in Complex Systems"

‚ contribution to comparative studies applying the present single-phase method

and its implementation to vortex-wall collision and detachment problems for

analysis of drag force scaling (subject to be published in [126])

2.2 Script Organization

This script is organized as follows: After this introductory part I three more parts

follow.

The first one, part II, is dedicated to the derivation of the leading order set of gov-

erning equations for chemically reacting immiscible zero Mach number two-phase

flow at arbitrary equation of state (without definition of a specific reaction model)

as generalization to the derivations in [90], [151], [150] and more recently [25] for

ideal gas, similar to [16], and to the introduction of a resulting generalized divergence

constraint as done in [5], [6] and [92].

The second one, part III, describes building blocks of a discretely conservative Finite

Volume projection method for solution to the equations from part II, focussing on

incompressible flow in particular. This part is divided into chapters 4 to 8.

In chapter 4 the basic concepts of the numerical method are explained.
1 STAFSEA2 [’stæfsi: ’skwεrd]: STructured Adaptive Flow Solver for Engineering and

Atmospheric Applications, based on SAMRAI and related open source software as specified un-
der http://www.mi.fu-berlin.de/w/AgKlein/WelcomeSTAFSEAsquared and in
chapter 8.

http://www.mi.fu-berlin.de/w/AgKlein/WelcomeSTAFSEAsquared
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Chapter 5 describes the single-phase flow solver as the basic building block of the

entire numerical method. It directly applies with corresponding fluid properties to

all regions of the computational domain, that are sufficiently far away from a fluidic

interface, and therefore to the majority of the computational domain (which does not

necessarily correspond to the majority of the grid cells, if adaptive mesh refinement

with finer grid resolution in the vicinity of the interface is applied). The chapter

is finalized with a section on basic numerical results for single-phase computations

in order to show successful operation of the implemented method and to reproduce

some standard test results for both constant and variable density flows at vanishing

velocity divergence.

Chapter 6 is dedicated to building blocks extending the singe-phase method from

chapter 5 to a two-phase flow solver. Therefore this chapter is split into the following

sections: In section 6.1 the dual representation of the fluidic interface is described,

followed by description of the strategy for numerical flux computation at cut grid

cells in section 6.2, particularly focussing on determination of numerical fluxes for

the explicitly treated advective part of the governing equations in the vicinity of the

interface in section 6.3 and an overview of the current status regarding the overall

two-phase corrector step in section 6.4. The major section 6.5 is dedicated to correc-

tion of discretization errors during the discrete two-phase transport in order to guar-

antee for physically reasonable states of the conserved quantities, mass conservation

in each of the fluid phases and suitable necessary coupling of fluid flow and interface

representation. Additionally, a non-iterative approach for stabilization of the level-

set gradient is presented. The second major section 6.6 describes an approach for

conservative discretization of the surface stress tensor due to surface tension. Both

sections 6.5 and 6.6 comprise a final sub-section on topic-specific results each. The

subsequent chapter 7 provides an overview of benefits, drawbacks and open issues

of the presented approaches (as far as not already discussed in the specific sections)

and in chapter 8 the software used for both production of the results presented in this

work and generation of this document itself, including the various figures, is listed.

The concluding part IV contains a short summary. The appendix contains basic calcu-

lus used for the derivations within this work in chapter A, basic derivations in chapter

B, a chapter on accuracy and convergence in C and derivation of the variable density

equation for the boundary normal pressure gradient on no-slip boundaries in chapter

D. A German version of the abstract at the beginning of the document can be found

in appendix section E. The document is finalized by the list of cited literature.





Part II

MATHEMATICAL PROBLEM DESCRIPTION





3. GOVERNING EQUATIONS

The Reynolds Transport Theorem in its most general form

D

D t
pΨ q “

d

dt

˜ˆ
Ωptq

ρψ dV

¸

`

˛
BΩptq

ρψ p~v ´ ~wq ¨ ~ndA (3.1)

according to e.g. [23], [79] or [83] links the change of any fluid property of an arbi-

trary fluid element (Lagrangian representation) to the change of this quantity within

an arbitrarily moving and deforming control volume Ω P Rd in d spatial dimensions

(Eulerian representation). The left hand side of equation (3.1) represents the mate-

rial derivative of this property Ψp~x, tq with corresponding density ρψp~x, tq, value per

unit mass ψ and mass density ρ, all depending1 on both space ~x and time t. The total

derivative

d

dt

˜ˆ
Ωptq

ρψ dV

¸

“

ˆ
Ωptq

p ρψ qt dV `

˛
BΩptq

ρψ ~w ¨ ~ndA (3.2)

~n

Ωp`q Ωp´q

BΩ

Γ
Ω

¨

Fig. 3.1: Arbitrary domain Ω, sep-
arated by an interface Γ
into sub-domains Ωp`q and
Ωp´q.

as first term on the right hand side of equation

(3.1) consists of local changes of ρψ with par-

tial derivative p� qt ”
B�
Bt and fluxes across

the control volume boundary BΩ with (outward-

pointing) unit normal vector ~n due to changes

of the time-dependent control volume. The sec-

ond term on the right hand side of equation (3.1)

represents net fluxes across the control volume

boundary due to different velocities of fluid (~v)

and control volume boundary (~w). In the most

general notation the temporal change of Ψ in

equation (3.1) is due to externally forced volume sources within the control volume

and surface sources on the control volume boundary with production rates 9vpρψq and

1 Notation of the dependence on space ~x and time t is omitted in the above and the following notation
for compactness.
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9Fpρψq, resulting in the conservation law formulation

ˆ
Ωptq

p ρψ qt dV `

˛
BΩptq

ρψ ~v ¨ ~ndA “

ˆ
Ωptq

9vpρψq dV `

˛
BΩptq

9Fpρψq dA (3.3)

with respect to the control volume. Equation (3.3) holds in each of the sub-domains

Ωp`q and Ωp´q, resulting from separation of the control volume Ω by an interface Γ

as sketched in Fig. 3.1. The different sub-domains contain immiscible fluid phases

with different properties. With

ψ P t1, Ys, ~v, eu (3.4)

the flow of these fluid phases is, thus, governed by the integral balances

ˆ
Ωϕptq

p ρϕ qt dV “

ˆ
Ωϕptq

9qϕ
pρq dV ´

˛
BΩϕptq

~f ϕ
pρq ¨ ~ndA (3.5a)

ˆ
Ωϕptq

p ρϕY ϕ
s qt dV “

ˆ
Ωϕptq

9qϕ
pρYsq

dV ´

˛
BΩϕptq

~f ϕ
pρYsq

¨ ~ndA (3.5b)
ˆ

Ωϕptq
p ρϕ~v ϕ qt dV “

ˆ
Ωϕptq

9~q ϕ
pρ~vq dV ´

˛
BΩϕptq

F ϕ
pρ~vq ¨ ~ndA (3.5c)

ˆ
Ωϕptq

p ρϕeϕ qt dV “

ˆ
Ωϕptq

9qϕ
pρeq dV ´

˛
BΩϕptq

~f ϕ
pρeq ¨ ~ndA (3.5d)

of mass (3.5a), species masses (3.5b), (linear) momentum (3.5c) and total energy

(3.5d) within each fluid phase ϕ P tp`q, p´qu. In system (3.5) Ys is the mass fraction

of species s and

e :“ u` U ` 1

2
p~v ¨ ~vq (3.6)

is the total energy per unit mass without heat of formation, consisting of internal (u),

potential (U) and kinetic energy, each per unit mass. The individual volume sources

– both due to internal sources, such as chemical reactions (for species mass), and

external sources, such as radiation (for total energy) or gravity (for momentum) – are

denoted 9q, and the integrands of the area integrals from equation (3.3), consisting of

advection and molecular transport, are summarized in the flux density vectors ~fpρψq
for scalars ρψ and the flux density tensor F for the momentum vector.

The surface integrals in (3.5) can be split into contributions from the interface portion

ΓΩptq :“ Ωptq X Γptq and from sub-domain boundaries BΩϕ
Ωptq :“ BΩϕptqzΓΩptq
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Γ

BΩp´q
BΩp`q

ΓΩ

~nΓ

¨

ε ε δΓ

Fig. 3.2: Sub-domain boundaries BΩp`q and BΩp´q, interface section ΓΩ within Ω and inter-
face normal vector ~nΓ.

with BΩϕptq “ BΩϕ
Ωptq Y ΓΩptq that match the control volume boundaries:

˛
BΩϕptq

�ϕ ¨ ~nϕ dA “

ˆ
BΩϕΩptq

�ϕ ¨ ~nϕ dA`

ˆ
ΓΩptq

�ϕ
Γ ¨ ~n

ϕ
Γ dS (3.7)

The two sub-domains need to be coupled via interface conditions obtained as given

in [41], [81], [176] or in [58] (and references therein) from balancing over a control

volume δΩΓ :“ δΓˆr´ε, εs around the interface Γ as shown in Fig. 3.2, with (in the

limit) vanishing interface normal extent ε Ñ 0. This leads to the general interfacial

balance
ˆ
δΓΩptq

�p`qΓ ¨ ~n
p`q

Γ dS `

ˆ
δΓΩptq

�p´qΓ ¨ ~n
p´q

Γ dS “

ˆ
δΓΩptq

9q
pΓq
� dS (3.8)

in which 9q
pΓq
� represents sources of quantity � at the interface, while ~np`qΓ points from

the fluid labeled p`q to the one labeled p´q and ~np´qΓ points from the fluid labeled

p´q to the one labeled p`q. After definition of a unique interface normal vector

~nΓ :“ ~n
p`q

Γ “ ´~n
p´q

Γ (3.9)

the general coupling condition for each quantity � reads

J� K ¨ ~nΓ “ 9q
pΓq
� (3.10)
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with jump discontinuity J� K :“ �p`qΓ ´�p´qΓ .

3.1 Phase Indicator

In order to distinguish between the different fluid phases, a phase indicator function

(or characteristic function2)

φϕ p~x, tq :“

#

1 if ~x P Ωϕ ptq

0 otherwise
(3.11)

has to be introduced, which assigns a fixed marker value to each fluid particle, de-

pending on its location with respect to the interface. As each fluid particle keeps its

property, the material derivative

D

D t
pφϕ q “ pφϕ qt ` ~vφ ¨∇φϕ “ 0 (3.12)

with smooth velocity field ~vφ, matching the interface velocity ~wΓ at the interface,

vanishes as shown in [45]. More precisely, as ∇φϕ is zero everywhere but at the

interface, the so-called topological equation (3.12) represents the interfacial move-

ment. Approximation of the topological equation (3.12) is one of the crucial issues

in solving two-phase flow equations numerically. As shown in [173] or [176], due to

∇φϕ “ ´~nϕΓ δΓ “ ´

ˆ
Γ
~nϕΓ δ

pdq p~x´ ~xΓq dS (3.13)

with surface Dirac

δΓ :“

ˆ
Γ
δpdq p~x´ ~xΓq dS (3.14)

and

δpdq p~x´ ~xΓq “

d
ź

d“1

δ
`

xd ´ xd,Γ
˘

(3.15)

as the product of one-dimensional Dirac delta distributions in coordinate direction d,

pφϕ qt “ ´
`

φϕ~nϕΓ
˘

δΓ (3.16)

holds.
2 As defined in [87].
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3.2 One-Fluid Formulation

A reformulation of the conservation laws (3.5), that holds in the entire domain Ω

in Fig. 3.1 and contains both discontinuous fluid properties at the sharp interface Γ

and the interface conditions as shown in [87], can be obtained by summation of the

contributions in (3.5) from each fluid phase ϕ as described in [45], [143], [173] or

[176] (originally proposed in [70]) after introduction of the generalized field quantity

Υ p~x, tq :“
ÿ

ϕ

pφϕ p~x, tqΥϕ p~x, tqq (3.17)

that is valid in the entire flow domain. The benefits of such a formulation for cases, in

which the detailed interface identification is necessary or desired, are emphasized, for

example, in [101]. The discontinuous fluid properties are accounted for via the phase

indicator φ introduced in section 3.1. With Υ P tψ, ρψ, ~fρψ, 9qρψu for each quantity

ψ (including F in the case of ψ being a vector), the sum of the integral balances for

ρψ from (3.5) over the sub-domains within Ω can be written in terms of integrals over

the entire domain Ω as

ÿ

ϕ

˜ ˆ
Ωptq

φϕ p pρψqϕ qt dV ´

ˆ
Ωptq

φϕ 9qϕ
pρψq dV

`

ˆ
BΩϕΩptq

~f ϕ
pρψq ¨ ~n

ϕ dA `

ˆ
ΓΩptq

~f ϕ
pρψq,Γ ¨ ~n

ϕ
Γ dS

¸

“ 0 (3.18)

due to ˆ
Ωϕptq

Υϕ dV “

ˆ
Ωptq

φϕΥϕ dV (3.19)

after multiplication with the respective phase indicator. With

φϕ p pρψqϕ qt “ pφ
ϕpρψqϕ qt ´ pρψq

ϕ pφϕ qt “ pφ
ϕpρψqϕ qt ` pρψq

ϕ~vφ ¨∇φϕ

(3.20)

due to the product rule and equations (3.12) and (3.13), the generic relation

ˆ
Ωptq

p ρψ qt dV ´

ˆ
Ωptq

9qpρψq dV `

˛
BΩΩptq

~fpρψq ¨ ~ndA´

ˆ
Ωptq

9q
pΓq
pρψqδΓ dV “ 0

(3.21)

is obtained from equation (3.18), which corresponds to the one given in [85], for ex-

ample. In equation (3.21) each of the quantities ρψ, 9qpρψq and ~fpρψq satisfies relation
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(3.17). After considering

~vφ p~xΓ, tq ” ~wΓ (3.22)

at the interface and ˆ
ΓΩptq

�dS “

ˆ
Ωptq

�δΓ dV (3.23)

as given in [176], the interfacial surface integral from equation (3.18) can be replaced

by a volume integral over the interfacial source

9q
pΓq
pρψq “

´r
~fpρψq

z
´ J ρψ K ~wΓ

¯

¨ ~nΓ (3.24)

which is restricted to the interface via the surface Dirac δΓ in order to obtain the

representation in equation (3.21). Further, in equation (3.21) the identity

˛
BΩΩptq

~fpρψq ¨ ~ndA “

˛
BΩΩptq

ÿ

ϕ

´

φϕ ~f ϕ
pρψq

¯

¨ ~ndA

“
ÿ

ϕ

˜ˆ
BΩΩptq

φϕ ~f ϕ
pρψq ¨ ~ndA

¸

“
ÿ

ϕ

˜ˆ
BΩϕΩptq

~f ϕ
pρψq ¨ ~n

ϕ dA

¸

(3.25)

holds, which further transforms to

˛
BΩΩptq

~fpρψq ¨ ~ndA “
ÿ

ϕ

˜ˆ
Ωϕptq

∇ ¨ ~f ϕ
pρψq dV ´

ˆ
ΓΩptq

~f ϕ
pρψq ¨ ~nΓ dS

¸

“
ÿ

ϕ

˜ˆ
Ωptq

φϕ∇ ¨ ~f ϕ
pρψq ´

´

~f ϕ
pρψq ¨ ~nΓδΓ

¯

dV

¸

“
ÿ

ϕ

¨

˚

˝

ˆ
Ωptq

∇ ¨ φϕ ~f ϕ
pρψq´

~f ϕ
pρψq ¨∇φ

ϕ ´

´

~f ϕ
pρψq ¨ ~nΓδΓ

¯

loooooooooooooooooomoooooooooooooooooon

“ 0

dV

˛

‹

‚

“

ˆ
Ωptq

∇ ¨
ÿ

ϕ

´

φϕ ~f ϕ
pρψq

¯

dV “

ˆ
Ωptq

∇ ¨ ~fpρψq dV (3.26)

due to (3.13) after applying the divergence theorem in each fluid phase. Thus, equa-

tion (3.21) can be written as
ˆ

Ωptq

´

p ρψ qt `∇ ¨ ~fpρψq ´ 9qpρψq ´ 9q
pΓq
pρψqδΓ

¯

dV “ 0 (3.27)
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which contains volume integrals only, and, thus, also the local equation

p ρψ qt `∇ ¨ ~fpρψq ´ 9qpρψq ´ 9q
pΓq
pρψqδΓ “ 0 (3.28)

holds. Equation (3.28) only differs from the single-phase formulation due to the

singular interfacial sources (scaling with δΓ) and the fact that each quantity Υ P

tρψ, ~fpρψq, 9qpρψqu is a generalized one according to the definition in (3.17).

In particular, the flux densities in the generic equation (3.28) are

~fpρq “ ρ~v (3.29a)

~fpρYsq “ ρYs~v `~js (3.29b)

Fpρ~vq “ ρ~v ˝ ~v ´ S (3.29c)

~fpρeq “ ρe~v ´ S ¨ ~v `~jq `~jC (3.29d)

with stress tensor

S “ T ´ pI (3.30)

and identity matrix I as well as outer product ~v ˝ ~v ” ~v~v. Molecular transport of

momentum in (3.30), heat in (3.29d) and species mass in (3.29b) is modeled by the

constitutive expressions for

‚ the viscous stress tensor

T “ 2µE ` λ p∇ ¨ ~vq I (3.31)

with dynamic viscosity3 µ and second viscosity coefficient4 λ “ ζ ´ 2
3µ with

bulk viscosity5 ζ “ 0 due to the Stokes’ relation for Newtonian fluids as given,

for example, in [24], strain rate tensor

E “
1

2

´

∇ ˝ ~v ` p∇ ˝ ~vqT
¯

(3.32)

and p�qT expressing the transposed of �,

‚ the heat flux density
~jq “ ´K ¨∇T (3.33)

3 The dynamic viscosity is also called shear viscosity or second Lamé constant.
4 The second viscosity coefficient is also called first Lamé constant.
5 The bulk viscosity is also called volume viscosity or dilatational viscosity coefficient.
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with thermal conductivity tensor K and temperature T based on Fourier’s
law, reducing to

~jq “ ´kI ¨∇T “ ´k∇T (3.34)

with thermal conductivity k for isotropic materials,

‚ the species diffusive flux density

~js “ ´ρDs ¨∇Ys (3.35)

with the species diffusivitiesDs based on Fick’s first law6, reducing to

~js “ ´ρDsI ¨∇Ys “ ´ρDs∇Ys (3.36)

for isotropic materials

while

~jC :“
Ns
ÿ

s“1

hs~js (3.37)

in (3.29d) is defined to be the flux density responsible for the transport of the species’

enthalpie hs via diffusion. While the interfacial sources are addressed in the next

section, the volume specific production rates read

9qpρq “ 0 (3.38a)

9qpρYsq “ ρ%s (3.38b)
9~qpρ~vq “ ρ~g (3.38c)

9qpρeq “ 9qq ´ 9q% (3.38d)

6 For multi-component systems conservative species diffusion is modeled more accurately by the
Stefan-Maxwell equation, as, for example, described in [113]. In this case, the diffusive flux of
species s, depending on its mass fraction Ys, is

~js “ ´ρ
Ms

M

¨

˝

Npsq
ÿ

s“1

pDs,s∇Ysq `
∇M
M

Npsq
ÿ

s“1

pDs,sYsq

˛

‚

as given in [113] or [27], which results in a nonlinear coupled system for all present species.
Solution of such systems (with often unknown diffusivity tensor components Ds,s for complex
multi-component mixtures) is beyond the scope of the present work. However, under the assump-
tion of small amounts of solutes in a common solvent, binary diffusion of each solute in the solvent
can be assumed and Fick’s law with binary diffusion coefficients can be applied as a simplification
as proposed e.g. in [141], where the diffusion coefficient Ds is meant to be the binary diffusion
coefficient of species s in the common non-reacting abundant solvent.
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with

9q% :“
Ns
ÿ

s“1

ρ%s
`

∆h0
˘

s
(3.39)

as the total amount of standard enthalpie of formation of all Ns species in the system

per time, ∆h0 as the standard enthalpie of formation7 of species s with respect to its

molar mass and

%s “ %s pp, ρ, Ysq (3.40)

as the net production rate of species s, depending on ρ, Ys and pressure p. Further, ~g

is the vector of gravitational acceleration and 9qq represents external heat sources.

3.2.1 Closure

The thermal equation of state

T “ T pp, ρ, Ysq (3.41)

and the Ns caloric equations of state

hs “ hs pp, T q “ hs pp, ρ, Ysq (3.42)

for the partial specific enthalpies hs (as e.g. given in [24]) – with ρ “ ρ pp, s, Ysq

and specific entropy s – in combination with problem dependent initial and domain

boundary conditions, as well as suitable singular interfacial source terms, close the

system of equations, yielding

p ρ qt `∇ ¨ pρ~vq “ 9qpΓqρ δΓ

(3.43a)

p ρYs qt `∇ ¨ pρYs~vq `∇ ¨~js “ ρ%s ` 9q
pΓq
ρYs
δΓ

(3.43b)

p ρ~v qt `∇ ¨ pρ~v ˝ ~vq `∇p´∇ ¨ T “ ρ~g ` 9~q
pΓq
ρ~v δΓ

(3.43c)

p ρe qt `∇ ¨ ppρe` pq~vq ´∇ ¨
´

pT ¨ ~vq ´~jq ´~jC

¯

“ 9qq ´ 9q% ` 9qpΓqρe δΓ

(3.43d)

7 Enthalpie of formation is positive, if it is consumed for formation of species s (endothermic pro-
cess), and negative, if it is released (exothermic process), resulting in the negative contribution of
9q% to relations (3.38d) and (3.43d).
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which corresponds to the one-fluid formulation described in [87], subject to specifi-

cation of the interfacial sources 9qpΓq in section 3.2.2.

3.2.2 Interface Conditions

Balance (3.8) at the interface in combination with ~nΓ from definition (3.9) yields the

interface conditions

´r
~fpρq

z
´ J ρ K ~wΓ

¯

¨ ~nΓ “ 9qpΓqρ “ ∆∆ 9mΓ (3.44a)
´r

~fpρYsq

z
´ J ρYs K ~wΓ

¯

¨ ~nΓ “ 9q
pΓq
ρYs

“ ∆∆ 9mΓ Y
p`q

s,Γ `∆ 9m
p´q

Γ JYs K

`

r
~js

z
¨ ~nΓ (3.44b)

`q
Fpρ~vq

y
´ J ρ~v K ˝ ~wΓ

˘

¨ ~nΓ “ 9~q
pΓq
ρ~v “ ∆∆ 9mΓ ~v

p`q

Γ `∆ 9m
p´q

Γ J~v K

´ JS K ¨ ~nΓ (3.44c)
´r

~fpρeq

z
´ J ρe K ~wΓ

¯

¨ ~nΓ “ 9qpΓqρe “ ∆∆ 9mΓ e
p`q

Γ `∆ 9m
p´q

Γ J e K

´

r
S ¨ ~v ´~jq ´~jC

z
¨ ~nΓ (3.44d)

with

∆ 9mϕ
Γ :“ ρϕΓ

“`

~v ϕΓ ´ ~wΓ

˘

¨ ~nϕΓ
‰

“ ρϕΓ 9q
pΓq,ϕ
φ (3.45)

as the density of the mass flux of fluid phase ϕ across the interface due to both inter-

face movement (~wΓ ” ~vφ,Γ) and interface normal fluid flow (~v ϕΓ ¨ ~n
ϕ
Γ ), and

∆∆ 9mΓ :“
ÿ

ϕ

∆ 9mϕ
Γ “

´

J ρ K
´

~v
p`q

Γ ´ ~wΓ

¯

` ρ
p´q

Γ J~v K
¯

¨ ~nΓ

“ J ρ K 9qpΓq,p`qφ ` ρ
p´q

Γ J~v K ¨ ~nΓ (3.46)

as density of the resulting effective mass flux across the interface. The other interfa-

cial source terms 9q
pΓq
� in (3.44) represent gain or loss of species mass (in (3.44b))

at the interface, for example due to chemical reactions, the interfacial forces in-

cluding surface tension (in (3.44c)) and gain or loss of interfacial total energy (in

(3.44d)). Due to conservation of mass with the interface being a massless surface,

∆∆ 9mΓ “ 0, and

J~v K ¨ ~nΓ “

˜

1´
ρ
p`q

Γ

ρ
p´q

Γ

¸

9q
pΓq,p`q
φ (3.47)
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as well as
ÿ

s

9q
pΓq
ρYs
“ 9qpΓqρ “ 0 (3.48)

remain. In absence of mass transfer across the interface, and, thus, if there are no
phase changes, the interface normal component of the interfacial speed ~wΓ ¨ ~nΓ is

equal to the interface normal fluid velocity on both sides of the interface, guaranteeing

that each fluid particle remains on that side of the interface it has been on. Thus,

~wΓ ¨ ~nΓ “ ~v
p`q

Γ ¨ ~nΓ “ ~v
p´q

Γ ¨ ~nΓ “ ~vφ ¨ ~nΓ (3.49)

holds, yielding

∆ 9m
p`q

Γ “ ∆ 9m
p´q

Γ “ 0 (3.50)

as well as

9q
pΓq,p`q
φ “ 9q

pΓq,p´q
φ “ 9q

pΓq
φ “ 0 (3.51)

for the volume source. Therefore,

J~v K ¨ ~nΓ “ 0 (3.52)

results, which means, that the interface normal fluid velocity is continuous. Assum-

ing, in addition, that no chemical reactions take place at the interface, then for

each species s the relations

9q
pΓq
ρYs
“ 0 (3.53)

as well as r
~js

z
¨ ~nΓ “ 0 (3.54)

due to
~j
pΓq
s “ ~j

pΓq,p`q
s “ ~j

pΓq,p´q
s (3.55)

hold. Due to (3.54) the equation

r
~jC

z
¨ ~nΓ “

ÿ

s

”

Jhs K
´

~j
pΓq
s ¨ ~nΓ

¯ı

(3.56)

applies, which further reduces to

r
~jC

z
¨ ~nΓ “ 0 (3.57)
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due to
~j
pΓq
s “ ~j

pΓq,p`q
s “ ~j

pΓq,p´q
s “ 0 (3.58)

in case of an impermeable surface. Equation (3.53) is considered to imply constant

local surface tension over time, resulting in continuous heat flux

r
~jq

z
¨ ~nΓ “ σt “ 0 (3.59)

across the interface following [85]. Under these boldly emphasized assumptions
the interfacial sources read

´r
~fpρq

z
´ J ρ K ~wΓ

¯

¨ ~nΓ “ 9qpΓqρ “ 0 (3.60a)
´r

~fpρYsq

z
´ J ρYs K ~wΓ

¯

¨ ~nΓ “ 9q
pΓq
ρYs

“ 0 (3.60b)
`q
Fpρ~vq

y
´ J ρ~v K ˝ ~wΓ

˘

¨ ~nΓ “ 9~q
pΓq
ρ~v “ J p K~nΓ ´ JT K ¨ ~nΓ (3.60c)

´r
~fpρeq

z
´ J ρe K ~wΓ

¯

¨ ~nΓ “ 9qpΓqρe “ J p~v K ¨ ~nΓ ´ JT ¨ ~v K ¨ ~nΓ (3.60d)

with

9~q
pΓq
ρ~v “ ~fσ (3.61a)

9qpΓqρe “ ~fσ ¨ ~wΓ (3.61b)

and surface force density~fσ due to surface tension, dervided in the following section

3.2.4. Finally, the bottom equation (3.60d) with (3.61b) vanishes under the above

conditions due to (3.49) and (3.63) below, since it leaves condition (3.60c) subject

to (3.61a), multiplied by the interfacial velocity. The interface normal and interface

tangential components of the momentum interface condition (3.60c) read

J p K´ ~nΓ ¨ JT K ¨ ~nΓ ´ ~nΓ ¨~fσ “ 0 (3.62a)

pI ´ ~nΓ ˝ ~nΓq ¨

´

JT K ¨ ~nΓ `~fσ

¯

“ ~0 (3.62b)

with projection operator pI ´ ~nΓ ˝ ~nΓq onto the interface. Further, in case of viscous
flow also the interface tangential velocity components do not jump at the interface

due to friction and the resulting non-slip condition

J~v K “ 0 (3.63)
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at the interface yields a continuous8 velocity field across the interface. Additionally,

Jφ K “ 1 (3.64)

applies for the fluid marker as given by (3.11) in section 3.1. Further, under isother-
mal conditions

JT K “ 0 (3.65)

holds, and assuming the individual species to follow Henry’s law, the discontinuity

of mass fractions

JYs K “ Y
p`q
s

¨

˚

˝

1´
1

Hs
ř

s̃
Y
p`q

s̃
Hs̃

˛

‹

‚

(3.66)

can be determined based on one-sided data9 according to the definition of Henry’s

law C
p´q
s “ 1

Hs
C
p`q
s with non-dimensional Henry’s law constant Hs of species s and

concentration Cs.

3.2.3 Redundancy

One of the Ns scalar equations (3.5b) or (3.43b) for the partial density ρYs, respec-

tively, as well as one of the Ns caloric equations of state – say, both labeled s “ s˚

– can be removed from the system, since the sum over all Ns species mass equations

(3.43b) results in the mass equation (3.43a) due to mass conservation as given in

[141], for example. Since
Ns
ÿ

s“1

Ys “ 1 (3.67)

has to hold at any point in space, the constraints

Ns
ÿ

s“1

~js “ 0,
Ns
ÿ

s“1

%s “ 0,
Ns
ÿ

s“1

9q
pΓq
ρYs
“ 0 (3.68)

arise, as shown, for example, in [141] and [95]. The caloric equation of state of

species s˚ finally vanishes due to

Ns
ÿ

s“1

Yshs “ h (3.69)

8 The gradient of the velocity field, however, has a discontinuity at the interface.
9 See appendix section B.1 for the derivation of equation (3.66).
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with enthalpy h “ h pp, ρ, Ysq in combination with constraint (3.67). Therefore in

the following the index s represents any of the Ns´1 species whose index is s ‰ s˚.

3.2.4 Surface Tension

As shown in [176] and [187], the influence of surface tension, commonly represented

as the resulting interface normal surface force~fσ, can be written in terms of the sur-

face divergence of a surface tension tensor

S
pσq
Γ :“ σ pI ´ ~nΓ ˝ ~nΓq (3.70)

with σ as the surface tension coefficient – or surface energy density – and identity

matrix I . This surface tension tensor was originally introduced in [82] and [100] and

allows for the notation
ˆ

ΓΩptq

~fσ dS “

ˆ
ΓΩptq

∇Γ ¨S
pσq
Γ dS

p‹q
“

˛
BΩptqXΓptq

S
pσq
Γ ¨ ~p d` “

˛
BΩptqXΓptq

σ~p d`

(3.71)

with surface gradient operator

∇Γ “ pI ´ ~nΓ ˝ ~nΓq ¨∇ (3.72)

and ~p as the interface tangential vector, which is perpendicular to the boundary of a

surface element in the surface, pointing outward regarding Ω as sketched in Fig. 3.3.

Thus, ~nΓ ¨ ~p ” 0 at any point of the surface element boundary.

¨

¨

¨

~n

~p

~nΓ

BΩ
Γ

Fig. 3.3: Interface Γ intersecting a cubic control
volume Ω with boundary BΩ

The right hand side with respect to

p‹q of equation (3.71) is obtained

by applying the divergence theorem

on the surface, yielding line integrals

around the intersection of Γ and BΩ.

The vector ~p can be considered the

projection

~p “ pI ´ ~nΓ ˝ ~nΓq ¨ ~n (3.73)

of the normal vector ~n to the control volume boundary BΩ onto the surface of Γ. Due
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to the identities p~nΓ ¨ ~nΓq ” 1 and p~nΓ ˝ ~nΓq ¨ ~n ” ~nΓ p~nΓ ¨ ~nq the relation

S
pσq
Γ ¨ ~p “ σ pI ´ ~nΓ ˝ ~nΓq ¨ pI ´ ~nΓ ˝ ~nΓq ¨ ~n

“ σ pI ´ ~nΓ ˝ ~nΓq ¨ ~n “ S
pσq
Γ ¨ ~n (3.74)

holds, since for the occuring expression p~nΓ ˝ ~nΓq ¨ p~nΓ ˝ ~nΓq ¨ ~n the identity

p~nΓ ˝ ~nΓq ¨ p~nΓ ˝ ~nΓq ¨ ~n “ ~nΓ p~nΓ ¨ ~nΓq p~nΓ ¨ ~nq “ ~nΓ p~nΓ ¨ ~nq “ p~nΓ ˝ ~nΓq ¨ ~n

(3.75)

is obtained. Therefore relation (3.73) allows for rewriting equation (3.71) as surface

integral

˛
BΩptqXΓptq

S
pσq
Γ ¨~p d` “

˛
BΩptq

´

S
pσq
Γ δΓ

¯

¨~p dA “

˛
BΩptq

´

S
pσq
Γ δΓ

¯

¨~ndA (3.76)

in full space over the domain boundary BΩ, with δΓ as the surface Dirac (3.14),

limiting the effect of surface tension to the interface. The facts, that on the one hand

S
pσq
Γ ¨ ~p “ σ~p “ σ pIΓ ¨ ~p q “ pσIΓq ¨ ~p (3.77)

with surface identity IΓ “ pI ´ ~nΓ ˝ ~nΓq – resulting in (3.70) – and on the other

hand

~fσ “ ∇Γ ¨ S
pσq
Γ “ ∇Γ ¨ σIΓ “ σ p∇Γ ¨ IΓq ` IΓ ¨∇Γσ “ σ p∇Γ ¨ IΓq `∇Γσ

(3.78)

reveal the common formulation

~fσ “ σκ~nΓ `∇Γσ (3.79)

for the surface force density, split into interface normal and interface tangential con-

tributions, with mean10 interface curvature κ due to

p∇Γ ¨ IΓq “ κ~nΓ (3.80)

as given in [176]. Another full space formulation involving the surface Dirac δΓ can
10 κ: the mean curvature in two space dimensions and twice the mean curvature in three space di-

mensions.
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be obtained in addition to (3.76) in terms of a volume integral due to

ˆ
ΓΩptq

9~q
pΓq
ρ~v dS “

ˆ
ΓΩptq

~fσ dS
(3.23)
“

ˆ
Ωptq

~fσδΓ dV “

ˆ
Ωptq

~fΓ dV (3.81)

and, thus, with the identities (3.71) and (3.76) the relation
˛
BΩptq

´

S
pσq
Γ δΓ

¯

¨ ~ndA “

ˆ
Ωptq

~fΓ dV (3.82)

with (volume) force density~fΓ holds.

3.2.5 Total Energy Balance in Pressure Formulation

Enthalpy is defined as

h “ h pp, ρ, Ysq “ u pp, ρ, Ysq `
p

ρ
(3.83)

while the balance for internal energy

u “ u pp, ρ, Ysq (3.84)

results from subtracting the kinetic energy balance11

ρ
D

D t

ˆ

1

2
p~v ¨ ~vq

˙

“

´

ρ~g `~fσδΓ

¯

¨ ~v `∇ ¨ pS ¨ ~v q ´ S : ∇~v (3.85)

and the potential energy balance12

ρ
D

D t
pU q “ ´ρ~g ¨ ~v (3.86)

with time-independent specific potential energy U from the total energy equation

(3.43d) as done in [141]. As shown in appendix section B.2.3, this yields the pressure

formulation
˜

p p qt ` ~v ¨∇p`
`

ρc2
˘

p∇ ¨ ~vq “ Ξ´1
”

´T : ∇~v `∇ ¨~jq ´ 9qq ` 9qc

ı

(3.87)

11 See appendix section B.2.1 for derivation of the kinetic energy balance.
12 See appendix section B.2.2 for derivation of the potential energy balance.
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of the total energy balance due to ~vp~xΓq ” ~wΓ with

9qc :“
Ns
ÿ

s“1

9qs (3.88)

and

9qs :“ ~js ¨∇hs ` ρ%s
“

hs `
`

∆h0
˘

s

‰

(3.89)

as well as

Ξ “ 1´ ρ

ˆ

Bh

Bp

˙

ρ,Ys

(3.90)

and

c2 “

ˆ

Bp

Bρ

˙

s,Ys

“
ρ

Ξ

ˆ

Bh

Bρ

˙

p,Ys

“
1

χ ρ
“
K

ρ
(3.91)

as the frozen speed of sound13 as given in [9], [73] and [137] with specific entropy s,

(frozen) adiabatic compressibility

χ “ ´ρ

ˆ

Bρ´1

Bp

˙

s,Ys

“
1

ρ

ˆ

Bρ

Bp

˙

s,Ys

“

1´ ρ
´

Bh
Bp

¯

ρ,Ys

ρ2
´

Bh
Bρ

¯

p,Ys

(3.92)

and adiabatic bulk modulus K.

3.2.5.1 Perfect Gas

If the fluid phases are perfect gases, the above relations simplify due to the particular

equation of state

T “
p

ρ

M

R
(3.93)

with R as the universal gas constant and M as the molar mass of the mixture of the

respective fluid phase. With the heat capacity ratio

γ “
cp
cv

(3.94)

and cv and cp as the (constant) heat capacities at constant volume and constant pres-

sure, as well as the relations

cp ´ cv “
R

M
(3.95)

13 The speed of sound is called frozen, if all the mass fractions Ys remain constant.
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and - resulting from (3.94) and (3.95) -

cv “
1

γ ´ 1

R

M
, cp “

γ

γ ´ 1

R

M
(3.96)

the general quantities on the left hand side of Tab. 3.1 for arbitrary equations of state

simplify to the expressions on the right hand side of Tab. 3.1 for perfect gases. Due

to the caloric equation of state

ρe “
p

γ ´ 1
`

1

2
ρ p~v ¨ ~vq ` U (3.97)

for perfect gases the results from [95] are obtained. The only difference to [95]

for perfect gases is, that in [95] the standard enthalpie of formation is contained in

ρe, while here it is treated separately, considering the species balance (3.43b) with

(3.53), leading to the caloric equation (3.97) and to the energy balance representation

(3.43d) with (3.37) and (3.38d), the latter subject to (3.39). The resulting pressure

formulation of the energy equation for perfect gases reads

˜

p p qt ` ~v ¨∇p` pγpq p∇ ¨ ~vq “ p1´ γq
”

´T : ∇~v `∇ ¨~jq ´ 9qq ` 9qc

ı

(3.98)

in which all quantities are discontinuous at the interface according to definition (3.17)

as well. The left hand side of equation (3.98) corresponds to the ones obtained in [92]

and [19].

3.2.6 Dimensional System

The resulting (dimensional) system reads

p ρ qt `∇ ¨ pρ~vq “ 0 (3.99a)

p ρYs qt `∇ ¨ pρYs~vq ` ∇ ¨~js “ ρ%s (3.99b)

p ρ~v qt `∇ ¨ pρ~v ˝ ~vq ` ∇p ´ ∇ ¨ T “ ρ~g `~fσδΓ (3.99c)

p p qt ` ~v ¨∇p `
`

ρc2
˘

p∇ ¨ ~vq “ Ξ´1
”

´T : ∇~v `∇ ¨~jq

´ 9qq ` 9qcs (3.99d)

pφ qt ` ~v ¨∇φ “ 0 (3.99e)
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Tab. 3.1: Simplifications for two-phase flow of perfect gases

Quantity Perfect gas representation
˜

T “ T pρ, p, Ysq T “ M
R

´

p
ρ

¯

˜

u “ u pρ, p, Ysq “
řNs

s“1 Ysus u “ 1
γ´1

´

p
ρ

¯

˜

h “ u pρ, p, Ysq `
´

p
ρ

¯

h “
´

γ
γ´1

¯´

p
ρ

¯

˜

ρ
´

Bh
Bp

¯

ρ,Ys

´

γ
γ´1

¯

˜

ρ
´

Bh
Bρ

¯

p,Ys
´

´

γ
γ´1

¯´

p
ρ

¯

˜

cp “
`

Bh
BT

˘

p,Ys
cp “

´

γ
γ´1

¯

R
M

˜

Ξ “ 1´ ρ
´

Bh
Bp

¯

ρ,Ys
Ξ “ ´

´

1
γ´1

¯

˜

χ “ 1
K “

1
ρ

´

Bρ
Bp

¯

s,Ys
“ Ξ

ρ

ˆ

ρ
´

Bh
Bρ

¯

p,Ys

˙´1

χ “ 1
K “

1
γp

´

c “

c

´

Bp
Bρ

¯

s,Ys
“

c

ρ
Ξ

´

Bh
Bρ

¯

p,Ys
“ 1?

χρ c “
a

γpp{ρq

under the assumptions made so far, with the energy equation in pressure formulation

due to section 3.2.5 for general fluids. The system is completed by the relations

specified in Tab. 3.3, suitable initial and boundary conditions and the parameters

given in Tab. 3.4. The units of measurement of all quantities are given in Tab. 3.2
and are based on the Nd “ 4 fundamental physical dimensions mass rkgs, length

rms, time rss and temperature rKs.

Tab. 3.2: Units of measurement according to the International System of Units (SI)

Symbol t ~x ~v ρ p, K Y e, u, h φ T

Unit s m m
s

kg
m3

kg
s2m

kg
kg

m2

s2 ´ K

Symbol D,D ~g k,K h µ, ζ σ κ, δpxq ∆h0 %

Unit m2

s
m
s2

kg m
s3K

kg
s3K

kg
s m

kg
s2

1
m

m2

s2
1
s
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Tab. 3.3: Equations for specification of quantities in order to close system (3.99)

Quantity ~jq 9qc ~jC

Equation (3.34) (3.88) (3.37)

Quantity T 9qs hs ~js %s

Equation (3.41) (3.89) (3.42) (3.36) (3.40)

Quantity c T ~fσ

Equation (3.91) (3.31) (3.79)

Quantity Ξ E κ ~nΓ δΓ

Equation (3.90) (3.32) (3.80) (3.13) (3.14)

(3.9) (3.15)

Tab. 3.4: Parameters required in system (3.99)

Symbol Description

µ dynamic viscosity

ζ bulk viscosity

g gravitational acceleration

σΓ surface tension coefficient14

K bulk modulus

D diffusive coefficient

k thermal conductivity

h heat transfer coefficient

∆h0 enthalpie of formation w.r.t. molar mass

14 Surface tension, in general, depends on the concentration CΓ of surface active agents on the
interface according to

σ pCΓq “ σΓ

ˆ

1´
σC pCΓq

σΓ

˙

as, for example, given in [121] or [175], with σΓ as the surface tension coefficient of the clean in-
terface. In this case σC pCΓq is a surfactant concentration dependent function, which can depend
on other state variables in addition, and, thus, CΓ is a function of both space and time, for which an
additional transport equation on the surface has to be solved. This is, however, beyond the scope of
this work. Surfactants are molecules, attached to the interface, changing the interfacial properties
– such as surface tension – and various so-called surface tension - concentration isotherms, as e.g.
in [50], are proposed in order to model the behavior of surface tension due to influences such as
surfactants.
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3.3 Nondimensionalization

A non-dimensional version of the system (3.99) can be obtained by choosing Nq “

14 scalar reference quantities

ť, ľ, v̌, ρ̌, χ̌, ǧ, µ̌, σ̌, %̌, Ď, ǩ, ȟ, čp, ˇp∆h0q (3.100)

with length l and χ “ 1{K as well as units of measurement according to Tab.
3.2. With these reference quantities pNq ´Ndq “ 10 non-dimensional character-

istic numbers can be defined according to [95] as listed in table Tab. 3.5, with Nd as

given in section 3.2.6. With the non-dimensional space and time coordinates ~̂x and t̂,

satisfying

~x “ ľ ~̂x, t “ ť t̂, (3.101)

and the resulting operators

p� qt̂ “ ť p� qt , ∇̂� “ ľ∇�, ∇̂ ¨� “ ľ∇ ¨� (3.102)

as well as non-dimensional state variables

ρ̂ “ ρ
ρ̌ , ~̂v “ ~v

v̌ , p̂ “ p χ̌,

T̂ “ T čpρ̌χ̌, ĥ “ h ρ̌χ̌, (3.103)

parameters

µ̂ “ µ
µ̌ , ζ̂ “ ζ

µ̌ , D̂ “ D
Ď
,

~̂g “ ~g
ǧ , σ̂ “ σ

σ̌ , k̂ “ k
ǩ
, κ̂ “ κ ľ, (3.104)

and additional quantities

ĉ “ c
?
ρ̌χ̌, 9̂qq “ 9qq

čpρ̌χ̌ľ

ȟ
, %̂ “ %

%̌ ,

ˆp∆h0q “ ∆h0

∆̌h0
, δpx̂q “ δpxq ľ, (3.105)
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the non-dimensional system reads

˜

Sr p ρ̂ qt̂ ` ∇̂ ¨ ρ̂~̂v “ 0 (3.106a)

˜

Sr p ρ̂Ys qt̂ ` ∇̂ ¨ ρ̂Ys~̂v “ Da ρ̂%̂s ´
1

Re Sc
∇̂ ¨ ~̂js (3.106b)

˜

Sr
´

ρ̂~̂v
¯

t̂
` ∇̂ ¨ ρ̂~̂v ˝ ~̂v “

1

Re
∇̂ ¨ T̂ ´

1

Ma2 ∇̂p̂`
1

Fr2
ρ̂~̂g `

1

We
~̂fΓ (3.106c)

˜

Sr p p̂ qt̂ ` ~̂v ¨ ∇̂p̂ ` ρ̂ ĉ2
´

∇̂ ¨ ~̂v
¯

“

Ξ´1

«

1

Re Pr

´

∇̂ ¨ ~̂jq ´ Nu 9̂qq

¯

`

Ns
ÿ

s“1

9̂qs ´Ma2

ˆ

1

Re

´

T̂ : ∇̂~̂v
¯

˙

ff

(3.106d)

using the characteristic numbers from Tab. 3.5. In system (3.106) the definition

Tab. 3.5: Non-dimensional characteristic numbers

Symbol Definition Description
´

Da
`

%̌ ľ
˘

{v̌ Damköhler number 15
´

Fr v̌{
a

ľ ǧ Froude number 16
´

Ma v̌
?
ρ̌ χ̌ Mach number 17

´

Nu
`

ȟ ľ
˘

{ǩ Nusselt number 18
´

Pr pµ̌ čpq {ǩ Prandtl number 19
´

Qr
`

ρ̌ χ̌ ∆̌h0
˘

Heat release parameter
´

Re
`

ρ̌ v̌ ľ
˘

{µ̌ Reynolds number 20
´

Sc µ̌{
`

ρ̌ Ď
˘

Schmidt number 21
´

Sr ľ{
`

ť v̌
˘

Strouhal number 22
´

We
`

ρ̌ v̌2 ľ
˘

{σ̌ Weber number 23



3.3. Nondimensionalization 37

9̂qs :“
1

Re Sc

´

~̂js ¨ ∇̂ĥs
¯

` Da
´

ĥs `Qr ˆp∆h0qs

¯

ρ̂%̂s (3.107)

is used and it is subject to suitable initial and domain boundary conditions, con-

straints24

Ns
ÿ

s“1

Ys “ 1,
Ns
ÿ

s“1

~̂js “ 0,
Ns
ÿ

s“1

ρ̂%̂s “ 0,
Ns
ÿ

s“1

Ysĥs “ ĥ (3.108)

and non-dimensional versions of the quantities specified in Tab. 3.3, as well as inter-

face jump conditions

r
~̂v

z
“ 0,

r
~̂js

z
¨ ~nΓ “ 0,

r
T̂

z
“ 0

1

Ma2 J p̂ K´
1

Re

´

~nΓ ¨

r
T̂

z
¨ ~nΓ

¯

“
1

We
σ̂κ̂,

(3.109)
1

Re

´

pI ´ ~nΓ ˝ ~nΓq ¨

r
T̂

z
¨ ~nΓ

¯

“
1

We

´

pI ´ ~nΓ ˝ ~nΓq ¨ ∇̂
¯

σ̂,

1

Ma2

s
1

ρ̂
∇̂p̂ ¨ ~nΓ

{
“

1

Re

s
1

ρ̂
∇̂ ¨ T̂

{

and the species discontinuity from (3.66).
15 Ratio of reaction rate to convective mass transport rate.
16 Ratio of kinetic to potential energy.
17 Ratio of flow speed to speed of sound c “

a

K{ρ “ 1
?
ρχ

18 Ratio of heat transfer into the fluid to heat conduction within the fluid.
19 Ratio of viscous diffusion rate to thermal diffusion rate.
20 Ratio of inertial forces to viscous forces.
21 Ratio of viscous diffusion rate to mass diffusion rate.
22 Ratio of characteristic speed of vortex shedding to flow speed.
23 Ratio of fluid inertia to surface tension.
24 One of the species balances does not need to be solved, if the mass equation is solved in addition,

since the sum of all species masses equals the total system mass.
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3.4 Zero Mach Number Limit

The non-dimensional system (3.106) reveals, that singularities arise, if one or more

of the non-dimensional characteristic numbers approach zero or infinity [95]. This

implicates, according to [89], [90], [95], [154] and [181], that in these regimes stan-

dard methods for numerical simulation of compressible flow become (highly) inef-

ficient or even fail. In the limit of vanishing Mach number (Ma Ñ 0), assuming

the other characteristic numbers from Tab. 3.5 to remain finite and non-zero, the

momentum equation becomes singular, since the pressure gradient term degenerates

and becomes dominant. Preventing the Froude number Fr from vanishing25 while

Ma Ñ 0 (which is the case in the pseudo-incompressible limit [46]), in particular,

requires length scales ľ :“ H ľsc to be small compared to the atmospheric pressure

scale height26 ľsc with factor H Ñ 0 and ť to resolve the respective advective time

scale with reference velocity v̌ as shown in [91] and [92] or also more generally in

[153]. In case of Ma Ñ 0 elliptic properties enter the hyperbolic-parabolic system

of equations as shown in [150] and [151], and both reformulation of the governing

equations and application of suitable numerical methods for solving these equations

is required. Following the asymptotic analysis presented in [89], [95]27 and [111], a

single-length-, single-time-scale asymptotic expansion of the primitive variables

ρ̂
´

~̂x, t̂
¯

“ ρ̂p0q
´

~̂x, t̂
¯

` Ma ρ̂p1q
´

~̂x, t̂
¯

` Ma2 ρ̂p2q
´

~̂x, t̂
¯

` ... (3.110a)

p̂
´

~̂x, t̂
¯

“ p̂p0q
´

~̂x, t̂
¯

` Ma p̂p1q
´

~̂x, t̂
¯

` Ma2 p̂p2q
´

~̂x, t̂
¯

` ... (3.110b)

~̂v
´

~̂x, t̂
¯

“ ~̂v p0q
´

~̂x, t̂
¯

` Ma ~̂v p1q
´

~̂x, t̂
¯

` Ma2 ~̂v p2q
´

~̂x, t̂
¯

` ... (3.110c)

Ys

´

~̂x, t̂
¯

“ Y
p0q
s

´

~̂x, t̂
¯

` Ma Y p1qs

´

~̂x, t̂
¯

` Ma2 Y
p2q
s

´

~̂x, t̂
¯

` ... (3.110d)

φ
´

~̂x, t̂
¯

“ φp0q
´

~̂x, t̂
¯

` Ma φp1q
´

~̂x, t̂
¯

` Ma2 φp2q
´

~̂x, t̂
¯

` ... (3.110e)

25 Fr " Ma holds for vertical length scales of ľ “ 10m since ľ ě
`

ρ̌χ̌~̌g
˘´1

has to hold such that
Fr ď Ma. For water at sea level conditions on earth this corresponds to about ľH2O ě 208 ¨ 103m

due to ρ̌H2O « 1000 kg
m3 , χ̌H2O « 4.8077 ¨ 10´10ms2

kg
and ~̌g « 9.81m

s2
, for air this corresponds

to ľair ě 10.3 ¨ 103m due to ρ̌air « 1 kg
m3 and χ̌air « 9.901 ¨ 10´6ms2

kg
. Thus, within the regime

of ľ “ 10m the ratio 1
Fr2 stays finite while 1

Ma2 Ñ8.
26 The height above ground level, in which the atmospheric pressure has dropped by a factor of

Euler’s constant compared to ground level pressure: p “ e´1pground.
27 It is important to note, that the asymptotic analysis does not provide a simplified system of equa-

tions, but establishes a way of how to discretize the full set of equations, while overcoming numer-
ical difficulties arising in the zero Mach number limit.
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in the Mach number Ma reveals the following hierarchy of equations after application

to the system (3.106) including interface conditions (3.109) and separate collection

of terms of equal order of magnitude in Ma:

‚ Order Ma´2:

∇̂p̂p0q
´

~̂x, t̂
¯

“ 0 (3.111)

r
p̂p0q

z
“ 0 (3.112)

‚ Order Ma´1:

∇̂p̂p1q
´

~̂x, t̂
¯

“ 0 (3.113)

r
p̂p1q

z
“ 0 (3.114)

‚ Order Ma0:

The leading order system is

˜

Sr
´

ρ̂p0q
¯

t̂
` ∇̂ ¨ ρ̂p0q~̂v p0q “ 0 (3.115a)

˜

Sr
´

ρ̂p0qY
p0q
s

¯

t̂
` ∇̂ ¨ ρ̂p0qY p0qs ~̂v p0q “ Da ρ̂p0q%̂p0qs ´

1

Re Sc
∇̂ ¨ ~̂j p0qs

(3.115b)
˜

Sr
´

ρ̂p0q~̂v p0q
¯

t̂
` ∇̂ ¨ ρ̂p0q~̂v p0q ˝ ~̂v p0q “

1

Re
∇̂ ¨ T̂ p0q

´ ∇̂p̂p2q

`
1

Fr2
ρ̂p0q~̂g `

1

We
~fΓ

(3.115c)
˜

Sr
´

p̂p0q
¯

t̂
` ~̂v p0q ¨ ∇̂p̂p0q ` ρ̂p0q

´

ĉp0q
¯2 ´

∇̂ ¨ ~̂v p0q
¯

“

1

Ξp0q

«

1

Re Pr

ˆ

∇̂ ¨ ~̂j p0qq ´ Nu 9̂qq

˙

`

Ns
ÿ

s“1

9̂q
p0q
s

ff

(3.115d)

with (3.107) as well as suitable initial and domain boundary conditions, con-
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straints (3.108) for the �p0q quantities and interface conditions

r
~̂v p0q

z
“ 0,

r
~̂j
p0q
s

z
¨ ~nΓ “ 0,

r
T̂ p0q

z
“ 0,

r
p̂p2q

z
´

1

Re

´

~nΓ ¨

r
T̂ p0q

z
¨ ~nΓ

¯

“
1

We
σ̂κ̂,

(3.116)
1

Re

´

pI ´ ~nΓ ˝ ~nΓq ¨

r
T̂ p0q

z
¨ ~nΓ

¯

“
1

We

´

pI ´ ~nΓ ˝ ~nΓq ¨ ∇̂
¯

σ̂,

s
1

ρ̂p0q
∇̂p̂p2q ¨ ~nΓ

{
“

1

Re

s
1

ρ̂p0q
∇̂ ¨ T̂ p0q

{

including the leading order verions of (3.66).

As done in [90] and [95], various conclusions can be drawn from this result of the

asymptotic analysis for fully conservative numerical solution to the full set of gov-

erning equations in the zero Mach number limit:

‚ The leading order pressure p̂p0q turns out to be homogeneous in space and

continuous across the interface Γ due to (3.111) and (3.112) and, thus, remains

a function of time only:

p̂p0q “ p̂p0q
`

t̂
˘

(3.117)

Therefore only the partial derivative of the leading order pressure with respect

to time remains in (3.115d) while the contribution involving the pressure gra-

dient vanishes. Further, p̂p0q does not appear in the momentum equation of

the leading order system but only occurs in the energy equation and the equa-

tion(s) of state. Thus, p̂p0q turns out to be the thermodynamic pressure. If

p̂p0q
`

t̂
˘

, as function of time (only), is not known a priori, e.g. as the atmo-

spheric pressure as in [133] for the pseudo-incompressible equations,
`

p̂p0q
˘

t̂

can be determined via integration of (3.115d) over the entire computational
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domain Ω˝ with boundary BΩ˝, yielding

´

p̂p0q
¯

t̂
“ ´

1

X̂ p0q Sr

« ˆ
BΩ˝

~̂v p0q ¨ ~n˝ dÂ`
Nu

Re Pr

ˆ
Ω˝

χ̂p0q

Ξp0q
9̂qq dV̂

´
1

Re Pr

ˆ
Ω˝

χ̂p0q

Ξp0q

´

∇̂ ¨ ~̂j p0qq

¯

dV̂ ´
Ns
ÿ

s“1

˜ˆ
Ω˝

χ̂p0q

Ξp0q
9̂q
p0q
s dV̂

¸ff

(3.118)

with suitable domain boundary conditions, BΩ˝, A, V and ~n˝ as the outer

domain boundary, its area, the volume of the computational domain and the

outward-pointing unit normal vector with respect to BΩ˝, as well as

X̂ p0q :“

ˆ
Ω˝

χ̂p0q dV̂ “

ˆ
Ω˝

1

ρ̂p0q
`

ĉp0q
˘2 dV̂ (3.119)

‚ The first order pressure pp1q is both homogeneous in space and continuous

across the interface Γ due to (3.113) and (3.114) and, thus, remains a function

of time only as well:

p̂p1q “ p̂p1q
`

t̂
˘

(3.120)

A multi-length-, single-time-scale asymptotic analysis, performed in [89], iden-

tifies p̂p1q as the acoustic pressure in the low Mach number regime. In the lead-

ing order system (3.115) for the zero Mach number limit, p̂p1q does not appear

at all and sound-wave propagation, which becomes unnoticeable for Ma Ñ 0

as stated in [95], is excluded from the leading order system. Therefore sound

propagation does not need to be treated by a numerical scheme for solving the

leading order system. This allows for significantly larger time step sizes for

explicit numerical methods and, thus, for less consumption of computational

time, since stability of an explicit numerical method is not limited by the speed

of sound-wave propagation anymore, but by the (significantly smaller) fluid

velocity28.

‚ The dynamic pressure p̂p2q occurs in the leading order momentum equation, but

not in the energy equation. Thus, momentum and energy equation decouple on

cost of an extra unknown quantity p̂p2q. However, no Riemann problems need
28 The speed of sound in water at 20oC and sea level pressure is about cH2O “ 1482m

s
(e.g. [40]). If

an air bubble rises in a water column at a typical rise velocity of ~v “ 0.2m
s

(e.g. [36]), an explicit
numerical method can treat this problem using a 7410 times larger time step size and, thus, the
numerical method is 7410 times faster.
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to be solved in the zero Mach number limit for determination of numerical

fluxes, which allows for faster numerical methods due to less time consuming

determination of advective fluxes, which is the most time consuming part of

explicit methods.

The interface conditions for interface normal stresses and the interface normal

pressure gradient in (3.116) also contain p̂p2q only.

‚ As a result of the previous conclusions, pressure decomposition according to

p̂
´

~̂x, t̂
¯

“ P̂0

`

t̂
˘

`Ma2 p̂
1
´

~̂x, t̂
¯

(3.121)

with spatially homogeneous thermodynamic pressure P̂0 in the energy balance

and the equation(s) of state and perturbation pressure p̂
1

in the momentum

equation, the latter guaranteeing the velocity divergence constraint to be sat-

isfied, is appropriate for solving the leading order system (3.115).

‚ A velocity divergence constraint

˜

∇̂ ¨ ~̂v “ ´Sr

´

P̂0

¯

t̂

ρ̂ ĉ2
`

Ξ´1

ρ̂ ĉ2

«

1

Re Pr

´

∇̂ ¨ ~̂jq ´ Nu 9̂qq

¯

`

Ns
ÿ

s“1

9̂qs

ff

(3.122)

(omitting the leading order labels) arises as a consequence of energy conserva-

tion (not due to conservation of mass) and it is driven by energy conversion and

transport processes, leading to compression or expansion and in consequence

to density variations.

‚ At non-zero flow velocity, vanishing Mach number

Ma :“
|~̂v|

ĉ
“ |~̂v|

a

ρ̂χ̂ (3.123)

is governed by vanishing compressibility

χ̂ “ ´ρ̂

ˆ

Bρ̂´1

Bp̂

˙

ŝ

“
1

ρ̂

ˆ

Bρ̂

Bp̂

˙

ŝ

Ñ 0 (3.124)

and a resulting speed of sound

ĉ “

b

pρ̂χ̂q´1
Ñ 8 (3.125)
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which is arbitrarily large, leading to the common incompressibility29 constraint

∇̂ ¨ ~̂v “ 0 (3.126)

as result of the energy balance (3.115d). With that, system (3.115) corre-

sponds to the zero Mach number variable density equations presented in [92],

however, with the dynamic pressure p̂p2q ” p̂
1

instead of the Exner pres-

sure (which is commonly used in meteorology frameworks as originally pro-

posed in [46]) in the momentum equation, as for example done in [19] for the

pseudo-incompressible equations30. The same result is obtained31 for isother-

mal flow32 in absence of chemical reactions and external heat sources (adia-

batic system). Due to the constraint (3.126), conservation of mass reduces to

pρ̂qt̂ ` ~̂v ¨ ∇̂ρ̂ “ 0 (3.127)

and if ∇̂ρ̂ “ ~0 initially, pρ̂qt̂ “ 0 and ∇̂ρ̂ “ ~0 holds for all times and with

that ρ̂ “ const. within each fluid phase. Note that in the present formulation

(3.115) explicit knowledge of the equation of state (3.41) is only required for

cases in which ∇̂ ¨ ~̂v ‰ 0 holds and contributions of heat conduction to the

velocity divergence right hand side are considered, and/or chemical reactions,

requiring knowledge of (3.40), are present, which is beyond the scope of the

subsequent work. The benefit of the present variable density formulation is,

that also zero Mach number flows, satisfying (3.126), can be computed, for

which initially ∇̂ρ̂ ‰ ~0 holds (e.g. stratified flows), leading to non-zero density

changes over time. In the rest of this chapter the more general divergence
29 Incompressibility can only be assumed for liquid phases in fluidic multi-phase systems. However,

in [19], for example, an approach for extension of numerical methods for incompressible flow
to weakly compressible flow is presented, in which the arising Poisson problems for the elliptic
contributions transform to Helmholtz problems. For slow gaseous flow – as, for example, for
rising gas bubbles in a liquid – weak compressibility can be assumed, which is, however, beyond
the scope of the discussion of the numerical method presented in part III. Further, as shown in
[129], the interfacial dynamics are governed by the behavior of the heavier fluid the more, the
larger the density ratio of the fluids is.

30 The zero Mach number variable density equations are the small scale limit of the pseudo-
incompressible equations and the limiting case of low Mach number asymptotics

31 In general, the same result is obtained, if the right hand side terms of equation (3.115d) balance or
each of them vanishes separately (as in the isothermal case without chemical reactions and external
heat sources) – or a combination of both.

32 In case of isothermal flow both pT qt “
´

BT
BP0

¯

pP0 qt “ 0 and ∇T “
´

BT
BP0

¯

∇P0 “ 0 hold;
while the latter is always satisfied in the zero Mach number regime due to vanishing gradient of
the background pressure, a constant temperature in time requires pP0 qt “ 0 for finite non-zero
´

BT
BP0

¯

; for ideal gas
´

BT
BP0

¯

“ M
ρR

.
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constraint (3.122) is kept, in order to also apply to flows with very small but

non-zero Mach number, for which the above limit considerations including

pressure decomposition apply as well.

3.5 Space-Integral Dimensional Leading Order System

The resulting integral dimensional leading order system (omitting the leading order

labels for compactness)

˜ˆ
Ωptq

p ρ qt dV `

˛
BΩptq

ρ~v ¨ ~ndA “ 0 (3.128a)

˜ˆ
Ωptq

p ρYs qt dV `

˛
BΩptq

ρYs~v ¨ ~ndA “

ˆ
Ωptq

ρ%s dV ´

˛
BΩptq

~js ¨ ~ndA

(3.128b)
˜ˆ

Ωptq
p ρ~v qt dV `

˛
BΩptq

ρ~v ˝ ~v ¨ ~ndA “

˛
BΩptq

´

T ´ Ip
1

` S
pσq
Γ δΓ

¯

¨ ~ndA

`

ˆ
Ωptq

ρ~g dV (3.128c)
˜˛

BΩptq
~v ¨ ~ndA “

ˆ
Ωptq

D dV (3.128d)

with

D :“ ´
1

ρ c2

`

Ξ´1 9q ` pP0 qt

˘

(3.129)

and

9q :“ 9qq ´∇ ¨~jq ´ 9qc (3.130)

is obtained from system (3.115) after reverting the steps performed in order to obtain

the non-dimensional system (3.106) from the original integral equations and consid-

ering (3.82) concerning the influence of surface tension. The pressure

p “ P0 ` p
1

(3.131)

consists of the background pressure P0 and small perturbations p
1

and is extended by

the (reformulated) marker transport equation
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from (3.12) and the jump conditions

J~v K “ 0,
r
~js

z
¨ ~nΓ “ 0, JT K “ 0, JP0 K “ 0,

r
p
1
z
´ p~nΓ ¨ JT K ¨ ~nΓq “ σκ,

(3.132)

ppI ´ ~nΓ ˝ ~nΓq ¨ JT K ¨ ~nΓq “ ppI ´ ~nΓ ˝ ~nΓq ¨∇qσ,

s
1

ρ
∇p1 ¨ ~nΓ

{
“

s
1

ρ
∇ ¨ T

{

according to section 3.2.2 as dimensional form of the ones given in (3.116). The

constraint (3.126) corresponds to D “ 0 in (3.128d), defined through (3.129).

3.6 Generalized Divergence Constraint

In [5], [6] and [7] a generalized velocity divergence constraint of type

∇ ¨ pP~vq “ P
ˆ

S ´ pP0 qt

ρ c2

˙

“ P
ˆ

S ´ p lnP0 qt

rγpP0q

˙

(3.133)

with

rγppq :“
ρ
´

Bh
Bρ

¯

p,Ys
p
ρ Ξ

(3.134)

is derived for simulation of supernovae with arbitrary equation of state, based on the

relation

∇ ¨ ~v ` 1

ρ c2
p~v ¨∇P0q “

1

P∇ ¨ pP ~vq “ ∇ ¨ ~v ` 1

P p~v ¨∇Pq (3.135)

from [5]. In equation (3.133)

S “
Ξ´1

ρ c2
9q “

χ

Ξ
9q (3.136)

summarizes the sources related to heat production and conduction and P is a both

space and time dependent quantity (called β0 in [5], [6] and [7]). Note that by appli-



46 3. Governing Equations

cation of the chain rule pP0 qt ”
`

BP0
Bt

˘

“
`

BP0
BP

˘ `

BP
Bt

˘

“
`

BP0
BP

˘

pP qt the relation

pP qt “
ˆ

BP
BP0

˙

pP0 qt (3.137)

is obtained, which allows to recast equation (3.133) into the form

pP qt `∇ ¨ pP~vq “ PS (3.138)

with
ˆ

BP
BP0

˙

“
P
ρ c2

(3.139)

linking P to the background pressure P0. For the small scale limit, with ∇P0 “ 0

due to equation (3.111) with P0 ” pp0q, space-dependency of P vanishes due to

∇P ” 0 from relation (3.135) for arbitrary ~v. The generalized integral pseudo-

incompressible33 type divergence constraint34 then reads

˜ ˛
BΩ
pP~v ¨ ~nq dA “ ´pP0 qt

ˆ
Ω

Θ

c2
dV ´

ˆ
Ω

9qΘ

Ξ c2
dV

looooooomooooooon

“:
´
Ω PS dV

loooooooooooooooooooomoooooooooooooooooooon

“:
´
Ω PD dV

(3.140)

with

Θpθq :“
P
ρ

(3.141)

based on (3.128d) as function of potential temperature θ. Equation (3.140) is of the

same type as the divergence constraint given in [134], with both a pressure dependent

temporal derivative and a source term on the right hand side. The differential equation

(3.139) can be solved for P via integration of

ˆ P

P̌

1

P̃
dP̃ “

ˆ P

P̌0

1

ρ c2
dP̃0 (3.142)

after separation of variables to yield

P “ P̌ exp

„ˆ P

P̌0

1

ρ c2
dP̃0



(3.143)

33 In the pseudo-incompressible regime P depends on the (vertical) space coordinate(s), but not on
time, while in the small scale limit P is independent of spatial variations (but might depend on
time in analogy to the leading order pressure P0).

34 ∇ ¨ ~v “ D ñ P ∇ ¨ ~v “ PD ñ ∇ ¨ P~v “ PD
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with corresponding reference quantities P̌ and P̌0. The right hand side integral of

equation (3.143) can be evaluated, if the equation of state is specified, yielding that

P is constant and homogeneous if P0 is, as shown for perfect gas in the following. For

incompressible flow P degenerates to a homogeneous constant auxilliary quantity P̌
due to D “ 0 as consequence of cÑ8.

3.6.1 Perfect Gas

For perfect gases, Θ from relation (3.141) can be shown to be the potential tempera-

ture

Θpθq “ θ “ T

ˆ

P̌0

P0

˙

R
Mcp

“
P0M

ρR

ˆ

P̌0

P0

˙

γ´1
γ

(3.144)

as done in [92] for a non-dimensional setting in a meteorological framework or in

[19], [133] and [134] for the dimensional case, yielding

P “ ρΘ “
P̌0M

R

ˆ

P0

P̌0

˙
1
γ

“ P̌
ˆ

P0

P̌0

˙
1
γ

(3.145)

with reference background pressure P̌0. This result is also obtained from equation

(3.143) with ρc2 ” γP0.

3.6.1.1 Time Derivative

The partial derivative of (3.145) with respect to time reads

pP qt “

˜

P̌0M

R

ˆ

P0

P̌0

˙
1
γ

¸

t

“
P̌0

γ´1
γ M

R

ˆ

P
1
γ

0

˙

t

“

ˆ

P̌0

P0

˙

γ´1
γ M

γR
pP0 qt

(3.144)
“

ρθ

γP0
pP0 qt

(3.141)
“

P
γP0

pP0 qt (3.146)

if pP̌0

γ´1
γ Mq is assumed to be time-independent and with that

p lnP0 qt “ γ p lnP qt (3.147)

is obtained. With rγ reducing to the pressure independent heat capacity ratio γ for

ideal gases, finally
P
γ
p lnP0 qt “ P p lnP qt “ pP qt (3.148)
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results for the corresponding relation in equation (3.133). Thus, for ideal gas the

expression containing the derivative of the leading order pressure with respect to

time in (3.133) matches the respective expression given in [134].

3.6.1.2 Gradient

The gradient of P vanishes by construction if ∇P0 “ 0 as shown above, which

naturally includes ideal gases due to

∇P “ ∇
˜

P̌0M

R

ˆ

P0

P̌0

˙
1
γ

¸

(3.146)
“

P
γP0

∇P0 (3.149)

which matches (3.135), requiring pP̌0

γ´1
γ Mq to be homogeneous.

3.6.1.3 Interfacial Discontinuity

For the interfacial discontinuity

JP K “ 0 (3.150)

is obtained for the choice

P̌
p´q

0 “ P0

¨

˚

˚

˝

˜

M p`q

M p´q

¸

γp´q

pγp´q´1q
˜

P̌
p`q

0

P0

¸

pγp`q´1qγp´q

pγp´q´1qγp`q

˛

‹

‹

‚

(3.151)

connecting the background pressures in the different fluid phases, which simplifies to

P̌
p´q

0 “

˜

M p`q

M p´q

¸

γ
pγ´1q

P̌
p`q

0 (3.152)

in case of identical heat capacity ratios γ “ γp`q “ γp´q in both phases. This result

is obtained by subtracting the corresponding expression of P on both sides of the
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interface according to

JP K “ Pp`q ´ Pp´q “ 1

R

˜

ˆ

P̌0

γ´1
γ M P

1
γ

0

˙p`q

´

ˆ

P̌0

γ´1
γ M P

1
γ

0

˙p´q
¸

“
P0

R

¨

˚

˝

˜

P̌
p`q

0

P0

¸

γp`q´1

γp`q

M p`q ´

˜

P̌
p´q

0

P0

¸

γp´q´1

γp´q

M p´q

˛

‹

‚

(3.153)

accounting for JP0 K “ 0 due to relation (3.112).





Part III

BUILDING BLOCKS FOR A FULLY CONSERVATIVE

NUMERICAL METHOD





4. CONCEPTS OF THE NUMERICAL METHOD

In this chapter the basic concepts of the numerical method are outlined, starting with

an overview of projection methods, followed by the equations for Finite Volume

methods. The latter are derived for arbitrary control volumes with piecewise smooth

boundary segments, subsequently restricted to fix Cartesian grids and the equations

for Cartesian grid cells, that are intersected by an interface with different states on

either side of the interface, are derived.

4.1 Projection Method

In principle, there are two classes of methods for solving the governing equations

for zero Mach number or incompressible flow as a special case of low Mach number

flow ([3]), both containing elliptic properties. The first class introduces an artificial

compressibility as introduced in [33], the second class consists of the various widely

used pressure correction approaches. Among the latter, on the one hand there are iter-

ative implicit methods, such as the PISO and SIMPLE algorithms (including variants

SIMPLER and SIMPLEC) introduced in [139], on the other hand there are fractional

step methods, that split the solution procedure into different sub-steps.

An overview of projection methods is, for example, given in [65] and a history about

earlier versions can be found in [56]. Projection methods can be viewed as special

case of fractional step methods, [184], in which the determination of the solution

at the subsequent time level is split into different sub-steps, of which the final one

projects a predicted solution onto the space of solutions that satisfy an elliptic con-

straint. As outlined in the introduction, projection methods are especially efficient

at comparable accuracy to other approaches if applied to large scale computations,

which are required for the Direct Numerical Simulation of practical problems, since

each projection step in the corrector of the predictor-corrector scheme only requires

solving of a linear problem for a scalar quantity per time step instead of solving large

linear systems. Following [65], projection methods for incompressible flow (at con-
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stant density) can be split into three different classes: pressure-correction methods,

velocity-correction methods and consistent splitting schemes. Both pressure- and

velocity-correction methods can be sub-dividied into non-incremental, incremental

and rotational incremental versions, of which the non-incremental ones directly com-

pute updated solutions of the unknown scalar quantity, the incremental ones compute

corrections to the previous known solution with the latter considered for obtaining

predicted data and the rotational incremental ones additionally apply a modified pres-

sure update including viscous effects implicitely incorporating a consistent pressure

boundary condition. Similar work is done in [30].

Starting with a sketch of the original projection method, more recenty versions, es-

pecially focussing on the variable density case, are given in the following.

4.1.1 Classical Projection Method

Classical projection methods solve the momentum equation

~vt ` ~v ¨∇~v `
1

ρ
∇p´ µ

ρ
∇ ¨∇~v “ 0 (4.1)

for incompressible flow in non-conservative form with constant density ρ and con-

stant dynamic viscosity µ in combination with the velocity divergence constraint

∇ ¨ ~v “ 0 (4.2)

due to conservation of mass by Helmholtz-Hodge decomposition of an arbitrary ve-

locity field

~v ˚ “ ~vsol ` ~virrot “ ~vsol `∇δπ (4.3)

into a solenoidal velocity field ~vsol and an irrotational velocity field ~virrot, where the

latter can be replaced by the gradient of a scalar δπ due to ∇ˆ~virrot “ 0 ” ∇ˆ∇δπ.

The divergence of (4.3) leaves

∇ ¨ ~v ˚ “ ∇ ¨ ~virrot “ ∇ ¨∇δπ (4.4)

due to ∇ ¨ ~vsol “ 0, which can be solved for δπ for given boundary conditions of δπ

and a given velocity field ~v ˚. In the original non-incremental method [33, 34] the
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latter is obtained from a predictor step solving

~v ˚ “ ~v n ´∆t

ˆ

~v ¨∇~v ´ µ

ρ
∇ ¨∇~v

˙

(4.5)

without contribution of the pressure forces. The final velocity is obtained by adding

the pressure forces

~v n`1 “ ~v ˚ ´
∆t

ρ
∇pn`1

loooomoooon

“: ∇δπ

(4.6)

after determination of ∇δπ according to (4.4) due to ∇ ¨ ~v n`1 “ 0.

As boundary condition for solid wall boundaries, for example, ∇p ¨ ~n˝ “ 0 is ob-

tained1 due to ~v ¨ ~n˝ “ 0 with ~n˝ as the normal vector to the domain boundary.

However, as this boundary condition is not the true pressure boundary condition of

the Navier-Stokes equations, accuracy is reduced at the boundary. Improvement can

be achieved by two different actions:

‚ incremental methods involving suitable pressure updates according to [30] or

[65] as sketched in the following section 4.1.2 can be applied: Improved ac-

curacy of projection methods as discovered in [60] is shown in [30] or [65],

if only pressure increments are computed by the projection step and old time

level pressure information is already considered in the predictor step. As shown

in [30], the resulting accuracy depends on the combination of chosen predictor

pressure representation π, the boundary condition for the predicted velocity ~v ˚

and computation of the new pressure p “ π ` O pδπq with δπ as solution to

the Poisson problem and O as a (linear) operator yielding the pressure incre-

ment from the incremental Poisson solution. This corresponds to the rotational

incremental methods as introduced above.

‚ boundary tangential information due to viscous stresses can be incorporated in

the pressure boundary condition: In [102] an approach for solving a Helmholtz-

type problem on the domain boundary for determination of the boundary nor-

mal pressure boundary condition of the Poisson problem within the domain

is presented, and well-posedness of the respective problem is shown. The re-

sulting boundary normal pressure boundary condition for application to the

Poisson problem of the projection contains boundary tangential information.
1 If the right hand side of equation (5.128) is non-zero, but consists of the gravity vector, the right

hand side of the vertical pressure boundary condition is ~g ¨ ~n˝.
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A corresponding equation for solid no-slip boundaries for the variable density

case is derived in appendix section D.

4.1.2 Projection Method Variants

The second order accurate projection method for incompressible flows from [15] is

extended to variable density flows with divergence constraint of type

∇ ¨ 1

ρ˚
∇Bπ “ D˚ (4.7)

with known quantities indicated by ˚ in [17]. As the original method from [33], these

two methods, however, suffer from pressure discretization related issues. In contrast

to these discretely exact projection methods, in [8] an approximate projection is pro-

posed, which is extended to variable density flows in [4]. A detailed summary is

given in [150], which is also compactly reviewed in [180]. In the latter, a stable dis-

cretely exact non-incremenental pressure correction projection method on staggered

grids is presented.

4.1.3 Generalized Projection Method

The generalized approximate projection method for enforcing the generalized diver-

gence constraint (3.140) is presented in [92] for inviscid flow in the context of a

generalized meteorological framework and in [5] and [6] for the low Mach num-

ber model of supernovae. Application of the respective two step corrector within

the present method on a staggered grid is given in detail in sections 5.2.1 and 5.2.2.

While for incompressible viscous flows with constant density approaches concern-

ing an accurate explicit pressure update and an accurate pressure boundary condition

are available as sketched in section 4.1.1, the situation yet is less clear for viscous

zero Mach number flows with variable density and a suitable explicit pressure update

remains to be found for a corresponding rotational form of the incremental pressure-

correction method. Additionally, application of an approach for determination of an

accurate pressure boundary condition including boundary tangential information due

to viscous stresses for variable density flows as given in appendix section D for solid

no-slip wall boundaries remains to be done, which is, however, beyond the scope of

this work.
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4.2 Finite Volume Method

Finite Volume methods are a natural choice of approximating conservation laws of

the type (3.21), as they determine volume averages of the conserved quantities, based

on numerical approximation of the fluxes across the control volume boundaries and

the volume averages of the source terms. A general Finite Volume discretization of

equation (3.21) in a time-dependent control volume Ωi with index i and Npfq smooth

boundary segments in semi-discrete space integral representation2 reads

d

dt

˜ˆ
Ωiptq

ρψ dV

¸

“

d

dt

`

∆Viptq ρψiptq
˘

“ ∆Viptq Qpρψq,iptq ´

¨

˝

Npfq
ÿ

f“1

´

∆Afptq F pρψq,fptq
¯

˛

‚

i

(4.8)

after taking relation (3.2) into account, and

ρψ
pn`1q
i “ ρψ

pnq
i ´

˜

1´
∆V

pnq
i

∆V
pn`1q
i

¸

ρψ
pnq
i

`
∆t

∆V
pn`1q
i

¨

˝
rQpρψq,i ´

¨

˝

Npfq
ÿ

f“1

rFpρψq,f

˛

‚

i

˛

‚ (4.9)

is obtained after integration over a time interval
`

tn, tn`1
˘

with size ∆t :“ tn`1 ´

tn and time level index n in a fully discrete space-time integral representation. In

equation (4.8) and (4.9)

ρψiptq :“
1

∆Viptq

ˆ
Ωiptq

ρψp~x, tq dV (4.10)

is the integral average of ρψ within the control volume Ωi, such that

ˆ tn`1

tn

d

dt

`

∆Viptq ρψiptq
˘

dt “ ∆V
pn`1q
i ρψ

pn`1q
i ´∆V

pnq
i ρψi

pnq
(4.11)

2 A discretization technique of the interfacial surface tension contribution to the momentum equation
is discussed separately in section 6.6.
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is obtained and rQi and rFf are suitable spatio-temporal approximations

rQpρψq,i :«
1

∆t

ˆ tn`1

tn
∆Viptq Qpρψq,iptqdt (4.12a)

rFpρψq,f :«
1

∆t

ˆ tn`1

tn
∆Afptq F pρψq,fptq dt (4.12b)

to the volume sources with approximation

Qpρψq,iptq :« 9qpρψq,iptq :“
1

∆Viptq

ˆ
Ωiptq

9qpρψqp~x, tq dV (4.13)

to the volume integral average and approximation

F pρψq,fptq :« f pρψq,fptq :“
1

∆Afptq

ˆ
BΩfptq

´

~fpρψq ´ ρψ ~w
¯

f
p~x, tq ¨~nfp~x, tqdA

(4.14)

to the face integral average of the control volume boundary normal flux. If ρψ repre-

sents the momentum density vector instead of a scalar quantity, ~f has to be replaced

by the tensor F and 9q by the vector ~9q, yielding average vectors in equations (4.12),

(4.13) and (4.14).

4.2.1 Fix Cartesian Grid

The computational domain Ω˝ is sub-divided into Npiq finite control volumes Ωi, the

computational grid, such that

Ω˝ “ tΩi; i “ 1..Npiq P Nu (4.15)

is satisfied. A Cartesian grid with grid cell size

∆V
p`q
i ptq :“

ˆ
Ω
p`q
i ptq

dV “ hp`q
d
ź

d“1

cdptq (4.16)

and hp`q as the one-dimensional reference grid spacing of grid refinement level ` as

well as cd as scaling factor in coordinate direction d is used. The grid cells are assumed

to be fixed within the considered time intervals, and therefore – allowing for only one

grid refinement level and therefore omitting the index p`q in the following – the time
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dependence in (4.16) drops, reducing to

∆Vi “ h
d
ź

d“1

cd “

d
ź

d“1

∆xd (4.17)

with fixed ratio of grid cell extensions in the different coordinate directions. Time-

invariant grid cells further imply, that the boundary of the grid cells does not move.

Thus,

~w ” 0 (4.18)

as well as

d

dt

ˆˆ
Ωi

ρψ dV

˙

“

ˆ
Ωi

Bρψ

Bt
dV (4.19)

with now time-independent grid cells Ωi. The Finite Volume approximation (4.8)

simplifies to

d

dt

`

ρψiptq
˘

“ Qpρψq,iptq ´
1

h

¨

˝

d
ÿ

d“1

1

cd

2
ÿ

w“1

F pρψq,d,wptq

˛

‚

i

(4.20)

and (4.9) to

ρψ
pn`1q
i “ ρψ

pnq
i ` ∆t

¨

˝

rQpρψq,i ´
1

h

¨

˝

d
ÿ

d“1

1

cd

2
ÿ

w“1

rF pρψq,d,w

˛

‚

i

˛

‚ (4.21)

with spatio-temporal grid cell and grid cell face average approximations

rQpρψq,i :«
1

∆t

ˆ tn`1

tn
Qpρψq,iptqdt

«
1

∆t

ˆ tn`1

tn
9qpρψq,iptq dt

“
1

∆t∆Vi

ˆ tn`1

tn

ˆ
Ωi

9qpρψq,i dV dt (4.22a)
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rF pρψq,d,w :«
1

∆t

ˆ tn`1

tn
F pρψq,d,wptqdt

«
1

∆t

ˆ tn`1

tn
f pρψq,d,wptqdt

“
1

∆t∆Ad

ˆ tn`1

tn

ˆ
BΩd,w

~fpρψq,d,w ¨ ~nd,w dAdt (4.22b)

for the source terms and the grid cell boundary fluxes, with

f pρψq,d,wptq :“
1

∆Ad

ˆ
BΩd,w

~fpρψq,d,wp~x, tq ¨ ~nd,w dA (4.23)

as the approximation to the simplified spatial grid cell face flux average due to (4.18),

fixed outward-pointing face normal ~nf and face area ∆A. In equation (4.21) the sum

over all grid cell faces has been split into a sum over the coordinate directions with

index d, and the location of the considered grid cell face BΩf with respect to the grid

cell center in the respective coordinate direction, indexed w. Expressing the outward-

pointing normal vector ~nd,w, pointing in negative coordinate direction d for w “ 1 and

in positive coordinate direction d for w “ 2, by the unit vector~ed, pointing in positive

coordinate direction d, relations (4.20) and (4.21) read

d

dt

`

ρψiptq
˘

“ Qpρψq,iptq ´
1

h

¨

˝

d
ÿ

d“1

1

cd

2
ÿ

w“1

p´1qw F pρψq,d,wptq

˛

‚

i

“: L
t1u
i pρψptqq

(4.24)

and

ρψ
pn`1q
i “ ρψ

pnq
i ` ∆t

¨

˝

rQpρψq,i ´
1

h

¨

˝

d
ÿ

d“1

1

cd

2
ÿ

w“1

p´1qw rF pρψq,d,w

˛

‚

i

˛

‚ (4.25)

with spatial and spatio-temporal average flux approximations

F pρψq,d,wptq :«
1

∆Ad

ˆ
BΩd,w

~fpρψq,d,wp~x, tq ¨~ed dA (4.26a)

rF pρψq,d,w :«
1

∆t∆Ad

ˆ tn`1

tn

ˆ
BΩd,w

~fpρψq,d,wp~x, tq ¨~ed dAdt (4.26b)



4.2. Finite Volume Method 61

Γptnq Γptn`1q

Ω
p`q

i ptnq

Ω
p´q

i ptnq

Ω
p`q

i ptn`1q

Ω
p´q

i ptn`1q

BΩi

tn tn`1

Fig. 4.1: Grid cell at two different points in time, tn and tn`1, intersected by a moving and/or
deforming interface Γ

4.2.2 Cut Cells

While each Cartesian grid cell remains fixed within the considered time interval with

invariant grid cell boundary, grid cell subsets Ωϕ
i – if occupied by different fluid

phases ϕ in case of an intersection of interface Γ and grid cell Ωi as sketched in Fig.
4.1 – remain time dependent as the interface can move and deform over time with

~wΓ ‰ 0. Thus, if written in terms of these grid cell subsets, equation (4.20) yields

d

dt

`

ρψiptq
˘

“
ÿ

ϕ

Qϕ
pρψq,iptq´

1

h

¨

˝

d
ÿ

d“1

1

cd

2
ÿ

w“1

p´1qw
ÿ

ϕ

F ϕ
pρψq,d,wptq

˛

‚

i

“: L
t2u
i pρψptqq

(4.27)

for the semi-discrete space integral version, and equation (4.21) results in the fully

discrete space-time integral version

ρψ
pn`1q
i “ ρψ

pnq
i ` ∆t

¨

˝

ÿ

ϕ

rQ
ϕ

pρψq,i ´
1

h

¨

˝

d
ÿ

d“1

1

cd

2
ÿ

w“1

p´1qw
ÿ

ϕ

rF
ϕ

pρψq,d,w

˛

‚

i

˛

‚

(4.28)

for the update of the integral average of ρψ in the entire grid cell after considering

relation (3.25). While rQ
ϕ

pρψq,i and rF
ϕ

pρψq,d,w approximate the expressions

rQ
ϕ

pρψq,i :«
1

∆t∆Vi

ˆ tn`1

tn

ˆ
Ωϕ

i

9qϕ
pρψq,i dV dt

“
1

∆t

ˆ tn`1

tn
αϕi ptq 9q

ϕ
pρψq,iptq dV dt (4.29a)
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rF
ϕ

pρψq,d,w :«
1

∆t∆Ad

ˆ tn`1

tn

ˆ
BΩ
pϕq

d,w

~f ϕ
pρψq,d,w

¨~ed dAdt

“
1

∆t

ˆ tn`1

tn
β ϕ
d,w
ptq f

ϕ
pρψq,d,wptq dt (4.29b)

in (4.28), the integral averages, used in relations (4.29), read

9q
ϕ
pρψq,iptq :“

1

∆V ϕ
i ptq

ˆ
Ωϕ

i

9qϕ
pρψq,i dV (4.30a)

f
ϕ
pρψq,d,wptq :“

1

∆Aϕ
d,w
ptq

ˆ
BΩϕ
d,w

~f ϕ
pρψq,d,w

¨~ed dA (4.30b)

for each grid cell subset. Further,

αϕi ptq :“
∆V ϕ

i ptq

∆Vi
“

´
Ωϕi ptq

dV´
Ωi

dV
“

´
Ωi
φϕptqdV´
Ωi

dV
(4.31a)

β ϕ
d,w
ptq :“

∆Aϕ
d,w
ptq

∆Ad,w
“

´
BΩϕ
d,w
ptq dA

´
BΩd,w

dA
“

´
BΩd,w

φϕptqdA´
BΩd,w

dA
(4.31b)

are the time-dependent grid cell (volume) fraction α in phase ϕ in cell i and the time-

dependent grid cell face (area) fraction β in phase ϕ on the cell face of grid cell i

with face normal in direction d on cell side w are defined. Using these definitions,

corresponding time average fractions

rαϕi :“
1

∆t

ˆ tn`1

tn
αϕi ptqdt (4.32a)

rβϕ
d,w

:“
1

∆t

ˆ tn`1

tn
β ϕ
d,w
ptq dt (4.32b)

can be specified, such that

rQ
ϕ

pρψq,i « rαϕi Q
ϕ

pρψq,i (4.33a)

rF
ϕ

pρψq,d,w « rβϕ
d,w

F
ϕ

pρψq,d,w (4.33b)

with approximations

Q
ϕ

pρψq,i :«

´ tn`1

tn αϕi ptq Q
ϕ
pρψq,iptq dt´ tn`1

tn αϕi ptqdt
«

´ tn`1

tn αϕi ptq 9q
ϕ
pρψq,iptq dt´ tn`1

tn αϕi ptq dt
(4.34a)
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F
ϕ

pρψq,d,w :«

´ tn`1

tn β ϕ
d,w
ptq F ϕ

pρψq,d,wptqdt´ tn`1

tn β ϕ
d,w
ptq dt

«

´ tn`1

tn β ϕ
d,w
ptq f

ϕ
pρψq,d,wptq dt´ tn`1

tn β ϕ
d,w
ptqdt

(4.34b)

For two-phase flow, in addition, the relations

α
p´q

i “ 1´ α
p`q

i “ 1´ αi (4.35a)

β
p´q

d,w
“ 1´ β

p`q

d,w
“ 1´ βd,w (4.35b)

and

rα
p´q

i “ 1´ rα
p`q

i “ 1´ rαi (4.36a)

rβ
p´q

d,w
“ 1´ rβ

p`q

d,w
“ 1´ rβd,w (4.36b)

apply, if the fluid phase, which is labeled p`q, is taken to be the reference phase with

αi ” α
p`q

i (4.37a)

βd,w ” β
p`q

d,w
(4.37b)

as reference fractions3.

3 The choice of the reference phase is arbitrary and also the fluid phase labeled p´q could have been
chosen. Throughout this work, however, the reference phase is the one labeled p`q.





5. SINGLE-PHASE FINITE VOLUME PROJECTION METHOD

The underlying numerical method for single-phase flow, described in this chapter,

applies without modification in each Finite Volume grid cell, that is sufficiently far

away from the fluidic interface, assuming fluid properties of the respective fluid phase

in this grid cell. The grid cell is sufficiently far away from the interface, if the entire

stencil, required for numerical computation of all fluxes and source terms involved in

determination of the update of the integral averages in the current grid cell, only con-

sists of grid cells, that are entirely occupied by one of the fluid phases throughout the

entire time interval considered. This applies for most of the computational domain

(however, not necessarily to most of the computational grid cells if adaptive mesh

refinement (AMR) is used). The single-phase set of equations corresponds to system

(3.128) without the interfacial force in the momentum equation, without the trans-

port of the phase indicator from section 3.1 and without the need of accounting for

interfacial discontinuities in parameters as well as conserved and primitive quantities.

Further, the divergence constraint (3.128d) is replaced by the generalized constraint

(3.140). Since the resulting system (3.128) consists of both hyperbolic-parabolic and

elliptic contributions, a fractional step method1 – or, to be more specific, an approxi-

mate incremental-pressure projection method (according to the nomenclature in [30])

or incremental pressure-correction method (according to the classification in [65]) as

utilized in [15], [180] and [92] – is applied, splitting the solution process into two

main parts:

1. a spatially unsplit hyperbolic-parabolic predictor step P, ignoring both en-

forcement of the divergence constraint (3.140) and time dependence of the

dynamic pressure p
1

and

2. an elliptic corrector step C, consisting of two approximate projection steps,

similar to methods related to [15] as one type of projection methods as catego-

rized in [30]:
1 See, for example, [12] and [30] for an overview of such methods, including projection methods

and pressure correction (or pressure Poisson) methods
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(a) a corrector step Cp1q, enforcing the approximations of the advective flux

averages to satisfy the divergence constraint

(b) a corrector step Cp2q, both enforcing the velocity divergence constraint

and accounting for time-dependence of the dynamic pressure

Thus, the updated integral averages after a full numerical time step can be expressed

as

ρψ
pn`1q

“ Cp2q

´

Cp1q

´

P

´

ρψ
pnq

¯¯¯

(5.1)

with superscript n` 1 indicating values at the new time level and superscript n rep-

resenting the time level at which known data is given. The steps

ρψ
pn`1q,˚

“ P

´

ρψ
pnq

¯

(5.2a)

ρψ
pn`1q

“ C

´

ρψ
pn`1q,˚

¯

(5.2b)

are described in the following sections 5.1 and 5.2, the sub-steps

ρψ
pn`1q,˚˚

“ Cp1q

´

ρψ
pn`1q,˚

¯

(5.3a)

ρψ
pn`1q

“ Cp2q

´

ρψ
pn`1q,˚˚

¯

(5.3b)

of the latter in sections 5.2.1 and 5.2.2.

5.1 Predictor

In this section the underlying predictor step is described, starting with reformulat-

ing a hyperbolic-parabolic auxiliary system of equations in sub-section 5.1.1. The

subsequent description of the time integrator in sub-section 5.1.2 is followed by ex-

planation of the computation of the applied numerical fluxes in sub-section 5.1.3,

including the required state recovery at grid cell faces. Computation of source terms

is sketched in sub-section 5.1.4, before the entire predictor procedure is summarized

in sub-section 5.1.5. The predictor step advances the conserved quantities in time,

ignoring on the one hand time dependence of the dynamic pressure in the momentum

equation, on the other hand elliptic influences from the original system of equations,

given via the divergence constraint.
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5.1.1 Auxiliary System of Equations

In the predictor step elliptic contributions due to the velocity divergence constraint

and time dependence of the dynamic pressure p
1

are neglected and the space integral

single-phase hyperbolic-parabolic system

d

dt

ˆ ˆ
Ω
P~Φ dV

˙

“ ´

˛
BΩ
pP~v ¨ ~nq ~Φ dA `

˛
BΩ
J~Φ ¨ ~ndA ` ~9q~Φ (5.4)

with

~Φ “

ˆ

1

Θ
,
Ys
Θ
,
~v

Θ
, 1

˙

˜

(5.5a)

J~Φ “
”

~0, ~́js,T ,~0
ı

˜

(5.5b)

~9q~Φ “ p0, qYs ,~q~v, qPq

˜

(5.5c)

and source terms

qYs :“

ˆ
Ω
ρ%s dV (5.6a)

~q~v :“ ´

ˆ˛
BΩ
π
1

~ndA`

ˆ
Ω
ρ∇U dV

˙

(5.6b)

qP :“ ´

ˆˆ
Ω

P χ 9q

Ξ
dV

˙

(5.6c)

is solved instead, restricted to χ “ 0 for incompressible fluids, for which P reduces

to a constant in both space and time and qP “ 0 holds. The advective fluxes of

all conserved quantities are referred to the common carrier flux pP~v ¨ ~nq from the

left hand side of (3.140), with P~Φ representing the conserved quantities and ~Φ as

the vector of pseudo-primitive variables according to Tab. 5.1. Further, π
1

is the

time-independent predictor pressure such that

p
1

p~x, tq “ π
1

p~xq ` Bp
1

p~x, tq (5.7)

and U is the gravitational potential, while all the other quantities are defined as in

section 3.
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Tab. 5.1: Variable representations

conserved primitive pseudo-primitive

mass ρ 1 1
θ

species mass ρYs Ys
Ys
θ

momentum ρ~v ~v ~v
θ

energy P θ 1

Introduction of an additional partial derivative of P with respect to time on the left

hand side of equation (3.140) during the predictor step offers the possibility of col-

lecting deviations from the not yet enforced divergence constraint (3.140) in the ex-

pression E in

˜ ˆ
Ω
pP qt dV

loooooomoooooon

“: E

`

˛
BΩ
pP~v ¨ ~nq dA “ ´

„

pP0 qt

ˆ
Ω
PχdV `

ˆ
Ω

P χ 9q

Ξ
dV



(5.8)

since E !
“ 0 is required after each full predictor-corrector time step. Collected devi-

ations from zero in E can be utilized in the subsequent corrector step to consistently

correct divergence errors in the advective fluxes as E contains the accumulated devia-

tions of the carrier flux pP~v ¨ ~nq, which effectively transports all conserved quantities,

from the flux satisfying the divergence constraint.

5.1.2 Time Integration

Second order accurate time integration, summarized by

P~Φ
pn`1q,˚

“ P

ˆ

P~Φ
pnq

˙

`O
`

∆t3
˘

(5.9)

according to (5.2a), is performed via Strang operator splitting, proposed in [159],

separating expressions treated implicitly from the ones treated explicitly. Depending

on which of the following explicit (E) and implicit (I) approximations O to solution
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operators of sub-problems of (5.4) are the cheaper ones, either

P

ˆ

P~Φ
pnq

˙

:“

OI p∆t{2q

ˆ

OE p∆t{2q

ˆ

OC
E p∆tq

ˆ

O´1
E p∆t{2q

ˆ

O´1
I p∆t{2q

ˆ

P~Φ
pnq

˙˙˙˙˙

(5.10)

or

P

ˆ

P~Φ
pnq

˙

:“

OE p∆t{2q

ˆ

OI p∆t{2q

ˆ

OC
E p∆tq

ˆ

O´1
I p∆t{2q

ˆ

O´1
E p∆t{2q

ˆ

P~Φ
pnq

˙˙˙˙˙

(5.11)

is used for updating the integral averages of the conserved quantities, as, for example,

given in [31] for splittings with more than two sub-operators involved. Superscript

pnq represents the old time level of known data, pn ` 1q the time level after time

integration over the temporal increment ∆t “ tn`1´ tn, superscript ˚ represents the

state after the predictor step and O´1 indicates reverse order of the right hand side

sub-operators O�
� in Tab. 5.2, in which an overview of reasonable treatment of the

single sub-operators is given, depending on the (lowest local) Schmidt number Scs
of the respective species s and the (lowest local) Reynolds number Reh with respect

to the grid spacing h.

Tab. 5.2: Explicit (E) and implicit (I) treatment of sub-operators depending on the (lowest lo-
cal) Schmidt number Scs and the (lowest local) Reynolds number Reh with respect
to the grid spacing h

ˆ

Reh ě
CA
CV

ˆ ˆ

Reh ă
CA
CV

ˆ

ˆ

Scs ě CA
CD

1
Reh

ˆ

´

OE “ O
A
E O

V
E O

D
E

´

OE “ O
A
E O

D
E

´

´

OI :“ OD
I

ˆ

Scs ă CA
CD

1
Reh

ˆ

´

OE “ O
A
E O

V
E

´

OE “ O
A
E

´

OI :“ OD
I

´

OI :“ OV
I O

D
I

The subdivisions in Tab. 5.2 with superscripts A, V and D for hyperbolic, viscous

and (other) diffusive effects are derived based on the maximum allowable stable ex-
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plicit time steps of the single contributions, with CA, CV and CD as defined in section

5.1.2.1. While hyperbolic contributions, such as advection, are always treated explic-

itly, treatment of parabolic contributions, such as species diffusion or friction (cor-

responding to momentum diffusion), depends on the respective time step restrictions

due to explicit stability limits as given in section 5.1.2.1. If the maximum allowable

explicit time step of a parabolic contribution is larger than the maximum allowable

time step due to advection, the parabolic contribution can be treated explicitly as well.

However, if it is smaller than the maximum allowable advective time step, implicit

treatment of the respective contribution is cheaper and preferred. If the type of treat-

ment of the different contributions can not be switched during the computation, the

decision on the respective type has to be done in advance. As the local Reynolds and

Schmidt numbers change during the computation, explicit treatment of the parabolic

contributions is only reasonable in case the respective conditions in Tab. 5.2 are

fulfilled throughout the entire computation – for example if Reh " CA{CV and/or

mins Scs " CA{
`

CV Reh
˘

– since otherwise the maximum allowable time step size

can become very small.

The operator approximation OC
E in (5.10) and (5.11) represents explicitly treated

chemical reactions, entering the system (3.128) via the volume source ρ%s in equation

(3.128b). As the latter, if present, can become very expensive for larger numbers of

species and advanced reaction models, OC
E is always kept the "center" operator, since

due to

OC
E p∆tq ” O

C
E p∆t{2qO

C ´1
E p∆t{2q ” OC

E p∆t{2qO
C
E p∆t{2q (5.12)

it only needs to be evaluated once per time step, if done that way. Including chemi-

cal reactions into the numerical method is subject of current work and therefore not

discussed further in the following. Preliminary studies have been done in [61]. In

absence of chemical reactions the respective species sources vanish (%s “ 0), the

operator OC
E drops and parameters such as D or µ are assumed to be space and time

independent constants. In section 5.1.2.1 the explicit time step size limits of the dif-

ferent contributions are given, defining CA, CV and CD in Tab. 5.2, before the explicit

time integration scheme is described in section 5.1.2.2 and the implicit one in section

5.1.2.3.
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5.1.2.1 Time Step Restriction

In explicit methods, stability conditions, which restrict the size of the maximum al-

lowable time step, need to be satisfied. For the latter

∆t ď ∆t
t1u
max (5.13)

has to hold, with

∆t
t1u
max :“ min

´

∆tA, ∆tV, min
s

`

∆tD,s
˘

, ∆tG, ∆tX

¯

(5.14)

as its total upper bound for single-phase flow, upper bounds ∆tA, ∆tV, ∆tD,s and

∆tG for explicit treatment of the different physical effects as given in Tab. 5.3 with d

as the number of spatial dimensions and ∆tX as an arbitrarily prescribed value.

Tab. 5.3: Explicit time step restrictions due to different physical effects

advection2
ˆ

∆tA ď CA minΩ

´

cd
|~v|

¯

h CA :“ 1
d

friction3
ˆ

∆tV ď CV minΩ

ˆ

ρc2
d
µ

˙

h2 CV :“ 1
2d

diffusion4
ˆ

∆tD,s ď CD minΩ

ˆ

c2
d
Ds

˙

h2 CD :“ 1
2d

gravity5
ˆ

∆tG ď CG minΩ

´
b

cd
|~g|

¯

h
1
2 CG ”

?CA

Due to the relations from Tab. 5.3 dependencies on the time step size ∆t are also

denoted in terms of h in the following.
2 CA is the CFL number according to [37]; the maximum allowable CA depends, among others,

on the time integration scheme and on the way of spatial state reconstruction, e.g. if fully multi-
dimensional spatial reconstruction or dimension-by-dimension reconstruction is used as, for ex-
ample, described in [150]. Details on stability limits for Runge-Kutta methods can be found in e.g.
[75].

3 In [167] the scaling CV is chosen to be 3
14

, in [190] it is 1
2

.
4 Explicit diffusive time step restriction is e.g. given in [75].
5 The constraint due to gravity can be derived by replacing the maximum velocity in the definition

of the CFL number by the gravitational acceleration times the maximum allowable time step size

∆tG and solving for ∆tG: ∆tG ď CA minΩ

ˆ

c
d

|~g|∆tG

˙

h ñ ∆tG ď CG

´

h
|~g|

minΩ

`

cd

˘

¯1{2

.
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5.1.2.2 Explicit Time Integration Scheme

In contrast to [92] and [150], where spatial Strang operator splitting is used for ex-

plicit time integration of the hyperbolic part (5.4) of system (3.128), the present

method follows the unsplit method-of-lines approach – as done in [151] and origi-

nally proposed in [148] – for approximation of (5.4) via OE. Applying the method-

of-lines, the approximation (4.24) of the semi-discrete governing equations – dis-

cretized in space while kept continuous in time – is integrated on the Cartesian grid

in the continuous variable, time t, via an integrator for ordinary differential equa-

tions. Second order accurate time integration can be performed using an explicit two

stage strong stability preserving Runge-Kutta (SPP-RK2) type approach as given in

[62] or – adapted to Finite Volume methods – in [106], requiring two evaluations of

the numerical fluxes per time step for obtaining second order accuracy. In general,

Runge-Kutta methods for time integration of equation (4.24) read

ρψ
pm`1q
i “ ρψ

pmq
i `∆t

N‚
ÿ

n“1

´

bn K
t1u
i,n

¯

looooooooooooooomooooooooooooooon

“ O
ppq
E,i pρψ

pmqq

` O
`

∆tp`1
˘

(5.15)

with exponent p indicating the convergence order,

K
t1u
i,n :“ L

t1u
i pρψ ‚n q (5.16)

with operator Lt1ui representing the discrete explicitly treated single-phase contribu-

tions to the right hand side of equation (5.4) according to (4.24) (with PΦ ” ρψ and

Φ as any component of ~Φ) and

ρψ ‚i,n :“

#

ρψ
pmq
i n “ 1

ρψ
pmq
i `∆t

řN‚

ñ“1 an,ñ K
t1u
i,ñ n ą 1

(5.17)

where ∆t represents the size of the pseudo time step6, m indicates the pseudo time

level at which data is given and m ` 1 indicates the pseudo time level at which data

has to be determined. For the subset of explicit methods

an,ñ “ 0 @ n ď ñ (5.18)

6 If, for example, the operatorOE is applied for a half time step ∆t{2 in (5.10) or (5.11), the pseudo
time step size is ∆t “ ∆t{2.
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is required. As given in [160], for any explicit second order accurate two stage

method (and, thus, N‚ “ 2)

b1 “ 1´
1

2d
, b2 “

1

2d
(5.19)

holds, with

c1 a1,1 a1,2

c2 a2,1 a2,2

b1 b2

=

0 0 0

d d 0

1´ 1
2d

1
2d

as corresponding Butcher tableau7. For any d ‰ 0 the conditions b1 ` b2 “ 1

(required for first order accuracy) and b2 c2 “ 1
2 (required for second order accuracy)

are satisfied and c2 “ a2,1 holds due to both cn “
ř2

ñ“1

`

an,ñ
˘

and relation (5.18) for

explicit methods. The SPP-RK2 version finally is obtained for

d :“ 1 (5.20)

according to [62], reducing to the method of Heun

ρψ
pm`1q
i “ ρψ

pmq
i `∆t

´

b1 L
t1u
i pρψ pmqq ` b2 L

t1u
i pρψ ‚2 q

¯

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

“ O
p2q
E,ipρψ

pmqq

` O
`

∆t3
˘

(5.21)

with p “ 2,

ρψ ‚2 “ ρψ
pmq
i `∆t L

t1u
i pρψ pmqq (5.22)

and

b1 “ b2 “
1

2
(5.23)

corresponding to a trapezoidal rule in time. The most efficient low-storage imple-

mentation of SPP-RK2 in the Finite Volume context requires two storage units per

scalar conserved quantity ρψ and one storage unit for the corresponding fluxes over

all grid cell faces. This becomes evident after reformulation of equation (5.21) to

yield

ρψ
pm`1q
i “ p1´ b1q

looomooon

“ b2

ρψ
pmq
i ` b1 ρψ

‚
i,2 ` b2 ∆t L

t1u
i pρψ ‚i,2q (5.24)

7 See, e.g. [140].
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considering relation (5.22), solved for Lt1ui pρψ pmqq. The following algorithm sum-

marizes the explicit time integration process:

1. keep ρψpmqi in the first storage unit throughout the entire time integration pro-

cess

2. compute grid cell face normal flux approximations F pρψq, based on the re-

quired ρψpmq, for each grid cell face as described in section 5.1.3.1.

3. evaluate volume source terms as given in section 5.1.4.2

4. determine ∆t L
t1u
i pρψ pmqq based on the computed numerical fluxes from 2.

and store ρψ ‚2 , computed according to (5.22), in the second storage unit

5. repeat 2. with ρψ ‚2 instead of ρψpmq. Previously computed fluxes can be over-

written.

6. repeat 4. for ∆t Lt1upρψ ‚2 q and overwrite ρψpmq with the weighted sum (5.24).

5.1.2.3 Implicit Time Integration Scheme

The parabolic contributions8 treated implicitly via the operatorOI in (5.10) or (5.11),

integrating sub-problems of the type

d

dt

`

ρψi

˘

“

˛
BΩi

ρC∇ψ ¨ ~ndA « LP
i pρψq (5.25)

implicitly in time, are approximated via a (globally) second order accurate Crank-

Nicolson scheme9

ρψ
pm`1q
i “ ρψ

pmq
i `

∆t

2

”

LP
i

´

ρψpm`1q
¯

` LP
i

´

ρψpmq
¯ı

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

“ OI,ipρψq

` Op∆t3q (5.26)

as, for example, done in [150]. As in section 5.1.2.2, ∆t is the pseudo time step with

m andm`1 indicating the pseudo time levels with known (m) and unknown (m`1)

data. If the operator OI is applied for a half time step ∆t{2 in the operator splitting

8 Species diffusion, friction or heat conduction (while the latter does not apply here) are parabolic
contributions.

9 Proposed in [38] as the average of the explicit forward and the implicit backward Euler schemes.
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(5.10) or (5.11), the pseudo time step ∆t in equation (5.26) has to be replaced by

∆t{2, yielding an overall scaling of ∆t{4. Evaluation of the approximations

LP
i pρψq “

1

h

¨

˝

d
ÿ

d“1

1

cd

2
ÿ

w“1

p´1qw FP
pρψq,d,w

˛

‚

i

“
1

h

¨

˝

d
ÿ

d“1

1

cd

2
ÿ

w“1

p´1qw pρC∇ψqd,w

˛

‚

i
(5.27)

at both pseudo time levels in (5.26) requires knowledge of ψpm`1q, ρpm`1q and the

coefficient Cpm`1q. While the operator OI does not change the fluid density over

pseudo-time and, thus, ρpm`1q “ ρpmq, the quantity ψpm`1q – subject to be deter-

mined – remains unknown. If the temporal behavior of the coefficient is unknown10,

it has to be assumed to be constant as well and Cpm`1q “ Cpmq. Rewriting equation

(5.26), considering (5.27), yields

¨

˝

d
ÿ

d“1

1

cd

2
ÿ

w“1

´

p´1qw rC
pm`1q

d,w

¯ ´

∇ψpm`1q

d,w
¨~ed

¯

˛

‚

i

´ ρ
pm`1q
i ψ

pm`1q
i

“ Ri

´

ρψpmq
¯

` Oph2q
(5.28)

with coefficients
rC
pm`1q

d,w
:“

∆t

2 h
ρ
pm`1q

d,w
C
pm`1q

d,w
(5.29)

and

Ri

´

ρψpmq
¯

:“ ´

»

–ρψ
pmq
i `

∆t

2 h

¨

˝

d
ÿ

d“1

1

cd

2
ÿ

w“1

p´1qw
´

ρ
pmq

d,w
C
pmq

d,w
∇ψpmq
d,w

¨~ed

¯

˛

‚

i

fi

fl

(5.30)

as known right hand side at the old (pseudo) time level after separation of different

time levels. The expression Oph2q in the Helmholtz-type problem (5.28) arises due to

the approximation of the integral average ρψi “ ρiψi`Oph2q in the "Helmholtz" part

on the left hand side via the cell center values ρpm`1q
i ψ

pm`1q
i . Rewriting (5.28) in

terms of directional indices i, j and k, referring to the different coordinate directions

of the Cartesian grid, and assuming linear approximation of the slopes ∇ψd,w ¨~ed at

10 Time evolution of the coefficient C is known, for example, if chemical reactions are present and
treated with a suitable numerical tool such as Cantera, http://www.cantera.org [last vis-
ited on Aug. 1st, 2016].

http://www.cantera.org
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grid cell faces according to

∇ψ1,1 ¨~e1 “ ∇ψi´ 1
2
,j,k ¨~e1 “

ψi,j,k ´ ψi´1,j,k

c1h
` Oph2q (5.31a)

∇ψ1,2 ¨~e1 “ ∇ψi` 1
2
,j,k ¨~e1 “

ψi`1,j,k ´ ψi,j,k
c1h

` Oph2q (5.31b)

∇ψ2,1 ¨~e2 “ ∇ψi,j´ 1
2
,k ¨~e2 “

ψi,j,k ´ ψi,j´1,k

c2h
` Oph2q (5.31c)

∇ψ2,2 ¨~e2 “ ∇ψi,j` 1
2
,k ¨~e2 “

ψi,j`1,k ´ ψi,j,k
c2h

` Oph2q (5.31d)

∇ψ3,1 ¨~e3 “ ∇ψi,j,k´ 1
2
¨~e3 “

ψi,j,k ´ ψi,j,k´1

c3h
` Oph2q (5.31e)

∇ψ3,2 ¨~e3 “ ∇ψi,j,k` 1
2
¨~e3 “

ψi,j,k`1 ´ ψi,j,k
c3h

` Oph2q (5.31f)

equation (5.28) transforms to

C̆
pm`1q
pi`1,j,kq ψ

pm`1q
pi`1,j,kq ` C̆

pm`1q
pi´1,j,kq ψ

pm`1q
pi´1,j,kq

` C̆
pm`1q
pi,j`1,kq ψ

pm`1q
pi,j`1,kq ` C̆

pm`1q
pi,j´1,kq ψ

pm`1q
pi,j´1,kq

` C̆
pm`1q
pi,j,k`1q ψ

pm`1q
pi,j,k`1q ` C̆

pm`1q
pi,j,k´1q ψ

pm`1q
pi,j,k´1q

´ C̆
pm`1q
pi,j,kq ψ

pm`1q
pi,j,kq “ hRi

´

ρψpmq
¯

` Oph3q (5.32)

after multiplication with h, with

C̆
pm`1q
pi`1,j,kq :“

rCpi`1,j,kq `
rCpi,j,kq

2 c21
, C̆

pm`1q
pi´1,j,kq :“

rCpi´1,j,kq `
rCpi,j,kq

2 c21
(5.33a)

C̆
pm`1q
pi,j`1,kq :“

rCpi,j`1,kq `
rCpi,j,kq

2 c22
, C̆

pm`1q
pi,j´1,kq :“

rCpi,j´1,kq `
rCpi,j,kq

2 c22
(5.33b)

C̆
pm`1q
pi,j,k`1q :“

rCpi,j,k`1q `
rCpi,j,kq

2 c23
, C̆

pm`1q
pi,j,k´1q :“

rCpi,j,k´1q `
rCpi,j,kq

2 c23
(5.33c)

C̆
pm`1q
pi,j,kq :“ C̆

pm`1q
pi`1,j,kq ` C̆

pm`1q
pi´1,j,kq ` C̆

pm`1q
pi,j`1,kq ` C̆

pm`1q
pi,j´1,kq

` C̆
pm`1q
pi,j,k`1q ` C̆

pm`1q
pi,j,k´1q ` h ρ

pm`1q
pi,j,kq (5.33d)

for any grid cell i p“pi, j, kq that is not in touch with the domain boundary, leading to

a linear system of the form

AC̆ ¨
~ψpm`1q “ ~R (5.34)
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for ψpm`1q with, in general, block-diagonal square matrix AC̆, depending on the co-

efficients C̆ and boundary conditions. The latter, required for grid cells that touch the

domain boundary, are given in section 5.4.2. If the problem is only two-dimensional,

then k ” 1, c3 ” 1, ψpi,j,k˘1q ” 0 and C̆
pm`1q

pi,j,k˘ 1
2
q
” 0. The stencil for determina-

tion of cell centered values in each internal grid cell is sketched in Fig. 5.9 on page

95. Once the second order accurate solution for the ψpm`1q is obtained as described

in section 5.5, LP
i

`

ρψpm`1q
˘

– and with that the entire right hand side of equation

(5.27) – can be evaluated. The following algorithm summarizes the implicit time

integration process:

1. compute coefficients (5.29) on each grid cell face

2. compute flux approximations FP,pmq

pρψq,d,w “ ρ
pmq

d,w
C
pmq

d,w

´

∇ψpmq
d,w

¨~ed

¯

, based on

known values at pseudo time levelm, on each grid cell face, considering (5.31),

as described in section 5.1.3.2

3. compute right hand side (5.30) of (5.28), based on the fluxes computed in 2.

and the known integral average in each grid cell

4. assemble global matrix AC̆ in (5.34) by determination and accumulation11 of

coefficients C̆ from (5.33) in each grid cell, based on the facial coefficients rC

determined in 1.

5. modify matrix and right hand side entries, depending on boundary conditions

as described in section 5.4.2

6. solve the linear system (5.34) for ψpm`1q

7. compute fluxes FP,pm`1q

pρψq,d,w “ ρ
pm`1q

d,w
C
pm`1q

d,w

´

∇ψpm`1q

d,w
¨~ed

¯

at pseudo time

level m` 1, considering (5.31), as described in section 5.1.3.2

8. evaluate LP
i

`

ρψpm`1q
˘

according to (5.27)

9. compute (5.26) according to ρψ
pm`1q
i “ ∆t

2 LP
i

`

ρψpm`1q
˘

´ Ri

`

ρψpmq
˘

with

the latter computed in 3. and LP
i

`

ρψpm`1q
˘

in 8.

Note that although cell center values ψpm`1q
i are already determined in step 6. and

ρψ
pm`1q
i “ ρ

pm`1q
i ψ

pm`1q
i ` Oph2q, steps 7. to 9. are still necessary in order to

obtain a fully conservative discretization.
11 For each grid cell a line like the one given in (5.32) arises, containing coefficients contributing to

the coefficient of a neighboring cell; therefore the resulting entry in the global matrix for each grid
cell has to be composed the own coefficient and contributions of neighboring grid cells.
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5.1.2.3 - 1 Diffusion

If diffusion is treated implicitly via OD
I by the above scheme, then

ψ :“ Ys (5.35)

and the general coefficient C in (5.26) is the (binary) diffusion coefficient

C :“ Ds (5.36)

of species s in its solvent. The above algorithm has to be performed for each species

and can be done sequentially.

5.1.2.3 - 2 Friction

Friction can be treated implicitly by the above integration scheme via the operator

OV
I , if the dynamic viscosity µ does not depend on space (but can depend on time).

In this case the viscous contribution

∇ ¨ T “ ∇ ¨
´

µ
´

∇ ˝ ~v ` p∇ ˝ ~vqT
¯¯

`∇ pλ p∇ ¨ ~vqq

“ ∇ ¨ pµ p∇ ˝ ~vqq ` pµ` λq∇ p∇ ¨ ~vq ` p∇ ¨ ~vq∇λ` p∇ ˝ ~vqT ¨∇µ
(5.37)

reduces to

∇ ¨ T “ ∇ ¨ pµ p∇ ˝ ~vqq ` pµ` λq∇D `D∇λ (5.38)

if ∇ ¨ ~v “ D and D independent of ~v. With the kinematic viscosity ν “ µ
ρ this can

be written as

p∇ ¨ T qd “ ∇ ¨ pρν∇vdq ` pµ` λq
BD
Bxd

`D Bλ
Bxd

loooooooooooomoooooooooooon

“: qd

(5.39)

for each velocity component12. The first term on the right hand side now represents

a "diffusive" flux for velocity component vd with

ψ :“ vd (5.40)

12 If the dynamic viscosity is homogeneous, kinematic viscosity ν and density ρ can still depend on
space, but only in such a way that ∇ pρνq “ ∇µ “ 0.
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and

C :“ ν (5.41)

as "diffusive" coefficient. For ∇ ¨ ~v “ 0 and, thus, D “ 0, the additional right hand

side terms qd vanish. In case of ∇µ “ 0, leading to (5.39), the implicit scheme

described above can be applied for each momentum component separately due to

decoupling of the single components. For D ‰ 0 and D independent of ~v, the ex-

pression

´
1

2

´

q
pm`1q

d,i
` q

pmq

d,i

¯

(5.42)

has to be added to (5.30) and either the temporal behavior of qd has to be known or it

has to be assumed constant in time, reducing (5.42) to ´qpmq
d,i

.

5.1.3 Flux Computation

Flux computation, required for evaluation of the explicit and/or implicit operators

from (5.10) or (5.11) as determined in sections 5.1.2.2 and 5.1.2.3, is described in

this section, starting with the advective fluxes, followed by diffusive and viscous

fluxes.

5.1.3.1 Advective Fluxes

The advective fluxes, contributing to the explicit approximation L
t1u
i in (5.21) as

given in (4.24) as part of OE in (5.10) or (5.11), can be computed without solving

Riemann problems due to the independence of the momentum equation and the en-

ergy equation substitute (5.8). The latter decouple, since both the dynamic pressure13

p
1

in the momentum equation and the background pressure14 P0 on the right hand side

of equation (5.8) can be treated as "passive" source terms during the predictor step,

leading to a diagonal Jacobian pI vdq of the resulting Euler-type system of equations

per coordinate direction d, with contributions of the respective velocity component

vd only. The advective fluxes of each scalar component of the hyperbolic auxiliary

system (5.4) can thus be computed independently and sequentially. Once the grid

cell face normal carrier flux pP ~v ¨ ~nq in (5.4) is suitably approximated, exemplified

by means of grid cell face pi` 1
2 , j, kq as upper grid cell face of grid cell i p“pi, j, kq

13 The dynamic pressure is assumed to be time-independent during the predictor step.
14 Temporal behavior of the homogeneous background pressure has to be determined by other means

as, for example, given in section 3.4.
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with normal vector in x1 direction as

´

F A
pPq,1,2

¯

i
” F A

pPq,pi` 1
2
,j,kq “ Pupw

pi` 1
2
,j,kq

v1,pi` 1
2
,j,kq (5.43)

“ PpLq
pi` 1

2
,j,kq

v
pLq

1,pi` 1
2
,j,kq

looooooooooomooooooooooon

“: F pLq

pPq,pi` 1
2 ,j,kq

` PpUq
pi` 1

2
,j,kq

v
pUq

1,pi` 1
2
,j,kq

looooooooooomooooooooooon

“: F pUq

pPq,pi` 1
2 ,j,kq

with
ˆ

PpLq
pi` 1

2
,j,kq

, PpUq
pi` 1

2
,j,kq

˙

“ R
`

Ppi`2,j,kq,Ppi`1,j,kq,Ppi,j,kq,Ppi´1,j,kq

˘

(5.44)

and second order accurate state recovery operator R as described in section 5.1.3.1

- 1, the resulting advective fluxes of mass, species masses and momentum can be

obtained by transporting upwind values of the respective pseudo-primitive variables

from (5.5a). In approximation (5.43), vpLq is the grid cell face normal velocity com-

ponent pointing in positive coordinate direction and vpUq is the grid cell face normal

velocity component pointing in negative coordinate direction:

v
pLq

1,pi` 1
2
,j,kq

:“ max
´

0, v1,pi` 1
2
,j,kq

¯

ě 0 (5.45a)

v
pUq

1,pi` 1
2
,j,kq

:“ min
´

0, v1,pi` 1
2
,j,kq

¯

ď 0 (5.45b)

The normal velocity across the grid cell face is the second order accurate average

v1,pi` 1
2
,j,kq :“

v1,pi`1,j,kq ` v1,pi,j,kq

2
(5.46)

and due to (5.45) one of the fluxes F pLq

pPq,pi` 1
2
,j,kq

and F pUq

pPq,pi` 1
2
,j,kq

in equation (5.43)

is always zero, depending on the flow orientation in grid cell face normal direction,

while the non-zero one is the upwind flux. The upwind fluxes of the other quantities

read

F A
pρψq,pi` 1

2
,j,kq ” F A

pPΦq,pi` 1
2
,j,kq

“ F pLq

pPq,pi` 1
2
,j,kq

Φ
pLq

pi` 1
2
,j,kq

` F pUq

pPq,pi` 1
2
,j,kq

Φ
pUq

pi` 1
2
,j,kq

(5.47)

with
ˆ

Φ
pLq

pi` 1
2
,j,kq

, Φ
pUq

pi` 1
2
,j,kq

˙

“ R
`

Φpi`2,j,kq,Φpi`1,j,kq,Φpi,j,kq,Φpi´1,j,kq

˘

(5.48)
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and Φ represents any component from (5.5a). The non-zero carrier flux contribution

F pLq

pPq,pi` 1
2
,j,kq

or F pUq

pPq,pi` 1
2
,j,kq

automatically selects the upwind quantity from (5.48)

if done according to (5.47). Equations (5.43) to (5.48) apply equivalently for the other

coordinate directions and grid cell faces. The stencil involved in flux computation for

each grid cell face is sketched in Fig. 5.1, the resulting stencil for each grid cell is

sketched in Fig. 5.2.

x1

x2

x3

x

x1

x2

x

Fig. 5.1: Stencil for grid cell face normal flux computation involving one fluid phase only, left
d “ 2, right d “ 3

x1

x2

x3

x

x

x1

x2

x

x

x

x

x

x

x x

Fig. 5.2: Stencil for the update in a grid cell due to advective fluxes involving one fluid phase
only, left d “ 2, right d “ 3

5.1.3.1 - 1 State Recovery at Grid Cell Faces

State recovery at grid cell faces, as represented in section 5.1.3.1 by R, is done second

order accurate in a dimension-by-dimension fashion by

1. determination of slopes SpΦq
d

in grid cell face normal direction at the grid cell

face considered and at the neighboring grid cell faces in grid cell face normal
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i ` 3
2

i ` 1
2

i ´ 1
2

x

x

x

Φpi`2,jq

x

Φpi`1,jq

x

Φpi,jq

x

Φpi´1,jq

S
pΦq

1,pi` 3
2 ,jq

S
pΦq

1,pi` 1
2 ,jq

S
pΦq

1,pi´ 1
2 ,jq

Fig. 5.3: Determination of slopes at grid cell
faces (d “ 2, analogously d “ 3)

i ` 3
2

i ` 1
2

i ´ 1
2

x

x

x

x

x

x

x

i ` 1

i

S
pΦq
1,pi`1,jq

S
pΦq
1,pi,jq

Φpi,jq

Φpi`1,jq

Φ
pLq

pi` 1
2 ,jq

Φ
pUq

pi` 1
2 ,jq

Fig. 5.4: Determination of slopes in grid
cells (d “ 2, analogously d “ 3)

direction as sketched in Fig. 5.3:

S
pΦq

1,pi` 3
2
,j,kq

:“
Φpi`2,j,kq ´ Φpi`1,j,kq

c1 h
(5.49a)

S
pΦq

1,pi` 1
2
,j,kq

:“
Φpi`1,j,kq ´ Φpi,j,kq

c1 h
(5.49b)

S
pΦq

1,pi´ 1
2
,j,kq

:“
Φpi,j,kq ´ Φpi´1,j,kq

c1 h
(5.49c)

2. determination of slopes

S
pΦq
1,pi`1,j,kq :“ L

ˆ

S
pΦq

1,pi` 3
2
,j,kq

, S
pΦq

1,pi` 1
2
,j,kq

˙

(5.50a)

S
pΦq
1,pi,j,kq :“ L

ˆ

S
pΦq

1,pi` 1
2
,j,kq

, S
pΦq

1,pi´ 1
2
,j,kq

˙

(5.50b)

in grid cells pi, j, kq and pi ` 1, j, kq, sharing the grid cell face pi ` 1
2 , j, kq

as sketched in Fig. 5.4, involving the (non-linear) extended van Leer limiter
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function

L pă, b̆q :“
sgnpăq ` sgnpb̆q

2
L
´

|ă|, |b̆|
¯

(5.51a)

L pa, bq :“

#

2 a b
a`b L

`

min
`

a
b ,

b
a

˘˘

sgnpabq ą 0

0 otherwise
(5.51b)

L pξq :“ 1` ξ p1´ ξq p1´ ξzq (5.51c)

with limiter operator L, limiter function L and limiter weight L as given and

discussed in [92]. This version (5.51) is within the valid range for a second

order TVD limiter for tz P Z | 0 ď z ă 7u and 0 ď ξ ď 1 (which is the only

range of interest due to 0 ď min
`

a
b ,

b
a

˘

ď 1) and yields a monotonous result

in ξ in addition for tz P Z | 0 ď z ď 4u and 0 ď ξ ď 1. For z “ 0 it reduces

to the original van Leer limiter15 with L pξq ” 1, which is applied throughout

the results sections 5.6, 6.5.6 and 6.6.4. Note that since both arguments of

the limiter function (5.51b) are non-negative real numbers, the lower option of

(5.51b) only applies if at least one of the two arguments a and b is zero.

3. determination of lower (L) and upper (U) recovered values at grid cell face

pi` 1
2 , j, kq, based on the cell center values – or integral averages, respectively

– of cells pi, j, kq and pi` 1, j, kq and the slopes determined in 2. in direction

d “ 1:

Φ
pLq

pi` 1
2
,j,kq

“ Φpi,j,kq ` S
pΦq
1,pi,j,kq

c1 h

2
` Oph2q (5.52a)

Φ
pUq

pi` 1
2
,j,kq

“ Φpi`1,j,kq ´ S
pΦq
1,pi`1,j,kq

c1 h

2
` Oph2q (5.52b)

The values (5.52) are returned by the operator R if applied to the respective

cell center values in the stencil required as done in (5.44) and (5.48).

As in section 5.1.3.1, the above relations transform accordingly to the other grid cell

faces and coordinate directions.

5.1.3.2 Diffusive Fluxes

Both in case of explicit treatment of species diffusion according to section 5.1.2.2

and in case of an implicit time integration operator for species diffusion according
15 The original van Leer limiter is proposed in [179].
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to section 5.1.2.3 with 5.1.2.3 - 1, the approximation of the grid cell face normal

component of the diffusive flux~js “ ρDs∇Ys of species s for application to (5.27) is

´

FD
pρYsq,1,2

¯

i
” FD

pρYsq,pi`
1
2
,j,kq “ pρDsqpi` 1

2
,j,kq ∇Ys,pi` 1

2
,j,kq ¨~e1 ` O

`

h2
˘

(5.53)

with

pρDsqpi` 1
2
,j,kq :“

´

pρDsqpi`1,j,kq ` pρDsqpi,j,kq

¯

2
(5.54a)

∇Ys,pi` 1
2
,j,kq :“

`

Ys,pi`1,j,kq ´ Ys,pi,j,kq
˘

c1 h
(5.54b)

for grid cell face pi` 1
2 , j, kq. The latter is the upper grid cell face of grid cell

i p“pi, j, kq with normal vector in x1 direction and approximation (5.53) holds ac-

cordingly for all other grid cell faces and coordinate directions with corresponding

indices.

5.1.3.3 Viscous Fluxes

In this section the discretization of the viscous momentum fluxes is described. The

discretization used in case of implicit time integration is similar to the one used for

the diffusive species fluxes, while for explicit treatment of friction the full viscous

stress tensor is discretized.

5.1.3.3 - 1 Implicit

In case of implicit time integration as described in section 5.1.2.3 with 5.1.2.3 - 2,

the viscous flux for momentum component c across grid cell face pi` 1
2 , j, kq of cell

i p“pi, j, kq with d “ 1 and w “ 2 for application to (5.27) is approximated as

´

FV,I
pρvcq,1,2

¯

i
” FV,I

pρvcq,pi`
1
2
,j,kq “ µpi` 1

2
,j,kq p∇vcqpi` 1

2
,j,kq ¨~e1 ` O

`

h2
˘

(5.55)
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with

µpi` 1
2
,j,kq :“

`

µpi`1,j,kq ` µpi,j,kq
˘

2
(5.56a)

p∇vcqpi` 1
2
,j,kq :“

`

vc,pi`1,j,kq ´ vc,pi,j,kq
˘

c1 h
(5.56b)

and accordingly for all the other grid cell faces of grid cell i with corresponding

indices.

5.1.3.3 - 2 Explicit

In case of explicit time integration as described in section 5.1.2.2, the full viscous

stress tensor (3.31), including both the symmetric part 2µE and the asymmetric part

Iλ p∇ ¨ ~vq, is discretized, since during the predictor step the velocity divergence con-

straint is not satisfied. The approximation of any component c of the viscous momen-

tum flux vector T ¨~ed in direction d can be expressed as

´

FV,E
pρvcq,d,w

¯

i
“

¨

˝µd,w

˜

ˆ

Bvc
Bxd

˙

d,w

`

ˆ

Bvd
Bxc

˙

d,w

¸

` δd,c λd,w

d
ÿ

e“1

ˆ

Bve
Bxe

˙

d,w

˛

‚

i
(5.57)

with

δd,c :“

#

1, d “ c

0, d ‰ c
(5.58)

as the Kronecker delta and w as introduced on page 60. In general, the partial deriva-

tive of velocity component iwith respect to the spatial direction j can be approximated

second order accurate by

˜

Bvi
Bxj

¸

k

“

´

vi,pk` 1
2
q ´ vi,pk´ 1

2
q

¯

cj h
`Oph2q (5.59)

at any location with k as the j th one-dimensional location index. For approximation

of
ˆ

Bvi
Bxj

˙

k

in the center of a grid cell face with normal vector pointing into direction

d, the values vi,pk` 1
2
q and vi,pk´ 1

2
q are cell center values, if j ” d, and nodal values

for d “ 2 or edge center values for d “ 3 for all j ‰ d. While cell center velocity

components

v
pCq

i
“
ρvi
ρ
`Oph2q (5.60)
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x1

x2

x3

x1

x2

Fig. 5.5: Stencil for computation of nodal values (dot) via interpolation based on cell center
values (circle), left d “ 2, right d “ 3

can be determined second order accurate directly based on the integral averages of

the respective momentum component and the density, nodal values

v
pNq

i
“

1

2d

2d
ÿ

sur“1

´

v
pCq

i

¯

sur
`Oph2q (5.61)

Fig. 5.6: Stencil for computation
of edge center values
(cross) via interpolation
based on cell center val-
ues (circle)

need to be obtained via second order accurate inter-

polation from all 2d surrounding cell center values as

sketched in Fig. 5.5. Edge center values

v
pEq

i
“

1

2d´1

2d´1
ÿ

pla“1

´

v
pCq

i

¯

pla
`Oph2q (5.62)

for the case of three spatial dimensions need to be

determined via second order accurate interpolation

from all 2d´1 neighboring cell centers, which are in

the same plane as the edge center, as sketched in Fig.
5.6. The resulting stencils for both d “ 2 and d “ 3

for determination of the grid cell face normal viscous

flux across one grid cell face are sketched in Fig. 5.7
as, for example, given in [20]. The viscosity coeffi-

cients µ and λ in equation (5.57) are approximated at
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x1

x2

x3

x

x1

x2

X

Fig. 5.7: Stencil values (circles) for computation of viscous fluxes at grid cell face centers
(cross), left d “ 2, right d “ 3

the grid cell face second order accurate by central differences based on the cell center

values of grid cells sharing the respective cell face according to (5.56a).

5.1.4 Source Terms

In this section discretization of the contributions, which are treated as (passive) source

terms during the predictor step, is described, starting with the dynamic pressure,

which is discretized on cell faces, in section 5.1.4.1 before discretization of the vol-

ume sources (in grid cell centers) is described in section 5.1.4.2.

5.1.4.1 Dynamic Pressure

As stated in section 5.1.3.1, the dynamic pressure contribution to the momentum

equation can be treated as "passive" momentum source in the predictor step due to

decoupling of momentum and energy equation and assumed time-independence of

the dynamic pressure contribution to the momentum equation during the predictor

step due to splitting (5.7) with predicted dynamic pressure π
1

. The contribution

ˆ
Ωi

∇π1 dV “
ˆ

Ωi

∇ ¨
´

Iπ
1
¯

dV “

˛
BΩi

Iπ
1

¨ ~ndA “

˛
BΩi

π
1

~ndA (5.63)
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to the momentum sources (5.6b) during the predictor step is added to the explicit

grid cell face normal advective flux approximation, discussed in section 5.1.3.1, for

conservative approximation in the course of explicit treatment of momentum contri-

butions according to (4.24) and (5.21). Exemplary, on grid cell face pi ` 1
2 , j, kq the

predictor pressure contribution is approximated as grid cell face normal flux compo-

nent
´

F pπq
pρv1q,1,2

¯

i
“ F pπq

pρv1q,pi`
1
2
,j,kq

“ π
1

pi` 1
2
,j,kq

` Oph2q (5.64)

with

π
1

pi` 1
2
,j,kq

:“
1

NpNq

NpNq
ÿ

n“1

π
1pNq

n (5.65)

as the predictor pressure in the cell face center, resulting from interpolation based on

the NpNq pressure values

π
1pNq

n P

$

&

%

´

π
1

pi` 1
2
,j˘ 1

2
q

¯

d “ 2
´

π
1

pi` 1
2
,j˘ 1

2
,k˘ 1

2
q

¯

d “ 3
(5.66)

stored in the nodes of grid cell face pi` 1
2 , j, kq. As previously, the above transforms

analogously to the other grid cell faces and spatial directions.

5.1.4.2 Volume Source

Volume sources are addressed throughout this work as described in the following.

5.1.4.2 - 1 Gravity

The approximation of momentum gain due to gravitational acceleration ~g “ ´∇U ,

contributing to Qpρ~vq,i “ Qpρ~vq,pi,j,kq in (4.24) for application to (5.21) via the oper-

ator Lt1ui , is

Qpρ~vq,pi,j,kq :“ ~g ρpi,j,kq (5.67)

5.1.4.2 - 2 Species Production

Discretization of species production %s due to chemical reactions is subject of current

work and, therefore, in (5.6a)

qYs “ 0 (5.68)
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is chosen throughout this work, resulting in

QpρYsq,i “ QpρYsq,pi,j,kq “ 0 (5.69)

in (4.24) for application to (5.21) via the operator Lt1ui .

5.1.4.2 - 3 Energy / Entropy Sources

The present work is restricted to cases in which

qP “ 0 (5.70)

in (5.6c), resulting in

QpρΘq,i “ QpPq,pi,j,kq “ 0 (5.71)

in (4.24) for application to (5.21) via the operator Lt1ui . Relation (5.70) is obtained

by one of the following options or a combination of both:

‚ incompressible fluids (χ “ 0)

‚ adiabatic systems ( 9qq “ 0) in equilibrium – isothermal flow (∇T “ 0, ∇hs “
0) in absence of chemical reactions (%s “ 0) – resulting in 9q “ 0 from (3.130)

with (3.88) and (3.89), at constant background pressure16 (pP0 qt “ 0)

5.1.5 Summary: Predictor

After the predictor step

‚ all scalar conserved quantities are already advanced in time second order accu-

rate

‚ yet all conserved quantities are determined based on fluxes that do not sat-

isfy the divergence constraint (3.140) as the velocity field yet does not satisfy

(3.140)

‚ momentum is only first order accurate in time (while second order accurate in

space) as time evolution of the dynamic pressure p
1

is not yet accounted for
16 Time-independence of the background pressure is a consequence of isothermal flow in the zero

Mach number regime as shown in the footnotes of page 43
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‚ the dynamic pressure p
1

has not changed yet as in the predictor step only the

time-independent contribution π
1

to (5.7) is considered.

‚ since the divergence constraint (3.140) is not yet satisfied, in (5.8) E ‰ 0 holds

The approximation of the integral average of any conserved quantity ρψ after the

predictor step P is labeled ρψ
pn`1q,˚

” PΦ
pn`1q,˚ according to (5.2a).

5.2 Corrector

The corrector C of the projection method is split into two projection steps as done in

[151], [92] and [180]:

1. The first projection Cp1q determines correction fluxes for all conserved quan-

tities, such that the resulting fluxes, consisting of the sum of these correction

fluxes and the advective fluxes (5.47) from the predictor step, satisfy the diver-

gence constraint (3.140). This step, described in section 5.2.1, thus, inserts the

elliptic contributions into the grid cell face fluxes, which gives rise to solving

a Poisson problem for cell centered values as described in section 5.5.

2. The second projection Cp2q, described in section 5.2.2,

(a) determines momentum correction fluxes, such that the final grid cell cen-

tered velocity field, derived from the corrected momentum, satisfies the

divergence constraint (3.140).

(b) updates the dynamic pressure according to (5.7) after determination of

a nodal approximation to the space-time dependent pressure increment

Bp
1

p~x, tq. The latter is obtained by solving a Poisson problem on a stag-

gered grid in centers of dual cells17 as sketched in Fig. 5.8. The Poisson

solution both represents the pressure increment Bp
1

p~x, tq and serves as

basis for determination of the momentum correction fluxes in (a).

5.2.1 Flux Correction

The flux integral approximations during the predictor step P, leading to second order

accurate updates for all scalars and a first order update for the momentum, since time
17 The grid cells of the staggered grid are called dual cells; centers of the dual grid cells are the nodes

of the grid cells of the primal grid.
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x
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x

x

Fig. 5.8: Primal grid cell Ωi and dual grid cell :Ωi for d “ 2, circles: primal cell centers (dual
cell nodes), dots: dual cell centers (primal cell nodes), crosses: (sub-)face centers

dependence of the dynamic pressure is omitted, yet lack the elliptic properties due

to the divergence constraint (3.140). For determination of the desired grid cell face

normal carrier flux pP~v ¨ ~nq, that satisfies (3.140), the integral time-discrete second

order accurate Poisson equation

˛
BΩi

ˆ

∆t

2
Θpn`

1
2q,˚

˙

∇Bπ1 pn` 1
2q ¨ ~ndA “ ´

∆Vi
∆t

´

Ppn`1q,˚
i ´ Ppnqi

¯

`Q
pn` 1

2q,˚
i

(5.72)

with

Q
pn` 1

2q,˚
i :“

ˆ
BΩi

rP pS ´Dqspn` 1
2q,˚ dV (5.73)

is obtained as sketched in the following steps, corresponding to a generalized MAC-

projection – referred to as first projection tracing back to [70] – with integral Finite

Volume discretization of the discrete divergence operator as done in [92] and [180]:

1. integration of (3.140) in time from tn to tn`1:

ˆ tn`1

tn

˛
BΩi

pP~v ¨ ~nq dAdt “

ˆ tn`1

tn

ˆ
Ωi

PD dV dt (5.74)

2. exchanging the order of temporal and spatial integration (which is possible due
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to time-independent Ωi):

˛
BΩi

ˆ tn`1

tn
pP~v ¨ ~nq dt dA “

ˆ
Ωi

ˆ tn`1

tn
PD dt dV (5.75)

3. approximation

ˆ tn`1

tn
pP~v ¨ ~nq dt “ ∆t ĄP~v ¨ ~n “ ∆t pP~vqpn` 1

2q ¨ ~n`O
`

∆t3
˘

(5.76)

in (5.75) with
ĄP~v ¨ ~n “ 1

∆t

ˆ tn`1

tn
P~v ¨ ~ndt (5.77)

as temporal average, yielding

∆t

˛
BΩi

´

pP~vqpn` 1
2q ¨ ~n

¯

dA “ ∆t

ˆ
Ωi

pPDqpn` 1
2q dV `Op∆t3q (5.78)

4. approximation of pP~vqpn` 1
2q in (5.78) by

pP~vqpn` 1
2q “ Θpn`

1
2q pρ~vqpn`

1
2q

“ Θpn`
1
2q

´

pρ~vqpn`1q
` pρ~vqpnq

¯

2
`Op∆t2q (5.79)

5. replacement of the yet unknown pρ~vqpn`1q in (5.79) by

pρ~vqpn`1q
“ pρ~vqpn`1q,˚

´∆t Bπ
1 pn` 1

2q `Op∆t2q (5.80)

after

(a) Integration of the non-integral form of momentum equation (3.128c) in

time from tn to tn`1:

pρ~vqpn`1q

“ pρ~vqpnq ´∆t
´

∇ρ~v ˝ ~v ´∇ ¨ T `∇p1 ´ ρ~g
¯pn` 1

2q

`Op∆t2q (5.81)
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(b) subtraction of the prediction

pρ~vqpn`1q,˚

“ pρ~vqpnq ´∆t
´

p∇ρ~v ˝ ~v ´∇ ¨ T qpn` 1
2q,˚ `∇π1 ´ ρpn` 1

2q,˚~g
¯

`Op∆t2q (5.82)

from (5.81), yielding (5.80) due to ρpn`
1
2q “ ρpn`

1
2q,˚ `Op∆t2q with

∇Bπ1 pn` 1
2q :“ ∇Bp1 pn` 1

2q `∇ ¨
”

pρ~v ˝ ~vqpn`
1
2q ´ pρ~v ˝ ~vqpn`

1
2q,˚

ı

`∇ ¨
”

pT qpn`
1
2q ´ pT qpn`

1
2q,˚

ı

(5.83)

6. consideration of both

pρ~vqpn`
1
2q,˚ “

´

pρ~vqpn`1q,˚
` pρ~vqpnq

¯

2
`Op∆t2q (5.84)

and

Θpn`
1
2q,˚ “ Θpn`

1
2q `Op∆t2q (5.85)

and, thus, in equation (5.79)

Θpn`
1
2q

´

pρ~vqpn`1q,˚
` pρ~vqpnq

¯

2
“ pP~vqpn` 1

2q,˚ `Op∆t2q (5.86)

as well as

pP~vqpn` 1
2q “ pP~vqpn` 1

2q,˚ `Op∆t2q (5.87)

after inserting (5.80). This transforms (5.78) to

∆t

˛
BΩi

´

pP~vqpn` 1
2q,˚ ¨ ~n

¯

dA “ ∆t

ˆ
Ωi

pPDqpn` 1
2q dV `Op∆t3q (5.88)

7. replacement of the left hand side of (5.88) according to

∆t

˛
BΩi

´

pP~vqpn` 1
2q,˚ ¨ ~n

¯

dA “ ´∆Vi

´

Ppn`1q,˚
´ Ppnq

¯

`∆t

ˆ
Ωi

pPSqpn` 1
2q dV (5.89)

with ∆Vi :“ hd
´

Πd
ď“1
c
ď

¯

from approximation of the spatio-temporal integral

of pP qt `∇ ¨ pP~vq “ PD during the predictor step
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8. consideration of

Ppn` 1
2q “ Ppn` 1

2q,˚ `Op∆t2q “ Ppn`1q,˚ ` Ppnq
2

`Op∆t2q (5.90a)

Spn` 1
2q “ Spn` 1

2q,˚ `Op∆t2q “ Spn`1q,˚ ` Spnq
2

`Op∆t2q (5.90b)

Dpn` 1
2q “ Dpn` 1

2q,˚ `Op∆t2q “ Dpn`1q,˚ `Dpnq
2

`Op∆t2q (5.90c)

In (5.72) Ppnqi is known as result from the previous time step, integrating the gov-

erning equations from tn´1 to tn, Ppn`1q,˚
i results from the current predictor step P

and Qp
n` 1

2q,˚
i “ 0 for incompressible fluids, since both S “ 0 and D “ 0 due to

χ “ 1
ρc2
“ 0. The benefit of formulation (5.72) is, that the divergence does not have

to be evaluated explicitly as the divergence error, accumulated during the predictor

step, is contained in the predictor result Ppn`1q,˚
i and can be extracted if the true

value Ppn`1q
i is (approximately) known. A further advantage of the Finite Volume

representation of the Poisson equation (5.72) is, that the result Bπ
1 pn` 1

2q can be used

directly for computation of the correction fluxes for P , since Qp
n` 1

2q,˚
i in (5.72) rep-

resents an approximation to the true (physical) change of P . Therefore both left and

right hand side of (5.72) represent the error ∆Vi
`

Ppn`1q,˚˚
´Ppn`1q,˚˘ due to omis-

sion of the divergence constraint during the predictor step with Pn`1,˚˚ as corrected

approximation to Ppn`1q
i .

Equation (5.72) is solved for the unknown Bπ
1 pn` 1

2q after spatial discretization

1

h

d
ÿ

d“1

1

cd

2
ÿ

w“1

p´1qw∆rF pPq,d,w “ ´
1

∆t

´

Ppn`1q,˚
i ´ Ppnqi

¯

(5.91)

with Qp
n` 1

2q,˚
i “ 0 and

∆rF pPq,d,w :“

«

ˆ

∆t

2
Θpn`

1
2q,˚

˙

d,w

∇Bπ
1 pn` 1

2q
d,w

¨~ed

ff

(5.92)

involving approximations as

∇Bπ
1 pn` 1

2q
1,2 ” ∇Bπ

1 pn` 1
2q

pi` 1
2
,j,kq

“
Bπ

1 pn` 1
2q

pi`1,j,kq ´ Bπ
1 pn` 1

2q
pi,j,kq

c1 h
`Oph2q (5.93)

of the facial gradient ∇Bπ
1 pn` 1

2q

pi` 1
2
,j,kq

, exemplified for grid cell face pi` 1
2 , j, kqwith face
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Fig. 5.9: Stencils for cell centered projection: 5-point stencil for d “ 2 (left) and 7-point
stencil for d “ 3 (right)

normal in direction d “ 1, with unknown cell center values Bπ
1 pn` 1

2q
pi`1,j,kq and Bπ

1 pn` 1
2q

pi,j,kq

in the grid cells sharing cell face pi` 1
2 , j, kq, as well as

ˆ

∆t

2
Θpn`

1
2q,˚

˙

1,2

“
∆t

2
Θ
pn` 1

2q,˚

pi` 1
2
,j,kq

“ ∆t
Θ
pn`1q,˚
pi`1,j,kq `Θ

pn`1q,˚
pi,j,kq `Θ

pnq
pi`1,j,kq `Θ

pnq
pi,j,kq

8
`Oph2q

(5.94)

considering (3.141) and ∆t „ h. Approximation (5.93) leads to a linear system

AΘ ¨ ~Bπ
1 pn` 1

2q “ ~RP (5.95)

for cell center values of Bπ
1 pn` 1

2q with 5-point stencil for each grid cell as sketched in

Fig. 5.9, subject to boundary conditions as given in section 5.4.2. After inserting the

resulting solutions Bπ
1 pn` 1

2q into (5.93) and the latter, together with the coefficient

approximation (5.94), into (5.92), the correction flux based update

∆P :“ Ppn`1q,˚˚
´ Ppn`1q,˚

“ ∆t

¨

˝

1

h

d
ÿ

d“1

1

cd

2
ÿ

w“1

p´1qw∆rF pPq,d,w

˛

‚ (5.96)

for each grid cell can be determined from the left hand side of equation (5.91) with

now known Bπ
1 pn` 1

2q, as it corrects the difference between left and right hand side

in (3.140).
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Since each of the other conserved quantities has been advanced based on the approx-

imation of the same grid cell face normal carrier flux (P~v ¨ ~nq during the predictor

step, correction of divergence errors in the fluxes of these conserved quantities can

be done for improved stability similarly to determination of their advective flux in

section 5.1.3.1, once the carrier correction flux ∆rF pPq,d,w is known on each grid cell

face: The carrier correction flux is split into two parts according to

∆rF pPq,d,w “ ∆rF
pLq

pPq,d,w `∆rF
pUq

pPq,d,w (5.97)

with one of the carrier flux contributions

∆rF
pLq

pPq,d,w :“ max
´

0,∆rF pPq,d,w
¯

ě 0 (5.98a)

∆rF
pUq

pPq,d,w :“ min
´

0,∆rF pPq,d,w
¯

ď 0 (5.98b)

equal to zero. The resulting correction flux of any other conserved quantity reads

∆rF pρψq,d,w “ ∆rF
pLq

pPq,d,wΦ
pLq

d,w
`∆rF

pUq

pPq,d,wΦ
pLq

d,w
(5.99)

with Φ as any component from (5.5a) and, for example, for grid cell face pi` 1
2 , j, kq

with d “ 1 and w “ 2,

Φ
pLq
1,2 ” Φ

pLq

pi` 1
2
,j,kq

“ Φpi,j,kq “
ρψpi,j,kq

Ppi,j,kq
(5.100a)

Φ
pUq
1,2 ” Φ

pUq

pi` 1
2
,j,kq

“ Φpi`1,j,kq “
ρψpi`1,j,kq

Ppi`1,j,kq

(5.100b)

as upwind values. First order accurate upwind values are sufficient for maintaining

second order accuracy as shown in [92], since the flux corrections add second order

contributions to the second order accurate predicted values ρψ
pn`1q,˚

. This yields

ρψ
pn`1q,˚˚

“ ρψ
pn`1q,˚

´∆t

¨

˝

1

h

d
ÿ

d“1

1

cd

2
ÿ

w“1

p´1qw∆rF pρψq,d,w

˛

‚

“ ρψ
pnq
´∆t

¨

˝

1

h

d
ÿ

d“1

1

cd

2
ÿ

w“1

p´1qw
´

rF
˚

pρψq,d,w `∆rF pρψq,d,w
¯

˛

‚

(5.101)

with spatio-temporal flux average rF
˚

pρψq,d,w as effective predictor flux as determined
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during evaluation of P in section 5.1 and

rF pρψq,d,w “ rF
˚

pρψq,d,w `∆rF pρψq,d,w (5.102)

as resulting flux average, satisfying the divergence constraint (3.140). The algorithm

of this first projection step is as follows:

1. determine coefficients on grid cell faces according to (5.94)

2. determine right hand side of (5.91) in cell centers

3. apply boundary conditions as described in section 5.4.2

4. assemble global coefficient matrix on the left hand side of (5.95), including

(cell-dependent) scaling of the coefficients from step 1. with p´1qw

cdh

5. assemble global right hand side vector of (5.95)

6. solve linear system (5.95) for Bπ
1 pn` 1

2q

7. evaluate carrier correction flux (5.92)

8. compute correction fluxes (5.99) for all other conserved quantities with (5.98)

and (5.100)

9. update all conserved quantities according to (5.101)

The increment, determined by solving (5.95), is ignored in the subsequent part of the

numerical scheme, since the update for the nodal pressure is determined in the second

projection step described in the following.

5.2.2 Momentum Correction and Pressure Update

While scalar quantities are already second order accurate and corrected as described

in section 5.2.1, such that

ρψ
pn`1q

” ρψ
pn`1q,˚˚

, ρψ ‰ ρ~v (5.103)

for all scalar quantities, the momentum ρ~v
pn`1q,˚˚

still lacks the contribution due

to the time-dependent pressure increment Bp
1

and suffers from wrong velocity diver-

gences in the viscous stresses considered so far. Therefore momentum is first order
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accurate only at this point and needs to be corrected for a second time – referred to

as second projection, tracing back to [34] and [172]. The Poisson-type equation

˛
:BΩi

´

∆t Θpn`1q,˚˚
¯

∇Bπ1 pn` 1
2q ¨ ~ndA “

˛
:BΩi

pP~vqpn`1q,˚˚
¨ ~ndA

´

ˆ
:Ωi

Ppn`1q,˚˚Dpn`1q,˚˚ dV

(5.104)

for determination of an increment Bπ
1

, such that the cell centered velocity field satis-

fies the divergence constraint (3.140), is obtained after the following steps:

1. integration of the non-integral momentum equation (3.128c) over time:

pρ~vqpn`1q
“ pρ~vqpnq´

ˆ tn`1

tn

´

∇ ¨ ρ~v ˝ ~v ´∇ ¨ T `∇p1 ´ ρ~g
¯

dt (5.105)

2. separating parts already treated before (pρ~vqpn`1q,˚˚) from the ones not yet

considered, taking into account (5.7):

pρ~vqpn`1q
“

“pρ~vqpn`1q,˚˚

hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

pρ~vqpnq ´

ˆ tn`1

tn

´

∇ ¨ ρ~v ˝ ~v ´∇ ¨ T ˚ `∇π1 ´ ρ~g
¯

dt

´

ˆ tn`1

tn
∇Bπ1 dt (5.106)

with

∇Bπ1 :“ ∇Bp1 ´∇ ¨ pT ´ T ˚q (5.107)

or

∇ ¨
´

IBπ
1

´ IBp
1

` pT ´ T ˚q

¯

“ ~0 (5.108)

and pT ´ T ˚q as given below

3. multiplication with Θpn`1q as defined in (3.141), considering Θpn`1q,˚˚ “

Θpn`1q due to both Ppn`1q,˚˚ “ Ppn`1q and ρpn`1q,˚˚ “ ρpn`1q and second

order accurate approximation of the time integral:

pP~vqpn`1q
“ pP~vqpn`1q,˚˚

´

´

∆t Θpn`1q,˚˚
¯

∇Bπ1 pn` 1
2q `O

`

∆t3
˘

(5.109)
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4. application of the (discrete) divergence operator, integration over dual control

volume :Ωi, application of the divergence theorem and considering (3.140)

For stability reasons, avoiding generation of checkerboard-like patterns in the nu-

merical solution due to numerical decoupling of neighboring grid cells, the pressure

increment is determined on a staggered grid, whose dual grid cells :Ωi are centered

in the nodes of the original, primal, grid cells Ωi, as done in [92], [180], [95], [151]

and [17]. The increment in the center of grid cell face pi ` 1
2 , j, kq between primal

cells pi, j, kq and pi`1, j, kq is approximated similarly to (5.65) for evaluation of the

approximation of the momentum flux contribution due to the predictor pressure as

Bπ
1 pn` 1

2q
1,2 “ Bπ

1 pn` 1
2q

pi` 1
2
,j,kq

“
1

2pd´1q

2pd´1q
ÿ

n“1

Bπ
1pNq

n (5.110)

which results from interpolation based on the 2pd´1q yet unknown increments

Bπ
1pNq

n P

$

&

%

´

Bπ
1

pi` 1
2
,j˘ 1

2
q

¯

for d “ 2
´

Bπ
1

pi` 1
2
,j˘ 1

2
,k˘ 1

2
q

¯

for d “ 3
(5.111)

in nodes of the primal grid cell face pi` 1
2 , j, kq. This, as previously, holds for the

other grid cell faces analogously. Both left and right hand side of (5.104) are dis-

cretized on sub-cells of the dual cell :Ωi, separated by the boundary of the primal cells

as sketched in Fig. 5.8, by second order accurate approximation of the boundary

integrals in centers of sub-cell faces and approximation of volume integrals in the

center of sub-cells. Bi-linear (d “ 2) / tri-linear (d “ 3) ansatz functions

Bπ
1

ip~xq «
d´2
ÿ

k“0

1
ÿ

j“0

1
ÿ

i“0

ˆ

ai,j,k

`

Bπ
1 pNq

˘

Πdd“1

ˆ

x
pi,j,kqd
d

˙˙

(5.112)

for the unknown increment Bπ
1

on primal grid cells with coefficients ai,j,kpBπ
1 pNqq as

functions of the (unknown) primal cell node (or dual cell center) values Bπ
1 pNq, lead

to a 9-point stencil for d “ 2 and a 27-point stencil for d “ 3 as done in [128] and

[130]. The cited literature is refered to for more details on the discretization. The

stencils are sketched in Fig. 5.10 and the resulting spatial discretization of (5.104)
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Fig. 5.10: Stencil for second projection step with black dots indicating dual cell centers, cir-
cles indicating primal cell centers and crosses marking locations at which flux aver-
ages are approximated: left: 9-point stencil (d “ 2), right: 27-point stencil (d “ 3)

reads

1

h

d
ÿ

d“1

1

cd

2
ÿ

w“1

p´1qw
2pd´1q
ÿ

x“1

„

´

∆t Θpn`1q,˚˚
¯

d,w,x

ˆ

∇Bπ1id,w,x
´

:~xd,w,x

¯

¨~ed

˙

“
1

h

d
ÿ

d“1

1

cd

2
ÿ

w“1

p´1qw
2pd´1q
ÿ

x“1

”

pP~vqpn`1q,˚˚

d,w,x

ı

´

2d
ÿ

sub“1

P Dpn`1q,˚˚
sub (5.113)

for each dual cell with x as the index of the sub-faces on a dual cell face. In (5.113)

the expression
ˆ

∇Bπ1id,w,x
´

:~xd,w,x

¯

¨~ed

˙

– which is discretized as done in [128] and

[130] – is the dth component of the analytically determined gradient of the ansatz

function (5.112) in that primal cell i, in which the sub-face with indices d, w, x is

located in, evaluated in dual sub-face center :~xd,w,x, and, thus, a function of the Bπ
1 pNq

to be determined. This results in a linear system

A
pNq
Θ ¨ ~Bπ

1 pNq
“ ~RpNq (5.114)

subject to boundary conditions as given in section 5.4.2 for determination of the un-

known Bπ
1 pNq. Once solved as described in section 5.5, the primal cell face centered

values of Bπ
1

can be obtained from (5.110), and the momenta can be updated accord-
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ing to

ρ~v
pn`1q
i “ ρ~v

pn`1q,˚˚
i ´

1

∆Vi

ˆ tn`1

tn

˛
BΩi

Bπ
1

~ndAdt (5.115)

“ ρ~v
pn`1q,˚˚
i ´∆t

¨

˝

1

h

d
ÿ

d“1

1

cd

2
ÿ

w“1

„

p´1qwBπ
1 pn` 1

2q
d,w

~ed



˛

‚`Op∆t3q

In the special case of homogeneous density ρ, homogeneous dynamic viscosity µ and

zero velocity divergence ∇ ¨ ~v “ 0, the general relation (5.108) with

T ´ T ˚ “ ´
∆t

2

´

µn`
1
2

´

∇~g` p∇~gqT
¯

` λn`
1
2 I p∇ ¨~gq

¯

(5.116)

and

~g :“
1

ρpn`1q
∇ ¨

´

IBπ
1 pn` 1

2q
¯

(5.117)

can be reduced to the explicit pressure increment

Bp
1 pn` 1

2q “ Bπ
1 pn` 1

2q ´
∆t

2

ˆ

µ

ρ

˙pn`1q

∇ ¨∇Bπ1 pn` 1
2q (5.118)

yielding the final pressure

p
1 pn` 1

2q “ π
1

` Bπ
1 pn` 1

2q ´
∆t

2

ˆ

µ

ρ

˙pn`1q

∇ ¨∇Bπ1 pn` 1
2q

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

“ Bp
1 pn` 1

2q

(5.119)

according to (5.7) as given in [30]. Relation (5.116) is obtained by inserting the

non-integral form of (5.115) – divided by the density – into (3.31) or (3.32), respec-

tively, during determination of T , eliminating velocity contributions in the difference

T ´ T ˚. The pressure update formula (5.119) is second order accurate on periodic

domains and
`

3
2

˘th order accurate on more general domains as shown in [66]. As

pressure is not only staggered in space but also in time,

π
1

:“ p
1 pn´ 1

2q (5.120)

can be defined as in [15] or in [5], [6] and [7]. Determination of an explicit second

order accurate pressure update on general domains without restrictions for ρ, µ and
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∇ ¨ ~v, however, is not available yet. Thus, the first order accurate pressure update

p
1 pn` 1

2q “ π
1

` Bπ
1 pn` 1

2q (5.121)

is used throughout this work. Since (5.114) is solved with Neumann boundaries (see

section 5.4.2), the solution Bπ
1 pn` 1

2q is also valid, if an arbitrary constant is added.

In order to keep solutions from different time-steps in similar value ranges, Bπ
1 pn` 1

2q

is set to be zero at a reference location and the solution in the rest of the domain is

adjusted accordingly by subtracting the constant that resulted in the reference location

after solving (5.114).

The algorithm for the second projection step is as follows:

1. compute coefficients
´

∆t
2 Θ

pn`1q,˚˚
i

¯

«

ˆ

∆t
2

Ppn`1q,˚˚
i

ρ
pn`1q,˚˚
i

˙

in primal cell centers

(dual cell nodes)

2. compute approximations to pP~vqpn`1q,˚˚
i «

´

P i
ρ~vi
ρi

¯pn`1q,˚˚
in primal cell

centers (dual cell nodes)

3. determine contributions to right hand of (5.114) due to surface integrals over

dual cell sub-faces (as given by the first expression on the right hand side (sec-

ond line of (5.113)) in dual cell centers (primal cell nodes), based on the primal

cell center values determined in step 2.

4. add volume integrals of source terms (second expression on the right hand side

(second line of (5.113)) to the nodal right hand side determined in step 3., if

applicable

5. assemble global matrix on the left hand side of (5.114), based on the left hand

side of (5.113), discretized in dual cell sub-faces centers, involving

‚ results from step 1.

‚ weights Πd
d“1

ˆ

x
pi,j,kqd
d

˙

from (5.112)

‚ the factor p´1qw

cd h
from (5.113)

6. apply boundary conditions as described in section 5.4.2

7. solve (5.114) for the unknown Bπ
1 pNq
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8. update momenta according to (5.115) with primal cell face center increment

according to (5.110)

9. adjust Poisson solution to be zero in the reference location

10. update dynamic pressure in cell nodes according to (5.121) with Bπ
1 pn` 1

2q “

Bπ
1 pNq

5.2.3 Summary: Corrector

The corrector step is split into two parts, the first one as a cell centered MAC-type

projection for correction of fluxes to satisfy the divergence constraint, the second one

as a node centered projection for correction of the cell centered velocity field and the

node centered pressure to satisfy the divergence constraint.

After the first corrector step

‚ all scalar conserved quantities have attained their final values to be used as

starting point for the next time step

‚ momentum is still only first order accurate in time (while second order accurate

in space) as time evolution of the dynamic pressure p
1

is not yet accounted for

‚ the cell centered velocity field does not satisfy the divergence constraint

‚ the dynamic pressure p
1

has not been updated

The approximation of the integral average of any conserved quantity ρψ after the

first corrector step Cp1q is labeled ρψ
pn`1q,˚˚

” PΦ
pn`1q,˚˚ according to (5.3a). For

scalars ρψ
pn`1q,˚˚

“ ρψ
pn`1q

applies.

After the second corrector step

‚ all conserved quantities have attained their final values to be used as starting

point for the next time step

‚ momentum is second order accurate as well

‚ the cell centered velocity field satisfies the divergence constraint

‚ the dynamic pressure p
1

has been updated (first order accurate)
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The approximation of the integral average of any conserved quantity ρψ after the

second corrector step Cp2q is labeled ρψ
pn`1q

” PΦ
pn`1q according to (5.3b). Only

the nodal pressure and the momentum (and from that the velocity) change during this

second correction step.

5.3 Initial Conditions

Initial conditions for the integral averages need to be specified, depending on the

given physical problem. Typically, initial data for the density ρ, the velocity ~v, the

background pressure P0 and the temperature T (such that P “ ρΘpT q) are available

and can be specified in grid cell centers, approximating the integral average over the

grid cell second order accurate. While the initial momentum is determined from the

specified initial density and velocity as the integral average of each conserved quan-

tity is approximated based on the specified primitive variables, the initial dynamic

pressure p
1 p´ 1

2q at time level n “ 0, matching the specified (conserved) quantities

and satisfying the divergence constraint (3.140), is determined – if not known – via

the following fixed-point iteration similar to [4] and [5]:

1. in contrast to [5], an initial guess for the nodal pressure p
1 p´ 1

2
q

r0s ‰ 0 is com-

puted from an initial nodal projection as described below

2. with the available guess p
1 p´ 1

2
q

ris
for the initial pressure a complete time step is

performed as described in sections 5.1 and 5.2

3. the resulting pressure p
1 p 1

2
q

ris
at time level n “ 1 is taken as improved initial

pressure

p
1 p´ 1

2
q

ri`1s :“ p
1 p 1

2
q

ris
(5.122)

while all the conserved quantities ρψ are discarded and reset to their initial

values at n “ 0.

4. steps 2. and 3. are repeated Niter times and the final initial pressure is

p
1 p´ 1

2
q :“ p

1 p 1
2
q

rNiters
(5.123)

where

Niter :“ min
´

N
pmaxq
iter , itol

¯

(5.124)
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with N
pmaxq
iter as a specified maximum number of initial iterations according to

steps 2. and 3. and itol as the iteration index at which

›

›

›

›

p
1 p´ 1

2
q

ritols
´ p

1 p´ 1
2
q

ritol´1s

›

›

›

›

p

ă T (5.125)

with norm }�}p, p P t1, 2,8u and T as some specified tolerance.

This iterative procedure – among others – adds the influence of initially (unknown)

acceleration to the pressure found during the initial guess. The initial guess is per-

formed in order to save (at least) one of the subsequent iteration steps in comparison

to starting the iteration with a zero pressure, since solving a Poisson-type problem is

cheaper than performing a whole time step involving two projections and computa-

tion of predictor fluxes. The initial projection, leading to the initial guess p
1 p´ 1

2
q

r0s in

step 1. of the algorithm described above, is a nodal projection, similar to the second

projection step described in section 5.2.2, with the following differences:

‚ since the result of the initial projection is only a guess as starting point for

the iterative procedure described above, and since pressure is not a conserved

quantity, the initial projection is done based on the non-conservative momen-

tum equation as described below

‚ no increment Bπ
1

but a full pressure guess p
1

is determined

‚ no computation of right hand side volume sources is required

‚ the result, serving as initial guess p
1 p´ 1

2
q

r0s , is not needed for updating any con-

served quantity

The required discrete Poisson type equation

1

h

d
ÿ

d“1

1

cd

2
ÿ

w“1

p´1qw
2pd´1q
ÿ

x“1

«

ˆ

1

ρp0q

˙

d,w,x

ˆ

∇p
1 p´ 1

2q
id,w,x

´

:~xd,w,x

¯

¨~ed

˙

ff

“
1

h

d
ÿ

d“1

1

cd

2
ÿ

w“1

p´1qw
2pd´1q
ÿ

x“1

„

´

~A
p0q
¯

d,w,x
¨~ed



(5.126)

with acceleration vector

~A
p0q

:“ ~g ´ ~v p0q ¨∇~v p0q ` 1

ρp0q
∇ ¨ T p0q (5.127)
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and �p0q indicating initial values is obtained by

1. subtracting the non-integral mass balance p ρ qt `∇ ¨ pρ~vq “ 0 from the non-

integral momentum balance p ρ~v qt ` ∇ ¨ pρ~v ˝ ~vq ` ∇p1 ´ ∇ ¨ T “ ρ~g to

obtain
1

ρ
∇p1 “ 1

ρ
∇ ¨ T ` ~g ´ ~v ¨∇~v ´ p~v qt (5.128)

after division by ρ.

2. applying the divergence operator to (5.128):

∇ ¨ 1

ρ
∇p1 “ ∇ ¨

ˆ

1

ρ
∇ ¨ T ` g ´ ~v ¨∇~v

˙

(5.129)

3. integration over a dual cell :Ω and application of the divergence theorem, yield-

ing

˛
:BΩ

ˆ

1

ρ

˙

∇p1 ¨~ndA “

˛
:BΩ

ˆ

1

ρ
∇ ¨ T ` g ´ ~v ¨∇~v ´ p~v qt

˙

¨~ndA (5.130)

4. ignoring the unknown contribution p~v qt which re-enters the resulting pressure

after the subsequent iteration described above

As in equation (5.113), the expression
ˆ

∇p
1 p´ 1

2q
id,w,x

´

:~xd,w,x

¯

¨~ed

˙

in relation (5.126) is

the dth component of the analytically determined gradient of the ansatz18

p
1 p´ 1

2q
i p~xq «

d´2
ÿ

k“0

1
ÿ

j“0

1
ÿ

i“0

ˆ

ai,j,k

`

p
1 p´ 1

2
q

r0s

˘

Πdd“1

ˆ

x
pi,j,kqd
d

˙˙

(5.131)

in that primal cell i, in which the sub-face with indices d, w, x is located in, evaluated

in dual sub-face center :~xd,w,x, with unknown nodal values p
1 p´ 1

2
q

r0s to be determined.

The algorithm of the initial projection is as follows:

1. compute coefficients
´

1
ρp0q

¯

in primal cell centers (dual cell nodes)

2. compute primal cell center values of the right hand side contribution (5.127),
18 The ansatz is bi-linear for d “ 2 and tri-linear for d “ 3.
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approximating each component c of the advective contribution vector ~v ¨∇~v by

p~v ¨∇~vq p0qc “

d
ÿ

d“1

˜

v
p0q

d

ˆ

Bvc
Bxd

˙p0q
¸

«

d
ÿ

d“1

¨

˝v
p0q

d,pi,j,kq

v
p0q
c,ppi,j,kq ~̀edq

´ v
p0q
c,ppi,j,kq ~́edq

2 cd h

˛

‚`Oph2q (5.132)

and each component of ∇ ¨ T by

p∇ ¨ T qp0qc “

d
ÿ

d“1

¨

˝

BT p0q

c,d

Bxd

˛

‚

«
1

h

¨

˝

2
ÿ

w“1

p´1qw

¨

˝

T p0q,asym
c,d,w

cc
`

d
ÿ

d“1

¨

˝

T p0q,sym
c,d,w

cd

˛

‚

˛

‚

˛

‚`Oph2q

(5.133)

with

T p0q,sym
c,d,w

“ µd,w

˜

ˆ

Bvc
Bxd

˙

d,w

`

ˆ

Bvd
Bxc

˙

d,w

¸

(5.134a)

T p0q,asym
c,d,w

“ λd,w

d
ÿ

e“1

ˆ

Bve
Bxe

˙

d,w

(5.134b)

and the velocity derivatives according to the ones given in section 5.1.3.3 - 2

3. perform steps 3. to 5. on page 102 in section 5.2.2

4. apply boundary conditions as described in section 5.4.2

5. solve the resulting linear system

A
pNq
1
ρ
,r0s
¨ ~p1

p´ 1
2
q

r0s “ ~R
pNq
r0s (5.135)

for the unknown p
1 p´ 1

2
q

r0s
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5.4 Boundary Conditions

Fig. 5.11: Ghost cells around computational do-
main (white): dark grey: ghost cells
in ghost boxes at the domain bound-
ary faces; light grey, medium light grey,
medium dark grey: ghost cells in ghost
boxes at the domain corners; the differ-
ent grey levels indicate which cells are
required for the different stencils occur-
ring throughout the numerical method at
domain boundary faces

The boundary conditions at the

outer boundary BΩ˝ of the com-

putational domain Ω˝ are enforced

via determination of suitable val-

ues in ghost cells in a ghost region

around the computational domain

as sketched in Fig. 5.11 in two spa-

tial dimensions. These ghost val-

ues are determined such that the re-

quired boundary fluxes across grid

cell faces at BΩ˝ are reached. While

values in ghost cells in the bound-

ary boxes along the domain bound-

ary (dark grey in Fig. 5.11) de-

pend on the type of the boundary

only, the values in the boxes at the

domain corners (light grey in Fig.
5.11) depend on the combination of

the types of all neighboring domain

boundary faces.

5.4.1 Hyperbolic-Parabolic Part

First, the specification of the boundary conditions for the hyperblic-parabolic part

of the numerical method is given according to the appendix of [90], in which the

corresponding formulas for the boundary conditions of primitive quantities are given.

5.4.1.1 Boundary Types

For determination of ghost values in boundary boxes along the domain boundary it is

sufficient to consider the type of the respective boundary segment as listed below.
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5.4.1.1 - 1 Solid Wall

At solid walls, boundary normal fluxes of mass, species mass, and momentum vanish.

Thus, ghost fluid values of these quantities can be obtained by mirroring the states

form the grid cells at the boundary to the ghost region as sketched in Fig. 5.12.

Fig. 5.12: Ghost cell values at solid walls

While the scalars are just copied

as described, the boundary nor-

mal vector component of momen-

tum (and velocity) needs to change

its sign in addition in order to en-

force a zero boundary normal veloc-

ity at BΩ˝. If friction is present at

the solid wall, the boundary tangen-

tial components of momentum and velocity need to change their sign in the ghost

region as well, in order to enforce a zero flow – and, thus, the no-slip condition –

at the boundary. Without friction only the interface normal vector components need

to change sign and slip is allowed in boundary tangential directions. The boundary

normal pressure gradient, required in the correction steps, is zero at the solid wall

boundary as well.

5.4.1.1 - 2 Inflow

The flux across inflow boundary grid cell faces is adjusted by determination of the

ghost region values such that numerical flux evaluation with stencil cells both in the

ghost region and within the computational domain yields the required boundary flux

as sketched in Fig. 5.13.

Fig. 5.13: Ghost cell values at inflow bound-
aries

Fig. 5.14: Ghost cell values at outflow bound-
aries: zeroth order extrapolation

5.4.1.1 - 3 Outflow

At outflow boundaries the quantities are determined via zero order extrapolation as

sketched in Fig. 5.14, since linear (first order) extrapolation has the potential to cause
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unphysical return flow from the boundary region into the domain and, thus, has to be

avoided without further treatment.

5.4.1.1 - 4 Periodic Boundary

If the boundary is a periodic (and, thus, no outer) boundary, the values in the ghost

region are set as sketched in Fig. 5.15 in order to mimic the state within the compu-

tational domain in the vicinity of the partner boundary (which is periodic as well).

Fig. 5.15: Ghost cell values at periodic boundaries

5.4.1.2 Boundary Type Combinations

Determination of ghost values in the ghost boxes at the domain corners requires

knowledge of the combination of neighboring boundary types. These ghost values

are needed for computation of viscous fluxes across the boundary.

5.4.1.2 - 1 Two Space Dimensions

The ghost value determination in the domain corner ghost boxes is sketched in Fig.
5.16 for different neighboring boundary types in two spatial dimensions. The num-

bers link cells in the ghost region to cells inside the computational domain, of which

the ghost cells obtain their information. The sign vector indicates, which vector com-

ponent needs to change sign in the ghost region in comparison to the linked inner

domain cell.

5.4.1.2 - 2 Three Space Dimensions

For three space dimensions the boundary settings shown in Fig. 5.16 for edges of the

two-dimensional domain apply to domain boundary faces and the settings shown for

domain corner nodes apply to domain boundary edges. Additional settings for the
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Fig. 5.16: Ghost cell values depending on combinations of adjacent boundary types: values
0,1,2 and 3 indicate the cell within the computational domain the absolute value
of the ghost cell value comes from, the sign vectors indicate the sign of vector
quantity components, provided all vector components within the cells labeled 0,1,2
and 3 within the computational domain have positive sign
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domain corners of three dimensional domains have to be taken into account, consid-

ering the respective combinations of three adjacent domain boundary types.

5.4.2 Elliptic Problems

For solving integral elliptic problems of type

˛
BΩi

´

Θp˝q∇Bπ
¯

¨ ~n dA “

ˆ
Ωi

∇ ¨ ~R p˝qdV ´
ˆ

Ωi

Dp˝qdV (5.136)

for the unknown quantity Bπ with available19 right hand side vector ~R and scalar D,

a boundary condition for the control volume boundary normal flux Θp˝q∇Bπ ¨ ~n over

the domain boundary has to be specified. The integrals over control volume boundary

segments, which conincide with the boundary of the computational domain, can be

separated from the left hand side control volume boundary integrals, yielding

ˆ
BΩizBΩ˝

´

Θp˝q∇Bπ
¯

¨ ~n dA “

ˆ
Ωi

∇ ¨ ~R p˝qdV ´
ˆ

Ωi

Dp˝qdV

´

ˆ
BΩ˝

´

Θp˝q∇Bπp˝q
¯˝

¨ ~n˝ dA (5.137)

after shifting of the domain boundary integrals labeled ˝ with Neumann boundary

condition to the right hand side. For determination of pressure increments via (5.137)

up to a constant, the velocity boundary condition has to be taken into account via

the momentum balance. Following [15], the fact that the correct velocity boundary

condition has already been considered during the predictor step of the incremental

projection method yields the zero Neumann boundary condition

´

Θp˝q∇Bπp˝q
¯˝

¨ ~n˝ “ 0 (5.138)

for the elliptic problems of the corrector step in order to keep the velocity bound-

ary condition unchanged, such that the final velocity field still satisfies the physical

boundary conditions. As discussed in [30], this leads to an only first order accurate

pressure approximation due to the implicit assumption that the local boundary normal

pressure boundary conditon does not change over time. As shown in [65] the result-

ing artificial boundary layer also affects accuracy of momentum and the scalars in the

L8-norm. Improvement with respect to the accuracy of the pressure at the boundary

is expected by utilization of a suitable pressure update formula, consequently allow-
19 Available information is labeled by superscript p˝q here.
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ing for a changing pressure boundary condition over time as discussed in [30], and

incorporating boundary tangential information into the Neumann boundary condition

of the elliptic problem by solving a Helmholtz-type problem for the boundary condi-

tion on the boundary independent of the unknown final velocity as discussed in [102]

and in appendix section D. The lack of consitency of the pressure boundary condition

in both incremental and full pressure projection methods is a widely discussed and

still not sufficiently resolved issue, especially for variable density flows, as discussed

for flows with constant density, for example, in [77], [65] or [109].

5.5 Solution of Systems of Linear Equations

The linear systems (5.34), (5.95), (5.114) and (5.135), arising throughout the solution

procedure described in sections 5.1, 5.2 and 5.3, are solved by an algebraic multi-

grid preconditioned biconjugate gradient stabilized method (BiCGSTAB) for sparse

systems, introduced in [178] as a Krylov sub-space method according to [99]. The

utilized biconjugate gradient stabilized method is described in [13], implemented as

presented in [35], [52] and related publications20. The algebraic multigrid precon-

ditioner (BoomerAMG) is described in [74] and references therein. A more recent

introduction to algebraic multigrid preconditioner can be found in [51].

5.6 Validation and Results

This section is meant to show, that the present single-phase method – as basis for

the following chapters – is implemented well, second order accurate, conservative

and stable. Therefore the following test cases are presented, in each of which the

reference values Φ̌ from Tab. 5.4 are considered, if not stated otherwise, and the

relations Φ “ Φ̂Φ̌, P0p~x, 0q “ P̌0 and Pp~x, 0q “ P̌ apply.

Tab. 5.4: Reference quantities Φ̌ as used for single-phase solver tests

Φ̌ ľ ť v̌ Ť ρ̌ P̌0 P̌
Unit m s K m

s
kg
m3

kg
m s2

kg
m3 K

Size 1 1 1 300 1.1768 101325 P̌0
R
M̌

“ ρ̌Ť “ ρ̌θ̌

20 https://computation.llnl.gov/project/linear_solvers/publications.
php, [last visited on Jul. 27th, 2016]

https://computation.llnl.gov/project/linear_solvers/publications.php
https://computation.llnl.gov/project/linear_solvers/publications.php
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5.6.1 Smoothed Gresho Vortex

The two-dimensional analytical solution to a vortex problem, initially described in

[63] and smoothed as done in [86], is

ρ̂p~x, tq “

#

`

1` p1´ r̂2q6
˘

if r̂ ă 1

1 otherwise
(5.139)

for the non-dimensional density ρ̂ and

v̂1p~x, tq “ v̂
p8q

1

$

&

%

´

1´ η $1 p1´ r̂q
6 r̂6 sinpϑq

¯

if r̂ ă 1

1 otherwise
(5.140a)

v̂2p~x, tq “ v̂
p8q

2

$

&

%

´

1` η $2 p1´ r̂q
6 r̂6 cospϑq

¯

if r̂ ă 1

1 otherwise
(5.140b)

for the non-dimensional velocity ~̂v of an inviscid (µ “ 0) fluid in absence of gravity

(~g “ ~0). In equations (5.139) and (5.140)

r̂ “
d̂

r̂˝
(5.141)

is the time-dependent relative radius with r̂˝ “ 0.4 as the non-dimensional radius of

the vortex and

d̂ :“
ˇ

ˇ

ˇ
∆~̂x

ˇ

ˇ

ˇ
(5.142)

as the time-dependent non-dimensional local distance to the vortex center, resulting

from

∆~̂x :“ ~̂x´ ~̂x˝pt̂q (5.143)

with

~̂x˝
`

t̂
˘

“

˜

0.5

0.5

¸

` t̂

˜

v̂
p8q

1

v̂
p8q

2

¸

(5.144)

as the non-dimensional time-dependent position of the vortex center. Further,

~̂v p8q “

˜

1

1

¸

, ŵ “ 1 (5.145)
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are the non-dimensional magnitudes of the advective and rotational velocity compo-

nents with ratios

$i :“
ŵ

v̂
p8q

i

(5.146)

and

η “ ξ sgn p∆x̂1q , ξ “ 1024, ϑ “ tan´1

ˆ

∆x̂2

∆x̂1

˙

(5.147)

are the signed scaling factor η and the angle ϑ.

The pressure p̂
1

can be obtained by considering a one-dimensional path between the

vortex center (5.144) at r̂ “ 0 and the outer boundary of the vortex at r̂ “ 1. Due to

the rotational velocity and the non-constant density along this path, centrifugal forces
~fz try to pull mass away from the moving vortex center. Therefore, the closer one gets

to ~xp0qptq, the stronger a pressure force~fp, balancing~fz , has to be, in order to keep

the vortex stable. This yields the equilibrium

ˆ
dS
p
1

p~x, tqdS
looooooomooooooon

“~fp

“

ˆ
dV

ρprq~v 2
r prq

r
dV

loooooooooomoooooooooon

“~fz

“

ˆ
dV

ρ̂prq
`

v2
1,rprq ` v

2
2,rprq

˘

r
dV (5.148)

where

~vr :“ ~v ´ ~̌v

˜

v̂
p8q

1

v̂
p8q

2

¸

(5.149)

is only the rotational part of the original velocity field ~v. Along the one-dimensional

path, the corresponding non-dimensional pressure equation is

p̂
1

pr̂, t̂q “

ˆ r̂

1

ρ̂pr̃q~̂v 2
r pr̃q

r̃
dr̃ “

ˆ r̂

1

ρ̂pr̃q
`

v̂2
1,rpr̃q ` v̂

2
2,rpr̃q

˘

r̃
dr̃ (5.150)

after non-dimensionalizing with 1
pρ̌v̌2q

due to dV “ dSdr̃. Choosing the integration

path to start at the right outer boundary of the vortex (r̂ “ 1 holds everywhere at the

outer vortex boundary), approaching its center from the right (which is possible due

to the rotational symmetry of the problem), the following simplifications apply:

∆x̂2 “ 0, ϑ “ 0, sinpϑq “ 0, cospϑq “ 1, sgn p∆x̂1q “ 1 (5.151)
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Therefore the simplified non-dimensional rotational velocity field

v̂1,rpr̂, tq “ 0 (5.152a)

v̂2,rpr̂, tq “

#

ξŵ p1´ r̂q6 r̂6 if r̂ ă 1

0 otherwise
(5.152b)

with square

~̂v 2
r pr̂, t̂q “

#

ξ2ŵ2 p1´ r̂q12 r̂12 if r̂ ă 1

0 otherwise
(5.153)

can be used for pressure determination via integration from 1 to r̂ according to equa-

tion (5.150) to yield the non-dimensional pressure

p̂
1

p~̂x, t̂q “

#

p̂
1

rpr̂, t̂q ´ p̂
1

rp1, t̂q if r̂ ă 1

0 otherwise
(5.154)

with

p̂
1

rpr̂, t̂q “

ˆ
ρ̂pr̃q~̂v 2

r pr̃q

r̃
dr̃ “

$

&

%

2 ξ2ŵ2ρ̂
´

ř36
k“12

`

Ck r̃k
˘

¯

if r̃ ă 1

0 otherwise
(5.155)

and coefficients Ck according to Tab. 5.5.

Tab. 5.5: Coefficients of the analytical representation of pressure p
1

for the smoothed Gresho
vortex

k 12 13 14 15 16 17 18 19 20 21

Ck 1
12 ´12

13
9
2 ´184

15
609
32 ´222

17 ´38
9

54
19

783
20 ´558

7

k 22 23 24 25 26 27 28 29 30 31

Ck 1053
22

1014
23 ´1473

16
204
5

510
13 ´1564

27
153
8

450
29 ´269

15
174
31

k 32 33 34 35 36 - - - - -

Ck 57
32 ´74

33
15
17 ´ 6

35
1
72 - - - - -

This analytical solution for ρ̂, ~̂v and p̂
1

is used for a convergence study of the advective

part of the single-phase solver, including the influence of the pressure p̂
1

. As in [86],

by the choice (5.145) the vortex is transported diagonally in a periodic domain at

CFL-number CA “ 0.4 without limiter until t̂ “ 1.0, where the vortex arrives at the

domain center position again. In Fig. 5.17 the initial conditions and exact solution
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Fig. 5.17: Smoothed Gresho vortex; left: initial conditions and exact solution at t̂ “ 1:
greyscale: velocity magnitude between 1.164 (white) and 1.664 (anthracite) in
domain diagonal flow at v̂p8q1 “ v̂

p8q

2 “ 1 (grey arrows); solid black lines:
density iso-contours ρ̂ P p0.5, 0.6, 0.7, 0.8, 0.9q; dashed black lines: pressure
iso-contours p̂

1

P p´0.0025,´0.0075,´0.0125,´0.0175q; right: iso-contours
p0.6, 0.7, 0.8, 0.9q of the x̂1-component of momentum (solid lines) and iso-contours
p˘0.175,˘0.125,˘0.075,˘0.025q of the x̂2-component of the pressure gradient
∇̂p̂1 (dashed lines) at t̂ “ 1 on 1024 ˆ 1024 grid cells; light grey lines in both
picture represent the fixed patch distribution due to domain decomposition into 8
sub-domains for parallel convergence analysis

at t̂ “ 1.0, as well as results for momentum and pressure gradient at t̂ “ 1.0 are

shown. Numerical solutions are obtained on a hierarchy of grids of resolution 64ˆ64,

128ˆ128, 256ˆ256, 512ˆ512 and 1024ˆ1024 grid cells. The exact solution at t̂ “

1.0 – corresponding to the initial condition – is evaluated on a fine reference grid of

4096ˆ4096 grid cells. Error norms } E }p according to relation (C.26) in appendix

section C.3 and corresponding convergence orders21 p according to relation (C.30)

for density, momentum and pressure are given in Tab. 5.6, corresponding plots are

shown in Fig. 5.18. No convergence results are specified for P , since P is constant

at the accuracy22 of the elliptic solver of the first corrector step, which is chosen

to be 10´9, already on the coarsest grid. The convergence order of the pressure p
1

breaks down towards finer grids, since the error norm approaches the accuracy of the

elliptic solver of the second corrector step, which is chosen to be 10´6. Momentum,
21 Note that for determination of the errors between solutions on different grids only second order

accurate integration is used for obtaining average data on the finer grid at the location, at which
data is available on the coarser grid. Therefore the presented results for p have an upper bound of
(about) 2. This, however, is sufficient, as the present method aims for second order accuracy and
the analysis, nevertheless, assures that the method is not worse than second order accurate.

22 Magnitude of the relative residual at which the solver terminates.
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Tab. 5.6: Convergence results for flow at µ “ 0, D “ 0 and ~g “ ~0

P
h } E }1 p1 } E }2 p2 } E }8 p8

2´N 10´9 - 10´9 - 10´9 -
N “ 6 12.930 - 8.312 - 22.042 -
N “ 7 7.814 - 4.865 - 15.188 -
N “ 8 11.358 - 8.000 - 38.160 -
N “ 9 9.002 - 6.590 - 43.634 -
N “ 10 11.663 - 8.709 - 143.823 -
ρ

h } E }1 p1 } E }2 p2 } E }8 p8
2´N 10´3 - 10´3 - 10´3 -

N “ 6 50.099 - 23.338 - 34.069 -
N “ 7 13.809 1.859 6.564 1.830 11.409 1.578
N “ 8 3.549 1.960 1.698 1.951 3.085 1.887
N “ 9 0.896 1.987 0.429 1.983 0.788 1.968
N “ 10 0.225 1.993 0.108 1.992 0.199 1.981

ρ~v

h } E }1 p1 } E }2 p2 } E }8 p8
2´N 10´3 - 10´3 - 10´3 -

N “ 6 14.345 - 10.643 - 18.877 -
N “ 7 3.764 1.930 2.877 1.887 5.636 1.744
N “ 8 0.951 1.984 0.736 1.967 1.427 1.981
N “ 9 0.238 1.996 0.185 1.992 0.352 2.019
N “ 10 0.059 1.999 0.046 1.998 0.087 2.007

p
1

h } E }1 p1 } E }2 p2 } E }8 p8
2´N 10´3 - 10´3 - 10´3 -

N “ 6 2.059 - 1.413 - 2.335 -
N “ 7 0.470 2.129 0.303 2.219 0.511 2.191
N “ 8 0.093 2.331 0.057 2.417 0.128 1.996
N “ 9 0.029 1.697 0.018 1.653 0.036 1.814
N “ 10 0.014 0.956 0.011 0.655 0.019 0.907
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nevertheless, converges second order accurate since only first order accurate flux

densities (involving pressure) are required for second order accuracy in momentum.

Fig. 5.18: Double logarithmic plot of error norms of mass (ρ), momentum (ρ~v) and nodal
pressure (p

1

) over grid spacing h with reference slopes for different convergence
rates

5.6.2 Species Diffusion

In this two-dimensional basic example the implementation of species diffusion is

tested in a closed box with solid walls everywhere, using an initial contact disconti-
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nuity, represented via the piecewise constant mass fraction distribution

Y p~̂x, 0q :“

#

0.75 if 0.25 ă x̂1, x̂2 ď 0.75

0.25 otherwise
(5.156)

with relative coordinates 0 ă x̂1, x̂2 ă 1 in the squared domain. All other physical

effects are neglected and especially

~̂vp~̂x, 0q “ 0, p̂
1

p~̂x, 0q “ 0 (5.157)

at arbitrary homogeneous fluid density (ρ̂p~̂x, 0q “ 1 is chosen here).

Fig. 5.19: Initial species mass fraction: white: Y “ 0.25,
black: Y “ 0.75

By the choice (5.156), ini-

tially 75% of the total species

mass are located within 25%

of the domain. Thus, after

a successful diffusive balanc-

ing process the species mass

fraction should be equal to

0.375 everywhere in the do-

main. This process is

plotted in Fig. 5.20 on

page 121 for the (artificially

high) diffusion coefficients

D of 10´3 m2

s , 10´4 m2

s and

10´5 m2

s . As expected, the

initially squared contact dis-

continuity first diffuses to-

wards a circular distribution

until the solid domain boundaries are reached and diffusion continues towards the

domain corners. As also expected, the same structures, that are obtained for D “

10´3 m2

s after t̂ “ 5 and t̂ “ 10 (grey solid lines in the top right and second left

picture) is obtained for D “ 10´5 m2

s after t̂ “ 500 and t̂ “ 1000 (grey dashed lines

in the bottom pictures). At the latter times, the iso-contours for D “ 10´3 m2

s (grey

solid lines) have already vanished, as the target mass fraction of 0.375 is reached

everywhere more accurately than the precision of the computational data.
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Fig. 5.20: Diffusion of a species with mass fraction 0.75 (black), initially covering 25% of
the domain (top left), into areas in which this species has only a mass fraction
of 0.25 (white) with (artificial) diffusion coefficients of 10´3 m2

s (grey solid iso-
contours), 10´4 m2

s (greyscale areas) and 10´5 m2

s (grey dashed iso-contours at
t̂ P tt0, 5u, t10, 50u, t100, 250u, t500, 1000uu; the final mass fraction (grey area,
bottom right) is 0.375; grid resolution is 64ˆ 64 grid cells
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5.6.3 Viscous Channel Flow

In this basic two-dimensional example the implementation of viscous fluxes is tested

using a viscous laminar channel flow with constant inflow on the left side, no-slip

boundaries on top and bottom and outflow boundary on the right as shown in Fig.
5.21. Due to viscosity, development of both a laminar boundary layer along the no-

slip walls and a parabolic velocity profile towards the outflow boundary is expected.

In this example the reference quantities

v̌ “ 10´2 m

s
, µ̌ “ 10´3 kg

m s
, ρ̌ “ 103 kg

m3
, ľ “ 10´1 m (5.158)

are chosen, corresponding to a Reynolds number of 1000 “ Re ă 2300 at t̂ “ 0 with

respect to the length of the channel with non-dimensional extensions r0, 1sˆr0, 0.1s,

for which laminar flow is expected. The grid consists of 512 ˆ 256 rectangular grid

cells with 5 times finer grid resolution in wall normal direction x2 than in flow direc-

tion x1. The non-dimensional inflow velocity on the left is chosen to be constant and

homogeneous, ~̂vpp0, x̂2q , t̂q “ 1, and both the dynamic viscosity and density are ho-

mogeneous and constant according to µ̂p~̂x, t̂q “ 1 and ρ̂p~̂x, t̂q “ 1, maintained due to

inflow conditions µ̂pp0, x̂2q , t̂q “ 1 and ρ̂pp0, x̂2q , t̂q “ 1. The pressure drop along

the channel is obtained via the initial iterative procedure described in section 5.3.

The resulting pressure profile also accounts for initial accelerations. The theoretical

Fig. 5.21: Channel flow at constant inflow velocity over the entire inflow boundary (left) and
resulting parabolic outflow (right); greyscale: non-dimensional velocity magni-
tude between 0 (white) and 1.5 (dark grey); solid black lines: iso-contours of
the vertical (wall normal) velocity gradient component; dashed black lines: iso-
contours of pressure p

1

, solid white lines: iso-contours of velocity magnitude at
p0.99, 0.9925, 0.995, 0.9975q v̂

pmaxq
1 ; length scales scale with 10´2

parabolic target velocity profile

˜

v̂1

v̂2

¸

“

¨

˝

Â x̂2

´

Ĥ ´ x̂2

¯

0

˛

‚, Â :“
4 v̂

pmaxq
1

Ĥ2
(5.159)

with non-dimensional channel height Ĥ “ 0.1 is reached at the outflow boundary,

while for the maximum velocity in flow direction v̂pmaxq1 “ 3
2 ~̂vpp0, x̂2q , t̂q “ 1.5,
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resulting from global mass conservation

Â

ˆ Ĥ

0
ρ̂ppl̂, x̂2q, t̂q

´

x̂2

´

Ĥ ´ x̂2

¯¯

dx̂2 “

ˆ Ĥ

0
ρ̂pp0, x̂2q, t̂q ~̂vpp0, x̂2q , t̂q dx̂2

(5.160)

for incompressible channel flows with non-dimensional channel length l̂ “ 1, is

obtained accurately as shown in the time series plot in Fig. 5.22.

Fig. 5.22: Global maximum velocity over number of time steps of an explicit-implicit compu-
tation for channel flow; friction is treated implicitly; initial time step size at CFL-
number CA “ 0.48: ∆t0 “ 1.875 ¨ 10´3, final time step size: ∆t “ 1.25275 ¨ 10´3

Fig. 5.23: Profiles of velocity component v1 (vertical axis),
depending on coordinate direction x2 (horizontal
axis), at x̂1 P p0.1, 0.2, 0.3, 0.4, 0.5, 1.0q and t̂ “
10; horizontal axis scales with 10´2, vertical axis
scales with 10´3

Fig. 5.21 shows the velocity

magnitude (greyscale) and

iso-contours of the gradient

of the wall normal veloc-

ity component (black solid),

pressure p
1

(black dashed)

and velocity magnitude at

v̂1 P p0.99, 0.9925, 0.995,

0.9975q v̂
pmaxq
1 (white) at t̂ “

10, and Fig. 5.23 shows the

corresponding velocity pro-

files at x̂1 P p0.1, 0.2, 0.3,

0.4, 0.5, 1.0q. A maximum

velocity of 0.99 v̂
pmaxq
1 is ob-

tained at x̂1 “ 0.495. In

Fig. 5.24 on page 124 ve-

locity profiles and wall nor-

mal gradients at the outflow

boundary at different points in time are shown, which develop as expected.
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Fig. 5.24: Velocity profiles (left) and absolute value of vertical (wall normal) velocity gra-
dient components (right) in at the channel outflow boundary (~̂x1 “ l̂ “ 1) at
t̂ P p0.0, 0.5, 1.0, 2.0, 10.0q over x̂2; the final outflow profile (bottom) is parabolic
in x̂2, with 1.5 times the inflow value as maximum value and linear wall normal
gradient component. The horizontal coordinates in all pictures scale with 10´2, the
non-dimensional velocity magnitudes on the left scale with 10´3 and the vertical
axes in the right pictures scale with 10´1
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5.6.4 Falling Drop

As in [150], the single-phase version of an inviscid (µ̂ “ 0) falling drop example

is computed at Fr “ 1 (~̌v “ 1m
s , ľ “ 1m, ǧ “ 1 m

s2 ) in both two and three spatial

dimensions in a closed box at

ρ̌ “ 1000
kg

m3
, P̌0 “ 101325

kg

m s2
(5.161)

in order to show, that on the one hand the entire method – yet without numerical

representation of a fluidic interface23 – is able to handle large density ratios within

few grid cells, on the other hand, three dimensional computations are possible as well,

while restricting to two space dimensions in the rest of this work. The upper half

of the box is filled with a light fluid of density ρ̂ “ 0.001 at rest, initially containing

a static circular (d “ 2) / spherical (d “ 3) drop of a heavy fluid of density ρ̂ “ 1.

The lower half of the box is filled with the heavy fluid, at rest as well, leading to the

following initial setting:

ρ̂p~̂x, 0q “

#

1 if 0 ď x̂d ď 1 _ r̂ ď 0.2

0.001 if 1 ă x̂d ď 2 ^ r̂ ą 0.2
(5.162a)

~̂vp~̂x, 0q “ ~0 (5.162b)

r̂ “

ˇ

ˇ

ˇ
~̂x´ ~̂x pdq

ˇ

ˇ

ˇ
(5.162c)

~̂x p2q “

˜

0.5

0.75

¸

~̂x p3q “

¨

˚

˚

˝

0.5

0.5

0.75

˛

‹

‹

‚

(5.162d)

~̂x “
~x

ľ
(5.162e)

The dynamic pressure p̂
1

results from the procedure described in section 5.3. After

acceleration due to gravity the drop hits the surface of the heavy fluid as shown in

Fig. 5.25 on page 126 and in Fig. 5.26 on page 127, corresponding to the snapshots

given in [150], which are well reproduced. However, in the present method numerical

diffusion seems to be larger than in [150]. In this example the elliptic solver for

determination of the nodal pressure p
1

terminates, if the relative residual is smaller

than 10´3.

23 See chapter 6 for two-phase flow.
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Fig. 5.25: Single-phase computation of a two-dimensional circular fluid drop of density ρ̂ “ 1,
falling within a fluid of density ρ̂ “ 0.001 (white, top half domain) in a closed
box into a fluid of density ρ̂ “ 1 (light grey, bottom half domain); the pres-
sure iso-contours p̂

1

P p´0.1,´0.2,´0.3,´0.4,´0.5,´0.6,´0.7,´0.8,´0.9q,
the density iso-contours at ρ̂ P p0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9q
(black solid lines) and velocity vectors (grey arrows) are plotted at t̂ P

pp0, 0.5, 0.875q, p1.125, 1.25, 1.375qq
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Fig. 5.26: Single-phase computation of a three-dimensional spherical fluid drop of density
ρ̂ “ 1, falling within a fluid of density ρ̂ “ 0.001 (light grey, top half domain) in
a closed box into a fluid of density ρ̂ “ 1 (medium grey, bottom half domain); the
density iso-contour at ρ̂ “ 0.5 (dark grey) and velocity vectors in the x̂1-x̂3- and
the x̂2-x̂3-plane are plotted at t̂ P pp0, 0.75, 1.125q, p1.5, 1.875, 2.25qq
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5.6.5 Density Disturbances in Stratified Setting

The initial condition for the non-dimensional density in this two-dimensional setting

is

ρ̂p~̂x, 0q “

«

1

2
´ C0

ˆ

x̂2 ´
1

2

˙3

`∆ρ̂

ff

(5.163)

with Gaussian disturbance

∆ρ̂ :“
10
ÿ

N“´10

´

C1 e´pr̂
p1qpNqq

2

´ C2 e´pr̂
p2qpNqq

2¯

(5.164)

subject to

´

r̂piqpNq
¯2
“

˜

x̂1 ´ x̂
piq
1 ´N

C3

¸2

`

˜

x̂2 ´ x̂
piq
2

C3

¸2

(5.165)

and

~̂xp1q “

˜

0.5

0.75

¸

, ~̂xp2q “

˜

0.5

0.25

¸

(5.166a)

C0 “ 0.5, C1 “ C2 “ 0.05, C3 “ 0.1 (5.166b)

on a pr0, 1s ˆ r0, 1sq domain as specified in [86], periodic in the horizontal direction

and bounded by solid no-slip walls on top and bottom. The system is initially at rest

and, thus,

~̂vp~̂x, 0q “ 0 (5.167)

applies for the initial velocity. Physically, this setting corresponds to a cold air parcel

on top of a hot one in a stratified surrounding with

g “ 9.81
m

s2
, µ “ 1.846 ¨ 10´5 m2

s
, p̂

1

p~0, tq “ 0 (5.168a)

and a resulting stratification in p̂
1

as shown in the first picture of Fig. 5.27 on page

129. The other snapshots in Fig. 5.27 show, that also in non-trivial flow situations

with locally large velocity gradients symmetry is maintained by the present method,

wherever only physically symmetric influences act on the flow. While horizontal

symmetry is well maintained, the upper part is not symmetric to the lower one with

respect to the horizontal center axis due to an initial pressure profile, which is only

horizontally symmetric with respect to the vertical center axis.
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Fig. 5.27: Density disturbances under the influence of gravity in stratified environment
on a two-dimensional grid of 256 ˆ 256 grid cells: Snapshots at t̂ P

tt0, 1.0u, t1.5, 2.0u, t2.5, 3.0u, t3.5, 4.0uu; greyscale: density ρ̂ (initial val-
ues between 0.4382 (white) and 0.5618 (black)); solid black lines: equidis-
tant density iso-contours; dashed black lines: iso-contours of pressure p̂

1

at
p´0.5,´1.0,´1.5,´2.0,´2.5,´3.0,´3.5,´4.0,´4.5,´5.0,´5.5,´6.0q; grey
arrows: velocity field



130 5. Single-Phase Finite Volume Projection Method

Fig. 5.28: Density disturbances – ∆ρ̂ amplified by a fac-
tor of 10 – under the influence of gravity be-
tween ρ̂ “ 0.00801 (white) and ρ̂ “ 0.99235
(black); iso-contours of density (solid) and pres-
sure (dashed)

This can be seen more clearly,

if the density disturbances ∆ρ̂

are amplified by a factor of 10

as shown in Fig. 5.28 on page

130. Therefore horizontal ac-

celeration of the lower cen-

ter flow feature in Fig. 5.27
is slightly larger than the one

of the top center flow feature.

Advection including pressure

is treated explicitly at a CFL-

number CA “ 0.48 as de-

scribed in section 5.1.3.1 and

friction is treated implicitly as

described in section 5.1.3.3 -

1.

5.6.6 Gravity Driven Instability

The two-dimensional initial conditions are basically the ones specified in the previous

test case 5.6.5. However, in addition to the influence of gravity, a shear flow

~̂vp~̂x, 0q :“
1

2

¨

˝

tanh
´

x̂2´
1
2

ε

¯

0

˛

‚ (5.169)

with

ε “ 0.02 (5.170)

according to [86] is acting on the density distribution (5.163) to (5.166a) with

C0 “ 0.0156, C1 “ C2 “ 0.00156, C3 “ 0.25 (5.171)

instead of the coefficients given in section 5.6.5 in equation (5.166b). Further,

viscosity is neglected (µ “ 0) and, thus, the top and bottom domain boundaries

are slip-walls. Fig. 5.29 on page 131 shows the initial distribution of density ρ̂

(black solid lines), pressure p̂
1

(dashed lines) and two-dimensional vorticity Bv̂2
Bx̂1
´ Bv̂1
Bx̂2

(greyscale areas) in the left plot, and the state of these variable at t̂ “ 2.5 in the right
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Fig. 5.29: Gravity driven instability on two-dimensional grids of 128 ˆ 128 (top),
256 ˆ 256 (center) and 512 ˆ 512 (bottom) grid cells at t̂ “ 0
(left) and t̂ “ 2.5 (right): greyscale: two-dimensional vorticity be-
tween ´25.0 (black) and 1.5 (white); solid black lines: equidis-
tant density iso-contours; dashed black lines: pressure iso-contours at
p´0.5,´1.0,´1.5,´2.0,´2.5,´3.0,´3.5,´4.0,´4.5,´5.0,´5.5,´6.0q;
grey arrows: velocity field
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plot for different grid resolutions. The results from [86] are well reproduced.

5.6.7 Vortex-Wall Collision

The present single-phase method has been applied both fully explicit and semi-implicit

for comparative studies in two space dimensions to contribute to [124], [125]

Fig. 5.30: Lower left quarter of a
r0.0, 0.5s ˆ r0.0, 1.0s domain
with one vortex of a quadrupole,
centered at (0.5, 0.5); black solid
lines: iso-contours of vorticity at
0.2, 0.4, 0.6, 0.8, 1.0; grey arrows:
velocity vectors

and [126], in which the Reynolds num-

ber dependent scaling of the drag force

at high Reynolds numbers is studied on a

vortex-wall collision and detachment test

problem in weakly viscous incompress-

ible fluids at different viscosities as de-

scribed in [123] and references therein.

Within the present context, this example

provides another test for the viscous flux

discretization. The setting shown in Fig.
5.30 represents the lower left quarter of

a domain, periodic in x2 direction, con-

taining a quadrupole consisting of two

pairs of oppositely rotating vortices in a

(weakly) viscous fluid. Due to that con-

stellation and direction of rotation, the

vortices start traveling along the horizon-

tal center axes of the domain until they

hit a wall as done in [123] and [98], slide

along the wall for a certain period and de-

tach from the wall due to small scale flow

structures, which develop near the solid

wall due to friction. Since the symme-

try lines of the problem can be modeled

by slip wall boundaries of the quarter do-

main, it is sufficient to only compute solutions within that quarter of the domain –

containing only one of the four vortices as shown in Fig. 5.30 – in order to capture

the phenomena of the traveling vortices, hitting the solid no-slip boundary. There-

fore, in the current setting the top, bottom and right boundaries are slip walls and the

left boundary is the no-slip wall. The (arbitrary) density is constant everywhere and
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chosen to be ρ̂p~̂x, 0q “ 1. Gravity is neglected (~̂g “ ~0) and the initial velocity field

~̂vp~̂x, 0q “ A η e´
1
2p~̂x¨~̂xq

˜

x̂1

`

1´ x̂2
2

˘

x̂2

`

x̂2
1 ´ 1

˘

¸

(5.172)

with

A “ 0.625847306637464, η “ 0.031830988618379 (5.173)

and relative non-dimensional coordinates

x̂i “
x̂i ´ x̂˝,i

η
(5.174)

as well as origin

~̂x˝ “

˜

0.25

0.5

¸

(5.175)

corresponds to the initial two-dimensional local vorticity magnitude

|~̂ω| “

ˇ

ˇ

ˇ

ˇ

Bv̂2

Bx̂1
´
Bv̂1

Bx̂2

ˇ

ˇ

ˇ

ˇ

“ A x̂1 x̂2

´

6´ ~̂x ¨ ~̂x
¯

e´
1
2p~̂x¨~̂xq (5.176)

with initial enstrophy

Ê
0
“

1

2

ˆ
Ω̂
|~̂ω|2dV “

1

2

ˆ
Ω̂

ˇ

ˇ

ˇ
∇̂~̂v

ˇ

ˇ

ˇ

2
dV « 1.195 ¨ 10´3 (5.177)

and Frobenius norm (or Hilbert-Schmidt norm)
ˇ

ˇ

ˇ
∇̂~̂v

ˇ

ˇ

ˇ
. Computations on the quarter

domain r0, 0.25s ˆ r0, 0.5s are performed at a grid resolution of 4096 ˆ 1024 grid

cells (corresponding to a factor of 8 between no-slip wall normal and no-slip wall

tangential resolution). As shown in Fig. 5.32 and Fig. 5.33 for an initial Reynolds

number Re « 36109 due to the maximum initial rotation speed v̌pmaxq « 1.418 ¨

10´2 m
s , vortex size 2ηľ « 6.3662¨10´2 m and dynamic viscosity µ̌ “ 0.25¨10´7 kg

m s ,

similar flow features as in [98] develop: Due to large vorticity in the boundary layer

at Re ą Op104q, the vortex detaches from the wall and small scale vortices from

the boundary layer merge to a second oppositely rotating vortex as described in [98],

causing the entire structure to fall back onto the no-slip wall.

In Fig. 5.31 time series of the global maximum absolute vorticity, the global en-

strophy (5.177) and the global kinetic energy are shown. As in [145] for another,

three-dimensional, example, different phases can be identified from the enstrophy
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plot: In the first phase, enstrophy remains nearly constant while the vortex is sliding

along the top slip wall boundary until t̂ À 30. From t̂ « 30, already before the

vortex hits the no-slip wall, a boundary layer is developing at the latter due to the

globally induced velocity field, which becomes more evident from the plot of global

maximum vorticity. At t̂ « 40 the vortex starts hitting the no-slip wall and between

40 À t̂ À 56.5 a secondary vortex develops in the boundary layer after the vortex

has hit the no-slip wall. This phase is followed by a deformation phase of the pri-

mary boundary layer from 56.5 À t̂ À 59.5, in which a secondary boundary layer of

opposite vorticity develops at the no-slip wall underneath the primary one, causing

the latter to deform and to finally detach in the sequel. Detachment of a secondary

vortex from the primary boundary layer starts from t̂ À 59.5. The following peaks

in the plots of enstrophy and maximum vorticity in Fig. 5.31 indicate generation,

deformation and detachment of other sub-layers and vortices as shown in the wake

of the pair of primary (black) and secondary (white) vortex in Fig. 5.34 on page 137.

Fig. 5.31: Global time series of vortex-wall collision at Re “ 36109: top: global maximum
absolute vorticity; top: global enstrophy, bottom: global kinetic energy
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Fig. 5.32: Vorticity during vortex-wall collision in upper part of the lower left quarter domain
at t̂ P p0, 30, 60q for Re “ 36109q; black: positive vorticity above 1, white: nega-
tive vorticity below ´1; grey: absolute vorticity values smaller than 1; solid black
lines: iso-contours of vorticity a p0.2, 0.4, 0.6, 0.8, 1.0q
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Fig. 5.33: Vorticity during vortex-wall collision in upper part of the lower left quarter domain
at t̂ P p66, 75, 90q for Re “ 36109q; black: positive vorticity above 1, white:
negative vorticity below ´1; grey: absolute vorticity values smaller than 1; solid
black lines: iso-contours of vorticity a p0.2, 0.4, 0.6, 0.8, 1.0q
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Fig. 5.34: Vorticity during vortex-wall collision in upper part of the lower left quarter domain
at t̂ P p100, 110, 120q for Re “ 36109q; black: positive vorticity above 1, white:
negative vorticity below ´1; grey: absolute vorticity values smaller than 1; solid
black lines: iso-contours of vorticity a p0.2, 0.4, 0.6, 0.8, 1.0q
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Fig. 5.35: Vorticity during vortex-wall collision in the left upper corner of the lower left quar-
ter domain at t “ 60 for Re P p1923, 3845, 7690, 15381, 30761q from left to right;
black: vorticity above 1, white: vorticity below ´1; grey absolute vorticity values
smaller than 1

Further, results for the maximum vorticity and the time of maximum vorticity for

|~v|pmaxqpt “ 0 sq « 1.208 ¨ 10´2 m
s are given in Tab. 5.7, and the corresponding

plots at t “ 60 s are given in Fig. 5.35.

Tab. 5.7: Maximum enstrophy and maximum vorticity during vortex-wall collision for dif-
ferent Reynolds numbers at maximum initial velocity |~v|pmaxqpt “ 0 sq « 1.208 ¨
10´2 m

s

Re µ |~ω|pmaxq t|~ω|pmaxq
kg
m s

1
s s

10´7

1923 4.00 8.742 59.11

3845 2.00 14.085 57.50

7690 1.00 21.308 56.75

15381 0.50 36.465 59.68

30761 0.25 74.184 59.24

5.6.8 Rising Thermal Bubble

In [59] a test case is proposed, in which an air parcel, that is slightly warmer than its

surrounding, rises due to the influence of gravity and the resulting pressure stratifica-

tion on atmospheric length scales of magnitude Op103q. The potential temperature

with reference value θ̌ “ 300 K is initially disturbed according to

θ̂
´

~̂x, t̂
¯

:“ θ̂0

#

1` θ̂
1

2 p1` cos pπr̂qq r̂ ď 1

1 r̂ ą 1
(5.178)
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with

θ̂0 :“ 1 (5.179a)

θ̂
1

:“
1

600
(5.179b)

and r̂ as defined in (5.141) to (5.143), with r̂˝ “ 0.25 and

~̂x˝ p0q “

˜

0.5

0.35

¸

(5.180)

as the initial center of the potential temperature disturbance. Results for this test

case are, for example, given in [59] and [117]. Since the present method, however,

is derived for small length scales of magnitude Op1q, several parameters need to be

transformed in order to perform the test at the same governing characteristic numbers

Fr, Re and Sr besides of the vanishing Mach number Ma. While for atmospheric

scales the reference quantities

ľpatmq “ 1000 m, ťpatmq “ 1000 s, µ̌patmq “ 0.1
kg

m s
(5.181)

are chosen in [117], yielding

Ma “ 0, Sr “
ľpatmq

ťpatmqv̌patmq
“ 1, Fr “

v̌patmq
a

ľpatmqǧ
, Re “

ľpatmqv̌patmqρ̌

µ̌patmq

(5.182)

for the relevant characteristic numbers with

ρ̌ “ 1.177
kg

m3
, ǧ “ 9.81

m

s2
(5.183)

for both the atmospheric and the present small scale setting, in the latter the reference

quantities

v̌ “ η v̌patmq, ť “ η ťpatmq, µ̌ “ η3 µ̌patmq (5.184)

with

η :“
1

?
1000

« 3.162277660168 ¨ 10´2 (5.185)

have to be chosen at length scales of

ľ “ η2 ľpatmq “ 1 m (5.186)
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Fig. 5.36: Two-dimensional vorticity of rising thermal bubble on a grid of 512 ˆ 512 Carte-
sian cells in a r0, 1s ˆ r0, 1s domain with no-slip walls at bottom and top and both
constant background density and potential temperature at t̂ P p0.7, 1.0q; black:
vorticity values larger than 1; white: vorticity values smaller than ´1; grey: vor-
ticity values with absolute value smaller than 1; black dashed lines: iso-contours
of p̂

1

P p´1,´2,´3,´4,´5,´6,´7,´8,´9q η´2 (bottom to top); grey arrows:
velocity vectors ~̂v;

in order to preserve all characteristic numbers from (5.182). With this rescaling and

periodic boundary conditions to the left and right, good agreement with the results

from [117] is achieved as shown in Fig. 5.39 on page 142, in which snapshots at the

points in time corresponding to the results in [117] are plotted, and the correct rise

velocities are obtained. The differences to [59] and [117] at the top of the domain to-

wards the end of the simulation are due to the fact, that – in contrast to [59] and [117]

– no-slip boundaries are used at top and bottom of the domain for the present com-

putations. Therefore, a lower and an upper boundary layer develop in the resulting

velocity field as shown in Fig. 5.36, in which the two-dimensional vorticity Bv̂2
Bx̂1
´ Bv̂1
Bx̂2

is plotted. Note that due to homogeneous constant P̂p~̂x, t̂q “ 1 and P̂0p~̂x, 0q “ 1 in

the small scale limit with P̌ “ 300 K kg
m3 and P̌0 “ 101325 kg

m s2 , the density ρ shows

the (scaled) inverse behavior of potential temperature θ according to relations (3.141)

and (3.144). In contrast to the atmospheric setting, in which P0 is stratified, in the

present small scale limit pressure stratification due to the influence of gravity drops

in via p
1

. Fig. 5.40 on page 143 emphazises one of the strength of the present vari-

able density method in comparison to methods restricted to incompressible flow with

constant density. It illustrates the same snapshots as Fig. 5.39, but with weakly stably
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Fig. 5.37: Background stratification for rising thermal bubble at t̂ “ 0: left: potential tem-
perature difference 0 ă pθ̂ ´ 1q ď 1

12000 with white representing 0, right: density
´8.25 ¨ 10´5 ď pρ̂´ 1q ď 0 with black representing 0; white/black solid lines:

iso-contours of pθ̂ ´ 1q P p1, 3, 5, 7, 9, 11, 13, 15, 17, 19q θ̂
1

20 (outer to inner); black
dashed lines: iso-contours of p̂

1

P p´1,´2,´3,´4,´5,´6,´7,´8,´9q η´2

(bottom to top)

stratified – and therefore spatially inhomogeneous – distribution

θ̂0 :“

ˆ

1´

ˆ

1´
1

γ

˙ˆ

ľǧρ̌

P̌0

˙

x̂d

˙´ 1
γ´1

(5.187)

of background potential temperature θ̂0 instead of (5.179a) for application to (5.178).

Fig. 5.38: Background density for rising thermal bubble at t̂ “ 0.7 (left) and
t̂ “ 1.0 (right); black solid lines: iso-contours of pθ̂ ´ 1q P

p1, 3, 5, 7, 9, 11, 13, 15, 17, 19q θ̂
1

20 (outer to inner); black dashed lines: iso-contours
of p̂

1

P p´1,´2,´3,´4,´5,´6,´7,´8,´9q η´2 (bottom to top)
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Fig. 5.39: Rising thermal bubble on a grid of 512ˆ 512 Cartesian cells in a r0, 1s ˆ r0, 1s do-
main with no-slip walls at bottom and top and both constant background density
and potential temperature at t̂ P pp0, 0.3q, p0.5, 0.7q, p0.9, 1.0qq; black solid lines:

iso-contours of pθ̂ ´ 1q P p1, 3, 5, 7, 9, 11, 13, 15, 17, 19q θ̂
1

20 (outer to inner); black
dashed lines: iso-contours of p̂

1

P p´1,´2,´3,´4,´5,´6,´7,´8,´9q η´2

(bottom to top); grey arrows: velocity vectors ~̂v; grey: (initial) density ρ̂ “ 1;
white: (initial) density ρ̂ « 0.9983
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Fig. 5.40: Rising thermal bubble on a grid of 512 ˆ 512 Cartesian cells in a
r0, 1s ˆ r0, 1s domain with no-slip walls at bottom and top and both
weakly stratified background density and potential temperature at t̂ P

pp0, 0.3q, p0.5, 0.7q, p0.9, 1.0qq; black solid lines: iso-contours of pθ̂ ´ 1q P

p1, 3, 5, 7, 9, 11, 13, 15, 17, 19q θ̂
1

20 (outer to inner); black dashed lines: iso-contours
of p̂

1

P p´1,´2,´3,´4,´5,´6,´7,´8,´9q η´2 (bottom to top); grey arrows:
velocity vectors ~̂v; grey: (initial) density ρ̂ “ 1; white: (initial) density ρ̂ « 0.9983
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This results in a scaled inverse stratification of the background density due to homo-

geneous P as shown in Fig. 5.37 for the initial condition. The respective circular

disturbance, subject to rise, has been faded out in Fig. 5.37, in order to make the

stratification visible.

The explanation for the differences between Fig. 5.39 and Fig. 5.40 can be found

in Fig. 5.38, in which the density is shown at t̂ “ 0.7 and t̂ “ 1.0 according to

the initial setting in the right picture of Fig. 5.37: Due to the induced velocity field

heavier fluid is transported upward in the wake of the rising bubble.

5.7 Enhancements

An application of the particular implementation of the present single-phase method

is published in [133] and [134], where the method is extended to the pseudo-incom-

pressible regime ([46], [7], [92]) for moist flow of ideal gases on atmospheric length

scales, with a height- and time-dependent leading order background pressure with
BP0
Bxd

‰ 0 and xd as the vertical coordinate. As in the present method, the dynamic

pressure is used in the momentum equation instead of the Exner function, which is

commonly used in atmospheric flow simulations ([142], [46], [92], [93]), allowing for

thermodynamic consistency according to [96] for general equations of state. Further,

a well-balanced discretization of vertical leading order pressure gradient and gravity

is presented. Particularly, the relations in Tab. 5.8 hold for the transition of the

present method to [134].

Tab. 5.8: Transition from present method (left) to [134] (right); the notation on the right hand
side of each arrow is the one used in [134]

P Ñ P0

P D Ñ S ´ pP0qt

S Ñ

´

Lv
cpT

´ 1
ε`qv

¯

C

BΘ
Bθ Ñ

1`qv{ε
1`q
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Another extension of the presented single-phase method to the low Mach number

and compressible regimes of slow24 atmospheric flow is presented in [18] and [19],

in which the Poisson problems in the corrector steps are extended to Helmholtz prob-

lems to account for compressibility effects via a fading factor for smooth transition

between the different regimes within few time-steps.

24 Slow compared to the speed of sound.





6. EXTENSIONS TOWARDS A CONSERVATIVE TWO-PHASE FLOW
PROJECTION METHOD

In this chapter building blocks are described, extending the single-phase method from

chapter 5 towards a fully conservative zero Mach number variable density two-phase

flow method with a sharp fluidic interface, starting with the description of the latter

in section 6.1. In section 6.2 the solution strategy in arising cut Cartesian grid cells

is sketched, before the extensions of the advective kernel of the predictor step are

presented in detail is section 6.3. In section 6.4 a brief overview of both existing

and yet missing approaches for treatment of sharp interfaces in the corrector step is

given, followed by the two major sections 6.5 and 6.6, which are dedicated to required

corrections for stable conservative transport of each fluid phase and an approach for

discretization of the surface stress tensor from section 3.2.4.

6.1 Interface Respresentation

The sharp moving interface Γ, separating the domain Ω into fluid phases labeled

p`q and p´q, is represented by the transport of the marker introduced in section

3.1. Discretization of the latter, as stressed in [176], is one of the crucial parts of a

two-phase flow method. While interface tracking methods require the computational

grid to adjust according to the changing interface, interface capturing methods are

compliant with fixed grids and represent an interface implicitly via a scalar field, al-

lowing for easier treatment of topological changes and severe interface changes. The

most common capturing methods are the level-set (LS) method, discussed in section

6.1.1, and the volume-of-fluid (VOF) method, presented in section 6.1.2. However,

stand-alone discretizations of both methods suffer from drawbacks concerning main-

tenance of physical properties at the fluidic interface as stressed below. Therefore

hybrid LS-VOF methods1, such as CLSVOF in [168] and advancements (as, for ex-
1 A hybrid level-set/ghost fluid approach ACLS (without volume-of-fluid) is, for example, presented

in [42]. Further methods focusing on improvement of conservation properties of level-set meth-
ods comprise spectrally refined level-set methods [43], particle level-set methods [49] and other
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G “ 0

G

x1

G

x2

G “ 0

Ωp`q

G ą 0

Ωp´qG ă 0

Ω

Γ

x1

x2

Fig. 6.1: Level-set function G P Rd`1 for representation of a contour in Rd, here d “ 2

ample, [163] and [165] or [84] (CLSVOFM)), ACLSVOF in [186], VOSET in [161],

MCSL in [177] or, more recently, [104], are introduced, in order to combine the ad-

vantages and overcome the drawbacks of each standalone method. Many of these

hybrid schemes, however, still suffer from conservation issues. The present hybrid

method – detailed in sections 6.1.3 and 6.5 in order to spell out the brief sketch in

[182] – follows a hybrid LS-VOF approach, initiated in [28] and advanced in [150],

adapted to the present two-phase flow method, in order to couple and synchronize

both discrete interface movement and discrete fluid flow and conserve mass of each

fluid phase while avoiding elaborate interface reconstructions.

6.1.1 Level-Set Method

Level-set (LS) methods, introduced in [135], represent the moving interface implic-

itly as approximation to an iso-surface – usually the zero level – of the space- and

time-dependent level-set function G p~x, tq as sketched in Fig. 6.1. Typically, G is

initialized to be a signed distance function and the phase indicator φ from section

3.1 is essentially represented by the sign of G. Evolution of the different levels of

constant interface distance is governed by

DG

Dt
” Gt ` ~vG ¨∇G “ 0, G p~x, tq

$

’

’

&

’

’

%

ą 0 @ ~x P Ωp`qptq

“ 0 @ ~x P Γptq

ă 0 @ ~x P Ωp´qptq

(6.1)

as special form of the Hamilton-Jabobi equation

Gt “ ´VG|∇G| (6.2)

conservative level-set methods such as [131] as listed in [104].
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with interface normal speed

VG :“ ~vG ¨
∇G
|∇G| (6.3)

and velocity ~vG, that has to match the interface velocity ~wΓ at the zero level G “ 0

and is arbitrary otherwise. Due to the assumptions in section 3.2.2, the level-set

function can be considered to be transported by the fluid velocity ~v. However, the

choice

~vG :“ ~v (6.4)

does not preserve the signed distance property of the level-set function, which needs

to be considered as shown towards the end of this section, if the signed distance

property is required.

The major advantage of level-set methods is the availability of an accurate but simple

continuous (implicit) representation of interfaces of arbitrarily changeable shape and

topology, allowing for determination of quantities such as the local interface normal

vector

~nΓ “ ´
∇G
|∇G| (6.5)

or the local interface mean curvature

κ “ ´∇ ¨ ~nΓ (6.6)

with sign convention as in [176] smoothly and cheaply. The main drawback, how-

ever, is, that there is no inherent mechanism to conserve mass in the sub-domains,

separated by the zero level G “ 0, on the discrete level, resulting in significant local

non-physical mass transition across the discrete interface as nicely shown in [104],

even if the signed distance property is maintained, as stated, for example, in [136].

Even if (6.1) is transformed to a conservation law and discretized via fluxes across

grid cell faces, conservation of the respective quantity is not related to conservation

of conserved quantities of the individual fluid phases, separated by the zero level of

the level-set function.

Therefore in the present work the level-set equation (6.1) is discretized non-conserva-

tively in a narrow band N around the interface location using a spatially unlimited

third order accurate upstream central finite difference approach UC3 according to

[72] and [71] and explicit second order accurate SPP-RK2 time integration as pre-

sented in section 5.1.2.2, while the conservation issue remains to be fixed. The dis-
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cretization of the operator L in equation (5.21) on page 73 for time integration of the

level-set function transport (6.1), thus, reads

LpGq
`

∇Gpi,j,kq, ~vpi,j,kq
˘

“
1

2

¨

˝~vpi,j,kq ¨ ~G r´spi,j,kq `

¨

˝

d
ÿ

d“1

´
ˇ

ˇ

ˇ
vd,pi,j,kq

ˇ

ˇ

ˇ

~ed

¯

˛

‚¨ ~G r`s
pi,j,kq

˛

‚

(6.7)

with
~G r˘s
pi,j,kq :“ ~Gt´u

pi,j,kq ˘
~Gt`u
pi,j,kq (6.8)

such that

∇Gt˘u
ˇ

ˇ

ˇ

pi,j,kq
“ ~Gt˘u

pi,j,kq `O
`

h3
˘

(6.9)

and

Gt´u
c,pi,j,kq :“

1

6 cc h

`

Gppi,j,kq´2~ecq
´ 6Gppi,j,kq ~́ecq

` 3Gpi,j,kq ` 2Gppi,j,kq ~̀ecq

˘

(6.10a)

Gt`u
c,pi,j,kq :“

1

6 cc h

`

´Gppi,j,kq`2~ecq
` 6Gppi,j,kq ~̀ecq

´ 3Gpi,j,kq ´ 2Gppi,j,kq ~́ecq

˘

(6.10b)

for any component c of ~Gt˘u. As before, h is the grid spacing, cc the scaling in di-

rection c and ~ec the unit vector in coordinate direction c. If a cell of the UC3 stencil

is not in N, then a first order upwind stencil is used, and cells on the boundary of N

are not updated, such that only data from within N is used, since data beyond N is

arbitrary. Thus, accuracy increases within N towards the interface and full accuracy

at the interface Γ is only obtained if N is sufficiently expanded. The narrow band is

assembled as the set union of all p2N qd sized boxes around each cut grid cell. The

narrow band width on each side of the interface results from

dN ě N h max
d
pcdq (6.11)

and

N “ 5 (6.12)

is chosen throughout this work, such that for any element of the set C of cut grid cells

(or I of interface cells2, respectively) each narrow band cell within the corresponding

UC3 stencil for evaluation of (6.10) can be updated using a full UC3 stencil as well.

In grid cells, that newly enter the narrow band around the interface due to movement
2 See equation (6.168) for definition.
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0

1

Ωp´q

Ωp`q

Γ

Ω

Fig. 6.2: Phase indicator φ of reference phase p`q

of the latter, level-set values are initialized via the fast marching method according to

[155] or [32], respectively.

6.1.2 Volume-of-Fluid Method

Volume-of-fluid (VOF) methods, introduced in [76], approximate evolution of the

phase indicator function (3.11) in an integral discrete fashion by following regions of

constant fluid identifier φ as sketched in Fig. 6.2. Therefore the transport equation

(3.12) of the phase indicator (3.11) of reference phase p`q is rewritten in divergence

form in terms of the fluid velocity as

´

φp`q
¯

t
`∇ ¨

´

φp`q~v
¯

“ φp`qD ´ δΓ p~v ´ ~vφq ¨ ~nΓ (6.13)

and integrated over each grid cell to yield

pαφ qt `

˛
BΩi

φp`q~v ¨ ~ndA “

ˆ
Ωi

φp`qD dV ´

ˆ
Γ
p~v ´ ~vφq ¨ ~nΓ dS (6.14)

after division by the cell volume (4.17) with grid cell volume fraction

αφ ptq :“ φ
p`q
ptq “

1

∆Vi

ˆ
Ωi

φp`q p~x, tq dV (6.15)

occupied by the reference fluid. Thus, 0 ď α ď 1 has to hold. If equation (6.13) is

multiplied with the local fluid density, the conservation equation

ρφ
p`q
ptq `

˛
BΩi

ρφp`q~v ¨ ~ndA “

ˆ
Ωi

ρφp`qD dV ´

ˆ
Γ
ρ p~v ´ ~vφq ¨ ~nΓ dS (6.16)
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for the reference fluid mass is obtained after application of the product rule, sub-

traction of the local mass balance and integration over a control volume (grid cell),

with sources due to volume expansion on the right hand side, which vanish due to

the assumptions in sections 3.2.2 and 3.4. The formulations (6.13) and (6.16) con-

tain the interface implicitly in the grid cells, in which e ă αφ ă p1 ´ eq and e as

a small positive number, which is the major drawback of volume-of-fluid methods:

Extensive interface reconstruction procedures (such as the commonly used Piecewise

Linear Interface Construction (PLIC) method from [188], for example) are required,

if the smooth interface needs to be known explicitly, since

‚ by default interface approximations in each grid cell due to the volume frac-

tion distribution do not match continuously to the corresponding interface ap-

proximation in the neighboring grid cell containing the interface, yielding a

discontinuous explicit interface representation and

‚ the interface position and orientation within the control volume is arbitrary sub-

ject to the volume fraction, if no surrounding information is used in addition.

A volume-of-fluid representation, that suits the numerical method described in chap-

ter 5, is obtained after multiplication of (6.13) with P as introduced in section 3.6,

application of the product rule considering equation (3.138) and integration over the

control volume to yield

Pφp`q ptq `
˛
BΩi

pP~v ¨ ~nqφp`q dA “

ˆ
Ωi

Pφp`qS dV ´

ˆ
Γ
P p~v ´ ~vφq ¨ ~nΓ dS

(6.17)

with vanishing right hand side in absence of volume expansions of the reference

phase. Due to the properties of P in the small scale limit,

Pφp`q ptq “
1

∆Vi

ˆ
Ωi

Pptqφp`q p~x, tq dV “ Pptq
ˆ

1

∆Vi

ˆ
Ωi

φp`q p~x, tq dV

˙

“ Pptq αφ ptq “ Pptq αφ ptq ` O
`

h2
˘

(6.18)

holds. Equation (6.17), integrated in time from tn to tn`1, can be treated as any other

scalar quantity in chapter 5, since the hyperbolic equation shares the same grid cell

face normal carrier flux density pP~v ¨ ~nq. Therefore Pφ is discretely conserved both

locally and globally. However, discretization errors, arising from numerical treatment

as described in section 6.5.1 below, cause occurrence of both αφ ă 0 and αφ ą 1,

both without any physically reasonable interpretation, since αφ “ 1 means that the
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entire grid cell is occupied by the reference fluid p`q and αφ “ 0 means, that there

is no reference fluid at all in the respective grid cell. In many methods involving a

volume-of-fluid type interface representation, these over- and undershoots are simply

truncated to satisfy e ă αφ ă p1 ´ eq. However, if they have been obtained with a

discretely conservative method, truncation of its results causes discrete defects in the

masses of the individual fluid phases. Additionally, intermediate values beyond the

interface lead to smearing of the volume-of-fluid based interface representation.

While for incompressible flow with constant densities in each fluid phase, in fact the

volume-of-fluid equation (6.17) and the variable density equation (3.128a) are redun-

dant, this redundancy vanishes once a variable density and/or a non-zero divergence

constraint occurs in at least one of the fluid phases.

6.1.3 Hybrid Level-Set Volume-of-Fluid Method

The drawbacks of both the level-set based interface representation and the one due to

a volume-of-fluid based representation as described in the previous sections 6.1.1 and

6.1.2 can be overcome by combining both representations, yielding a dual interface

representation according to

Ip`q ùñ

#

G

V
(6.19)

with Iϕ representing equation (3.12) with (3.11), G representing equation (6.1) and

V representing equation (6.17) – also subject to (3.11) – with corresponding dis-

cretizations of G and V as given in sections 6.1.1 and 6.1.2 (or chapter 5 for the

latter, respectively).

The present conservative hybrid level-set volume-of-fluid method follows the cor-

responding strategy in [152] and [150], avoiding elaborate volume-of-fluid related

interface reconstruction and deriving all interface related quantities, which need to

be known explicitly, from the level-set representation, from which they can be ob-

tained easily and accurately due to the higher order discretization of the level-set

function in space as given in section 6.1.1. The level-set function, which serves as in-

terface reference representation, is corrected based on the conservatively transported

volume-of-fluid type indicator distribution (as introduced initially in [28]), the lat-

ter serving as a measure for the deviation of the level-set interface representation

from a conservatively transported interface. Therefore, in the present hybrid level-set
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volume-of-fluid method, truncation of over- and undershooting discrete volume frac-

tion values, as described in section 6.1.2, is replaced by a flux correction algorithm

as given in section 6.5.2, which is applied each time discrete fluxes for the phase

indicator of the reference phase have been computed, in order to keep the volume

fractions bounded within 0 ă α ă 1 and the interface sharp at any time. Due to

the different natures of discretization of G andV, both interface representations need

synchronization in order to prevent decoupling of level-set based interface represen-

tation and conserved quantities of the fluid flow. The necessary two-way coupling

between level-set, phase indicator, as well as all other conserved quantities is de-

scribed in section 6.5, after presentation of the relevant extensions to the numerical

method from chapter 5 in the vicinity of the interface in section 6.3.

6.1.4 Explicit Interface Discretization

The explicit discrete interface representation, separating the fluidic phases within

the Cartesian grid cells, is derived from the level-set representation in cell nodes

and corrected based on the interface duality described in section 6.1.3 according to

section 6.5. Therefore,

1. cell center values of the level-set are advected as described in section 6.1.1

2. level-set values in the nodes pNq of the grid cells are obtained by second or-

der accurate interpolation based on the cell center values pCq surrounding the

respective node according to

GpNq “
1

2d

2d
ÿ

sur“1

G
pCq
sur `Oph2q (6.20)

3. the level-set function between each pair of nodes is approximated linearly

based on the nodal level-set values

4. locations, at which the piecewise linear approximation of the level-set function

vanishes, approximate points on the interface

5. the interface is recovered piecewise linearly between the found approximate

interface locations at cell faces (d “ 2) or cell edges (d “ 3)

6. the discrete interface position is corrected as described in section 6.5.3 in order

to impose mass conservation properties
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Steps 3. to 5. are sketched in Fig. 6.3 for d “ 2. The size of both volume fractions, α,

and cell face fractions, β, as well as the interface normal vector ~nΓ and the centroids

of both the Cartesian grid cell fractions and the particular cell face fractions are de-

termined based on this explicit piecewise linear interface discretization and are, thus,

functions of the nodal level-set values (which depend on the surrounding cell center

level-set values). Based on level-set values in the 2d cell nodes at a certain time level

the aforesaid spatial properties are determined. As sketched in Fig. 6.4, replacement

of 2d´1 neighboring nodal values – say, in nodes 4 to 7 – by values in the remaining

nodes – 0 to 3 – at another time level provides the spatio-temporal properties of the

discrete manifold spanned by the remaining nodes (0 to 3).
.

.

.

.

x

x

Ωp`q

Ωp´q
ΓΩ

G

Fig. 6.3: Determination of in-cell interface approximation, based on level-set data in cell
nodes
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Fig. 6.4: Left: Spatial domain at d “ 3 with 2d spatial cell nodes; right: Spatio-temporal
domain at d “ 2 with twice a set of 2d spatial cell nodes; the right sketch also applies
for grid cell faces at d “ 3 with twice a set of 2d´1 spatial nodes
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6.2 Solution Strategy in Cut Grid Cells

For the solution to a single-phase flow problem using a standard Finite Volume

method, incremental updates for the cell averages of the conserved quantities are

computed per time interval as described in chapter 5. For determination of these in-

cremental updates, based on - among others - a balance of control volume boundary

fluxes, knowledge of an effective numerical flux per grid cell face is required. This

numerical flux approximates the average flux over both the grid cell face and the

time interval considered. The accuracy of this average flux approximation depends

on the information that is used for the numerical flux computation, i.e. the cell face

surrounding cell average values.

Following the strategy in [156], this standard Finite Volume machinery is also used

in case of two-phase flow for determination of the incremental updates in any grid

cell, no matter if it is located completely within one of the two fluid phases or cut

by the approximation of the fluidic interface Γ at any time during the corresponding

time interval. In the cut cells, resulting averages

ρψptq “
1

∆V

ˆ
Ω
ρψp~x, tqdV

“
1

∆V

2
ÿ

ϕ“1

˜ˆ
Ωϕptq

pρψqϕ p~x, tq dV

¸

“

2
ÿ

ϕ“1

´

αϕptq ρψ
ϕ
ptq

¯

(6.21)

are stored at specific points in time t and updates approximating the change over a

finite time interval ∆t are determined for the entire grid cell as done for single-phase

flow. Avoiding the computation of separate updates and average values ρψ
ϕ

in each

cut grid cell fraction prevents a severe CFL stability restriction [37], which would

result in arbitrarily small allowable time step sizes and therefore in a stiff method due

to potentially arising arbitrarily small irregular grid cell fractions αϕ. However, as a

consequence, in analogy to regular grid cell faces, for each conserved quantity

‚ computation of one single effective numerical flux is required per time interval

on each cut grid cell face as approximation of the space-time flux average

‚ computation of an effective source term approximation is required per time

interval and cut grid cell

according to section 4.2.2 and section 6.3.2 below.
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For all grid cell faces, which are not cut by the interface during the corresponding

time interval, numerical flux computation can be done as in the standard single-phase

Finite Volume method with fluid properties according to the respective fluid phase

as described chapter 5. However, grid cell faces, that are not cut by the interface

during that time interval, might be or become close enough to the interface, that

one ore more grid cells in the stencil used for numerical flux computation are cut

by the interface as shown in Fig. 6.7 in section 6.3.3.1. In that case ghost fluid

extrapolation as described in the section 6.3.3.3 needs to be performed in order to

provide the necessary information for interface state recovery and flux computation

in the corresponding fluid phase.

6.3 Predictor

While the description of the discretization of viscous and diffusive fluxes at cut grid

cell faces and volume sources in cut grid cells is deferred to a future publication, in

this section the advective kernel of the two-phase flow predictor step is described.

While for grid cells, which are sufficiently far away from the interface, the single-

phase method as described in chapter 5 – extended by the transport equations for

the two scalar fields representing the interface as described in section 6.1 – applies

with fluid properties of the respective fluid phase, the advection procedure has to be

modified in the vicinity of the interface with respect to advective flux computation

and correction of discretization errors for conservation purposes.

6.3.1 Auxiliary System of Equations

The advective kernel

d

dt

ˆ ˆ
Ω
P~Φ dV

˙

“ ´

˛
BΩ
pP~v ¨ ~nq ~Φ dA (6.22a)

Gt “ ´ ~v ¨∇G (6.22b)

for two-phase flow is obtained from the two-phase flow predictor auxiliary system

d

dt

ˆ ˆ
Ω
P~Φ dV

˙

“ ´

˛
BΩ
pP~v ¨ ~nq ~Φ dA `

˛
BΩ
J~Φ ¨ ~ndA ` ~9q~Φ (6.23a)

Gt “ ´ ~v ¨∇G (6.23b)
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with

~Φ “

ˆ

1

Θ
,
Ys
Θ
,
~v

Θ
, 1, φp`q

˙

˜

(6.24a)

J~Φ “
”

~0, ~́js,
´

T ` S
pσq
Γ δΓ

¯

,~0,~0
ı

˜

(6.24b)

~9q~Φ “ p0, qYs ,~q~v, qP , qφq

˜

(6.24c)

and source terms

qYs :“

ˆ
Ω
ρ%s dV (6.25a)

~q~v :“ ´

ˆ˛
BΩ
π
1

~ndA`

ˆ
Ω
ρ∇U dV

˙

(6.25b)

qP :“ ´

ˆˆ
Ω
P S dV

˙

(6.25c)

qφ :“ ´

ˆˆ
Ω
P S φp`q dV

˙

(6.25d)

with S “ χ
Ξ 9q according to definition (3.136) and χ “ 0 by assuming

µ “ ζ “ D “ % “ k “ 0 (6.26a)

~g “ ´∇U “ ~0 (6.26b)

π
1

“ 0 (6.26c)

σ “ 0 (6.26d)

yielding

J~Φ “
”

~0,~0,0,~0,~0
ı

˜

(6.27a)

~9q~Φ “
´

0, 0,~0, 0, 0
¯

˜

(6.27b)
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6.3.2 Time Integration

The explicit two-phase predictor update ∆ρψi of an integral average in a cut grid cell

i in

ρψ
pm`1q
i “ ρψ

pmq
i `∆ρψi (6.28)

reads

∆ρψi “
1

∆V

ˆ tm`1

tm

2
ÿ

ϕ“1

ˆ
Ωϕi ptq

9qϕ
pρψq dV dt (6.29)

´
1

∆V

ˆ tm`1

tm

d
ÿ

d“1

2
ÿ

w“1

p´1qw
2
ÿ

ϕ“1

ˆ
ˆ

BΩϕ
d,w

˙

i

ptq

~f ϕ
pρψq ¨~ed dAdt

and transforms to

∆ρψi “
1

∆V

2
ÿ

ϕ“1

ˆ tm`1

tm

ˆ
Ωϕi ptq

9qϕ
pρψq dV dt (6.30)

´
1

∆V

d
ÿ

d“1

2
ÿ

w“1

p´1qw

»

–

2
ÿ

ϕ“1

¨

˝

ˆ tm`1

tm

ˆ
ˆ

BΩϕ
d,w

˙

i

ptq

~f ϕ
pρψq ¨~ed dAdt

˛

‚

fi

fl

after exchanging order of summation and time integration. After summarizing the

integration over the respective spatial domains and time to integrals over the spatio-

temporal domains

rΩϕ :“
`

Ωϕptq ˆ ptm, tm`1q
˘

P Rd`1 (6.31)

ĂBΩ
ϕ

:“
`

BΩϕptq ˆ ptm, tm`1q
˘

P Rd (6.32)

and defining

f ϕ
pρψq,d,w

:“ ~f ϕ
pρψq,w ¨~ed (6.33)

as well as space-time averages

r

9qϕ :“
1

rα∆t∆V

ˆ
rΩϕ

9qϕ
pρψq drV (6.34a)

rf
ϕ

pρψq,d,w :“
1

rβd,w∆t∆Ad

ˆ
ĂBΩ
ϕ

d,w

f ϕ
pρψq,d,w

d rA (6.34b)
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per fluid phase ϕ, the expression

∆ρψi “
1

∆V

2
ÿ

ϕ“1

˜ˆ
rΩϕi

9qϕ
pρψq drV

¸

´
1

∆V

d
ÿ

d“1

2
ÿ

w“1

p´1qw

»

–

2
ÿ

ϕ“1

¨

˝

ˆ
´

ĂBΩ
ϕ

d,w

¯

i

~f ϕ
pρψq,w ¨~ed d rA

˛

‚

fi

fl

“∆t

¨

˝

2
ÿ

ϕ“1

´

rαϕ
r

9qϕ
¯

´
1

h

d
ÿ

d“1

1

cd

2
ÿ

w“1

p´1qw

«

2
ÿ

ϕ“1

´

rβϕ
d,w

rf
ϕ

pρψq,d,w

¯

ff

˛

‚ (6.35)

is obtained. With Taylor expansions

9qϕ
pρψq “ 9qϕ

pρψq

´

~x
rΩϕ

0

¯

`
Bf ϕ
pρψq,d

B~x rΩϕ

´

~x
rΩϕ

0

¯

¨

´

~x
rΩϕ ´ ~x

rΩϕ

0

¯

`Oph2q

(6.36a)

f ϕ
pρψq,d,w

“ f ϕ
pρψq,d,w

ˆ

~x
ĂBΩ
ϕ

d,w
0

˙

`
Bf ϕ
pρψq,d,w

B~x ĂBΩ
ϕ

ˆ

~x
ĂBΩ
ϕ

d,w
0

˙

¨

ˆ

~x
ĂBΩ
ϕ

d,w ´ ~x
ĂBΩ
ϕ

d,w
0

˙

`Oph2q

(6.36b)

in each fluid phase ϕ with ~x rΩϕ P Rd`1 as spatio-temporal coordinate vector, con-

sisting of both the d spatial coordinates and time, and ~x ĂBΩ
ϕ

d,w
P Rd as spatio-temporal

coordinate vector, consisting of the d´ 1 spatial coordinates perpendicular to the re-

spective grid cell face normal direction d and time, the space-time averages (6.34) can

be approximated by

r

9qϕ “

˜

9qϕ
pρψq

´

~x
rΩϕ

0

¯

`
B 9qϕ
pρψq

B~x rΩϕ

´

~x
rΩϕ

0

¯

¨

´

~x
rΩϕ

c ´ ~x
rΩϕ

0

¯

¸

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

«
rQ
ϕ

` O
`

h2
˘

(6.37a)

rf
ϕ

pρψq,d,w “

˜

f ϕ
pρψq,d,w

ˆ

~x
ĂBΩ
ϕ

d,w
0

˙

`
Bf ϕ
pρψq,d,w

B~x
ĂBΩ
ϕ

d,w

ˆ

~x
ĂBΩ
ϕ

d,w
0

˙

¨

ˆ

~x
ĂBΩ
ϕ

d,w
c ´ ~x

ĂBΩ
ϕ

d,w
0

˙

¸

looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon

«
rF
ϕ

`O
`

h2
˘

(6.37b)
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for application to (6.35). In (6.37)

~x
rΩϕ

c :“

´
prΩϕq

i

´

φp`q~x
rΩϕ
¯

drV
´
prΩϕq

i

φp`q drV
“

´
prΩϕq

i

´

φp`q~x
rΩϕ
¯

drV

∆t∆V rαϕ
(6.38a)

~x
ĂBΩ
ϕ

d,w
c :“

´
´

ĂBΩ
ϕ

d,w

¯

i

ˆ

φp`q~x
ĂBΩ
ϕ

d,w

˙

d rA

´
´

ĂBΩ
ϕ

d,w

¯

i

φp`q d rA
“

´
ˆ

rΩϕ
d,w

˙

i

ˆ

φp`q~x
ĂBΩ
ϕ

d,w

˙

d rA

∆t∆Ad
rβϕ
d,w

(6.38b)

are the spatio-temporal centroids of rΩϕ and ĂBΩ
ϕ

d,w. Relation (6.37) provides a fully

second order accurate approximation, if

1. either ~x rΩϕ
0 :“ ~x

rΩϕ
c and ~x

ĂBΩ
ϕ

d,w
0 :“ ~x

ĂBΩ
ϕ

d,w
c are chosen, which requires approx-

imation of 9qϕ
pρψq

´

~x
rΩϕ
c

¯

and f ϕ
pρψq,d

ˆ

~x
ĂBΩ
ϕ

d,w
c

˙

with an error not larger than

O
`

h2
˘

,

2. or if 9qϕ
pρψq

´

~x
rΩϕ
0

¯

and f ϕ
pρψq,d

ˆ

~x
ĂBΩ
ϕ

d,w
0

˙

are approximated for ~x rΩϕ
0 ‰ ~x

rΩϕ
c

and ~x
ĂBΩ
ϕ

d,w
0 ‰ ~x

ĂBΩ
ϕ

d,w
c with an error not larger than O

`

h2
˘

and, in addition,

both
B 9qϕ
pρψq

B~x rΩϕ

´

~x
rΩϕ
0

¯

and
Bf ϕ
pρψq,d

B~x
ĄBΩ
ϕ

d,w

ˆ

~x
ĂBΩ
ϕ

d,w
0

˙

are approximated with an error not

larger than O phq.

The present method-of-lines approach yields a first order accurate approximation, as

it replaces the single-phase update contributions

K
t1u
i,n “

¨

˝Qpρψq,n ´
1

h

d
ÿ

d“1

˜

1

cd

2
ÿ

w“1

´

p´1qw
´

F pρψqd,w
¯

n

¯

¸

˛

‚

i

(6.39)

in

∆ρψ
t1u
i :“∆t

2
ÿ

n“1

´

bn K
t1u
i,n

¯

(6.40)

bn “
1

2
, 1 ď n P N ď 2 (6.41)
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according to relations (5.15), (5.16) and (5.23), described in section 5.1.2.2, by

K
t2u
i,n “

2
ÿ

ϕ“1

´

rαϕ Qϕ
pρψq,n

¯

i

´
1

h

¨

˝

d
ÿ

d“1

˜

1

cd

2
ÿ

w“1

˜

p´1qw
2
ÿ

ϕ“1

´

rβϕ
d,w

´

Fϕ
pρψq,d,w

¯

n

¯

¸¸

˛

‚

i

(6.42)

with approximations Qϕ
pρψq and Fϕ

pρψq,d,w of the spatial averages per fluid phase.

Thus, 9qϕ
pρψq and f ϕ

pρψq,d,w
in (6.37) are effectively evaluated at the half time level

tm`tm`1

2 for both fluid phases instead of the individual spatio-temporal centroids

~x
rΩϕ
c and ~x

ĂBΩ
ϕ

d,w
c of each fluid phase ϕ. This yields an Ophq error as result of the

loss of topological symmetry in space-time as sketched in Fig. 6.5, if an arbitrarily

moving interface separating two different fluids is involved.

x2

x1

t

x1

t x1

t

x2

t

x2

t

( - )
(+)

( - )

( - ) (+)
( - )

(+)

(+) Γ ptnq ( - )

(+) ( - )Γ
`

tn`1
˘

Fig. 6.5: Distribution of fluid phases over space-time domains, sketched for two-dimensional
grid cells and its cell faces over time (d “ 2). The center sketch for the two-
dimensional grid cell holds for grid cell faces in three space dimensions as well
(d “ 3).

A locally second order accurate approximation in time is subject of current research

and beyond the scope of this work, as it requires individual coefficients bn in (6.40)

for each cell face fraction and each volume fraction and might require the use of

(at least) a third time level, either in form of a third evaluation within a single-step

method (as, for example, explicit Runge-Kutta methods with (at least) three stages)

or using multi-step methods with more than one time level of known data in order to

cope with the lack of topological symmetry in each fluid phase in (space-)time.

However, for grid cells, which are only cut in N
ptq
cut ! N

ptq

T “ CptqT
h

time steps during

the computation with total time T as the sum of all time steps, the order of magnitude
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of the time-global error Eptq in a grid cell i is the same as if the cell had been regular

throughout the entire computation due to

E
ptq
i :“ Cptq2 N

ptq
cut O

`

h2
˘

` Cptq3

´

N
ptq

T ´N
ptq
cut

¯

O
`

h3
˘

` ...

“ Cptq2 N
ptq
cut O

`

h2
˘

` Cptq3

˜

CptqT´N
ptq
cuth

h

¸

O
`

h3
˘

` ...

“ Cptq2

˜

N
ptq
cut `

Cptq3

Cptq2

CptqT
¸

O
`

h2
˘

´ Cptq3 N
ptq
cut O

`

h3
˘

` ...

“ O
`

h2
˘

` ... (6.43)

with Cptq, Cptq2 and Cptq3 as constants with suitable dimension. Further, since only a

small number Np~xqcut,∆t ! N
p~xq
∆t :“ mind

´

S
∆x

¯

d
“

Cp~xq0
maxd cd

maxdSd
h

of the overall grid

cells is cut during each time step with 0 ă Cp~xq0 P R ă 1, maxd cd ” 1 and Sd as

the one-dimensional domain extension in direction d with Cp~xq :“ Cp~xq0

maxdSd
maxd cd

, the

space-global error in each time step, Ep~xq∆t , is of the same order of magnitude as if all

cells would have been regular:

E
p~xq
∆t :“ Cp~xq2 N

p~xq
cut,∆t O

`

h2
˘

` Cp~xq3

´

N
p~xq
∆t ´N

p~xq
cut,∆t

¯

O
`

h3
˘

` ...

“ Cp~xq2 N
p~xq
cut,∆t O

`

h2
˘

` Cp~xq3

¨

˝

Cp~xq ´N
p~xq
cut,∆th

h

˛

‚O
`

h3
˘

` ...

“ Cp~xq2

˜

N
p~xq
cut,∆t `

Cp~xq3

Cp~xq2

Cp~xq
¸

O
`

h2
˘

´ Cp~xq3 N
p~xq
cut,∆t O

`

h3
˘

` ...

“ O
`

h2
˘

` ... (6.44)

with Cp~xq, Cp~xq2 and Cp~xq3 as constants with suitable dimension. Thus, while N
p~xq
cut,∆t !

N
p~xq
∆t can be assumed to hold in any case, for Nptqcut ! N

ptq

T the global error is

E “ O
`

h2
˘

(6.45)

while the local error in cut grid cells is

Ecut “ O
`

h2
˘

(6.46)

and

Ereg “ O
`

h3
˘

(6.47)
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in regular grid cells. However, in cases in which N
ptq
cut “ Cptqcut

T
h
« CptqT

h
“ N

ptq

T
(when a grid cell is cut throughout (almost) the entire computation, e.g. either due to

very small local velocities or due to an oscillating interface), the time-global error

E
ptq
i :“ Cptq2 N

ptq
cut O

`

h2
˘

` Cptq3

´

N
ptq

T ´N
ptq
cut

¯

O
`

h3
˘

` ...

“ Cptq2

´

Cptqcut T
¯

O phq ` Cptq3

¨

˝

T
´

Cptq ´ Cptqcut

¯

h

˛

‚O
`

h3
˘

` ...

“

´

Cptq2 Cptqcut T
¯

O phq ` Cptq3 T
´

Cptq ´ Cptqcut

¯

O
`

h2
˘

` ...

“ O phq ` ... (6.48)

in the respective grid cells is reduced as well.

As the interface approximation at the new time level has to be known a priori, the

Runge-Kutta time integration scheme, used for the single-phase flow solver as de-

scribed in section 5.1.2.2, needs to be extended beyond replacement of Kt1ui,n in (5.15)

by K
t2u
i,n from (6.42) by coupling to the level-set transport scheme for the two-phase

flow predictor step. The level-set time integration is also done using a two stage

Runge-Kutta scheme as described in section 6.1.1 and the necessary nested proce-

dure is as follows, resulting in a three-stage method with an incomplete pre-stage and

two full stages for consistent propagation3:

1. a first order propagation step is done with the level-set based on the known

fluid velocity at the old time level m. This is the first stage of the level-set
propagating Runge-Kutta scheme.

2. a first order propagation step is done for the conserved quantities, based on

the old time level information and knowledge of the interface position at the

new time level m ` 1 as predicted by the first level-set propagation stage in

step 1. above. This pre-predictor step corresponds to the first stage of the

Runge-Kutta time integration scheme of the conservation laws. It is necessary

to obtain the intermediate velocity – as basis for the second level-set propaga-

tion stage – at the time level of the level-set intermediate information and in

order to obtain the intermediate phase indicator for the subsequent correction

step.
3 In a pure two-stage method, in which each level-set time integration stage is performed together

with the corresponding stage for time integration of the conserved quantities, different volume
and face fractions would be used in the different stages, which can lead to Op1q errors due to the
discrete restriction to only one intersection per grid cell face as described in section 7.2.
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3. a phase indicator based correction of the conserved quantities needs to be done

as described in section 6.5 in order to get rid of discretization errors in the

conserved quantities that affect discrete mass conservation. The chosen in-

terface discretization causes flux weights at cut grid cell faces, which are accu-

rate enough in terms of the truncation error of the numerical method, but not

in terms of discrete mass conservation. This fact becomes evident in the phase

indicator values, which serve as basis for the correction that needs to be done

after each step in which flux weights at cut grid cell faces are involved in flux

computation.

4. the velocity field resulting from the previous propagation and correction pro-

cedure is needed for the second stage of the Runge-Kutta scheme for level-set
propagation. After this second stage the level-set, representing the interface,

is known second order accurate in both space and time4, and the approximate
interface position at the end of the time step is known.

5. since now the interface position at the new time level m` 1 is known, the first
stage of the Runge-Kutta scheme for propagation of the conserved quantities
is repeated, based on the (reset) information at the old time level m and with

knowledge of both interface positions at time levels m and m` 1.

6. the resulting values need to be corrected according to step 3.

7. the resulting information serves as basis for the second stage of the Runge-

Kutta time integration scheme for the conserved quantities based on predicted

values at time level m ` 1 and known (unchanged) interface positions at both

time levels m and m` 1.

8. the final values of the performed propagation of the conserved quantities
again need to be corrected according to step 3. After that, the predictor step

is completed.

6.3.2.1 Time Step Restriction

The maximum allowable time step ∆t
t2u#
max for the setting in section 6.3.1 corresponds

to ∆t
t1u
max from equation (5.14), with contributions ∆tV and ∆tD,s according to Tab.

5.3 subject to maxϕ

´

µ
ρ

¯ϕ
and maxϕ pDsq

ϕ with ϕ P tp`q, p´qu.

4 While the level-set gradient is discretized third order accurate in space as described in section
6.1.1, the velocity field is only second order accurate in space, yielding a second order accurate
scheme in total.
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6.3.3 Advective Flux Computation

In this section extensions to the single-phase method for advective flux computation

in the vicinity of the interface are described in detail, starting with definition of dif-

ferent cell types in section 6.3.3.1. Sections 6.3.3.2 to 6.3.3.4 are dedicated to deter-

mination of the state information per fluid phase around the interface, required for the

subsequent flux computation in section 6.3.3.5 based on the single-phase procedure

from section 5.1.3.

6.3.3.1 Cartesian Grid Cell Types and Space-Time Scenarios

In principal, only two types of grid cells exist in a Cartesian grid two-phase Finite

Volume scheme:

‚ type 0: cells which are not cut by the interface and, thus, are located completely

in one of the existing fluid phases

‚ type 1: cells which are cut by the interface

However, since the Finite Volume balances are drawn over a certain time interval

and the fluidic interface is not necessarily static but can move through the Cartesian

grid during that time interval considered, separation into cells cut by the interface

and cells which are not cut is not sufficient anymore for flux determination, but more

different types of grid cells need to be distinguished with respect to

‚ the geometric configuration,

‚ the stencil for computation of the respective numerical flux,

‚ spatio-temporal scenarios during the time interval.

Thus, the following types of cells and spatio-temporal scenarios can occur as sketched

in Fig. 6.6 and Fig. 6.7 for the stencil of advective fluxes:

‚ type 0/0:

grid cells which are not cut by the interface throughout the entire time interval.

These cells can be further split into
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0{0 0{1 1{0

1{1 1{0{1 0{1{0

Fig. 6.6: Space-time cell types for d “ 2; vertical grey edges represent the temporal axis

– type 0/0 - 0:

grid cells, which are located far enough from the interface, such that no

surrounding grid cell involved in flux computation for the Finite Volume

update of the respective grid cell is cut by the interface during the entire

time interval. In these grid cells the standard single-phase Finite Volume

method can be applied, using the fluid properties of the fluid phase which

occupies the entire grid cell during the entire time interval.

– type 0/0 - 1:

grid cells, which are located in the vicinity of the interface, such that at

least one of the surrounding grid cell face neighbors is cut by the interface

during the time interval, and is, thus, not of any type 0/0. For type 0/0 -

1 grid cells, computation of fluxes across grid cell faces can be done as

in the standard single-phase Finite Volume method. However, determina-

tion of states at the grid cell faces for flux computation, as well as state

recovery in the cut surrounding grid cell(s), involved in cell face state re-

covery for flux computation, need a non-standard treatment. A grid cell

of this type is also called "layer 1 cell" within this document.

– type 0/0 - 2:

grid cells, which are located in the vicinity of the interface, such that

˚ no grid cell face neighbor cell is cut by the interface throughout the

entire time interval, all grid cell face neighbor cells are of any type
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Fig. 6.7: Space-time cell types for d “ 2 and stencil for advective flux computation

0/0.

˚ at least one of the surrounding grid cells involved in flux computation

for the Finite Volume update of the respective grid cell is cut by the

interface during the time interval and is, thus, not of any type 0/0.

For these grid cells flux computation and the necessary determination of

states at the grid cell faces for flux computation can be done as in the

standard single-phase Finite Volume method. However, state recovery in

the cut surrounding grid cell(s) involved in cell face state recovery for flux

computation needs a non-standard treatment. This type of cell is a "layer

2 cell". Information from layer 2 cells is necessary for determination of

fluxes across grid cell faces of cut grid cells in a second order accurate
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method.

Each type 0/0 cell is available in both fluid phases p`q and p´q with the phys-

ical fluid properties of the corresponding fluid phase.

‚ type 0/1:

grid cells which are cut by the interface at the end of the time interval but not

at its beginning.

‚ type 1/0:

grid cells which are cut by the interface at the beginning of the time interval

but not at its end.

‚ type 1/1:

grid cells which are cut by the interface throughout the entire time interval.

‚ type 1/0/1:

grid cells which are cut both at the beginning and at the end of the time interval

but not for some period within the time interval. This type of cell can occur

since a grid cell face is not allowed to be cut by the interface more than once.

‚ type 0/1/0:

grid cells which are neither cut at the beginning nor at the end of the time

interval but for some period during the time interval. This is the "inverse" of

the type 1/0/1 cell and exists for the same reason as the type 1/0/1 cell.

These cut cell types and spatio-temporal scenarios allow for derivation of correspond-

ing scenarios for each grid cell face of the respective grid cell considered, leading to

grid cell face individual scenario-dependent flux computation procedures. On grid

cell faces, which are cut by the interface at any time during the time interval con-

sidered, fluxes of both fluid phases need to be determined in order to compute the

resulting flux for that grid cell face, while it is sufficient to compute only the flux of

the respective fluid phase if the grid cell face remains within one fluid phase through-

out the entire time interval. On grid cell faces, on which a flux for both fluid phases

needs to be determined, also the time-average face fractions rβ according to sections

4.2.2 and 6.3.3.6 are required for application to the split sum for flux computation

given in section 6.3.3.5.
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6.3.3.2 State Recovery in Cut Cells

At the end of each time step only updated integral average values for entire grid

cells, including intersected ones, are available. For computation of an effective flux

across an intersected grid cell face, fluxes across fractions of this cell face need to be

determined for each fluid phase as described in section 6.2 and specified in section

6.3.3.5. In order to determine these fluxes, suitable data needs to be available in each

fluid phase which needs to be recovered in advance.

As shown in appendix section B.3, the integral average

ρψ “ α ρψ
p`q
` p1´ αq ρψ

p´q
(6.49)

of a conserved quantity ρψ is the volume fraction weighted sum of the integral aver-

ages in the different fluid phases within the grid cell. With definition of the operators

M pξq :“ max pξ, 1´ ξq (6.50a)

W pξq :“ min pξ, 1´ ξq ” 1´M pξq (6.50b)

equation (6.49) can be rewritten as

ρψ “ M pαq ρψ
pLq
` p1´M pαqq ρψ

pSq
(6.51)

in which ρψ
pLq
P

´

ρψ
p`q
, ρψ

p´q
¯

is the integral average in the cut cell fraction with

the larger pLq volume fraction and ρψ
pSq

P

´

ρψ
p`q
, ρψ

p´q
¯

with ρψ
pSq

‰ ρψ
pLq

is the integral average in the cut cell fraction with the smaller pSq volume fraction,

yielding

ρψ
pLq
“
ρψ ´ p1´M pαqq ρψ

pSq

M pαq
(6.52)

after reorganization. Since the denominator is the larger volume fraction, equation

(6.52) is always well defined due to 0.5 ď M pαq ď 1. The integral averages

ρψ
pLq{pSq

“ ρψ
´

~x pLq{pSqc

¯

`O
`

h2
˘

(6.53)

in the individual fluid phases are approximated second order accurate by the states in

the centroids ~x pLq{pSqc of the respective grid cell fractions. As shown in Fig. 6.8 for

the case, in which fluid phase p`q occupies the smaller volume fraction, but has the
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Fig. 6.8: Integral averages and states in cut cell fractions, separated by an sharp interface Γ,
at which the respective quantity is discontinuous

larger average, one of the states ρψ
´

~x
pLq{pSq
c

¯

can be expressed in terms of the other

one according to

ρψ
´

~x pSqc

¯

“ ρψ
´

~x pLqc

¯

`∆ρψpLq{pSq (6.54)

with

∆ρψpLq{pSq :“ ∇ρψ pLq ¨∆~xpLqΓ ´∇ρψ pSq ¨∆~xpSqΓ ˘ J ρψ K p~xΓq (6.55)

in which

∆~x
pηq
Γ :“ ~xΓ ´ ~x

pηq
c (6.56)

with ~xΓ as the intersection of interface Γ and the line connecting the centroids ~x pLqc

and ~x pSqc .

The sign in front of the discontinuity J ρψ K p~xΓq :“ ρψp`q p~xΓq´ρψ
p´q p~xΓq in equa-

tion (6.55) depends on which of the fluid phases occupies the larger volume fraction.

For pSq ” p`q the ` sign has to be chosen, for pSq ” p´q the ´ sign applies. Sub-

stitution of equation (6.53) into equation (6.52) and replacement of ρψ
´

~x
pSq
c

¯

by

equation (6.54) with definition (6.55) yields

ρψ
´

~x pLqc

¯

“ ρψ´p1´M pαqq∆ρψpLq{pSq `O
`

h2
˘

“ ρψ
pLq
`O

`

h2
˘

(6.57)
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and

ρψ
´

~x pSqc

¯

“ ρψ` M pαq ∆ρψpLq{pSq ` O
`

h2
˘

“ ρψ
pSq
` O

`

h2
˘

(6.58)

after substitution of the result (6.57) into (6.54). Transformation from pLq{pSq back

to p`q{p´q finally yields

ρψ
p`q

“ ρψ ´ p1´ αq∆ρψp`q{p´q (6.59a)

ρψ
p´q

“ ρψ ` α ∆ρψp`q{p´q (6.59b)

with

∆ρψp`q{p´q :“ ∇ρψ p`q ¨∆~xp`qΓ ´∇ρψ p´q ¨∆~xp´qΓ ´ J ρψ K p~xΓq (6.60)

which necessitates knowledge of the size of the local discontinuity J ρψ K, the gra-

dients of ρψ in each cut cell fraction and the location of the centroids of each cut

cell fraction. The state at any point within the cut grid cell then can be approximated

based on the recovered centroid value in the respective fluid phase. At the grid cell

center ~xm, which is located in the phase occupying the larger volume fraction, the

recovered state can be obtained by

ρψp˘qp~xmq :“ ρψ
p˘q
`∇ρψ p˘q ¨

´

~xm ´ ~x
p˘q
c

¯

(6.61)

For fitting the present scheme, the resulting values (6.59) need to be transformed by

division by P in order to contribute to determination of upwind values with respect to

the reference flux pP~v ¨ ~nq for the respective fluxes pP~v ¨ ~nq
´

ρψ

P

¯p`q{p´q

upwind
at the grid

cell faces as described in section 5.1.3.1.

For constant data within each fluid phase the jump J ρψ K is independent of the posi-

tion on the interface and independent of time, yielding

ρψ
p`q

“ ρψ ´ p1´ αq J ρψ K (6.62a)

ρψ
p´q

“ ρψ ` α J ρψ K (6.62b)

due to vanishing gradients as given in the appendix of [90]. In the present work the

described state recovery in cut grid cells is approximated by an one-sided averaged

extrapolation, utilized for creation of ghost data around the interface as described in

the following section 6.3.3.3 and sketched for cut grid cells in Fig. 6.10.
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(+)

(´)

210

Fig. 6.9: Ghost fluid; left: fluid phase p`q, right: fluid phase p´q; the numbers indicate layers
of ghost fluid, starting with layer 0 in cut grid cells

6.3.3.3 Ghost Fluid around the Interface

For determination of numerical fluxes in the vicinity of the interface, suitable data for

P as introduced in section 3.6, the flow velocity ~v, and the pseudo-primitive quanti-

ties ~Φ as defined in equation (5.5a) has to be available for both fluid phases around

the interface in order to apply standard single-phase stencils as given in section 5.1.3.

As the involved stencils, however, extend into the other fluid phase beyond the in-

terface, ghost data needs to be recovered for both fluid phases in the vicinity of the

interface in the sub-domain of the respective other fluid phase as sketched in Fig. 6.9
for all cells different from type 0/0 - 0 according to section 6.3.3.1.

While the velocity ~v is treated as a continuous field, subject to the assumptions in

section 3.2.2 and the resulting equation (3.63), ghost data for any component of P
and ~Φ, assumed to be represented by g, is recovered by the following multi-step

extrapolation procedure for each fluid phase in a halo around the interface, based on

available data in the respective fluid phase:

1. initialize a recovery marker in all narrow band cells Ωi P N with value ´1

2. ghost fluid states are recovered in cut grid cells, which have a sufficient amount

of un-cut neighbor grid cells in the current fluid phase. The recovered ghost
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Fig. 6.10: Multi-step ghost fluid recovery in cut grid cells, left: fluid phase p`q, right: fluid
phase p´q

fluid states

gϕi “
1

N
ϕ
pstenq

N
ϕ
pstenq
ÿ

h“1

´

2 gϕ
ip´1q ´ g

ϕ

ip´2q

¯

h
(6.63)

in each of these cut grid cells are obtained by averaging over the N
ϕ
pstenq values

obtained by linear extrapolation of available neighboring data in N
ϕ
pstenq ą 1

available pseudo-one-dimensional stencils in the current fluid phase as sketched

in Fig. 6.10. Index superscript p´1q indicates a face or node neighbor cell of

the cut grid cell in the current fluid phase, in which data for the respective quan-

tity is already available, and index superscript p´2q indicates the neighbor of

the cell labeled p´1q in the same direction, in which data is already available

for the respective quantity as well as sketched in Fig. 6.10.

3. cut grid cells, in which data is recovered, are labeled 0. In Fig. 6.10 these

are all cells labeled 01, where the subscript 1 indicates, that states in these cut

grid cells have been recovered within the first ghost fluid recovery cycle due to

sufficient available surrounding information in the respective fluid phase.

4. until all cut grid cells are labeled 0, repeat the following cycle:

(a) perform step 2. for all cut grid cells still marked by´1, that have Nϕ
pstenq ą

1 valid stencils available in the current fluid phase, now considering not

only regular grid cells in this fluid phase as valid neighbor cells, but also

the cut grid cells, in which states have already been determined previ-

ously (cut grid cells which are already labeled 0)

(b) mark these cut grid cells with 0; in Fig. 6.10 the indices of the zero labels
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indicate, in which cycle states in the respective cut grid cell can be re-

covered due to availability of sufficient surrounding data in the illustrated

setting for both fluid phases

If cut cells remain with only one or even no suitable stencil available, the geo-

metric configuration has to be considered under-resolved.

5.

(`)

Fig. 6.11: Single-phase stencils in ghost fluid region

after states have been recov-

ered in all cut grid cells and

all of the latter are labeled

0, repeat the following steps

for as many layers of grid

cells around the cut grid cells,

as required in the respective

other fluid phase for applica-

tion of the standard single-

phase stencils for flux com-

putation in the vicinity of the

interface as sketched in Fig.
6.11. For flux computation

across each grid cell face of

cut grid cells, a layer depth of at least 2 is required for application of the stan-

dard single-phase second order stencils:

(a) find regular cells of the current layer in which data of the other fluid phase

is not yet available (recovery marker is ´1)

(b) for each of these cells...

i. ... find neighbor cells which already carry data of the respective fluid

phase, labeled p´1q.

ii. ... find neighbors of the neighbors from 5(b)i. in the same direction,

labeled p´2q, which already carry data of the respective fluid phase.

The latter should be satisfied by default.

iii. ... recover data according to equation (6.63), involving all available

stencils resulting from 5(b)i. and 5(b)ii.

iv. ... mark cells, in which data is recovered, by the index of the current

layer (1 for all neighbors of cut grid cells, labeled 0, 2 for neighbors

of these neighbors off the interface and so on as shown in Fig. 6.9).
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6.3.3.4 Interpolation of Ghost Data

x1

x2

j ´ 1

j

j ` 1

i´ 1 i i` 1 i` 2

x
ηβ

β 1
2

Γ

Fig. 6.12: Flux recovery at cut cell face fractions: Standard
cell face centered flux averages are approximated
before they are interpolated in order to obtain a flux
approximation at the desired location

x1

x2

j ´ 1

j

j ` 1

i´ 1 i i` 1 i` 2

x x x xx
ηβ

β

Γ

Fig. 6.13: State recovery at cut cell face fractions: States are
recovered in the locations marked by a circle filled
with a cross based on cell center data (circles) for
application to standard Finite Volume flux approx-
imation procedures in the desired location

Once data in the ghost

region around the inter-

face is available (obtained

as described in section

6.3.3.4), there are several

choices for determination

of the individual numeri-

cal fluxes in the respec-

tive fluid phase, represent-

ing averages over corre-

sponding fractions of the

grid cell faces.

One possibility is to com-

pute ghost fluxes based on

the recovered ghost data

in grid cell face centers

for each fluid phase using

standard procedures from

section 5.1.3, and then

interpolate the fluxes to

the location of interest as

sketched in Fig. 6.12. A

second option is to inter-

polate the ghost data onto

a grid cell face normal

line through the location, in

which the flux should be

approximated as sketched

in Fig. 6.13 for advective

flux computation, and then

apply the standard proce-

dures from section 5.1.3 for

flux computation to these

interpolated data. While the first option, depending on the interpolation strategy,
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yields flux approximations F for fluid phase ϕ according to

Fϕj,ηϕβϕ “
ηϕβϕ

2
Fϕj`1 `

1

2
Fϕj `

1´ ηϕβϕ

2
Fϕj´1 (6.64)

or

Fϕj,ηϕβϕ “

ˆ

ηϕ
ˆ

βϕ ´
1

2

˙˙

Fϕj`1 `

ˆ

1

2
` p1´ βϕq ηϕ

˙

Fϕj `
1´ ηϕ

2
Fϕj´1

(6.65)

with limit

lim
βϕÑ1,ηϕÑ 1

2

´

Fϕj,ηϕβϕ
¯

“
1

4

´

Fϕj`1 ` 2Fϕj ` F
ϕ
j´1

¯

(6.66)

for the example in Fig. 6.12 each, the second option yields corresponding stencil

data Φ for fluid phase ϕ for flux computation according to

Φϕ
j,ηϕβϕ “

ηϕβϕ

2
Φϕ
j`1 `

1

2
Φϕ
j `

1´ ηϕβϕ

2
Φϕ
j´1 (6.67)

or

Φϕ
j,ηϕβϕ “

ˆ

ηϕ
ˆ

βϕ ´
1

2

˙˙

Φϕ
j`1 `

ˆ

1

2
` p1´ βϕq ηϕ

˙

Φϕ
j `

1´ ηϕ

2
Φϕ
j´1

(6.68)

on the dashed horizontal line in Fig. 6.13 with limit5

lim
βϕÑ1,ηϕÑ 1

2

´

Φϕ
j,ηϕβϕ

¯

“
1

4

´

Φϕ
j`1 ` 2Φϕ

j ` Φϕ
j´1

¯

(6.69)

each. Both limits (6.66) and (6.69) do not correspond to the standard results

lim
βϕÑ1,ηϕÑ 1

2

´

Fϕj,ηϕβϕ
¯

“ Fϕj (6.70a)

lim
βϕÑ1,ηϕÑ 1

2

´

Φϕ
j,ηϕβϕ

¯

“ Φj (6.70b)

for single-phase flow. Application of limited state recovery and slope computation

according to section 5.1.3.1 - 1 also in grid cell face tangential directions within the

respective stencil – allowing for computation of the states on the dashed horizontal
5 While for second order accuracy in space ηϕ “ 1

2
has to be chosen, second order accuracy in

space-time might require ηϕ ‰ 1
2

with 0 ă ηϕ ă 1, depending on the spatial coordinate of the
spatio-temporal centroid of the cell face fractions in the respective fluid phase. However, this is
beyond the scope of this work.
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line in Fig. 6.13 according to

Φϕ
j,ηϕβϕ “ Φϕ

j ˘ S
pΦq
2,pi,j,kq

ˆ

1

2
´ ηϕβϕ

˙

c2h (6.71)

in which the index 2 indicates the grid cell face tangential direction in Fig. 6.13
and the sign ˘ depends on whether the dashed horizontal line is located above (`)

or below (´) the respective grid cell center – satisfies the limit (6.70b)6 and the

corresponding fluxes can be computed using standard stencils and procedures from

section 5.1.3 with the results of (6.71) as stencil data for each fluid phase. If the slopes

for both fluid phases and all coordinate directions are pre-computed in the region, in

which ghost data is available, no additional computational cost arises. However, the

pre-computed slopes need to be stored for each quantity and fluid phase in this region

around the interface for subsequent flux computation. Note that in case of constant

data per fluid phase all described methods conincide. Since this approach, however,

results in different limits on adjacent grid cell faces if the interface coincides with

their common node, in the present method the approach

Φϕ
j,ηϕβϕ “ Φϕ

j ´ ς
ϕ
´

Φϕ
j ´ Φϕ

j¯ςϕ

¯

ˆ

1

2
´ ηϕβϕ

˙

(6.72)

with

ςϕ :“

#

1 if
`

1
2 ´ η

ϕβϕ
˘

ě 0

´1 if
`

1
2 ´ η

ϕβϕ
˘

ă 0
(6.73)

is used for determination of interpolated states, yielding

Φϕ

j, 1
2

“ Φj , Φϕ
j,0 “

Φj ` Φj´1

2
, Φϕ

j,1 “
Φj ` Φj`1

2
(6.74a)

Φϕ

j, 1
4

“
3Φj ` Φj´1

4
, Φϕ

j, 3
4

“
3Φj ` Φj`1

4
(6.74b)

for the setting from Fig. 6.13 as expected. The sign ¯ in the index of equation

(6.72) depends on whether the node at j ´ 1
2 (´) as in Fig. 6.13 or the one at j ` 1

2

(`) serves as reference location for determination of ηϕ of the respective fluid phase

ϕ. Instead of determination of stencil data according to (6.72) for application to

standard single-phase flux computation procedures as described in section 5.1.3, the
6 More advanced versions can be composed as weighted sums of the approaches (6.71), (6.67) and

(6.68), that – in addition to (6.70b) – satisfy the limits limβϕÑ0,ηϕÑ0

´

Φϕj,ηϕβϕ
¯

“
Φ
ϕ
j `Φ

ϕ
j´1

2

and limβϕÑ1,ηϕÑ1

´

Φϕj,ηϕβϕ
¯

“
Φ
ϕ
j`1`Φ

ϕ
j

2
.
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above considerations with the corresponding result

Fϕj,ηϕβϕ “ Fϕj ´ ς
ϕ
´

Fϕj ´ F
ϕ
j¯ςϕ

¯

ˆ

1

2
´ ηϕβϕ

˙

(6.75)

can be made directly based on the fluxes as sketched in Fig. 6.12, using pre-computed

standard fluxes in grid cell face centers for both fluid phases as in the case of single-

phase flow from section 5.1.3. Note, however, that these two options yield different

results since in the flux based one the limiter function from section 5.1.3.1 - 1 is

applied for each basis flux before the interpolated flux is determined, while in the

state based option the limiter function is only involved once per computation of flux

Fϕj,ηϕβϕ based on the interpolated stencil data from (6.72).

6.3.3.5 Flux Splitting

The effective numerical flux F , representing the spatio-temporal flux average and

required for determination of a single update for the entire grid cell, is split at cut

grid cell faces according to

Fj :“
ÿ

ϕ

rβϕj F
ϕ
j “

rβjF
p`q

j `

´

1´ rβj

¯

F
p´q

j (6.76)

as proposed in [156] and performed in [150]. The individual flux contributions Fϕj
per fluid phase ϕ are determined as given in section 6.3.3.4 by equation (6.75) or

(6.72), respectively, the latter applied as stencil data to standard single-phase standard

flux determination procedures as given in section 5.1.3.1, based on recovered ghost

data around the interface.

6.3.3.6 Time-Average Cell Face Fractions

Time-average cell face fractions rβϕ for fluid phase ϕ are determined based on the

nodal level-set values at both the old time level n and the new time level n ` 1 as

indicated for d “ 3 in the left plot of Fig. 6.4 on page 155. For determination of the

time-average cell face fractions rβϕ in case of d “ 2 basic geometric considerations

are sufficient, for d “ 3 the corresponding values for the space-space-time volume

ĂBΩ
ϕ

:“
`

BΩϕptq ˆ ptn, tn`1q
˘

P Rd (6.77)
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can be obtained by integration of

ˆ
ĂBΩ
ϕ

drV “
1

3

ˆ
ĂBΩ
ϕ
r∇ ¨ r~x drV “

ÿ

f

ˆ
ĄBBΩ

ϕ

f

r~x d rA (6.78)

over the boundary

ĄBBΩ
ϕ

:“
`

BBΩϕptq ˆ ptn, tn`1q
˘

P Rd´1 (6.79)

of the space-space-time volume after application of the divergence theorem with r~x

as vector consisting of d ´ 1 spatial and 1 temporal coordinate and corresponding

divergence operator r∇¨.

6.4 Corrector

Elliptic solvers for solving Poisson- and Helmholtz-type problems, arising within the

present numerical method, are readily available through [128, 130, 129] and also able

to handle grid cells, which are intersected by a sharp interface. Instead of only one bi-

(d=2) / tri- (d=3) linear ansatz function per grid cell as in the single-phase setting, in

cut grid cells two ansatz functions are used for approximation of the unknown quan-

tity with two different states. These solvers are based on asymptotic analysis both

in order to overcome the problem of arbitrarily small grid cell fractions ([128, 130])

and to obtain solutions in each fluid phase separately for fluids with large density

ratio ([129]) by determination of a leading order solution in the heavier fluid only,

before computing a higher order correction in the entire domain. However, while

these methods work second order accurate for stationary interfaces, for nonsteady

problems, time dependence due to the moving interface has to be included in the sys-

tem since the Cartesian grid is not aligned with the interface and locations, in which

solutions, coefficients and right hand side contributions are determined, might have

changed the phase during the time step considered, which has to be accounted for.

Since this is subject of current research for sharp interfaces, throughout this work the

solvers described in sections 5.2 and 5.5 for single-phase flow are used with space-

time average coefficients, providing a smoothed space time average solution for the

quantity to be determined.
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6.5 Sharp Conservative Fluid Phase Separation

A strictly conservative two-phase flow method not only needs to discretely maintain

‚ global conservation via the balance between the integral change of a con-

served quantity within the computational domain and the flux across the outer

domain boundary

and

‚ local conservation in each computational grid cell via the balance between

the change of a conserved quantity in the grid cell and the fluxes across the

grid cell boundary segments

but also

‚ conservation of each fluid phase, which is, for example, neither given by

default by a purely level-set based approximation of the fluidic interface nor

uniquely maintained by a purely volume-of-fluid based approximation as de-

scribed in section 6.1,

is required. While – like, for example, in [156] – the first two issues are covered by the

present method as described so far, conservative phase separation is not yet addressed

and is covered in this section. Due to the different natures of the implicit interface

approximations via the level-set transport from section 6.1.1 on the one hand and the

volume-of-fluid evolution from section 6.1.2 on the other hand, these two discrete in-

terface representations will never match exactly and non of them represents the exact

interface. However, a two-way coupling of both representations as introduced in [28]

and advanced in [152] and [150] keeps both interface representations close to each

other, avoiding elaborate interface reconstruction procedures. While in [152] and

[150] primarily volume-of-fluid information, obtained from the field of constant den-

sities within each fluid phase, guides the correction procedure, in the adaption to the

present method the level-set representation serves as governing basis for the discrete

interface, as it is always resolved on the finest available grid level in case multiple de-

grees of grid resolution are involved, and the level-set gradients are discretized third

order accurate as given in section 6.1.1. The conservation property is adopted from

the additional volume-of-fluid field, which is transported discretely conservative as
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described in section 6.1.2, while all conserved quantities pass through the correction

procedure required for the volume-of-fluid field in turn due to discretization errors

in the discrete volume-of-fluid field that can not remain uncorrected as described in

sections 6.5.1 and 6.5.2. Since these errors, however, are extractable and produced

by a discretely conservative scheme, a discretely conservative correction procedure

as specified in section 6.5.2 is able to reset the volume-of-fluid field in grid cells be-

yond the interface to the exact volume-of-fluid values and all conserved quantities

can be corrected accordingly as they suffer from the same deficiencies due to a com-

mon transport algorithm as described in sections 6.3 and 6.4 based on chapter 5. This

discretely conservative correction allows for determination of a level-set correction

velocity as specified in section 6.5.3 for application to the level-set correction step

introduced in section 6.5.3.1, that pulls the level-set based interface representation

towards the conservative one due to the volume-of-fluid and, with that, towards all

other conserved quantities. That way the interface due to the level-set representation

remains coupled to the flow and the later sharply separated by the interface, while

interface reconstruction procedures are avoided and the separated fluid phases are

conserved. In the subsequent time step, this corrected level-set based interface repre-

sentation in turn serves as basis for the flux splitting at cut grid cell faces as described

in section 6.2 for further advancing the conserved quantities of the flow in time. This

procedure is already briefly outlined in [182], which can be considered as continu-

ative introduction to this section. The latter contains the detailed description in the

following, starting with specification of both origin and effects of the discretization

errors in section 6.5.1, which are subject to the correction procedure specified after-

wards in sections 6.5.2 and 6.5.3. Section 6.5.2 deals with the correction procedure

for the conserved quantities, distinguishing between different types of grid cells in

sections 6.5.2.4 - 1 to 6.5.2.4 - 3, based on information from the discretization error

of the volume-of-fluid field. Section 6.5.3 is dedicated to determination of a suit-

able level-set correction, followed by presentation of various correction strategies in

sections 6.5.4 and 6.5.5 before results are presented in section 6.5.6.

6.5.1 Origin and Effects of Phase Separation Related Errors

Regarding stable conservative fluid phase separation two different errors, resulting

from truncation errors of components of the respective numerical methods, need to be

overcome: Propagation of the level-set function as described in section 6.1.1 suffers

from numerical truncation errors of both the level-set propagation algorithm and the
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approximation of the velocity field used for this propagation as stated in [155]. These

deviations from exact propagation appear as volume changes of fluidic structures

bounded by the level-set zero level, causing a mass shift between the fluid phases

which is not motivated by physics and can accumulate over time if left untreated as

already stated in section 6.1.1. In consequence, conservation of conserved quantities

in each fluid phase is violated, if pure level-set information is used during flux com-

putation for representation of the interface, separating the different fluid phases, and

related quantities such as grid cell face fractions in the respective fluid phases. Due

to the piecewise linear approximation

rβ “
1

∆t

Nslice
ÿ

m“0

ˆˆ tm`1

tm

βmptqdt

˙

(6.80)

of the time-average cell face fractions in time over time slices between t0 ” tn and

tNslice ” tn`1, indexed m, with

βmptq « βptmq ` pβptm`1q ´ βptmqq
pt´ tmq

ptm`1 ´ tmq
(6.81)

as sketched in the right plot of Fig. 6.14 for a single time slice between tn and tn`1,

the conserved quantities even not remain bounded within their physically reasonable

range, which becomes evident in the volume-of-fluid value Pα from equation (6.18).

As examined in [150] for the volume fraction α (called f there), the leading order

contribution of this error is in the order of magnitude of the truncation error of the

numerical scheme for determination of rβ. If not treated suitable, these errors cause

smearing of the states around the interface and artificial mass changes in the differrent

fluid phases, if over- and undershoots are simply trunctated to the physically reason-

able range of the respective quantity. Additional approximation errors, that affect the

face fractions β of cut grid cell faces and therefore also the flux weights rβ, are intro-

duced during determination of the intersections of approximated interface and grid

cell faces by assuming a piecewise linear interface on grid cell faces as sketched in

Fig. 6.3.

6.5.2 Discretely Conservative Volume-of-Fluid Based Correction of Conserved

Quantities

The approach presented in this section aims for correction of all conserved quantities,

based on restoring the violated boundedness of the disturbed volume-of-fluid average
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Fig. 6.14: Sources of phase related mass defects: left: linear approximation of temporal evolu-
tion of intersection points, right: approximate determination of intersection points
due to piecewise linear approximation of the level-set function accoding to Fig. 6.3

Pφ ‹, resulting from discretization of (6.17) in each grid cell according to sections 6.2

to 6.4 on basis of chapter 5. Therefore first a general consistent correction scheme is

derived in section 6.5.2.1, which is then specified due to the available data in sections

6.5.2.2 and 6.5.2.3 and applied to different types of grid cells in section 6.5.2.4.

6.5.2.1 General Consistent Correction Scheme

For two-phase flow a consistent correction scheme for the integral averages of an ar-

bitrary number of conserved quantities can be derived, if the errors of two of these

conserved quantities are known, since scaled errors of the same kind have been gen-

erated consistently for all conserved quantities by the present numerical scheme. An

increment ∆ρψ
perr.q

, which represents the error of an arbitrary conserved quantity ρψ

with integral average ρψ (omitting the grid cell index i), is determined by

∆ρψ
perr.q

“ ´
∆t

∆V

2d
ÿ

f“1

„

∆A ∆rF
perr.q

ρψ



f
(6.82)

with 2d as the number of grid cell faces of a Cartesian grid cell. Integration of flux

densities over inaccurate space-time domains ĂBΩ
p`q,›

f and ĂBΩ
p´q,›

f is the source of

this error, which can be eliminated by addition of

∆ρψ “ ´∆ρψ
perr.q

(6.83)
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as corresponding correction. Therefore, due to equation (6.82), also

ÿ

f

”

∆A ∆rFρψ

ı

f
“ ´

ÿ

f

„

∆A ∆rF
perr.q

ρψ



f
(6.84)

with

∆rFρψ “ ∆

˜

ÿ

ϕ

´

rβϕ rF
ϕ

ρψ

¯

¸

(6.85)

and

rβp`q ” rβ (6.86a)

rβp´q ” 1´ rβ (6.86b)

as well as ϕ P tp`q, p´qu has to hold, while in general

∆rFρψ,f ‰ ´∆rF
perr.q

ρψ,f (6.87)

for each individual average correction flux density ∆rFρψ,f across cell face f. Thus,

due to relation (6.85) each of the corrective flux densities ∆
´

rβϕ rF
ϕ

ρψ

¯

needs to be

determined for the different fluid phases ϕ. Assuming, that the required resulting

correction flux ∆Fρψ,f across grid cell face f contributes to the overall corrective

increment ∆ρψ in the respective grid cell to a certain, yet unknown, extent Wf, this

correction flux can be written as

∆Fρψ,f :“ Wf∆ρψ “ vf ∆
rFρψ,f

(6.85)
“ vf∆

«˜

ÿ

ϕ

´

rβϕ rF
ϕ

ρψ

¯

¸ff

f

(6.88)

in which

vf :“
∆t

∆V
∆Af (6.89)

and
ÿ

f

Wf ” 1 (6.90)

for a conservation maintaining correction. With the transformation

vf ∆
´

rβϕf
rF
ϕ

ρψ,f

¯

“ pρψqϕf
“

∆Fϕbasic

‰

f (6.91)

in which
“

∆Fϕbasic

‰

f :“ vf ∆

ˆ

´

~v ϕ(corr.) ¨ ~n
¯

f
rβϕf

˙

(6.92)
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are phase-dependent common non-dimensional basic fluxes for all conserved quanti-

ties,

∆Fρψ,f “
ÿ

ϕ

´

pρψqϕf
“

∆Fϕbasic

‰

f

¯

(6.93)

results from equation (6.88) for each correction flux Fρψ,f, since the unknown cor-

rection velocities ~v p`q(corr.) and ~v p´q(corr.) are identical for each conserved quantity ρψ as

all ρψ have been propagated with the same transport mechanism causing the errors

subject to be corrected.

With the known error ∆ρψ
(err.)
p1q for an arbitrary first quantity ρψp1q (and, thus,

a first given correction ∆ρψp1q due to (6.83)), equation (6.93) can be solved for

∆F
p´q

basic, yielding

”

∆F
p´q

basic

ı

f
“

1
`

ρψp1q
˘p´q

f

ˆ

Wf∆ρψp1q ´
`

ρψp1q
˘p`q

f

”

∆F
p`q

basic

ı

f

˙

(6.94)

Analogously, knowledge of the error ∆ρψ
(err.)
p2q of an arbitrary second quantity

ρψp2q results in

”

∆F
p´q

basic

ı

f
“

1
`

ρψp2q
˘p´q

f

ˆ

Wf∆ρψp2q ´
`

ρψp2q
˘p`q

f

”

∆F
p`q

basic

ı

f

˙

(6.95)

and equating expressions (6.94) and (6.95), solving for
”

∆F
p`q

basic

ı

f
, reveals the non-

dimensional basic correction fluxes

“

∆Fϕbasic

‰

f “
ff

`

ρψp1q
˘ϕ

f

“

∆Fϕref

‰

f (6.96)

in which

”

∆F
p˘q

ref

ı

f
:“ ˘Wf

¨

˚

˝

∆ρψp2q ´

¨

˝

ψ
p¯q

p2q

ψ
p¯q

p1q

˛

‚

f

∆ρψp1q

˛

‹

‚

“ ˘

¨

˚

˝

∆Fρψp2q,f ´

¨

˝

ψ
p¯q

p2q

ψ
p¯q

p1q

˛

‚

f

∆Fρψp1q,f

˛

‹

‚

(6.97)
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is defined to be the reference correction flux for all other conserved quantities and

ff :“
1

ˆ

ψ
p`q

p2q

ψ
p`q

p1q

´
ψ
p´q

p2q

ψ
p´q

p1q

˙

f

(6.98)

is a common scaling. With that, the consistent correction flux across cell face f for

any conserved quantity ρψ with yet unknown correction ∆ρψ finally yields

∆Fρψ,f “ ff
ÿ

ϕ

¨

˝

˜

ψϕ

ψϕ
p1q

¸

f

“

∆Fϕref

‰

f

˛

‚ (6.99)

based on relation (6.93), if corrections ∆ρψp1q and ∆ρψp2q or correction fluxes

∆Fρψp1q and ∆Fρψp2q for two of these conserved quantities are known. Corrective

updates can then be determined from the resulting fluxes according to

∆ρψ “ ´
2d
ÿ

f“1

∆Fρψ,f “ ´
∆t

h

d
ÿ

d“1

1

cd

2
ÿ

w“1

„

∆Fρψ
v



d,w

“ ´
∆t

h

d
ÿ

d“1

1

cd

2
ÿ

w“1

∆rFρψ,d,w

(6.100)

as done during both the predictor time evolution step and the corrector steps from

chapter 5. For Cartesian grids, the sum over all cell faces in the previous equation

indexed f can be split into a sum over the coordinate directions (d) and a sum over the

cell faces per coordinate direction (w).

6.5.2.2 Specific Consistent Correction Scheme

With definition (3.141) the two quantities with known – or at least determinable – cor-

rections required for determination of correction fluxes according to section 6.5.2.1

are found in ρψp1q :“ P “ ρΘ and ρψp2q :“ Pφ “ ρΘφ as described in the follow-

ing:

Since potential deviations in P due to divergence errors are corrected in the first

projection step in the corrector for any type of grid cell, P is left untouched during

the present correction procedure. Therefore,

∆P ” 0 (6.101)

and, thus, ∆ρψp1q “ ∆P ” 0. While in general (6.101) does not mean, that each of
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the contributing fluxes has to vanish, in the present case nevertheless

∆FP,f ” 0 (6.102)

has to hold for each corresponding correction flux ∆Fρψp1q,f “ ∆FP,f across any

involved grid cell face f in order to leave the respective flux unchanged. This leaves

”

∆F
p˘q

ref

ı

f
“ ˘Wf∆ρψp2q “ ˘∆Fρψp2q,f (6.103)

from equation (6.97) to be determined for application to equation (6.99). The devia-

tion of the volume-of-fluid variable Pφ from its target value serves as second known

increment ∆ρψp2q “ ∆Pφ. In this case, the scaling factor

ff “
1

Jφ K
” 1 (6.104)

remains and with

”

∆F
p˘q

ref

ı

f
“ ˘Wf∆Pφ “ ˘∆FPφ,f (6.105)

equation (6.99) transforms to

∆Fρψ,f “
1

Jφ K

ÿ

ϕ

˜

ˆ

ψϕ

Θϕ

˙

f

“

∆Fϕref

‰

f

¸

(6.106)

“

»

–

˜

ψp`q

Θp`q

¸

f

∆FPφ,f

fi

fl`

»

–

˜

ψp´q

Θp´q

¸

f

´

´∆FPφ,f
¯

fi

fl (6.107)

for the correction fluxes of the remaining conserved quantities besides of P and Pφ.

While (6.102) retains the average overall flux of P on grid cell face f to avoid changes

of P maintaining (6.101), the flux ∆FPφ,j is responsible for how this average flux

of P is effectively distributed among the fluid phases as basis for the correction of all

other conserved quantities.

Since the required corrections equal the negative discretization errors according to

equation (6.83) and discretization errors are of the order of magnitude of the numer-

ical method for determination of the time-average face fractions used as flux weights

as examined in [150], first order accurate correction flux approximations are suffi-

cient for removal of the leading order error. Therefore
´

ψp`q

Θp`q

¯

f
and

´

ψp´q

Θp´q

¯

f
at grid

cell face f can be approximated by first order accurate upwind values with respect
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to the direction of the corresponding reference fluxes (6.105), which remain to be

determined based on the not yet specified volume-of-fluid based target values Pφ‘.

6.5.2.3 Volume-of-Fluid Target Value

Disturbed volume-of-fluid values Pφ ‹, indicated by ‹, can end up beyond the rea-

sonable value range after each update involving flux splitting (6.76) at grid cell

faces which have been cut during the time interval considered. Since this potential

.

Γφ

ΓG

0

1

Fig. 6.15: Phase separation due to uncorrected
level-set (G, solid) and volume-of-
fluid (φ, dashed) information

over-/undershooting effectively means

integration over control volumes and cell

faces fractions of wrong size as sketched

in Fig. 6.15 with dashed lines, in gen-

eral only corresponding values PφG,

based on geometric information due to

the level-set, indicated by subscript G,

can be reasonably split according to

PφG “ αG Pφp`qG ` p1´ αGq Pφp´qG

(6.108)

as shown for an arbitrary integral average in appendix section B.3. In equation

(6.108)

αG “ α
p`q

G “

´
Ω
p`q

G

dV´
Ω dV

(6.109)

is the level-set based volume fraction, which always remains bounded within 0 ď

αG ď 1, and Pφp`qG and Pφp´qG are the corresponding level-set based averages

PφϕG :“

´
ΩϕG
pPφqG p~x, tq dV´

ΩϕG
dV

“

´
ΩϕG
pPφqϕ p~x, tq dV´

ΩϕG
dV

(6.110)

in the respective fluid phases. As φp`q and φp´q are constants within the correspond-

ing fluid phases, relation (6.108) equals

PφG “ αG φ
p`q Pp`qG ` p1´ αGq φ

p´q Pp´qG (6.111)

assuming a general scalar P with interface discontinuity at first, depending on both
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space and time. Equation (6.111) can also be written as7

PφG “ PG

”

αG φ
p`q ` p1´ αGq φ

p´q
ı

` Jφ KαG p1´ αGq
´

Pp`qG ´ Pp´qG

¯

(6.112)

due to the identity

φp`q ” αG φ
p`q ` p1´ αGq φ

p`q (6.113)

and the relation

PG “ αG Pp`qG ` p1´ αGq Pp´qG (6.114)

with

Pϕ
G :“

´
ΩϕG

P p~x, tq dV´
ΩϕG

dV
(6.115)

according to appendix section B.3.

The correction procedure described here in section 6.5.2 is applied each time fluxes

at cut grid cell faces have been determined throughout the time stepping procedure in

order to provide corrected information with sharply separated flow quantities for the

subsequent sub-step. As PG does not necessarily correspond to the expected value

at the corresponding time level after each of the individual sub-steps (e.g. before the

first corrector step), PG can be split into its target value P ‘

G at the respective time

level and the current deviation ∆PG :“ PG ´ P ‘

G . With that, equation (6.112)

transforms to

Pφ ›,˝G “ P ‘,˝
G

”

α ›,˝G φp`q `
`

1´ α ›,˝G
˘

φp´q
ı

`

´

P ˝

G ´ P ‘,˝
G

¯ ”

α ›,˝G φp`q `
`

1´ α ›,˝G
˘

φp´q
ı

` Jφ Kα ›,˝G
`

1´ α ›,˝G
˘

´

P ‘,p`q
G ´ P ‘,p´q

G

¯˝

` Jφ Kα ›,˝G
`

1´ α ›,˝G
˘

„

´

P ›

G ´ P ‘

G

¯p`q,˝
´

´

P ›

G ´ P ‘

G

¯p´q,˝


(6.116)

7 PφG “ αG φ
p`q Pp`qG ` p1´ αGq φ

p´q Pp´qG

“ αG φ
p`q Pp`qG `

”

p1´ αGq φ
p`q Pp´qG ´ p1´ αGq φ

p`q Pp´qG

ı

` p1´ αGq φ
p´q Pp´qG

“ PG φp`q ´ Jφ K p1´ αGq P
p´q

G

“ PG
´

αG φ
p`q
` p1´ αGq φ

p`q
¯

´ Jφ K p1´ αGq P
p´q

G

“ PG
´

αG φ
p`q
` p1´ αGq φ

p´q
¯

` Jφ K p1´ αGq
´

PG ´ Pp´qG

¯

“ PG
´

αG φ
p`q
` p1´ αGq φ

p´q
¯

` Jφ K p1´ αGq
´

αG Pp`qG ` p1´ αGq P
p´q

G ´ Pp´qG

¯

“ PG
´

αG φ
p`q
` p1´ αGq φ

p´q
¯

` Jφ KαG p1´ αGq
´

Pp`qG ´ Pp´qG

¯
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with superscript › indicating, that the level-set function G “ G› is not yet corrected

as well, and superscript ˝ representing any of the superscripts n, n ` 1, ‚, ˚ and

˚˚ with ‚, ˚ and ˚˚ indicating different incomplete intermediate states at time level

n ` 1 after the first predictor stage (‚), after the full predictor (˚) and after the first

correction step (˚˚). The third line of the right hand side of (6.116) is the contribution

due to the final gradient8 of P at the corresponding stage ˝, causing different target

values for the integral averages of P in the different fluid phases, and the last line

represents the contribution due to current deviations from this gradient.

Due to spatial homogeneity of P as given in section 3.6, with deviations in P from

the constant value P ‘

G ” P0 only due to accumulated divergence errors, the relations

∇P “ 0 (6.117)

JP K “ 0 (6.118)

hold, yielding

Pφ ›,˝G “ P ‘,˝
G

”

α ›,˝G φp`q `
`

1´ α ›,˝G
˘

φp´q
ı

`

´

P ˝

G ´ P ‘,˝
G

¯ ”

α ›,˝G φp`q `
`

1´ α ›,˝G
˘

φp´q
ı

` Jφ Kα ›,˝G
`

1´ α ›,˝G
˘

„

´

P ›

G ´ P ‘

G

¯p`q,˝
´

´

P ›

G ´ P ‘

G

¯p´q,˝


(6.119)

due to
´

P ‘,p`q
´ P ‘,p´q

¯˝

” 0 (6.120)

for the present flow regime. Therefore,

‚ in regular grid cells in general, as well as

‚ in cut grid cells

– at the beginning of the time step (P ˝
” P ‘,˝

” P pnq),

8 The difference of target values in the different fluid phases can be written as P ‘,p`q
G ´ P ‘,p´q

G

“ Pp`qc ´ Pp´qc `Oph2q
“ Pp`qΓ ´∇Pp`q|Γ ¨

´

~xΓ ´ ~x
p`q
c

¯

´ Pp´qΓ `∇Pp´q|Γ ¨
´

~xΓ ´ ~x
p´q
c

¯

`Oph2q

“ JP K´ J∇P K ¨
´

~xΓ ´ ~x
p`q
c

¯

`∇Pp´qΓ ¨

´

~x
p`q
c ´ ~x

p´q
c

¯

`Oph2q
according to Fig. 6.8 on page 171.
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– after the first Runge-Kutta predictor time integrator stage (P ˝
” P ‘,˝

”

P ‚) due to the use of the old time level velocity field during the first

predictor stage,

– after the first corrector step (P ˝
” P ‘,˝

” P ˚˚
“ P n`1) since then all

scalars are effectively treated with advective fluxes satisfying the diver-

gence constraint (3.140)

equation (6.116) reduces to

Pφ ›,˝G “ P ˝
φ
›,˝
G “ P ‘,˝

φ
›,˝
G (6.121)

with generalized9 volume fraction

φ
›,˝
G :“ α ›,˝G φp`q `

`

1´ α ›,˝G
˘

φp´q (6.122)

due to P ‘,˝
” P ˝ both in each fluid phase and in the entire grid cell. Therefore, the

level-set based value Pφ ›,˝G is within the valid range

P ‘,˝
min

´

φp`q, φp´q
¯

ď Pφ ›,˝G ď P ‘,˝
max

´

φp`q, φp´q
¯

(6.123)

for all the cases listed above.

In cut grid cells (C) at stage ˚ (after the first predictor stage, but before the first

projection step), however, in general P ‘,˚
‰ P ˚ is true, making the expressions in

the second and third line of equation (6.116) non-zero. Due to the second line the

quantity P in (6.123) has to be replaced by P ˚. In addition, since

‚ both second and third line of the right hand side of (6.119) are zero at the

beginning of the time step (and, thus, at the end of the previous one) and

‚ time step local deviations from a scalar integral average of a homogeneous

quantity without interfacial discontinuity are of Oph3q accuracy after the entire

second order accurate predictor step as the quantity is treated in a singe-phase

fashion,
9 For the choice of φp`q :“ 1 and φp´q :“ 0 (6.122) reduces to φ

›,˝

G “ α ›,˝ representing the
volume fraction in fluid phase p`q as given based on level-set information. Nevertheless, during
the present derivation the more general notation is kept.
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the relation

Pφ ›,˚G “ P ˚
φ
›,˚
G `Oph3q

“ P ˚
φ
›,n`1
G `Oph3q (6.124)

with

P ˚
min

´

φp`q, φp´q
¯

´Oph3q ď Pφ ›,˚G ď P ˚
max

´

φp`q, φp´q
¯

`Oph3q
(6.125)

is obtained in each time step, for example immediately after the predictor is com-

pleted, exceeding the limits from relation (6.123). Keeping Pφ˚ bounded according

to (6.123) at any stage ˝ of the numerical time step via (6.121), thus, introduces an

Oph3q error if applied to cut grid cells at stage ˚. This error does not appear in all

other cases as listed on page 191 and is especially limited to cut grid cells. This con-

tribution vanishes, if (6.117) can be assumed to hold at any stage of the numerical

method, yielding

P ˝
min

´

φp`q, φp´q
¯

ď Pφ ›,˝G ď P ˝
max

´

φp`q, φp´q
¯

(6.126)

as bounds for the values to be determined. The level set-based integral average Pφ ›,˝G ,

nevertheless, involves a conservation related deviation in cut grid cells in general due

to not yet corrected level-set discretization errors as stated in section 6.1.1. This

deviation only vanishes, if evaluated at time level n with level-set correction being

performed in the previous time step or after level-set correction in the current time

step is already applied. Thus, while directly serving as target value in all grid cells,

which end up regular ( = not intersected by the interface) at the end of the time

interval, Pφ ›,˝G according to (6.121) can not be used as target value in cut grid cells.

As shown below in section 6.5.2.4, during reference correction flux determination,

however, it can be used as bounded reference value for construction of a conservation

maintaining target value for cut grid cells at time level n` 1 anyway.

6.5.2.4 Reference Correction Flux Determination

As already indicated in the previous section 6.5.2.3, it is necessary for the present

correction scheme to distinguish between different types of grid cells based on the

interface representation due to the level-set. The following sub-sections address ref-

erence correction flux computation across faces of grid cells of these different types.
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(R)

(R)

(R) (C)

(C)(R)

(C)(A) (C)

(A)

(A)

(R)

Γ(n)

Γ(n+1)

Fig. 6.16: Cartesian grid cell types: (A)
abandoned, (C) cut, (R) regular,
and possible correction fluxes
(white arrows: (A), black ar-
rows: (C)) at time level n`1 in
the vicinity of a moving inter-
face Γ; (from [182] (https:
//dx.doi.org/10.1007/
978-3-319-05684-5_45)
with permission of Springer)

In this regard, grid cells are called

‚ “regular” (R) within the time in-

terval ∆T “ rtn, tn`1s, if they

are never intersected by the (level-

set based) interface Γ during ∆T

(type 0{0 cells)10,

‚ “abandoned” (A), if they have

been intersected at any point in

time during time interval ∆T, but

not anymore at its end at time level

n` 1 (type 1{0 cells) and

‚ “cut” (C), if they end up inter-

sected by the (level-set based) in-

terface Γ at time level n ` 1

(type 0{1, type 1{1 and type 1{0{1

cells)

as shown in Fig. 6.16, taken from [182].

6.5.2.4 - 1 Regular Grid Cells (R)

Regular grid cells, which never have been cut by the interface during ∆T, do not

need any interface discretization related correction, since these cells do not suffer

from an interface related discretization error due to weighted flux splitting (6.76), as

only standard single-phase Finite Volume procedures are applied for flux and update

computation. Thus, corrections for all conserved quantities in all type (R) cells are

zero and these cells do not have to be treated.

In particular, correction fluxes between (R) cells and neighboring cells of any type

need to vanish. This way all (R) cells are left unaffected by the correction proce-

dure and the region, in which correction is required, is decoupled from the regular

surrounding. This decoupling keeps the correction problem interface local and is

achieved by setting

Wf ” 0 (6.127)

10 Cells of type 0{1{0 are also considered as (R) cells since the numerical method is not able to
resolve the intersection within the time interval and, thus, no split fluxes at cut grid cell faces are
computed.

https://dx.doi.org/10.1007/978-3-319-05684-5_45
https://dx.doi.org/10.1007/978-3-319-05684-5_45
https://dx.doi.org/10.1007/978-3-319-05684-5_45
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on each grid cell face f of all type (R) cells in equation (6.105).

6.5.2.4 - 2 Abandoned Grid Cells (A)

In grid cells, which are left by the interface Γ during ∆T, with only one fluid phase

remaining in the so-called abandoned grid cell at the end of ∆T, the volume-of-fluid

target value is immediately given by

Pφ‘,˝ “ P ˝
φ
›,˝
G (6.128)

as shown in section 6.5.2.3. This allows for a local correction approach due to either

φ
›,˝
G “ φp`q or φ

›,˝
G “ φp´q, depending on which fluid phase is left in the respective

type (A) grid cell with either α ›,˝ “ 0 or α ›,˝ “ 1. Instead of directly resetting Pφ
to its target value via addition of the known correction

∆Pφ ˝ “ ´
´

Pφ ‹,˝ ´ Pφ‘,˝
¯

“ P ˝
φ
›,˝
G ´ Pφ ‹,˝ (6.129)

Γn`1
G

Γn
G

Fig. 6.17: Abandoned grid cells (A), depend-
ing on the movement of the explicit
level-set based approximation of the
interface Γ

to the disturbed value Pφ ‹,˝, reference

correction fluxes between type (A) and

type (C) cells are determined via equa-

tion (6.105) as sketched in Fig. 6.17,

allowing for correction of the other

conserved quantities accordingly as de-

scribed in sections 6.5.2.1 and 6.5.2.2.

This step is crucial in order to avoid

development of a wake of intermediate

and/or under- or overshooting phase in-

dicator values over time – primarily in

upwind direction with respect to the in-

terface as shown in Fig. 6.29 on page

234 in the results section 6.5.6 – and to prevent smearing of the conserved quantities

around the interface and loss of sharp fluid phase separation.

The weights Wf in (6.105) need to satisfy (6.90) for conservative error distribution,

which is given by default, if

Wf :“
Wf

ř

iWi
(6.130)

with arbitrary (non-negative) weightsWf is defined. However, only grid cell faces cut
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Fig. 6.18: Pφ{P , left: before correction with two intermediate-valued and three undershoot-
ing (white) type (A) cells, right: after correction in type (A) cells

or run over by the interface during ∆T are allowed to have non-zero fluxes and, thus,

non-zero weights Wf. This avoids influence on other neighboring (A) or (R) cells, as

only (C) cells are possible exchange partners. Fig. 6.18 shows Pφ
P of a scenario from

a simulation performing the present correction scheme, in which three undershooting

(white) and two intermediate-valued (A) cells (second full cell from left in fourth row

from bottom and fifth full cell from left in sixth row from bottom) need to be corrected

in the left plot. The setting after correction of (A) cells is shown in the right plot.

(A) (A)

(A) (C)

Γn
G Γn`1

G

Fig. 6.19: Type (A) cell for which no type (C) face
neighbor is available

Due to the CFL stability condition

[37] for the explicit predictor part,

an abandoned grid cell has at least

one cut neighbor cell in a well re-

solved setting11. In order to be able

to treat slightly under-resolved set-

tings as well, the present correction

step is embedded into a loop, which

first checks, whether or not there

are type (A) cells, which have no

type (C) face neighbor, and if such

cells are found, the present correc-

tion step is applied to these cells in

a first cycle as shown in Fig. 6.19,

with standard12 type (A) cells in-
11 Treatment of under-resolved settings is discussed in section 7.2.
12 Type (A) cells which have at least one type (C) face neighbor cell.
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stead of type (C) cells as exchange partners, before the latter are corrected.

Non-physical over- or undershoots in neighboring type (C) cells, however, could only

be avoided in general, if exactly that weighting was used, that is responsible for the

discretization error due to weighted flux splitting (6.76).

(A) (C)

Γn
G Γn`1

G

pα
p`q

G qf

(+) (´)

f

Fig. 6.20: Type (A) cell for which type (C)
face neighbor is available

This, however, is not possible to repro-

duce by the present correction scheme

in an directionally unsplit method, since

fluxes across grid cell faces, which do

not have a cut neighbor cell at the end of

∆T anymore, might have contributed to

the present errors. This happens, if a grid

cell face, which is not cut at time level

n` 1 anymore, has been cut at any point

in time during ∆T. Yet, to keep possibly

resulting temporary over- and undershoots in cut grid cells (which are corrected in

the subsequent step described in section 6.5.2.4 - 3) as small and the resulting error

distribution in cut grid cells as smooth as possible,

Wf :“
´

α
p˘q

G

¯

f
(6.131)

is chosen13, with
´

α
p˘q

G

¯

f
being the level-set based volume fraction of that part of

the neighboring type (C) cell sharing grid cell face f, which is within the same fluid

phase as the type (A) cell considered, as sketched in Fig. 6.20. Due to (6.130) and

(6.131) each surrounding receiver cell accepts contributions according to its fraction

within the respective fluid phase, keeping the relative change due to the error shift

into receiver cells equally distributed while resetting Pφ in type (A) cells exactly to

its target value.

With equations (6.129), (6.130) and (6.131), the reference correction fluxes (6.105)

can be determined and end up zero on grid cell faces shared with type (R) or other

type (A) cells, and non-zero only on grid cell faces shared with type (C) cells. Based

on these reference fluxes, correction fluxes for each conserved quantity ρψ can be

computed between type (A) and type (C) via (6.106), and corrective updates can be

determined according to standard Finite Volume procedures based on these fluxes.
13 Investigation of effects of different weightings Wf is subject to future research.
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6.5.2.4 - 3 Cut Grid Cells (C)

After volume-of-fluid values Pφ – and with those all other conserved quantities –

have been completely corrected with respect to (6.123) in type (A) cells, based on

correction fluxes according to (6.106), errors in the distribution of both Pφ and any

other conserved quantity ρψ remain contained in cut grid cells (C) only. If correction

of these errors is done conservatively, the sum of all inappropriately distributed Pφ ‹,˝

in the NC cut cells equals the sum of the corrected, yet unknown, distribution of

Pφ‘,˝, and therefore

N
C

ÿ

c“1

Pφ ‹,˝c “

N
C

ÿ

c“1

Pφ‘,˝c (6.132)

holds. However, due to unknown target values for the generalized level-set based

volume fraction φ
›,˝
G in cut grid cells14, the target value Pφ‘,˝ is not as trivially

available as for the type (A) cells in (6.129). Further, the weight Wf for error dis-

tribution based reference correction flux computation on grid cell face f via (6.105)

cannot be determined locally uniquely, since values in possible neighboring exchange

partner cells, which are type (C) cells as well, are – in contrast to the correction of

type (A) cells – also subject to be corrected as sketched in Fig. 6.21.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Γn`1
G

Fig. 6.21: Cut grid cells (C) after interface
movement and correction in type
(A) cells; possible exchange part-
ner cells for type (C) correction are
linked via arrows

This leads to a non-local spatial cou-

pling, limited to type (C) cells only, as

all other cells can not serve as receiver

cells for errors from neighboring grid

cells anymore. Defining

∆F
pCq

Pφ,f :“
∆t

∆V
∆Af p∇Y ¨ ~nqf

(6.133)

with unknown scalar Y for each cut grid

cell (C), a Poisson-type problem for ob-

taining correction fluxes ∆F
pCq
Pφ between

cut grid cells can be defined, applying

vanishing Neumann-type boundary con-

ditions to all grid cell faces, which are
14 The volume fraction α ›,˝G , needed for determination of the generalized level-set based volume

fraction φ
›,˝

G according to relation (6.122), has not yet reached its final value as well, as described
in section 6.5.2.3.
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not shared by two type (C) cells as indicated in Fig. 6.21, in order to force the fluxes

across such grid cell faces to vanish. This is similar to the problem solved in [152]

and [150] for both type (C) and (A) cells – called “mixed cells” there – at once,

yielding
¨

˝

ÿ

f

∆F
pCq

Pφ,f

˛

‚

c

“ ∆Pφc “ ´
´

Pφ ‹,˝ ´ Pφ‘,˝
¯

c
(6.134)

for each cut grid cell, indexed c. While the level-set based value P ˝
φ
›,˝
G cannot

serve as target value Pφ‘,˝ in type (C) cells directly without violating conservation,

definition of the target value

Pφ‘,˝c :“ P ˝

c φ
›,˝
G,c ` δPφ

‘,˝
c (6.135)

does maintain conservation, if the local adjustment is chosen to be

δPφ‘,˝c :“

¨

˝

κ ˝c
řN
C

c̃“1 κ
˝
c̃

˛

‚∆PφC (6.136)

wherein the global deviation

∆PφC :“

N
C

ÿ

c“1

δPφ ‹,˝c (6.137)

is the sum of the local deviations between uncorrected volume-of-fluid and level-set

based values

δPφ ‹,˝c :“ Pφ ‹,˝c ´ P ˝

c φ
›,˝
G,c (6.138)

over all NC type (C) cells of a closed contour and κ is a yet arbitrary weight. Mainte-

nance of conservation can be checked easily, independent of κ, by summing equation

(6.135) with (6.136) to (6.138) over all NC type (C) cells, taking into account that

N
C

ÿ

c“1

δPφ ‹,˝c ”

N
C

ÿ

c“1

Pφ‘,˝c ´

N
C

ÿ

c“1

P ˝

c φ
›,˝
G,c (6.139)

holds due to relation (6.132). Once κ in (6.136) is specified properly, the resulting
Poisson-type problem with vanishing Neumann boundary conditions for type
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(C) cells

∆t

¨

˝

1

∆V

ÿ

f

∆Af p∇Y ¨ ~nqf

˛

‚

c

“ δPφ‘,˝c ´ δPφ ‹,˝c (6.140)

is solved for Y in the entire computational domain by enforcing a trivial zero solution

in all un-cut grid cells (type (R) and (A) cells) and by decoupling the type (C) cells

from the surrounding via zero fluxes between cut and un-cut grid cells, representing

the vanishing Neumann-type boundary condition as shown in Fig. 6.21.

The discrete left hand side contributions

∆t

¨

˝

1

∆V

d
ÿ

d“1

∆Ad
cdh

´

Ypi,j,kq ~̀ed
´ 2Ypi,j,kq ` Ypi,j,kq ~́ed

¯

˛

‚ (6.141)

of (6.140) to the resulting matrix from a single type (C) cell pi, j, kq on the Cartesian

grid, with k “ 1 in the two-dimensional case d “ 2, result from discretization of the

grid cell face normal gradient ∇Y ¨ ~n on grid cell faces via divided differences of

cell center values. Care has to be taken at grid cell faces, which do not contribute a

non-zero correction flux. While (6.141) assumes, that each of the grid cell faces, and

therefore each neighbor cell, is involved in the corrective exchange, the latter is only

allowed between neighboring type (C) cells. Therefore the resulting global matrix

needs to be modified in order to separate type (C) cells from the already corrected

surrounding and suppress correction fluxes to (R) and (A) cells. If each neighbor

cell is involved (such as for a standard global Poisson problem), the corresponding

diagonal matrix entry has the value ´2 d, while 2 d entries of value 1 can be found in

each matrix row and each matrix column the diagonal entry belongs to. To exclude

(R) and (A) cells, as they are not involved in the present corrective exchange, first

each matrix row, belonging to a (R) or (A) cell is overwritten with zeros besides of

a matrix diagonal element of 1. Since the right hand side of (6.140) is zero for these

grid cells, an initial zero solution does not change during the solution process, if the

(R) and (A) cells are completely decoupled from the (C) cells. To achieve that, all off-

diagonal matrix entries in columns with diagonal element of value 1 need to be zero

for a complete decoupling. Now only exchange between type (C) cells is possible.

The reduced Poisson type problem is solved on the entire domain. While all (R) and

(A) cells just keep their initial (zero) solution, redistribution of Pφ is done among

type (C) cells only.
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The resulting right hand side of equation (6.140) is the cut cell local difference be-

tween the representations of Pφ due to level-set and volume-of-fluid information,

adjusted by a certain fraction of the sum of the very same difference over all type (C)

cells. The relative formulation κ ˝c
´

řN
C

c̃“1 κ
˝
c̃

¯´1

in equation (6.136) with

N
C

ÿ

c“1

¨

˝

κ ˝c
řN
C

c̃“1 κ
˝
c̃

˛

‚ ”

řN
C

c“1 κ ˝c
řN
C

c̃“1 κ
˝
c̃

” 1 (6.142)

already guarantees maintenance of conservation and the solvability condition for

(6.140) is satisfied by default, as the sum of its right hand side over all type (C)

cells vanishes, leading to a vanishing sum of the right hand side over the entire com-

putational domain due to only non-zero contributions in cut grid cells.

Once (6.140) is solved, the fluxes (6.133) can be determined from the resulting cell

center values of Y via the divided differences used for discretization of ∇Y ¨ ~n on

each grid cell face for obtaining (6.141).

However, the weight κ, which still remains to be determined, needs to be specified

such that the target value Pφ‘,˝ from (6.135) is within the range given in (6.123).

Further, change of cell type has to be avoided in each grid cell since grid cells of type

(R) and (A) are not allowed to be affected anymore. Thus, the conditions

P ˝
max

´

φp`q, φp´q
¯

´ Pφ‘,˝ ą 0 (6.143a)

P ˝
min

´

φp`q, φp´q
¯

´ Pφ‘,˝ ă 0 (6.143b)

have to be satisfied in order to meet (6.123). With relation (6.135) and the definition

φ
‘,˝

:“
Pφ‘,˝

P ˝ (6.144)

as well as

max
´

φp`q, φp´q
¯

ą φ
›,˝
G (6.145a)

min
´

φp`q, φp´q
¯

ă φ
›,˝
G (6.145b)
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due to 0 ă α ›,˝ ă 1, the constraints

1´
κ ˝c

´

řN
C

c̃“1 κ
˝
c̃

¯

∆Pφ
C

P ˝
´

max
`

φp`q, φp´q
˘

´ φ
›,˝
G

¯ “

max
`

φp`q, φp´q
˘

´ φ
‘,˝

max
`

φp`q, φp´q
˘

´ φ
›,˝
G

ą 0 (6.146a)

1`
κ ˝c

´

řN
C

c̃“1 κ
˝
c̃

¯

∆Pφ
C

P ˝
´

φ
›,˝
G ´min

`

φp`q, φp´q
˘

¯ “

φ
‘,˝
´min

`

φp`q, φp´q
˘

φ
›,˝
G ´min

`

φp`q, φp´q
˘ ą 0 (6.146b)

or, respectively,

´

´

φ
›,˝
G ´min

´

φp`q, φp´q
¯¯

ă
κ ˝c

´

řN
C

c̃“1 κ
˝
c̃

¯

∆PφC
P ˝ ă

´

max
´

φp`q, φp´q
¯

´ φ
›,˝
G

¯

(6.147)

arise from conditions (6.143a) and (6.143b). The weight

κ ˝ :“

$

&

%

P ˝
´

max
`

φp`q, φp´q
˘

´ φ
›,˝
G

¯

if ∆PφC ą 0

P ˝
´

φ
›,˝
G ´min

`

φp`q, φp´q
˘

¯

if ∆PφC ď 0
(6.148)

finally transforms these conditions for ∆PφC ą 0 into

1´Kphiq “
max

`

φp`q, φp´q
˘

´ φ
‘,˝

max
`

φp`q, φp´q
˘

´ φ
›,˝
G

ą 0 (6.149a)

1`Kphiq ∆φrel “
φ
‘,˝
´min

`

φp`q, φp´q
˘

φ
›,˝
G ´min

`

φp`q, φp´q
˘ ą 0 (6.149b)
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and for ∆PφC ď 0 into

1´Kploq
1

∆φrel
“

max
`

φp`q, φp´q
˘

´ φ
‘,˝

max
`

φp`q, φp´q
˘

´ φ
›,˝
G

ą 0 (6.150a)

1`Kploq “
φ
‘,˝
´min

`

φp`q, φp´q
˘

φ
›,˝
G ´min

`

φp`q, φp´q
˘ ą 0 (6.150b)

once the expressions

Kphiq :“
∆PφC

řN
C

c̃“1 P
˝
´

max
`

φp`q, φp´q
˘

´ φ
›,˝
G

¯

c̃

(6.151a)

Kploq :“
∆PφC

řN
C

c̃“1 P
˝
´

φ
›,˝
G ´min

`

φp`q, φp´q
˘

¯

c̃

(6.151b)

∆φrel :“

´

max
`

φp`q, φp´q
˘

´ φ
›,˝
G

¯

´

φ
›,˝
G ´min

`

φp`q, φp´q
˘

¯ (6.151c)

are defined. While Kphiq ą 0 holds in (6.149a) and (6.149b) for each type (C) cell

due to ∆PφC ą 0 and Kploq ď 0 holds in (6.150a) and (6.150b) for each type (C)

cell due to ∆PφC ď 0, the ratio ∆φrel from (6.151c) is always positive (without

finite upper bound). Thus, conditions (6.149b) and (6.150a) are always satisfied, and

therefore

φ
‘,˝

ą min
´

φp`q, φp´q
¯

if ∆PφC ą 0 (6.152a)

φ
‘,˝

ă max
´

φp`q, φp´q
¯

if ∆PφC ď 0 (6.152b)

holds. Condition (6.149a), however, is only satisfied, if

0 ă Kphiq ă 1 (6.153)

is met, and condition (6.150b) is only satisfied, if

´1 ă Kploq ď 0 (6.154)

holds. Since both Kphiq and Kploq have the same value in each cut grid cell, as they

only consist of sums over all type (C) cells, violation of (6.153) in case of ∆PφC ą



204 6. Extensions Towards a Conservative Two-Phase Flow Projection Method

0 or of (6.154) in case of ∆PφC ď 0 causes φ
‘,˝

to exceed its lower or upper

bound in all type (C) cells simultaneously, indicating, that conservation has already

been violated in a preceding (sub-)step. On the other hand, if conditions (6.153) and

(6.154) are satisfied,

φ
‘,˝

ă max
´

φp`q, φp´q
¯

if ∆PφC ą 0 (6.155a)

φ
‘,˝

ą min
´

φp`q, φp´q
¯

if ∆PφC ď 0 (6.155b)

is true for all cut cells. Finally, due to (6.152a) and (6.155a) in case of ∆PφC ą 0 or

due to (6.152b) and (6.155b) in case of ∆PφC ď 0, respectively, the target value

Pφ‘,˝ used for construction of the right hand side of the Poisson-type problem

(6.140) is always bounded by (6.123) as demanded, if the weight κ ˝ is chosen ac-

cording to (6.148): If ∆PφC ą 0 holds and, consequently, the resulting target value

Pφ‘,˝ is larger than the level-set based reference P ˝
φ
›,˝
G in each cut grid cell, the

weight (6.148) prevents the target value from exceeding P ˝
max

`

φp`q, φp´q
˘

, while

it keeps Pφ‘,˝ from falling below P ˝
min

`

φp`q, φp´q
˘

for δPφ ˝ ă 0 in case of

Pφ‘,˝ ă P ˝
φ
›,˝
G . The special case ∆PφC ” 0 will not occur numerically and is

therefore considered in the second line of equation (6.148) as random choice, since

in this situation κ ˝c
´

řN
C

c̃“1 κ
˝
c̃

¯´1

δPφ ˝ ” 0 holds anyway.

In the upper left picture of Fig. 6.22 the local deviation (6.138) in cut grid cells in the

flow field of the simulation from Fig. 6.18 is plotted. The size of the local deviations

is governed by (at least) three different mechanisms:

‚ the size of the fraction of the time interval, in which flux weights rβ, different

from 0 or 1, apply as indicated by the old (dashed) and new (solid) time level

interface approximation in the upper left plot

‚ the size of the (final) volume fraction, and therefore of r :“ min
´

∆φrel,
1

∆φrel

¯

‚ the sign of the discretization error of rβ

It can be seen, that the longer a type (C) cell is cut throughout the time interval

considered, the larger the local deviations δPφ‹,˝c are, since in this case the respective

grid cell is exposed to discretization errors in the face fractions β due to flux splitting

on cut grid cell faces for the maximum period. Additionally, these errors have the

largest relative impact on small cut cell fractions in the respective fluid phase. The

upper right picture shows the distribution of the weight κ for this special case. The



6.5. Sharp Conservative Fluid Phase Separation 205

Fig. 6.22: Different quantities during volume-of-fluid redistribution: Examples for (upper left)
scaled local deviation (6.138), including old (dashed) and new (solid) time level
interface approximation, (upper right) weight κ in (6.136), (lower left) scaled right
hand side of (6.140) and (lower right) scaled solution P ˝Y of (6.140); scaling by
∆V {p∆t P ˝q; arrows of velocity field (upper left) and interface correction (others)
not equally scaled

magnitude of κ is distributed according to the one of the deviations. The bottom row

of Fig. 6.22 shows the right hand side of (6.134) or (6.140), respectively, on the left

and the scaled solution Y of (6.134) or (6.140), respectively, on the right. From the

latter it can be seen, that mass is continuously redistributed along the interface. In

this special case, mass is effectively transported from the light to the dark area.

At the end, the weight κ governs the level-set correction velocity discussed in sec-

tion 6.5.3.2 - 2. The better the weight distribution matches the distribution of local

deviations, the better the correction is. In [182] the weight

κ˝ “ α ‹,˝G
`

1´ α ‹,˝G
˘

(6.156)
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is used in contrast to the one specified in (6.148). This choice (6.156), in fact, in-

troduces a trust region for level-set and volume-of-fluid based representations of Pφ,

preferring level-set based values the more, the smaller one of two phase fractions

in the corresponding grid cell gets, since in this case over- and undershoots beyond

(6.123) in the volume-of-fluid based values are more likely and need to be prevented

during target value computation. However, in contrast to (6.148), for (6.156) bound-

edness of the resulting values for Pφ remains to be shown, while with weights ac-

cording to (6.148), which maintain boundedness and correct the difference between

level-set and volume-of-fluid based representation of Pφ in each cut grid cell by that

relative amount of the overall deviation ∆PφC, the respective cell has contributed to,

interface correction can become quite local as shown in section 6.5.3.2 - 2.

Summarizing, once the reference correction fluxes (6.133) across grid cell faces be-

tween type (C) cells are determined by solving (6.134) or (6.140), respectively, for Y
in cut cell centers, based on target value determination according to relation (6.135)

including weights according to (6.148), again resulting correction fluxes (6.106) for

all other conserved quantities can be computed. The correction fluxes for P vanish.

With available correction fluxes the respective updates for all conserved quantities in

each cut cell can be determined via standard Finite Volume procedures, assuming all

other fluxes between cells which are not both of type (C) to vanish.

While the (A) step keeps the flow sharply separated by the interface, the present

redistribution along the interface between (C) cells can be understood as conserva-

tive re-shaping of the interface representation due to the volume-of-fluid field Pφ
according to information provided by the (not yet corrected) level-set interface rep-

resentation. The (C) step already prepares the subsequent level-set correction, which

pulls the level-set representation towards the conservatively redistributed one of the

volume-of-fluid field. Therefore the shape is governed by the level-set while conser-

vation is governed by the volume-of-fluid.

6.5.2.5 Correction Algorithm Summary

This section summarizes the correction algorithm15 for the conserved quantities

1. determine level-set based volume fraction α ›G of fluid phase p`q in each type

(C) cell based on nodal level-set values as sketched in section 6.3.3.6
15 In order to pre-correct type (A) cells, which might not have a type (C) face neighbor, steps 3. to 9.

have to be performed as initial cycle before step 3. with that type (A) cells as receiver cells, which
have a type (C) face neighbor cell.
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2. compute level-set based generalized volume fraction φ
›

G according to (6.122)

3. determine ∆Pφ in type (A) cells according to (6.129), using φ
›

G and the known

P ‹ and Pφ ‹

4. determine volume fraction of all type (C) face neighbors of any type (A) cell

in the fluid phase of the respective type (A) cell (either α ›G or p1´ α ›Gq of the

neighboring type (C) cell)

5. determine weight Wf for each grid cell face f, cut during the corresponding

time interval, according to (6.130) and (6.131)

6. determine reference correction flux according to (6.105) using results from

steps 3. and 5.

7. compute correction fluxes for any other conserved quantity ρψ between type

(A) and type (C) cells according to (6.106)

8. compute corrective updates for all conserved quantities in type (A) and type

(C) cells

9. update all conserved quantities in type (A) and type (C) cells

10. compute difference δPφ‹,˝c in each type (C) cell according to (6.138)

11. compute global sum ∆PφC of the local differences from step 10. in all type

(C) cells as specified in (6.137)

12. determine local weight κ in (6.136) according to (6.148) based on the sign of

∆PφC

13. determine global sum of weights κ in all type (C) cells as required for evalua-

tion of (6.136)

14. compute right hand side of (6.140) in type (C) cells using results from steps

10. to 13. via (6.136) and (6.138)

15. set right hand side of (6.140) to zero in all other grid cells (A) and (R)

16. set correction fluxes between grid cells to zero if at least one of the two grid

cells sharing this grid cell face is not of type (C)

17. solve Poisson-type problem (6.140) in entire computational domain
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18. compute reference correction fluxes between type (C) cells according to (6.133)

19. compute correction fluxes for any other conserved quantity ρψ between type

(C) cells according to (6.106)

20. determine corrective updates for all conserved quantities in type (C) cells

21. update all conserved quantities in type (C) cells

6.5.3 Level-Set Correction

The benefits of level-set methods as described in section 6.1.1 come along with two

crucial shortcomings when applied to interfaces separating different fluids due to

the discrete approximation of equation (6.1). The resulting level-set representation

G‹,pn`1q, obtained through LpGq pp∇Gq , ~vGq with discrete approximations of the

level-set gradient ∇G and the velocity field ~vG as given via (6.7), applied to (5.21),

on the one hand does not maintain the initially imposed signed distance property

due to deviations of the level-set gradient from |∇G| “ 1, on the other hand fluidic

structures with boundary represented by the zero level of the level-set function do

not maintain their volume (and mass) by default. While deviation from the signed

distance function can cause the numerical method to fail once the local level-set gra-

dient becomes to steep or to flat, accumulation of discetization error based volume

changes of fluidic structures effectively yield artificial mass changes of the individual

fluid phases. Both deficiencies are due to discretizations errors resulting from discrete

treatment of equation (6.1) and need to be fixed for stable and accurate transport of

fluidic structures. The following sections describe how these issues are overcome in

this work by solving an additional correction equation

G
1

t ` ~v
1

G ¨∇G “ 9q
1

pGq (6.157)

in pseudo-time t according to solving (6.1) as described in 6.1.1 in order to include the

leading order effects of the yet ignored features into the final level-set value Gpn`1q,

with ~v
1

G and 9q
1

pGq as described below.

6.5.3.1 Penalization of Deviations from the Signed Distance Function

As mentioned above, movement of the level-set function does not maintain the initial

signed distance property of the level-set function in general, and, thus, the absolute
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value of the level-set gradient deviates from unity over time and the level-set function

can become very flat and/or very steep, resulting – among others – in inaccurate

interface normal vectors and/or unstable methods. Since (mostly non-trivial iterative)

re-initialization procedures are very time-consuming and often affect the position of

the level-set zero level – which is equivalent to a discrete artificial mass shift across

the interface and/or non-physical displacement of a fluidic structure as, for example,

described in [42] – the following non-iterative hybrid strategy is applied:

‚ in all narrow band cells Ωi P N a regularization is used throughout the present

work in order to penalize deviations from |∇G| “ 1, as, for example, done in

[107]. While in the latter a diffusive penalization16 is used during level-set

propagation, the present penalization acts as a local source term 9q
1

pGq in the

correction equation (6.157) with corresponding discrete correcting operator

L
1

pGq “ LpGq

´

∇Gpi,j,kq, ~v
1

G,pi,j,kq

¯

`Q
pGq
pi,j,kq (6.158)

and LpGq as given by equation (6.7) for application to the method-of-lines time

integration (5.21). In equation (6.158) the expression

Q
pGq
pi,j,kq :“ C UP

pηq
pi,j,kqSpi,j,kq

´

1´ |p∇Gq|pi,j,kq
¯

(6.159)

approximates 9qpGq in grid cell centers. Besides of the level-set gradient devia-

tion, equation (6.159) consists of

C :“
1

2
(6.160a)

U :“ u v̌ (6.160b)

P
pηq
pi,j,kq :“ P

pΓq,pηq
pi,j,kq P

pNq,pηq
pi,j,kq (6.160c)

Spi,j,kq :“ max

ˆ

CE
Epi,j,kq

maxN E
, CV

Vpi,j,kq

maxNV

˙

(6.160d)

E pi,j,kq :“ |~nΓ ¨E ¨ ~nΓ|pi,j,kq (6.160e)

Vpi,j,kq :“ |~v ¨ ~nΓ|pi,j,kq (6.160f)

CE :“ 10 (6.160g)

CV :“ 0.5 (6.160h)

with nondimensional velocity u, strain rate tensor E from (3.32) and local
16 With diffusion coefficient proportional to the absolute value of the local flow velocity.
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interface normal vector ~nΓ from (6.5). The global penalty function P is defined

to be the product of the basic interface normal penalty profile

P
pΓq,pηq
pi,j,kq :“

c

ˇ

ˇ

ˇ
Ĝ
pηq
pi,j,kq

ˇ

ˇ

ˇ

arctan
´

Ĝ
pηq
pi,j,kq

¯

arctan p1q
(6.161)

with index

η P t0, 1, 2u (6.162)

and the corresponding choice

P
pNq,p0q
pi,j,kq :“

?
2

ˆ

Z
”

cos
´

Ĝ
p0q
pi,j,kq

¯ıZ
˙

(6.163a)

P
pNq,p1q
pi,j,kq :“

„

1` exp

ˆ

´

´

Ĝ
p1q
pi,j,kq

¯2
˙

exp

¨

˝´

¨

˝

Ĝ
p1q
pi,j,kq

Np1q

˛

‚

2˛

‚ (6.163b)

P
pNq,p2q
pi,j,kq :“ P

pNq,p1q
pi,j,kq exp

¨

˝´

¨

˝

Ĝ
p2q
pi,j,kq

Np2q

˛

‚

2˛

‚ (6.163c)

with

Z :“ 2 (6.164)

in case of η “ 0. While (6.161)

– governs the behavior of P in the vicinity of the interface Γ,

– guarantees, that the penalization smoothly vanishes at Γ,

– carries along the correct sign for the penalization, depending on the sign

of the local level-set function,

the corresponding choice from (6.163) governs the behavior of P towards the

boundary of the narrow bandN as shown in Fig. 6.23, in which P
pΓq,pηq
pi,j,kq P

pNq,pηq
pi,j,kq

is sketched for narrow band width N “ 5 and grid spacing h “ 0.5. The

product (6.160c) with definitions (6.161) and (6.163) finally guarantees, that

enough penalization is performed between interface and narrow band bound-

ary but not at the interface, simultaneously preventing too heavy penalization at

the narrow band boundary, which would lead to accumulation of destabilizing

level-set deviations. In equations (6.161) and (6.163)

Ĝ
pηq
pi,j,kq :“

Gpi,j,kq

Npηq p}~nΓ}1qpi,j,kq hmaxd pcdq
(6.165)
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Fig. 6.23: Interface normal level-set penalty functions Ppηq in narrow band N around the in-
terface Γ. The version Pp2q is drawn solid. The interface is assumed to be located
at x “ 0, with a grid spacing of h “ 0.5 with N “ 5 narrow band cells on each
side of the interface; y represents the strength of the penalization depending on the
distance from the interface and the narrow band boundary.

with

Np0q :“ N , Np1q “ Np2q “ pN ´ 1q (6.166)

is the non-dimensional relative approximation to the interface distance with

respect to the narrow band size. The point-wise one-norm

1 ď }~nΓ}1 :“
d
ÿ

d“1

ˆ

1

|∇G|

ˇ

ˇ

ˇ

ˇ

BG

Bxd

ˇ

ˇ

ˇ

ˇ

˙

ď
?

2 (6.167)

in (6.165) stretches the penalty function the more, the smaller the angle be-

tween interface normal vector ~nΓ and diagonal of the Cartesian grid cell is. In

addition to the global penalty function, which only depends on the (disturbed)

distance from the interface, the local penalization amplifier S from definition

(6.160d) accounts for the sources of the local deviations of the magnitude of the

level-set gradient as proposed in [114]: On the one hand, relative motion of the

level-set iso-contours due to shear in the velocity field, measured by the inter-

face normal component of the strain rate tensorE, causes the level-set gradient

to deviate from unity the faster, the stronger this interface normal shear is. On

the other hand, numerical diffusion, which is proportional to the interface nor-

mal velocity component, perturbs the level-set gradient magnitude. Therefore
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multiplication of these local sources of disturbance S due to local flow condi-

tions with the global penalty function P allows for keeping the magnitude of

the level-set gradient bounded by penalizing the level-set the more, the larger

the disturbing sources are, leaving the interface itself untouched. The choice

η “ 2 yield the most stable results and is therefore used throughout this work

for obtaining the results in sections 6.5.6, 6.6.4.2 and 6.6.4.3. The scalings

(6.160g) and (6.160h) are adopted from [114].

‚ in interface cells17

I :“

$

’

’

&

’

’

%

!

Ωpi,jq :
´

Π
pi,jq

pi1 ,jq
G ď 0

¯

_

´

Π
pi,jq

pi,j1 q
G ď 0

¯)

d “ 2
!

Ωpi,j,kq :
´

Π
pi,j,kq

pi1 ,j,kq
G ď 0

¯

_

´

Π
pi,j,kq

pi,j1 ,kq
G ď 0

¯

_

´

Π
pi,j,kq

pi,j,k1 q
G ď 0

¯)

d “ 3
(6.168)

with

Π
pp,q,rq
pa,b,mq

G :“ Gpa,b,mqGpp,q,rq (6.169)

and i
1

P ti` 1, i´ 1u, j
1

P tj ` 1, j ´ 1u and k
1

P tk ` 1, k ´ 1u the non-

iterative direct CR-2 re-initialization procedure from [72] is applied, which

incorporates a zero displacement of an anchor point on the piecewise linearly

approximated interface Γ, represented via the level-set zero level G “ 0. The

set of interface cells I is sub-divided into regions Ip`q and Ip´q in order to

only use information from one side of the zero-level for each of the following

sub-steps as proposed in [147]:

1. in

I
p`q :“

$

&

%

!

Ωpi,jq P I : G‹
pi,jq ą 0

)

d “ 2
!

Ωpi,j,kq P I : G‹
pi,j,kq ą 0

)

d “ 3
(6.170)

with ‹ indicating not yet re-initialized level-set function values, the signed

distance function is recovered via
$

’

’

’

&

’

’

’

%

dpi,jq “
G‹
pi,jq

c

řd
d“1

”

Bx
d
G‹
pi,jq

ı2
d “ 2

dpi,j,kq “
G‹
pi,j,kq

c

řd
d“1

”

Bx
d
G‹
pi,j,kq

ı2
d “ 3

(6.171)

17 Interface cells are cells with cell center within a distance of
`

h maxd
`

cd

˘˘

around the level-set
zero level
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in which, for example for direction d “ 1,

$

’

’

&

’

’

%

”

Bx1G
‹
pi,jq

ı

“
G‹,`
pi,jq

´ G‹,´
pi,jq

max
´´

x`
1,pi,jq

´x´
1,pi,jq

¯

,ed

¯ d “ 2

”

Bx1G
‹
pi,j,kq

ı

“
G‹,`
pi,j,kq

´ G‹,´
pi,j,kq

max
´´

x`
1,pi,j,kq

´x´
1,pi,j,kq

¯

,ed

¯ d “ 3
(6.172)

with

ed :“
cd h

1000
(6.173)

and
$

’

’

’

’

&

’

’

’

’

%

η˘1,pi,jq :“

#

η1,pi,jq if Ωi˘1,j R I ^ ppA2q1 _ pB2q1q

η1,pi˘1,jq otherwise

+

d “ 2

η˘1,pi,j,kq :“

#

η1,pi,j,kq if Ωi˘1,j,k R I ^ ppA3q1 _ pB3q1q

η1,pi˘1,j,kq otherwise

+

d “ 3

(6.174)

for η1 P tG
‹, x1u hold. Further, in (6.174)

$

&

%

pAdq1 if
´

a
p1q

d

¯

1
^

´

a
p2q

d

¯

1

pBdq1 if
´

b
p1q

d

¯

1
_

´

b
p2q

d

¯

1
_

´

b
p3q

d

¯

1

(6.175)

with
$

&

%

´

a
p1q
2

¯

1
if Π

pi´1,jq
pi`1,jq G ă 0

´

a
p1q
3

¯

1
if Π

pi´1,j,kq
pi`1,j,kqG ă 0

(6.176a)

$

&

%

´

a
p2q
2

¯

1
if

´

∆`

pi,jq G
¯

1

´

∆´

pi,jq G
¯

1
ă 0

´

a
p2q
3

¯

1
if

´

∆`

pi,j,kqG
¯

1

´

∆´

pi,j,kqG
¯

1
ă 0

(6.176b)

$

&

%

´

b
p1q
2

¯

1
if Π

pi´1,jq
pi´2,jq G ă 0

´

b
p1q
3

¯

1
if Π

pi´1,j,kq
pi´2,j,kqG ă 0

(6.176c)

$

&

%

´

b
p2q
2

¯

1
if Π

pi`1,jq
pi`2,jq G ă 0

´

b
p2q
3

¯

1
if Π

pi`1,j,kq
pi`2,j,kqG ă 0

(6.176d)

$

&

%

´

b
p3q
2

¯

1
if

ˇ

ˇ

ˇ
ed `

´

∆˘

pi,jqG
¯

1

ˇ

ˇ

ˇ
´

ˇ

ˇ

ˇ

´

∆¯

pi,jqG
¯

1

ˇ

ˇ

ˇ
ă 0

´

b
p3q
3

¯

1
if

ˇ

ˇ

ˇ
ed `

´

∆˘

pi,j,kqG
¯

1

ˇ

ˇ

ˇ
´

ˇ

ˇ

ˇ

´

∆¯

pi,j,kqG
¯

1

ˇ

ˇ

ˇ
ă 0

(6.176e)



214 6. Extensions Towards a Conservative Two-Phase Flow Projection Method

and
$

&

%

´

∆`

pi,jq G
¯

1
:“ Gpi`1,kq ´Gpi,jq

´

∆`

pi,j,kqG
¯

1
:“ Gpi`1,j,kq ´Gpi,j,kq

(6.177a)

$

&

%

´

∆´

pi,jq G
¯

1
:“ Gpi,kq ´Gpi´1,jq

´

∆´

pi,j,kqG
¯

1
:“ Gpi,j,kq ´Gpi´1,j,kq

(6.177b)

represent conditions for decision on the stencil to be used for approxima-

tion of the derivatives (6.172). In contrast to [72], Ip`q (called R there)

is determined without considering the local level-set based curvature κ,

since considering κ in cases in which κ is close to but different from zero,

scenarios can occur, in which either to many interface cells are excluded

from Ip`q or tagged cells are on the wrong side of the interface, leading

to wrong re-initialization in the following step

2. in

I
p´q :“ IzIp`q (6.178)

the signed distance function is directly re-initialized via

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

dpi,jq “ G‹
pi,jq

¨

˚

˝

ř

NK
p`q

pi,jq

s“1
dpi,jq
s

˛

‹

‚

p`q

¨

˚

˝

ř

NK
p`q

pi,jq

s“1
G‹
pi,jq
s

˛

‹

‚

p`q d “ 2

dpi,j,kq “ G‹
pi,j,kq

¨

˚

˝

ř

NK
p`q

pi,j,kq

s“1
dpi,j,kq

s

˛

‹

‚

p`q

¨

˚

˝

ř

NK
p`q

pi,j,kq

s“1
G‹
pi,j,kq

s

˛

‹

‚

p`q d “ 3

(6.179)

based on already re-initialized values d and on old values G‹ in Ip`q as

well as the local not yet re-initialized value G‹. In (6.179), NK
p`q

is the

number of face neighbor cells of the current grid cell with cell centers on

the other side of the zero-level (as re-initialized data is already available

there) with Kp`q as the respective sub-set of Ip`q containing these NK
p`q

face neighbor cells.

3. the re-initialized distances d, computed in the two previous steps in both

I
p`q and Ip´q, are assigned to the level-set function in the entire I.
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Consequently, by application of the above steps, the level-set function remains close

to a signed distance function in the vicinity of the interface without application of

iterative procedures and the approximation

dp~x, tq «
G

|∇G| (6.180)

holds in that area.

6.5.3.2 Interface-Flow Coupling

As stated above and in section 6.1.1, the level-set lacks the conservation property, if

not corrected. On the one hand, this affects conservation of the different fluid phases

in each time step, since the ratio of fluxes in the different fluid phases at cut grid cell

faces as determined in section 6.3.3 depends on the explicit level-set based interface

position, determined according to section 6.1.4, and this unphysical change of shape

and size of fluidic structures eventually leads to artificial gain or loss of mass of

the different fluid phases. On the other hand, as there is no control on the sign of

the local level-set discretization errors, the latter can accumulate over time if not

corrected, leading to a decoupling of interface representation and fluid flow, which

finally results in failure of the numerical method once the level-set based interface

representation and the one based on the volume-of-fluid treat different grid cells as

intersected ones.

While the discretization errors are of the order of magnitude of the truncation error

of the numerical method in each time step, the above issues nevertheless need to be

overcome for a stable method conserving each fluid phase. Therefore, the level-set

based interface representation is corrected and coupled to the conserved quantities

by solving equation (6.157) over a pseudo time interval of size ∆t with the interface

correction velocity ~v
1

G remaining to be determined. Non-zero contributions to this

correction velocity field

~v
1

G “

#

~v
pφq
G @ Ωi P C

0 @ Ωi R C
(6.181)

are only computed in grid cells, which are cut by the interface, C, leading to modifi-

cation of level-set values G in these grid cells only. This way the level-set zero level,

representing the interface Γ, is effectively moved along its normal (6.5) indirectly via

level-set gradient manipulation (see Fig. 6.24 for a one-dimensional sketch), as can
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xx x

~v
pΦq

G

G

Fig. 6.24: Shift of intersection (X) of level-set (G) zero level approx-
imation and grid cell face via (indirect) level-set gradient
manipulation due to cut-cell local non-zero interface normal
level-set correction velocity

be seen after transformation of equation (6.157) to

Gt ` V 1

G|∇G| “ 9q
1

pGq (6.182)

with definition of

V 1

G :“ ~v
1

G ¨ ~nΓ (6.183)

as interface normal correction velocity, avoiding elaborate computation of extension

velocities in (narrow band) grid cells beyond the ones cut by the interface. The per-

turbation of the level-set gradient is corrected by the penalizing source term 9q
1

pGq,

which does not affect the interface position, as described in section 6.5.3.1. The size

of the pseudo time interval is arbitrary. However, by choosing ∆t to equal the size of

the time interval of the respective time step, ∆t “ ∆t, the ratio of the magnitudes of

interface movement during the respective time interval and necessary interface cor-

rection is directly given by the ratio of the magnitudes of correction velocities and

fluid flow velocities as the numerical correction procedure according to (6.157) is

subject to the CFL stability restriction as well.

Several strategies for determination of the interface normal correction velocity V 1

G

are discussed in the following.
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xx

G
|∇G| “ 1

Fig. 6.25: Level-set gradient adjustment, keeping the location of the
intersection (X) of level-set (G) zero level approximation
and grid cell face unchanged

6.5.3.2 - 1 Globally Uniform Interface Correction Velocity

In this approach the level-set function – and with that the level-set based interface

representation – is corrected using a globally uniform interface normal correction

velocity V 1

G,glob in each cut grid cell. Therefore a uniform (small) trial normal correc-

tion velocity V 1

G,trial is applied to (6.182) and based on the resulting volume change

∆Vtrial the final normal correction velocity

V 1

G,glob “ V 1

G,trial `∆V 1

G,glob

“ V 1

G,trial

¨

˝1`
∆V

p`q

GÑφ ´∆Vtrial

∆Vtrial

˛

‚ “ V 1

G,trial

∆V
p`q

GÑφ

∆Vtrial
(6.184)

for application to (6.182) is obtained by scaling of the trial velocity with the ratio of

global volume error to be corrected, ∆V
p`q

GÑφ, and global volume correction ∆Vtrial,

obtained using the trial velocity V 1

G,trial according to the following algorithm:

1. set the correction velocity field ~v
1

G to zero

2. determine the necessary volume correction ∆V
p`q

GÑφ

(a) compute level-set based volume V ‹G of the reference fluid phase p`q be-

fore correction, indicated by superscript ‹

(b) compute difference between level-set based overall volume V ‹G in the ref-
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erence fluid phase before correction and the known18 overall target vol-

ume V ‘ of the same fluid phase

3. choose a (uniform) interface normal trail velocity size V 1

G,glob, which is small

compared to the level-set propagation velocity.

4. determine trial velocity field ~v
1

G,trial for application to (6.157) by splitting the

interface normal trial velocity V 1

G,trial into components in the coordinate direc-

tions, based on the interface normal vector (6.5). The sign of the interface

normal correction velocity can be determined based on the sign of the differ-

ence determined in 2.

5. move level-set with trial velocity field ~v
1

G,trial as described in 6.1.1

6. determine the resulting total volume change ∆Vtrial

7. scale the trial velocity according to (6.184) and determine the missing in-

terface normal level-set correction velocity for the final level-set correction

∆V 1

G,glob :“ V 1

G,glob ´ V 1

G,trial.

Alternatively, this correction velocity can be computed via determination of

the missing total volume change ∆V
p`q

GÑφ ´ ∆Vtrial “ V ‘ ´ pV ‹ `∆Vtrialq

as difference of target volume V ‘ and volume V ‹ `∆Vtrial obtained after the

trial step, and scaling of the trial velocity by the ratio of missing overall volume

change to the already achieved volume change:

∆V 1

G,glob “ V 1

G,trial

∆V
p`q

GÑφ ´∆Vtrial

∆Vtrial
(6.185)

Instead of resetting the result of the trial step and applying correction velocity

(6.184) to the level-set algorithm for correction, the result from the trial step

can be kept, applying (6.185) to the second evaluation of the level-set algo-

rithm.

8. determine correction velocity field ~v
1

G,glob or ∆~v
1

G,glob, respectively, as done

in 4., based on the interface normal velocity V 1

G,glob or ∆V 1

G,glob, respectively,

from 7.
18 Since the global approach with uniform interface normal velocity can change the set of cut grid

cells, either the correction of conserved quantities has to be done both before and after interface
correction, or interface correction has to be done before the final (and only) correction of conserved
quantities according to section 6.5.2. In the latter case, the target volume V ‘ of the reference fluid
phase has to be known. Therefore, this approach in the second version is only applicable to cases,
in which the volume of fluidic structures does not change.
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9. move level-set with resulting correction velocity field as described in section

6.1.1

10. accept resulting interface position as accurate enough or repeat steps 6. - 10.

(which is not done, since iterative procedures should be avoided) until the in-

terface position can be regarded accurate enough

While providing accurate results without repeating steps 6. - 10. as shown in section

6.5.6.119, this globally uniform normal level-set correction velocity approach has the

following drawbacks:

‚ as the described algorithm is the initial phase of an iterative Newton scheme

already, all operations including level-set movement need to be done twice (2.-

5. and 6.-9.) which increases computational cost

‚ interface correction is performed independent of local flow or geometric phe-

nomena, which can cause interface movement due to the correction at locations

at which the flow and the interface velocity vanishes

‚ as a uniform normal correction velocity can cause changes in the sets of cut

and un-cut grid cells, interface correction needs to be done before correction

of the conserved quantities as described in section 6.5.2, if an iterative scheme

should be avoided. The latter should be done, since on the one hand it is one of

the basic concepts of the present method and on the other hand each evaluation

of the procedure from section 6.5.2 involves solving a global elliptic problem

as described in section 6.5.2.4 - 3 and, with that, solution to a linear system,

which is more expensive than local operations. Since in this approach con-

served quantities are not yet corrected at this stage and may still contain under-

and overshoots, the target volume V ‘ can not be computed from volume-of-

fluid information, but has to be determined by other means in advance. Thus,

the volume change – if there is one – has to be known a priori.

To overcome these issues, local level-set normal correction velocity determination is

focused on in the following.
19 The advected circular structure in section 6.5.6.1 is supposed to maintain its shape and constant

interface curvature. Therefore the globally uniform correction fits the geometric properties of the
given problem, which is not necessarily the case in general flow situation with arbitrary local
changes of shape and interface position.
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6.5.3.2 - 2 Local Interface Correction Velocity

In the present method, the level-set is the spatially more accurate interface representa-

tion, compared to the available volume-of-fluid information. Therefore the topology

of cut and un-cut grid cells is kept fix during correction of the conserved quantities in

section 6.5.2, which is based on the interface as predicted by the level-set zero level

approximation as described in section 6.1.1 and 6.1.4.

After the correction from section 6.5.2 is done, in each grid cell local volume-of-

fluid based information on the corrected interface position is implicitly available for

level-set correction, in order to couple the level-set zero level to the fluid flow and to

keep the amount of mass on each side of the interface stable, if there is no physical

mechanism to change it.

As explicit reconstruction of an elaborate not necessarily continuous volume-of-fluid

based interface representation should be avoided, the final interface position is not

directly accessible, but contained in the corrected volume-of-fluid volume fraction

distribution in cut grid cells.

However, assuming an interface normal correction of the interface position similar

to [150], this information can be used for determination of local level-set correction

velocities. As the correction is performed over a pseudo time interval of size ∆t, for

computation of a local normal correction velocity

V 1

G,loc :“ P p´1, 1;α‹Gq
dloc

∆t
“ O

ˆ

dloc

h

˙

(6.186)

the cut cell individual signed distance dloc, by which the interface needs to be shifted

in interface normal direction, remains to be determined from the known difference of

level-set and volume-of-fluid based volume fractions in cut grid cells. While the sign

of dloc governs increase or decrease of the level-set based volume fraction towards

the one due to the volume-of-fluid, P p´1, 1;α‹Gq with operators

P pa, b; ξq :“

#

a @ M pξq ” ξ

b @ M pξq ” 1´ ξ
(6.187)

and

M pξq :“ max pξ, 1´ ξq (6.188)

adjusts the effective sign, depending on if the resulting correction velocity points in

positive or negative direction of the interface normal vector ~nΓ as sketched in Fig.
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~nΓ

(+) (´)

~nΓ

(+) (´)

~nΓ

(´) (+)

~nΓ

(´) (+)

Fig. 6.26: Adjustment of level-set based interface representation: the level-set zero level is
pushed towards the volume-of-fluid based interface representation, which has al-
ready been corrected based on uncorrected level-set information

6.26, with ~nΓ pointing from p´q to p`q.

Determination of the corresponding signed volume difference

δ∆VGÑφ :“ δαGÑφ ∆V (6.189)

between level-set and volume-of-fluid based interface representation in the cut grid

cells according to

δαGÑφ :“

„

P

ˆPφ
P ,

ˆ

1´
Pφ
P

˙

;α‹G

˙

´M pα‹Gq



“ O
`

h3
˘

(6.190)

guarantees, that the volume difference is computed based on volume fractions in the

same fluid phase20. Since the correction is performed after the first projection step

with already corrected P , the expression Pφ
P directly represents the volume-of-fluid

based volume fraction αφ “ φ in analogy to the level-set based one, αG, which is not

corrected yet and therefore written as α‹G.

In two space dimensions, two different geometric basic settings can be distinguished21

for determination of the distance dloc:

‚ if two (neighboring) cell nodes are located in the same fluid phase each (super-

script p2q), determined based on the not yet corrected level-set representation,

20 Since the interface representations due to level-set and volume-of-fluid information do not match
exactly, the larger volume fraction due to level-set information can represent the same fluid phase
as the smaller one due to volume-of fluid information and vice versa, if the volume fractions of both
fluid phases are around 1

2
. Definition of the volume-of-fluid based volume fraction via operator

(6.187) as applied in equation (6.190) guarantees, that exactly that volume fraction due to volume-
of-fluid information is chosen, which represents the same fluid phase as the one considered due to
level-set information.

21 Note that in three space dimensions more different settings arise.
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the local distance is

d
p2q
loc :“

δ∆VGÑφ
∆SGÑφ

“
δαGÑφ∆V

∆SGÑφ
“
δαGÑφ
∆SGÑφ

∆S‹G

d
p2q,‹
loc “ O

`

h4
˘

(6.191)

¨

~nΓ

δ∆VGÑφ

∆S‹G

∆Sφ

d
p2q
loc

Fig. 6.27: Level-set correction in two
space dimensions for a vol-
ume increment represented
by a parallelogram

with known reference distance

d
p2q,‹
loc :“

∆V

∆S‹G
“ Ophq (6.192)

and ∆S‹G as the area of the interface

within the grid cell due to uncorrected

level-set information. The average surface

area

∆SGÑφ “
1

2
p∆S‹G `∆Sφq (6.193)

is determined assuming the identity

∆Sφ ” ∆S‹G (6.194)

to hold for ∆Sφ of the interface segment within the grid cell due to volume-of-

fluid information as shown in Fig. 6.27.

‚ if only one cell node is located in another fluid phase than the other cell nodes

as shown in Fig. 6.28, indicated by superscript p1q and again determined based

on the not yet corrected level-set representation, the local signed distance

d
p1q
loc :“ 2 d

p1q,‹
loc

„

b

W
`

α‹G
˘

´

b

W
`

α‹G
˘

´ δαGÑφ



“ O pδαGÑφ hq
(6.195)

with known reference distance

d
p1q,‹
loc :“

∆V

∆S‹G

b

W
`

α‹G
˘

“

?
∆V

c

2
´

1
tan pϑq ` tan pϑq

¯

“ Ophq (6.196)

and operator

W pξq :“ 1´M pξq (6.197)

as well as (smallest) angle ϑ between interface normal vector and grid coordi-
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¨

¨

Γφ

ΓG

d
p1q
loc

δ∆VGÑφ

¨

dφ

∆Sφ

∆Vφ
¨

d‹G

∆S‹G

∆V ‹G
d
p1q
loc

δ∆VGÑφ

∆S‹G

∆Sφ

Fig. 6.28: Level-set correction in two space dimensions for a volume increment represented
by a trapezoid

nate direction x1 results from solving

´

d
p1q
loc

¯2
´ 4 d

p1q,‹
loc

ˆ

d
p1q
loc

b

W
`

α‹G
˘

´ δαGÑφ d
p1q,‹
loc

˙

“ 0 (6.198)

for dp1qloc . The quadratic equation (6.198) in dp1qloc results from equating relation

(6.189) with the area of a trapezoid yielding

¨

˝

∆Sφ
∆V

`

b

W
`

α‹G
˘

d
p1q,‹
loc

˛

‚d
p1q
loc ´ 2 δαGÑφ “ 0 (6.199)

after division by ∆V
2 , while representing the unknown side

∆Sφ “ 2
∆Vφ
dφ

“ 2
1´ P

´

Pφ
P ,

´

1´ Pφ
P

¯

;α‹G

¯

d‹G ´ d
p1q
loc

∆V

“ 2
p1´M pα‹Gq ´ δαGÑφq

2∆V ‹G
∆S‹G

´ d
p1q
loc

∆V

“ 2
p1´M pα‹Gq ´ δαGÑφq

2p1´Mpα‹Gqq∆V
∆S‹G

´ d
p1q
loc

∆V

“
pW pα‹Gq ´ δαGÑφq

d
p1q,‹
loc

b

W
`

α‹G
˘

´
d
p1q
loc
2

∆V (6.200)

of the trapezoid by known quantities and the unknown dp1qloc . The order of mag-

nitude of expression (6.195) is determined with definition of the bounded ratio
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r :“

˜

´
δαGÑφ

W
`

α‹G
˘

¸

“ ´

¨

˝

P
´

Pφ
P ,

´

1´ Pφ
P

¯

;α‹G

¯

´Mpα‹Gq

1´Mpα‹Gq

˛

‚ (6.201)

via series expansion22 of the root

b

W
`

α‹G
˘

´

b

W
`

α‹G
˘

´ δαGÑφ

“

b

W
`

α‹G
˘

˜

1´

d

1´
δαGÑφ

W
`

α‹G
˘

¸

“

b

W
`

α‹G
˘ `

1´
?

1` r
˘

(6.202)

“

b

W
`

α‹G
˘

ˆ

1´

ˆ

1`
1

2
r´

1

8
r2 `O

`

r3
˘

˙˙

“ ´
r

2

b

W
`

α‹G
˘

´

1´
r

4
`O

`

r2
˘

¯

“
1

2

˜

δαGÑφ

W
`

α‹G
˘

¸

b

W
`

α‹G
˘

˜

1`
1

4

˜

δαGÑφ

W
`

α‹G
˘

¸

` ...

¸

“ O pδαGÑφq

for W pα‹Gq ‰ 0. For W pα‹Gq “ 0 the expression

b

W
`

α‹G
˘

´

b

W
`

α‹G
˘

´ δαGÑφ

“ ´
a

´δαGÑφ

“ ´

d

Mpα‹Gq ´ P

ˆPφ
P ,

ˆ

1´
Pφ
P

˙

;α‹G

˙

(6.203)

with

Mpα‹Gq ´ P

ˆPφ
P ,

ˆ

1´
Pφ
P

˙

;α‹G

˙

ą 0 (6.204)

due to already corrected

0 ď P

ˆPφ
P ,

ˆ

1´
Pφ
P

˙

;α‹G

˙

ď 1 (6.205)

is obtained. Therefore equation (6.195) in combination with (6.186) is always

22 The issue can be also proofed without utilization of the series expansion via
a

W pα‹Gq ´

a

W pα‹Gq ´ δαGÑφ “
a

W pα‹Gq

˜

1´

c

1´
δαGÑφ

Wpα‹Gq

¸

“
a

W pα‹Gq
p1´

?
1`rqp1`

?
1`rq

p1`
?

1`rq
“

a

W pα‹Gq
´r

p1`
?

1`rq
“ O prq, since limrÑ0

ˆ

a

W pα‹Gq
´1

p1`
?

1`rq

˙

“ ´

b

Wpα‹Gq
2

ă 8.
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well defined, which can be also seen from the following examples:

– if the level-set based volume fraction has to increase in order to reach

the volume fraction distribution due to volume-of fluid information, then

δαGÑφ ą 0 and dp1qloc ą 0 as in the first and third picture in Fig. 6.26.

If, however, the larger volume fraction is the one in fluid phase p`q as

in the first picture of Fig. 6.26, then the required interface movement

for increasing the larger volume fraction points against the interface nor-

mal vector, which is pointing from p´q to p`q, and the resulting inter-

face normal velocity has to become negative in order to increase the re-

spective volume fraction against the normal vector, which is governed by

P p´1, 1;α‹Gq in equation (6.186).

– as shown above, ifW pα‹Gq “ 0 and the grid cell is labeled as cut cell, the

interface is located in one of the cell nodes or covers an entire cell face.

In this case equation (6.190) yields δαGÑφ ď 0 due to M pα‹Gq “ 1 and

0 ď P

ˆPφ
P ,

ˆ

1´
Pφ
P

˙

;α‹G

˙

ď 1 (6.206)

which keeps dp1qloc ď 0 real-valued and the correction can only decrease the

larger volume fraction or increase the smaller one, respectively, leading

to a positive interface normal correction velocity if the cell is entirely

occupied by fluid phase p`q and to a negative one, if the cell is entirely

occupied by fluid phase p´q. In both case the correction points into the

cell

– in general, the roots in (6.195) always yield real valued results due to

equation (6.206) and

0 ď W pα‹Gq “ 1´M pα‹Gq (6.207a)

W pα‹Gq ´ δαGÑφ “ p1´M pα
‹
Gqq ´ δαGÑφ (6.207b)

“ 1´ P

ˆPφ
P ,

ˆ

1´
Pφ
P

˙

;α‹G

˙

– if there is no correction due to δαGÑφ “ 0, the resulting dp1qloc vanishes

for any 0 ď W pα‹Gq ď
1
2 and a zero correction velocity from (6.186) is

applied.

Although theoretically excluded by the above approach, phase change of grid nodes
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(and with that generation of new cut grid cells) can nevertheless occur due to the

present correction in rare cases, since the explicit interface representation is not

moved directly but the underlying level-set function is transported. This occurs, for

example, if the intersection of grid cell face and interface is already close to the cell

node before correction and the correction velocity moves the interface further in the

direction of the cell node and beyond. If such a case occurs, the correction of the

conserved quantities as described in section 6.5.2 needs to be repeated for a suitable

interface-flow coupling. However, as observed during numerical tests, these events

occur in about 1% of the time steps and repetition of the procedure from 6.5.2 can

therefore be tolerated.

In order to prevent large ratios of neighboring level-set correction velocities – as their

magnitude is independent of neighboring information yet – an additional filter can be

introduced, which transforms the local level-set correction velocities in cut grid cells

to regional ones considering neighboring information, in order to prevent unfavorable

local effects on the shape of a fluidic structure in absence of leading order smoothing

effects, such as surface tension. Development of suitable filters, that still conserve

the masses of the fluid phases, however, is subject of future work. The filter sketched

in the following, for example, requires determination of suitable weights η satisfying

the mass conservation property:

A filtered level-set velocity can be defined as

~v
1

:“ p1´ ηq~v
1

loc ` η ~v
1

reg (6.208)

with local correction velocity given by equation (6.186) and related equations from

above as well as regional correction velocity

~v
1

reg “ V 1

G,reg~nΓ :“
∆V

∆t

¨

˝

řN
R

c“1 pδαGÑφqc
řN
R

c“1

`

∆S‹G
˘

c

˛

‚ ~nΓ (6.209)

with NR as the number of considered neighboring cut cells, including the present

one. The local weight η governs the ratio between local and regional influence and

needs to be determined such that the overall mass conservation property for each fluid

phase is still satisfied and local geometric and flow features are accounted for.
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6.5.4 Combined Correction Strategy for Interface and Conserved Quantities

Different correction strategies can be assembled with the corrective elements de-

scribed in sections 6.5.2 and 6.5.3.2. These strategies are described in this section.

6.5.4.1 Global Interface Correction

A possible correction strategy for adjusting conserved quantities and interface, the

latter globally, is as follows:

1. correct the level-set function – and with that the interface position – globally
uniformly according to section 6.5.3.2 - 1

2. correct the phase indicator – and with that the volume distribution of the differ-

ent fluid phases – followed by all the other conserved quantities based on the

new interface position due to the resulting level-set representation, split into

the following steps:

(a) phase indicator based correction of conserved quantities in grid cells,

which are cut during the current time interval but not anymore at its end

(type (A) cells) via reference correction flux computation as described

in section 6.5.2.4 - 2 and correction flux determination as described in

section 6.5.2.2

(b) phase indicator based correction of conserved quantities in grid cells,

which are cut at the end of the current time interval (type (C) cells) via

reference correction flux determination as described section 6.5.2.4 - 3

and correction flux determination as described in section 6.5.2.2

The advantage of this strategy is, that the interface can leave a cut grid cell during

step 1. The formerly cut grid cell is left behind regular (making it a type (A) cell),

while a neighboring grid cell is cut instead. This property is especially beneficial for

circular interfaces, that are supposed to maintain their circular shape as shown in sec-

tion 6.5.6.1, which, however, represent a limited special subset of geometric settings

occurring in physically relevant applications. Since the interface has obtained its final

position already when the conserved quantities are adjusted, no iterative correction

scheme besides of the two level-set evaluations in correction step 1. is needed.

The drawbacks of this strategy, however, are the following:
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‚ in order to correct the interface globally, allowing the interface to move into

neighboring grid cells

– either the change of the volume, occupied by the different fluid phases

between old and new time level, has to be known a priori, since knowl-

edge of the correct volumes for each fluid phase at the new time level is

necessary, which might not necessarily be given in all relevant flow cases,

– or step 2. has to be performed both before and after step 1.; the first time

in order to provide correct information on the volume distribution, the

second time to adjust the flow to the resulting interface position after step

1., since new cut cells might have been generated. Since each evaluation

of step 2b. requires determination of the solution to a linear problem, this

version is more expensive.

‚ regions of the interface, which did not contribute to the error subject to be cor-

rected, are nevertheless modified by the uniform interface correction, although

the interface might already have its correct position locally. This is the case, if

the interface position is left unchanged locally during the current time interval

– either due to the local geometric properties in combination with the local

velocity, that causes the interface movement, such as, for example, in the

case of straight interface segments in a segment-tangential viscous flow,

– or if the local velocity, which is moving the interface, is zero, and the

interface does not move locally at all.

In both cases the interface should not be moved locally at all, and therefore also

not by the interface correction, unless for resetting interface displacements due

to the uncorrected transport algorithm. However, a globally uniform correction

is changing interface position everywhere, no matter if the correct position is

already obtained locally before the correction or not.

6.5.4.2 Local Interface Correction

This second strategy is similar to the one presented in [152]:

1. perform step 2. from section 6.5.4.1

2. correct the level-set function - and with that the interface position - locally as

described in section 6.5.3.2 - 2
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The advantages of this strategy are the following:

‚ the volumes, occupied by the different fluid phases at the end of the time in-

terval, do not have to be known in advance, since interface correction is done

after correction of the phase indicator and the conserved quantities, and the

resulting final fluid distribution is given after the conservative propagation and

conservative correction of both divergence errors and flux weighting errors via

phase indicator values.

‚ locally vanishing velocity magnitude, leading to no production of local dis-

cretization errors, requires no correction locally, which can only be achieved

by application of local correction velocities. Application of the latter is also the

cheapest option for the ultimate strategy of including all level-set corrections

– both the ones affecting interface position (section 6.5.3.2) and gradient mag-

nitude (section 6.5.3.1) – into the predictor step and evaluating the level-set

transport algorithm only once per time step.

The drawbacks of this strategy are the following:

‚ the ratio of the magnitudes of neighboring interface normal correction veloci-

ties in cut grid cells is not bounded, as the size of each correction velocity is

obtained due to local geometric information only, based on the locally required

volume modification. Therefore, in absence of leading order smoothing ef-

fects, such as surface tension, and in case of recurring geometric patterns with

large neighboring correction velocity ratios, the shape of the fluidic structure

can be affected unfavorably, which gives rise to development of regional filters

as sketched in section 6.5.3.2 - 2 in future work.

‚ the strength of the local level-set correction can not be utilized completely,

since the volume redistribution with reference correction flux determination

according to section 6.5.2.4 - 3, to which the interface position is adjusted, rep-

resents a cut cell global feature, which can yield volume corrections in cut grid

cells, in which the local flow velocity vanishes. This effect is inherent to the

setting of the present dimensionally unsplit method and can only be avoided

by either including an additional constraint due to the local velocity magni-

tude (for example via the filter weights as proposed towards the end of section

6.5.3.2 - 2), or application of a dimensionally split method in the predictor step,

in which locally produced errors can be corrected purely local at the respective
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grid cell face, without requiring a global redistribution procedure23. The latter

is necessary in the present approach, since in a dimensionally unsplit method

the sources of local flux errors can not be traced back completely, and therefore

these errors can not be corrected exactly where they have been generated.

The differences and advantages compared to [152] are the following:

‚ In the present numerical method, predictor fluxes, which both suffer from di-

vergence and flux weighting related errors, are referred to fluxes of P for all

conserved quantities according to sections 5.1.1 and 6.3.1. Just as the fluxes

for correcting divergence errors in the first projection step, described in section

5.2.1 and 6.4, are also referred to correction fluxes for P for a consistent diver-

gence error correction, correction fluxes for flux weighting related errors are

referred to fluxes of P – or Pφ, respectively – for consistency reasons as well.

‚ While step 1. is split into sub-steps (a) and (b), specified in section 6.5.4.1

in step 2., this step is done at once in [152] by combining both sub-steps.

Splitting of step 1. into the sub-steps (a) and (b) as listed above, however,

has the advantage, that both the solvability condition for the resulting elliptic

problem in sub-step (b) is given by default, and the solution in sub-step (a) is

not dependent on the solution accuracy of an elliptic solver for the occuring

linear system, but is exact regarding volume fractions due to the knowledge of

the exact target values.

‚ In [152] the weights for target value determination – called δ there – are de-

termined purely based on volume-of-fluid type information based on the maxi-

mum possible local change and the question, whether the values are physically

reasonable or not in order to avoid smearing. Thus, volume-of-fluid infor-

mation is used as fixed reference for the level-set and the resulting interface

correction. In contrast, in the present method the corresponding weights κ
and resulting corrections contain information on the level-set based geometric

setting as reference in addition, since the level-set interface representation is
23 While beyond the scope of this work, it should be noted, that using a dimensionally split method

also requires non-straight forward procedures in case of geometric settings as sketched in Fig. 7.2
and Fig. 7.4 in section 7.2. In such cases, despite of the dimensional splitting, corrections in
all coordinate directions can be required in each of the single one-dimensional sub-steps. As in
the present method, even geometric cases can be constructed, in which there is no receiver cell
left for correction in the corresponding coordinate direction due to truncation of the geometric
representation and the accompanying limitation to one intersection per grid cell face, which gives
rise to effectively grid diagonal correction to nodal neighbor cells, which share no grid cell face.
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considered to represent the geometic setting more accurately. Utilizing the re-

sulting implicit phase indicator based geometry distribution, the level-set inter-

face representation can be corrected such that a stable conservative continuous

interface representation is obtained in the end.

6.5.4.3 Global-Local-Hybrid Interface Correction

In principle, this strategy is the same as in the previous section 6.5.4.2. However, step

2., involving local single stage determination of the level-set correction velocity based

on geometric considerations as described in 6.5.3.2 - 2, is replaced by a two-stage

correction velocity determination similar to the one in section 6.5.3.2 - 1, in which

the second stage of final correction velocity determination by a globally uniform

approach is replaced by a local volume difference depending scaling for obtaining

the final local level-set correction velocity. This results in the following procedure:

1. perform step 2. from section 6.5.4.1

2. correct the level-set involving a hybrid global-local correction velocity deter-

mination by

(a) determination of the local volume difference in each cut grid cell as de-

scribed in section 6.5.3.2 - 2 by equation (6.190)

(b) performing the global trial step, involving a small globally uniform trial

velocity, described in section 6.5.3.2 - 1 in steps 3. to 6.

(c) determination of the still remaining local volume difference ∆δαGÑφ ∆V

as in step 2a., however, with the pre-corrected volume fraction α(trial)
G ap-

plied to equation (6.190) instead of the uncorrected one α‹G

(d) determination of the correction velocity (6.185) for the second applica-

tion to (6.157), however, based on local relative volume differences

δαGÑφ ´ δαtrial

δαtrial
“

∆δαGÑφ
δαGÑφ ´∆δαGÑφ

(6.210)

in each cut grid cell

Benefits and drawbacks are as described in the previous section 6.5.4.2.
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However, replacement of step 2. by the one described above has the additional ad-
vantage, that the level-set correction velocity, which has to be applied for a pseudo

correction time increment, is determined with the same accuracy in all cut grid cells,

independent of the individual geometric setting of the interface section in the cor-

responding cut grid cell during the time interval. An additional drawback is the

increased cost of performing two pseudo level-set propagation steps for level-set in-

terface correction, and an increased risk of generating new cut cells during the trial

step, requiring step 1. to be performed at the end again, leading to further cost in-

crease.

6.5.5 Final Level-Set Correction Strategy

In terms of efficiency, the pure local level-set correction approach 6.5.4.2 is desirable,

as it allows for a shift of the level-set correction to the interface predictor of the

subsequent time step by adding the local level-set correction velocity, determined

towards the end of the current time step, to the level-set advection velocity of the

next time step during the first level-set time integration stage of the involved Runge-

Kutta time integrator as described in section 6.1.1, yielding

Gt `
´

~v ` ~v
1pn´ 1

2
q
¯

¨∇G “ 9qpGq (6.211)

with level-set correction velocity ~v
1pn´ 1

2
q from the respective preceding time step.

If the locally determined level-set correction velocity is used, the level-set transport

algorithm has to be evaluated only once throughout each entire time step in the pre-

dictor step. If the global-local-hybrid level-set correction velocity is used, a second

evaluation of the level-set algorithm for determination of the trial update as basis

for the local corrections of the level-set correction velocity remains in the corrector

step. Determination of the level-set correction velocity ~v
1pn´ 1

2
q, computed through-

out the preceding time step and only non-zero in cut grid cells in the first stage during

time integration, is given in section 6.5.3.2 - 2 and the approximation to the source

term, penalizing deviations from the signed distance function, is described in section

6.5.3.1.
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6.5.6 Results and Open Issues

In this section, effects of the application of the procedure described in sections 6.5.2

and 6.5.3 are described, restricting the set of equations to the explicitly treated ad-

vective part from section 6.3.1 only due to the lack of a not yet available corrector for

sharp moving interfaces. If not stated otherwise, level-set correction strategy 6.5.4.2

with level-set gradient correction 6.5.3.1 and both u :“ 1 and v̌ “ 1 m
s is used.

6.5.6.1 Advection of a Circle

In Fig. 6.29, taken from [182], two-dimensional horizontal advection of a circular

bubble of density ρ̂p`q “ 1 and radius r̂ :“ 0.25 within a fluid of density ρ̂p´q “ 1000

is shown, initially centered within a r0, 1sˆr0, 1s domain on a Cartesian grid, consist-

ing of 128ˆ128 grid cells, both with and without the correction procedures described

in sections 6.5.2 and 6.5.3. With periodic boundary conditions in flow direction and

slip walls on top and bottom, 1024 time steps have been computed, corresponding to

4 revolutions with velocity ~̂vp~̂x, t̂q “ p1, 0q at CFL-number CA “ 0.5. The illustra-

tions of the phase indicator φ to the left are composed of two semi-transparent plots

of the two phase indicator distributions φ
p`q

“ 1 and φ
p´q

“ 0, the amplitude of

each limited to a narrow value range φ
p˘q
˘ ε with small ε around the target values

0 and 1. The bottom left picture shows the result applying the present correction

procedure with the darker grey area representing φ
p´q
“ 0 and lighter grey area rep-

resenting φ
p`q
“ 1, while the top left illustration shows the result without correction,

with the initial interface (which is located at the same position) plotted for guidance.

The black area indicates the region in which φ
p´q

ă 0 and the white area represents

the region in which φ
p´q

ą 1. Intermediate grey, deviating from the two grey colors

representing 0 and 1, indicate intermediate values 0 ă φ
p`q
, φ
p´q

ă 1. Thus, while

the interface is smeared without the present correction procedure with a wake of off-

target-values developing behind the front although sharp flux splitting is performed

at cut grid cell faces, the present correction procedure is able to keep the flow sharply

separated by the interface with intermediate integral averages in cut grid cells only.

The right plot of Fig. 6.29 shows the relative error of the "volume" of the circular

bubble (which is, in fact, the area within the circle) with respect to the initial value,

both with and without interface correction. While without correction the bubble vol-

ume rapidly deviates from the initial value, which is expected to be maintained by an

accurate method, as shown by the dotted line, application of the present correction
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Fig. 6.29: Advection of a circle; Left: Volume fraction φ
p˘q

after 1024 time steps on a Carte-
sian grid of 128x128 cells, constant homogeneous velocity ~̂vp~̂x, t̂q “ p1, 0q from
left to right; top: without adjustment, bottom: synchronized; black/white areas:
over-/undershoots; dashed line: iso-contour of φp`q “ 1; dotted line: iso-contour
of φp´q “ 0; thick continuous line: level-set zero level Γ; thin continuous lines:
patch boundaries, each patch computed on another processor. Right: relative error
of circle area ("bubble volume") based on level-set information (α) w.r.t. initial data
over time; dotted line: without adjustment, solid line: synchronized; (from [182]
(https://dx.doi.org/10.1007/978-3-319-05684-5_45) with per-
mission of Springer)

scheme keeps the bubble volume stable, oscillating around it’s target value at high

frequency and amplitudes which are smaller by orders of magnitudes. The regular

oscillation in the zoomed right center extract is due to the CFL-number CA “ 0.5,

which leads to an alternating repeating set of cut cell configurations contributing to

the volume computation. For arbitrary CFL-numbers CA ă 0.5 arbitrary oscillation

has to be expected. For obtaining the results in Fig. 6.29 level-set correction velocity

determination strategy 6.5.3.2 - 2 has been applied as given in [182]. Fig. 6.30 shows

the time series of relative errors of the interface-flow coupling (in terms of the ref-

erence phase mass based on the level-set interface representation with respect to its

initial value) for the different strategies given in section 6.5.4 with choice (6.148) for

redistribution of conserved quantities among cut grid cells. The comparison, how-

ever, is actually not fair, since the global approach 6.5.4.1, shown in the top plot of

Fig. 6.30, uses two level-set advection steps for correction, both with globally uni-

https://dx.doi.org/10.1007/978-3-319-05684-5_45
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Fig. 6.30: Relative error of reference phase mass due to interface-flow coupling via different
approaches: top: global two-stage interface correction according to section 6.5.4.1;
center: local single-stage interface correction according to section 6.5.4.2; bottom:
hybrid global-local two-stage interface correction according to section 6.5.4.3

form interface normal correction velocity at known target volume, corresponding to

the first two steps of a fix point iteration, and afterwards the conserved quantities

are adjusted to the interface which already encloses the correct volume. The hybrid

global-local approach 6.5.4.3 also performs two corrective level-set advection steps,

the first one with the globally uniform interface normal trial velocity and the second

one with locally adjusted correction velocities, which can be seen in the bottom plot

of Fig. 6.30. However, in this approach the conserved quantities are already cor-

rected before the interface is adjusted to the flow. The local approach 6.5.4.2, shown

in the center plot of Fig. 6.30, only performs one level-set correction step with lo-

cal correction velocities, determined as described in section 6.5.3.2 - 2 with already
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corrected flow quantities. While the latter is the least accurate (and least expensive)

approach, it nevertheless converges second order accurate as shown in Tab. 6.1, in

which the convergence order

p` :“

ln

¨

˝

ˇ

ˇ

ˇ
∆E

p`q
ρ

ˇ

ˇ

ˇ

`´1
ˇ

ˇ

ˇ
∆E

p`q
ρ

ˇ

ˇ

ˇ

`

˛

‚

ln
´

C`´1

C`

¯ (6.212)

of the local interface-flow coupling is given. In (6.212)
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with
ˇ

ˇ

ˇ

Ą∆E
p`q

ρ

ˇ

ˇ

ˇ
as the magnitude of the temporal average

Ą∆E
p`q

ρ :“
1

t̂1 ´ t̂0

ˆ t̂1

t̂0

Em̂p`q
`

t̂
˘

dt̂ (6.214)

of the relative error

Em̂p`q
`

t̂
˘

:“

`

m̂p`qpt̂q ´ m̂p`qpt̂0q
˘

m̂p`qpt̂0q
(6.215)

of the level-set based reference fluid phase mass

m̂p`qpt̂q :“

ˆ
Ω̂
p`q

Ĝ
pt̂q
ρ̂p~̂x, t̂q dV̂ (6.216)

with respect to its initial value at t̂0 “ 0, and
ˇ

ˇ

ˇ

´

∆E
p`q
ρ

¯

max

ˇ

ˇ

ˇ
as the magnitude of the

maximum occurring deviation

´

∆Ep`qρ

¯

max
:“ max

t̂

`

Em̂p`q
`

t̂
˘˘

(6.217)

during rt̂0, t̂1s for the example of the advected circle with velocity ~̂v “ p0.2, 0q and

t̂1 “ 5. As before, the density ratio is chosen to be ρ̂p´q{ρ̂p`q “ 1000. Second order

accuracy is obtained for both error measures and the mass within the circle is kept

stable over time within this range of accuracy in terms of the level-set, while the fluid

phase masses are conserved up to machine accuracy in terms of the volume-of-fluid.

An additional convergence study on a sequence of grids of different resolutions for
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the density, representing the scalar quantities in the system, further revealed (aver-

age) convergence orders of 2.027 in the L1-norm, 1.506 in the L2-norm and 0.759 in

the L8-norm at density ratio of 1:1000, CFL-number of CA “ 0.4 and level-set cor-

rection approach 6.5.4.3. Due to the locally only first order accurate time integrator

actually not more than a value around 1 has to be expected in the L8-norm. Numer-

ical solutions have been obtained on two-dimensional grids of 64 ˆ 64, 128 ˆ 128

and 256 ˆ 256 grid cells and the respective error norms have been determined by

comparison with a reference solution on a grid consisting of 4096ˆ 4096 grid cells.

The reference solution has been chosen to be the discrete initial condition on the lat-

ter fine grid, since it represents the discrete exact solution after full revolutions of the

circular bubble in a periodic domain. One revolution on a r0, 1s ˆ r0, 1s domain with

velocity ~̂v “ p1, 0q and final time T̂ “ 1 has been analyzed.

Tab. 6.1: Convergence order p for interface-flow coupling of an advected circle:
ˇ

ˇ

ˇ

Ą∆E
p`q

ρ

ˇ

ˇ

ˇ

represents the absolute value of the temporal average of the relative error of the
reference phase mass with respect to its initial value

reference phase mass error

` 1
C`

ˇ

ˇ

ˇ

ˇ

Ą∆E
p`q

ρ

ˇ

ˇ

ˇ

ˇ

`

p`

ˇ

ˇ

ˇ

´

∆E
p`q
ρ

¯

max

ˇ

ˇ

ˇ

`
p`

10´5 - 10´5 -
0 64 3.0851 - 8.2018 -
1 96 1.3617 2.017 3.1831 2.334
2 128 0.7357 2.140 1.6152 2.358
3 196 0.3479 1.847 0.7381 1.931
4 256 0.1779 2.331 0.4012 2.119
5 384 0.0784 2.021 0.1342 2.700

Fig. 6.31 on page 238 shows the maximum positive and the maximum negative

local relative error of the magnitude of the level-set gradient with respect to its initial

value of |∇G| “ 1 on the two-dimensional Cartesian grid consisting of 96ˆ 96 grid

cells, applying the level-set penalization presented in section 6.5.3.1 to the advection

of a circle in a constant homogeneous velocity field in a periodic domain for the

first 3 revolutions. Since there is no shear in the velocity field, the penalization is

only due to the interface normal velocity component in order to penalize different

local amplitudes of the numerical diffusion of the underlying numerical method. Fig.
6.33 on page 239 shows the corresponding plot without the present level-set gradient

correction procedure.
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Fig. 6.31: Relative error of the magnitude of the level-set gradient with respect to its initial
value of |∇G| “ 1 due to level-set gradient correction for 3 revolutions of an
advected circle at velocity ~̂v “ p0.2, 0q on a Cartesian grid of 96ˆ 96 grid cells in
a periodic domain: grey: maximum positive deviation; black: maximum negative
deviation; solid lines: average deviations

Fig. 6.32: Magnitude of the level-set gradi-
ent at t̂ “ 5 after one revolution
of a circle in a constant homoge-
neous velocity field ~v “ p0.2, 0q
on a Cartesian grid of 96ˆ 96 grid
cells in a periodic r0, 1s ˆ r0, 1s
domain, applying only level-set
re-initialization in interface cells
without penalization in the rest of
the narrow band

Note the different scalings of the vertical

axes in Fig. 6.31 and Fig. 6.33. The

magnitude of the deviation of the level-set

gradient from |∇G| “ 1 is significantly

reduced and stabilized over time by the

present approach.

Fig. 6.34 on page 240 shows the cor-

responding distribution of the magnitude

of the level-set gradient after two revolu-

tions of the circle at t̂ “ 10 on the grid

of 96 ˆ 96 cells, both without (left) and

with (right) the present level-set gradient

correction procedure applied. Not only

the magnitudes of the largest deviations

are reduced, but also the distribution of

the deviations is much more homogenous

after application of the present approach,
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Fig. 6.33: Relative error of the magnitude of the level-set gradient with respect to its initial
value of |∇G| “ 1 without level-set gradient correction for 3 revolutions of an
advected circle at velocity ~̂v “ p0.2, 0q on a Cartesian grid of 96ˆ 96 grid cells in
a periodic domain: grey: maximum positive deviation; black: maximum negative
deviation; solid lines: average deviations

which is crucial for maintaining the shape of the fluidic structure applying the local

interface correction for mass conservation.

In Fig. 6.32 on the previous page the magnitudes of the level-set gradient after only

one revolution of an advected circle in a constant homogeneous velocity field in a

periodic domain are displayed, omitting the level-set penalization in the narrow band

beyond the interface cells, but keeping the re-initialization in interface cells only in

order to artificially produce a field of level-set gradient magnitudes within the nar-

row band, which is non-smooth with large local deviations. It can be seen due to the

deteriorated interface in Fig. 6.32 after only one revolution, that is crucial to keep

the deviations in the magnitude of the level-set gradient small and their distribution

within the narrow band smooth in order to maintain the shape of the fluidic struc-

ture in combination with the local mass conservation governed interface correction

according to 6.5.3.2.

Level-set gradient correction according to section 6.5.3.1 on the one hand, and level-

set gradient correction via application of a local level-set correction velocity in cut

grid cells only according to sections 6.5.3.2 - 1 and 6.5.3.2 - 2 on the other hand,

however, can act against each other, as both corrections modify the local level-set
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Fig. 6.34: Magnitude of the level-set gradient at t̂ “ 10 after two revolutions of a circle in a
constant homogeneous velocity field ~v “ p0.2, 0q on a Cartesian grid of 96ˆ96 grid
cells in a periodic r0, 1s ˆ r0, 1s domain: left: without level-set gradient correction,
right: with level-set gradient correction

gradient. Improvement is expected by extending the level-set correction velocities

into the entire narrow band (which is subject of future work), instead of using only

non-zero correction velocities in cut grid cells, since in case of a smooth correction

velocity field in the entire narrow band the effect of the interface correction due to

the mass constraint on the level-set gradient is much smaller around the interface,

and level-set gradient manipulation is primarily governed by the level-set gradient

correction procedure 6.5.3.1. Further, in absence of leading order interface smoothing

effects, such as surface tension, the local level-set correction velocity approach can

lead to local unfavorable shape deformations in cases, in which the same local level-

set correction velocity distribution is recurring permanently. This can be improved by

smoothing the local level-set correction velocities with information from neighboring

cut grid cells, making the correction regional instead of local or global, avoiding large

local differences in local neighboring level-set correction velocities. Finding suitable

smoothing filters, which maintain the mass conservation property of each fluid phase

while improving shape constraints, is also subject of future work. Another topic of

future investigations is the question whether it is worth to add an additional diffusive

term as done in [107] to the non-iterative correction of the level-set equation solving

G
1

t ` ~v
1

G ¨∇G “ ∇ ¨
ˆ„

1´
1

|∇G|



∇G
˙

` 9q
1

pGq (6.218)

in order to improve smoothness of the distribution of the level-set gradient magnitude.
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6.5.6.2 Rider-Kothe-Vortex

Already during advection of a circle in a constant homogeneous velocity field, as

described in the previous section 6.5.6.1, various cut cell scenarios occur, while the

circular interface is traveling through the grid. Nevertheless, the present advection

algorithm with both level-set and level-set gradient correction is tested in this section

in a less trivial flow situation, similar to the one given in [146]:

An initially circular structure of radius r̂˝ “ 0.125, initially located at

~̂xp0q “

˜

0.50

0.75

¸

(6.219)

within a square domain of size24 r0, 1.024s ˆ r0, 1.024s with periodic boundary con-

ditions, starts moving within a vortex with velocity field

~̂v “ 4 sin pπx̂1q sin pπx̂2q

˜

´ sin pπx̂1q cos pπx̂2q

sin pπx̂2q cos pπx̂1q

¸

(6.220)

that vanishes at the domain boundaries and satisfies ∇̂ ¨ ~̂v “ 0. The density is set to

ρ̂ :“

#

1 @ r̂ ą 1

10´4 @ r̂ ď 1
(6.221)

with relative radius r̂ with respect to r̂˝ as defined in (5.141) with (5.142) and (5.143)

on page 114. The choice (6.221) corresponds to a density ratio that is about ten times

larger than the one between water and air. Since gravity and friction are neglected

(ĝ “ 0, µ̂ “ 0) and the divergence-free velocity field is kept fix over time, the

pressure p̂
1

is constant in both space and time and can be set to zero. Further, P̂
remains at its initial value and the following results on a grid of 256ˆ 256 grid cells

reveal the pure interplay of the volume fractions due to the level-set and volume-of-

fluid based interface representations. The relevant reference quantities are chosen to

be

ľ “ 1 m, ť “ 1 s, ~̌v “ 1
m

s
, ρ̌ “ 104 kg

m3
(6.222)

for this test case. Fig. 6.35 shows the initial setting on the left hand side and the state

after 300 explicit time steps of size ∆t̂ “ 9.6009 ¨ 10´4 at t̂ “ 0.288027 on the right.

It can be seen, that despite of the large ratio of densities the flow remains separated
24 The value of 1.024 is chosen in order to obtain simple values for the grid spacing, if the number of

grid cells per coordinate direction is a power of 2.
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Fig. 6.35: Initial density (left) and density after 300 explicit time steps (right) for the Rider-
Kothe vortex example in a fixed velocity field (grey arrows): dark grey corresponds
to ρ̂ “ 1, white corresponds to ρ̂ “ 10´4

sharply. This is emphasized by Fig. 6.36, in which the density is plotted25 each.

On the left hand side the allowable values are limited to the range 9.99999 ¨ 10´5 ă

ρ̂ ă 1.00001 ¨ 10´4 and on the right hand side to the range 9.99999 ¨ 10´1 ă ρ̂ ă

1.00001. If these bounding values were reached or exceeded, pure black regions

– in case of 1.00001 ¨ 10´4 (left) and 1.00001 (right) – or pure white ones – in

case of 9.99999 ¨ 10´5 (left) and 9.99999 ¨ 10´1 (right) – would be present in the

plots. However, since the individual fluid phases carry a constant grey value each,

the constant initial values of ρ̂ “ 10´4 within the (initial) circle and ρ̂ “ 1 beyond

the (initial) circle are maintained everywhere within the respective fluid phase. This

is confirmed by the time series plots of relative errors with respect to the respective

initial value of global data from Fig. 6.37 (from top to bottom) for

‚ global mass

‚ mass of the reference phase p`q (interior of the circle), based on the geometry

given by the level-set zero level

‚ global volume-of-fluid variable Pφ

‚ volume-of-fluid variable Pφp`q in reference phase p`q

‚ circle area, based on volume-of-fluid information in reference phase p`q ac-

cording to the interface as given by the level-set zero level

25 The left pictures in Fig. 6.29 on page 234 are composed of two semi-transparent pictures corre-
sponding to the two plots in Fig. 6.35 each.
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Fig. 6.36: Density after 300 explicit time steps for the Rider-Kothe vortex example: left: il-
lustration limited to (white) 9.99999 ¨ 10´5 ă ρ̂ ă 1.00001 ¨ 10´4 (black) ; right:
illustration limited to (white) 9.99999 ¨ 10´1 ă ρ̂ ă 1.00001 (black); both fluid
phases are kept sharp, since neither white nor black as boundaries of the narrow
value ranges specified occur anywhere in the plots

The relative errors in all but the second plot are in the order of magnitude of ma-

chine accuracy, emphasized by the discrete levels of occuring values. This actually

indicates, that only the last significant digit of the relative error is non-zero due to

round-off errors. While zero is given by the dashed horizontal line in each plot, the

solid horizontal line represents the average deviation from zero over time with corre-

sponding value given in the header of each plot. The bottom plot shows the relative

error of the circle area based on volume-of-fluid information, however, obtained in all

regular cells within the circle and the portion within the circle in all cells which are

cut by the interface due to the zero level of the level-set function. The fact, that this

quantity is at machine accuracy as well, indicates, that there is no deviation between

cells cut by the level-set zero level and cells carrying intermediate volume-of-fluid

values. Thus, the interface representations due to level-set and volume-of-fluid can

only deviate up to the magnitude of the grid spacing in each time step and the two

interface representations are coupled well. A measure for this coupling is given in

Fig. 6.37 in the second plot from top, which represents the relative error of the

reference phase mass with respect to its initial value, obtained from volume-of-fluid

information but based on the volume fractions α given by the level-set based interface

representation. The average deviation is due to the different natures of level-set and

volume-of-fluid based interface representation and the fact, that they will not match

exactly. However, successful coupling of these two interface representations and, as

a result, successful coupling of the level-set based interface representation to the fluid
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Fig. 6.37: Time series of relative errors of global data with respect to its initial data for the
initial phase (first 300 explicit time steps) of the Rider-Kothe vortex example; dots:
respective global datum at specific point in time; solid line: average deviation from
the exact value (zero); dashed line: zero
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flow, is shown due to the fact that the average deviation from zero over time is much

smaller (Op10´6q) than the individual contributions to this deviation (Op10´5q).

Finally, Fig. 6.38 is dedicated to the level-set penalization for keeping the local

magnitude of the gradient of the level-set function |∇G| from deviating rapidly from

its target value of 1. The first and second plot on the left hand side show |∇G| in

an intermediate state after 100 explicit time steps (t̂ “ 0.096009) within the narrow

band around the interface without level-set penalization, in the top picture limited to

the value range 0.5 ă |∇G| ă 1.5, in the second picture without lower and upper

bounds. It can be seen, that |∇G| approaches both values close to zero and values

that are much larger than one (black in the second picture on the left) very rapidly

without penalization. While |∇G| exceeds the value of 1.5 in all areas colored black

in the top left picture, it has fallen below a value of 0.5 in the areas colored white. In

contrast, the top right picture shows the same situation within the same value range

applying the level-set penalization/re-initialization procedure: Within the core narrow

band the values for |∇G| remain close to 1 (medium grey), which can be seen more

clearly in the other pictures on the right, in which the plotted allowable value range

is limited more restrictively: Only few values are beyond values of 0.9 and 1.1 and

significant local deviation are only present within a small range around 1. The lower

left plot in Fig. 6.38 shows the magnitude of the local interface normal strain rate

tensor component |~nΓ ¨E ¨ ~nΓ| withE as given in equation (3.32) on page 21. It can

be seen – comparing to the lower right plot of remaining deviations in |∇G| – that the

distribution of the required penalization matches the distribution of the magnitude of

the interface normal strain rate tensor component, which has already been used for

the penalization applied as given in section 6.5.3.1.

6.5.6.3 Rider-Kothe-Deformation

In principle the setting of this example, also proposed in [146], is the one from the

previous section 6.5.6.2. However, instead of the velocity field specified by equation

(6.220), a fix divergence-free velocity field

~̂v “ 2

˜

sin
`

4π
`

x̂1 `
1
2

˘˘

sin
`

4π
`

x̂2 `
1
2

˘˘

cos
`

4π
`

x̂1 `
1
2

˘˘

cos
`

4π
`

x̂2 `
1
2

˘˘

¸

(6.223)

is used, which rapidly causes severe deformations as shown in Fig. 6.39. This results

in very steep level-set gradients, if not penalized, which cause inappropriate interface

deformation and finally failure of the numerical method. The corresponding plots to
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Fig. 6.38: Level-set gradient magnitude after 100 explicit time steps for the Rider-Kothe
vortex example: left: top: level-set gradient without penalization, limited to
0.5 ă |∇G| ă 1.5; center: level-set gradient without penalization; bottom: in-
terface normal component of the strain rate tensor E within the narrow band N;
right: level-set gradient with penalization of level-set gradient deviations from
|∇G| “ 1: top: illustration limited to 0.5 ă |∇G| ă 1.5, center: illustration
limited to 0.9 ă |∇G| ă 1.1, bottom: illustration limited to 0.98 ă |∇G| ă 1.02
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Fig. 6.39: Circle in a deforming velocity field: density of ρ̂ “ 10´4 (white), separated by the
interface (solid black line) from the surrounding at density ρ̂ “ 1 (dark grey) on a
Cartesian grid of 256 ˆ 256 grid cells at t̂ P pp0, 0.02q, p0.05, 0.15q, p0.20, 0.25qq;
the upper left plot of the initial condition additionally shows the two-dimensional
vorticity (dashed lines), the velocity vectors (grey arrows) and the velocity magni-
tude (grey shades) with darker areas representing larger velocity magnitudes
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the ones in Fig. 6.37 are given in Fig. 6.40 with the same results as in section 6.5.6.2:

Despite of the large density ratio, the rapid deformations and the locally very thin

filaments in the fluidic structure, the relative errors of global mass, the volume-of-

fluid quantity both globally and within the reference phase, and the reference phase

volume, determined with volume-of-fluid information based on cut cells as given

by the level-set geometry, only deviate by the magnitude of machine accuracy from

zero and the fluid phases are kept sharply separated. In Fig. 6.41 the corresponding

plots for the magnitudes of the level-set gradient within bounds 0.5 ă |∇G| ă 1.5,

the interface normal level-set penalty function and both the interface normal strain

rate tensor component and the interface normal velocity component are given for

t̂ “ 0.15, the last two governing the local penalization strength. The choice (6.160g)

and (6.160h), however, does not seem to be universally optimal for all test cases.

While a universal set of parameters remains to be determined, the choice

CE :“ 1m
maxN E

maxNV
CV (6.224)

with E and V as given in (6.160e) and (6.160f) is applicable to a wider range of test

problems, however, with less optiomal results, depending on the given setting. Fig.
6.42 shows the same picture as in the upper left plot of figure Fig. 6.41, however, both

with (6.224) instead of (6.160g) and limited to the range 0.8 ă |∇G| ă 1.2 in order

to emphasize the differences. The less black and white regions occur, the smoother

the distribution of the magnitude of the level-set gradient is, and the smaller the am-

plitude of the deviation from |∇G| “ 1 is. On the chosen grid the thin filaments in

Fig. 6.39, Fig. 6.41 and Fig. 6.42 are not well resolved. Therefore, on the one hand,

recovery of ghost fluid data according to section 6.3.3.3 depends on less surround-

ing information, influencing both accuracy and stability of the method. On the other

hand, the magnitude of the level-set gradient has decreased after the coalescence of

two initially different narrow band regions. In the later case, level-set re-initialization

as used in the present approach is not sufficient to keep the level-set gradient close to

|∇G| “ 1 and additional actions need to be taken in future work, involving adaptive

mesh refinement and/or another level-set re-initialization procedure once different

narrow band sections collide, in order to provide a reset starting point for the present

algorithms to work properly. These numerical issues, responsible for the locally re-

duced discrete level-set gradient magnitude as indicated by white regions within the

narrow band in Fig. 6.42, explain the differences in the results in Fig. 6.39 from the

ones given in [146] due to a discrete underestimation of the expression V 1

G|∇G|.
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Fig. 6.40: Time series of relative errors of global data with respect to its initial data for 0 ď
t̂ ď 0.25 of the Rider-Kothe deformation example; dots: respective global datum
at specific point in time; solid line: average deviation from the exact value (zero);
dashed line: zero
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Fig. 6.41: Level-set gradient correction for the Rider-Kothe-deformation at t̂ “ 0.15: top
left: magnitude of the level-set gradient. Shown values limited to a range of 0.5 ă
|∇G| ă 1.5; top right: penalty function P; bottom left: magnitude of interface
normal strain rate tensor component |~nΓ ¨ E ¨ ~nΓ|; bottom right: magnitude of
interface normal velocity component |~v ¨ ~nΓ|

Fig. 6.42: Level-set gradient correction for the Rider-Kothe-deformation test problem at t̂ “
0.15 with different parameters: magnitude of the level-set gradient with values lim-
ited to a range of 0.8 ă |∇G| ă 1.2, left: applying (6.160g) as proposed in [114];
right: applying (6.224)
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6.6 Discretization of the Surface Stress Tensor

Surface tension as a material interface property due to molecular forces only acts

along the interface. While its interface normal effective net impact balances26 with

the discontinuities of pressure and viscous stresses across the interface Γ and drives

the interface towards a state of minimal energy (and, thus, minimal surface area), its

interface tangential effect causes the fluid to move along the surface gradient of the

surface tension coefficient due to an induced distorsion of the surrounding velocity

field via friction.

Besides the discrete interface representation as discussed in section 6.1, proper dis-

cretization of surface tension and pressure forces within the conservation law of mo-

mentum are key features of a numerical method for simulation of immiscible two-

phase flow. A subtle balance is mandatory in order to keep effects of spurious currents

in the vicinity of the fluidic interface Γ small, and the numerical method accurate and

stable. As shown in [55, 127], it is required for a suitable balance, that both pressure

gradient and surface tension are treated as a single unit in each step of the numerical

scheme. This implies discretization of both contributions at the same location in a

compatible fashion.

In Finite Volume schemes, the pressure gradient is usually discretized as a space-

time average pressure integral at grid cell faces as shown in section 5.1.4.1. Thus, the

influence of surface tension needs to be discretized at grid cell faces as well, in order

to allow for a suitable balance between pressure and surface tension.

ε
ε

Γ

p1p´q

p1p`q

Fig. 6.43: Transition zone B of thickness 2ε around
the interface Γ

While sharp conservative well-

balanced representations are cur-

rently under development, in this

section a continuous approxima-

tion of the surface stress tensor as

given in section 3.2.4, only non-

zero within a thin transition re-

gion B of thickness 2ε around Γ as

sketched in Fig. 6.43, is presented,

leading to a continuous approxima-

tion of the interfacial pressure jump

within B.
26 See, for example, equation (3.132).
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Most approaches for treating surface tension as a continuous force within B (e.g.

[167, 164, 150, 176, 47, 1]) trace back to the continuous surface force (CSF, [29])

method, which discretizes the force due to surface tension as a momentum source

term in grid cell centers, involving a cosine-based approximation of the occurring

Dirac delta distribution and relying on a volume-of-fluid (VOF) based interface rep-

resentation. A fully conservative two-phase flow method, however, requires a conser-

vative and locally well balanced discretization of all terms contributing to the conser-

vation law, including forces due to surface tension, arising from arbitrarily complex

surfaces and variable surface tension coefficients in both space and time.

While a suitable balance with the pressure and both stable and conservative treatment

within the discrete momentum balance for density ratios ρp´q

ρp`q
‰ 1 is subject of future

work, such a conservative discretization of surface tension based forces at grid cell

faces for interfaces, governed by a conservative level-set (LS) formulation as outlined

in [182] and described in section 6.5, is presented in the following. It is based on

the surface stress (CSS, [100]) or surface tension (CST, [82]) tensor formulation,

discussed in e.g. [176, 187], as well as in section 3.2.4. This tensor allows for a flux

density representation of forces due to surface tension via surface stresses at grid cell

faces.

As shown in the following section 6.6.1, combination of

‚ bi-(d “ 2) or tri-(d “ 3) linear approximation of the tensor components on grid

cell faces in space-time (d “ 2) or space-space-time (d “ 3),

‚ approximation of the Dirac delta distribution via interface normal linear hat

functions as proposed in [48], and

‚ analytical space-time integration of the resulting polynomial representation

leads to the following benefits:

‚ no need for explicit evaluation of the interfacial curvature,

‚ no need for explicit evaluation of interface tangential information (and, thus,

no conceptual difference between d “ 2 and d “ 3),

‚ the surface tension coefficient σ can be an arbitrary (smooth) function in space

and time, e.g. depending on a surfactant27 concentration on Γ, suitably ex-

tended into B for numerical treatment,
27 surface active agent: see footnote on page 34.
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‚ possibility of balancing space-time integral pressure and surface tension based

stresses on each grid cell face separately, and

‚ well defined and robust behavior in the limitBÑ 0 due to εÑ 0, provided the

pressure is able to follow the continuous surface tension profile within B due

to analytic space-time integration over B on sub-grid scale cell face fractions.

6.6.1 Discretization of Surface Tension Based Momentum Flux Contributions

The spatio-temporal effect of surface tension on the momentum balance can be rep-

resented via the vector integral

~U :“
1

|Ω|

ˆ tn`1

tn

˛
BΩ

´

S
pσq
Γ δΓ

¯

loooomoooon

“: FS

¨~ndAdt (6.225)

with surface integral from (3.76) on page 28. On a fixed Cartesian grid, this integral

can be split into a sum of integrals over space-time sub-sections per grid cell face

BΩd,w, characterized via time slices t and space-time sections f therein. With d as grid

cell face normal direction and w as the side with respect to the grid cell center in the

respective direction, the integral (6.225) reads

~U “ ∆t
d
ÿ

d“1

∆Ad
∆V

2
ÿ

w“1

¨

˚

˚

˚

˝

1

∆t∆Ad

Nt
d,w
ÿ

t“1

N
f
t
d,w
ÿ

f“1

«ˆ thi
t

tlo
t

ˆ
BΩd,w,t,f

FS ¨ ~nd,w dAdt

ff

˛

‹

‹

‹

‚

“ ∆t
d
ÿ

d“1

1

cdh

2
ÿ

w“1

p´1qw

¨

˚

˚

˚

˝

Nt
d,w
ÿ

t“1

N
f
t
d,w
ÿ

f“1

«

1

∆t∆Ad
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t

tlo
t

ˆ
BΩd,w,t,f

FS ¨~ed dAdt

ff

˛

‹

‹

‹

‚

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

“: rF
pσq

ε,pd,wq

(6.226)

where Ntd,w
represents the number of required time slices per grid cell face within

∆t and N
f
td,w

is the number of sub-sections per time slice as shown in Fig. 6.44.

For evaluation of the spatio-temporal flux average rF
pσq

ε,pd,wq per grid cell face pd, wq,
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O
L

N

|G| ą ε lpoq

U
|G| ą ε

no t

y
G “ 0

G ă 0

G ą 0

uptq

lptq

upnq

upoq

lpnq

Fig. 6.44: Grid cell face (y) over time (t), cut by an interface Γ (thick black line at G “ 0):
Time slices (separated by vertical lines), depending on the grid cell face local spatio-
temporal geometric scenario as described in detail in section 6.6.1.6, and space-time
sub-sections (differently shaded areas), each with bounds o, n, lptq and uptq in a
transition region B (entire shaded area) around Γ

the integrals

~Jd,w,t,f :“

ˆ thi
t

tlo
t

ˆ
BΩd,w,t,f

FS ¨~ed dAdt (6.227)

over each of the space-time sub-sections pt, fq of face pd, wq over time have to be eval-

uated. In two space dimensions, with y representing the coordinate perpendicular to

the respective grid cell face normal vector ~nΓ (and, thus, to coordinate direction~ed),

these integrals can be written as

~J
r2s

d,w,t,f
“

ˆ n
o

ˆ u
l

FS ¨~ed dy dt (6.228)

with definitions

o :“ tlot n :“ thi
t l :“ lptq “ ylo

d,w,t,fptq u :“ uptq “ yhi
d,w,t,fptq

(6.229)

and superscripts lo and hi indicating the lower and higher space and time coordinate

as sketched in Fig. 6.44 as well. Evaluation of each ~J r2s
d,w,t,f

is done via analytical

integration of the integrand FS ¨~ed using suitable ansatz functions in order to avoid

discretization of the Dirac delta distribution on the underlying Cartesian grid beyond
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the approximation given in section 6.6.1.1. As a result, only non-critical contribu-

tions to FS with finite gradients of moderate sizes are discretized as described in the

following.

6.6.1.1 Dirac approximation

For numerical evaluation, the singular Dirac delta distribution (3.14) requires smooth-

ing within a narrow transition region B of total width 2ε around the interface Γ (see

[48]):

δΓ « δp1q pdp~x, tqq « δp1qε pdp~x, tqq :“

$

&

%

A
εB

´

dp~x,tq
ε

¯

|dp~x, tq| ď ε “ m h

0 |dp~x, tq| ą ε “ m h

(6.230)

where dp~x, tq is the signed distance function, m is a non-negative scaling factor with

respect to the smooth transition region width and

Bpηq :“ p1´ sgnpηqpηpqq (6.231)

is at first chosen to be a general polynomial, acting in interface normal direction,

with sgn as the sign function. As shown in [48], with smoothing (6.230) and the

assumption that

dp~x, tq «
Gp~x, tq

|∇G| (6.232)

is a valid approximation for the distance function in the vicinity of the interface Γ

as shown in the box on page 256, the approximated one-dimensional Dirac delta

distribution can be rewritten in terms of the (non-distance) level-set function G as

δp1qε pdp~x, tqq “ δp1qε

ˆ

Gp~x, tq

|∇G|

˙

“
A

ε
B

¨

˝

Gp~x,tq
|∇G|
ε

˛

‚“ |∇G| A
ε
B

ˆ

Gp~x, tq

ε

˙

“ |∇G| δr1sε pGp~x, tqq (6.233)

with

ε :“ ε |∇G| “ m h |∇G| “:
1

B
(6.234)

as the modified variable bandwidth. Here,

m :“ rmglob rmloc (6.235)
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Level-Set vs. Signed Distance Function: The level-set function - although

initialized as a signed distance function - does not necessarily remain a signed

distance function and, depending on the processes that act on the level-set

function, the level-set gradient can deteriorate from unity rapidly. However,

as long as the resulting function maintains linear behavior within the region of

interest in interface normal direction, the unknown distance d can be approx-

imated as follows: If

1. the two linear functions

G0 “ Gpdq ´ sgnpGpdqq|∇Gpdq| |d| (6.236)

D0 “ Dpdq ´ sgnpDpdqq|∇Dpdq| |d| (6.237)

with sign function sgn describe the same value G0 “ D0 “ GΓ “

DΓ p“ 0q

2. both Gpdq and Dpdq have the same sign

sgnpGpdqq “ sgnpDpdqq (6.238)

3. the absolute value of d is replaced by d times its sign

|d| “ sgnpdq d (6.239)

4. one of the functions – say, Dpdq – is the signed distance function

Dpdq “ d with |∇Dpdq| “ |∇d| “ 1

then equating both expressions (6.236) and (6.237) leads to

Gpdq 1.
“ Dpdq ´ |d|

“

sgnpDpdqq|∇Dpdq| ´ sgnpGpdqq|∇Gpdq|
‰

2.
“ Dpdq ´ sgnpDpdqq |d|

“

|∇Dpdq| ´ |∇Gpdq|
‰

3.
“ Dpdq ´ sgnpDpdqq sgnpdq d

“

|∇Dpdq| ´ |∇Gpdq|
‰

4.
“ d

´

1´ sgnpdq sgnpdq
loooooomoooooon

“ 1

“

|∇d|
loomoon

“ 1

´ |∇Gpdq|
‰

¯

“ d |∇Gpdq| (6.240)

is composed of a global and a local scaling factor, rmglob and rmloc, to be specified in
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section 6.6.1.5. Integration of (6.230) in interface normal direction – assuming |∇G|
to be constant (but not necessarily equal to 1) in that direction – according to

ˆ 8
´8

δp1qε pdp~x, tqqdd “

ˆ 0

´ε
δp1qε pdp~x, tqq dd`

ˆ ε

0
δp1qε pdp~x, tqq dd

“

ˆ 0

´ε
δr1sε pGq dG`

ˆ ε

0
δr1sε pGq dG

“

ˆ 0

´ε

Ap,q

ε

ˆ

1´ p´1qp
ˆ

G

ε

˙p˙q

dG

`

ˆ ε

0

Ap,q

ε

ˆ

1´

ˆ

G

ε

˙p˙q

dG

!
“ 1 (6.241)

results in

Ap,q “
1

2

«

q
ÿ

i“0

p´1qi

pi` 1

˜

q

i

¸ff´1

(6.242)

with the binomial coefficient
˜

z

z

¸

“

z
ź

η“1

z` 1´ η

η
“

z!

z! pz´ zq!
(6.243)

for the amplitude A.

6.6.1.2 Integrand

The integrand of equation (6.228) – contributing the flux density across grid cell face

pd, wq with the latter indices omitted for brevity – reads

pFS ¨~edq
pp,qq

pt,fq
“ Ap,q B

”

1´
´

sgnpt,fqpGq
¯p
BpGp

ıq

loooooooooooooooooooooomoooooooooooooooooooooon

“ δ
p1q
ε pGq

σ |∇G| p~ed ´ ~nΓ p~nΓ ¨~edqq
looooooooooooooomooooooooooooooon

“:~fp∇Gq

(6.244)

considering the identities

~nΓ “
∇G
|∇G| , I ¨~ed ” ~ed, p~nΓ ˝ ~nΓq ¨~ed ” ~nΓ p~nΓ ¨~edq (6.245)

as well as the previous section and definition of the surface stress tensor (3.70).

The present formulation (6.244) allows the surface tension coefficient σ to be a func-

tion of e.g. a surface surfactant concentration C, which can be computed by extend-
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ing the surface concentration C to the Cartesian grid in the respective vicinity of the

interface Γ, if σ is not a constant and the relation σpCq is known.

In order to evaluate the integral (6.228) over integrand (6.244), the quantities ~fp∇Gq,
G and B can be approximated bi-linearly in space-time:

~fp∇Gq « ~Fh :“ ~k
~f
00 ` ~k

~f
10 t`

~k
~f
01 y `

~k
~f
11 t y (6.246a)

G « Gh :“ KG
00 ` KG

10 t` KG
01 y ` KG

11 t y (6.246b)

B « Bh :“ KB
00 ` KB

10 t ` KB
01 y ` KB

11t y (6.246c)

tn

tn`1

t t t

Γ

Fig. 6.45: Bi-linear ansatz function (grey) in space-time
and resulting spatio-temporal approximation of
the integrand FS ¨~ed for p “ q “ 1 (black) for
different positions of the space-time cell with re-
spect to the spatio-temporal transition region B
around the interface Γ

Fig. 6.45 illustrates the dif-

ferent scenarios occurring in

space-time domains within

the spatio-temporal transi-

tion region around the inter-

face, consisting of the grid

cell boundary and the tem-

poral axis. The quantities

in equations (6.246) can be

assumed to be approximated

bi-linearly (grey) on the en-

tire space-time cell based on

nodal values of the latter, no matter if the cell is located completely within the spatio-

temporal transition region (left sketch), at the transition region boundary with the grey

shaded space-time fraction beyond the transition region (center sketch) or around the

interface Γ (right sketch). The resulting approximation of the spatio-temporal inte-

grand (6.244) obtains its sub-cell features (black) due to the interface normal Dirac

approximation, sketched for p “ q “ 1.

After the coefficients ~k
~f
ij , KG

ij and KB
ij with i P t0, 1u, j P t0, 1u from equations

(6.246) are determined according to equations (6.249a) - (6.249d) on page 259, based

on the respective values

t~fp∇G pL,Oqq, ~fp∇G pU,Oqq, ~fp∇G pL,Nqq, ~fp∇G pU,Nqqu (6.247a)

tG pL,Oq , G pU,Oq , G pL,Nq , G pU,Nqu (6.247b)

tB pL,Oq , B pU,Oq , B pL,Nq , B pU,Nqu (6.247c)
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Bi-Linear Ansatz in Space-Time: The general coefficients ηij of a bi-linear

ansatz with i P t0, 1u, j P t0, 1u (in case of both scalars and vectors) can be

determined on the two-dimensional Cartesian space-time cell, consisting of

the time and one spatial coordinate y, via the 4 values
 

RO
L , R

O
U , R

N
L , R

N
U

(

in the corresponding space-time nodes pL,Oq, pU,Oq, pL,Nq and pU,Nq:

RO
L “ η00 ` η10O ` η01 L` η11O L (6.248a)

RO
U “ η00 ` η10O ` η01 U ` η11O U (6.248b)

RN
L “ η00 ` η10N ` η01 L` η11N L (6.248c)

RN
U “ η00 ` η10N ` η01 U ` η11N U (6.248d)

Solution of the above linear system yields the coefficients

η00 “ $
`

N U RO
L ´N LRO

U ´OU RN
L `OLRN

U

˘

(6.249a)

η10 “ ´$
`

U RO
L ´ LRO

U ´ U RN
L ` LRN

U

˘

(6.249b)

η01 “ ´$
`

N RO
L ´NRO

U ´ORN
L `OR

N
U

˘

(6.249c)

η11 “ $
`

RO
L ´RO

U ´RN
L `RN

U

˘

(6.249d)

with

$ :“
1

pN ´OqpU ´ Lq
(6.250)

in nodes pL,Oq, pU,Oq, pL,Nq and pU,Nq of space-time cell

ĂBΩd,w “
´

BΩd,w P Rpd´1q ˆ t P R
¯

(6.251)

with

O :“ tn N :“ tn`1 “ tn `∆t L :“ y0 U :“ y1 “ y0 `∆y

(6.252)

as the bounds of ĂBΩd,w as sketched in Fig. 6.44, the integrand (6.244) reads

pFS ¨~edq
pp,qq

pt,fq
“ Ap,q

˜

1
ÿ

i“0

1
ÿ

j“0

KB
ij t

i yj

¸˜

2pq
ÿ

i“0

2pq
ÿ

j“0

S
pt,fq
ijpq t

i yj

¸˜

1
ÿ

i“0

1
ÿ

j“0

~k
~f
ij t

i yj

¸

(6.253)

with p2pq` 1q2 coefficients Spt,fqijpq remaining to be specified in each space-time sub-
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section t, f as functions of KG
ij and KB

ij . Equation (6.253) can be summarized to read

pFS ¨~edq
pp,qq

pt,fq
“ Ap,q

2ppq`1q
ÿ

i“0

2ppq`1q
ÿ

j“0

~q
pt,fq
ij ti yj (6.254)

with now p2pq ` 3q2 vector coefficients ~q pt,fqij remaining to be specified as functions

of KB
ij , S

pt,fq
ijpq and ~k

~f
ij as done in section 6.6.1.4.

6.6.1.3 Space-Time Integration

Neglecting integration constants, as they vanish after application of the integral bounds,

~J
r2s

d,w,t,f
:“

ˆ n
o

ˆ u
l

FS ¨~ed dy dt

“ Ap,q

ˆ n
o

ˆ uptq
lptq

¨

˝

2ppq`1q
ÿ

i“0

2ppq`1q
ÿ

j“0

~q
pt,fq
ij ti yj

˛

‚ dy dt

“ Ap,q

ˆ n
o

»

–

2ppq`1q
ÿ

i“0

2ppq`1q
ÿ

j“0

~q
pt,fq
ij

j ` 1
ti yj`1

fi

fl

uptq

lptq

dt (6.255)

is obtained for the sub-section space-time integrals (6.228) after analytical integration

in space on a grid cell face of a two dimensional spatial domain. With spatial bounds

l “ lptq “ lpoq `
lpnq ´ lpoq

n´ o
pt´ oq (6.256)

u “ uptq “ upoq `
upnq ´ upoq

n´ o
pt´ oq (6.257)

which are assumed to depend linearly on time t, evaluation of the resulting polyno-

mial in t of (at most) degree p2 p2ppq` 1q ` 1qq yields

~J
r2s

d,w,t,f
“ pn´ oq

Ap,q

2
~W
pd,w,t,fq
p2ppq`1qq (6.258)

with vectors

~W pd,w,t,fq
z :“

z
ÿ

i“0

z´i
ÿ

j“0

ˆ

~W
pt,fq

ij n
i
o
j

˙

(6.259)
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after analytical integration of (6.255) in time, subject to time slice bounds o and n. In

definition (6.259) the vector weights ~W
pt,fq

ij read

~W
pt,fq

ij :“
1

B̆ij

2ppq`1q
ÿ

y“0

¨

˝

~q
pt,fq
pi`jqy

B̆ijy

y`1
ÿ

z“0

”

B̆ijyz Yyz

ı

˛

‚

“
1

Bpi`jq

2ppq`1q
ÿ

y“0

¨

˝

~q
pt,fq
pi`jqy

Bpi`jqy

y`1
ÿ

z“0

“

Bpy`1´zqi Bzj Yyz
‰

˛

‚

“
1

Bpi`jq

2ppq`1q
ÿ

y“0

´

~q
pt,fq
pi`jqyw

pt,fq
ijy

¯

(6.260)

with ~q pt,fq as specified in section 6.6.1.4 and

w
pt,fq
ijy :“

1

Bpi`jqy

y`1
ÿ

z“0

“

Bpy`1´zqi Bzj Yyz
‰

(6.261)

as scalar base weights. The latter depend both on the space-time geometry via powers

of the spatial limits l and u at the time slice boundaries o and n according to

Yyz :“ upnqy`1´z
upoqz ´ lpnqy`1´z

lpoqz (6.262)

and on scalar coefficients

B̆ij :“

˜

2` pi` jq

pi` jq

¸

“: Bpi`jq (6.263a)

B̆ijy :“

˜

2` pi` jq ` y

y

¸

“: Bpi`jqy (6.263b)

B̆ijyz :“ Bpy`1´zqi Bzj , Bîĵ :“

˜

î` ĵ

ĵ

¸

(6.263c)

which can be found as series in Pascal’s triangle with binomial coefficients according

to definition (6.243) as shown for p “ q “ 1 in Fig. 6.46 and in (6.264).
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1
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1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

Bî0

Bî1

Bî2

Bî3

Bî4

B0y

B1y

B2y

B3y

B4y

Fig. 6.46: Pascal’s triangle; solid: Bîĵ as factors for B̆ijyz with î P ty ` 1 ´ z, zu, dashed:
Bpi`jqy, thick dashed: Bpi`jq “ B0pi`jq
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After reorganization for efficient computation, the resulting integral approximation

to (6.225) on a Cartesian grid, yielding the momentum update due to surface tension,

finally reads

~U “ ∆t
d
ÿ

d“1

1

cdh

2
ÿ

w“1

p´1qw

¨

˚

˚

˚

˝

Ap,q

2

Nt
d,w
ÿ

t“1

pn´ oq

∆t

N
f
t
d,w
ÿ

f“1

»

–

~W
pd,w,t,fq
p2ppq`1qq

∆Ad

fi

fl

˛

‹

‹

‹

‚

looooooooooooooooooooooooomooooooooooooooooooooooooon

“: rF
pσq

ε,pd,wq

(6.265)

with pn´oq
∆t as non-dimensional relative time slice size and ~W pd,w,t,fq as specified in

(6.259), considering (6.260) to (6.263c). Coordinates of space-time sub-section cor-

ners o, n, l and u are determined in section 6.6.1.6.

6.6.1.4 Coefficients

With definition

Zp,q :“ 2 ppq` 1q ` 1 (6.266)

the most simple choice

p “ q “ 1 (6.267)

simultaneously is the most efficient one due to a rising number of pZp,qq
2 coefficients

~q
pt,fq
pi`jqy in (6.260) at rising p and q. Due to the choice (6.267) equation (6.231) yields

the interface normal linear hat function

Bpηq “ 1´ |η| “ 1´ sgnpηqη (6.268)

for approximation of the Dirac distribution as proposed in [48] and sketched in Fig.
6.47, with

A1,1 “ 1 (6.269)

from equation (6.242). In general the coefficients ~q pt,fq
pi`jqy in equation (6.265) read

~q
pt,fq
pi`jqy “

1
ÿ

ra“0

1
ÿ

rb“0

ˆ

~k
~f

rarb
Q`

modZp,q pZp,q`i´raq
˘`

modZp,qpZp,q`j´rbq
˘

˙

(6.270)



264 6. Extensions Towards a Conservative Two-Phase Flow Projection Method

κ ‰ 0

κ “ 0

Fig. 6.47: Interface normal linear hat function within the transition region B (black lines),
interface tangential contributions at grid cell faces (thin arrows) with average at
grid cell faces and resulting interface normal effect per grid cell as result of the
balance over the grid cell boundary

with

0 ď i ă Zp,q (6.271a)

0 ď j ă Zp,q (6.271b)

and modulo operation modZp,q with respect to division by Zp,q. For the choice

(6.267), resulting in Z1,1 “ 5, a Z1,1 ˆ Z1,1 matrix

Q “

¨

˚

˚

˚

˚

˚

˚

˚

˝

r0000 p0100
0001 p0101

0002 r0102 0

p1000
0010

`

p0110
0011 ` p

1100
1001

˘ `

p0111
0012 ` p

1101
1002

˘

p1102
0112 0

p1010
0020

`

p0120
0021 ` p

1110
1011

˘ `

p0121
0022 ` p

1111
1012

˘

p1112
0122 0

r1020 p1120
1021 p1121

1022 r1122 0

0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

(6.272)

is obtained, in which

p
p q r s
a b m n

:“ r a b m n ` r p q r s (6.273a)

ru v w x :“ KB
u vS

pt,fq
w x (6.273b)

and

S
pt,fq
w x “ δpw`xq,0 ´ sgnt,f pGp~x, tqq Zw x (6.274)
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with δ as the Kronecker delta (5.58) as well as

Zpa`mqpb`nq “
1

4

˜

2

a` m

¸˜

2

b` n

¸

`

KB
abK

G
mn `KB

mnKG
ab `KB

anKG
mb `KB

mbK
G
an

˘

(6.275)

subject to

0 ď a ď 1 (6.276a)

0 ď b ď 1 (6.276b)

a ď m ď 1 (6.276c)

b ď n ď 1 (6.276d)

due to 0 ď pa` mq ď 2 and 0 ď pb` nq ď 2.

6.6.1.5 Evaluation Simplification

On the one hand, with choice rmglob ě
D
rmloc

and

D :“

g

f

f

e

d
ÿ

d“1

c2
d

(6.277)

as relative length of the grid cell diagonal with respect to hd, definition (6.235) guar-

antees, that on each side of the interface at least one grid cell is entirely within the

transition region B, in which the smoothed Dirac is non-zero, independent of the an-

gle between interface and Cartesian grid coordinate system. On the other hand, the

choice

rmloc :“
1

|∇G| (6.278)

leads to constant ε and B as specified in equation (6.234), which simplifies the pre-

sented approach significantly, since in that case

KB
00 “ B (6.279a)

KB
01 “ KB

10 “ KB
11 “ 0 (6.279b)
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and the integrand (6.253) reduces to

pFS ¨~edq
p1,1q

pt,fq
“ A1,1KB

00

˜

1
ÿ

i“0

1
ÿ

j“0

Ŝ
pt,fq
ij tiyj

¸˜

1
ÿ

i“0

1
ÿ

j“0

~k
~f
ij t

iyj

¸

“ A1,1KB
00

2
ÿ

i“0

2
ÿ

j“0

~̂q
pt,fq
ij tiyj (6.280)

with

Ŝ
pt,fq
w x “ δpw`xq,0 ´ sgnt,f pGp~x, tqq KB

00 KG
w x (6.281)

and Kronecker delta δ from (5.58), resulting in less but much easier to handle vector

coefficients

~̂q
pt,fq

pa`mqpb`nq
“

1

4

˜

2

a` m

¸˜

2

b` n

¸

´

Ŝ
pt,fq

ab
~k
~f
mn ` Ŝ

pt,fq
mn

~k
~f

ab
` Ŝ

pt,fq
an

~k
~f

mb
` Ŝ

pt,fq

mb
~k
~f
an

¯

(6.282)

with

0 ď a ď 1 (6.283a)

0 ď b ď 1 (6.283b)

a ď m ď 1 (6.283c)

b ď n ď 1 (6.283d)

due to 0 ď pa` mq ď 2 and 0 ď pb` nq ď 2. As a result of analytical space-time

integration of the integrand (6.280), considering (6.256) and (6.257),

~J
r2s

d,w,t,f
“ pn´ oq

A1,1

2

2
ÿ

i“0

2´i
ÿ

j“0

´

~̂W
pt,fq
ij n

i
o
j
¯

“ pn´ oq
A1,1

2
~W
pd,w,t,fq

2

(6.284)

remains, with ~W
pd,w,t,fq

2 as given by equation (6.259) and

~̂W
pt,fq
ij “

1

Bpi`jq

2
ÿ

y“0

´

~̂q
pt,fq
pi`jqy w

pt,fq
ijy

¯

(6.285)

with w
pt,fq
ijy according to equation (6.261) as well as B, B and B as given in (6.263a)

to (6.263c) and sketched in Fig. 6.48. Determination of the missing geometry based

information for computation of ~̂q pt,fq
pi`jqy and w

pt,fq
ijy is given in the next section 6.6.1.6.
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1
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1 2 1
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1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

Bî0

Bî1

Bî2B0y

B1y

B2y

Fig. 6.48: Pascal’s triangle; selection of coefficients for simplified evaluation: solid: Bîĵ as
factors for B̆ijyz with î P ty ` 1 ´ z, zu, dashed: Bpi`jqy, thick dashed: Bpi`jq “
B0pi`jq; see Figure 6.46 and Pascal’s triangle in (6.264) for comparison in case of
general B

6.6.1.6 Scenarios

For computation of the integrals ~J r2s
d,w,t,f

over the different space-time sub-sections of

each grid cell face according to (6.284) via the vector ~W pd,w,t,fq
2 – the latter consisting

of the different ~̂W pt,fq according to (6.285) as result of the various ~̂q pt,fq from (6.282),

geometry based weights w pt,fq from (6.261) and coefficients from Pascal’s triangle

according to (6.263a) to (6.263c) – the approximated spatio-temporal scenario on

each cut grid cell face has to be known as a result of the interface movement. While

for determination of the coefficients ~̂q pt,fq only the sign sgnt,f pGp~x, tqq of the level-set

function G in each space-time sub-section has to be available in order to determine

the coefficients Ŝ
pt,fq

from (6.281), for computation of the geometry based weights

w pt,fq determination of the corner coordinates lpoq, upoq, lpnq and upnq of each space-

time sub-section with time slice boundaries o and n – to be determined as well – is

required in order to evaluate equation (6.262). Fig. 6.49 shows the general scenario

for general space-time-dependent B. This scenario is the most complex one that can

arise within the present surrounding numerical method: A cell face is intersected

by an interface (thick solid line) at the beginning of the time step (O), then after a

certain period within this time step (horizontal axis) the interface is leaving the grid

cell face (top middle downward pointing arrow labeled 2) and the cell face remains

un-cut for a certain period in the following, before the interface re-enters the grid

cell face (bottom middle upward pointing arrow 2). The latter can happen due to the
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O

L

N

ε ă G

U
G ą ε

1 Ó

o

2 Ó 3 Ó

Ò 1Ò 2Ò 3
n t

y

G “ 0

G “ 0

G ą 0

G ă 0

G ă ´ε

G ă 0

upnq
upoq

lpnq
lpoq

Fig. 6.49: General space-time cell ĂBΩd,w with linear time-dependent bounds (interface, band
boundary) and temporal sub-slices; the sub-cell limits o, n, lpoq, lpnq, upoq and upnq
refer to the thick dashed sub-section of the space-time cell; time slices are separated
by vertical lines and in general the y-boundaries can change their slopes at the time-
slice boundary (resulting in the different dashed sub-sections)

chosen numerical restriction of only up to one intersection per grid cell face at any

time. The cell remains cut for the rest of the time step until its end (N ). Due to

the restriction to maximum one interfacial intersection per grid cell face at the same

time, the interface can not re-enter the cell face before a present interface has left the

grid cell face. However, the regions around the interface in which the Dirac delta

distribution is smoothed and, thus, non-zero, can overlap, both in time only, if the

interface leaves and enters the grid cell face within the time step, and - in contrary to

the illustration in Fig. 6.49 - in space-time, depending on the chosen band thickness,

if more than one intersection is present in the space-time cell.

Fig. 6.50 shows a sub-division of Fig. 6.49 into three different settings (which add

up to the one shown in Fig. 6.49 in terms of time slices), referring to three different

zero-levels of

0 “ Si :“

$

’

’

&

’

’

%

Gp~x, tq ´ εp~x, tq i “ 1

Gp~x, tq i “ 2

Gp~x, tq ´ p´εp~x, tqq i “ 3

(6.286)

in order to determine the temporal positions of the time slice boundaries between O

and N with both Gp~x, tq and, in general, Bp~x, tq “ 1
εp~x,tq bi-linearly in space-time.
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G ă ε
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t

y

2 Ó

Ò 2

G ă 0
G “ 0

G “ 0

O
L

N

U G ą ´ε

t

y

3 Ó

Ò 3

G ă ´ε

G ą ´ε

Fig. 6.50: Sub-division of Fig. 6.49 into settings for ĂBΩd,w with different zero-levels for: left:
Gp~x, tq ´ εp~x, tq, center: Gp~x, tq ´ 0, right: Gp~x, tq ´ p´εp~x, tqq

For constant B, the lines labeled 1, 2, 3 (downward pointing arrow) in the upper left

corner of Fig. 6.49 and Fig. 6.50 are parallel and the lines labeled 1, 2, 3 (upward

pointing arrow) in the lower right corner of Fig. 6.49 and Fig. 6.50 are parallel as

well.

A new time slice starts, whenever any of the lines in Fig. 6.49 within ĂBΩd,w hit

the lower or upper spatial bound L or U , which corresponds to the interface or the

transition region bounds to leave or enter the grid cell face.

Once all time slice boundaries between O and N are obtained and ordered by magni-

tude – keeping the label (1, 2 or 3), which identifies the Si that is responsible for the

respective time slice boundary, associated with each time slice boundary as shown in

Tab. 6.2 for the scenario in Fig. 6.49 – the spatial bounds l and u of the space-time

sub-section at the time slice boundaries o and n can be determined.

Tab. 6.2: Resulting bounds o and n of each of the 7 time slices in Fig. 6.49 and corresponding
labels of pairs of bounding lines yptq, of which the intersection with the spatial grid
cell face bounds L and U border the respective time slice

bounds pO ” o1q n1 o3 n3 o5 n5 o7 pn7 ” Nq

o2 n2 o4 n4 o6 n6

labels - 1 Ó 3 Ò 2 Ó 2 Ò 3 Ó 1 Ò -

1 Ó 3 Ò 2 Ó 2 Ò 3 Ó 1 Ò

This is done by solving equation (6.286) at t̂ P to, nu per time slice. Considering

equation (6.246b) and suitable pairs of time dependent sub-section boundaries yptq

as lower and upper spatial bounds lptq and uptq for each space-time sub-section as

well as taking into account that both each grid cell face local time slice is spatially
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bounded by L and U in y and that B is constant yields

L ď ŷp2q “ ´

`

KG
00 ` KG

10 t̂
˘

`

KG
01 ` KG

11 t̂
˘ ď U (6.287a)

L ď ŷp2¯1q “ ´

´

K̃G˘ε
00 ` K̃G˘ε

10 t̂
¯

´

K̃G˘ε
01 ` K̃G˘ε

11 t̂
¯ ď U (6.287b)

with K̃G˘ε as bi-linear ansatz coefficients for G˘ ε according to (6.249).

O
L

N

U

t

y

O
L

N

U

t

y

G ă 0

G ą 0

G “ 0

O
L

N

U

t

y

O
L

N

U

t

y

Fig. 6.51: Left: entire space-time cell within band of smoothed Dirac around interface, center
left: space-time cell cut by the interface, center right: space-time cell intersected
by the boundary of the band of the smoothed Dirac, right: entire space-time cell
outside the band of smoothed Dirac around interface

Fig. 6.51 finally shows the most simple scenarios, which will arise in most of the

cases for m|∇G| ě D on grid cell faces, on which a re-entry of the interface (Fig.
6.50, center) does not occur. For 1 ď m|∇G| ă D also the setting shown in Fig.
6.44 on page 254 can arise, while the most general setting from Fig. 6.49 will occur

for m|∇G| ă 1 only.

6.6.1.7 Dirac Representation along Non-Interface-Normal Paths

In this section the relation between the interface Dirac representation via interface

normal linear hat functions due to (6.231) with p “ q “ 1 and the resulting inter-

face Dirac representation along (straight) paths, which are not perpendicular to the

interface in general (as, for example, a Cartesian grid cell face), are given for d “ 2:
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A point ~x within B can be represented by

~x “ ~xΓpτp~xqq ` dp~xq ~nΓpτp~xqq “ ~xΓpτ0q ` y ~ey “ ~xpyq (6.288)

x

x

x

¨

~xΓpτ0q

τ

y

~ey

~x

~nΓ ~tΓ

~xΓpτp~xqq

d

Fig. 6.52: Two different representations of an arbitrary
point ~x

with ~nΓ ¨ ~tΓ “ 0 and, in general,

~ey ¨~nΓ ‰ 0 and~ey ¨~tΓ ‰ 0, where
~tΓ is the interface tangential vec-

tor and ~ey an arbitrary unit vec-

tor as sketched in Fig. 6.52. The

derivative of the interface normal

linear hat function

δ
p1q
Γ “

A

ε

ˆ

1´ sgnpdp~xqq
dp~xq

ε

˙

(6.289)

with respect to the coordinate y –

with d sgnpdp~xqq
dy “ 0 assuming the

path considered to be located en-

tirely on one side of the interface

– reads

dδ
p1q
Γ

dy
“ ´

A

ε2
sgnpdp~xqq

ddp~xq

dy

“ ´
A

ε2
sgnpdp~xqq

ˆ

~nΓpτp~xqq ¨

ˆ

d~x

dy
´

ˆ

d~xΓpτp~xqq

dτ
˝∇τp~xq

˙

¨
d~x

dy

˙

`dp~xq ~nΓpτp~xqq ¨

„ˆ

d~nΓpτp~xqq

dτ
˝∇τp~xq

˙

¨
d~x

dy

˙

“ ´
A

ε2
sgnpdp~xqq

ˆ

~nΓpτp~xqq ¨~ey ´

ˆ

~nΓpτp~xqq ¨
d~xΓpτp~xqq

dτ

˙

p∇τp~xq ¨~eyq

` dp~xq
´

~nΓpτp~xqq ¨ ~tΓpτp~xqq
¯

κ
´

∇τp~xq ¨~ey
¯

˙

(6.290)

after application of both chain and product rule, in which the identities

dp~xq “ ~nΓpτp~xqq ¨ p~x´ ~xΓpτp~xqqq (6.291a)

~x´ ~xΓpτp~xqq “ dp~xq ~nΓpτp~xqq (6.291b)

d~x

dy
“ ~ey (6.291c)
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from (6.288) are accounted for. Since d ~xΓpτp~xqq
dτ is an interface tangential vector and

both
´

~nΓpτp~xqq ¨
d~xΓpτp~xqq

dτ

¯

“ 0 and
´

~nΓpτp~xqq ¨ ~tΓpτp~xqq
¯

“ 0,

dδ
p1q
Γ

dy
“ ´

A

ε2
sgnpdp~xpyqqq

ˆ

~nΓpτp~xpyqqq ¨~ey

˙

(6.292)

remains, which is not independent of y and, thus, dδ
p1q
Γ

dy not constant in general.

Therefore the Dirac representation obtained from assuming interface normal linear

hat functions is non-linear in non-interface-normal directions and bi-linear approx-

imations in space-time as sketch in Fig. 6.45 in black only approximate the Dirac

representation, resulting from interface normal linear hat functions, along~ey, as long

as ~ey ¨ ~nΓ ‰ 1 or ~ey ¨ ~nΓ ‰ 0 (the latter corresponding to κ ‰ 0). For each of

the following special cases the bi-linear approximation matches the chosen Dirac

representation exactly (which, in turn, remains an approximation to the true Dirac

distribution):

‚ ~ey ¨ ~nΓ “ 1 on the entire path along~ey (~ey points in interface normal direction)

‚ ~ey ¨ ~nΓ “ 0 on the entire path along~ey (~ey points in interface tangential direc-

tion: κ “ 0)

The second case results from the fact, that the interface normal vector ~nΓ becomes

independent of τ for vanishing curvature (κ “ 0).

6.6.1.8 Algorithm

The algorithm for evaluation of (6.225) for constant B as described is as follows,

while steps which need to be different for general B are indicated in bold:

1. generate and store the required parts of Pascal’s triangle according to (6.264)

and (6.243) as shown in Fig. 6.48

2. pre-compute and store coefficients B, B and B based on information from

Pascal’s triangle according to (6.263a) to (6.263c)

3. for each grid cell face BΩd,w within the narrow band N around the interface

Γ, which is sufficiently far away from the narrow band boundary, such that all

required information can be found within N, compute ...
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(a) ... level-set values G in nodes of space-time cell ĂBΩ (grid cell face BΩd,w
over time t) according to (6.20) based on surrounding cell data at the

corresponding time levels

(b) ... level-set gradient ∇G in nodes of space-time cell ĂBΩ using cell data

(c) ... bandwidth ε “ ε|∇G| “ rmglob h according to (6.234) in nodes of
ĂBΩ considering (6.278)

(d) ... the product X :“ pG` εq pG´ εq

4. for each face for which X ă 0 (which means that the respective grid cell face

is at least partially within the transition region around the interface during the

time step considered) ...

(a) ... set a marker in the grid cells sharing the respective grid cell face

(b) ... pre-compute space-time cell global information such as ...

i. ... bounds of space-time cell Ω̃ according to (6.252) with tn :“ 0

and y0 :“ 0.

ii. ... grid cell face area ∆Ad “
∆V
cd h

“
h
d
Πd˜d
c˜d

cd h
“ hd´1

Πd˜d
c˜d
cd

iii. ... space-time cell size |ĂBΩ| “ ∆Ad ∆t

iv. ... absolute value |∇G| of level-set gradient in space-time cell nodes

v. ... interface normal vector ~nΓ “
∇G
|∇G| in space-time cell nodes based

on the level-set gradient ∇G and its magnitude |∇G|
vi. ... B as the inverse of ε (see 3c) in space-time cell nodes

vii. ... product of surface force ~fp∇Gq and inverse bandwidth B (see
(6.244)) in space-time cell nodes in order to avoid further scaling
in the following, reducing the overall number of multiplications

viii. ... product of B and level-set G in space-time cell nodes

ix. ... bi-linear ansatz coefficients
´

B~k
~f
ij

¯

and
´

BKG
ij

¯

, each ac-
cording to (6.249a) - (6.249d), for the sets determined in 4(b)vii
and 4(b)viii

x. ... number of time slices and time slice boundaries as shown in Fig.
6.50

xi. ... space-time topology (as shown in Fig. 6.49 to Fig. 6.51) regard-

ing lines separating the space-time cell into different sub-sections

(c) for each time slice ...
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i. ... determine time slice local boundaries o and n (see (6.229))

ii. ... extract pairs of lines bounding relevant space-time sub-sections

(see Tab. 6.2 for the general example given in Fig. 6.49)

iii. ... for each sub-section in the current time slice ...

A. ... get spatial sub-section node coordinates lpoq, upoq, lpnq and

upnq at time slice boundaries o and n (see (6.229))

B. ... for each sub-section with non-zero space-time volume ...

‚ ... determine level-set sign sgntf pGp~x, tqq

‚ ... compute coefficients S according to (6.281)

‚ ... compute coefficients ~qij according to (6.282)

‚ ... compute weight vector ~W2 (z “ 2) according to (6.259)

by ....

– ... computing all required scalar base weights w according

to (6.261),

– ... computing all required weight vectors ~W
pt,fq

ij according

to (6.285),

– ... computing all required products ni oj ,

and evaluate the respective sum(s) in (6.284) or (6.259)

iv. ... evaluate sum over sub-sections (f) in time slice t in (6.265)

v. ... scale sum with time slice local relative time step size n´o∆t

(d) ... evaluate sum over time slices (t) in (6.265)

(e) ... scale result with A1,1

2 “ 1
2 in order to obtain the final space-time aver-

age surface force density on the grid cell face.

6.6.2 Present Approach within the Projection Method

As the dynamic pressure p
1

is treated as time-independent source in the predictor step

as shown in section 5.1.4.1 and updated in the second corrector step, the contribution

due to surface tension needs to be treated in the same way as discussed at the begin-

ning of this section 6.6. Thus, in the predictor step the space-time integral update

(6.265) from tn´1 to tn – stored from the previous time step – is used as momentum

source in equation (3.128c) during time integration from tn to tn`1 according to sec-

tion 6.3. The space-time integral contribution of surface tension during the present

time step from tn to tn`1, computed through surface tension based flux averages
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rF
pσq

ε in (6.265) as described in the previous section 6.6.1, is included in the second

corrector step according to

ˆ
:BΩ
p∆t θ˚˚q∇Bπ1 ¨ ~ndA “

ˆ
:Ω
∇ ¨ P~v˚˚dV `

ˆ
:Ω
∇ ¨ θ˚˚δ~fΓ dV (6.293a)

“

ˆ
:Ω
∇ ¨ θ˚˚

´

ρ~v ˚˚ ` δ~fΓ

¯

dV (6.293b)

“

ˆ
:BΩ
P~v ˚˚ ¨ ~n dA`

ˆ
:BΩ
p∆t θ˚˚q rF

pσq

ε dA (6.293c)

where

δ~fΓ :“ ~U
pn`1q
pnq ´ ~U

pnq
pn´1q (6.294)

represents the difference of surface tension based momentum updates ~U on primal

cells28 according to (6.225), with discretization (6.265) from the present (nÑ n`1)

and the previous (n ´ 1 Ñ n) time step. With exception of the surface tension

coefficient (if not constant), rF
pσq

ε only depends on level-set field data (G, ∇G) at

both time levels O “ tn and N “ tn`1, which can be seen from (6.244) as both ~nΓ

and B (if not constant) are also functions of G and ∇G only. In the second corrector

step both the level-set at the old time level and the final corrected level-set at the

new time level are given, such that the space-time integrals (6.265) capture the entire

spatio-temporal effect of surface tension.

6.6.2.1 Time Step Restriction

Due to the explicit treatment of the contribution due to surface tension to the mo-

mentum equation the allowable time step for the explicit predictor step has to satisfy

∆t
t2u
max :“ min

´

∆t
t2u#
max , ∆tσ

¯

(6.295)

28 Discrete evaluation of the right hand side integral of equation (6.293a) is done by first evaluating
cell center values according to version (6.293b), to which the discrete integral divergence operator
is applied by computation of fluxes across dual grid cell sub-faces – as sketched in the upper right
corner of Fig. 5.8 – based on primal cell center values to obtain (6.293c). Another alternative –

instead of re-interpolating the flux averages rF
pσq

ε via primal cell center updates as described – is

to compute surface tension based flux averages rF
pσq

ε across dual grid cell sub-faces according to
section 6.6.1.8 directly and add the contributions to that primal grid nodes, which are the centers of
the dual grid cells, the flux average across the dual sub-face contributes to. This, however, requires
two evaluations of the space-time average surface tension based fluxes: on primal cell boundaries
in the predictor (where in the current approach the stored value from the previous time step is
used), and on dual cell boundaries in the corrector.
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with ∆t
t2u#
max as given in section 6.3.2.1 based on the definition of ∆t

t1u
max in equation

(5.14) and Tab. 5.3, as well as

∆tσ :“
1

b

p2πqd
min

Ω

¨

˝

d

ˆ

ρp`q ` ρp´q

2

˙

c3
d

σ

˛

‚h
3
2 (6.296)

according to [166].

6.6.2.2 Extension to the Algorithm of the Second Corrector Step

The extensions for including surface tension into the second corrector step on the

dual grid are29:

1. mark all grid cells which have fractions of at least one grid cell face within the

transition region around the interface throughout the time interval considered

2. store the space-time integral flux averages rF
pσq

ε due to surface tension, com-

puted in the second corrector step of the previous time step from tn´1 to tn,

for later use

3. compute space-time integral flux averages rF
pσq

ε due to surface tension in (6.265)

on grid cell faces, which have fractions within the transition region around the

interface throughout the time interval from tn to tn`1, according to algorithm

6.6.1.8

4. compute new space-time average update in each marked grid cell from tn to

tn`1 according to (6.265) via flux divergence based on the flux averages com-

puted in 3.

5. add the difference of new and old space-time integral based updates (the latter

stored in 2.) to the momentum

6. proceed as in section 5.2.2
29 Note that the algorithm yet only allows for density ratios ρp`q

ρp´q
“ 1 and otherwise requires further

extension in order to scale effects of the smoothed surface force with the density of the respective
fluid phase conservatively, preventing spurious currents in the light fluid phase from scaling with
ρheavy

ρlight . A possible approach, which is subject of future work, might be based on [129], where the
second corrector step is asymptotically split into two sub-problems for sharp interfaces – a first
one solved in the heavy fluid only, with zero leading order solution in the light one, and a second
corrective problem, which can be solved continuously in the entire domain –, adapted to the present
smoothed setting.
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6.6.3 Pros and Cons and Open Issues

The advantages and disadvantages of the present discretization of the surface tension

tensor in the momentum equation are given in the following, finalized by a list of

open issues:

‚ Advantages:

– conservative both on the continuous level with arbitrary space-time de-

pendent surface tension coefficient σ (naturally including the case of con-

stant surface tension coefficient) and on the discrete level due to flux rep-

resentation of the space-time average surface force

– no need for explicit evaluation of interface tangential information

– no need for interface curvature evaluation

– no conceptual difference in three space dimensions

– flux representation offers the possibility of balancing pressure and surface

tension force in physically stable situations on the flux level on each grid

cell face separately (pressure has to adopt the continuous force profile)

– analytic integration over a transition region of width 2 ε offers the pos-

sibility of shrinking the transition region size to arbitrarily small values

(sub-grid size down to machine accuracy), provided the pressure profile

is able to follow this narrow transition region profile

– required coefficients can be partly determined independent of local infor-

mation (e.g. Pascal’s triangle and products of the coefficients therein),

which only needs to be done once per time step or during initialization

‚ Disadvantages:

– computation of various coefficients, already in two space dimensions

– computation of numerous coefficients in three space dimensions (since

spatial integration needs to be done over two spatial directions per grid

cell face instead of one as in two space dimensions)

– although the concept extends straightforward to three space dimensions,

evaluation of the spatio-temporal geometric scenarios on grid cell faces

for d “ 3 is quite elaborate

– more complex implementation as shown in section 6.6.1.8, compared to,

for example, a continuous surface force model
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‚ Open Issues:

– inclusion of the present continuous force discretization approach into a

sharp interface two-phase flow solver for density ratios ρp`q

ρp´q
‰ 1, avoid-

ing spurious velocities of different orders of magnitude in the different

fluid phases

– limit of vanishing transition region thickness ε Ñ 0 not yet feasible due

to the lack of suitable elliptic solvers that are able to handle the resulting

profile in the transition zone with respect to the unknown of the elliptic

problem

– fixes to the issues discussed in the following section 6.6.4

6.6.4 Tests and Results

Before results and findings of numerical computations – focussing on the flux-based

surface stress discretization described in sections 6.6.1 and 6.6.2 – are given in sec-

tion 6.6.4.2 through preliminary studies and in section 6.6.4.3 analyzing oscillating

soap bubbles, analytical signed distance functions are given in section 6.6.4.1, which

are used as initial conditions for the level-set function in the different examples in

sections 6.6.4.2 and 6.6.4.3. The interface representation via the level-set function is

the crucial basis of the smoothed surface stress representation.

6.6.4.1 Initial Signed Distance Functions

The initial interfaces in sections 6.6.4.2 and 6.6.4.3 in two spatial dimensions are rep-

resented by approximations to the zero levels of the analytically determined signed

distance functions given in the following and shown as iso-level plots within the nar-

row band N around the interface in Fig. 6.53. All of these signed distance functions

are specified in a structure-local coordinate system. The coordinates of any point

~x can be transformed into this structure-local coordinates system via the coordinate

transformation
rX “M ¨ X (6.297)

with

X :“

˜

~x

1

¸

rX :“

˜

~
rx

1

¸

(6.298)
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Fig. 6.53: Iso-contours of the level-set functions as determined analytically in sub-sections of
section 6.6.4.1 within the narrow band N around the interface Γ, each illustrated
on the same domain at an angle of 45˝ between the structure-local coordinate sys-
tems and the coordinate system of the underlying Cartesian grid, represented by the
domain boundaries

and structure-local coordinates ~rx, if both the angle ϑ between global and structure-

local coordinates system and the offset ~x 0 of the origins of both coordinate systems

are known. The transformation matrix

M “ R ¨ T “

¨

˚

˚

˝

cospϑq ´ sinpϑq 0

sinpϑq cospϑq 0

0 0 1

˛

‹

‹

‚

¨

¨

˚

˚

˝

1 0 x0
1

0 1 x0
2

0 0 1

˛

‹

‹

‚

“

¨

˚

˚

˝

cospϑq ´ sinpϑq
`

x0
1 cospϑq ´ x0

2 sinpϑq
˘

sinpϑq cospϑq
`

x0
1 sinpϑq ` x0

2 cospϑq
˘

0 0 1

˛

‹

‹

‚

(6.299)



280 6. Extensions Towards a Conservative Two-Phase Flow Projection Method

for two-dimensional problems in (6.297) results from the matrix product of rotation

matrix

R “

¨

˚

˚

˝

cospϑq ´ sinpϑq 0

sinpϑq cospϑq 0

0 0 1

˛

‹

‹

‚

(6.300)

and translation matrix

T “

¨

˚

˚

˝

1 0 x0
1

0 1 x0
2

0 0 1

˛

‹

‹

‚

(6.301)

in Rpd`1qˆpd`1q. The following signed distance functions are formulated such that no

or only minor modifications are required to obtain the corresponding representations

in three space dimensions. The two-dimensional transformation given above has to

be extended by one dimension and a suitable rotation angle accordingly.

6.6.4.1 - 1 Circle

The signed distance function in point ~x with respect to a circle of radius r with center

in point ~x0 is given as

dp~xq “ d̆ p~x, ~x0, rq (6.302)

with

d̆

ˆ

~
rx, ~̆rx, r

˙

:“ sgn
´

sp~rx, ~̆rx, rq
¯

d

ˇ

ˇ

ˇ

ˇ

sp~rx, ~̆rx, rqq

ˇ

ˇ

ˇ

ˇ

(6.303a)

sp~rx, ~̆rx, rq :“

ˆ

~
rx´ ~̆rx

˙

¨

ˆ

~
rx´ ~̆rx

˙

´ r2 (6.303b)

and sgn as the sign function. The circle is invariant with respect to the above rota-

tion while translation is already accounted for by taking absolute coordinates for the

circle center ~x0. The above representation directly applies to a sphere in three space

dimensions as well.

6.6.4.1 - 2 Cigar-Shape

This structure consists of two half circles for d “ 2 and two half spheres for d “ 3,

both of radius r, connected by a rectangular (d “ 2) / cylindric (d “ 3) segment of
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length l. In its local coordinate system the signed distance function reads

dp~xq “

$

’

’

’

’

&

’

’

’

’

%

d̆
´

~
rx, ~rx`, r

¯

@ rx1 ě rx`1

d̆
´

~
rx, ~rx´, r

¯

@ rx1 ď rx´1
ˇ

ˇ

ˇ

ˇ

d̆

ˆ

~
rx, ~̆rx, 0

˙ˇ

ˇ

ˇ

ˇ

´ r @ rx´1 ă rx1 ă rx`1

(6.304)

with d̆ given by equation (6.303a), both rx˘1 “ ˘ l
2 and rx˘i‰1 “ 0 as center coordinates

of the end caps and both r̆x1 “ rx1 and r̆xi‰1 “ 0.

6.6.4.1 - 3 Overlapping Circles

The signed distance function to the enclosing contour of two overlapping circles with

radii r1 and r2 as sketched in Fig. 6.54 for two space dimensions is given by

dp~rxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ď
´

d̆
´

~
rx, ~rxp1q, r1

¯

, d̆
´

~
rx, ~rxp2q, r2

¯¯

if pC1q
$

’

’

’

&

’

’

’

%

ď
´

d̆
´

~
rx, ~rx`˝ , 0

¯

, d̆
´

~
rx, ~rx´˝ , 0

¯¯

if pC2q
$

&

%

d̆
´

~
rx, ~rxp1q, r1

¯

if pC3q

d̆
´

~
rx, ~rxp2q, r2

¯

otherwise

,

.

-

otherwise

,

/

/

/

.

/

/

/

-

otherwise

(6.305)

with arguments d̆ as specified in (6.303), conditions

pC1q : ď
´

d̆
´

~
rx, ~rxp1q, r1

¯

, d̆
´

~
rx, ~rxp2q, r2

¯¯

ą 0 (6.306a)

pC2q : pC2aq _ pC2bq (6.306b)

pC2aq : p´a1 ă rx1 ď 0 q ^

ˆˇ

ˇ

ˇ

ˇ

d̆

ˆ

~
rx, ~̆rx, 0

˙ˇ

ˇ

ˇ

ˇ

ď

ˆ

1`
rx1

a1

˙

H

˙

(6.306c)

pC2bq : p 0 ă rx1 ă a2q ^

ˆˇ

ˇ

ˇ

ˇ

d̆

ˆ

~
rx, ~̆rx, 0

˙ˇ

ˇ

ˇ

ˇ

ď

ˆ

1´
rx1

a2

˙

H

˙

(6.306d)

pC3q : rx1 ď 0 (6.306e)

with r̆x1 “ rx1 and r̆xi‰1 “ 0 as well as

ďpd̆1, d̆2q :“

$

&

%

sgnpd̆1q d̀pd̆1, d̆2q if
´

d̀pd̆1, d̆2q ´

ˇ

ˇ

ˇ
d̆1

ˇ

ˇ

ˇ

¯

“ 0

sgnpd̆2q d̀pd̆1, d̆2q if
´

d̀pd̆1, d̆2q ´

ˇ

ˇ

ˇ
d̆2

ˇ

ˇ

ˇ

¯

“ 0
(6.307a)

d̀pd̆1, d̆2q :“ min
´
ˇ

ˇ

ˇ
d̆1

ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ
d̆2

ˇ

ˇ

ˇ

¯

(6.307b)

with
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ˆ

´a1
0

˙ ˆ

a2
0

˙

x̂
0
0

˙

ˆ

0
H

˙

ˆ

0
´H

˙

H

H
a1 a2

r2r1

Fig. 6.54: Overlapping circles with radii r1 and
r2 in structure-local coordinate system
with origin labeled X; determination
of problem dependent parameters ac-
cording to Tab. 6.5 on page 300

d̆1 :“ d̆
´

~
rx, ~rxp1q, r1

¯

(6.307c)

d̆2 :“ d̆
´

~
rx, ~rxp2q, r2

¯

(6.307d)

~
rx˘˝ :“

˜

0

˘H

¸

(6.307e)

~
rxp1q :“

˜

´a1

0

¸

(6.307f)

~
rxp2q :“

˜

a2

0

¸

(6.307g)

H “

b

r2
1 ´ a

2
1 (6.307h)

a2 “

b

a2
1 ´

`

r2
1 ´ r

2
2

˘

. (6.307i)

6.6.4.1 - 4 Ellipse

A signed distance function dp~rxq with elliptic zero level Γ can be determined analyti-

cally in two space dimensions in an ellipse-local coordinate system with coordinates
r~x :“ prx1, rx2q, such that the intersection of minor and major axes of the ellipse is

located at p0, 0q as done in the following.

Note that besides the signed distance function dp~rxq, the spatial coordinates ~rx and
the interface normal vector r~nΓ (both in structure local coordinates), all variables
in this section have section-local meaning only as defined below and do not refer
to any other variable of same name within this work beyond this section 6.6.4.1
- 4. The algorithm for evaluation of the following description is given starting
on page 289. Parts of the applied solution procedure are also required in section
6.6.4.3 for determination of the properties of the oscillating pair of soap bubbles
based on the given data.

With major and minor axes of length 2 a and 2 b as shown in Fig. 6.55, the elliptic

contour (6.308) is represented by

ˆ

rx1

a

˙2

`

ˆ

rx2

b

˙2

“ 1 (6.308)

in its ellipse-local coordinate system. The (outward pointing) unit normal vector r~nΓ
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x̃1

x̃2

a

b

x

x

¨
~̃x

d ~̃x arb

~̃nΓ

Fig. 6.55: Distance of an arbitrary point ~xarb to an ellipse

to the ellipse (6.308) reads

r~nΓ :“
1

c

´

rx1
a2

¯2
`

´

rx2
b2

¯2

˜

rx1
a2

rx2
b2

¸

“
1

a

k2x2
1 ` x

2
2

˜

kx1

x2

¸

(6.309)

with relative local quantities

0 ă k :“
b

a
ă 1, ´1 ă x1 :“

rx1

a
ă 1, ´1 ă x2 :“

rx2

b
ă 1

(6.310)

in the ellipse local coordinate system and prx1, rx2q as arbitrary point on Γ. The relative

distance

d :“
rd

a
(6.311)

between Γ and an arbitrary point r~x arb :“
`

rxarb
1 , rxarb

2

˘

can be determined via a straight

line
˜

rx1

rx2

¸

` rd r~nΓ “

˜

rxarb
1

rxarb
2

¸

(6.312)

normal to Γ in the unknown point prx1, rx2q on Γ through the arbitrary point
`

rxarb
1 , rxarb

2

˘

as sketched in Fig. 6.55 after transformation to relative coordinates: With

m :“
rxarb

1

a
n :“

rxarb
2

b
(6.313)

as well as

D :“
d

a

k2x2
1 ` x

2
2

(6.314)
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equation (6.312) transforms to

˜

x1

x2

¸

`D
˜

kx1

1
kx2

¸

“

˜

m

n

¸

(6.315)

and solving the upper line for D yields

D “ m´ x1

k x1
(6.316)

with the restriction x1 ‰ 0. The case x1 “ 0 has to be considered separately
below. Further, the resulting relation

x2 “
k2 n x1

m´ x1 p1´ k2q
“

N x1

M ´ x1
(6.317)

with

M :“
m

1´ k2
and N :“

k2n

1´ k2
(6.318)

from the lower line of equation (6.315) is valid, as long as M ´ x1 ‰ 0. The case
pM ´ x1q “ 0 has to be considered separately as well. Substitution of (6.317) into

the relative representation

x2
1 ` x

2
2 “ 1 (6.319)

of equation (6.308) yields the polynomial

x4
1 ´M

`

x2
1 ´ 1

˘

p2x1 ´Mq ´ p1´N
2q x2

1 “ 0 (6.320)

in x1 of degree 4. Analytical solutions of the latter can be obtained via the approach

of Ferrari for solving quartic equations by substitution

y :“ x1 ´
M

2
(6.321)

yielding the reduced equation

y4 ` Py2 `Qy `R “ 0 (6.322)

with

P :“ N2´
M2

2
´1, Q :“M p1`N2q, R :“

M2

4

ˆ

M2

4
`N2 ´ 1

˙

(6.323)

of degree 4 as before, however, without the cubic contribution. For Q ‰ 0 – the case
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Q “ 0 is a third one to be treated separately – equation (6.322) can be rewritten as

`

y2 ` P
˘2
“ P py2 ` P q ´Qy ´R (6.324)

after adding P py2`P q on both sides of the equation. Extra addition of the expression

z
`

z ` 2
`

P ` y2
˘˘

with unknown z on both sides of equation (6.324) finally yields

`

y2 ` pP ` zq
˘2
“ pP ` 2zq y2 ´Qy `

`

P 2 ´R` z pz ` 2P q
˘

(6.325)

in which the right hand side turns to a perfect square if its discriminant with respect

to y vanishes:

p´Qq2 ´ 4 pP ` 2zq
`

P 2 ´R` z pz ` 2P q
˘

“ 0 (6.326)

This is achieved by solving the cubic equation

z3 ` az2 ` bz ` c “ 0 (6.327)

with

a :“
5

2
P, b :“ 2P 2´R, c :“

1

2

˜

P
`

P 2 ´R
˘

´

ˆ

Q

2

˙2
¸

(6.328)

which results from (6.326) after collecting powers of z. After substituting

Z :“ z `
a

3
(6.329)

solutions for (6.327) can be obtained according to the approach of Cardano for solv-

ing cubic equations via real-valued solutions of the reduced cubic equation

Z3 ` pZ ` q “ 0 (6.330)

without quadratic contribution and with

p :“ b´
a2

3
q :“ c´

ab

3
`

2a3

27
(6.331)

as parameters. These real-valued solutions depend on the discriminant

∆ :“
´q

2

¯2
`

´p

3

¯3
(6.332)
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as given in Tab. 6.3 with

u :“
´

´
q

2
`
?

∆
¯

1
3

v :“
´

´
q

2
´
?

∆
¯

1
3 (6.333)

and

w :“
3q

p
r :“

c

´
4

3
p ξ :“

1

3
cos´1

¨

˝´
q

2

d

´

ˆ

3

p

˙3
˛

‚ (6.334)

as auxilliary quantities.

Tab. 6.3: Real-valued solutions of the reduced cubic equation (6.330) depending on ∆

∆ ą 0 ∆ “ 0 ∆ ă 0

p “ q “ 0 p ‰ 0 or q ‰ 0

Z1 u` v 0 w r cos pξq

Z2 - 0 ´w
2 ´r cos

`

ξ ` π
3

˘

Z3 - 0 ´w
2 ´r cos

`

ξ ´ π
3

˘

The solutions zi of (6.327) with i P t1, 2, 3u can then be obtained by re-substitution

according to relation (6.329). For each of the corresponding resulting real-valued zi,

equation (6.325) turns into

`

y2 ` pP ` zq
˘2
“ pP ` 2zq

˜

y ´
Q

2
a

pP ` 2zq

¸2

(6.335)

due to a vanishing discriminant (6.326) of the right hand side of equation (6.325)

with respect to y. Thus, a solution to

pP ` 2zq y2 ´Qy `
`

P 2 ´R` z pz ` 2P q
˘

“ 0 (6.336)

is given by y “ Q

2
?
pP`2zq

. Then pP ` 2zq ą 0 follows from equation (6.335). With

that, the root of equation (6.335) yields

y2 ` pP ` zq “ s1

a

pP ` 2zq

˜

y ´
Q

2
a

pP ` 2zq

¸

(6.337)
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with

s1 P t´1, 1u (6.338)

which leads to solving the 6 quadratic equations

y2 ´ s1j Ui y ` pWi ` s1j Viq “ 0, i P t1, 2, 3u, j P t1, 2u (6.339)

with

Ui :“
a

pP ` 2ziq, Vi :“
Q

2Ui
, Wi :“ P ` zi (6.340)

yielding 12 solutions

yp4pi´1q`2pj´1q`ph´1q`1q “
1

2

´

s1jUi ` s2h

a

Di

¯

(6.341)

with

Di :“ U2
i ´ 4 pWi ` s1j Viq (6.342)

and

s2 P t´1, 1u (6.343)

as well as i P t1, 2, 3u, j P t1, 2u and h P t1, 2u. Valid solutions for y are the ones

with non-negative discriminant Di. Of these valid solutions, solutions x1 are finally

obtained after re-substitution via (6.321). The valid ones - indexed l - have to be

within the interval ´1 ď x1l ď 1 and x2l values corresponding to these valid x1

values can be determined via relation (6.317). The x2l have to be within the interval

´1 ď x2l ď 1 as well and for valid coordinates px1l, x2lq the corresponding relative

distances dl can be computed according to

dl “
m´ x1l

k x1l

b

k2x2
1l ` x

2
2l (6.344)

resulting from (6.314) with (6.316). The absolute value |dl˚ | for that index l˚, for

which |dl˚ | “ minl p|dl|q holds, is the absolute value of the wanted signed distance

function. The sign of the signed distance function can then be determined by substi-

tuting px1l˚ , x2l˚q “ pm,nq into

E :“ 1´ x2
1l˚ ´ x

2
2l˚ (6.345)

since pm,nq is within the ellipse if 0 ă E ă 1, on the elliptic contour if E “ 0 and

outside if E ă 0.
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Special Cases

This section deals with the cases excluded above:

1. x1 “ 0: This case describes intersections of elliptic contour and minor axis

and, thus,

|d| “ 0 (6.346)

2. pM ´ x1q “ 0 with x1 ‰ 0: In this case x1 “ M and after substitution into

equation (6.319)

x2
1 “ 1´M2 (6.347)

with solutions

x1 “ ˘
a

1´M2 (6.348)

and valid real-valued solutions for M2 ď 1. For M2 ą 1 (which would lead to

non-real-valued solutions) eitherM ą 1 orM ă ´1 has to hold, which means

that x1 ą 1 or x1 ă ´1. This, however, is beyond the valid range of x1 and,

thus, for ´1 ď x1 ď 1 always real-valued solutions are obtained. Finally,

|d| “ k
a

1´M2p1´ k2q (6.349)

with k as given in (6.310) and M according to (6.318).

3. Q “ 0 with x1 ‰ 0: In this case M “ m “ 0 and, thus, the current point is

on the minor axis of the ellipse beyond the elliptic contour. Equation (6.320)

reduces to

x2
1 ´ p1´N

2q “ 0 (6.350)

with solutions

x1 “ ˘
a

1´N2 (6.351)

which are real-valued for N2 ď 1. This means that |N | ď 1 has to hold. Due

to N “ k2n
1´k2 “

n
1
k2´1

with k ă 1 and k2 ă 1 and, thus, 1
k2 ´ 1 ą 0, the

relation |n| ď 1
k2 ´ 1 is obtained. It follows, that

x2 “ ˘N (6.352)

and

|d| “

d

1`N2

ˆ

1

k2
´ 1

˙

(6.353)



6.6. Discretization of the Surface Stress Tensor 289

with k as given in (6.310) and N according to (6.318).

Algorithm

For each point in which the signed distance function to the ellipse has to be deter-

mined

‚ perform transformation into ellipse local coordinate system according to (6.297)

‚ compute k according to (6.310)

‚ compute m and n according to (6.313)

‚ if m “ 0, the current point is on the minor axis of the ellipse and |d| “ 1´ |n|

‚ if m ‰ 0

– compute M and N according to (6.318)

– if n “ 0, the current point ~rx arb is on the major axis of the ellipse and

valid relative coordinates ~x on the ellipse to compute the distance to are

p1, 0q, p´1, 0q and pM,
?

1´M2q; the minimum distance from these

points to pm, 0q is the wanted distance for m ‰ 0 and n “ 0

– if n ‰ 0

˚ compute P , Q and R according to (6.323)

˚ for Q “ 0, get the distance from (6.353)

˚ for Q ‰ 0

¨ compute a, b and c according to (6.328)

¨ compute p and q according to (6.331)

¨ compute discriminant ∆ according to (6.332)

¨ compute solutions Z of the reduced third order equation (6.330)

based on ∆, Table 6.3 and relations (6.333) and (6.334)

¨ re-substitute via (6.329) in order to obtain solutions z to (6.327)

¨ for each solution z determine U , V and W according to (6.340)

and check for Di ě 0 with Di according to (6.342) to exclude

solutions z which provide a Di ă 0 and, thus, not a real-valued

solution y according to (6.341)

¨ for the remaining real-valued solutions z compute y according

to (6.341) considering (6.340), (6.342), (6.338) and (6.343)
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¨ compute a first ellipse coordinate component x1 via re-substitution

based on (6.321) from each remaining y

¨ exclude all x1 which are beyond ´1 ď x1 ď 1

¨ for ´1 ď x1 ď 1 compute corresponding x2 values via (6.317)

¨ exclude all points px1, x2q for which x2 is beyond´1 ď x2 ď 1,

if necessary

¨ for the remaining points px1, x2q, compute the distance to point

pm,nq according to (6.344)

¨ take the distance d with the smallest absolute value |d| as the

absolute value of the wanted signed distance function in pm,nq

‚ scale the obtained relative distance |d| with a in order to get the absolute dis-

tance

‚ determine, if pm,nq is within or outside (or on) the ellipse by evaluating 1 ´

m2 ´ n2: if the result is positive, pm,nq is within the ellipse, if it is zero,

pm,nq is on the ellipse and if it is negative it is outside the ellipse. Choose the

sign for the signed distance function accordingly

Other approaches

Other approaches, like, for example,

‚ intersecting the ellipse (6.308) with a circle of unknown radius d and center in

pm,nq under the constraint that at least two of the up to 4 intersection points

have to collapse to one point on the interface

‚ finding a point on both the ellipse (6.308) and a circle of unknown radius d

with center in pm,nq such that both the coordinates of these points and the

tangential vectors of ellipse and circle in these points are identical

also lead to polynomial equations of degree 4. The present approach could also be

formulated such that a polynomial equation of degree 4 in the unknown distance is

obtained directly. However, in that case excluding (ghost) solutions of the respective

equations, which are beyond valid ranges for coordinates on the ellipse, is not as

straight forward as presented above.

Note that in the following all variables again have their document-global mean-
ing.
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6.6.4.2 Preliminary Studies

In this section the discretization described in section 6.6.1 and section 6.6.2 is applied

to three different initial settings for preliminary studies at density ratio ρp`q

ρp´q
“ 1 and

rmglob “ 2 as shown in Fig. 6.56, with analytic signed distance functions for the

initial level-set as given in section 6.6.4.1.

Fig. 6.56: Three different two-dimensional initial settings on various patches for parallel com-
putation on a grid of 64ˆ64 grid cells on a 1.024ˆ1.024 domain each: left: circu-
lar bubble, center: cigar-shaped bubble, right: elliptic bubble; top: narrow band N
(medium grey area) with transition region B (dark grey area) as a sub-set of N and
cut cells C (black area); bottom: resulting surface force per grid cell in B (black ar-
rows) and its magnitude (greyscale) within B; interface Γ (thick white line in center
of B) and transition region bounds (thin white lines) at m = 2

The initial conditions for flux-based contributions of the surface stress tensor are

computed as space-time averages as described in section 6.6.1 by using the identical

initial level-set configuration for both time levels involved in the contained space-

time evaluation to enforce a stationary case. Thus, all temporal ansatz coefficients

are equal to zero initially. Examination of these initial conditions already reveals

some valuable information on the present approach for surface tension discretization:

‚ non-zero forces only arise in grid cells, which are located at least partially

within the transition region B as expected and shown in Fig. 6.56, Fig. 6.57,

Fig. 6.58 and Fig. 6.60.
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Fig. 6.57: Cigar-shaped bubble at different angles with respect to the coordinate system of the
underlying computational Cartesian grid of 64ˆ64 cells on a 1.024ˆ1.024 domain
from left to right; first row: mass / species mass / phase indicator with intermediate
integral averages in cut grid cells only; second row: absolute value of resulting
force per grid cell after integration of discretized surface stresses over the grid cell
boundary; third row: detailed view on the resulting interface normal force vectors
per grid cell in the transition region B; fourth row: detailed view on the resulting
absolute values of interface normal force vectors per grid cell in the lower part of the
illustrations in the third row; the resulting forcing vanishes up to machine accuracy
where the interface curvature vanishes and is non-zero only within B; thick solid
line: interface Γ, dashed lines: transition region boundaries; arrows: volume force
vectors; darker grid cells represent higher absolute values
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‚ the strength of the resulting forces decays towards the boundary of the transi-

tion regionB according to the Dirac approximation as shown in Fig. 6.56, Fig.
6.57, Fig. 6.58 and Fig. 6.60 as well.

‚ the strength of the resulting forces changes smoothly, if curvature changes

smoothly, and scales with the magnitude of curvature (although curvature is

not computed explicitly) as shown in the lower part of Fig. 6.56: In the circu-

lar case with constant curvature the amplitude of the forcing is constant along

the interface. In case of the cigar-shape the amplitude of the forcing is constant

along the circular parts with constant curvature and vanishes in areas, where

curvature vanishes. The elliptic case shows, that the strength of the forcing

scales with the magnitude of the local curvature.

‚

Fig. 6.58: Resulting volume forces (white arrows)
in cells within transition region B (dark
grey areas) around the interface Γ (thick
black line) in comparison with vectors
pointing in the direction of the local level-
set gradient (black arrows)

the forces in each grid cell

point in direction of the level-

set gradient, corresponding to

the interface normal direc-

tion, as shown in the third line

of Fig. 6.57 and in more de-

tail for the elliptic example

in Fig. 6.58, where also the

level-set gradient vectors are

plotted for comparison. The

volume forces are not evalu-

ated as point values in grid

cell centers based on the lo-

cal curvature – as, for exam-

ple, done in the continuous

surface force (CSF) method –

but result from the curvature-

free balancing of Op1q vec-

tor contributions due to sur-

face stresses at the grid cell

faces after integration over those parts of the grid cell boundaries, which are

located within transition region B around the interface Γ, as described in sec-

tion 6.6.1 and sketched in Fig. 6.59. As indicated there, the individual vector

contributions to these integrals over (segments of) grid cell faces are tangential

to the local level-set iso-contours.
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8
9

Fig. 6.59: Local (smoothed) surface force contributions FS ¨~ed (arrows) along the Cartesian
grid cell boundary (black box) within the transition region B, tangential to iso-
contours (grey dashed lines) of the underlying level-set function representing the
interface Γ via its zero level (thick black line)

‚ although curvature is not computed explicitly and the interface normal volume

forces result from balancing of interface tangential Op1q vector contributions

as integrals over grid cell faces, the resulting interface normal forces vanish

up to machine accuracy at arbitrary angle of the interface with respect to the

Cartesian grid cells in areas, where the curvature vanishes as shown in the

fourth line of Fig. 6.57. This is possible, since in regions of zero curvature

– the interface normal vector ~nΓ becomes independent of the relative coor-

dinate y along the integration path as sketched in Fig. 6.59, and – as a

result – all contributions to the integral balance (6.265) are exactly inter-

face tangential on each of the grid cell faces

– the smoothed Dirac representation along the integration path – resulting

from the approximation of the interface Dirac δΓ via interface normal lin-

ear hat functions withinB according to equation (6.230) with (6.231) and

p “ q “ 1 according to (6.267) as sketched in Fig. 6.47 – becomes linear

as well as shown in section 6.6.1.7. Thus, the piecewise linear approxi-

mation of the level-set function G along the integration path – the spatial

coordinate y of the space-time cell face – leads to an exact representation

of this linear Dirac approximation along the integration path. In general,

for non-zero curvatures, the Dirac representation along the integration

path is non-linear as given in section 6.6.1.7 as well, and the piecewise
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linear level-set approximation along the integration path only provides

an approximation to the chosen Dirac representation after application to

(6.230) via (6.231) considering (6.232). In grid cells, which are located

entirely within the transition zone B, these approximation errors, how-

ever, cancel (largely) pair by pair during balancing over opposing grid

cell faces, leading to a higher order error there.

‚

Fig. 6.60: Resulting volume forces (white arrows)
in cells within transition region B (dark
grey areas), bounded by the dashed lines
around the interface Γ (thick black line),
in comparison with vectors pointing in
the direction of the local level-set gradi-
ent (black arrows)

in grid cells with faces, which

are located only partially

within the transition region

B, the direction of the result-

ing volume forces (slightly)

deviate from the interface

normal direction as can be

seen in the lower part of Fig.
6.60. These directional devi-

ations increase with increas-

ing asymmetry of the part of

the grid cell, that is within

the transition region with re-

spect to the interface normal

direction as shown in detail in

Fig. 6.61. The most probable

but not yet approved source

of this behavior is the reduced cancelation property due to the lack of symme-

try during the balancing over contributing sections of the grid cell boundary for

grid cells which are only partially within the transition region B as sketched in

Fig. 6.62. The contributions pointing off the interface normal direction, how-

ever, are the ones with the smallest magnitudes due to the largest allowable

distances from the interface for non-zero values. The described behavior, how-

ever, is one of the reasons that yet prevent the thickness of the transition zone

B from being smaller than the grid resolution, since with smaller transition re-

gion width the amplitudes of forces pointing off the interface normal direction

increase, and needs to be fixed in future work.

‚ the (smoothed) pressure jump as a measure of curvature approximation at

constant surface tension coefficient is reproduced correctly, although curva-
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Fig. 6.61: Resulting volume forces (white arrows) in cells at the boundary (dashed line) of
the transition region B (dark grey areas) around the interface Γ (thick black line),
in comparison with vectors pointing in the direction of the local level-set gradient
(black arrows)

ture is not computed explicitly, as shown for the circular bubble of radius

r :“ 0.256 m from Fig. 6.56 at30 σ :“ 5.12 ¨ 10´2 kg
s2 , centered in a two-

dimensional 1.024 mˆ 1.024 m domain, with

r
p
1
z
“ σκ “ σ

1

r
“ 5.12 ¨ 10´2 kg

s2

1

0.256 m
“ 0.2

kg

s2m
(6.354)

as theoretical exact value.

However, as shown in Tab. 6.4 for different grid resolutions and different con-

stant relative transition region widths with respect to the grid spacing h, the

maximum pressure amplitude does not improve significantly with grid reso-

lution. The reason for that is on the one hand, that increasing grid resolution

implies thinner transition regions, as their width scales with h, which does not

lead to an increasing number of contributing grid cells in interface normal di-

rection. The same computations applying the standard continuous surface force

(CSF) method31 as applied in [164], shown in the right column of Tab. 6.4, in

principle show corresponding behavior.

30 The surface tension coefficient of an air bubble in water, for example, is around σ :“ 7 ¨ 10´2 kg
s2

,
depending on temperature; the value of 5.12 ¨ 10´2 kg

s2
is chosen here to fit into the scheme of

numbers as powers of 2 due to 512 “ 29, 256 “ 28 and 1024 “ 210 in order to obtain simple
results in the physically reasonable order of magnitude.

31 While the present approach is discretely conservative, independent of grid resolution, the CSF
method is only discretely conservative for vanishing transition region width.
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l1

l2

l

l

Fig. 6.62: Grid cells only partially within the transition region B; left: symmetric cases, right:
non-symmetric cases

Tab. 6.4: Relative error E of maximum (smoothed) interfacial jump in dynamic pressure p
1

(rounded to two decimal digits) and convergence order p (rounded to three decimal
digits) for a circular bubble of radius 0.256 in a 1.024 ˆ 1.024 domain at different
grid resolutions and constant relative bandwidth with respect to grid spacing h in
comparison to the continuous surface force (CSF) model as used in [164]. E and p
are defined in appendix section C.

CSS CSF

m “ 1 m “ 2 m “ 4 m “ 2

cells h
10´2

E
10´2 p E

10´2 p E
10´2 p E

10´2 p

322 3.2 2.68 - 1.82 - 5.29 - 2.43 -

642 1.6 2.12 0.339 0.97 0.910 1.54 1.779 0.91 1.413

1282 0.8 2.36 -0.152 0.76 0.361 0.70 1.146 0.48 1.016

2562 0.4 2.27 0.055 0.73 0.039 0.50 0.489 0.42 0.478

5122 0.2 2.35 -0.051 0.75 -0.031 0.46 0.135 0.37 0.205

10242 0.1 2.47 0.073 0.76 -0.012 0.46 0.000 0.37 0.005
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Fig. 6.63: Pressure error at the transition region boundary on a two-dimensional grid of 64ˆ
64 cells; left: present method, right: continuous surface force method as used in
[164]; dark grey lines: iso-contours of pressure p

1

beyond values of p0, 0.2q kg
ms2 ,

thick white line: interface Γ, dark grey area: cut grid cells C, medium grey area:
transition region BzC beyond cut cells, light grey area: narrow band NzB beyond
transition region, white area: computational domain Ω˝zN beyond narrow band

x1

x2

G “ ε

p
1

δε

Fig. 6.64: Pressure and surface force pro-
files in grid cells at the transition
region boundary

On the other hand, yet an error occurs

at the transition region boundary of

the present approach as shown in Fig.
6.63. This error causes the results in

Tab. 6.4 to be worse than the ones us-

ing the CSF method and has two dif-

ferent sources, whose fix is subject of

future work: On the one hand, the dis-

cretizations of pressure along the en-

tire grid cell face and surface stress

contributions only on fractions within the transition region do not necessarily

match yet as sketched in Fig. 6.64. On the other hand, the grid cells on the

transition region boundary, which only partially contribute to the transition re-

gion, lack an implicit symmetry based leading order cancelation property the

grid cells which are totally within the transition region benefit from as sketched

in Fig. 6.62 and already mentioned above.
Fig. 6.63 further shows, that for both methods the largest errors occur on

the domain diagonals, where the largest angle ϑ between interface normal and

one of the coordinate directions is present. This corresponds to the results

from [48], in which a variable bandwidth, depending on ϑ, and usage of a
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multi-dimensional Dirac approximation instead of a one-dimensional in inter-

face normal direction are proposed in order to avoid this diagonally dominating

errors.

6.6.4.3 Oscillating Pair of Soap Bubbles

In the following two different settings of oscillating soap bubbles according to [97]

are considered as shown in Fig. 6.65, each composed of two separate bubbles that

have just merged. In Tab. 6.5 the parameters for each setting according to the sketch

Fig. 6.65: Initial conditions of merged soap bubbles; left: initial bubbles of different size (case
D) on a 1.024 ¨10´1 mˆ1.024 ¨10´1 m domain, right: initial bubbles of equal size
(case E) on a 5.12 ¨ 10´2 m ˆ 5.12 ¨ 10´2 m domain; settings as specified in Tab.
6.5 and Fig. 6.54

in Fig. 6.54 on page 282 are given, with

‚ density ρp`q “ 1.2 kg
m3 and ρp´q

ρp`q
“ 1

‚ dynamic viscosity µp`q “ 1.71 ¨ 10´5 kg
m s and µp´q

µp`q
“ 1

‚ constant surface tension coefficient σ “ 0.034 kg
s2

according to [97] in both cases. The initial ratio a1
r1

in Tab. 6.5 is obtained assuming

volume conservation by equating the equilibrium volume of the resulting sphere with

radius req with the sum of the volumes of the initial single bubbles, diminished by

the volume of the spherical segments of each initial bubble, that have vanished due

to bubble merging.
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Tab. 6.5: Settings for oscillating pair of merged bubbles; the quantities in the lower section
can be derived from the ones in the upper section, index eq indicates the equilibrium
state when the resulting bubble has become a sphere (or circle for d “ 2); U is the
perimeter of the great circle which is determined in two-dimensional computations

equal bubbles (case E) different bubbles (case D)

S1 0.00116 m2 0.0065 m2

S2 S1 0.0040 m2

req 0.012 m 0.0252 m

r1

b

S1
4π

r2
r1

1.0
b

S2
S1

a1
r1

0.80824515133385 0.735263897

a2
a1

1.0

d

1´

ˆ

1´
´

r2
r1

¯2
˙

´

r1
a1

¯2

Seq 4π r2
eq

Ueq 2π req

This results in

ˆ

1´
a1

r1

˙2 ˆ

2`
a1

r1

˙

`

ˆ

r2

r1
´

ˆ

a2

a1

˙

a1

r1

˙2 ˆ

2
r2

r1
`

ˆ

a2

a1

˙

a1

r1

˙

“ 4

˜

ˆ

r2

r1

˙3

´ R

¸

(6.355)

with

R :“

ˆ

req

r1

˙3

´ 1 (6.356)

to solve for a1
r1

, taking into account that in general a2
a1

is also a function of a1
r1

as given

in Tab. 6.5. In case of equally sized bubbles equation (6.355) reduces to solving

a1

r1

˜

3´

ˆ

a1

r1

˙2
¸

“ 2R (6.357)

for a1
r1

. While (6.355) has to be solved numerically, the reduced cubic equation

(6.357) without quadratic contribution can be solved analytically as done for equation

(6.330) in section 6.6.4.1 - 4, with resulting values as given in Tab. 6.6.
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Tab. 6.6: Results during the analytical solution process of the reduced cubic equation (6.357)
for a1

r1
in case E according to solving (6.330) in section 6.6.4.1 - 4. The variable

specification in the left column refers to the variables as used in section 6.6.4.1 - 4.
The condition 0 ă a1

r1
ă 1 needs to be satisfied for the two bubbles to overlap as

shown in Fig. 6.54. Thus, Z2 is the valid solution for a1r1 .

quantity from section source representation value

6.6.4.1 - 4 as used for due to for

solving equation (6.330) equation (6.357) case E

Tab. 6.5 req
r1

1.24898488731242

(6.356) R 0.94837052243257

p (6.330) ´3 ´3

q (6.330) 2R 1.89674104486514
`

p
3

˘3 (6.332) ´1 ´1
`

q
2

˘2 (6.332) R2 0.89940664781903

∆ (6.332) R2 ´ 1 ´0.10059335218097

ξ (6.334) 1
3 cos´1 p´Rq 0.93961815959145

r (6.334) 2 2

Z1 Tab. 6.3 r cospξq 1.1801926806849

Z2 Tab. 6.3 ´r cospξ ` π
3 q 0.80824515133385

Z3 Tab. 6.3 ´r cospξ ´ π
3 q ´1.98843783201870

While the case of equally sized bubbles (case E) is solved on a 5.12 ¨ 10´2 mˆ 5.12 ¨

10´2 m domain, the case of different bubbles (case D) is solved on a 1.024 ¨10´1 mˆ

1.024 ¨ 10´1 m domain, as the bubble radii are about twice in size in the latter case.

The signed distance function for the initial setting as sketched in Fig. 6.54 is given

in section 6.6.4.1 - 3. For the present computations an angle of 45˝ with respect to

the Cartesian grid is chosen as illustrated in Fig. 6.65. All domain boundaries are

assumed to be periodic and the CFL number is chosen to be CA “ 0.48.

The upper parts of Fig. 6.66 and Fig. 6.67 show the time series of the bubble perime-

ter, resulting from a two-dimensional computation on a Cartesian grid of 256 ˆ 256

grid cells for case D with settings according to Tab. 6.5 and on a Cartesian grid

of 128 ˆ 128 grid cells for case E, both computed for the initial period of 0.35 s at

rmglob “ 2. The lower parts show the frequency spectra, resulting from a Fast Fourier

Transformation (FFT) of the perimeter time series, performed using MATLAB in a
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Fig. 6.66: Case D; top: Time series of perimeter of pair of bubbles with different radii ac-
cording to Tab. 6.5 on a two-dimensional grid of 192 ˆ 192 cells in a 0.1024m ˆ
0.1024m domain, bottom: excerpt of the Fourier transformation result of the top
row perimeter time series

Fig. 6.67: Case E; top: Time series of perimeter of pair of bubbles with equal radii according
to Tab. 6.5 on a two-dimensional grid of 128ˆ 128 cells in a 0.0512 mˆ 0.0512 m
domain, bottom: excerpt of the Fourier transformation result of the top row perime-
ter time series

post-processing step32. The corresponding values for the first oscillation modes are

given in Tab. 6.7 and Tab. 6.8, corresponding to the frequencies of the coefficients as-

suming the (local) interface (displacement) to be represented by a linear combination
32 Simulations are done with the C++ implementation STAFSEA2 of the present numerical method:
http://www.mi.fu-berlin.de/w/AgKlein/WelcomeSTAFSEAsquared.

http://www.mi.fu-berlin.de/w/AgKlein/WelcomeSTAFSEAsquared
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of different Laplace’s spherical harmonics as done in [97].

Tab. 6.7: Frequencies (and corresponding amplitudes) of the first modes resulting from
Fourier transformation of the perimeter time series of the oscillating pair of bub-
bles with different radii (corresponding to surface areas of the individual spheri-
cal bubbles of 0.004 m2 and 0.0065 m2 in three-dimensional space); comparison of
two-dimensional numerical results on a 0.1024 m ˆ 0.1024 m domain at different
grid resolutions, two-dimensional experimental determination from images of three-
dimensional flow data (exp.) according to [97] and theoretical computation (theo.)
according to [103]

Case D numerical results exp. theo.

STAFSEA2 [97] [103]

mode 1
s

1
s

1
s

(10´3ms)

962 1282 1922 5122

2 19.996 19.998 19.999 19.999 19 20.75

(2.283) (2.242) (2.197) (2.141)

3 39.992 39.996 39.978 39.998 35 39.21

(0.460) (0.511) (0.531) (0.527)

4 59.988 59.994 62.853 62.854 57 59.90

(0.183) (0.154) (0.174) (0.178)

5 82.841 85.706 85.709 88.566 72 82.76

(0.225) (0.263) (0.219) (0.228)

It can be seen, that comparing with

‚ experimental determination based on two-dimensional images of three dimen-

sional flow data as given in [97] and

‚ theoretical data in three space dimensions as given in [103]

the frequencies of interfacial oscillation due to the given initial conditions are cap-

tured well by the present numerical method although only performed in two spatial

dimensions. In contrast to the theoretical and experimental results, for case E also the

odd modes are excited due to remaining spurious currents arising from the remaining

force-pressure mismatch at the transition region boundary, however, at small ampli-

tudes as shown in Fig. 6.67.
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Tab. 6.8: Frequencies (and corresponding amplitudes) of the first modes resulting from
Fourier transformation of the perimeter time series of the oscillating pair of bub-
bles with identical radii (corresponding to surface areas of the individual spherical
bubbles of 0.00116 m2 in three-dimensional space); comparison of two-dimensional
numerical results on a 0.0512 m ˆ 0.0512 m domain at different grid resolutions,
two-dimensional experimental determination from three-dimensional flow images
(exp.) according to [97] and theoretical computation (theo.) according to [103]

Case E numerical results exp. theo.

STAFSEA2 [97] [103]

mode 1
s

1
s

1
s

(10´3ms)

482 642 962 1282 2562

2 57.099 57.137 57.140 59.997 59.999 70 63.14

(1.111) (1.000) (0.845) (0.776) (0.855)

3 82.792 85.706 88.566 88.567 88.571 - -

(0.168) (0.166) (0.160) (0.162) (0.151)

4 162.733 168.554 171.419 174.277 177.141 202 182.28

(0.162) (0.160) (0.158) (0.151) (0.141)

5 196.992 205.693 211.416 217.131 219.998 - -

(0.068) (0.066) (0.064) (0.062) (0.057)

In Tab. 6.9 and Tab. 6.10 the ratios between the frequencies of the different modes

are given as done in [97].

Tab. 6.9: Ratios of different oscillation modes in comparison with the ones given in [97] for
the present case of different initial bubble radii

Case D numerical results exp. [97] theo. [103]

962 1282 1922 5122

mode 3
mode 2 2.000 2.000 1.999 2.000 1.83 1.89
mode 4
mode 2 3.000 3.000 3.143 3.143 2.96 2.89
mode 5
mode 2 4.143 4.286 4.286 4.429 3.79 3.99
mode 4
mode 3 1.500 1.500 1.572 1.566 1.62 1.53
mode 5
mode 3 2.071 2.143 2.144 2.214 2.07 2.11
mode 5
mode 4 1.381 1.429 1.364 1.409 1.28 1.38
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Tab. 6.10: Ratios of different oscillation modes in comparison with the ones given in [97] for
the present case of equal initial bubble radii

Case E numerical results exp. [97] theo. [103]

482 642 962 1282 2562

mode 3
mode 2 1.450 1.500 1.550 1.476 1.476 - -
mode 4
mode 2 2.850 2.950 3.000 2.905 2.952 2.82 2.89
mode 5
mode 2 3.450 3.600 3.700 3.619 3.667 - -
mode 4
mode 3 1.966 1.967 1.935 1.968 2.000 - -
mode 5
mode 3 2.379 2.400 2.387 2.452 2.484 - -
mode 5
mode 4 1.210 1.220 1.233 1.246 1.242 - -

Fig. 6.68: Space-time average surface force (black ar-
rows) within the transition zone B around
the interface Γ (thick black line) and result-
ing velocity field (grey arrow) in a periodic
0.1024 mˆ 0.1024 m domain of 256ˆ 256
grid cells, decomposed into sub-sections
(light grey bounded boxes) for parallel com-
putation: Locations of maximum forcing at
alternating orientation indicate waves trav-
eling along the interface

In Fig. 6.68 the spatio-temporal

surface force averages and the re-

sulting velocity field of the initial

phase of case D are shown, where

the waves, traveling along the in-

terface, can be seen in regions of

maximum forcing at alternating

orientation, depending on the lo-

cal (not explicitly evaluated) cur-

vature.

Some snapshots of a tracer

species, enclosed within the soap

bubble and passively advected

with the resulting flow, are pre-

sented in Fig. 6.69 and Fig. 6.70
during the early phase of the os-

cillatory process due to the given

initial conditions for both case E

and case D. On the one hand, it

can be seen, that initial symmetry

(in the present cases with respect to the domain diagonal) is maintained over a large

number of computational time steps, if the initial setting is located symmetrically

with respect to the underlying Cartesian grid.
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Fig. 6.69: Oscillation snapshots of the pair of merged bubbles of different size (case D) after
((0, 100, 275), (575, 925, 1050), (1350, 2125, 2600), (3050, 5000, 6300), (7100,
11275, 14325)) time steps of size ∆t “ 9.10107 ¨ 10´6 s on a two-dimensional
Cartesian grid of 256ˆ256 cells on a periodic 0.1024 mˆ0.1024 m domain; com-
putation is done fully explicit at CFL number CA “ 0.48
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Fig. 6.70: Oscillation snapshots of the pair of merged bubbles of equal size (case E) after ((0,
100, 275), (575, 725, 1000), (1250, 1400, 1925), (2175, 2500, 2800), (3050, 3625,
4050)) time steps of size ∆t “ 9.10107 ¨ 10´6 s on a two-dimensional Cartesian
grid of 128ˆ 128 cells on a periodic 0.0512 mˆ 0.0512 m domain; computation is
done fully explicit at CFL number CA “ 0.48



308 6. Extensions Towards a Conservative Two-Phase Flow Projection Method

Fig. 6.71: Selected time series of global data for the merged oscillating soap bubbles with
identical initial radii, computed on a two-dimensional grid of 128ˆ 128 grid cells:
top to bottom: relative error of level-set based reference phase mass (interface-
flow coupling) and entropy measure, followed by absolute values of x1-momentum
component (x), x2-momentum component (y) and kinetic energy
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On the other hand, the tracer species strictly remains within the bubble and interme-

diate values only occur in cut grid cells as average of portions in each fluid phase

within the respective cell.

Finally, Fig. 6.71 shows selected time series of global data. The top graph illustrates

the relative error of the interface-flow coupling according to section 6.5.6 based on

the strategy described in section 6.5, represented by the relativ error of the mass of

the reference fluid within the soap bubble with respect to its initial value and the

interface representation based on the level-set. The second plot shows the relative

error of the entropy related quantity P with respect to its initial global sum. The

size of the relative deviations over time are in the order of magnitude of machine

accuracy, indicating global conservation. The next two plots show the global sums of

the momentum components in each coordinate direction, which permanently vanish,

despite of the non-trivial arising flow field. The bottom graph shows global kinetic

energy as counterpart to the potential energy of the surface due to surface tension,

represended by the bubble perimeter in Fig. 6.67.





7. DISCUSSION

This chapter gives an overview of benefits, drawbacks and limitations as well as open

issues for a second order accurate numerical method for two-phase flow with sharp

interface to work properly, starting with the benefits in section 7.1, followed by the

limitations and open issues, discussed in some more detail in section 7.2.

7.1 Benefits

A numerical method for two-phase flow following the concepts presented in this work

has the following benefits:

‚ conservation laws are approximated

‚ conservative discretizations are used, guaranteeing discrete conservation inde-

pendent of grid resolution

‚ consistent and accurate correction of predicted divergence errors without need

of evaluation of the discrete divergence (first projection step)

‚ extendable conceptually straightforward to non-zero divergence constraints

‚ extendable to weakly compressible and compressible flows

‚ explicit stability limit is due to the flow speed instead of speed of sound since

sound waves are suppressed, allowing for much larger time step sizes during

time integration in the predictor step of the projection scheme, compared to

solving hyperbolic systems in compressible flow simulations

‚ no large matrices, since only linear systems for individual scalars need to be

solved due to the fractional step projection approach

‚ no iterative schemes
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Fig. 7.1: Exact level-set (thin solid line) with advected cell center values (X), interpolated
level-set node values (O) and piecewise linearly approximated level-set (thick dotted
line) on a grid in a one-dimensional domain: While the exact level-set has two sign
changes within one grid cell, the piecewise linear approximation does not recognize
any sign change since the level-set values in both contributing nodes have the same
sign. In two space dimensions this one-dimensional plot corresponds to neighboring
grid cell faces with parallel normal vectors

7.2 Drawbacks, Limitations and Open Issues

The present method yet suffers from the following drawbacks:

‚ double (or multiple) intersections per grid cell face (either due to an under-

resolved interface or due to interface break-up or merging) can not be detected

due to the locally piecewise (bi-)linear approximation of the level-set function

as sketched in Fig. 6.3 on page 155 and for a one-dimensional domain in Fig.
7.1. Thus, cell faces, that have been cut at the beginning of the time step, can

end up as un-cut grid cell faces although the transport of the exact interface

would suggest a double cut on the respective grid cell face. This can occur, if a

second cut from a neighboring grid cell face (which is visible as long as it stays



7.2. Drawbacks, Limitations and Open Issues 313

on a different grid cell face) enters the current grid cell face before the already

present intersection leaves the same grid cell face. Also, vice versa, grid cell

faces can be treated as un-cut at the beginning of the time step by the numer-

ical method until one of the intersections leaves the respective grid cell face,

although the grid cell face would be cut twice in the exact case. An example

of this behavior is sketched in Fig. 7.2: A fluidic structure with large curvature

with respect to the grid resolution is transported parallel to the respective grid

cell faces. While in the exact case two intersections are present at the grid cell

face at the new time level n` 1, the face changes its state from cut to non-cut

as soon as the second intersection enters the grid cell face and the entire grid

cell (with center labeled X) changes from cut to regular if no other face of that

grid cell is intersected. While the mass conservation algorithm from section

6.5 is able to deal with this behavior on the cost of slight shape oscillations

over time due to redistribution of mass according to the resulting state as grid

cells and faces oscillate between cut and regular in transport direction, space-

time integration on such grid cell faces can yield a completely different result

from the exact one as sketched in Fig. 7.3, leading to local zero order errors.

This problem can be bypassed to some extend by grid refinement around the

interface, depending on the magitude of the largest interface (mean) curvature

with respect to the grid resolution (see also Fig. 7.4 and the related explanation

below). However, depending on the physical phenomena (e.g. thin filaments),

it might not be possible to prevent this completely at finite grid resolution.

‚ multiple intersections of spatio-temporal domains as sketched on the left hand

side in Fig. 7.3 only approximate the expected behavior well, as long as there

is only one intersection present at any point in time and if both the temporal

and the spatial axes are only intersected once per time interval due to the use

of only one bi-/tri-linear ansatz function for approximation of quantities on

the respective spatio-temoral domain. If two intersections are present at the

same time as shown on the left hand side of Fig. 7.3, a single bi-/tri-linear

ansatz is not able to represent the true scenario anymore. If ansatz functions

are available for each of the spatio-temporal domain fractions, temporal over-

laps of intersections can be allowed for as well. However, the use of multiple

ansatz functions requires determination of multiple sets of ansatz coefficients

involving both spatial and temporal ghost fluid extrapolation for determination

of required data for computation of the ansatz coefficients.
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Fig. 7.2: Exact level-set zero level G0 at old (thin dashed line) and new (thin solid line) time
level and piecewise linear approximation at old (thick dashed line) and new (thick
solid line) time level on a two-dimensional Cartesian grid: While the level-set zero
level in the shown configuration is transported along the x-axis, double intersections
can be shadowed by the piecewise linear approximation appearing as no intersection.
As a consequence the state of grid cells and grid cell faces can oscillate between cut
and non-cut

‚ in case of high interface curvature with respect to the grid spacing, scenar-

ios as sketched in Fig. 7.4 can occur, depending on the magnitude and sign

of the cell center level-set values in the surrounding: If the sum of the abso-

lute values of Gi` 1
2
,j´ 1

2
and Gi` 1

2
,j´ 1

2
(with both negative sign as indicated

by p´q) is larger than the sum of absolute values of Gi´ 1
2
,j´ 1

2
and Gi` 1

2
,j` 1

2

(both with positive sign as indicated by p`q), which depends on the distance

of the respective grid cell centers (X) from the interface, then the interpola-

tion 1
2

ˆ

G
i´ 1

2 ,j´
1
2
`G

i´ 1
2 ,j`

1
2

2 `
G
i` 1

2 ,j´
1
2
`G

i` 1
2 ,j`

1
2

2

˙

can yield a nodal level-

set valueGi,j with negative sign in O although it is in the fluid phase where the

level-set has positiv sign. In this case all nodal values of the upper right grid

cell in Fig. 7.4 are negative, although the cell center value Gi` 1
2
,j` 1

2
is pos-

itive, corresponding to numerical separation of a fluidic structure of sub-grid

size. Depending on the sign ofGi,j , the dashed or the dotted approximation ap-

plies, however always with Gi` 1
2
,j` 1

2
ą 0 although beyond the approximated

interface.

This can be prevented by either local grid refinement, depending on the magni-

tude of the interface curvature with respect to the grid spacing, or by "global"

interface refinement in the vicinity of the interface, based on the maximum
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Fig. 7.3: Space-time scenario of the grid cell face that ends up cut twice by the exact level-set
zero level G0 in Fig. 7.2 at the new time level n` 1: left: Exact space-time scenario
at constant speed ~v, right: Resulting approximation of the space-time scenario: The
dotted line represents the path of the intersection until the second intersection enters
the grid cell face; as a result, the intersection which has been present at time level n
seems to move against the flow direction and leave the cell face in upwind direction,
resulting in the intersection path approximation represented by the solid line, leading
to the shaded/unshaded distribution of space-time fractions

occurring interface curvature. While the first approach, which is the more ef-

ficient one, leads to different grid resolutions along the interface, which brings

along numerical difficulties in terms of accuracy as velocity data needs to be

resolved as fine as the interface representing level-set function, the second ap-

proach leads to increased computational cost as the entire vicinity of the in-

terface is resolved depending on local interface properties (largest occuring

curvature).

A possible condition for grid refinement is, for example, the relation

hmin
d
cd ě

c

maxiPC κi
(7.1)

in which the left hand side represents the (minimal) grid spacing, the denomi-

nator on the right hand side is the largest occuring curvature and c ě 1 has to

hold in order to prevent poorly resolved structures as sketched in Fig. 7.4 in

the top right grid cell.

‚ although stand-alone level-set and volume-of-fluid methods can handle coales-

cence and separation of fluidic structures,

1. the current hybrid approach for mass conservation of each fluid phase as

described in section 6.5

2. the elliptic solvers as presented in [128], [130] and [129]
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Fig. 7.4: Exact level-set zero level (solid line) representing the interface Γ and approxima-
tions, depending on the sign of Gi,j in O resulting from the surrounding cell center
level-set values in X: dashed line: Gi,j ą 0, dotted line: Gi,j ď 0. In both cases,
however, Gi` 1

2 ,j`
1
2
ą 0, although – with respect to the approximated interface

(dashed or dotted) – the cell center i ` 1
2 , j `

1
2 is located in the phase in which

G ă 0

3. the limitation to a single cut per grid cell face at the same time as de-

scribed above

hamper break-up and merging by default without special treatment, which is

subject of future research. Concerning 1., the mass stabilization algorithm

needs to be extended by both an option for target value determination in cut grid

cells with more than two different fluid portions per cut cell and the level-set

correction algorithm needs to be able to handle different correction velocities

in a single cut cell. The elliptic solvers regarding 2. need to be able to handle

more than two fluid portions per cut primal and dual grid cell as well, which,
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among others, means that a cut cell has to be able to carry more than two bi-

/tri-linear ansatz functions and that suitable inter- and extrapolation algorithms

for each fluid portion including ghost fluid data generation need to be provided

in order to determine the necessary right hand side values in the arising linear

systems for computation of the ansatz coefficients. With respect to 3., sub-

grid-models need to be developed, covering the case of two fronts being close

enough to each other within one cut cell, such that a grid cell face can be

intersected more than once at the same time, guaranteeing that these cases and

the involved double (multiple) sub-grid sign change(s) of the level-set function

on a single grid cell face can be detected robustly.

‚ the scaling of the penalizing level-set re-initialization has to be optimized and

potentially not yet considered influences have to be discovered and taken into

account: while the chosen set of scaling factors yield a reduction of the de-

viation of the magnitude of the level-set gradient from unity in all presented

examples as desired, for each example individual factors can be found, that

yield smaller deviations than the common factors and, thus, better results.

‚ sharp treatment of viscous and diffusive fluxes, in combination with space-time

integral sharp interface elliptic solvers with time dependent coefficients, is not

yet coupled to the present building blocks and is subject of current research

‚ test cases with variable density per fluid phase and non-zero divergence con-

straint, which arise in many typical applications for non-isothermal flow be-

yond the incompressible assumption, have to be analyzed after extending the

method accordingly

‚ for simulation of practical problems using a Cartesian grid method, a solid

wall cut cell method, such as proposed in [22], [21], [112] or [94], needs to be

incorporated at the domain boundary allowing for arbitrary domain shapes

‚ discretization of a transport equation for surface surfactants needs to be added

to the system in order to make physical processes available, that change the

local surface tension coefficient

‚ chemical reactions – and with that spatio-temporal dependency of the various

coefficients, such as dynamic viscosity and species diffusivity, and non-zero

species sources – need to be considered, as, for example, done in [150]. Pre-

liminary work with respect to the implementation into the present method has

been done in [61]
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Particular issues to be covered for a locally second order accurate two-phase flow

method are

‚ determintion of 4-dimensional space-time weights for source terms in cut grid

cells in case of d “ 3

‚ application of the 3-dimensional space-time weights to the source terms in cut

grid cells in case of d “ 2

‚ second order accurate phase state reconstruction in space-time centroids of cut

cell fractions or substitute in cell center incorporating the local gradients

‚ second order accurate recovery of phase states in centroids of cell face fractions

for flux computation or substitute in cell face center

‚ evaluation of values at space-time centroids in cut cell fractions and on cut face

fractions, if more than one spatio-temporal cut is present

‚ development of a second order accurate time integration strategy for unsplit

methods in cut grid cells, e.g. via grid cell face local weights within the Runge-

Kutta time integration scheme. Preliminary studies, however, suggest, that

consideration of data from a third time level might be required for obtaining

second order accuracy in cut grid cells in time locally. However, next to in-

crease of computer storage consumption, this brings along a list of other not

yet covered issues.

‚ suitable strategies for both Poisson solution based pressure update for viscous

flow according to [30] and the pressure boundary condition similar to [102]

need to be developed for accurate pressure solutions at variable density flows
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The following open source software was used for the given purpose in order to pro-

duce the results in the present thesis:

‚ GCC: C++ complier1

‚ MPICH: implementation of the message passing interface (MPI) for paral-

lelization2

‚ SILO: data storage3

‚ HDF5: data storage4

‚ HYPRE: solution to linear systems5

‚ SAMRAI: parallelization, adaptive mesh refinement, data management, grid

generation and extended C++ commands6

‚ STAFSEA2: the STructured Adaptive Flow Solver for Engineering and Atmospheric

Applications that implements the present numerical method in C++7

‚ VisIt: visualization of field data8

‚ Git: version control9

1 https://gcc.gnu.org/, [last visited on July 19th, 2016]
2 https://www.mpich.org/, [last visited on July 19th, 2016]
3 https://wci.llnl.gov/simulation/computer-codes/silo,

[last visited on July 19th, 2016]
4 https://www.hdfgroup.org/HDF5/, [last visited on July 19th, 2016]
5 https://computation.llnl.gov/project/linear_solvers/software.php,

[last visited on July 19th, 2016]
6 https://computation.llnl.gov/project/SAMRAI/,

[last visited on July 19th, 2016]
7 http://www.mi.fu-berlin.de/w/AgKlein/WelcomeSTAFSEAsquared,

[last visited on July 19th, 2016]
8 https://wci.llnl.gov/simulation/computer-codes/visit/,

[last visited on July 19th, 2016]
9 https://git-scm.com/,

[last visited on July 19th, 2016]

https://gcc.gnu.org/
https://www.mpich.org/
https://wci.llnl.gov/simulation/computer-codes/silo
https://www.hdfgroup.org/HDF5/
https://computation.llnl.gov/project/linear_solvers/software.php
https://computation.llnl.gov/project/SAMRAI/
http://www.mi.fu-berlin.de/w/AgKlein/WelcomeSTAFSEAsquared
https://wci.llnl.gov/simulation/computer-codes/visit/
https://git-scm.com/
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‚ doxygen: documentation generation10

‚ TeX Live: LaTeX document typesetting11

‚ TeXShop: LaTeX editor12

‚ TikZ: generation of vector graphics13

‚ Xfig: generation of vector graphics14

‚ Gimp: transformation of pixel graphics from VisIt into .pdf and .eps graphics

(VisIt only provides pixel graphics)

‚ fig2pdf : transforming Xfig figures into pdf files15

‚ pdfcrop: truncation of pdf graphics16

‚ JabRef : bibliography management17

‚ Eclipse: C++ editor18

‚ Linux (Debian 8 Jessie): computer operating system

In addition, the following commercial software was used for the given purpose:

‚ XCode: C++ editor and LaTeX editor19

‚ MATLAB: visualization of time series data20

‚ Maple: computer algebra system (CAS)21

‚ Mac OSX (10.6.8, 10.8.5 and 10.10.5): operating systems for Apple computers

10 http://www.stack.nl/~dimitri/doxygen/, [last visited on July 19th, 2016]
11 https://www.latex-project.org/, [last visited on July 19th, 2016]
12 http://pages.uoregon.edu/koch/texshop/, [last visited on July 19th, 2016]
13 http://www.texample.net/tikz/, [last visited on July 19th, 2016]
14 http://epb.lbl.gov/xfig/, [last visited on July 19th, 2016]
15 http://fig2ps.sourceforge.net/fig2ps.1.html, [last visited on Aug. 17th, 2016]
16 http://pdfcrop.sourceforge.net/, [last visited on July 19th, 2016]
17 http://jabref.sourceforge.net/, [last visited on July 19th, 2016]
18 http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/
mars1, [last visited on July 19th, 2016]

19 https://developer.apple.com/xcode/, [last visited on July 19th, 2016]
20 http://www.mathworks.com/products/matlab/,

[last visited on July 19th, 2016]
21 http://www.maplesoft.com/products/Maple/,

[last visited on July 19th, 2016]

http://www.stack.nl/~dimitri/doxygen/
https://www.latex-project.org/
http://pages.uoregon.edu/koch/texshop/
http://www.texample.net/tikz/
http://epb.lbl.gov/xfig/
http://fig2ps.sourceforge.net/fig2ps.1.html
http://pdfcrop.sourceforge.net/
http://jabref.sourceforge.net/
http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/mars1
http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/mars1
https://developer.apple.com/xcode/
http://www.mathworks.com/products/matlab/
http://www.maplesoft.com/products/Maple/
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9. SUMMARY AND OUTLOOK

The present work serves as starting point for a numerical method for simulation of

immiscible chemically reacting zero Mach number variable density two-phase flow

with sharp interfaces and its implementation into a newly set up software framework.

It combines numerical concepts from [150] – dedicated to combustion – and [92] –

addressing meteorological applications and the derivation of a numerical concept for

covering different flow regimes – as well as related literature each.

The basic single-phase solver follows one of the variants of the projection method

presented in [150], generalized by concepts presented in [92] and, for example, [5]

and [6], in order to solve the governing set of Navier-Stokes equations for immis-

cible chemically reacting two-phase flow at arbitrary equation of state with variable

density in the zero Mach number limit (yet without specification of particular reac-

tion kinetics): A predictor step solves the hyperbolic-parabolic part of the equations

at time-independent pressure using a second order accurate two-stage Runge-Kutta

time integration scheme, applied to an integral Finite Volume flux balance for each

grid cell of the underlying fixed Cartesian grid. Applying the generalized concept

from [92] allows for a first cell centered correction step to ensure that the advective

fluxes on grid cell faces satisfy the divergence constraint arising in the zero Mach

number limit without evaluation of the discrete divergence, since divergence errors

can be derived from predictor information directly. A second node centered projec-

tion step corrects the updated cell centered velocity field to satisfy the divergence

constraint as well and determines an update for the node centered pressure field,

which has been assumed fix in time during the predictor step, corresponding to an

incremental pressure-correction projection method according to [15] on a staggered

grid as classified, for example, in [30] and [65].

The single-phase scheme is extended in order to account for suitable overall flux bal-

ances in the vicinity of the fluidic interface following concepts from [156] in order

to avoid issues due to arbitrarily small grid cell fractions at the fluid interface. The

latter is represented by a combination of level-set and volume-of-fluid discretiza-
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tions. Both well-established methods suffer from insufficiencies with respect to a

discretely conservative numerical method for simulation of fluid flow with differ-

ent fluid phases, separated by a sharp interface. The concept from [150] and [152]

for overcomming these issues, based on work from [28], is modified and adapted

to the generalized setup of the present numerical scheme as already briefly sketched

in [182]. Different variants of keeping the discretizations of both fluidic interface

and fluid flow coupled are analyzed, and in contrast to [150] more weight is put

on the level-set function for guiding the resulting correction scheme due to its spa-

tially higher order accurate discretization, while maintaining the mass conservation

property provided by volume-of-fluid information. Retention of sharp fluid phase

separation without smearing around the interface and stable mass conservation of

each fluid phase up to machine accuracy is shown for incompressible flow, while the

fluidic interface in terms of the level-set function is coupled second order accurate to

the fluid flow, represented by the conserved quantities, serving as basis for split flux

computation in the vicinity of the interface in each respective subsequent time step.

In addition, a local non-iterative penalization method borrowing from [72] and [42]

is proposed, which keeps deviations of the level-set function from a signed distance

function bounded. While yet there is space for optimization, the combined approach

stabilizes the method by preventing resulting gradients of the discretely transported

level-set function from vanishing or heavy steepening.

Further, a discretization technique for approximation of the singular surface stress

tensor is proposed. The present yet smoothed approach offers an interesting alter-

native to a "real" sharp interface approach for treating surface tension, once the re-

maining open issues are resolved, since it discretizes the influence due to surface

tension conservatively. In addition, due to the analytical spatio-temporal integration

of ansatz functions, which depend on continuously available data around the inter-

face, small sub-cell transition region widths, approximating the sharp interface case,

can be chosen for approximation of the involved smoothed delta Dirac distribution.

In this case, the approximation, which depends on the gradient of the level-set func-

tion, gets independent of the presented level-set penalization around the interface,

since only grid cells with immediate contact to the interface, in which the level-set

gradient is restored without penalization according to [72], remain involved in the

approximation of the surface stress tensor. However, for making these narrow tran-

sition region widths possible, three remaining open issues need to be overcome in

future work: On the one hand – in contrast to a "real" sharp interface approach, in

which the ansatz functions for pressure determination need to allow for jumps in the
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interface normal pressure profile in grid cells cut by the interface – in the present case

the ansatz functions for pressure determination need to allow for kinks in grid cells,

which are intersected by the transition region boundary for making the ansatzes for

both the surface stress tensor and the pressure match. On the other hand, observed

deviations of the effective forces due to surface tension from the interface normal

direction in grid cells at the transition region boundary need to be corrected due to

the lack of an implicit symmetry property in full transition region cells, since with

smaller transition region widths the influence of grid cells at the transition region

boundary rises both due to the rising relative number of such contributing grid cells

and the shorter distance of the latter to the interface, which is equivalent to increased

amplitudes of the contributing forces. Additionally, a conservative consistent way of

how to include a basically smoothed approach into a sharp interface momentum bal-

ance while both keeping arising spurious velocities in both fluid phases in the same

order of magnitude and the chosen strategy consistent with the governing equations

remains to be found. Therefore the presented examples of merged pairs of oscillating

soap bubbles, whose results are in good agreement with both experimental and theo-

retical investigations from [97] and [103], are restricted to the case of density ratios

of one, guaranteeing spurious velocities of the same order of magnitude in both fluid

phases.

For a detailed discussion on further open issues the reader is referred to section 7.2,

containing a (not necessarily complete) list of necessary future work. The next ma-

jor step is the coupling of the present building blocks with recent not yet published

work on sharp interface elliptic solvers for moving interfaces for the corrector step

of the projection method based on developments for stationary interfaces from [128],

[130] and [129] in order to yield an applicable method with fully conservative sharp

interface discretizations only. The involved techniques are expected to be applicable

to discretization of the implicitly treated contributions of friction to the momentum

equation and diffusion to the species balances as well. The missing core features in

this context are sharp treatment of the Poisson coefficients due to the interfacial move-

ment in time, the respective flux balances while solving the integral elliptic problems,

treatment of pressure nodes that change fluid phase during the time step considered

and distribution of contributions due to the pressure in the momentum equation to the

predictor and the corrector steps. Concluding, fully conservative locally second order

accurate discretization of zero Mach number variable density flow with strictly sharp

moving interfaces in all the numerical building blocks remains a challenging task, to

which this work contributes to, requiring some amout of future work.
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A. CALCULUS

A.1 Matrix and Vector Operations

In this section identities of some matrix and vector operations, used throughout the

present work and based on the product rule and the chain rule, are given. Therefore,

within this section s, t P R are assumed to be arbitrary scalar quantities with p� qt
as the partial derivative of � with respect to t, (~n, ~v, ~wq P R3 are arbitrary vectors

and M P R3ˆ3 is an arbitrary matrix. Further, I P R3ˆ3 is the identity matrix and

p∇ ¨ ~vq P R, p∇ ¨Mq P R3, and p∇~vq P R3ˆ3 as well as p∇sq P R3 holds. With that

and the identity
˜

~v ~w ” ~v ˝ ~w (A.1)

the following relations are obtained:

˜

p~v ~wq ¨ ~n “ ~v p~w ¨ ~nq (A.2)

˜

∇ ¨ pM ¨ ~v q “ p∇ ¨Mq ¨ ~v `M : ∇~v (A.3)

˜

∇ ¨ p s~v q “ s p∇ ¨ ~vq ` ~v ¨∇s (A.4)

˜

sI : ∇~v “ s p∇ ¨ ~vq (A.5)

˜

p s~v qt ¨ ~v “

ˆ

1

2
s p~v ¨ ~vq

˙

t

`
1

2
p s qt p~v ¨ ~vq (A.6)

˜

1

2
~v ¨∇ p~v ¨ ~vq “ p~v ˝ ~vq : ∇~v (A.7)

˜

∇
ˆ

1

s

˙

“ ´
1

s2
∇s (A.8)
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Note that both left and right hand sides of (A.3), (A.4), (A.5), (A.6), (A.7) are in R,

the ones from (A.2), (A.8) are in R3 and the ones from (A.1) in R3ˆ3. Relation (A.6)

results from applying the product rule to
`

1
2s p~v ¨ ~vq

˘

t
, yielding

ˆ

1

2
s p~v ¨ ~vq

˙

t

“

ˆ

1

2
ps~vq ¨ ~v

˙

t

“
1

2
p s~v qt ¨ ~v `

1

2
s~v ¨ p~v qt

“ p s~v qt ¨ ~v ´
1

2
p s~v qt ¨ ~v `

1

2
s p~v ¨ p~v qtq

“ p s~v qt ¨ ~v ´
1

2
p s qt p~v ¨ ~vq ´

1

2
s p p~v qt ¨ ~vq `

1

2
s p~v ¨ p~v qtq

“ p s~v qt ¨ ~v ´
1

2
p s qt p~v ¨ ~vq (A.9)



B. BASIC DERIVATIONS

B.1 Discontinuity of Mass Fractions

Using

‚ Henry’s law

C
p´q
s “

1

Hs
C
p`q
s (B.1)

with concentration Cs and non-dimensional Henry’s law constant Hs,

‚ the definition of the mass concentration (or partial density)

ρs :“ ρYs “ CsMs (B.2)

with

ρ “
ÿ

s

ρs “
ÿ

s

ρYs “ ρ
ÿ

s

Ys
loomoon

” 1

(B.3)

and molar mass Ms of species s, and

‚ the fact that molar mass

Ms “M
p`q
s “M

p´q
s (B.4)

of a species s is the same in both fluid phases,
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the discontinuity of mass concentration can be represented by

J ρYs K “ ρp`qY
p`q
s ´ ρp´qY

p´q
s

(B.2)
“ C

p`q
s M

p`q
s ´ C

p´q
s M

p´q
s

(B.4)
“

´

C
p`q
s ´ C

p´q
s

¯

Ms

“ C
p`q
s Ms

˜

1´
C
p´q
s

C
p`q
s

¸

(B.2)
“ ρp`qY

p`q
s

˜

1´
C
p´q
s

C
p`q
s

¸

(B.1)
“ ρp`qY

p`q
s

ˆ

1´
1

Hs

˙

(B.5)

based on one-sided data. The left hand side of the latter equation can be split accord-

ing to

J ρYs K “ Y
p´q
s J ρ K` ρp`q JYs K (B.6)

and solution for JYs K yields the intermediate result

JYs K “ Y
p`q
s

ˆ

1´
1

Hs

˙

´ Y
p´q
s

J ρ K
ρp`q

(B.7)

for the discontinuity of mass fractions. The density jump can be expressed as sum of

equation (B.5) over all species to yield

J ρ K “ ρp`q ´ ρp´q “
ÿ

s

ρp`qY
p`q
s ´

ÿ

s

ρp´qY
p´q
s “

ÿ

s

J ρYs K

“ ρp`q
ÿ

s

„

Y
p`q
s

ˆ

1´
1

Hs

˙

“ ρp`q

˜

1´
ÿ

s

˜

Y
p`q
s

Hs

¸¸

(B.8)

resulting in equation (B.7) to read

JYs K “ Y
p`q
s

ˆ

1´
1

Hs

˙

´ Y
p´q
s

ÿ

s̃

„

Y
p`q

s̃

ˆ

1´
1

Hs̃

˙

(B.9)

which requires consideration of

JYs K :“ Y
p`q
s ´ Y

p´q
s (B.10)
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for obtaining the final expression for JYs K. The latter reads

JYs K :“ Y
p`q
s

¨

˚

˚

˝

1´
1

Hs
ř

s̃

ˆ

Y
p`q

s̃
Hs̃

˙

˛

‹

‹

‚

(B.11)

after replacement of Y p´qs in equation (B.9) by Y p`qs ´ JYs K due to equation (B.10)

and solving for JYs K, taking into account that
ř

s Y
p`q
s ” 1.

B.2 Energy Balances

In this section the energy balances for kinetic and potential energy are derived and

the pressure formulation of the total energy balance is given.

B.2.1 Kinetic Energy Balance

The kinetic energy balance results from scalar multiplication of the momentum bal-

ance (3.43c) with the fluid velocity ~v:

~v ¨
”

p ρ~v qt `∇ ¨ pρ~v ˝ ~vq ´∇ ¨ S ´
´

ρ~g `~fσδΓ

¯ı

“ 0 (B.12)

Application of the relations (A.3) and (A.6) from appendix section A.1 to the result-

ing expressions A, B and C in

p ρ~v qt ¨ ~v
looomooon

A

`p∇ ¨ p ρ~v ˝ ~v qq ¨ ~v
looooooooomooooooooon

B

´p∇ ¨ Sq ¨ ~v
loooomoooon

C

´

´

ρ~g `~fσδΓ

¯

¨ ~v “ 0 (B.13)

yields

A
hkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkj

˜

ˆ

1

2
ρ p~v ¨ ~vq

˙

t

`
1

2
p~v ¨ ~vq p ρ qt

loooooomoooooon

D

¸

`

B
hkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkj

˜

∇ ¨ p ρ~v ˝ ~v ¨ ~v q
loooooooomoooooooon

E

´ρ~v ˝ ~v : ∇~v
¸

` S : ∇~v ´∇ ¨ pS ¨ ~vq
looooooooooomooooooooooon

´C

´

´

ρ~g `~fσδΓ

¯

¨ ~v “ 0

(B.14)
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which transforms to
ˆ

1

2
ρ p~v ¨ ~vq

˙

t

`∇ ¨
ˆ

1

2
p~v ¨ ~vq ρ~v

˙

´∇ ¨ pS ¨ ~vq ` S : ∇~v ´
´

ρ~g `~fσδΓ

¯

¨ ~v

`
1

2
ρ~v ¨∇ p~v ¨ ~vq ´ ρ~v ˝ ~v : ∇~v

looooooooooooooooomooooooooooooooooon

F

“ 0 (B.15)

after applying the mass balance (3.43a) with (3.60a) and relation (A.4) to expression

D, relation (A.2) to expression E and simplification. Expression F vanishes due to

relation (A.7) and the balance

ρ
D

D t

ˆ

1

2
p~v ¨ ~vq

˙

“ ∇ ¨ pS ¨ ~vq ´ S : ∇~v `
´

ρ~g `~fσδΓ

¯

¨ ~v (B.16)

for the kinetic energy remains after subtracting the mass balance (3.43a) with (3.60a).

B.2.2 Potential Energy Balance

As only the vertical component of the vector of gravitational acceleration ~g has a non-

zero component ´g, ~g is irrotational and can be expressed by the gradient ∇U of the

potential U which, in addition, is independent of time t due to time independence of

~g:

~g “ ´∇U (B.17)

pU qt “ 0 (B.18)

Multiplication of the mass balance (3.43a) considering (3.60a) with the potential U
and application of the product rule results in

p ρU qt ´ ρ pU qt
looomooon

“ 0

`∇ ¨ p ρU~v q ´ ρ~v ¨∇U “ 0 (B.19)

which finally yields the balance

ρ
D

D t
p ρU q “ ´ρ p~g ¨ ~vq (B.20)

for potential energy after subtraction of the mass balance (3.43a) considering (3.60a).
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B.2.3 Pressure Formulation of Internal Energy Balance

Subtracting the kinetic energy balance (B.16) from the total energy balance (3.43d)

yields

ρ
D

D t

ˆ

e´
1

2
p~v ¨ ~vq

˙

“ ρ
D

D t
pu` U q

“ S : ∇~v ´ ρ~g ¨ ~v ´∇ ¨ p~jq `~jCq ` 9qq ´ 9q% (B.21)

due to definition (3.6) and after subtraction of the potential energy balance (B.20)

from the above result

ρ
D

D t
pu q “ S : ∇~v ´∇ ¨ p~jq `~jCq ` 9qq ´ 9q% (B.22)

remains. This balance of internal energy can be written as

ρ
D

D t
ph q “

D

D t
p p q ` p p∇ ¨ ~vq ` S : ∇~v ´∇ ¨ p~jq `~jCq ` 9qq ´ 9q% (B.23)

using the definition of enthalpy

h :“ u`
p

ρ
(B.24)

and the mass balance (3.43a) with (3.60a). Since internal energy u and enthalpy h

are functions of the pressure p in general, pressure related expressions have to be

extracted from enthalpy. With

h “ h pρ, p, Ysq (B.25)

and the corresponding total derivative

dh “

ˆ

Bh

Bρ

˙

p,Ys

dρ `

ˆ

Bh

Bp

˙

ρ,Ys

dp `
Ns
ÿ

s“1

«

ˆ

Bh

BYs

˙

p,ρ

dYs

ff

(B.26)

the material derivative of the enthalpy in equation (B.23) can be replaced by

D

D t
ph q “

ˆ

Bh

Bρ

˙

p,Ys

„

p ρ qt ` ~v ¨∇ρ


`

ˆ

Bh

Bp

˙

ρ,Ys

„

p p qt ` ~v ¨∇p


`

Ns
ÿ

s“1

«

ˆ

Bh

BYs

˙

p,ρ

„

pYs qt ` ~v ¨∇Ys


ff

(B.27)
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which finally yields

D

D t
ph q “

ˆ

Bh

Bp

˙

ρ,Ys

„

p p qt ` ~v ¨∇p


´

ˆ

Bh

Bρ

˙

p,Ys

„

ρ p∇ ¨ ~vq


`

Ns
ÿ

s“1

«

ˆ

Bh

BYs

˙

p,ρ

„

%s ´
1

ρ

´

∇ ¨~js
¯



ff

(B.28)

after considering again the mass balance (3.43a) with (3.60a) and the balances of

species masses (3.43b). With that and relation (3.30), equation (B.23) reads

˜

1´ ρ

ˆ

Bh

Bp

˙

ρ,Ys

¸

D

D t
p p q `

“ 0
hkkkkkkkkkkikkkkkkkkkkj

p p∇ ¨ ~vq ´ pI : ∇~v

“ ´ρ

ˆ

Bh

Bρ

˙

p,Ys

ρ p∇ ¨ ~vq ´ T : ∇~v `∇ ¨~jq ´ 9qq

`

Ns
ÿ

s“1

«

ˆ

Bh

BYs

˙

p,ρ

„

ρ%s ´
´

∇ ¨~js
¯



`∇ ¨ hs~js ` ρ%s
`

∆h0
˘

s

ff

(B.29)

considering definitions (3.39) and (3.37). Further, due to relation (A.5) in appendix

section A.1, yielding p p∇ ¨ ~vq ´ pI : ∇~v “ 0, and

ˆ

Bh

BYs

˙

p,ρ

“ hs (B.30)

due to

h “
Ns
ÿ

s“1

phsYsq (B.31)

the relation

D

D t
p p q ` ρc2 p∇ ¨ ~vq “ Ξ´1

«

´ T : ∇~v `∇ ¨~jq ´ 9qq

`

Ns
ÿ

s“1

´

~js ¨∇hs ` ρ%s
“

hs `
`

∆h0
˘

s

‰

¯

ff

(B.32)

results as pressure formulation of the internal energy equation with Ξ as defined in

(3.90) and frozen speed of sound c as given in (3.91).
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B.3 Integral Average in Cut Grid Cells

The integral average Φ of an arbitrary quantity Φ can be transformed according to

Φ :“
1

|Ω|

ˆ
Ω

Φ dV “
1

|Ω|

ÿ

ϕ

ˆ
Ωϕ

Φϕ dV (B.33)

if sub-sets Ωϕ of the domain Ω are occupied by different fluid phases ϕ with different

properties. With definition of the volume fraction

αϕ :“

´
Ωϕ dV´
Ω dV

”
|Ωϕ|

|Ω|
(B.34)

and the integral average

Φ
ϕ

:“

´
Ωϕ Φϕ dV´

Ωϕ dV
”

1

|Ωϕ|

ˆ
Ωϕ

Φϕ dV (B.35)

of fluid phase ϕ, equation (B.33) transforms to

Φ “
ÿ

ϕ

`

αϕ Φ
ϕ˘ (B.36)

which reads

Φ “ αp`qΦ
p`q
` αp´qΦ

p´q
“ α Φ

p`q
` p1´ αq Φ

p´q (B.37)

for two-phase flow with α :“ αp`q and ϕ P tp`q, p´qu.





C. ACCURACY

This section is denoted to the accuracy of a numerical method and its order of con-

vergence. Both is discussed in the following sections.

C.1 Integral Average and Centroid Value

Taylor expansion of the scalar quantity Φ in space in the definition

Φ “

´
Ω Φ dV´
Ω dV

(C.1)

of the integral – possibly time-dependent – average Φ over an arbitrary control vol-

ume Ω around a reference location ~x0 reads

Φ “ Φ0 ` p~x´ ~x0q ¨
BΦ

B~x

ˇ

ˇ

ˇ

ˇ

0

`
1

2

d
ÿ

d“1

d
ÿ

e“1

px´ x0qd px´ x0qe
B2Φ

BxdBxe

ˇ

ˇ

ˇ

ˇ

0

` ... (C.2)

and the integral average yields

Φ “ Φ0 `

ˆ

´
Ω ~x dV´
Ω dV

´ ~x0

˙

¨
BΦ

B~x

ˇ

ˇ

ˇ

ˇ

0

`

řd
d“1

řd
e“1

´

B2Φ
BxdBxe

ˇ

ˇ

ˇ

0

´
Ω px´ x0qd px´ x0qe dV

¯

2
´

Ω dV
` ... (C.3)

since the reference quantities – indexed 0 – are fixed values at the fixed location ~x0

and, thus, do not affect the spatial integration. This further simplifies to

Φ “ Φ0 ` p~xc ´ ~x0q ¨
BΦ

B~x

ˇ

ˇ

ˇ

ˇ

0

`

řd
d“1

řd
e“1

´

B2Φ
BxdBxe

ˇ

ˇ

ˇ

0

´
Ω px´ x0qd px´ x0qe dV

¯

2
´

Ω dV
` ... (C.4)
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using the common definition of the centroid

~xc “

´
Ω ~x dV´
Ω dV

(C.5)

of a region Ω. If now the reference location is chosen to be the centroid of the region

Ω, ~x0 :“ ~xc , the first order term cancels and

Φ “ Φc ` Φ
1

(C.6)

with

Φ
1

:“

řd
d“1

řd
e“1

´

B2Φ
BxdBxe

ˇ

ˇ

ˇ

c

´
Ω px´ xcqd px´ xcqe dV

¯

2
´

Ω dV
` ... (C.7)

remains. If the state Φ is distributed linearly across the control volume Ω and, thus,

in the entire control volume B2Φ
BxdBxe

“ 0 for any combination of d and e (which also

holds for higher derivatives in this case), the integral average over the control volume

is represented exactly by the value of Φ in the centroid of the control volume ~xc. For

non-linear state distributions and, thus, in general B2Φ
BxdBxe

‰ 0 in the entire control

volume, the integral average Φ can be approximated with a spatial second order error

by the value Φc in the centroid of a control volume as seen from equation (C.6).

C.2 Order of Accuracy

First, the time step local temporal accuracy is examined before discussing the global

order of accuracy and the order of accuracy of the approximation of the resulting

terms. This is done based on the propagation of a smooth quantity Φ in time by a

numerical scheme from Φpnq to Φpn`1q according to the transport equation

BΦ

Bt
`∇ ¨ ~fΦ “ q, (C.8)

where ~fΦ represents the flux of Φ. The following issues are also discussed, for ex-

ample, in Chapter 8 of [106] and in Chapter 2.2 of [120].
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C.2.1 Time Step Local Order of Accuracy

Taylor expansion of Φpn`1q around the old time level value at level n yields

Φpn`1q “Φpnq `∆t

ˆ

BΦ

Bt

ˇ

ˇ

ˇ

n
`

∆t

2

B2Φ

Bt2

ˇ

ˇ

ˇ

n
`

∆t2

6

B3Φ

Bt3

ˇ

ˇ

ˇ

n
`Op∆t3q

˙

(C.9)

leading to

BΦ

Bt

ˇ

ˇ

ˇ

n
“

Φpn`1q ´ Φpnq

∆t
´

∆t

2

B2Φ

Bt2

ˇ

ˇ

ˇ

n
´

∆t2

6

B3Φ

Bt3

ˇ

ˇ

ˇ

n
´ .... (C.10)

and, thus, to an approximation of the time derivative of Φ with a first order error due

to
BΦ

Bt

ˇ

ˇ

ˇ

n
“

Φpn`1q ´ Φpnq

∆t
`Op∆tq (C.11)

In comparison, Taylor expansion around the intermediate time level n` 1
2 results in

Φpn`1q “Φpn`
1
2
q `

∆t

2

BΦ

Bt

ˇ

ˇ

ˇ

n` 1
2

`
∆t2

8

B2Φ

Bt2

ˇ

ˇ

ˇ

n` 1
2

`
∆t3

48

B3Φ

Bt3

ˇ

ˇ

ˇ

n` 1
2

`
∆t4

384

B4Φ

Bt4

ˇ

ˇ

ˇ

n` 1
2

`Op∆t5q
(C.12)

for the value at time level n` 1 and

Φpnq “Φpn`
1
2
q ´

∆t

2

BΦ

Bt

ˇ

ˇ

ˇ

n` 1
2

`
∆t2

8

B2Φ

Bt2

ˇ

ˇ

ˇ

n` 1
2

´
∆t3

48

B3Φ

Bt3

ˇ

ˇ

ˇ

n` 1
2

`
∆t4

384

B4Φ

Bt4

ˇ

ˇ

ˇ

n` 1
2

`Op∆t5q
(C.13)

for the value at time level n. The difference

Φpn`1q ´ Φpnq “∆t

ˆ

BΦ

Bt

ˇ

ˇ

ˇ

n` 1
2

`
∆t2

24

B3Φ

Bt3

ˇ

ˇ

ˇ

n` 1
2

`Op∆t4q
˙

(C.14)

can be transformed to

BΦ

Bt

ˇ

ˇ

ˇ

n` 1
2

“
Φpn`1q ´ Φpnq

∆t
´

∆t2

24

B3Φ

Bt3

ˇ

ˇ

ˇ

n` 1
2

` ... (C.15)
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and, thus, to an approximation of the time derivative

BΦ

Bt

ˇ

ˇ

ˇ

n` 1
2

“
Φpn`1q ´ Φpnq

∆t
`Op∆t2q (C.16)

of Φ with a second order error. This can be written as

Φpn`1q “ Φpnq `∆t
BΦ

Bt

ˇ

ˇ

ˇ

n` 1
2

`Op∆t3q (C.17)

or, using the initial transport equation to substitute the time derivative,

Φpn`1q “ Φpnq ´∆t
´

∇ ¨ ~fΦ ´ q
¯pn` 1

2
q

`Op∆t3q (C.18)

and after integration over a fix control volume Ω one ends up with the Finite Volume

equation

Φ
pn`1q

´ Φ
pnq
“ ∆t

„

1

∆V

ˆˆ
Ω
q dV ´

ˆ
BΩ

´

~fΦ ¨ ~n
¯

dA

˙pn` 1
2
q

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

p♦q

` Op∆t3q

(C.19)

for determination of the integral average value Φ
pn`1q based on the known value

Φ
pnq. The expression p♦q needs to be evaluated or approximated at the half time

level n` 1
2 with a truncation error of magnitude Op∆tpq with p ě 2 for keeping the

order of accuracy of the approximation of Φ
pn`1q at the same accuracy level.

For a predictor-corrector method this means, that if the predictor is a second order

accurate method, the predicted value is already second order accurate with a third

order local truncation error after a single time step and corrections are only third or

higher order terms.

C.2.2 Global Order of Accuracy

As seen, for a second order accurate Finite Volume method, the local truncation error,

which is the error made within one single time step of size ∆t, is Op∆t3q, while the

global truncation error, which is the error accumulated over all performed time steps,

is Op∆t2q. The latter can be seen if the difference with respect to the initial value is
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considered. While the ’time step local’ difference has a truncation error

Φ
pn`1q

´ Φ
pnq
“ ...`Op∆t3q (C.20)

the global accumulated error up to time level n is

Φ
pnq
´ Φ

p0q
“ ...` n Op∆t3q (C.21)

where n is the number of time steps. Since the time passed between time level n and

the initial time level equals the number of time steps times the (average) local time

step size ∆t

tpnq ´ tp0q “ n ∆t (C.22)

finally the relation

Φ
pnq
´ Φ

p0q
“ ...`

´

tpnq ´ tp0q
¯

Op∆t2q (C.23)

is obtained. This holds if n is independent of ∆t.

C.3 Order of Convergence

If Φh is the numerical approximation to the exact solution Φ of a problem, the ap-

proximation error

E :“ Φh ´ Φ (C.24)

can be defined. The order of convergence p represents the global order of accuracy

of a numerical method and is defined as

} E }p ď C hp (C.25)

with constant C independent of h. If the numerical method has the convergence order

p, the ratio between some norm p of the error E and the pth power of the step size h

of interest (e.g. the time step ∆t) is smaller than an arbitrary finite constant C, which

means, the larger p and the smaller the error constant C is, the better is the numerical
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approximation. Typically, the expression

} E }p :“

˜

1

N

N
ÿ

i“1

|Ei|
p

¸

1
p

(C.26)

with one of the choices

‚ p “ 1: arithmetic mean of |Ei|

‚ p “ 2: quadratic mean of |Ei|

‚ pÑ8: maximum of |Ei|

and N as the number of available sample points on the coarser grid is used as finite

approximation of the discrete p-norms (generalized mean), where pÑ8 is the most

restrictive choice and therefore the most interesting one, since in this case the largest

local error needs to satisfy equation (C.25).

The order of convergence can be determined by computing the numerical solutions

on two different grids, Φh1 and Φh2 . The ratio

Ep :“
} E }

ph1q
p

} E }
ph2q
p

(C.27)

between the resulting error norms is then used to eliminate the unknown resolution

independent error constant C to obtain

Ep “ rp (C.28)

with

r :“
h1

h2
(C.29)

and, thus,

p “
ln Ep
ln r

“ logr Ep (C.30)

for a given p.
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C.3.1 Self-Convergence

If no exact solution Φ is available to compare the numerical solution with, there are

two other possibilities1.:

‚ either an exact solution can be simulated by using a third numerical solution

Φh3 on a much finer grid than the ones to examine, with h1 “ C1 h3 and h2 “

C2 h3 as well as C1, C2 P N, C1 " 1, C2 " 1 (in this case the exact solution Φ in

equation (C.24) is replaced by the additional numerical approximation),

‚ or, since the determination of the numerical solution on a very fine grid can be

expensive and time consuming, a third solution Φh3 is determined with C1 ą

C2 ą 1 and C1
C2
P N to define the errors

Ep1,2q :“ Φh1 ´ Φh2 (C.31)

Ep2,3q :“ Φh2 ´ Φh3 (C.32)

with corresponding norms as before. To be able to compute these errors, the

values from the finer grid need to be interpolated to the coarser grid by an

interpolation method which is of higher order of accuracy than the numerical

method which is examined. Again, to eliminate the unknown resolution inde-

pendent error constant C, the ratio of the error norms is computed using the

definitions

Ep :“
} Ep1,2q }p

} Ep2,3q }p
(C.33)

r :“
C1

C2
(C.34)

for application to (C.30).

1 A third possibility is the method of manufactured sulutions as used in [117].





D. POISSON BOUNDARY CONDITION

In this chapter the derivation of a pressure boundary condition for the projection steps

of the present numerical method is presented, which incorporates boundary tangen-

tial information into the boundary normal Neumann boundary condition. While de-

rived for a simplified setting with constant density in [102] including proof of well-

posedness, below the corresponding strategy is followed for more general settings,

yet, however, without proof of well-posedness and numerical experiments.

Note that in this chapter a local notation with local meaning of the quantities ~Q,
~R,~b, β, C, D, K, N , T , ξ, τ , B, V , S, T is used.

With definition of the vector

~Q :“
1

ρpn`1,˚˚q
∇Bπpn` 1

2
q (D.1)

which is unknown at the boundary due to unknown Bπ, the integral Poisson equation

ˆ
BΩizBΩ˝

´

βpn`1,˚˚q∇Bπpn` 1
2
q
¯

¨ ~n dA “

ˆ
Ωi

∇ ¨ ~R pn`1,˚˚qdV

´

ˆ
Ωi

Dpn`1,˚˚qdV

´

ˆ
BΩ˝

´

βpn`1,˚˚q∇Bπpn` 1
2
q
¯

¨ ~n dA

(D.2)

as occurring in (5.104) with

βpn`1,˚˚q :“
∆t

2

ˆP
ρ

˙pn`1,˚˚q

(D.3)

~R pn`1,˚˚q :“ pP~vqpn`1,˚˚q (D.4)

D pn`1,˚˚q :“ pPDq pn`1,˚˚q (D.5)
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transforms to
ˆ
BΩizBΩ˝

´

βpn`1,˚˚q∇Bπpn` 1
2
q
¯

¨ ~n dA “

ˆ
Ωi

∇ ¨ ~R pn`1,˚˚qdV

´

ˆ
Ωi

Dpn`1,˚˚qdV

´

ˆ
BΩ˝

pρβqpn`1,˚˚q
´

~Q ¨ ~n
¯

dA (D.6)

Considering the conservation law

pρ~vqt `∇ ¨ pρ~v ˝ ~vq `∇p ´
”

∇ ¨
´

µ
´

∇~v ` r∇~vsT
¯¯

`∇λ∇ ¨ ~v
ı

“ ρ~g (D.7)

of momentum for determination of ~Q at the boundary,

pρ~vqt `∇ ¨ pρ~v ˝ ~vq `∇p ´µ
”

∇ ¨
´

∇~v ` r∇~vsT
¯ı

´∇λ p∇ ¨ ~vq “ ρ~g (D.8)

is obtained assuming µ “ const.. Several of the occurring expressions can be rewrit-

ten:

‚ The time derivative can be split applying the product rule:

pρ~vqt “ ρ~vt ` ρt~v (D.9)

Considering the mass balance

ρt `∇ ¨ pρ~vq “ 0 (D.10)

in addition this transforms to

pρ~vqt “ ρ~vt ´ ~v∇ ¨ pρ~vq (D.11)

and after again applying the product rule

pρ~vqt “ ρ~vt ´ ρ~v p∇ ¨ ~vq ´ ~v p~v ¨∇ρq (D.12)

is obtained.
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‚ The non-linear advective term can be spit according to

∇ ¨ pρ~v ˝ ~vq “ ρ~v p∇ ¨ ~vq ` ~v ¨∇ pρ~vq
“ ρ~v p∇ ¨ ~vq ` ρ~v ¨∇~v ` ~v ¨ pp∇ρq~vq
“ ρ~v p∇ ¨ ~vq ` ρ~v ¨∇~v ` p~v ¨∇ρq~v (D.13)

‚ The viscous term transforms to

µ
”

∇ ¨
´

∇~v ` r∇~vsT
¯ı

`∇λ p∇ ¨ ~vq

“ µ
´

∇ p∇ ¨ ~vq `∇ ¨∇~v
¯

`∇λ p∇ ¨ ~vq (D.14)

considering µ “ const.

Applied to the momentum equation (D.8), the expression

∇Bπ “ ρ~g ´ ρ~vt ´ ρ~v ¨∇~v ´ ∇q `µ
´

∇ p∇ ¨ ~vq `∇ ¨∇~v
¯

`∇λ p∇ ¨ ~vq
(D.15)

remains, considering p “ q ` Bπ. Focusing on the normal component

∇Bπ ¨ ~n “ ρ~g ¨ ~n ´ ρ~vt ¨ ~n ´ pρ~v ¨∇~vq ¨ ~n ´∇q ¨ ~n

` µ
´

∇p∇ ¨ ~vq
¯

¨ ~n` µ
´

∇ ¨ p∇~vq
¯

¨ ~n` p∇λp∇ ¨ ~vqq ¨ ~n (D.16)

of the momentum equation according to (D.15) and replacing the velocity divergence

∇ ¨ ~v at the boundary due to the divergence constraint by

∇ ¨ pP~vq “ P p∇ ¨ ~vq`~v ¨∇ pPq Ñ ∇ ¨~v “ 1

P
´

D´~v ¨∇ pPq
¯

(D.17)

– yet assuming P to be a general (conserved) scalar quantity – one obtains

∇Bπ ¨ ~n “ ρ~g ¨ ~n ´ ρ~vt ¨ ~n ´ pρ~v ¨∇~vq ¨ ~n ´∇q ¨ ~n

` pµ` λq
´

∇D ¨ ~n
¯

´ pµ` λq

ˆ

∇
ˆ

~v ¨
1

P∇ pPq
˙

¨ ~n

˙

` µ
´

∇ ¨ p∇~vq
¯

¨ ~n`D
´

∇λ ¨ ~n
¯

´

ˆ

~v ¨
1

P∇ pPq
˙

´

∇λ ¨ ~n
¯

(D.18)
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Considering

�pn`
1
2
q “

�pn`1q `�pnq

2
`Op∆t2q (D.19)

for all quantities � and especially for scalars

�pn`
1
2
q “

�pn`1q `�pnq

2
`Op∆t2q “ �pn`1,˚˚q `�pnq

2
`Op∆t2q “ �pn`

1
2
,˚˚q

(D.20)

the velocity ~v at the boundary can be replaced by the known boundary velocity~b and

with

~R :“
1

pPqppn` 1
2
q,˚˚q

∇ pPqppn` 1
2
q,˚˚q (D.21)

and

K :“ µ` λppn`
1
2
q,˚˚q (D.22)

equation (D.18) results in

∇Bπpn` 1
2
q ¨ ~n “ ρppn`

1
2
q,˚˚q~g ¨ ~n ´ ρppn`

1
2
q,˚˚q~b

pn` 1
2
q

t ¨ ~n ´∇q ¨ ~n

´

´

ρppn`
1
2
q,˚˚q~bpn`

1
2
q ¨∇~v pn` 1

2
q
¯

¨ ~n` µ
´

∇ ¨∇
´

~v pn`
1
2
q
¯¯

¨ ~n

`K
´

∇Dppn` 1
2
q,˚˚q ¨ ~n

¯

´K
´

∇
´

~v pn`
1
2
q ¨ ~R

¯

¨ ~n
¯

´

´

~bpn`
1
2
q ¨ ~R´Dppn` 1

2
q,˚˚q

¯´

∇λppn` 1
2
q,˚˚q ¨ ~n

¯

(D.23)

with expressions containing ~v pn`
1
2
q remaining to be determined. Assuming the bound-

ary normal vector to be constant in both space and time, restricting to piecewise pla-

nar boundary segments with

p∇~aq ¨ ~n “ ∇ p~a ¨ ~nq (D.24)
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for any vector ~a, the expression

∇Bπpn`1q ¨ ~n “ ρpn`1,˚˚q~g ¨ ~n ´ ρpn`1,˚˚q~b
pn`1q
t ¨ ~n´∇q ¨ ~n

´ ρpn`1,˚˚q~bpn`1q ¨∇
´

~v pn`1q ¨ ~n
¯

` µ
´

∇ ¨∇
´

~v pn`1q ¨ ~n
¯¯

`K
´

∇Dpn`1,˚˚q ¨ ~n
¯

´K
´

∇
´

~v pn`1q ¨ ~R
¯

¨ ~n
¯

´

´

~bpn`1q ¨ ~R´Dpn`1,˚˚q
¯´

∇λpn`1,˚˚q ¨ ~n
¯

(D.25)

is obtained due to p∇~nq ¨ ~a “ ~0. This equation has to be considered for all types of

boundaries separately and is analyzed in the following for solid no-slip boundaries

while slip wall, inflow and outflow boundaries remain to be treated in a similar way.

D.1 Solid No-Slip Boundaries

For solid no-slip boundaries~b “ ~0 holds and

∇Bπpn`1q ¨ ~n “ ρpn`1,˚˚q~g ¨ ~n ´∇q ¨ ~n

´K
´

∇
´

~v pn`1q ¨ ~R
¯

¨ ~n
¯

` µ
´

∇ ¨∇
´

~v pn`1q ¨ ~n
¯¯

`K
´

∇Dpn`1,˚˚q ¨ ~n
¯

`Dpn`1,˚˚q
´

∇λpn`1,˚˚q ¨ ~n
¯

(D.26)

remains. Using the boundary normal derivative ( B
BN ) and the k boundary tangential

derivatives ( B
BTk

)

µ
´

∇ ¨∇
´

~v pn`1q ¨ ~n
¯¯

” µ
B

BN

B

BN

´

~v pn`1q ¨ ~n
¯

` µ
ÿ

k

B

BTk

B

BTk

´

~v pn`1q ¨ ~n
¯

(D.27)

holds with separated boundary normal and boundary tangential derivatives. For solid

no-slip boundaries further

µ
ÿ

k

B

BTk

B

BTk

´

~v pn`1q ¨ ~n
¯

“ 0 (D.28)

applies, since all velocity components vanish at the solid no-slip boundary. Therefore

also the change of the normal velocity component in boundary tangential direction
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vanishes and the wall tangential change of the latter vanishes as well. Thus,

µ
´

∇ ¨∇
´

~v pn`1q ¨ ~n
¯¯

“ µ
B

BN

ˆ

B

BN

´

~v pn`1q ¨ ~n
¯

˙

(D.29)

remains. Splitting the velocity divergence constraint at time level pn`1q into bound-

ary normal and boundary tangential components as well, the expression

B

BN

´

~v pn`1q ¨ ~n
¯

“

´

Dpn`1,˚˚q ´ ~v pn`1q ¨ ~R
¯

´
ÿ

k

B

BTk

´

~v pn`1q ¨ ~tk

¯

(D.30)

is obtained considering

∇ ¨ ~v pn`1q “
B

BN

´

~v pn`1q ¨ ~n
¯

`
ÿ

k

B

BTk

´

~v pn`1q ¨ ~tk

¯

(D.31)

and finally

µ
´

∇ ¨∇
´

~v pn`1q ¨ ~n
¯¯

“ µ
B

BN

«

Dpn`1,˚˚q ´ ~v pn`1q ¨ ~R´
ÿ

k

B

BTk

´

~v pn`1q ¨ ~tk

¯

ff

(D.32)

remains. Replacing the unknown velocity ~v pn`1q with the projection equation

~v pn`1q “ ~v pn`1,˚˚q ´ τ pn`1,˚˚q ~Q (D.33)

divided by P pn`1,˚˚q with

τ :“
ρβ

P “
∆t

2
(D.34)

the expression

µ
´

∇ ¨∇
´

~v pn`1q ¨ ~n
¯¯

“ C
B

BN

”

~Q ¨ ~R
ı

` C
B

BN

«

ÿ

k

B

BTk

´

~Q ¨ ~tk

¯

ff

` µ
B

BN

«

Dpn`1,˚˚q ´ ~v pn`1,˚˚q ¨ ~R

´
ÿ

k

B

BTk

´

~v pn`1,˚˚q ¨ ~tk

¯

ff

(D.35)
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with

C :“ τµ (D.36)

is obtained. Further, using definition

K1 :“ τK (D.37)

the expression

K
´

∇
´

~v pn`1q ¨ ~R
¯

¨ ~n
¯

“ K
´

∇
´

~v pn`1,˚˚q ¨ ~R
¯

¨ ~n
¯

´K1

´

∇
´

~Q ¨ ~R
¯

¨ ~n
¯

(D.38)

is obtained. With that and assuming Cartesian grids with

∇� ¨ ~n “ ˘
B

BN
� (D.39)

for scalars � with positive sign for all boundaries with outward pointing normal vec-

tor in positive coordinate direction and negative sign for all boundaries with outward

pointing normal vector in negative coordinate direction finally

C
B

BN

«

ÿ

k

B

BTk

´

~Q ¨ ~tk

¯

ff

` pC ˘K1q
B

BN

”

~Q ¨ ~R
ı

´ ρpn`1,˚˚q ~Q ¨ ~n “ RHS

(D.40)

is obtained, in which

RHS :“ B ` V ` S (D.41)

with

B :“ ˘
B

BN
q ` ρpn`1,˚˚qg

´

~k ¨ ~n
¯

(D.42a)

V :“ pµ˘Kq
B

BN

”

~v pn`1,˚˚q ¨ ~R
ı

` µ
B

BN

«

ÿ

k

B

BTk

´

~v pn`1,˚˚q ¨ ~tk

¯

ff

(D.42b)

S :“ ´ pµ˘Kq
B

BN
Dpn`1,˚˚q ¯Dpn`1,˚˚q B

BN
λpn`1,˚˚q (D.42c)
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represents the right hand side. Replacing vector ~Q by its definition (D.1), the left

hand side reads

C
B

BN

«

ÿ

k

B

BTk

ˆ

1

ρpn`1,˚˚q

`

∇Bπ ¨ ~tk
˘

˙

ff

`pC ˘K1q
B

BN

„ˆ

1

ρpn`1,˚˚q

´

∇Bπ ¨ ~R
¯

˙

´∇Bπ ¨ ~n (D.43)

or

C
B

BN

«

ÿ

k

B

BTk

ˆ

1

ρpn`1,˚˚q

B

BTk
Bπ

˙

ff

` pC ˘K1q
B

BN

„

1

ρpn`1,˚˚q

´

∇Bπ ¨ ~R
¯



¯
B

BN
Bπ

(D.44)

respectively, with tangential vectors ~tk pointing in positive coordinate direction. The

first expression reads

C
B

BN

«

ÿ

k

B

BTk

ˆ

1

ρpn`1,˚˚q

B

BTk
Bπ

˙

ff

“ C

«

ÿ

k

B

BTk

ˆ

1

ρpn`1,˚˚q

B

BTk

ˆ

B

BN
Bπ

˙˙

ff

` C

«

ÿ

k

B

BTk

ˆ„

B

BN

1

ρpn`1,˚˚q



B

BTk
Bπ

˙

ff

(D.45)

each, with

B

BN

1

ρpn`1,˚˚q
“ 0 (D.46)

after multiple applications of the product rule and considering the symmetry of sec-

ond derivatives. At the no-slip boundary

C
B

BN

«

ÿ

k

B

BTk

ˆ

1

ρpn`1,˚˚q

B

BTk
Bπ

˙

ff

“
ÿ

k

B

BTk

ˆ

C

ρpn`1,˚˚q

B

BTk

ˆ

B

BN
Bπ

˙˙

(D.47)
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remains. The second expression on the left hand side of (D.44) can be split as well

according to

B

BN

„

1

ρpn`1,˚˚q

´

∇Bπ ¨ ~R
¯



“
1

ρpn`1,˚˚q

B

BN

”

∇Bπ ¨ ~R
ı

`

”

∇Bπ ¨ ~R
ı

B

BN

1

ρpn`1,˚˚q

“
1

ρpn`1,˚˚q

B

BN

”

∇Bπ ¨ ~R
ı

(D.48)

and with that the resulting equation reads

ÿ

k

B

BTk

ˆ

C

ρpn`1,˚˚q

B

BTk

ˆ

B

BN
Bπ

˙˙

`
pC ˘K1q

ρpn`1,˚˚q

B

BN

”

∇Bπ ¨ ~R
ı

¯
B

BN
Bπ

“ RHS (D.49)

subject to be solved for B
BN Bπ which then serves as boundary condition for the Pois-

son equation

ˆ
BΩizBΩ˝

´

βpn`1,˚˚q∇Bπpn`1q
¯

¨ ~n dS “

ˆ
Ωi

∇ ¨ ~R pn`1,˚˚qdV

´

ˆ
Ωi

Dpn`1,˚˚qdV

¯

ˆ
Ω˝

βpn`1,˚˚q

ˆ

B

BN
Bπ

˙

dS (D.50)

from (D.2). For small scale problems with

∇pPq “ ~0 (D.51)

as considered in the present work, ~R “ ~0 holds and therefore the expression

ÿ

k

B

BTk

ˆ

C

ρpn`1,˚˚q

B

BTk

ˆ

B

BN
Bπ

˙˙

¯

ˆ

B

BN
Bπ

˙

“ RHS (D.52)

with

RHS :“ B ` V ` S (D.53)
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and

B :“ ˘
B

BN
q ` ρpn`1,˚˚qg

´

~k ¨ ~n
¯

(D.54a)

V :“ µ
B

BN

«

ÿ

k

B

BTk

´

~v pn`1,˚˚q ¨ ~tk

¯

ff

(D.54b)

S :“ ´ pµ˘Kq
B

BN
Dpn`1,˚˚q ¯Dpn`1,˚˚q B

BN
λpn`1,˚˚q (D.54c)

is obtained.

Where signs have to be chosen, to upper one holds for boundary segments with

outward-pointng normal vector in positive coordinate direction, the lower one for

boundary segments with outward-pointng normal vector in negative coordinate direc-

tion. Further simplifications apply, if the right hand side of the divergence constraint

vanishes (D “ 0), yielding S “ 0. In combination with ∇pPq “ 0 the resulting

divergence constraint ∇ ¨ ~v “ 0 arises.

The boundary condition for the equation (D.52) for
`

B
BN Bπ

˘

, solved on the bound-

ary segment, depends on the neighboring boundary segments. In case of two spa-
tial dimensions the sums over the tangential contributions vanish and the Helmholtz

equation

B

BT

ˆ

C

ρpn`1,˚˚q

B

BT

ˆ

B

BN
Bπ

˙˙

¯

ˆ

B

BN
Bπ

˙

“ B ` V ` S (D.55)

on the domain boundary with

B :“ ˘
B

BN
q ` ρpn`1,˚˚qg

´

~k ¨ ~n
¯

(D.56a)

V :“ µ
B

BN

„

B

BT

´

~v pn`1,˚˚q ¨ ~t
¯



(D.56b)

S :“ ´ pµ˘Kq
B

BN
Dpn`1,˚˚q ¯Dpn`1,˚˚q B

BN
λpn`1,˚˚q (D.56c)

remains. The spatial discretization in node prq with

ξ :“
τ

∆x2
T

µ

ρ
(D.57)
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reads
„

ξ
pn`1,˚˚q

pr` 1
2
q

ˆ

B

BN
Bπ

˙

pr`1q ` ξ
pn`1,˚˚q

pr´ 1
2
q

ˆ

B

BN
Bπ

˙

pr´1q

´

„

ξ
pn`1,˚˚q

pr` 1
2
q

` ξ
pn`1,˚˚q

pr´ 1
2
q

˘ 1

ˆ

B

BN
Bπ

˙

prq



“ČRHS (D.58)

in which ČRHS is the discretely evaluated right hand side pB ` V ` Sq.

A boundary condition is required for the boundary node of the boundary segment,

which depends on the type of the neighboring boundary segment. If, for example, the

nodal velocity values are known in the corners of a two-dimensional domain or along

the edges of a three-dimensional domain, the boundary value is obtained according

to

~v pn`1q ¨ ~n “
´

~v pn`1,˚˚q ´ τ ~Q
¯

¨ ~n

“ ~v pn`1,˚˚q ¨ ~n´
τ

ρpn`1,˚˚q
∇Bπ ¨ ~n

“ ~v pn`1,˚˚q ¨ ~n¯
τ

ρpn`1,˚˚q

ˆ

B

BN
Bπ

˙

“ ~v pn`1,˚˚q ¨ ~n¯
τ

ρpn`1,˚˚q

ˆ

B

BN
Bπ

˙

(D.59)

and with that
ˆ

B

BN
Bπ

˙

prq˝ “ ˘
2

∆t

”

ρpn`1,˚˚q
´

~v pn`1,˚˚q ´ ~v pn`1q
¯

¨ ~n
ı

prq˝
(D.60)

holds. Here ~v pn`1q is the target velocity and ~v pn`1,˚˚q the known predicted veloc-

ity in the common node of two perpendicular piecewise planar boundary segments.

The positive sign again holds for outward pointing normal vectors in positive coordi-

nate direction while the negative sign holds for outward-pointing normals in negative

coordinate direction. If ~v pn`1,˚˚q ” ~v pn`1q then in the boundary node

ˆ

B

BN
Bπ

˙

prq˝ “ 0 (D.61)

holds. Typically this is assumed to be the boundary condition for the entire boundary

segment instead of the one for the boundary node.

Summarizing, for piecewise planar boundary segments in small scale problems as-

suming the dynamic viscosity to be homogeneous in the present more general setting
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(with e.g. variable density) a Helmholtz-type equation as (D.55) for two space di-

mensions is obtained on the domain boundary for determination of the boundary

condition of (D.2) as analyzed in [102]. The cases of inhomogeneous dynamic vis-

cosity and/or general locally varying boundary normal vector are not covered yet.



E. ZUSAMMENFASSUNG

Zweiphasenströmungen treten in einer Vielzahl technischer Anwendungen und na-

türlicher Phänomene auf, weshalb ein großes Interesse an der numerischen Simula-

tion solcher Vorgänge zu Vorhersage- und Analysezwecken besteht. Ein großer Teil

dieser Prozesse lässt sich als inkompressibel und somit als Spezialfall einer Klasse

von Strömungen mit kleiner Mach-Zahl modellieren. Während es viele verschiedene

numerische Methoden zur Berechnung inkompressibler Zweiphasenströmungen bei

konstanter Dichte gibt, sind nur wenige Methoden zu finden, die eine variable Dich-

te zulassen und die entsprechenden Gleichungen in Erhaltungsform lösen und kaum

welche, die dabei konsequent diskret konservative Approximationen verwenden und

zudem innerhalb des Gesamtkonzepts der numerischen Methode auf andere Regime,

wie z.B. schwach kompressible oder kompressible Strömungen, erweiterbar sind. Die

vorliegende Arbeit soll den Ausgangspunkt für ein Finite-Volumen-Verfahren bilden,

das diese Kriterien erfüllt und zudem auf beliebige Zustandsgleichungen jenseits der

Annahme eines idealen Gases als Medium erweiterbar ist. Dabei wird innerhalb die-

ses verallgemeinerten Rahmens hauptsächlich auf zwei Schlüsselelemente eines nu-

merischen Verfahrens zur Berechnung von Zweiphasenströmung eingegangen und

somit zum einen eine Vorgehensweise erläutert, um die numerischen Darstellungen

der Trennfläche zwischen den verschiedenen Fluid-Phasen und der Erhaltungsgrö-

ßen des Strömungsfeldes gekoppelt und somit das Verfahren stabil zu halten und die

Masse jeder Fluid-Phase diskret zu erhalten, zum anderen wird eine Approximation

der an der Trennfläche durch die Oberflächenspannung verursachten singulär auftre-

tenden Kraft vorgeschlagen, die es erlaubt, auch diese Einflüsse diskret konservativ

zu behandeln. Als zugrundeliegendes numerisches Verfahren zur Lösung des Systems

partieller Differentialgleichungen mit elliptischen Einflüssen kommt ein verallgemei-

nertes Projektionsverfahren zum Einsatz, welches einer hyperbolisch-parabolischen

Prädiktorlösung in jedem Zeitschritt nachträglich die elliptischen Eigenschaften auf-

prägt. Da solche Verfahren (mit Ausnahme der Lösung von linearen Systemen für

einzelne Skalare) ohne Iterationen auskommen, sind die einzelnen Bestandteile des

numerischen Verfahrens ebenfalls iterationsfrei gehalten.
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