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Preface

The evolution of hypersurfaces in the direction of the unit normal with speed equal to
the reciprocal of the mean curvature is called inverse mean curvature flow (IMCF). In the
case of closed hypersurfaces this flow is well studied. One of the classical results goes back
to Gerhardt [16] (see also Urbas [65]). He proved long-time existence and convergence
to a round sphere for star-shaped initial data with strictly positive mean curvature. A
more recent result with a striking application to theoretical physics is due to Huisken and
Ilmanen [29]. They defined weak solutions of IMCF and proved existence and uniqueness
of such solutions. This was one of the main tools in their proof of the Riemannian Penrose
inequality which gives an estimate for the mass in general relativity. In the current work
we will investigate IMCF in the case where the hypersurfaces possess a boundary and
move along, but stay perpendicular to, a fixed supporting hypersurface. The work is
organized as follows:

Chapter 1 Chapter 2
Introduction to geometric flows and — Short-time existence via reduction
statement of the problem in Definition 1.1 to a scalar PDE in Theorem 2.12
1 1
Chapter 4 Chapter 3
Level-set formulation and elliptic regula- Long-time existence and convergence
rization yields existence and uniqueness for star-shaped initial data in a
of weak solutions in Theorem 4.47 convex cone in Theorem 3.21

We will use Chapter 1 to give a more detailed overview about geometric evolution equa-
tions in general and about IMCF for closed hypersurfaces in particular. Furthermore, we
will specify our setup for hypersurfaces with boundary.

The first question which we have to answer is whether or not this flow has a solution
for a small time. This short-time existence result is obtained in Chapter 2, Theorem
2.12 by writing the hypersurface as a graph over the initial hypersurface and reducing
the equations to a scalar parabolic Neumann problem. This approach was also used by
Stahl [59] for hypersurfaces with boundary evolving under mean curvature flow.

The counter example of a half-torus evolving on a plane shows that long-time existence
cannot be expected in general. However, in the case where the supporting hypersurface
is a convex cone and the initial hypersurface is star-shaped and has strictly positive mean
curvature, we are able to prove long-time existence and convergence to a spherical cap.
This work is carried out in Chapter 3. The main result is Theorem 3.21. This is the
analogous statement to the one of Gerhardt [16] for closed hypersurfaces.

In order to deal with more general supporting hypersurfaces we follow the ideas of
Huisken and Ilmanen [29] and define weak solutions in Chapter 4. First, we use a level-
set approach together with a regularization procedure to obtain solutions for a family of
regularized elliptic mixed boundary value problems in domains with corners. These solu-
tions give rise to a converging sequence of weak solutions one dimension higher. Thanks
to a compactness result we can finally prove that the limit is the unique minimizer of
a certain functional related to the level-set problem. This program yields existence and
uniqueness for weak solutions of IMCF in the case of hypersurfaces with boundary in
Theorem 4.47.






1 Introduction

Figure 1.1: Inverse mean curvature flow for hypersurfaces with boundary.

An introduction to a thesis is definitely not the right place for a detailed summary
of more than 50 years of research in the area of geometric evolution equations. Having
said that, one cannot talk about the particular problem of inverse mean curvature flow
(IMCF) without putting it in broader context and mentioning some of the cornerstones
in the area of geometric evolution equations. So let us try to give an overview about
important results related to geometric flows in Section 1 and then focus on IMCF for
closed surfaces and surfaces with boundary in the Sections 2 and 3.

1.1 Geometric evolution equations

Geometric evolution equations, which are also called geometric flows, have been studied
for more than fifty years now. As they describe the deformation of geometric quantities
in terms of partial differential equations (PDEs), this topic is settled between differen-
tial geometry and the theory of PDEs. Often methods from the calculus of variations,
geometric measure theory and functional analysis are also used to treat the problems.
The motivation for looking at geometric flows arises from various areas such as topology,
physics or even image processing. From the viewpoint of PDEs one can distinguish differ-
ent flows by the type of equation used to describe them. Another way to distinguish them
from the viewpoint of differential geometry is to divide them into extrinsic and intrinsic
flows.

Intrinsic flows are defined by a PDE which changes an intrinsic geometric quantity.
One family of examples is to change the metric g of the manifold (M, g) according to the
law

dg
i f(9) (1.1)

where f is a function depending on ¢ and derivatives of g. A well known example of
this type is the Ricci flow where f takes the form f(g) := —2Ric(g) and Ric(g) is the
Ricci curvature of the manifold (M, g). Hamilton introduced it in 1981 as an approach to
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solve Thurston’s geometrization conjecture, which is a topological classification for closed
3-manifolds. Based on Hamilton’s work, Perelman [50,51] achieved the outstanding task
of proving this conjecture in 2003. As a corollary, the Poincaré conjecture — an open
problem since 1904 — was also settled. It states that every simply connected, closed
3-manifold is homeomorphic to the 3-sphere. For more details see [12,34,64] and the
references therein. A main tool used by Hamilton and Perelman is the so called surgery.
It describes the process of cutting out certain regions of the evolving surface in order to
prevent the formation of singularities.

Another intrinsic flow which was also introduced by Hamilton is the Yamabe flow. It
can be written in the form (1.1) using f(g) := (R — R)g where R is the scalar curvature
of (M,g) and R is its mean value over M. Hamilton introduced this flow as a tool
to study the Yamabe problem. That is the problem of finding, for a given compact
Riemannian manifold (M, ¢) of dimension n > 3, a positive scalar function ¢ such that
g has constant scalar curvature. After partial results of Trudinger, Aubin and others
the Yamabe problem was finally solved by Schoen [53] in 1984. The proof involved the
Riemannian positive mass theorem which he proved together with Yau [54] in 1979. It
states that a 3-manifold of non negative scalar curvature has non negative ADM-mass.
This concept of mass is due to Arnowitt, Deser and Misner [3]. For an asymptotically
flat' 3-manifold the ADM-mass is obtained as the limit of a flux integral through the
sphere at infinity

1 .
mapy = lim T6- /a&(o) ZZJ: (091 — 0igs5) v’ dp,
where v denotes the exterior unit normal to the sphere. A survey on the Yamabe problem
and all the references to the results of Hamilton, Schoen and Yau can be found in the
work of Lee and Parker [40].

A different family of interesting problems involves extrinsic flows. They are defined
using extrinsic geometric quantities such as the mean curvature. Therefore, the manifold
under consideration must be embedded (or more generally immersed) into an ambient
manifold to make sense of the extrinsic quantities. The presence of an ambient manifold
allows one to investigate the flow in different settings by changing the co-dimension or by
choosing a Lorentzian ambient space instead of a Riemannian one.

Let us consider the case of Riemannian ambient spaces and one co-dimension. One
way to describe the evolution of the embedded hypersurface is to do it in terms of the
evolution of the embedding F : M™ — N™*!. We require that F satisfies

oF

O _ 1 (1.2)

so that every point on the embedded manifold moves in the direction of its unit normal v
with speed f. Here f is a function depending on some extrinsic quantities. An example
of such a flow is the mean curvature flow (MCF) where f := —H and H stands for the
scalar mean curvature of M" in N™*1. The easiest setting one should have in mind for
MCF is the case where the initial hypersurface is given by Sy, i.e. the n-sphere of radius
ro embedded in N™*! := R"*! and v is the outward pointing unit normal. Under MCF

'Roughly speaking a manifold M = C' U D is asymptotically flat if C' is compact and D is diffeomorphic
to R™ \ K for some compact set K. See e.g. [29] for an exact definition.
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the initial sphere stays a round sphere but shrinks to a point in finite time 7' := rZ/2n.
The radius at time ¢ is given by r(t) = 4/r¢ — 2nt.

MCF was first introduced by Mullins [49] in 1956 and independently by Brakke [6] in
1978 from the viewpoint of geometric measure theory. Since then the flow was widely
studied. A detailed and chronological review of the developments in MCF can be found
in the introductory part of Ecker [14] or Ilmanen [32]. One of the latest interesting
developments is the classification result for 2-convex? surfaces by Huisken and Sinistrari
[31] in 2009. The statement is that every smooth, closed, n-dimensional, 2-convex surface
which is immersed in R™*! is either diffeomorphic to S™ or to a finite connected sum of
S™~1 x 8. A major tool in the proof was a surgery procedure for mean curvature flow
similar to the surgery Hamilton used in Ricci flow. Furthermore, in 2011 Head [26] proved
convergence of a sequence of surgery solutions to the weak solution of the level-set flow.

1.2 Inverse mean curvature flow (IMCF)

The flow we will be concerned with in this work is the inverse mean curvature flow
(IMCF). Like MCEF this is an extrinsic flow but here we define f := 1/H in (1.2). In
contrast to MCF the surfaces are expanding. If, as above, we consider the example of
a sphere Sy in N := R™*! we observe that the initial sphere stays round under IMCF.
The formula for the radius is 7(t) = roe’/™. This behavior is a special case of a theorem
of Gerhardt [16]. It states that under IMCF compact, star-shaped initial hypersurfaces
with strictly positive mean curvature converge after suitable rescaling to a round sphere.
In addition, examples of eternal solutions to IMCF are known. They are discussed by
Huisken and Ilmanen in [27].

IMCF was put forward by Geroch [20] and Jang and Wald [33] in the seventies as
an approach to the proof of the positive mass theorem. Geroch showed that as long as
IMCF remains smooth it can be used to prove the Riemannian Penrose inequality and
therefore the positive mass theorem. The Riemannian Penrose inequality states that an
asymptotically flat, complete, connected 3-manifold with non negative scalar curvature
and with one (to keep things simple here) compact minimal surface Ny as its compact
boundary satisfies the inequality

| No
MADM = 1677'(

In a nut shell Geroch’s argument was the following. He combined Hawking’s observation
that the so called Hawking quasi-local mass

N, 1/2
MHaw(Nt) := L (167T - H? dﬂt)
Ny

(167)3/2
converges to mapy if the surfaces IV; converge to a sphere at infinity with his observation
that maw(N¢) is monotone increasing in ¢ for smooth solutions of IMCF. Thus, if the
initial hypersurface for IMCF is the minimal surface Ny, if mpaw (N¢) — mapm and if the
flow remains smooth one obtains
| No|

—— = MHaw(No) < MHaw(N:) — mapwm
167

2Two-convexity means that the sum of the two smallest principal curvatures is non-negative.
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assuming the surfaces IV become round in the limit. Unfortunately the flow does not
remain smooth in general. This can be seen if one starts with a thin torus of positive
mean curvature which is embedded in R3. Then one notes that it fattens up and therefore,
after some time, the mean curvature reaches zero at some points. Thus, the classical flow
has to break down.

In 2001 Huisken and Ilmanen [29] used a level-set approach and developed the notion of
weak solutions for IMCF to overcome theses problems. They showed existence for weak
solutions and proved that Geroch’s monotonicity for the Hawking mass carries over to the
weak setting. This enabled them to prove the Riemannian Penrose inequality which also
gave an alternative proof for the Riemannian positive mass theorem. A summary about
their work is given in [27] and [28]. In [30] Huisken and Ilmanen proved higher regularity
for IMCF in R" (see also Smoczyk [58] for n = 2). Their work also shows that weak
solutions become star-shaped and smooth outside some compact region and thus (by the
result of Gerhardt) round in the limit. A different proof of the most general form? fo the
Riemannian Penrose inequality was given by Bray [7]. An overview about the different
methods used by Huisken and Ilmanen and Bray can be found in [8]. An approach to
solve the full Penrose inequality was brought up by Bray et. al. [9] defining a generalized
IMCF. Despite that the full Penrose inequality is still an open problem.

Another remarkable result which was obtained using IMCF is the proof of the Poincaré
conjecture for 3-manifolds with Yamabe invariant greater than that of RIP? by Bray and
Neves [10] (see also [1]).

Schulze [55] used the level-set approach to study flows with speed equal to positive
powers of the mean curvature. In [56] he used this formulation of the flow to give a new
proof of the isoperimetric inequality. Furthermore, in a joint work with Metzger they
proved the so-called no mass drop property for mean curvature flow [48].

1.3 IMCF for hypersurfaces with boundary

The project of this thesis is to consider IMCF in the case where the hypersurfaces possess
a boundary and move along but stay perpendicular to a fixed supporting hypersurface
(see Figure 1.1). The exact setting is contained in the following definition.

Definition 1.1. Let M"™ be a compact, smooth, orientable, manifold with compact,
smooth boundary OM™. Let X" be an orientable C?“-hypersurface without boundary in
the Riemannian ambient manifold (N"*1,%). Suppose that Fy : M™ — N"*!is a C?°-
immersion such that M{ := Fy(M™) has strictly positive mean curvature and satisfies

Fy (OM"™) = Foy (M"™) nX", (vp, o F0>§ = 0 on OM",

where v and p are the unit normal vector fields on M™ and " respectively.* We say
that the one-parameter family of smooth immersions F' : M™ x [0,T) — N"*! moves

3Bray proved that 167mm3py > |0M| with no assumption on the connectedness of OM.
*Note that locally Fp is an embedding so it makes sense to talk about a normal vo(z) but it makes no
sense to write vo(Fo(x)).
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under inverse mean curvature flow if F' satisfies F' (OM™,t) = F (M™,t) N ¥" and

%:% in M™ x (0,T)
(IMCF) ¢ (v, po F)==0 ondM" x (0,T)
F(.,00=F, on M"

Here v is a choice of unit normal vector field on M™ and H is the scalar mean curvature
of M™ in N™*! which is supposed to be positive. Furthermore p is chosen to point away
from M, i.e. for curves on M; ending at p € M, with tangent vector v(p) we have

(v, m)=(p) > 0.

Remark 1.2. The corresponding Neumann problem for mean curvature flow was first
studied by Stahl [59-61]. It was followed by the work of Buckland [11] who analyzed the
singularities and by the work of Koeller [35,36] who proved further regularity results.
Currently, Alexander Volkmann [66] is using the level-set approach to study the Neu-
mann problem for flows with speed equal to positive powers of the mean curvature.

Example 1.3. Let us assume that the supporting hypersurface X" is the hyperplane
{ens1 = 0} in N**! = R"*! and the initial embedded hypersurface is a half-sphere of
radius ro centered at the origin. Then the solution of (IMCF) exists for all time and is
given at time ¢ as the half sphere centered at the origin with radius 7(t) = rget/™. This
example also shows that two half-spheres of radius r¢ which are centered at two points of
distance R > 27y would collide at time 7' = nIn(R/2rg).

Notice, that as long as 3" is a hyperplane we can exploit the symmetry and obtain
solutions using the results of IMCF for closed surfaces by reflecting the hypersurfaces with
respect to X". Using this technique we see that a half-torus of positive mean curvature
fattens up under (IMCF) and develops points of zero mean curvature in finite time. Thus,
the evolution as it is described by (IMCF) breaks down after finite time.

Remark 1.4. Besides the description of the hypersurfaces M;* as images of an embedding
F,ie. M} = F(M",t) we will also consider the hypersurfaces as the t-level sets of a
scalar function. To do this we need some notation. Let us denote by €2 all points on X"
and above X". For sets A C 2 we want to distinguish the boundary parts of A on 3"
and inside ) by writing

OgA = 0A\ X" and OnA = 0A\ 0qA.

The aim is to find a function u : @ — R such that M;* = dq{u < t}. We will show
that, as long as the mean curvature of M is strictly positive, the parabolic formulation
(IMCF) is equivalent to

D —
div (\DZ|> = |Du| in Qy:=Q\ Ey
(*> Duu =0 on 82(20

u=0 on OqFEy



6 1. Introduction

where Fy = {u < 0} and g is the normal to ¥". Note that (x) is a degenerate elliptic
mixed boundary value problem in a non-smooth domain. As in the work of Huisken and
Ilmanen [29] the formulation (x) is the starting point for the definition of weak solutions
via JE(u) < JE(v) for locally Lipschitz competitors v satisfying {u # v} CC Qg. The
functional is defined by

TE 0N Q0) R v o T (1) = / (IDv] + v|Du) dA (1.3)
K

and the integration is performed over any compact set K containing {u # v}. It turns

out that this formulation allows us to overcome the problems mentioned in Example 1.3.

Outline. The work is organized as follows. The first question which we have to answer is
whether or not (IMCF) has a solution for a small time. This short-time existence result
is obtained in Chapter 2, Theorem 2.12 by writing the hypersurface as a graph over the
initial hypersurface and reducing the equations to a scalar parabolic Neumann problem.
This approach was also used by Stahl [59] for hypersurfaces with boundary evolving under
mean curvature flow.

The counter example of a half-torus evolving on a plane shows that long-time existence
cannot be expected in general. However, in the case where the supporting hypersurface
is a convex cone and the initial hypersurface is star-shaped and has strictly positive mean
curvature, we are able to prove long-time existence and convergence to a spherical cap.
This work is carried out in Chapter 3. The main result of that chapter is Theorem 3.21.
This is the analogous statement to the one of Gerhardt [16] for closed hypersurfaces.

In Chapter 4 we follow the ideas of Huisken and Ilmanen [29] and define weak solutions
of () as the minimizers of the functional (1.3). To prove the existence of those weak
solutions we regularize (x) to obtain solutions u® of a family of non-degenerate elliptic
mixed boundary value problems (*). in weighted Holder spaces. These solutions give
rise to a converging sequence U®i(x,z) := u®(z) — g;z of smooth solutions to (IMCF)
one dimension higher. Thanks to a compactness result we can prove that in the limit as
g; — 0 there exists a sequence converging to U(z, z) := wu(z) which is the minimizer of
the functional (1.3) one dimension higher. Finally, we use cut-off functions to prove that
u is the unique weak solution of IMCF in the case of hypersurfaces with boundary. This
is our main result which is stated in Theorem 4.47. The last section gives an outlook to
a potential application of weak solutions indicated by the monotonicity of the Hawking
mass for classical solutions of (IMCF).



2 Short-time existence

Figure 2.1: Generalized tubular neighborhood of M.

In order to prove short-time existence for (IMCF) we will write the evolving hypersur-
face at time ¢ as a graph over the initial hypersurface. Therefore, we need some coordinates
which are adapted to the geometry of the supporting hypersurface ¥". We will introduce
these coordinates in Section 1. Then we will treat a scalar Neumann problem in Section
2 which will give rise to a solution of (IMCF) as we will encounter in Section 3. The main
result of this chapter is the short-time existence result stated in Theorem 2.12. The same
method was applied by Stahl [59] to prove short-time existence for hypersurfaces with
boundary evolving under mean curvature flow.

2.1 Generalized tubular neighborhood

In general M} := Fy(M™) is not embedded but only immersed in the ambient space
N1 Therefore, we will rather work on M™ than on M} C N™*l. We will need the
following Lemma.

Lemma 2.1. Let (N1 7)), M™, X" and Fy be as in Definition 1.1. Then there is a
generalized tubular neighborhood %. C N™*' of M} = Fo(M™) which is the immersed
image of the product manifold M™x[—¢, €| and respects the geometry of X™. More precisely
there is an isometric immersion

O (M" x [~¢,e],7) — % C (N"T.7) : (x,5) — ®(x,s)

where p = ®(x, s) is the point on a curve ®(x, .) which starts at Fo(x) € M in direction
of the unit normal v(z) such that the length from p to Fy(x) is equal to s'. ® respects the
geometry of X" in the sense that for x € IM™ we have ®(x,s) € X" for all s € [—&,€].

Proof. Let x € M™. There is a neighborhood U, C M" of x and a neighborhood V,, C M}’
of Fy(z) such that Fy restricted to U, is a smooth embedding. By W, C N n+1 we denote

IThe distance to points which are reached if one follows ® starting in direction —v gets a negative sign
by definition.
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a neighborhood in the ambient space such that W, N M7 = V,. Since M" is compact we
have

Mrc | U= M'C |J U,
zEM™n k=1,..,N

Furthermore, we can choose the cover in such a way that a small neighborhood W of M{
is contained in Wy, U...U W, .

If V, NX" = () we define a vector field &, in TW,, being the tangent field to the geodesic
arcs ®g(x, .) in N starting at Fy(z) in direction v(x) for x € U,,. If V,, NT" # ()
then ®4(z, .) is the integral curve with respect to a vector field & € TW,, which satisfies

Sk‘Vzk € Nvﬂ?m §k|2” € Tzna ||€k”]\/’n+1 =1.

Again Oy (x, .) is starting from Fy(z) in direction v.
Now we use a partition of unity, i.e. maps x; € C°(W,,R) for 1 <1i < N satisfying

N —1Xi =1 in W. This allows us to construct the vector field
N
£:M" x [—e,e] — TN" . (z,5) — &(2,8) := in(@i(x,s))fi(q)i(x,s))
i=1

from which we obtain a family of integral curves, i.e. a map ® : M™ x [—¢,¢] — N1,
Next we define

0®(x, s)
ozt

09(z, s)

ei(®(xz,s)) := P

ent1(®(, 5)) ==
for i = 1,...,n and notice that rank(®)(x,0) = n + 1 since ¢(.,0) = Fp is an immersion
and e,y1 € NMJ. Thus, for x € M™ and small s we get rank(®)(x,s) =n+ 1 and ® is
an immersion. Therefore, if ¢ > 0 is sufficiently small and M"™ x [—¢, €] is equipped with
the metric

Vap(:8) = (2 Fap)(x, 8) = V(ea(®(x,5)),e5(P(2,5))), 1<a,f<n+1

then ® is an isometric immersion. O

Remark 2.2. If ¥ is totally geodesic we can replace ® by geodesics starting from Fy(z)
in the direction of v(x). In this case we obtain a classical tubular neighborhood.
Remark 2.3. Since ®(z,0)

x, Fy(x) the proof of Lemma 2.1 implies that the metric on
Fo(M™) is given by 7;;(z) :

~(ei(p), e;j(p)) with p = ®(x,0) and that for ¢ = 0 we have

where 1 <14,57 < n.
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Remark 2.4. The idea is that we use ® and a scalar function w(.,t) to describe points
p of the hypersurface M;* as p = ®(x, w(z,t)). This is shown in Figure 2.1. Since the im-
mersion ® is isometric we can locally identify (M™ x [—¢,¢],7) and (%,7). Furthermore,
we can locally identify (M",7|ym) and (Mg, ¥|ap). In that sense the hypersurface M
can be described by

F: M"™ — M" x [—¢,¢] : @ — (z,w(x,1)).
The next lemma is concerned with the geometry of those graphs.

Lemma 2.5. Let t > 0 be fived. Let w(.,t) : M™ — [—¢,€] be in C2(M™) and M} =
graph(w(.,t)) C (M"™ x [—e,e],7). Let p := (z,w(z,t)) and e, be the standard basis
vectors of T,(M™ x [—¢,€]). In the point p we have the following formulas.

(i) The standard basis for T, M}* is given by:

T = e + Dyweny1, 1<k <n.

(i) A unit normal to M in p is given by

i (20

with v2 = 7’“‘1’"“ — 27k’"+1Dkw + ﬁlekalw.
(iii) Let v be as in (ii) then we have the following relations

(v,er)s = —v 'Dpw 1<k <n, (V,ent1)5 = vl

(tv) The metric and second fundamental form of T,M]* are given by
9i5 = Vij T Vint1 D50 + Vi1 ; Diw + 741 pp1 DiwDjw,
hij = —vt (Dijw — fzﬁTf‘TjﬁDkw + fg;lﬁyrf)

where T denote the Christoffel-symbols with respect to the metric 7.

Note that D; and D;; are not covariant but partial derivatives.

Proof. (i) This statement follows from the definition of 7, = (F}).(9/0x%) with
F,: M" — M" x [—¢,¢] : x — (z,w(x,t)).

(77) Using © := (—Dw, 1) we obtain

g 1 o
(T, V)7 = TapTeV’ =Tap™ -7"0p = —70a = 0.

The vector v = %7‘% has unit norm for v := [y~ '9|5 and

|7_1ﬁ g — <7_1ﬁ77_1ﬁ>7 — 7’”4-‘1-1,71-‘—1 _ 2Dkw7k’n+1 + Dk'lUDl’LUﬁkl
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(43) This is clear from (v, es5)y = v_lﬁa[ﬁa”f/peg = v~ 105 and the definition of .

(iv) For g the formula follows from

+ ntl ntl

9ij = (i, Tj)5 = %TZETJZ' + 7k,n+17'z'k7'f+1 + Vn1,07i" 17'31' T Vnt1in+1T T
Using

~hijv == Vy,7; — Vy1j = DijFy + DiFSD;FTh ge, — 5, Dy Fy
we obtain for the second fundamental form

hij = (hijv,v)s = — (DijFy, ) = TagDiFP D Ff (ep,v)= + Tl (Dp Fy, v).

The last inner product vanishes. Using the results from (ii), (iii) and the fact that
D;;Fy = Djjw e, 41 yields the result. O

2.2 Associated scalar Neumann problem

In this section we want to solve a parabolic Neumann problem for a scalar function w.
This function occurs when we express the evolving hypersurface as a graph over the initial
surface. The relation between w and the solution to (IMCF) will be discussed in the next
section. The scalar Neumann problem is the following:

ow v

- 2 — : n

5 H(.,w,Dw,D w)=0 in M"™x(0,T)
(SP) ri(.,w)Dyw = s(.,w) on OM™ x (0,T)

w(.,0) =0 on M"

where r(x,w) = ri(z,w)e;(z) € T,M™, r(z,0) = v is the outward unit normal to OM"
and s(z,0) = 0. The idea is to obtain a solution to (SP) using the inverse function
theorem. Before we can prove the existence of a solution we need two lemmas.

Lemma 2.6. Suppose that M is a smooth immersed hypersurface with strictly positive
mean curvature Hy € C%¥(M™). Let v be the outward unit normal to OM™. Then the
auziliary problem

ow 1 n

E—Aw—m in M™ x (0,7T)
(AP) 4 viDw =0 on OM™ x (0,T)

w(.,0)=0 on M™

has a unique solution wy € C?+H41+3 (M™ x [0,T7).

Proof. Since w(.,0) = 0 the compatibility condition v*(z)D;w(x,0) = 0 is satisfied. As
the directional derivative at 9M™ is transversal the theory of linear parabolic equations
(see Theorem A.4) yields a unique solution wg € C?T12 (M™ x [0,T]). O
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The role of (AP) will become clear in the existence proof for (SP). Before we come to
that point we want to calculate the linearization of (SP) around wy.

Lemma 2.7. Let wy € C?13 (M x[0,T]) be the solution of (AP). Let ¢ € C*% (M™x

[0,T]), n € C’HO"HTa(aM" x [0,T]) withn(.,0) =0. Then there is some T > 0 such that
the linearization of (SP) around wy given by

o -
Lyyw = 871115) —aDijjw + V¥ Dyw + cw = ¢ in M™ x (0,T)
(LSP) Nyow := i Diw + sow =7 on OM™ x (0,T)
w(.,0)=0 on M"

has a unique solution w € C?t1+3 (M™ x [0,T]).

Proof. The PDE in (SP) can be written as dw/0t — Q(z,w, Dw, D*w) = 0 with

v(z, z,p)
Q:M'"XRxR"xR"™ - R: (z,2,p,A) — — :
( ) g”(.%’,Z,p)hij(.T,Z,p, A)

Let we := wo + ew. We obtain the linearized operator L,,, of 9/0t — @ around wy as

d ow
Ly,w = A < 6t€ — Q(m,wE,DwE,D2w5)>
ow

where the indices on @) denote the differentiation with respect to the index variable and
the derivative is taken at (z,wg, Dwg, D?*wg). Due to the regularity of wq the coefficients
of Ly, are in C%z(M™ x [0,T]). Furthermore, from the definition of ¢/, h;; and H we
see that

- gij .,wo,Dwo
a = QAij(,7w0,Dw0,D2wo) - H2( Euo Dwy Dz)wo)'

At t = 0 we have a¥/ = 4% /H2 where Hy is the mean curvature of the initial hypersurface
which is strictly positive. Thus, L, is uniformly parabolic in some small time interval
[0,T]. The Neumann condition can be expressed as N(z,w, Dw) = 0 where

N:OM" xR xR" — R: (z,2,p) — r(x, 2)p; — s(x, 2).
The linearized operator N, of N around wy is given by

d
Nyow 1= —

de

N(.,we, Dw,)
e=0

= 7'(.,wo)Dyw + (r( ., wo) Djwo — 55 (., wp))w.

The compatibility condition is satisfied since Ny, w(.,0) = 0 and n(.,0) = 0 on OM™.
The transversality condition is satisfied in a small time interval [0, 7] since for ¢ =0

ré(x,wo(x, 0))ei(z) = ré(a:, 0)e;(x) =v

is the unit normal to 9M™ in x. Therefore, the theory of linear parabolic equations (see
Theorem A.4) yields the result. O
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Now we can prove the existence of a unique solution to (SP).

Proposition 2.8. Let M™ be a compact, smooth manifold with compact, smooth boundary
OM?™. Suppose that the mean curvature Hy of My is strictly positive. Then there exists
some T > 0 and a unique solution w € C*T*3 (M™ x [0,T)]) to (SP).

Proof. We want to translate the solvability of (SP) to the question of invertibility of
some operator A between suitable Banach spaces. We define Qp := M™ x (0,T), Sp :=
OM™ x (0,T) and the spaces

X = {we M 2(Qr) | w(z,0)=0 Vaxe M},

Y = {(¢,n) € 3 (Qr) x C*+*5(57) | (., 0) = 0}.

X is a closed subspace of the Banach space Crrelts (Qr) equipped with the usual norm
and Y is a Banach space with respect to the norm ||({,n)||y := ||§||a’%7@+ ||77||1+a’1+To¢7§.
Let @ and N be defined as in the proof of the last Lemma. The solvability of (SP) now
follows from the invertibility of

A X =Y we Aw = (ng—Q(.,w,Dw,D2w),N(.,w,Dw))

in some neighborhood which contains (0,0). The inverse function theorem (see e.g. [13],
10.2.5.) states that if A is continuously (Fréchet-) differentiable in a neighborhood V,,, of
some wo € X and if DA(wp) is a linear homeomorphism from X to Y then there exists
a neighborhood U,,, C V,, such that A : Uy, — A(Uy,) is a homeomorphism.

Let wg be the solution of the auxiliary problem (AP). Then DA(wy) is given by

DA(wg): X =Y :w+— DA(wo)(w) := (L, w, Ny, w)

with L., and N, as in the last lemma. From the Lemma 2.7 we know that for any
(¢,n) € Y there is a unique solution w € X to (LSP). This shows that DA(wy) is
invertible. Since the norm of w in X is bounded by the norm of (¢,n) € Y we see
that DA(wp) is a linear homeomorphism from X to Y. Therefore A is invertible in a
neighborhood Uy, of wy. This means that for all T > 0 there exists a §(T') > 0 such that
for all (¢,n) € Y satisfying

[ A(wo) — (¢, mly < (T)

there exists a unique w € X satisfying: A(w) = (¢,n). Thus there is a unique solution to
(SP) if (¢,n) = (0,0) is close to A(wg). Due to the choice of wy we have

[ A (wo)[ly
= 7—Q(.,w0,Dw0,D w()) + N(.,wo,D’wo)
ot ,.Qr Lta, 148 57
[ES R TE———
= wo | — == rT{.,Wo W — S ., Wo .
Ho@)) ~ Hll,s g7 4o, 150 57

Since wp(x,0) = 0 we see that this expression vanishes for ¢ = 0. Therefore, arguing as
in [62], Lemma 2.1.0 there exists some 7' < T such that || A(wo)|ly < d(T). O
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The reason why we can not expect higher regularity up to ¢ = 0 is that this would
require higher order compatibility conditions and therefore more conditions on the initial
data. Despite that fact we get smooth solutions away from zero.

Lemma 2.9. Let w € C*T13 (M™% [0, T]) be a solution to (SP). Then for every e > 0
and every k € IN we get

w e CPOES (M™ x [0, T)) N CHAOkE+3 (MM x [¢, T)).
Proof. For 1 < ¢ < n we consider the difference quotients

u(z,t+h) —u(z,t) u(z + he;j, t) — u(z,t)
h h

in space and time and use the fact that these functions are solutions to linear parabolic
equations. Note that one has to distinguish the cases of interior points where the vz
satisfy a Dirichlet problem and boundary points where they are solutions to a Neumann
problem. One uses cut-off functions to localize the estimates. This yields the result for
k = 1. The higher order estimates are proved by induction over k. For more details see
e.g. [18], Theorem 2.5.10. and [19]. O

o) (x,t) == and vl (x,t) =

2.3 Short-time existence

Following the ideas of the previous sections one could think that a map
F:M"x[0,T] — M" x [~¢,¢] : (,1) = F(z,t) := (v,w(x,1)) (2.1)

with a suitable scalar function w is a good candidate for a solution to (IMCF). But
if we look at F' more carefully we see that points starting at the initial surface always
evolve in e, ;1 direction in M™ x [—¢, €], i.e. along the integral curves of ®(x, .) in N"*+1,
Since we want to create an evolution in normal direction we have to adjust our definition.
Therefore, we make the ansatz

F:M"x[0,T] = M" x [—¢,¢] : (x,t) — F(p(z,t),t) (2.2)

for some map ¢ : M™ x [0,7] — M™ which should be bijective for fixed ¢ and map
boundary points into boundary points since we do not want the surface to lift off from
¥". Before we prove short-time existence of (IMCF) we will prove the existence of such
a map .

Lemma 2.10. Let w € CZHIF5 (M™ x [0, T])) N C®(M™ x (0,T]) be a solution to (SP)
qnd F defined as above. Let (.)' denote the projection onto the tangent space of M =
F(M™,t). Then there is a unique map

p € CHFOIE(M™ x [0,T), M™) N C™(M™ x (0,T], M")

solving

T
Cclz—f = (— (Dx]*:’)7 (%{) )(gp,t) in M"™ x (0,7T)

o(.,0) = id on M™.

(ODE)
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Furthermore, ¢ keeps OM™ invariant, i.e. for x € OM™ it follows that o(x,t) € OM™ and
for fivred t, o(.,t) is a diffeomorphism?.

Proof. The vector field on the right hand side is smooth away from ¢ = 0, smooth in z
even for t = 0 and C'2 in the t-variable up to t = 0. The existence and regularity theory
for ODEs implies the desired existence and regularity and shows that the map ¢(.,¢) is
a diffeomorphism for fixed ¢ (see e.g. [17], chapter 9). To see that ¢ keeps IM™ invariant
we will show that for p(z,t) € 9M™ we have % € T,OM™. The result then follows from
the uniqueness of ODEs. We calculate

L\ T
b () -0

Next we observe that due to the Neumann condition for w the surface M}* touches OM™ x
[—&, ] orthogonally since

(7, )5 = Tag?* 1 = vt (7o (= Dyw) + 34 o = 07! (! = pF Dgw) = 0
at p = F(p(x,t),t). Therefore the fact that e, 1 € T,(OM™ x [—1&?, e]) implies that e, ,; €
T,0M}* and since F' maps OM™ into OM]' we see that (Dzﬁ’> enyq € TLOM™. O

Now we can relate the existence of solutions to (SP) and (IMCF) as we promised in
the last section.

Proposition 2.11. Given a solution w € C*T1 5 (M™ x [0,T]) N C®(M™ x (0,T]) of
(SP) there is a unique map @ € C*T1F2(M™ x [0, T], M™) NC(M"™ x (0,T], M™) such
that

F:M"x[0,T] - M" x [—¢,e] : (z,t) — F(z,t) := (p(z,t), w(p(x,t),t)) (2.3)

is a solution to (IMCF). On the other hand, given a solution F € C*T®'3(M™ x
[0,T], M™ x [—e,e]) NC®°(M"™ x (0,T], M"™ x [—¢,€]) of (IMCF) there is a unique map ¢
such that w € C?T1H2 (M™ x [0, T]) N C(M™ x (0,T)) defined by (2.3) solves (SP).

Proof. We first show that F' is a solution to (IMCF). Let w be a solution to (SP). By
Lemma 2.10 this yields a unique solution ¢ to (ODE). Let F' and F' be defined by (2.1)
and (2.2). Notice that this definition implies

v(p(z,t),t) = v(z,t), H(p(x,t),t) = H(z,1).
The initial condition is satisfied since

F(x,O) = (‘P(m70)’w(90(xa0)70)) = (x,w(:):,())) - (x70) = FO(x)

From the fact that ¢ maps M™ into OM™ we see® that F' (OM™) = F (M™) N X" and for
the Neumann condition we calculate

(v, 1)y = TFagr 1 = v pa (=7 Dpw + 7™ = 0™ (=" Dw + ") = 0,

2Note that ¢ is smooth in z for fixed ¢ but since it is only C'*% in the ¢ variable we chose the natural
Holder space C2** 3 in the regularity statement. Furthermore, this is the regularity we will finally
obtain for the solution to (IMCF).

3Recall that we identified " with OM™ x [—¢, €]
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By construction of ¢ and w the evolution equation holds too. Remember that Lemma
2.5 implies (e,11,7) = v~ 1. We obtain:

S P(,t) = S Flplw,0),1) = Do (pla,0),0) (1) + 0 Pl 11,1
T
—— (5F) (ot + 5 Flelwt).0) = (57,9 plo(a,t).0)
= Tt {ensr,7)_Dlolat),t) = Z(pla1).0) = 1ov(w,0)

This shows that the above defined map F solves (IMCF). The regularity of F' is clear from
the regularity of w and ¢. Now let F' € C2t13 (M™% [0,T], M™ X [—¢,e]) N C°(M™ x
(0,T], M™ x [—¢,€]) be a solution of (IMCF) we can implicitly define a function w and a
map ¢ by

(e(, 1), wlp(z,1),1)) := F(x,1).

We see that ¢ € C?Fol+2(M™ x [0,T], M™) N C®(M" x (0,T], M"™) and therefore we
also have w € C2T1H% (M™ % [0,T]) N C=(M" x (0,T]). Since

(iL‘,O) = FO(:E) = F(ZL',O) = (@(IE,O)vw(SO(xvt)?O))

we see that p(z,0) = x and w(z,0) = 0. So they satisfy the right initial conditions. With
the same calculation as above we obtain for the Neumann condition

(v, )y = v (=" Dpw + p"*) = 0.

Finally, we calculate the evolution equation for w.

S lp(w,0).0) = (ol ),1) — Dinlila0,0) (e(w.0))

_ (jtF(x’tOnH — Djw(p(w,t),t) (jtF(a?,t)y

= % (V"H — DﬂUVi) (p(x,t),t)

Thus w satisfies (SP). O
Now we can conclude the desired short-time existence result for (IMCF).

Theorem 2.12 (Short-time existence). Let Nt M™, Y" and Fy be as in Defini-
tion 1.1. Then there exists some T' > 0 and a unique solution F € 02+0"1+%(M” X
[0, 7], N**1)y n C°(M™ x (0,T], N**1) satisfying (IMCF).
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Proof. By Remark 2.4 we can use ® to identify a tubular neighborhood of M§ C N™*!
with the product M™ x [—¢,¢]. So we can regard F' as a map from M" x [0,7] to
M"™ x [—¢,¢]. By Proposition 2.8 there exists a solution

w e CH+ 2 (M™ x [0,T]) N C®(M™ x (0,T])
to (SP). Then by Proposition 2.11 there is a tangential diffeomorphism
@ € OIS (M™ x [0, T], M™) N C>®(M™ x (0,T], M™)
such that the map F' defined by
F:M"x[0,T] > M" x [—¢,¢] : (z,t) — F(z,t) := (p(x,t),w(p(z,t),1))
is in C?FOIFS (M x [0,T], M" x [—&,e]) N C®(M™ x (0,T], M™ x [—¢,€]) and solves
(IMCF). Now suppose there are two solutions F; and F» to (IMCF). By Theorem 2.11

there are unique tangential diffeomorphisms ¢1, @2 and solutions wi, wy of (SP) such
that

Fl(x>t) = (‘pl(zjvt)?wl(@l(xat)at))’ F2($7t) = (¢2(xat)7w2(902(x>t)at)) :

By Theorem 2.8 (SP) has a unique solution. Therefore w; = wy and from Lemma 2.10
we see that then also ¢; = ¢9. This shows that Fy = F. O



3 Expansion in a cone

o

Figure 3.1: Evolution of a star-shaped hypersurface M;* in the cone ¥".

In Chapter 2 we proved short-time existence for general supporting hypersurfaces ¥™. It
turns out that long-time existence cannot be expected in general unless one uses a weaker
notion of solutions or one imposes stricter conditions on ™ and the initial hypersurface
My. In this chapter we deal with the latter case by considering hypersurfaces in the
ambient space N"*! = R"*!. Furthermore we are restricting ourselves to supporting
hypersurfaces X" which are convex cones. The initial hypersurface is required to be star-
shaped with respect to the vertex of the cone and has to have strictly positive mean
curvature (see figure 3.1).

In Section 1 we will derive the associated scalar Neumann problem by writing the
surface as a graph over some piece of the sphere. In Section 2 we will use the maximum
principle to derive a priori estimates. The central geometric estimate will be a bound
on the slope of the height function. We will see that the convexity of the cone allows us
to control this quantity. In Section 3 we will prove Holder estimates which then yields
long-time existence and convergence to a spherical cap in Section 4, Theorem 3.21. This
is the main result of this chapter. In the case of closed hypersurfaces the corresponding
result has been obtained by Gerhardt [16] (see also Urbas [65]).

3.1 Graphs over a spherical cap

Due to the assumption of star-shapedness and the choice of a cone as supporting hyper-
surface we can write the evolving hypersurface as a graph over some part of the sphere.
This yields more explicit coordinates and simplifies most of the formulas. We start by
defining the cone X".

17
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Definition 3.1. Let S™ C R™"! be the sphere of radius one. Let M™ C S™ be some
domain in S™ with smooth boundary. Then X" defined by

PIEES {r:cEIR”H ‘ r >0, xE@M”} (3.1)

is called a smooth cone. We say that > is convex if the second fundamental form of dM™
is positive definite with respect to the outward unit co-normal n € T, M™ N N,OM™.

To find a solution to (IMCF) we make the ansatz
F:M"x[0,T) — R"™: (z,t) — u(z,t)z

for some function u: M™ x [0,T) — R4. If the initial hypersurface M is a star-shaped
C?“hypersurface there exists a scalar function ug € C**(M™) such that Fy can be
expressed as Fy : M™ — R : x — wo(x)r. Analogous to Lemma 2.5 we have the
following lemma for graphs over a spherical cap.

Lemma 3.2. Lett > 0 be ﬁxed.~Let Mt” = F’(M”,t) and let {o4j}ij=1,..n denote the
metric on M"™. We define p := F(x,t) and assume that a point on M™ is described by
local coordinates that is x = z(£%). The following formulas hold:

(i) Let v := /T +u2|Vul? and 1 < i < n. Then the tangent vectors 7; € T,M} and
the unit normal v € N,M{* are given by

1 .
7 =z Viu+uVizr, V= . (w — u_lvluvix)

where we used the same symbol for the position vector and the point x.

1) The metric {g;;}i i=1....n and inverse metric gij ii=1..n on T, M are given by
.] 7‘] b b 7.7 b 9 p t

. 1 . YViuViu
2 . . — _ -
Gij = U701+ ViUV, 9= ("” v+ \wr?) '

141) The second fundamental form {h;;}i =1 n of T, M s given by
J 7‘7 b b p t

hij = %(Uij + 2u™ 2V, uVu — “_1v?ju)'

(iv) Let p € X" and ji(p) be the normal to X" in p. Let u = p¥(x)ex(z) be the normal
to X™ in x and ey the basis vectors of T, S™. Then

(ip),v(p)) =0 & p*(z)Viu(z,t) = 0.

The scalar mean curvature of Mt" is given by H = gijhij. In contrary to Lemma 2.5 all
derivatives are covariant derivatives with respect to the metric {Uij}i,jzl,...,n on M™ cC S™.

Proof. (i) The formula for the 7; is clear and one easily checks that (r,v) = 0 and
(v,v) =1.
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(i) The metric is obtained directly from the definition g;; := (7, 7;) and since g~'g =
g9~ = id we see that g~! is the correct inverse metric.

(73i) The second fundamental form is obtained as in Lemma 2.5. In addition we re-
placed the partial derivatives by covariant derivatives with respect to o using ngu =

k

(iv) Let p € X", Let fi(p) be the normal to X" in p and u(x) = u¥(x)ex(x) be the normal
to X" in z. Using the definition of v and the fact that (z, ) = 0 we see that

<Ia(p)7 V(p)>Rn+1 =0 & ﬂk(p)vku(x,t) =0.

Since X" is a cone in R"*! we know that the normal at p and z coincide. Furthermore,
we see that the tangent vectors to Sg( oty AL D and the tangent vectors to S™ at z only
differ by the factor u(x,t) i.e. ex(p) = u(x,t)ex(x). Therefore, ¥ (p)u(z,t) = pu*(x) which

implies the result. ]

So far F only allows the evolution of points in radial direction. Since we want the
surface to move in normal direction we modify the ansatz by defining

F:M"x[0,T) — R"™ : (2,t) — F(p(x,t),t)

for some map ¢ : M" x[0,T) — M"™ which has to be bijective for fixed ¢ and has to satisfy
P(OM™,t) = OM™. As in Chapter 2 the problem of solving (IMCF) reduces to solving

ou

v ) "
a = E in M"™x (O,T)

SP)y vu = 0 on OM™ x (0,T)
u(.,0) = wo on M"

as is stated in the next Lemma.

Lemma 3.3. Let X" be a smooth cone. Let the initial hypersurface be given by Fy :
M"™ — R 2 ug(z)z with ug € C**(M™) positive. Assume that MF := Fy(M™)
has strictly positive mean curvature and meets X" orthogonally, i.e. Fo(OM™) C X" and
Vyuug =0 on OM™. Then there exists some T > 0, a unique function

we CPOIFT (M x [0,T]) N C®(M™ x (0,T))

and a unique diffeomorphism ¢ : M™ x [0,T] — M™ which is C1*® in time up to t = 0,
such that the above defined map F solves (IMCF).

Proof. Besides the fact that we express the hypersurface as a graph over some piece of the
sphere we are in the same situation as in the previous chapter. The Neumann problem
for the height function w is now posed on M™ c ™ C R™*! and the ODE for ¢ is more
explicit than before:

_ T
de ~\—1 [ OF(z,t) -1 _ n
(ODE){ dt (PF) (&s) = v i M0,

o(.,0) = id on M".
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As in Chapter 2 for a short time there is a solution u of (SP) and a solution ¢ of (ODE)
both with the desired regularity. Using (SP) and (ODE) we compute

d - dypt Ou dep 1 Viu 1
—F: g o _— = — — —=V; = —.
d (v“ a " at>‘p+“dt A A it

The initial conditions for v and ¢ follow from the condition F(x,0) = Fy(x). The Neu-
mann condition for u follows from Lemma 3.2, (iv). O

Remark 3.4. Note that (SP) from Chapter 2 looks slightly different since in Chapter 2
we considered graphs over the initial hypersurface whereas here we consider graphs over
some part M™ C S™ C R™"!. Whenever we write (SP) in this chapter we refer to the
problem on M™ C S™.

Definition 3.5. The maximal existence time for (SP) is the largest value T* such that
there is a solution u € C*L(M™ x [0,T*)) N C>®(M™ x (0,T*)) which solves (SP). The
function w is called an admissible solution. Given an admissible solution w there is a
diffeomorphism ¢ solving (ODE). The map F' defined above is then called an admissible
solution to (IMCF).

In order to prove long-time existence we will argue by contradiction. That means we will
prove a priori estimates for an admissible solution « which tells us that u can be extended
to be a solution on the closed time interval [0,7*]. Using the short-time existence result
we can therefore extend u beyond 7™ which causes a contradiction. We start with a priori
estimates which can be obtained using the maximum principle.

3.2 Maximum principle estimates

It turns out that the transformation w := Inw is useful. In terms of w the problem (SP)
is the following.

Lemma 3.6. The function u is a solution to (SP) if and only if w := Inwu is a solution

to
ow 2 .
e = Q(Vw,Vw) in M"™x(0,T)
P vaw = 0 in OM™ x (0, T)
w(.,0) = lnug in M"
with

1+ [p?

n— (o9 — Y Aij
L+ pl?)

Proof. This follows from the fact that the metric, second fundamental form and the mean
curvature transform in the following way

Q:R"x R™™: (p,A) = Q(p, A) :=

. . ViwVI
gij = € (0@' + Vinjw>, g7 =e" (a” e >

1 [Vu)?
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e’LU

(L —
T /T + [Vul?

g 1 L VioViw
= g9h;; = — — vo_ 2
H = g“h;j e (n (o T \Vw]2> VUw) .

Remark 3.7. Note that @) is a nonlinear second order operator but in contrast to the
equation for u there is no dependence on the function itself. We will use the following
notation

<O’¢j + Vz-wvjw — V?jw)

and

O

. 0Q(z, A 0Q(z, A

Qie.5) = 20 C Qem =

i 1(z,4)=(&,B) ko 1(z,4)=(¢,B)
and see that
2 i J
QY (Vw, V-w) T Y i 2 (U 1+ |Vw\2> 729
— ) - <.

" 7 1+ |Vwl|? i

is positive definite once we have estimates for H.

In the following we will use (SP)’ to derive estimates for |ul, |Ou/0t|,|Vu| and |H|. We
start with an estimate for |u].

Lemma 3.8. Let u be an admissible solution of (SP). Let ¥" be a smooth cone. Then u
satisfies

= mi < —t/n < =:

Ry minu < u(z,t)e < maxug Ry

for all (z,t) € M™ x [0,T].

Proof. Let w(x,t) := Inu(z,t) and w(z,t) := In (maxym ug) + t/n. Both satisfy (SP)’.

Using

1 1
R .= / QY (Vwg, VZwg)dd, S := / Q™ (Vwg, Vwp)d
0 0

with wp := Ow™ + (1 — 0)w, we see that ¥ := w' — w satisfies

0 y .

%) = RUVZ4+ SV in M"x(0,7)
Vo = 0 on OM"™ x (0,7T)
T/’( 70) =2 0 on  M?".

The maximum principle (see Theorem A.6 and Corollary A.7) implies ¢ > 0 in M™ x [0, T
and thus the upper bound. The lower bound is obtained in the same way using w™ (z,t) :=
In (minm ug) + t/n. O
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Remark 3.9. From a geometric point of view this estimate says that the rescaled surfaces
F(M™, t)e_t/ ™ always stay between the two spherical caps which enclose the initial surface.

Next we want to estimate @ := du/0t.

Lemma 3.10. Let u be an admissible solution of (SP). Let ¥ be a smooth cone. Then
U = Ou /0t satisfies

lzl . Vo . —t/n (132> )
( 2) IIHP . u(m,t)e ) H]l\f;?( 0

for all (z,t) € M™ x [0,T], where Hy = H(.,0), vo = v(.,0) and Ry, Ry are defined as
in Lemma 3.8.

Proof. Let u satisfy (SP) and w := Inu. Then w := 0w/0t satisfies

%1: = QUVZi+QFVib  in M x (0,T)
VvV, = 0 on OM"™ x (0,T)
w(.,0) = Q(Vwo, VZwp) on M"

with Q(Vwg, V2wg) > 0. The evolution equation follows directly by differentiating the
evolution equation for w with respect to ¢. The initial value w( ., 0) is also obtained from
the evolution equation of w at time zero. For the Neumann condition we note that V,w
is differentiable in ¢ for ¢ > 0 and equal to zero for all ¢ > 0. Thus,

0=2

o7 (V) = Viw + Vi = V0

since X" is a cone and thus p does not depend on ¢t. Therefore, the maximum principle
(see Theorem A.6 and Corollary A.7) implies

. Yo . . . Vo
min =minw(.,0) <w(zx,t) <maxw(.,0) = max .
Mn uOH(] Mn ( ) ) —_ ( Y ) — Mn ( Y ) Mn uOHO
Using the estimate for u and the fact that @ = u~'4 we obtain the desired result. O

For the estimate of |Vu| we have to make use of the convexity of X".

Lemma 3.11. Let u be an admissible solution of (SP). Let X™ be a smooth, convex cone.
Then

m_ (R
Va(e, 0l " < (32) max |Vuo

for all (z,t) € M™ x [0,T].

Proof. By assumption w = Inw satisfies (SP)’. As in [16] we want to find a boundary
value problem for v := |Vw|?/2. Therefore, we first calculate

Vit = VgV, Vi = Vi,wV w4 Vo,wVi w.
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Using the rule for interchanging covariant derivatives on S™ we get
Vi’mjw = V?mjw = V?jmw + Rémjvlw = Vg’jmw + 0y Vipw — oy Vjw
which implies
Vit = VimwV™w + 04| Vw|? = 0 VwVw + Vi,wV 5 w.
This leads to
= Vo V™
= VinQ(Vw, Vw)V™w
= QijV?jmemw + kazmwvmw
= QIViY — Qo |Vuwl* + QUi V;wV™w — QUVE,wV3 Mw + QF V.
Using the special form of Q¥ we see that

— Qijaij|Vw|2 + QijO'imijvmw

(o S (o ) - T
and
Qijv?mwvgmw
V2wl VY

1 i VuwViw
u?H?  w202H?

= - V2wV = -
u2H? 1+]Vw|2> miWVy

Thus the evolution equation for 1 can be written as

k B 2,12
o = QUViy + <Qk+ ot )VW_ 2 21)@/’— Voul (3.2)

ot w2v2 H? u?H u2H?2

For the Neumann condition we use the fact that for £ > 0 the function V ,w is differentiable
and V,w = 0. Since V1) is a coordinate invariant expression (a (0,0)-tensor) we use an
orthonormal frame for the calculation. Let eq,...,e,_1 € T,OM™ and e, = pu. Then we
have

n—1 n—1
V=Y Vuw(ei,en)Ve,w =D (Ve,Ve,w — (Ve en)(w)) Ve,w
i=1 i=1
n—1 T n—1
== ((v@zen)(w)) veiw = - Z <v6i6n7 6]> veiwvej/w
i=1 ij=1
n—1

=- > MhVewVe,w
i,j=1
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with OM" hi; being the second fundamental form of the boundary dM™. As initial value we
can choose (., 0) = |Vwg|?/2. Since X" is convex we see that ¢ satisfies the inequalities

o i VvV ) "

ot <Q JV%@ + <Qk + W) Vit in M" x(0,T)
Vup <0 on OM™ x (0,T)
¥(.,0) = |Vwo|?/2 on M™".

Using the maximum principle (see Theorem A.6 and Corollary A.7) we obtain

1/} |V’UJ‘2 |VU|2 < ma IVU)QP ma |VU0‘2
= = X ——— = max .
u?z T M 2 M 2ud
Together with the estimate for v we obtain the desired result. O

A more geometric way to derive the gradient estimate is to estimate the quantity
f = (F,v). Even though the preservation of star-shapedness already follows from an
estimate for Vu we want to include this estimate due to its nice geometric nature.

Lemma 3.12. Let F' be an admissible solution to (IMCF). Let ¥" be a smooth, convex
cone. If the initial hypersurface is star-shaped with respect to the center of the cone, i.e.
0 < Ry < (Fy,vp) < Ryo. Then the hypersurfaces remain star-shaped and satisfy

R < (Fv)e ™ < Ry
for all (z,t) € M™ x [0,T].

Proof. Let F be an admissible solution to (IMCF). We first prove the upper bound using
the same argument as Huisken and Ilmanen in [30]. We first calculate

o|F|? 2 21F| _ 2|F|?

= — <
o —EE ST =,

The last inequality follows from the observation that at the point most distant form the
origin H > n|F|~!. From the growth of solutions to this ODE we obtain

(F,v) < |F| < max |F(.,0)|e!™ = max(Fy, vp)e?/™ < Roe'/™.

The equality comes from the fact that at the maximum of |Fy| we have |Fy| = (Fo, vp).
For the lower bound we try to find a Neumann problem to be able to apply the maximum
principle. Notice that the calculations are carried out on the surface M}*, i.e. with respect
to the induced metric g and not with respect to o. First we calculate dv/dt. For this
calculation we use the fact that Ov/0t € T,,M;* and that v is orthogonal to the tangent
vectors OF /0z". We see that
oF
7 (i) 5

v _ z‘j<‘9” ‘9F>3F__“<
ot 9 \ot owi) 0w~ Y
] 1 OHOF 1
]

__,.j[a <V1/> <81/ v or 1
T A\ H ozt H T w029 040w T H?

IVH.
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Therefore, we obtain the following expression for the time derivative of f = (F,v):

0 OF v 11
—_— = —_— —_— = — e 4 H
o1 (oY) <6t’y>+<F’8t> i e VA

Using the fact that Av = —|A|?v + 9VH (see e.g. [14], (A.9)) we get

A, (F,v) = <ZF, 1/> + 29 <g§ gg;> + <F Zy>

= H — |AP?(F,v) + (F, 9VH).
Altogether we see that f satisfies the evolution equation which was already used in [30]:

0 1 Al?
a—{ = mAg f+ |H|2 f
In order to compute the normal derivative 9V, f we want to use an orthonormal frame
as in Lemma 3.11. This time we choose a frame such that ei,...,e,—1 € T,X" N T,M}",
en = p and ep41 = v. We first recall two relations which were derived by Stahl in [59].

We see that
d v duy dF
—(F — (= F2N_(F fll

1 1/ = 1 on
= o (F dp()) = 5 (F.Vop) = & ;§L<F’ er) ™" hu.

and for 1 <7 <n —1 we have

0=Vi{v,u) = <vl»1/,,u> + <1/, Vi,u>

= > lerow) Mhip+ > (wer) P ha = M hiy 4+ 7 hy.
k#n+1 l#n

This allows us to calculate

IV (F,v)

= <qu7 1/> + <F, ﬁul/> = (p,v) + Z (F,ek) Mtnhpk

k#n+1
n—1 n—1
= > (Fer) Mhyp + (Fp) Ml = = (Frer) ™ hi + (F, ) M hy,,
k=1 k=1

d n n n
= _Ha<FaM>+<F7V> > hw+<F7M> M huu: <F>V> > by

The last equality holds since 3" is a cone. So we see that f satisfies the following Neumann
problem

of 1 A]? - n
a mAgf—{— ﬁf 1n M X (O,T)

IVuf = Thuf on OM" x (0,T)

f(.,O) = jb on M™".
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Using the fact that |A|?/H? > 1/n and the fact that *"h,,, is positive definite we see that
Riet/™ is a subsolution to this problem. Therefore, the maximum principle (see Theorem
A.6 and Corollary A.8) implies the lower bound. O

Next, we present the geometric version of the estimate for p := dw/dt. It will be useful
for proving a Holder estimate in the following section and also yields an estimate for the
mean curvature H.

Lemma 3.13. Let F be an admissible solution to (IMCF). Let X" be a smooth, convex
cone and Ri, Ry be defined as in Lemma 3.12. Then H satisfies
Rl R2

(Rg) min Hy < H(z,t)e'™ < (R1) max Ho

for all (xz,t) € M™ x [0,T].

Proof. We will investigate the evolution of p := 1/(H f) with f = (F,v) as above. Note
that p = w. So the only difference to Lemma 3.10 is that we do the calculations with
respect to the induced metric g. The evolution equation for p was derived by Huisken
and Ilmanen in [30]. We want to mention the ingredients for the sake of completeness.
Using the evolution equation of the metric, inverse metric and second fundamental

Ogij _ 2 9g" 2

oo  H ot H
oh; 1 |AJ? 2
o = it i = g VAV H

one obtains the evolution equations for f and H

OH 1 [A]*  219VH|?

— = AH-"LH .
ot H?™Y H? H3 (3:3)
of 1 |AJ?
= _A S 4
ot H? of T gzt (34)
and thus the evolution equation for p
dp 1 Vel 2 ([ 9Vp 9V pl?
— — — ‘HIV,;p = -2 . .
or —mENP T E pr s Y Ve leg( H? ) pH? (3:5)

In order to calculate the normal derivative we first calculate V,H. Similar to Stahl in [59]
we differentiate (v, u) = 0 in time and use the time derivative of v from the last proof to
obtain

d dv du
0= E<V7:u’> - <dtau>+<yvdt>

1 1 IV, H  *'hy,

:ﬁ<gVH,,u>+E<V’ du(v)) = 2 H

(3.6)

Together with the Neumann condition for f this implies

1 EnhVV EnhVV
IV H — ——= IV, f =

iiE =0.

Hf  Hf

1
IV ,p = _H72f
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Therefore, we see that p satisfies the following Neumann problem.

dp [ 9Vp 9V p|? . n
T = dlvg( e >—2 I in M"x(0,7)
IVup =0 on OM™ x (0,7)
p(.,0) = po on M".

Thus, the maximum principle (see Theorem A.6 and Corollary A.7) implies

1 1 1
——— < mi <p=—X< < — .
Rgmang_nj\}[l}llpo_p Hf_%XpO_leian
Mﬂ/ M"l
Finally, the estimates for f yield the desired estimates for H. O

Remark 3.14. Note that the surfaces M;* tend to infinity as time tends to infinity.
From the estimate for u we see that rescaling by the factor e~*/™ implies a bound on wu.
Therefore, we can only expect good estimates for the rescaled solution 4@ = ue /" or in
terms of w = Inw for @ :=w — t/n.

We want to summarize the scaling of the important quantities in the next Lemma.

Lemma 3.15. Let F' be a solution to (IMCF). We obtain the rescaled solution by defining
F .= Fe V", This implies the following rescalings

= U@it/n, Vi = Vueft/nj @ = (6U — u) eit/n,
ot ot n
t ow Ow 1
h=w— -, Vi =V “a_dv_ -
Ty v w’ o ot n
Gij = gige 2", 9 = gein, hij = hige™/™, H = He''™,

Proof. From the definition of F' we see that the rescaling of F' implies the rescaling for w.
The other formulas follow by direct calculation. O

3.3 Higher order Holder estimates

We will first prove estimates for the Holder coefficients of Vi and 04/0t. They imply
a Holder estimate for the mean curvature H which will finally yield the full ¢T3
estimate for . We start with the estimate for the gradient.

Lemma 3.16. Let u be an admissible solution to (SP). Let X" be a smooth, convex
cone. Then there exists some 3 > 0 such that the rescaled function (x,t) == u(z,t)e /"
satisfies

[Viles+[Vi], s < C.

8
t,5

Here [f]. denotes the y-Hélder semi-norm of f in M"™ x [0,T] with respect to the z-
variable and C' = C (||ug||2+a,pm, 1, B, M™).
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Proof. First note that the a priori estimates for |Vu| and |04,/0t| imply a bound for [4], 3
and [@], 5. The bound for [Vi], s follows from a bound for [@], s and [38], Chapter 2,
’2 ’2 ’2

Lemma 3.1 once we have a bound for [V, 3. As Vi = 4Vw it is enough to bound
[Vw]; g. To get this bound we fix ¢ and rewrite (SP)" as an elliptic Neumann problem
with PDE

i Vw 1+ [Vu(z, )2 n B
e (W) - < w(x,t) B 1+ |Vw(x,t)|2) =0. (3.7)

The equation is of the form V;(a’(p)) + a(z,t) = 0. Since w and Vw are bounded we see
that a is a bounded function in = and ¢. Let us define a"(p) := da'/0p’. Integrating the
equation against the test function 1 and integration by parts yields

/ § (ai(Vw)Vm —a(x, t)n) dp = 0. (3.8)

The particular choice n := V£ with £ € VVZ%)CQ(M ") and another integration by parts
shows that

/ . (aij(vw)vjlwviﬁ - a(x,t)Vlg) dp = 0.

Therefore f := V;w satisfies (in a weak sense) a linear uniformly elliptic equation
/ (aij(Vw)ij — o} (x)al(z, t)) Vi€dp =0

with bounded and measurable coefficients. Thus [37], Chapter 3, Theorem 14.1 yields!
an interior estimate of the form

Vil . <C (dist(z\}n,aMn), Y, |w\)

)

for some 3 > 0. To obtain the estimate near the boundary we proceed as in [37], Chapter
10, Section 2. We choose some boundary point ¢ and use a chart which locally flattens
the boundary. Once more we use the weak formulation (3.8) but this time we choose
n = V,¢ and € = (?max{V,w — k,0} where ( is an arbitrary smooth function with
values in [0, 1] defined in some neighborhood of an arbitrary boundary point. First let
r # n, where e, is supposed to be the direction normal to the boundary. This yields

| [CaIVivis 4 2T~ k) - 2009, ~ )~ ¢V, f] dp =0

with f := V,w. Since a is bounded we denote its maximum by @. Furthermore, the
smallest and largest Eigenvalues Ayin and Apyqe of a' are controlled due to the estimate
for [Vuw|.

!'Note that this result is stated for a domain in Eucledian space. But since only the known metric o is
involved we can translate this local result using a coordinate chart.
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Using Young’s inequality with € on the second and last term and the same inequality
with € = 1 for the third term we obtain

Amaz
)\mzn/ |Vf’2C2 d,u < / |:Amax52g2’vf‘2 + 2 ’VC‘QU. - k‘Q
Ag,r A €

7 EZCQ 82
+a@ 4 |VOPIf — kP 4 Sy + 5 VAP du

where Ay, := B, (20) N 2 Nspt&. Choosing € small enough this yields

[, P an<cuvutlan [ (1VeFIs -k 1) au

Ak,'r

This inequality for V,w and the corresponding inequality for —V,w imply (see [37],
Chapter 2, Theorem 7.2) the Holder continuity for V,u in the case r # n. This result can
be stated in the form of a Morrey estimate (compare [37], Chapter 2, Lemma 4.1), i.e.

/ Vu|? dp < Cr=2+28,
Br(xo)ﬂﬂ

To see that the same estimate also holds for » = n one solves (3.7) for V,,w to obtain
Vonw = b"Viw + b where b and b are bounded and the summation in 7 stops at
r = n — 1. Combining this with the Morrey estimate for r < n we see that the Morrey
estimate and therefore the Holder continuity in the neighborhood of the boundary holds
for V,u up to r = n. The global result follows from a covering argument since M" is
compact. ]

In the next step we estimate the Holder coefficient for 0a/0t.

Lemma 3.17. Let u be an admissible solution to (SP). Let ¥ be a smooth, convex
cone. Then there exists some 3 > 0 such that the rescaled function @(z,t) := u(z,t)e”t/™
satisfies

i, Lol =

8t (E,ﬁ at t’g -

Here [f],~ denotes the y-Hélder norm of f in M"™ x [0,T] with respect to the z-variable
and C = C (Hu0||2+a7Mn,n,ﬁ, Mn)

Proof. Similar to the last proof we want to use the weak formulation. This time we exploit
the parabolic equation for p. We want to follow the argument in [38], Chapter 5, §7 pages
478 ff. Therefore we first note that p = v/(uH) = Ow/0t and therefore

3@_(36”_“) —t/n_aww—t/n_ﬁ_A( _1>
ot \ ot n)¢ T n - Y\PT )

So the estimate for p will imply the estimate for d4/0t. Next we remember from (3.5)
that p satisfies the evolution equation

2
g

I _ i <Vp> _2[Vp
ot I\ g2 pH?
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The weak formulation of this equation is

t1 7 2
VipV'n  2|Vpl|

= + = dpy dt = 0. 3.9

/to /”l 2 ol1? n| dpe (3.9)

This time the argument for regions close to the boundary and those lying in the interior
is the same. This is a special case since the right hand side of the Neumann condition is
zero and the boundary integrals all vanish. We choose 7 := £2p where ¢ is an arbitrary
smooth function with values in [0, 1]. The first term can be written as

hroa 1 h
/ oy dmdt = / (p)? dut / / du at
to Mtn Mn to n

and the second term in (3.9) equals

/tl VZIOVZT] d dt /tl/ 2£pv1pvzg + 52 lpvl d dt
to Mn to n H2

Together this yields

1 2
5”#’5”2,]\4

t1
/ / FIWIQ 2|Vp| *¢%p ] o
to n
t1 7
/ / lzg 2£szpV 51 i dt.
to "

Using the estimate

&2Vl <1+ ) &|Vpl?
Jig: p/) = max H?2

and Young’s inequality we obtain

by /t/ 2|Vl dpy dt
tolg maxlﬁf2 to JMP P a

t1 2 V|V
[ 0%+ Ll quutdt
to n

t1 a QV 2 QV 2
<[ [ty e v
to n ot min H?2 € min H?

Choosing ¢ := min H?/(2max H?) this finally yields
"y / / 2|V |2 dpy dt
¢ 2 max H2 pPrc

2 max H?2 t
<1+ +|V 2] dp dt.
< min A4 >/t0 / [ ‘ Vel e
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This inequality is of the same kind as the one in [38], Chapter 2, Remark 7.2. Therefore,
Theorem 8.1 and Remark 8.2 in the same chapter imply? that p is Holder continuous
in the x and t variable. The global result follows from the local results and a covering
argument. O

These two estimates directly imply an estimate for the mean curvature.

Lemma 3.18. Let u be an admissible solution to (SP). Let X" be a smooth, convex cone.
Then there exists some (> 0 such that the rescaled mean curvature H = He!/™ satisfies

[FIL,5+ [E[]tg < G

Here [f].~ denotes the y-Holder norm of f in M™ x [0,T] with respect to the z-variable
and C = C (||luoll24a,mm, 1, B, M™).

Proof. This follows from the fact that

_E[ _ Het/n _ \/ 1 + |VU]|26t/n _ \/ 1 + |VU]|2
evw Uw

together with the Holder estimates for [Vw|, w and 4. Note that the Holder estimate for
@ follows trivially from the estimates on |Vi| and |04/0t|. O

Finally we obtain the full second order a priori estimates.

Lemma 3.19. Let u be an admissible solution to (SP). Let X" be a smooth, convex cone.
Then there exists some B > 0 such that

Hu”z+ﬁ,1+§,Mnx[o,T] <C

with C = C (||uo||2+a,rm, 0, B, M™).
Proof. We define v := /1 + |Vw|? and use the formula for the mean curvature to write

ViwViw

H=n— gy _ YV
uv n <O’ 1T [Vl

2 2
)Vijw—nu Agw.

Thus we obtain

ow v U 2v

n 1 A +<2U n >
—_— = = = 7 — = = -AjWw —= — —= =
ot uH u2H?2 uH g2 7 aH  2H?2

which is a linear, uniformly parabolic equation with Hélder continuous coefficients. There-
fore the linear theory (e.g. [38], Chapter 4, Theorem 5.3) yields the result. O

?Again the arguments in [38] work in Euclidean space but since the arguments are local and the chart
only involves the metric § which is controlled (due to the estimates for @ and Vi) this does not cause
any problems.
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3.4 Long-time existence and convergence

From the definition of the maximal existence time we see that we have to show that all
derivatives stay bounded up to T™ in order to be able to obtain a contradiction to the
maximality of T%. Therefore, we first prove a statement on higher regularity.

Lemma 3.20. Let u be an admissible solution to (SP). Let X" be a smooth, convex cone.
Then there exists some B > 0 and some tg > 0 such that for all k € IN

”“H2k+@k+§7M"X[to7T} =€

where C only depends on ||u( ., to)||2k+a,mn,n, B and M".

Proof. Using the C?+7° 145 _estimate from Lemma 3.19 we can consider the equations for
w and V,;w as linear uniformly parabolic equations on the time interval [ty,T]. At the
initial time ¢y all compatibility conditions are satisfied and the initial function u(.,tg)
is smooth. This implies (in two steps) a O3+5:%5 _estimate for V,w and (in one step) a
C2+B. 145 _estimate for 1. Together this yields the result for kK = 2. From [45], chapter 4,
Theorem 4.3, Exercise 4.5 and the preceding arguments one can see that the constants
are independent of T'. Higher regularity is proved by induction over k. O

Recall that M™ C ™ C R™*!, that the cone X" is defined in (3.1) and that we consider
the problem?
oF v

E_EOF in M"™ x (0, 00)

(IMCF) { (uoF,uoF)=0 on OM™ x (0,00)

F(.,0)=F on M™

where v is the unit normal to M]* := F(M",t) pointing away from the center of the cone.
Collecting all the a priori estimates we can prove the main result of this chapter.

Theorem 3.21 (Expansion in a cone). Let n > 2. Let X" be a smooth, convex cone
with outward unit normal . Let Fy : M™ — R be such that M} = Fo(M™) is a com-
pact C*-hypersurface which is star-shaped with respect to the center of the cone and has
strictly positive mean curvature. Furthermore, assume that Mg meets X" orthogonally,
i.e. Fo(OM™) C X™ and {u o Fy, v o Fy) = 0 where vy is the unit normal to M.
Then there exists a unique embedding

loasn

F e CHoM5 (M™ x [0,00), R"T) N C®(M™ x (0,00), R"*1)

with F(OM™,t) C X" for t > 0, satisfying (IMCF). Furthermore, the rescaled embedding
F(. ,t)e*t/" converges smoothly to an embedding Fi, mapping M™ into a piece of a round
sphere of radius roo = (|Mg|/|M™)(1/™).

Proof. From Lemma 3.3 we know that a solution with the desired regularity exists at
least for a short time and using Lemma 3.20 we see that the Holder norm of u = det/"
can not blow up as T tends to T* < oco. Therefore, u can be extended to be a solution

3The only difference to (IMCF) in Definition 1.1 is that here M™ is a submanifold of N™*! = R™*!,
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to (SP) in [0,7%]. The short-time existence result of Lemma 3.3 together with Lemma
3.20 imply the existence of a solution beyond 7™ which is smooth away from ¢ = 0. This
is a contradiction to the choice of T* and therefore T* = co. To investigate the rescaled
embedding as ¢ tends to infinity we have to examine the behavior of & = ue™*/™. The a
priori estimates allow us to read (3.2) of Lemma 3.11 as

9 g
O < QU+ BV — .

with some 7 > 0 which implies an exponential decay of 1. The maximum principle (see
Theorem A.6 and Corollary A.8) implies that

N R _
|Va| < <R?> rrj\l/[anx|Vu0|e ",

Therefore, the gradient of @ is decaying to zero. Using the formula for the first variation
of area (see e.g. [57]) and the fact that divyr v = H we get

d / 1 " 1
— M = divpn (1/) dus = <V6i (V) ,ei> dps = | M

where {e;}1<i<n is some orthonormal frame of 7M. Thus the surface area grows expo-
nentially and the rescaled hypersurfaces have constant surface area. Using the Arzela-
Ascoli theorem and the decay of the gradient we see that every subsequence must converge
to a constant function. The constant surface area implies | M| = |M2| = v |M"| and
shows that (. ,t) is converging in C'(M™) to the constant function e, = roo.

Now assume that (., t) converges in C*(M™) to 7. Since @( ., t) is uniformly bounded
in C*H148(M™) by Arzela-Ascoli there exists a subsequence which converges to 74, in
Ck+1(M™). Finally every subsequence must converge and the limit has to be 7. Thus
(., t) converges in C*+1(M™). This finishes the induction and shows that the convergence
is smooth. O
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graphu

E’I’L

Figure 4.1: Level set description: M} = 0{u < t1}.

So far we have considered the surfaces M/ as the image of the surface M™ under the
embedding F'(.,t). Now we change our point of view. We introduce a scalar, time-
independent function u such that the hypersurface M}* is given as the t-level set of the
function u (see figure 4.1). In this setting the problem (IMCF) can be reformulated as a
degenerate elliptic mixed boundary value problem for this level-set function in a domain
with corners.

In Section 4.1 we will derive the level-set formulation and define a family of approxi-
mating problems which will have more regular solutions. We will use Section 4.2 to derive
a priori estimates for the solutions of these approximating problems. This yields an exis-
tence and uniqueness result for the approximating problems in Section 4.3, Theorem 4.21.
Guided by the ideas of Huisken and Ilmanen [29] we define a notion of weak solutions
in Section 4.4. Furthermore, we show that the sequence of approximating solutions gives
rise to a sequence of weak solutions one dimension higher. Using a compactness result
we can finally prove that the limit of this sequence is the unique minimizer of a certain
functional related to the level-set problem. This program yields existence and uniqueness
for weak solutions of IMCF in the case of hypersurfaces with boundary in Theorem 4.47.

The last section gives an outlook to a potential application of weak solutions indicated
by the monotonicity of the Hawking mass for classical solutions to (IMCF).

4.1 Level-set description and approximation

In the sequel we will be interested in sets which lie on one side of the oriented hypersurface
¥ C R™!. Therefore, we need the following definition.

35
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Definition 4.1. Let " be an oriented hypersurface in R"*! with a unit normal x. We
define the set of points lying on and above X" using curves ~ : [0,1] — R"*!,

Q= {a: c R ‘ 3 s.t. v([0,1]) N ™" = 4(0), v(1) =z, +'(0) = —u} uxn.
Furthermore, for a set A C Q2 we define the boundary parts
JgA = 0A\ X and On A = 0A\ 0qA.

With the help of this definition we can describe the evolutionary problem in the level-set
formalism.

Lemma 4.2. Let F satisfy (IMCF) such that M]* = F(M",t). Let u : Q@ — R be the
level-set function such that M} = 0q {u < t} holds. As long as the mean curvature of the
hypersurfaces M[" is strictly positive problem (IMCF) is equivalent to

D _
div (|DZ|) = |Du in Qo :=Q\ Ep
(*) D,u=0 on g := 0x8
u=0 on dqEy

where Ey = {u < 0} and p is the unit normal to ™.

Proof. First we note that given a solution u to (x) in €y we can extend u to €2 such that
u < 0 in Ep. In terms of u the outward unit normal to M{* is v = Du/|Dul. Since the
mean curvature is the divergence of the normal we have
Du
H=div(yv)=div|— ).
= ()
Let § > 0. We choose a curve 7 : [t—d,t+6] — R™*! such that v(t) € M}* and #||v. Then

the point (¢) moves in time with the speed |¥(t)| = 1/H and t = u(y(t)). Differentiating
this expression in ¢ yields

) v | Du|
1 = Du, ~(t > = <Du, > = —.
< ’Y( ) Rn+1 H Rn+l H

Therefore, H = | Du| which justifies the PDE. The boundary condition on ¥ is equivalent
to the orthonormality condition since

Du
0 = (uidpen = < , > .
<lu’ >R +1 H ’D’U,| Rt
The initial condition F'(M™,0) = M{' is equivalent to v = 0 on dq Ej since dgFEy = M{§ =
{u=0}. O

Remark 4.3. In the preceding lemma we used the fact that for H > 0 we have M;* =
{u = t}. This does not coincide with do{u < t} if u is allowed to have plateaus. Further-

more, even for [Du| > 0
. Du 1 - DuDiu g
leRrH—l <M> == m ( Y |Du|2> _DZJU == (ZZ'] (DU)D”U

and a¥ is degenerate since the Eigenvalue in direction of Du is zero.
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Example 4.4 (Expanding half spheres). In Example 1.3 we already saw that starting

with an upper half sphere of radius r as initial hypersurface and choosing X" := {241 =
n,

0} and p := —ey,y1 the half spheres expand exponentially such that M} = Sr(g with

r(t) = roe!/™. In this case the sets described above are
Q= {a: e R Tl > 0}

Ey = {33 eR™™ | 2,01 >0 and |z| <o

OqgEy := {l‘ e R ZTp+1 >0 and |3§‘| = TO}
OxQ := {:L’ eR"™ | 2,01 =0 and |z]|> 7’0}

and the solution to (%) is given by u(x) = nln(|x|/r).

In order to solve (x) we want to consider a family of non degenerate problems in a
bounded domain. It turns out that we also have to deform the given set Fp in order to
be able to solve the non degenerate problem in the right weighted Holder spaces.

Definition 4.5. Let Ey C Q be open and bounded. Assume that doFy is a C>%-
hypersurface which meets X" orthogonally. We define the set

Epe = Ep\ {z € Ey \ dist(z, ") <& and dist(z, 0Ep) < &(x) | (4.1)

where

£o(x) :==dexp (1 - (W)j '

So Ejp. is a subset of Ey which coincides with Ey for points far from »". The function
& is arranged in such a way that for the exterior normal to Ep . given by vgg, . we have

01(e) ==« <V8E0,57N) € (0,%) or in other words
DU diSt( . ,BQEQE) >0 on X"N 8QE0’5. (4.2)

As we will see this property ensures the existence of more regular solutions. To define
a family of approximating problems in bounded domains we also have to introduce an
artificial outer Dirichlet boundary.

Definition 4.6. Let F;_ C  be open in Q. Assume that 0 F}_ is a C?“-hypersurface
and that F7, D Ey.. Furthermore, assume that 6s(g) := £ (—V(’)FLE,/L) € (0,%) where
Vory, 18 the exterior unit normal to Fr_. We define

—_—
Q. :=Fr. \ Epge, Y = 0n(), (4.3)
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and consider the following family of e-regularized level-set problems in bounded domains

ST = di Du™" —VETDETE =0 inQ
Q*u®T = div T D 24+ |Dus"|? = in Q.
D,u*" =0 on Y.
(e
UE,T =0 on GQE(),g
u>T =T on 0o FT,.

for e > 0 and 7 € [0, L¢] (see Figure 4.2).

OaFr,
N

H —VooFyL,

Figure 4.2: Domain and boundaries for (x). ;. The dotted line denotes 0qEp.

The idea is that for ¢ — 0 the sets Fr,_ become larger, 0gEp . deforms back to dqEy
and L. — oo. Thus, we recover the problem (%) in the limit. The choice of F7_ and the
largest possible value L. will depend on the availability of a subsolution as we will see in
the next section.

4.2 Estimates for the approximating problems

Similar to the procedure in Chapter 3 we will now prove a priori estimates for |u®"| and
|Du®7|. To obtain estimates for |u®"| we will construct super- and subsolutions. To
estimate | Du®7"| on the Neumann boundary we use the maximum principle. The estimate
of |Du®"| on the Dirichlet boundary will be obtained by constructing suitable barriers.

We will see that we can prove the existence of solutions to (x). . in weighted Holder
spaces which guarantees that the solutions are in particular in C%(Q.) N C4 () for
some «, 3 € (0,1). To shorten the notation we make the following definition.

Definition 4.7. Let o, 3 € (0,1). A function u € C**(Q.)NCYP(Q.) is called admissible.

We start with the estimate for u from above.

Lemma 4.8 (Existence of a supersolution). Let u®" be an admissible solution of
(x)er. Then vt := 7 is a supersolution and us™ < 7.

Proof. The constant function v*(z) := 7 lies above u®” on both Dirichlet boundaries
OaFo, and O Fy, and satisfies the Neumann condition Duv+ = 0 on X.. Furthermore,
Q°vT = —e < 0 in Q.. Therefore, the maximum principle in Proposition A.12 implies the

result. O
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Unfortunately, the function v = 0 is not a subsolution. The reason is that for every
non-constant function the sign of the quantity D,v~ has to be controlled everywhere on
Y.. To achieve this we assume that X" is globally given as the graph of a C'-function
f: R™! — R such that all tangent lines to graph f in radial directions hit the z"*!-axis
above the point zy := (0, ...,0, —cp), i.e.

min {f(z) — (Df(z), z)gn+1} > —co (4.4)

rzeRn+1L

for some positive ¢y > sufficiently large (see Figure 4.3).

Figure 4.3: Asymptotically cone-like graphs allow for rotationally symmetric subsolutions

Lemma 4.9 (Existence of a subsolution). Let n > 2. Let ™ be globally given as the
graph of a C*-function f : R"*1 — R such that (4.4) holds. Let Fy_ be defined by

1
Fr. = {x € ’ dist(x, zg) < }

c de
and Q¢, Y. be defined by (4.3). Then an admissible solution u®™ of (%) with
In (4 1
0< <L, := ’11(25(1”7 a = 81;1337{Edist(.,$0), E<@

satisfies the estimate

dist(z, xo)

|
u(z) = v (x) = vp (2) = Le 7 o= 21n(
: a

) Le+T. (45)

In the limit as € — 0 we see that Q. — Qo and L. — oo.

Proof. To obtain the lower bound we construct a subsolution of (x).,r. of the form

v (x) :=Aln (7‘(ac)>’ L.:=\Xn (R>, A> 0, R>a

a a
where r(z) := dist(x,20), a := maxg,g,. 7 and A and R will be specified later. By
definition v~ < 0 on dgEp. and v~ = L. on 0qFr_. We define r; := (x — x); and

compute that

. 1 A 2r;r;
Dy~ = )\%7 €2 + |Dv |2 = —Ve2r2 + 22, Dijv™ == <5ij - 7“12??) )
r r r "
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For the Neumann condition we obtain

D)o (x) = (u(x), Dv™(x)) = 7”2?1‘) (u(zx), = — x0) for x € 3.

so we see that D, v~ < 0 as long as  — zg is pointing inside the domain or is at most

tangential to the boundary. This is true by the choice of xg. It is left to prove the
inequality for the operator )*. We obtain

Dv~
€ - :d - — €2+ D —12
Q) ( s2+\Dv—|2> Ve + D]
1 . Dy~ Dip~
SN V. Diiv™ — 2 1 |Dy—|2
VEZ+ D2 ( 52+1DU—P> U yE D

2, — 4] .
I I S A(“_?%)_l 52 2
VelrZ + )2 (5 r=2(e2r2 4 X2) ) r? iy 2 ” Ve 432

I S AP A2 N 2)\2
Ve 422 e2r2 4+ X2 e2r2 4 N2

1
) — Ve 4 )2
,

= 1 2,2 2 3 2,2 2)\2
—m@(nﬁ)(er +A2) + X = (B2 4 A7)

_ 1 4 3 2,212 2.2 4.4
_m(_)‘ + (n— 1A% = 2%\ +(n—2)5r)\—€r>.

This yields

W) > !

m( — A4 + )\3 — 252T2)\2 — €4T4) (46)

1
provided n > 2. Thus, if we choose A =1/2, r < R := = and € < i then Q*(v™) >0

and the maximum principle in Proposition A.12 implies v~ < u®7 in Q.. Furthermore,

R 1 1 |In(4ca)|
= 1 —_— = —1 —_— = -
L. )\n(a) 2n(4€a> 5 00

and Q. — §p since F,_ —  as ¢ — 0. So far we obtained a subsolution for (%), . so we
rename v~ to vy and we see that the function vz := vy — L¢ + 7 is a subsolution for
the problem (%) ;. O

We saw that a subsolution can be used to define Fj,_ and L.. Unfortunately, the
estimate u=7 > v~ is not very accurate near doFEy . since we only get u®7 > —c(¢) but
the estimate does not tell us that u®” becomes non-negative as € tends to zero. Using
subsolutions which are less steep (see Figure 4.4) we can fix this problem.

Lemma 4.10 (Improved lower bound). Suppose the assumptions of Lemma 4.9 hold
and e <1-10720. If we restrict (x).r to smaller domains and boundary values, i.e.

1 In(1 1/64
FL{-: = {l' €N ‘ diSt(.’E,l’o) }, L. = M

<E§@' e 5 (4.7)
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with a := maxg, g, dist(.,z0) and & < (10a)~%%. Then in addition to (4.5) an admissible
solution u®™ of (%) r satisfies

W > u (z) = £2V/16 (; In (W) L.+ T) ‘ (4.8)

In particular us™ > —&5/4 for

e <min {1-107,C71%, (100) %}, C:

In <2) ’ + | n(100)| (4.9)

where b := ming_ dist(.,xzg).

Remark 4.11. For the gradient estimate of u*" on dqFo . from below it will be important
to have an estimate of the form u®™ > —!*7 for some v € (0, 1).

graphwv L.,
graphwv L.,

= dist( .
a arélggi ist(.,xo)

b := mindist( ., zo)

Figure 4.4: Improving lower bound for ¢ tending to zero (g2 < €1).

Proof of Lemma 4.10. We define a new subsolution of (%) r by

w (z) = m)—(m):n(éln <r(ax)>_L€+7_>’ L. :zlln (R>, R>a

2 a

with 7(z) := dist(x,2z0) and a := maxg,g,, r. We see that for n € [0,1] the function
w~ = nu~ satisfies the right inequalities at the boundary

w_|aQE0’E =0, w_|<99FL€ =T, D#w_’EE <0.

Now we use (4.6) to calculate Q*(w™). For n > 2 we obtain

@w) =@ )= (3m (%))

a

" <g27~2 + (2>2>3/ ’ <_ (Z> * (2) — 2¢%? (g) —547~4>

1
(8773 ot 22 54r4> ‘

7723/2
2,2 z
r(sr +<2>>

v

v
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If we choose ¢ < 1 and 1 := £21/16 we derive
_ 1 1
Q°(v™) > e o (8563/16 _ B4/16 _ 9,2 T4/16 _ T4564/16>
2,2
T (E r 4+ 1 )
£63/16

1 1/16 212
> —
> os 373 (8 e P(1+r9)%).
r <s2r2 + 0 )

The last expression is positive if

- 1 - 1—V8el/16 1
"= V/821/16 T NG c1/64°

The choice ¢ < 110729 implies v8¢1/16 < 3/4 and allows us to choose r < 1/(10e1/64) =:
R. Furthermore, by definition we have

1/64
.- lln (R) B |In(10ae )\
2 a 2

The maximum principle in Proposition A.12 implies that

ue,T(l‘) > w_(x) > 621/16 <1 @H In <dlSt(’xO)) _ La)

> N a
> _85/481/16(0 + “n(gl/w)‘) > _5/4
for e < C716. The value C is given by
In <b>
a

Note that we used the estimate y|In(y)| < 1/e on [0,1] in the last inequality. O

C = , b := ming_dist( ., o).

+ | n(10a)

In the next steps we estimate the gradient. We start with the gradient estimate on the
Dirichlet boundary parts 0qEp. and 0qFr.. On OqFr. we can directly use the super-
and subsolutions v and v~ as barriers.

Lemma 4.12 (Gradient estimate on 0oFy,_). Assume that there exists an admissible
subsolution vy _ of (x)e,r. with Fr_ = {vy < Lc}. Let u*7 be an admissible solution of
(%)e,r- Then the gradient of u" satisfies the estimate

0< Du"" < Dy on 0o FTr,

where v is the exterior unit normal to OqFy_ with respect to the set Fr_. Under the
assumptions of Lemma 4.9 we obtain the more explicit estimate D,u®>" < 2¢.
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Proof. Since vt := 7 is a supersolution of ()., in Q. and coincides with =" on 9o FJ,
we see that vT is an upper barrier for the solution and thus

Dyu®" > Dot =0 on dqFy,

where v is the exterior unit normal to Q. on doFy,_. In the same way vz :=v; — L. +7
is a subsolution for (%), , in Q. which coincides with u®” on 0qFf_. Therefore, v- can
be used as a barrier from below. This yields

Du®" < Dyv; < Dyvp on 9oFT,.

Under the assumptions of Lemma 4.9 we obtain an explicit subsolution in (4.5). This
yields the estimate

1 dist(.,x 1 Tr—x 1
DVUE’T < §DV In < (CL 0)) < ﬁ <Va R 0> < ﬁ =2 on 8QFLE'

The last inequality holds since OoFy. = {v; = L.} = {dist(.,29) = R} and R =
(4e)~ L. O

Now we estimate the gradient on dqFp.. This will be done by constructing barriers
of the form p(z) := f(dist(.,0qF0)) - g(dist(.,%.)). In a first step we calculate Q°(p)
and D,,p for this type of barriers.

Lemma 4.13 (Formulas for barriers having a product structure). Let d :=
disto g, ., s = disty, and assume that the distance functions are evaluated in a region

where they are C2. Let f,g € C*(R). Then a barrier of the form p(x) = f(d(x))-g(s(x))

satisfies

(19l = 114> < [Dpl> < (If'gl +1fd'))". (4.10)

The Neumann condition reads

5. = J'(d(@))|5_g(0)Dyayd(2)]s, — f(d(x))

5.9 (0) (4.11)

€

and for the differential operator QF we obtain

Ve2+DplPQp

o 2 /2DiSDjS B fl 292DidDjd
— f/ 5zj_fg Dld / 61]_ i
fg( = ppp )il S+ [Dpf? )7
1"
2 2 g 2 2 1201 2
— &2~ |Dp| +7€2+|DP|2(6 + f29' 2(1 = (Dd, Ds)?))
fq" 2 12 2 2
- 1—(Dd,D
o pyp (& + 1 21 (D, Ds)?))
2f'q’

1y (£ (D4.Ds) + 1199 (D, Ds)? = 1), (4.12)
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Proof. The i-th derivative of p is D;p = f'gD;d + fg'D;s and
IDpl* = f'29° +2f9f'g(Dd, Ds) + fg' *.

The fact that |Dd| = 1 and |Ds| = 1 implies the formula for |Dp|?. Using —u = Ds yields
the formula for the directional derivative D, p. To calculate Q)°p we first note that

Dijp = f//gDidDjd + f/g/(DidDjS + DlSD]Cl) + fg//DZ'SDjS + f/gDijd + fg/DZ'jS
and
DipD’p = f' 2¢°D'dDid + ff'g¢ (D'dD?s + D'sD?d) + f?¢' 2D'sD’s.

Using once more |Dd| =1 and |Ds| = 1 we see that D'dD;jd = 0 and D*sD;;s = 0. This
yields

\Ve?+ [DplPQ%p

5 _ D'pD/p
g2+ |Dp|?

) Dijp — g2 — \Dp\2

_ ( i D'pD7p

52—i—|l)p|2> (f’gDZ-jd + fg/DijS) —e?- |DP|2

g DipDJ
+ <5” - aQer\Dpp\?> (1"9DidD;jd + f'g'(DidDys + DisDjd) + fg" DisD;s)

0] f29/ 2DisD‘jS . f/ 292D7,dD]d
e / (SZ]_— Dld / 61,]_— Dl _ 2_ D )
fg( g2+ |Dp|? 4+ 19 £2 + |Dp|? jS — € | Dp|
" 1 )9 9 o Y
+f g<1—€2+|Dp|2[f > +2(Dd, Ds)f f'gg’ + (Dd, Ds)?f%g }

(D4, Ds)? 126" + 2D, Ds)11'99' + 1 )

1
g2+ |Dp|?

/!
1 -
19 =1 [Dpf?

+2f'g'((Dd, Ds) — ((Dd, Ds) [ 26> + '99' (1 + (Dd, Ds)?)
+(Dd, Ds)f?g'?])
. 2 020 J B /2 2DZdDjd

— ! U_M D, / ZJ_fg— D..s—e2 —|Dpl?

fg<5 =1 e )Pt Ie? €2 + | Dp)? s =& =Dl

1
91— — (Dd, Ds) )
+fg< €2+|Dp|2[fg+ s)fg

+fg”<1—W[(Dd Ds)f'g+ fq )

2f'q'

m( (Dd, Ds) + f f'gg'((Dd, Ds)* — ))
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and thus

Ve +1Dpl2Q%p

. 2¢' 2DisDig B fIZQQDidDjd
— / 5'5]_']09— D/Ld / 51]_— DZ _ 2_D 9
fg( e2 + |Dp|? id+ 19 2 1 [Dpf? is =& —|Dpl
fg
+ m(gz + f2¢' 2(1 = (Dd, Ds>2))
fg//
W(eg + ' 2¢*(1 — (Dd, D3>2)>
2f'q’ 2 ;o 9
o 1y (104 Ds) + £ 99/ ((Dd, Ds)? - 1),

O]

Remark 4.14. Note that in general dnFEp. has to be extended beyond X" in a small
neighborhood of dq FyN X" in order to use the distance function in a neighborhood of the
corner. This extension can be constructed to have the same C%-norm as OaFEo, so the
estimates will be independent of this extension.

Now we will construct upper and lower barriers on doFjy . of the type
pE(x) = f*(dist(z, 0o o)) - g(dist(x, 32))

by defining appropriate functions f* and ¢g. The function p is defined in a neighborhood
I' of OgEp .. Therefore, we have to deal with an additional boundary part 0I';. Note that
we will define g = 1 far away from .. This has the advantage that we have an easier
barrier in the interior and ensures that whenever we use the distance functions they are
at least C?. We start with an estimate from below.

Lemma 4.15 (Gradient estimate on dqEg . from below). Suppose that OqEy . and
Y. are C%-hypersurfaces. Suppose that e > 0 is sufficiently small. Let u®™ be an admissible
solution of (%)e, which satisfies u>™ > —e'*™ for some v € (0,1). Then the gradient
satisfies the estimate

D, u®" > —2¢ on OqFEy ¢
where v is the exterior unit normal to OqEy . with respect to the set Eo .

Proof. Let d(x) := dist(z, 0o Eo,) and s(x) := dist(z, X.). We restrict ourselves to the
set I' := {z € Q. | d(z) < dmaz}. The boundary of T' consists of dgEp., OxI' and
a new boundary part in the interior of €. which we call 0I'y. We make the ansatz

plw) = F(d()) - g(s(x)) with
F(d) == %(exp(—Ad) —1)

and see that f, f/ and f” satisfy

<j<o, —e<y<-i Lapcea (4.13)

€

A
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where the upper bound on f’ and the lower bound on f” require dyuq, < In(2)/A. For g
we choose

2
1+exp<22<sm”)> for 0 < 5 < Smaz
Smax — S

g(s) =
1 for s > Spmax

and a direct calculation shows that

4 , g 12
<g <0, 0<g < 5—

1§g§27 - = 9
Smazx S

(4.14)

The exact values dimaz, Smaz and A will be determined later. We see that p is a negative
function which satisfies the Dirichlet boundary condition p = 0 on dqEy . since

= f(0) - g(s(x)) = 0.

P
8QEO,E

Next we want to show that p lies below u7 on OI'y. Using u7 > —e!*7 we see that

p‘ = f(dmam) ) g(s(x)) < _%(1 - exp(_Admax)) 1< —elty <u7

o

for

_ _ 1/~
< (1 exp( Admm)) '
- A

To prove that p is a subsolution we have to verify that D,,p < 0 on the remaining boundary
part OxI'. Using (4.11) and the definition of g we obtain

Dyp = F()g0)Dyayd(e) ~ F@D(0) = 2 (@) Dy + —f(d)  (1.15)
on OyxI'. The second term is negative and therefore a good term for our estimate. The
first term is a negative term if D,d is positive on OsxI'. From (4.2) we know that this
is possible in some small neighborhood of dqEp . N X, for all strictly positive €. So the
worst case is to consider the distance function to doFEp which only satisfies D,d = 0 in
the corner and therefore can become negative on ds.I'. However, since doFEy and X" meet
at a non-zero angle and have bounded curvature there is some C7 > 0 such that

Du(x)d(x) Z —Cld(:(}) on 821“. (4.16)

Furthermore, we use (4.13) to estimate f’(d) > —e and compute that f(d) < —ed/2 for
dmaz < A71. Using (4.15) and (4.16) this yields

1

Du(x)p(x”azr < 2 <01 - ) d(z) <0 on OxI’

dmam

for dpmae < min{Cy ', A='}. Finally, we have to make sure that Q%(p) > 0. Using (4.12)
and the fact that f <0, f/ <0, f/>0and g > 0,9 <0,g"” >0 we get

Ve2+ |Dpl2Qp =
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o 2 /2DisDjS B f/ QgQDidDjd
— £ 5zj_fg Dld / 51]_ i
fg( ERNTTER KRR e+ Dol ) 7°
1"
2 2 g 2 2 1201 2
— &%~ |Dp| +7€2+|Dp|2(e + f29' 2(1 - (Dd, Ds)?))
fq” 2 ’2 2 2
- 1—(Dd,D
o pp (& + £ 21— (Dd,Ds)?)
29 (2(Dd.Ds) + £ 94 (DA, Ds)? - 1)
2+ [Dpl? ’ ’

- f29/ 2D7LSD]'8 B f/ ZgQDidDjd 9
> / 51]_ Dd / 52]_ e
_fg< €2+‘DP‘2 ij +fg €2+’Dp’2 ZJS &

f//g 9 fg// 9 9 o 2f/g/ 9
— |Dp? r2g) =19 417
Drl+ o pe +€2+]Dp]2(6 ) 22+ [Dp2° (4.17)

where the only positive term is the one which involves f”. If we are further than s,,q,
away from Y. the function g is identically one, |Dp|? = (f’)? and the estimate reads

2
/9 2NVE A AT 2 ph\2 € "
2

2|2 2 2 € eA
> —en?|Dd| —e* —¢ +752+€272 =

for e <1 and A > 4(2 + n?|D?d|). Before we continue with the estimate close to X, we
have to estimate |Dp|? We use (4.10), (4.13),(4.14) and Aspqz > 24 to see that

; 2
(5- ) <Ural- 179" <IDoP < (5l + 1£91)" < (264 )

2 ASmax Smax
and thus
1
552 < |Dp|* < 9¢2. (4.18)

This estimate together with (4.13) and (4.14) allows us to estimate the maximal Eigen-
values of the matrices in front of the D?s and D?d terms

o 2 /2Di Dj
g (513 - f'985> e,

€% + |Dpl?
<iral (10 290 g2 < 2e (10 EA G Smacl ) ooy (4.19)
ST el ) B /9 - |

and

g "202D'dDIid
! 5@] _ f g &
19 ( 21 DpE )5

fl 292 5 € 4 8222 9 9
<|fdl |1 < = 1+ == < 4.2
_|f9!< +Hip,r ) 1602 G |1+ g ) 167 < 7l (4.20)
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where we used again As;,q.: > 24. Now we put together (4.17), (4.18), (4.19) and (4.20)
to prove the estimate for Q¢p away from X,

Ve2+ | DplPQ%p

> —4n?*|D%d|e — Tn?|D?s|e — &* — 9¢*

(€A/2) -1 (e/A) - (12/5p40) 2 - (4/5max)
2o T 0% 2/9 (8 +<%2) - 0+2/9 e

A 12-9- (1 + 22 2.-4-
—g<20—4n2\D2d\—7n2!D25\—108— isém: Je_ Sma:)&:)

€
>
— 20As2

max

((Asmaz)® = Co(Asmaz) = C)

for e <1, Symar < 1 and Cy := 10000(n?|D?d| +n?|D?s| + 1). Therefore, the expression is
positive for As;,q,; > 2C3. Altogether we see that p is a subsolution of (%), in I' for the
choice of parameters

20,

Smax

_ 1/
1 —e Admaz
Smaz ‘= 1], A= - - )

y dmae =min{C7H A7 n), e < < I
where 1 € (0,1) is chosen sufficiently small to guarantee that the distance functions are
at least in C2. Thus we get the desired estimate

D,u®™ > Dy,p = f(0)gD,d+ f(0)g'D,s = —eg > —2¢ on doE .
Here v is the exterior unit normal to dqFp . with respect to the set Ej. O

In the next step we prove the gradient estimate on dgFp. from above. In order to
allow for arbitrary large Dirichlet boundary values we will first find a function p satisfying
Qop < 0 for Dirichlet boundary values 0 < 7 < 1. Then we deform p into a function p
which allows for arbitrary high boundary values. For this transformation it is useful to
work with Q since a sign on Q°p will imply a sign on QY5 which is not obvious when we
consider Q°. Finally, we can argue that p is also a supersolution for Q°.

Lemma 4.16 (Gradient estimate on 0qoE¢. from above). Let ¢ > 0 be sufficiently
small.  Suppose that OqEy. and Y. are C?-hypersurfaces. Let u®™ be an admissible
solution of (x)e . Then the gradient of u®7 satisfies the estimate

D,u®" < C(n,0qEy, X™) on 0qEo¢
where v is the exterior unit normal to OqFEo . with respect to the set Fo ..

Proof. Let d(x) := dist(z,00Ep ) and s(z) := dist(z, X.). We restrict ourselves to the
set I' := {& € Q. | d(z) < dmas}- The boundary of T' consists of dqEy., dsI' and
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a new boundary part in the interior of €. which we call 0I'y. We make the ansatz
p(x) := f(d(x)) - g(s(x)) with f(d) := Ad for some A > 0. For g we choose again

2

14 exp 2—2(877““) for 0 < s < Spmaz
g(g) = Smax — S

1 for s > Symax

and remember that
4 12
1<g<2, — <g <0, 0<g" <= (4.21)
Smazx S

The exact values dinaz, Smaz and A will be determined later. We see that p is a positive
function which satisfies the Dirichlet boundary condition p = 0 on dqEy . since

p=f(0)-g(s(z)) =0 on 0oEy .
Furthermore, p lies above u®7 on 0I'y since
p = f( max) : ( (x)) > Adpaz -1 > 72> u"" on OI'y

for Adpqr > 7. To show that p is a supersolution we have to verify that D, p > 0 on dxI.
From (4.11) and the definition of f and g we obtain

4

max

Dup = §'(d)g(0)Dyd — f(d)g'(0) = 24D,d+ —Ad  on L.

This time the second term is positive and therefore a good term for our estimate. The
first term is a positive term if D,d is positive on dsI'. From (4.2) we know that this is
possible in a small neighborhood of dqFEp . N 3. for all strictly positive €. So the worst

case is again to consider the distance function to dnEp which only satisfies D, d = 0 in
the corner and therefore can become negative on dxI'. Using once more (4.16) we obtain

Dyp>2A <—01 + ) d>0 on OxI’

dma:v

for dpper < 2CT . In contrast to the lower bound we will first prove that Q% > 0. Using
(4.12) and the fact that f >0, f'= A, f"=0and g > 0,9’ <0,¢" > 0 we get

1DplQ%
B 2 /2DiSDjS B f/ 292DidDjd
i 5Zj_fg Dzd+ / 54— s—|D 2
fg 12 2 2 2f'g' 2
+ 1pp (F 267 = (D4, D)) + 55 (£F'99'(Dd, Ds)? = 1)
B f29/ 2DiSDj8 , B f/ 292DidDjd 9
<flg|(d? ———"—|Did+ fg |07 — ———— s—1|D
( e )P Dy? e
_|_ fg f/2 2 (422)

| Dpl?
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Here the only good term is —|Dp|?. In the case that we are far from . we have g = 1
and |Dp| = | f'|. Therefore, the estimate simplifies and we obtain

1Dp|Q°% < f'Ad — |Dp|* < An?|D%d| — A <0

for A > n?|D?d|. As in the previous lemma we proceed by estimating the gradient of p.
We use again (4.10), (4.13), (4.14) and choose dyaz = Smaz/8 to see that

2 Admaz 2 / 1 2 2
A2 (1= 20} < (7]~ |£g1)” < Dol

Smazx

/ 2 2 2dmam 2
< (f'gl+1fdl)" <4A* 1+ ——

Smazx

and thus
A72 2 2

T S Do < 7a% (4.23)

This yields the following bounds

y 2¢' 2DsDs A%2d? - (4)Smaz)?

<2A <1 + (42/1) > ‘§|2 < 6A|£‘2

|Dp|?
and
. f'?¢?DidDid 4 A2 92
fq' <5] T DR §i&j| < Ads— 1+ (A%/1) €7 < 94|¢%.

Now we can combine these bounds to obtain an estimate for Q%p

|Dp|Q%
- f2gl2DiSDj3 , B f/2g2DidDjd
< flg| 0V — | Dijd+ f¢' | 0Y — —F=75— | Diss
( |Dpl? ! |Dpl? ’
fgll 12 2
— 1 Dol?
12
a2 Ad o
< 6An%|D%d| + 9An?|D?s| — T A? .22
4

A 2 2 2 2 —1

< Z(1000(n |D2d] +n?|D%s| + spt,) — A) <0 (4.24)

for A > 1000(n?|D?d| + n?|D?s| + s;,},) =: 1000(C3 + s,,,...). To summarize, we proved

max max
that p is a supersolution for (x)g in I' for the parameters

T

dmaz = min{2C71 1}, Smaz = 8dmaz, Ar := 1000(Cs + s,,1.) +

dmax

where 1 € (0,1) is chosen sufficiently small to guarantee that the distance functions are
at least in C2.
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So far, to match increasing boundary values 7 on 0I'1y we have to choose steeper func-
tions p. This means that in the limit ¢ — 0 (L. — oo) we loose the gradient estimate.
To prevent this from happening we take the function p corresponding to 7 := 1. Then we
consider the subdomain T':= {0 < p < 1} C I and we define

_ plz) vel
=T5,0) eT.

We see that p = 0 on dgFjp . since p =0 on dnFEp.. Furthermore,

)

Dip(z) Dyif = (1= p)Dijp +2D;pDjp
(1= p(z))*’ ’ (1—p)?

so in particular we get the same sign for D, p as for D, p. The PDE is also satisfied with
the same inequality since

Dip =

(4.25)

[ Dpl
(1= p(z))?

__ . (Dp - . ( Dp
Q"% = div (5 ) ~ 103l = div (55 ) = Dol + 100 -

[ Dplp(p —2)
(1= p(x))?
A (42 1
QL S
T Adpas ‘ Dp\ - 12dmaq

A
< Q" < ————(1000(C5 + 5;,1,) — A1)

=Q% +
4| Dp|

In contrast to p the function f is a supersolution of ()., on {0 < 5 < 7} C T for arbitrary
large boundary values since the function blows up when it approaches the boundary

{p=1}.

Next, we observe that

Q%5 - Q%

<|\/e2+Djl2 - |Djl| +

div (wﬂ +[Dp” - \Dﬁ\Du> ‘
Ve DiE - |Dj|

25 (4.25) 2 (4.23) 2
§<1—|—3‘D'g‘>5 < 7<1+|Dp]>6 < 7(1+W>6§015.

|Dp|? |Dpl?

Therefore, by continuity we also have Q¢p < 0 for ¢ sufficiently small. Thus, p is also a
supersolution of (x). , for small € > 0 and arbitrary 7. This yields the estimate

2

dmax

D, _
ﬁ = Dyp < 2D, f < 241 = 2000(C5 + sL )+

on doFEp .. Note that we can estimate the C?-norm of d independently of the approxima-
tion of 0qFEy by OqEp.. Therefore C3 and thus the estimate for D,u is independent of
E. ]

Dyu<D,p=

The remaining boundary part of the domain €2 is the Neumann boundary part X.. If
the supporting hypersurface is convex the maximum principle tells us that a maximum
of the gradient can not occur on X..
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Lemma 4.17 (Gradient estimate on X.). Let ¥, be a conver C3-hypersurface. Let
u®T be an admissible solution of (x)er. Then, |Du®7| can not attain a mazimum on ..

Proof. Let xg € Y. First we note that due to the regularity of 3., there is a neighborhood
of zg in Q¢ in which u := u7 is C3. Let us define v := |Dul|?/2. Let a‘(p) := p/\/2% + [p|?
and a% (p) := da'(p)/dp’. We apply the operator (D7u)D; to Q°(u) defined in (x). ,. Here
j runs from 1 to n. This yields

0= D']UD] le <52_|_|W> — D]'LLDJ\/ 52 + |DU|2

Diu

ik j ik J D'y 3
=D (a (Du)D uiju) — a""(Du)DjuDyju — WD uDyju
(*) , Diuy

where we used the negative sign of the second term in (x) to obtain the inequality. As-
sume that the maximum of v is attained at xy. In a neighborhood of xy we choose an
orthonormal frame such that ey, ...,ep—1 € Ty 2. and e, = . At xg we have

n |DU|2 n n—1 n n—1
DM’U = Z ,U,Z‘Di 5 = Z j2% Z DjuDiju + DnU,Dm’u, = Z j2% Z DjuDiju.
=1 =1 j=1 =1 J=1

On the other hand, by applying Z;le (Dju)Dj to the Neumann condition D,u = 0 we
get

n—1 n—1 n
j=1 j=1 i—1

Comparing these two expressions we see that
n—1 n—1
Du’U = — Z (Dj,ui)DiuDju = — Z thijDiuDju <0
i,j=1 t,j=1
since Y. is convex. The signs for D,v and Lv together with the maximum principle in
Proposition A.10 tell us that v can not attain a maximum on .. O

The last estimate which is needed is the interior gradient estimate. Once more we make
use of the maximum principle.

Lemma 4.18 (Interior gradient estimate). Let u®" be an admissible solution of ()< r.
Then, |Du®T| can not attain a maximum in the interior of Q.. Additionally, the more
precise estimate

C(n)

|Du®"(z)] < sup |Du®T|+e+ ——
O0:NBr(x) r
holds for r > 0. Note that 0. is the boundary of Q. in R"'. Thus the boundary

consists of the Dirichlet boundary parts OqEy. and OqFr. and the Neumann boundary
part Yz = OxnQe.



4.2. Estimates for the approximating problems 53

Proof. First we note that interior regularity implies that u®7 € C3(). From (4.26)
and the maximum principle we see that Du®7 can not attain an interior maximum. The
more precise estimate follows from the interior estimate of H in the work of Huisken and
Ilmanen [29], Lemma 3.4. Since admissible solutions are in particular in C*%(Q.) we can
allow B,(z) to intersect with the boundary. O

Recall from Definitions 4.5 and 4.6 the two angles between the Dirichlet boundary and
the Neumann boundary.

b1(c) ==& (VaEO,E, u) ; a(c) := & (—VaFLHM) :
Let us now collect all a priori estimates in the following Proposition.

Proposition 4.19. Let Ey, Ey ., Fy,. and (x). - be as in Definitions 4.5 and 4.6. Let X"
be a C*“-hypersurface. Assume that an admissible subsolution v~ of (%), exists such
that Fr,. = {v™ < L.}. Let u be an admissible solution of (x)c, such that u > —!*7 for
some v € (0,1) and that |Dul|s. can be controlled independently of €. Then, u satisfies
the following estimates

(i) =t <u<7t on
(ii) 0 < Dyu < Dy,v~ on dqFr,, (v ext. unit normal to F_)

(1) —2e¢ < Dyu < C(n,0qEy,X") on OgEoe, (v ext. unit normal to Ey.)

(iv) |Du(z)| < sup |Du|+e+ cln)
0Q:NBr(x) r

(v) |ull$.lo? < Cn,00Eo ., ", Loy, |Dv|)

;0,0

for € > 0 sufficiently small and = ((01,02). Note that |Du| < |Dyu| on dqFr. and
OaFEo, due to the constant Dirichlet boundary values.

In particular, Proposition 4.19 holds in the following situation:

Corollary 4.20. Let n > 2. Let Ey, Ey ¢, F1. and (%)~ be as in Definitions 4.5 and 4.6.
Furthermore, let ©" be given as the graph of a convex C3-function which is asymptotic to
a cone in the sense that (4.4) holds. Then any admissible solution of ()., with € as in
(4.9) satisfies the estimates of Proposition 4.19. Additionally, we have |Dulggr, < 2e.

Proof. Under these assumptions a subsolution v~ can be constructed using Lemma 4.9
where F7_ and L. are chosen as in (4.7). The special lower bound for u follows from (4.9)
and Lemma 4.10. Furthermore, the gradient estimate on . is independent of € since 3"
is convex. This was shown in Lemma 4.17. Thus, all condition of Proposition 4.19 are
satisfied. Finally, the more explicit estimate of |Du| on OqFf,_ is contained in Lemma
4.12. O

Proof of Proposition 4.19. Estimate (i) follows from Lemma 4.8 and the assumption on
the subsolution. Estimate (ii) follows from Lemma 4.12 and estimate (iii) follows from
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Lemma 4.15 in conjunction with u > —¢'*? and Lemma 4.16. We can use Lemma 4.18
to obtain (iv). Finally, the gradient estimate tells us that the elliptic equation in ()¢ -
which is equivalent to

. 1 . DiuDiy
a¥(Du)Dyu = o pe (5” = |Du2> o=

can be regarded as a linear, uniformly elliptic equation with u|¢? < a¥ && < € |2 and
bounded coefficients and right hand side. Therefore, interior Schauder estimates [37],
Chapter 6, Section 1, Theorem 1.1 tell us that u € C1*(Q.). More precisely, [37], Chapter
2, Section 6, Theorem 6.1 contains the explicit dependence on the distance d to the
boundary which is d=. This yields Du € H(gy)(ﬂg) which implies a™/(Du) € Hé?;(Qa).

«
s

Finally, 61 and 62 are both strictly less than 5. Thus, the linear theory, i.e. Theorem
A.14 is applicable which yields the estimate (v) for some 3 = 3(61,62) € (0,1). O

4.3 Existence for the approximating problems

Now we can use the a priori estimates from Section 4.2 to obtain a unique solution to
the approximating problems () .. Furthermore, we can use the uniform estimates on
|Du®7| to obtain a converging subsequence of solutions as ¢ tends to zero.

Theorem 4.21 (Existence for the (x). . problem). Let Ey, Eo ., Fr,. and (x). - be as
in Definitions 4.5 and 4.6. Let ¥" be a C*“-hypersurface. Assume that for sufficiently
small € > 0 admissible subsolutions v~ of (%) . exist such that Fr, = {v= < L.}
and L. — oo. Furthermore, assume that any admissible solution u®" of (x)c, satisfies
usT > —e! for some v € (0,1) and that |Du"|x_ can be controlled independently of e.
Then there exists some 3 = ((01,602) € (0,1) and a unique solution u*" € H2(;1—ﬁ) Q)
of (%)e,r for all T € [0, L]. Furthermore, there exist sequences (€;)ienN, (Le,;)ieN, (e,)ienN
and (ufi'=i);ew such that for e; — 0 we have
L., — oo, Fr. \ Eo. — Q\ Ep, and uiols — e YN\ Ey)

loc

locally uniformly.
In particular, Theorem 4.21 holds in the following situation:

Corollary 4.22. Letn > 2. Let Ey, Eo ¢, F1. and (x)c+ be as in Definitions 4.5 and 4.6.
Let X" be given as the graph of a convexr C3-function which is asymptotic to a cone in
the sense that (4.4) holds. Then the conditions of Theorem 4.21 are satisfied.

Proof. Under these assumptions a subsolution v~ can be constructed using Lemma 4.9
where Fy_ and L. are chosen as in (4.7). The definition of L. shows that L. — oo
as € — 0. The special lower bound for u follows from Lemma 4.10. Furthermore, the
gradient estimate on Y. is independent of ¢ since X" is convex. This was shown in Lemma
4.17. Thus, all condition of Theorem 4.21 are satisfied. OJ

Proof of Theorem 4.21. We proceed in two steps. First we prove the existence of a solu-
tion for 7 = 0 and small € > 0. In the second step we show that for all € > 0 there exists
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a solution for 7 € [0, L.]. So let us assume that 7 = 0 first. The operator occurring in
(%)e,0 is

D
Q°(u) :=div <%52 —I—TDU‘?) — /&2 + |Dul?

For £ > 0 the equation Q°(u) = 0 is equivalent to F(u/e) = ¢ with

1 Du
Flu) = ———ediv [ e | .
W= A Dur 1V<«/1+]Du\2>

Therefore, for € > 0 the function u is a solution to (*). ¢ if and only if @ := u/e solves

Fa) = e in Q
(;i- D, = 0 on X,
U = 0 on 8QE07<€ U 8QFL€.

To prove the existence of a solution @ we consider F' as an operator F': A — B where

2,

A= {we H{"P(Q.) | w=00ndoFo.UdoFr,, Dyw=0on 3.}

and B := H(gla_ h) (Q¢). The spaces H. ,(Cb()l(Q) are weighted Holder spaces. They are Banach
spaces when they are equipped with a weighted norm (see (A.55) for the exact definition).
The choice of 3 = (3(61, 62) depends on the angle between the Dirichlet boundary and the
Neumann boundary. .

For € = 0 the problem (x)_ has the solution g := 0. Furthermore, the linearization of

F around 1 is the Laplacian, since

DFy,(w) = T

F(up + sw)
s=0

1 DwD’wD;jw
[ sAw - S| L = Aw.
sO{l—l—SQ\DwP (S v 1+ s2|Dw)? v

The linear theory for mixed boundary value problems Theorem A.14 guarantees the global
invertibility of DFy,, i.e. the existence of a unique solution u € A to

_d
~ds

Aw = f in
Dyw = 0 on X
w = 0 on 0OqEp.UO0aFT,

for arbitrary f € B. Therefore, the inverse function theorem implies the invertibility of
F' in a neighborhood of F(@y) = F(0) = 0. This means that for all f € B which are close
to 0 (in the norm of B) the map F is invertible. Since in our case f = ¢ this proves the
existence of a unique solution to (*/)\8 for ¢ > 0 small enough, i.e. ¢ € (0,2].
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Now we want to prove the existence of a solution to (%) .. Therefore we fix ¢ € (0, 2]
and define the set

I = {r € [0, L]

The problem (%) . has a unique solution in H;_al_ﬁ )(QE) } .

We already know that I. # () since 0 € I. by the first step of the proof. If we can show
that I. is open and closed we obtain the desired result, i.e. the existence of a unique
solution to (%), for all ¢ € (0,2] and all 7 € [0, L.]. To show that I. is open we use
once more the inverse function theorem. We modify the spaces A and B to allow other
boundary values than zero on dqF7,_ and define

A= {w € Hé;l_’g)(QE) ‘ w=0ondoFye, Dyw=0on Es}

B:= By x By := H{Y P () x H{ 77 (9o Fr.).

We denote the projection on dgFy_ by m: A — By : w — m(w) and consider

= w|6gFL5
the operator

T:A— B:w— Tw:=(Q°(w), 7(w)).

Its linearization around some ug € A is given by DT,,w = (DQj w, 7(w)). We write Q°
as

1 . DDy
“(u) = ———— | 0¥ — ———— | Diju — /€2 + |Dul?
@) Ve? + |Dul? ( 82—|-|Du]2> it &+ 1Dyl

=: a"(Du) Dyju + b(Du)
and calculate the linearization of Q°:
d
DQ;, w = Tl Q° (ug + sw)
= a"(Dug) Dj;w + d {aij (Dugy + sDw)}Di g+ a4 {b(Duo + sDw)}
J dsls=0 J dsls=0

= a"(Dug) Dijw + B*(Dug, D*ug) Dyw =: Lyyw.

To show that I. is open we assume that 7 € I. and we have to show that 7/ € I. for
|7 — 7’| sufficiently small. If 7 € I, then there exists a unique solution u*7 to (%).,. We
linearize T around ug := u®7. Since ug € A we see that ug € CV?(Q.). Therefore, a

)

is bounded and uniformly elliptic and we also have a” € HO(?Q(QE). So a¥ satisfies the

conditions of Theorem A.14. Furthermore, we deduce that D?ug € Hé}a_ﬁ)(QE) and so

also the B¥ satisfy the conditions of Theorem A.14. Thus, the linear theory contained in
Theorem A.14 tells us that DT, is globally invertible, i.e. that the problem

Lyw = fi in .
Dyw = 0 onX
w = 0 ondoEo,
w = fo ondoFp,
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has a unique solution in A for arbitrary (fi, fo) € B. Therefore, T is invertible in a small
neighborhood of Tug = (Q°(u®7), 7 (u®7)) = (0,7). For |7 — 7’| sufficiently small (0, 7")
lies in a neighborhood of (0,7) and so a unique solution to ()., exists. Thus, 7/ € I,
and I. is open.

In order to show that I is closed we take a sequence (7,)nen C Ic which converges in
R to some limit 7. We have to show that 7 € I.. That means we have to use the fact
that (%), has a unique solution u,, := u®™ and show that there exists a unique solution
u" of (x)c,. Let us first show that (u,)nen converges in C°(€2.) to some limit u*7. To
see this we first calculate

0=Q" (un) — @ (um)

= [a¥(Dun) Dijun + b(Duy)| — [a¥ (D) ity + (Do) |

= a”(Duy) Dij(un — ) + [a”(Dun) - aij(Dum)]Dz’ij + b(Dup) = b(Du)

n

In the last step we defined w := u,, — u,, and used the fundamental theorem of calculus.
The B* are different to the ones we used before. This calculation tells us that w satisfies
the linear problem

Ly,,w = 0 in
Dw = 0 on X,
w = 0 on 0o Fp .
w = Tpn—Tm onogFr..

The maximum principles in Propositions A.9, A.10 imply, that

SUp |Up, — U, | < sup [tun, — Um| < |70 — Tin.
Qe 0q Eo, U0 Fr,,

Since (7, )nen converges, the Cauchy criterion implies the convergence of the sequence of
solutions (uy)nen in C°(€) to some function u®™ € CY(Qy) satisfying u®™ = 0 on g FEp
and u®” = 7 on dqoFr_.. Now we use the a priori estimates of Proposition 4.19 which are
uniform in n:

faa? < Clo).

|un,

Together with an Arzela-Ascoli type theorem for these weighted spaces (see Proposition
A.13) we obtain a subsequence (up, )rew which converges to u®7 in Héfo}*ﬁ)((lg) for

o < aand B’ < (. In particular (see Proposition A.13) we have

u*™ e Y Q) NP (L)

which implies that u®" solves (x)., and by uniqueness u>" € A. Thus, v®7 € I. and

I. is closed. Since we already showed that I. is open and not empty we proved that
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I. = [0, L.]. Therefore we proved the existence of a unique solution to (x)., for all € > 0
sufficiently small and 7 € [0, L.].

Using the a priori estimates for |Du®"¢| which are independent of ¢ we see that u
is uniformly bounded and uniformly equicontinuous on compact subsets. Therefore, the
Arzela-Ascoli theorem yields the convergence of a sequence u®*
u. Finally, the Lipschitz estimate persists in the limit and so u is a locally Lipschitz
continuous function. O

e,Le e,Le

Le; $0 a continuous function

4.4 Variational characterization of the limit

In the last section we obtained a function u € C’lOO’Cl(Q \ Ep) as the limit of solutions
(u®")ien of the approximating problems (%), r... The aim of this section is to show that
this limit u is the unique weak solution of (x). For this section we follow the approach of
Huisken and Ilmanen [29], Section 1 and 2. Most of the proofs presented in this section
are the same as in [29] but we include them for the sake of completeness.

First we will define the notion of weak solutions of (x) and prove some geometric
properties of the hypersurfaces M]* := dqo{u < t}. Furthermore, we will show that
classical solutions to (x) are weak solutions and that we have compactness and uniqueness
for weak solutions. Having these properties at our disposal the argument will be the
following: We will show that the u® allow us to define classical solutions U®i(z,2) :=
u®i(z) — g;z of (IMCF) one dimension higher. Using the fact that they are also weak
solutions together with the compactness result we conclude that the limit U(x, z) := u(x)
is a weak solution too. Finally, cut-off functions will allow us to prove that u is the unique
weak solution of (x) in Q\ Ey. This procedure yields existence and uniqueness for weak
solutions to (%) in Theorem 4.47.

Remark 4.23. In this section we use the notation from Definition 4.1. In particular
the set @ C R™! denotes all points above the supporting hypersurfaces " including %"
itself. Remember also the definitions for the different boundary parts, i.e.

JgA = 0A\ X, Oy, := 0A\ Jq A

for A C Q). Furthermore, we will make use of sets which are open in 2. So these sets are
allowed to contain points on X". In the same way a (pre)compact subset K of A C
may contain points on X" if AN X" # ().

The definition of a weak solution requires the following functional

Lemma 4.24. Let A C Q be open in 2. For u € C’l%cl (A) we consider the functional

T OO A) S R v JE (0) = / (IDv] + v|Dul) dA. (4.27)
K

where {u # v} C K, K is a compact subset of A and \(OK) = 0. The functional JX is

lower semicontinuous with respect to Llloc—comjergence.

Proof. First we note that v — [ v|Du| dX is continuous with respect to L}, ~convergence.
Now we prove the lower semicontinuity of the first term of the functional. Let B C A be
bounded and open and consider a sequence (vp)nen C Cl%cl(A) converging to a function
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v € Cloo’i(A) in Lj,.. Since f — |[Df||(B) = [5|Df]dX is lower semicontinuous with
1

respect to L;  -convergence (see Definition A.22 and Lemma A.23) we obtain
|Du|[(E) = [Dv][(K) < liminf [ Dv, () < liminf | Do, ||(K)

if K is compact and A(OK) = 0. O

Remark 4.25. In the following we will omit the set K and only write J, instead of
JE. Furthermore, we always choose a compact set K which which satisfies A\(OK) = 0
without mentioning it explicitly. Note that it is enough for K to be a Cacciopoli set (see
Definition A.25).

The definition of weak solutions is the following.
Definition 4.26. Let A C 2 be open in €.

(i) The function u € C’loo’c1 (A) is called a weak subsolution (supersolution) of (x) in A if
Ju(u) < Jy(v), v locally Lipschitz and {u # v} CC A (4.28)

for every v satisfying v < u (v > u). The integration is performed over any compact
set K containing {u # v}.

(ii) The function u € Cloo’cl(A) is called a weak solution of (x) in A if it is at the same
time a weak subsolution and a weak supersolution of (%) in A.

(iii) The function u € C’looi(Q) is called a weak solution of (x) with initial condition
Ey C Qif By = {u < 0} and u is a weak solution of (x) in g := Q\ Ej.

Remark 4.27. The function u € C(A) is a weak solution of () in A if and only if

loc
(4.28) holds. The integration is performed over any compact set K containing {u # v}.

Proof. Assume that (4.28) holds. Then in particular this is true for v < u and v > u. So
weak solutions are weak subsolutions and weak supersolutions. For the other direction
we first note that

Jy(min(u, v)) 4+ Jy(max(u,v))

= /K (\D min(u, v)| + |D max(u, v)| + (min(u, v) + max(u, v))|Du!) dA

_ /K (1Dl + | Do| + (u + )| Dul ) dA

= Jyu(u) + Ju(v) (4.29)

whenever {u # v} is precompact. Let u be a weak subsolution and a weak supersolution
of (x) in A. Since v < max(u,v) and v > min(u,v) we can use min(u,v) and max(u,v)
as competitors for weak supersolutions and weak subsolutions respectively. So we obtain

2T, (1) < Jyu(min(u, v)) + Ju(max(u, v)) "2 Ju(w) + Ju(v)

and thus J,,(u) < Jy,(v). O
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It will be useful to have an alternative characterization of weak solutions. Therefore,
we need another functional.

Lemma 4.28. Let A C Q. Foru € C2}(A) we consider the functional

loc

JE : Ca(A) = R: F s JE(F) = yag;pmm—/

| Du| dA (4.30)
FNK

where K is a compact set such that |03F NOK| = 0. Here Ca(A) denotes the set of all
Caccioppoli sets (see Definition A.25) in A, O5F denotes the reduced boundary (see Defi-
nition A.28) of the set F' in Q and |.| applied to sets denotes the n-dimensional Hausdorff
measure. The functional J,, is lower semicontinuous with respect to Llloc—comjergence.

Proof. First we note that F +— | ok [PuldA is continuous with respect to Llloc

gence (of 1r). Now we prove the lower semicontinuity of the first term of the functional.
Let B C A be bounded and open. Let (Fj,)nenw C Ca(A) be a sequence of Cacciop-
poli sets which converges to the set F' € Ca(A) in L}, i.e. 1p, — 1p in Lj,.. Since
F — |D1p||(B) = |05F N B| is lower semicontinuous with respect to L}, -convergence
(see Lemma A.23 and Theorem A.29) we obtain

conver-

|05F N K| = |05F N K| < liminf |04F, N K| < lim inf |04 F, N K|
n—oo n—oo

if K is compact and |04F NOK| = 0. O

Remark 4.29. In the following we will omit the set K and only write .J,, instead of JX.
Furthermore, we always choose a compact set K which which satisfies |[05F N JK| = 0
without mentioning it explicitly. Note that here it is not (!) enough for K to be a
Cacciopoli set.

With the help of this functional we can give an alternative definition of weak solutions.
Definition 4.30. Let A C .

(i) Let u € Cl(z)’cl(A) and let E' € Ca(A). The set E minimizes J,, on the outside (inside)
of A if

Ju(E) < Ju(F), F Caccioppoli and EAF CC A (4.31)

for every F with F' O E (F C E). The integration is performed over any compact
set K containing EAF.

(ii) Let u € C2!(A). Let E have locally finite perimeter. We say that E minimizes J,,

loc
in A if £ minimizes J, on the outside and inside of A.

(iii) Let (Et)i>0 C €2 be a nested family of open sets with locally finite perimeter, closed
under ascending union. Let u be defined by E; = {u < t} C Q. The family (E};)¢~0
is called a weak solution of (x) with initial condition Ey C Q if u € C?OCl(Q) and E;
minimizes J,, in Qo = Q \ Ey for each t > 0.

Remark 4.31. Let u € Cloo’cl(A) and let E have locally finite perimeter. The set E
minimizes J,, in A if and only if (4.31) holds for every F' having locally finite perimeter.
The integration is performed over any compact set K containing FAF.
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Proof. Assume that (4.31) holds. Then in particular this is true for ¥ O F and F C E.
So if E minimizes J, in A it also minimizes J, on the outside and inside of A. For the
other direction we first note that the inequality for the Hausdorff measure (see Lemma

A.30) yields
JU(EUF)+ J,(ENF)

:]8§(EUF)HK|+/

|Duld\ + |85(EmF)mK|+/ |Dul dA
EUF ENF

g|8§3EmK!+/ |Duld\ + |05FmK|+/ | Dul dA
E F

= Jo(E) + Ju(F) (4.32)

whenever EAF is precompact. Let £/ minimize .J, in A. Since ¥ ¢ EUF and E D ENF
we can use F U F and E'N F as competitors for sets minimizing J, on the outside and on
the inside respectively. So we obtain

2Ju(E) < JUEUF)+ J(ENF) (4§2) Ju(E) + Ju(F)

and thus J,(E) < J,(F). O

Since we want to work with both definitions we have to show that they are equivalent.
First we prove the result for the parts (¢) and (i7).

Lemma 4.32. Let A C Q be open in 2. Let u € C’loo’c1 (A). Then the following statements
are equivalent

(1) For each t > 0, E; := {u < t} minimizes J,, in (outside of, inside of) A.

(2) u is a weak solution (subsolution, supersolution) of (x) in A.

Proof. (1) = (2): Let E; := {u < t} minimize J,, in A. Let v € Cp:t(A) with {u # v} C K
and K compact. We define F; := {v < t} and note that F;AE, C K for every t. For
a < b with a < wu,v <bon K the co-area formula yields

Ju(v) = /K (I1Dv] + v|Dul) dx

b
:/ (/ 1 dH") dt+/ o Dul dA
a Kn{v=t} K

b
:/ laﬁFtﬂK\dt—/(b—v)\Du|d)\+b/ | Du| dA
a K K

b b
:/ ya;gFmK\dt—/ </ ]l{v<t}dt> \Du!d)\—l—b/ | Du|dA
a K a K
b
:/ (a;;me—/ |Du]d)\> dt+b/ | Du] d
a KNF; K

b
:/ Ju(Ft)dter/ \Duld). (4.33)
a K
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The same calculation can be done for J,,(u). Thus, if each E; minimizes .J,, then

b b
Ju(u):/ Ju(Et)dter/KDu|d>\§/ Ju(Ft)dt+b/K|Du\d)\:Ju(v)

i.e. u is a weak solution of (x) in A. The same argument treats weak supersolutions and
subsolutions separately.

(2) = (1): We will first prove that if u is a weak supersolution of (%) in A then FE
minimizes J,, on the inside of A. Therefore, we fix some ty. For a set F' such that

F C Ey,, E,\FCcCA

we have to show that J,(Ey,) < Ju(F). Since J, is lower semicontinuous and u is fixed
we can minimize J,, and thus assume that

Ju(F) < J,(G), VG st. FCG (4.34)

with GAE, C FAE;,. Now we define the nested family

FnE, t < to,
Ft =
E; t > top.

Using (4.32) and (4.34) we obtain

(4.32) (4.34)
Ju(F) = Ju(FNE) < Ju(F)+ Ju(Ey) — JW(FUE) < Ju(Ey). (4.35)
Defining
t Ey, \F
v:AHR:va(x)::{O © € Ly \
u(x) ¢ By, \ F

we see that Fy = {v <t} and {u # v} = Ey, \ F CC A.

graphv

-

Figure 4.5: Construction of the competitor v.
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Because of the jump at doF (see Figure 4.5) we only have v € BVj,.(A) N L (A).

loc

Therefore, we approximate v by a sequence (vg)genw C BViee(A) N C*°(A). By Lemma
A.27 we see that v, — v in Llloc and

/ Dug dA = | Dogl|(Exy) — [ Dvll(Exy)
to

as Radon measures. Since u < v we obtain J,(u) < J,(v) in the limit as k — oo.
Furthermore, (4.33) is valid for v. This yields

/ab Ju(Ey)dt < /ab Ju(F) dt.

Together with (4.35) we see that the integrals are equal and J,(F;) < J,,(E;) which implies
Ju(Fy) = Jy(Ey) for almost every t. Finally, (4.32) shows that

(4.32)
JE,UF) < Ju(By) + Ju(F) — Ju(Fy) = Ju(F)

for almost every t < tg. Passing t ' tg and using the lower semicontinuity of J,, we obtain
the desired result

Ju(Eto) < JU(F), for F C Et07 Eto \F CcC A.

So for every to the set Ey, minimizes .J,, on the inside of A.

It is left to show that for a subsolution v and some ¢y the sets E;, minimize .J,, on the
outside of A. To do so, one shows that the sets {u < t} minimize J,, on the outside of
A and then chooses a sequence t "ty and notes that {u < t;} converges to Ey, in Llloc.
Using lower semicontinuity of J, and a standard replacement argument, it follows that
E;, minimizes J,, on the outside of A. O

From Lemma 4.32 we obtain the equivalence for the initial value problems.
Lemma 4.33. Let u € C’loo’cl(Q) Then the following statements are equivalent

(f) For eacht >0, Ey := {u < t} minimizes J,, in Q\ Ey.
()™ For each t >0, {u <t} minimizes J, in Q\ Fy.
(1) Eo = {u < 0} and u is a weak solution of (x) in Q\ Ey.

Proof. The equivalence of (1) and (ff) follows from Lemma 4.32 and approximation up
to the boundary. The equivalence of (1) and ()" follows by approximating s \ t. O

For minimizers of the functional we obtain the following regularity.

Lemma 4.34. Let u € C’loo’c1 (A). Let E C Q be a minimizer of the functional J,, defined
in (4.27). Then O5F is a subset of a Cl’%-hypersurface and

HE(OGE\05E) =0 Yk >n—8.

Note that this is a reqularity result for M" := 0qF which does not yet include an infor-
mation about the regularity of OM™.
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Proof. Since u € Cloo’i(A) we see that minimzers of J,, are almost minimal in the sense

that for balls of radius R we have
|06 E N Br| < |05F N Br| + C(||Dul|s, n)R",  for EAF CC Bg. (4.36)
Thus [63], Theorem 1 yields the result. See also [47]. O

For classical solutions of (IMCF) the mean curvature H of the evolving hypersurface
can be calculated using the level-set function w which solves (%), i.e. H = |Du|. Next we
want to show that this equality still holds in a weak sense for minimizers of J,,. Therefore,
we first define a notion of weak mean curvature guided by the classical equality

/n(dianX—Hu-X)du:— X -nds

which is valid for C2-submanifolds M™ of R"*! with (n — 1)-dimensional C'-boundary
OM™ and C'-vectorfields X (see [57], Chapter 2, §7, (7.6)). Here 7 is the inward pointing
unit co-normal of OM™. Note, that if M™ and X" met orthogonally we would have n = —p

and thus the right hand side would vanish for variations X which are tangential along
xn.

Definition 4.35. We say that the hypersurface M™ possesses a weak mean curvature in
LP if there exists a vector valued function H € L} (M™ R™!) such that

loc
/n (divam X = H - X)du =0 (4.37)

for all X € C°(TM"™) with spt X N9M"™ = (. Furthermore, we say that M™ is weakly
orthogonal to X" if (4.37) holds for all X € C°(T'M") which are tangential along X",
ie. X(z) e T,X" for z € X"

The next lemma shows that in the sense of Definition 4.35 we have H = |Dul|.

Lemma 4.36 (Weak mean curvature). Let a,b € Ry, a < b and let E; = {u < t}
minimize J,, in A := Ey \ E, where u € Cloéi (A). Then up to a set of dimension less
than or equal to n — 8, M} := 0qFE} is a Cl’%—hypersurface which possesses a weak mean
curvature in L™ given by

H(z) = [Du(w)lv(z)  where  v(z) = ﬁgr

for almost every! t € (a,b) and almost every x € M}*. Furthermore, for those values of t,
M is orthogonal to X" in the classical sense in any neighborhood of points x € 05 E;NE".

Proof. Let U C R™! be open such that U N A # (). Let K C U be compact and
K N M # 0. We consider a family of diffeomorphisms

O:(-1,1)xU —U:(x,9)— ®(s,z) =: Dg(x)

satisfying

0P(s, )

Qo =id,  Pufy g = 1Ay B

= X (@) = X(2)

Tn particular the values of ¢ where u develops a plateau, i.e. |Du| = 0 are excluded.
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where X is a smooth vector field with support in K. Furthermore, X should be tangential
to X" if K N Y™ # (). Note that

L= —X@' ) = ~XW). (439

Os

By Lemma 4.33 the function v minimizes J,, in Ej \ E,. Therefore, the first varition of .J,
vanishes. Now we use the area and co-area formula (see Lemma A.31 and Lemma A.32),
(4.38) and the dominant convergence theorem to compute

0= % Ju(uwo @1
o
=] Joy (P20 + o IDU0) )
-2 S:0< | 1Du@)1- et Do (o) axa) + [ b / RRCEL S (R LE0 dt)
-2 50< / b / et D@ an ) / b / ICEL A dt)

_ / b / . (dingz X (x) — Du(g\(x)) - X(@gl(x))> dH" (z) dt

_ /ab/ . <dithn X(z) — Du(z) -X(x)) dH (z) dt.

The Lebesgue differentiation theorem (see Lemma A.18) implies that the inner intergal
vanishes for almost every ¢ € (a,b). Thus, a comparison with (4.37) yields the result.
Note that the values of ¢ where u develops a plateau are automatically excluded by the
co-area formula. The regularity result is contained in Lemma 4.34.

The fact that we obtained (4.37) for all vector fields which are tangential to X" shows
that M} is weakly orthogonal to X". Combining the fact that E; is almost minimal,
i.e. (4.36) with the existence of a weak mean curvature in L® one can argue as in [24]
or [23] and apply the results of [25] to prove the regularity result of Lemma 4.34 up to
the boundary of M;*. This implies that M;* meets ¥ orthogonally in the classical sense
in any neighborhood of points = € 9§ E; N X™. O

Now we come to a geometric characterization of the jumps of the hypersurfaces which
occure under the weak flow. The jumping time is controled by the property of the surface
to be a strictly minimizing hull.

Definition 4.37. Let A C  be open in . The set E C 2 is called a minimizing hull in
A if for all sets F' C €2 and all compact sets K C A containing F'\ E we have

IOQENK|<|0G6FNK|, forFDE.
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Furthermore, F is called a strictly minimizing hull in A if F is a minimizing hull in A
and in addition

IQENK|=|00FNK| = ENA=FnNA.
We use this definition to define the strictly minimizing hull of a certain set.

Definition 4.38. Let E C 2 be some measurable set and let A C 2 be open. We consider
the family (E,),es of the Lebesgue points of strictly minimizing hulls in A which contain
E. Using this family we define the strictly minimizing hull of F in A as

E) =) E.
ed

Note that up to a set of measure zero E/; may be realized by a countable intersection and
therefore E’; is a strictly minimizing hull and open (compare with [4], Definition 2.1).

Using the notion of minimizing hulls and strictly minimizing hulls we can state the
following geometric properties of weak solution.

Proposition 4.39 (Minimizing hull property). Let u € Co’l(Q) satisfy (11). Then

loc
(i) Fort >0, Ey := {u <t} is a minimizing hull in Q.
(ii) Fort >0, E}f := int{u < t} is a strictly minimizing hull in €.
(iii) Fort >0, E, = E;t, provided that E;" is precompact.
(iv) Fort >0, |05E:| = |04E;| provided that E; is precompact.
The same holds for t =0 if and only if Ey is a minimizing hull.

Proof. (i) By Lemma 4.33 (1) is equivalent to (1), i.e. for ¢ > 0 the sets E; := {u < t}
minimize J, in Q\ Ey. That means for FyAF CC Q\ Ey and K a compact set containing
E,AF we have

|%Emm—/

EiNK

Now suppose that F' O E; and E;AF CC ). We see that EyAF CC Q\ Ep and

|Du| d) < |@5FnK|—/ |Du| dA.
FNK

05E, N K| < |a;3EmK|+/ Duld) < |05F N K. (4.39)
(F\EH)NK

for those competitors F'. This shows that E; is a minimizing hull in €.

(i1) By Lemma 4.33 (f1) is equivalent to ()1, i.e. for ¢ > 0 the sets {u < ¢} minimize
Jy in @\ Ep. That means for {u < t}AF CC Q\ Ep and K a compact set containing
{u < t}AF we have

oafu< k|- [

\Duld\ < |04F N K| — / | DuldA. (4.40)
{u<t}nK FAK

Since E;” and {u < t} only differ by the set 9{u <t} we can replace {u <t} by FE;". For
F with FAE;” cC Q\ E; we observe that

0GE; NK| < |05EF N K|+ / |Du|d\ < |95F N K. (4.41)
(F\E)NK
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In particular we can choose F such that F' O E;” and E;” AF cC Q. This shows that E;"
is a minimizing hull in 2.

To prove that E; is a strictly minimizing hull we assume that |04 E;" N K| = [0 FNK]|.
First we see that this assumption together with (4.41) implies that Du = 0 almost every-
where on (F'\ E;") N K. Furthermore, the equality tells us that F is itself a minimizing
hull. Since the Lesbesgue points of a minimizing hull form an open set we can modify F
on a set of measure zero and thus assume that F' is open. Then Du = 0 almost everywhere
on the open set F'\ E;". Therefore u is constant on each connected component. But since

F is a minimizing hull no such component can have closure disjoint from E;". Thus u = t
on F'\ E;” which tells us that F C E;" := {u < t}. On the other hand E;* C F. Thus,
Ef=F.

(iii) We see that F;" = int{u <t} D {u < t} =: E;. Furthermore, by (ii) E; is a strictly
minimizing hull. Since Ej is defined as the intersection (of the Lebesgue points) of all
minimizing hulls which contain E; we intersect with E;" as well. This shows that £/ C E;".
To prove the other inclusion we assume that E; is precompact and E; 2 E;". Then
EfAE; CcC Q and since Ej is a strictly minimizing hull either |05 E) N K| = |05E;” N K|
which implies E] = E;" or

0GENK| < |05F; N K|

which contradicts (4.41) by using F := E}. Thus E, D E;".
(iv) If E; is precompact then F; is also precompact. So we can use F := E;" as a
competitor in (4.39) to obtained
0GE:NK| < |05F NK| =|05E N K|
and we can use F':= F; as a competitor in (4.40) to obtain
0GE NK| < |05FNK| = |05E,NK|.
This implies the statement for ¢ > 0 and for ¢t = 0 if Ey is a minimizing hull. O

Remark 4.40. Note that E; minimizes J,, in Q \ Ey for all ¢ > 0 if and only if the same
holds for ¢ > 0 (that is (f) holds), Ey is a minimizing hull and Ej is precompact. This
follows from Proposition 4.39 (iv) which shows that

Ju(Eo) = |05Eo N K| — / 1Duldx @ o EF N K| — / |Du| dA
EonNK {u<0}NK
—a{u< )K= [ |Duldh=u({uz0)
{u<0}NK

and (1) which states that {u < 0} minimizes J,, in Q\ Ej.
As for the classical flow the rescaled surface area is constant.

Lemma 4.41 (Exponential growth Lemma). Let (E;)i~q solve (T) with initial con-
dition Ey. As long as E; remains precompact, we have

|06 Ey| = ce', ceR, t>0 (4.42)

If Ey is a minimizing hull, then ¢ = |05 Ey|.
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Proof. Assume that E; solves (1) and remains precompact for all ¢ > 0. Then we can use
E;, as a competitor for E; in J,,. This shows that for ¢ > 0 and E; precompact the value
of J,(Ey) is independent of ¢. Therefore, the co-area formula yields

Ju(E) = |05E N K| —/

EinK

t
|Du|dX = |05E: N K| — / / dH" ds
0 JogE.nK

t
:|35Emm—/ O5E, K|ds=ceR,  fort>0.
0

For K containing Er this implies (4.42) for ¢ € (0,7]. Since K can be taken arbitrary
large (4.42) holds for all ¢ > 0. If Ey is a minimizing hull then the Remark 4.40 implies
that E}; minimizes J, for all ¢ > 0. Thus, we can evaluate (4.42) at ¢ = 0 which gives
c = |04 O

The next Proposition tells us that the limit of a converging sequence of weak solutions
is itself a weak solution.

Proposition 4.42 (Compactness of weak solutions). Let (A;)ien, A C Q be open in
Q. Let (u;)ien C Col(Ay) be a sequence of weak solutions to (x) such that

loc

Ai— A, w—ue Cpl(A)

locally uniformly for i — oo. If for each compact set K C A and i large enough

esssup | Du;| < C(K).
K

Then u is a weak solution of (x) in A.

Proof. We have to proof that J,(u) < J,(v) for {u # v} CcC A. We will prove this
statement for v < w + 2* by induction with respect to k and start with k = 0, i.e.
v < u+ 1. We consider a cutoff function ® € C1(A4,][0,1]) such that ® = 1 on {u # v}
and define

v; = Pv+ (1 — P)uy.
Since u; is a weak solution to (x) in A; we deduce that
/ (1Dusl + wlDuil) dx g/ (1Dwi] + v Duil) dx
U U
= / (12D + (1 = @) Du; + DD(v - u;)| + (@ + (1 — )u;)| D] ) dA
U
for appropriate U. This implies
/ ®|Du;| (14 u; —v)dA < / ®|Dv|dA + sup |[v — u,| / |D®|dA.
U U U U

The last term converges to zero as 7 tends to infinity. By assumption 1+ u; — v is positive
for ¢ sufficiently large. Therefore, the lower semicontinuity of .J,, implies

11— 00

/<I>|Du|(1—|—u—v)d)\§liminf/@]Dui|(1—|—ui—v)d)\§/(I>|Dv|d)\.
U U U
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This yields J,(u) < Jy(v) for £ = 0. Now we assume that the inequality holds for all
w < u+ 2% and we have to show that this implies the inequality for all v < u+ 2*+1. For
such a v and for n > 0 we define

vy = min {v,u + 2% —n}, vy = max {v — 2 u}.

Obviously vy < u + 2F. Thus J,(u) < Jy(v1), i.e.

/U <|Du\ + U\Du|) dx < /U (!DU1| + Ul’DuD d\

(\Dv\ + U\Du!) dA + /
Un{v>u+2k—n}

/ (1Dul + (u+24)|Dal) dx.
Un{v<u+2k—n}

Since v < u + 281 also vy < u + 2F and as thus J,(u) < Jy(v9), i.e.

/(]DuH—uDuDd)\g/ (1Dvs| + v| Dul ) d

U U

:/ (|Du!—|—u|Du|)d)\+/ (IDv] + (v = 2)| Dul ) dA.
Un{v<u+2k} Un{v>u+2k}

Adding these two inequalities and taking the limits 7 — 0 yields 2.J,(u) < Jyu(v) + Jyu(u)
and therefore the desired result. O]

The next Lemma shows that we can not expect to obtain a unique weak solution in
general.

Lemma 4.43. Let u € C’O’I(Q) satisfy (11). Then, for every t > 0 the function u(x) :=

loc

min(u(x),t) satisfies (T1) as well.

Proof. Using Lemma 4.33 we have to show that B := {@ < s} minimizes J~in Q\ Ey
for all s > 0. Let F have locally finite perimeter and suppose that ESAF cC \ Ey. For
0 < s <t we use the fact that u is a solution of (f) to obtain

Jo (B) = 05BN K —/A IDa|d\ = |ag3ESmK|—/ |Dul dX
EsNK ENK

< yag;Fme—/ |Duld\ < |8§§FﬂK\—/ | Du|dA
FNK (FNE)NK

—a;;Fme—/ Da|dX = - (F).
FNK

For s > t we have

5 (By) = K(Q) = |0p0n K| - Dl dA
QNK

u

:0—/ Dajdy < \8;3FHK\—/ \Dild\ = J-(F).
K KNF

Therefore the inequality holds for all s > 0. O
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Proposition 4.44 (Uniqueness of weak solutions). Let A C €2 be open in 2.

(i) Let u,v € Cl?)’cl(A) be weak solutions of (x) in A and {v >u} CC A. Thenv <u on
A.

(ii) If (Ey)i=0 and (Fy)i>o satisfy (1) in Q and the initial conditions satisfy Ey C Fy C §Q.
Then Ey C F; as long as E; is precompact.

(iii) For a given Ey C ), there exists at most one solution (Et)i>0 C Q of (1) such that
each Ey is precompact.

Proof. (i) We will prove the statement in two steps. First we assume that u is a strict
weak supersolution. At the end we will discuss the general case. So, let u be a strict weak
supersolution in the sense that for w € C'ZOO’C1 (Q) with {u # w} CC Q there exists some
e > 0 such that

Ju(u)Jre/K|Du|(wu)dAﬁJu(w), {u#w} C K.

As a competitor we use w := u + (v — u)4 and since w only differs from u on {v > u}
where w = v we obtain

/ (|Du!+u|Du\)d)\+s/ |Dul(v — u) dA
{v>u} {v>u}

g/ (1Dv] + v|Dul) d. (4.43)
{v>u}

By assumption v is also a subsolution. Thus, J,(v) < J,(w) and this time we choose
w = v — (v—u);+. Again the subsolution and the competitor w only differ on the set
{v > u} where this time w = u. This yields

/ (Dv|+v!Dv|)d)\§/ (1Dul + ulDo]) d. (4.44)
{v>u} {v>u}

Adding (4.43) and (4.44) we get
/ (v —u)(|Dv| — |Dul) d)\—l—e/ |Du|(v — u)dA < 0. (4.45)
{v>u} {v>u}

Now we make use of the minimizing property of u once more, i.e. J,(u) < Jy(ws) where
we choose wg := u+ (v — s —u)4 for s > 0. The subsolution and the competitor differ on
the set {v — s > u} where ws = v — s. Addidional integration over s yields

/ / (|Du|+u\Du|>d)\ds§/ / (IDv] + (v = 5)[Dul) dAds.
0 {v—s>u} 0 {v—s>u}

Changing the order of integration, we have

/yDu\ (1+u—v+s)dsdA§/\Dv\/ dsd\
Q s=0 Q s=0

which is the same as

(’U—U)2>
Du l4+u—v)(v—u) +—— | dA < v —u)|Dv|dA
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and thus
N2
/ —|Du\(“2u)dAg/ (v — u)(|Dv| — | Dul) dA.
{v>u} {v>u}

Together with (4.45) we obtain

/ | Dyl <—(”_“)2 +e(v— u)> d < 0.
{v>u} 2 -

Without loss of generality we may assume that v < u + ¢ since otherwise we substract a
constant from v to arrange that 0 < sup(v — u) < e. Then v < u + ¢ implies |[Du| = 0
almost everywhere on {v > u}. Using this information together with inequality (4.44) we
see that

/ |Dv|(1+v—u)dA <0
{v>u}

and therefore also |Dv| = 0 almost everywhere on {v > u}. This shows that v and v
are constant on each component of {v > u} and since {v > u} is precompact and §2
has no compact components we can conclude that v = ¢;, v = ¢3 on {v > u}. Thus,
€ > v —u=cy— ¢ for arbitrary small . Taking ¢ := (¢c2 — ¢1)/2 causes a contradiction
unless v < u. This proves the statement for strict weak subsolutions.

For an arbitrary weak supersolution u we reduce the problem to the first step by defining

which is a strict weak supersolution and {v > u°} is precompact. By the previous argu-
ment we have v < uf and thus v < u in the limit as ¢ — 0.

(74) Let u and v be the level-set functions of (E;);~o and (F})i>o0, i-e.
Et:{u<t}, Ft:{U<t}.

By Lemma 4.43 we know that v' := min(v,¢) minimizes J,, in Q \ Fy. We define the set
W := E;\ Fy. Since Eg C Fy the set W has the boundary parts OsW and doW = AU B
where

A = 0qW N OqFy, B = 0qW N O0qE;.
We observe that for all § > 0
v=v=0<u+d onA, vW<t=u<u+6 onB

and thus v’ < u+4 near doW. Therefore, {v' > u+J} CC W precompact and (i) implies
vt < u+ 8 on W. Taking the limits 6 — 0 yields v! < u on W and since u < t on W we
see that v <wu on W, i.e. By C Fj.

(731) Assume there are two precompact families (A¢)eso, (Bt)>0 C €2 solving (f) with
initial condition Ey, i.e. Ay = Ey = By. Then, by (ii) Ay C B, and By C A; for all
t>0. O
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The next proposition shows that smooth solutions are weak solutions.

Proposition 4.45 (Classical = weak). Let (N¢)c<i<a C Q be a family of compact
surfaces of positive mean curvature that solve (IMCF) classically. Let u =1t on Ny, u < ¢
in the region bounded by N., and E; := {u <t} C Q. Then for c <t < d, E; minimizes
Ju m Ed \ E

Proof. Let t € (c,d). We have to show that E; := {u < t} minimizes J, in Eq\ E., i.e.

|%amm—/

|Du| ) < |05F N K| — / | Dul dA (4.46)
E:NK

FNK

for all F' having locally finite perimeter and satisfying E;AF CC E;\ E.. We choose
r,s € R such that c < r <t < s < dand use K := E; \ E,. Then inequality (4.46) reads

|a;3Et|/ |Du|d)\§|8§3F|/ | Du| dA.
E\E, F\E,

Let us consider the vector field X := Du/|Du| which is C! away from dqFE. N 0xE,. and
OaFE4N 0sEy. The divergence theorem and the fact that u is a solution of (x) yield

/ vga - X ds = / div(X) dA = / | Du| dA. (4.47)
0A A A

Furthermore, for any set A C 2 we have

Du
I/aA-XdSZ/ W ——ds=0. 4.48
/82A v owa Dyl (4.48)

These two equalities help us to calculate

06 - [ |Duax
E{\E,

:/ VasflEt -de—/ \Du]d)\
04 Ex E\Er

(4.48)
= / Vag*)(Et\Er) - Xds— / ’DU‘ dX\ — / VBS*ZET - X ds
0*(E¢\Er) E\E, 04 Er

Q

4.47
(:)_/ vorp, - X ds
Gryon

= / ya*(F\Er)-de—/ |Du|d)\—/ Vo B, * X ds
&*(F\E,) F\E, 9 Er

< / V@*F-de—/ | Du| dA
opF F\E,

< \35F|—/F\E | Du dA,

This shows that E; minimizes J, in Ey \ E.. d
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Now we are able to prove that the limit u which was obtained in the previous section
is a weak solution of (%) in .

Proposition 4.46 (Criterion for Existence). Let (u;)ieny C Hé;l_ﬁ)(ﬁai) be a se-
quence of classical solutions of (%)e, L., with

Fi. \Eoe, — Q\ Ey,  u;—u€Cpl(Q\ Ep)
locally uniformly for i — oco. If for each compact set K C Q\ Ey and i large enough

sup |[Du;| < C(K).
K

Then u is a weak solution of (x) in Qo := Q\ Ey with initial condition Ej.

Proof. Note that Q., = Fr_ \ Eo.,. We define
U Q, x R—R: (2,2) = Uiz, 2) := ui(z) — &2,
U:(Q\Ey) xR—R:(z,2) — Uz, 2) = u(x).

Then U; — U locally uniformly in (Q\ Ep) x R. For fixed i € IN we consider the sets
M = {(:c,z) €., xR ' Ui(x, z) :t}

s

:{(IL’,Z)E%X]R‘Z':%_t}:graph<u%_)_

o E;

To see that these graphs are classical solutions to invers mean curvature flow one dimen-
sion higher we can argue that

DU; Du;
divgnie | o | = divgns = | = e2 + |Du;|? = | DU,
|DU;| 2
i \/ €7 + |Du;l?

which is equivalent to the classical formulation of inverse mean curvature flow since
|DU;| = H > 0. The Neumann condition is satisfied as well since the normal to £ x R
is given by i = (u,0) where p is the unit normal to X", This yields

pw\ [ Du
D-U; = , — Dyu; = 0.

on Ox€), x R. Another way to verify the PDE is to compute the speed of the graphs in
normal direction, i.e.

gi\l ,\/E?—HDWP & Jei+ [ Du2 H

where we used that the speed in z-direction is —e~'. Also for the verification of the

Neumann condition we can use the graph setting. There the calculation reads

(o) = <<“) ! (D“)> Duwi
) t - y T = T I =
0" \/e2 + | Dug|? \ € V2 + [ Duy|?
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on 05, x R. Altogether, Proposition 4.45 implies that U; is a weak solution in (Ff_ \
Eoe,) x R and thus the compactness result, Proposition 4.42 tells us that U is a weak
solution in (2\ Ep) x R. To deduce that u is a weak solution in Qg := Q\ Ey we use the
following cutoff functions

1 for z € [0, s]

PR —>R:z— Py(z) = (s) for z € [-1,0)
®(s—2z) forzels,s+1]
0 for z € R\ [-1,s + 1]

where @ is chosen such that ®; € C!(R) with ®4(2) € [0,1] and |®/(2)| < 2 for all z € R.
As competitor to U(z, z) = u(x) we use

V:QoxR:(x,2)— V(z,z) = Ps(2)v(z) + (1 — Ps(2))u(x)

where v € L?o’i(Qo) with {u # v} C K and K a compact subset of €y. We compute that

n 1/2
|Dm,zv| = (Z |Dxiv|2 + |DZV|2)

i=1

n 1/2
- (Z @5 D0 + (1 — @) Dyul + | - v — u]2>
i=1

< B Dol + (1 — D) | Dyul| + |PL||v — ul.

Since {U #V} C K x [-1,s + 1] CC Qp x R we use Jy(U) < Jy(V) to obtain

/ (|Dxu| + u|Dxu) dA(z, 2)
Kx[-1,5+1]

g/ <<I>3|Dzv| + (1= ,)| Dyl
Kx[-1,s+1]
10| [o — u] + Do Dau| + (1 — <I>S)U|D$u|> Az, 2). (4.49)
This implies
sdy(u) = s/ (]Dxu| + u|Dmu\) dA\(z)
K

< / D, (’D$U‘ + u\Dgcu) dA(z, 2)
Kx[—1,5+1]

(4.49)
< / D, <|va| + v]Dzu|> d\(z, 2) +/ |®[|v — u| d\(z, 2)
Kx[—1,5+1] Kx[—1,5+1]

< (s+2)/K <|Dg;v|+v|Dxu|> d)\(a:)+/ 10 ||o — uf dA(z, 2)

K x([-1,0]U[1,2])
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< (5 +2)Ju(v) + 4/K v — u] dA(z).

Dividing by s and passing s — oo proves that J,(u) < J,(v). Finally, we extend u
negatively to Ey in order to satisfy Fy = {u < 0}. O

We can summarize our existence result and the properties of weak solutions by stating
our main theorem.

Theorem 4.47 (Existence and uniqueness of weak solutions). Let Ey, Ey ., Fp,,
and (x)er be as in Definitions 4.5 and 4.6. Let X" be a C?°-hypersurface. Assume
that for sufficiently small € > 0 admissible subsolutions v~ of (%) 1. exist such that
Fr. ={v™ < L.} and L. — oo. Furthermore, assume that any admissible solution u®"
of (x)er satisfies u®™ > —el™ for some v € (0,1) and that |Du®"|x, can be controlled
independently of €. Then there exists a weak solution u € C&i(ﬂ) of (%) with initial
condition Ey such that for all t > 0 the set By := {u < t} is the unique precompact
minimizer of J,, in Q\ Ey. Up to a set of dimension less than or equal to n—8, M]* := 0qFE;

s a Cl’%—hypersurface which possesses a weak mean curvature in L given by
H(M") =|Du| >0 for a.e. t € Ry and a.e. x € M}

and for those values of t, OM]* is orthogonal to X" in the classical sense in any neigh-
borhood of points v € O{E; N X", Furthermore, Ey is a minimizing hull and the strictly
minimizing hull of Ey is given by E; = int{u < t} as long as int{u < t} is precompact.
In this case we have

06E,| = 106E:| = ce!
If Ey is a minimizing hull then ¢ = |0qFy|.
In particular, Theorem 4.47 holds in the following situation:

Corollary 4.48. Letn > 2. Let Ey, Eo ¢, F1. and (x)c+ be as in Definitions 4.5 and 4.6.
Let X" be given as the graph of a convexr C3-function which is asymptotic to a cone in
the sense that (4.4) holds. Then the conditions of Theorem 4.47 are satisfied.

Proof. Under these assumptions a subsolution v~ can be constructed using Lemma 4.9
where Fy_ and L. are chosen as in (4.7). The special lower bound for u follows from
Lemma 4.10. Furthermore, the gradient estimate on X is independent of € since X"
is convex. This was shown in Lemma 4.17. Thus, all conditions of Theorem 4.47 are
satisfied. O

Proof of Theorem 4.47. Theorem 4.21 provides a sequence of unique solutions (u;);ew C
10

2.« loc

(€2;) of (%)e;,r., which converges locally uniformly to a function u € CHL(Q\ Ey).
Proposition 4.46 tells us that u is a weak solution of (x) in Qy := Q \ Ey with initial
condition Ey. Proposition 4.44 implies that v is the unique solution as long as Ej is
precompact. The formula for the weak mean curvature and the orthogonality follow from
Lemma 4.36. The minimizing hull property and the characterization of E] were proven
in Proposition 4.39. Finally, the exponential growth of the surface area and the value of

c are due to Lemma 4.41. O
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4.5 Outlook : Monotonicity of the Hawking mass

The classical IMCF for closed surfaces was put forward by Geroch [20] and Jang and
Wald [33] in the seventies as an approach to the proof of the positive mass theorem. The
positive mass theorem states that the so-called ADM-mass mapy for an asymptotically
flat? 3-manifold is non-negative. This concept of mass was developed by Arnowitt, Deser
and Misner in [3]. Geroch showed that as long as IMCF remains smooth it can be used to
prove the Riemannian Penrose inequality and therefore, the positive mass theorem. The
Riemannian Penrose inequality states that an asymptotically flat, complete, connected
3-manifold with non-negative scalar curvature, with one (to keep things simple here)
compact minimal surface Mg as its compact boundary, satisfies the inequality

map > 1] 2ol
—V 167
In a nut shell Geroch’s argument was the following. He combined Hawking’s observation

that the so called Hawking quasi-local mass

|p2]1/2 ( 2 )

Mitaw(M?) == ———7 (160 — [ H*d

(M) = 757 e

calculated for mHaW(MtQ) converges to mapwm if the surfaces ME converge to a sphere
at infinity with his observation that mpay(M7) is monotone increasing in ¢ for smooth
solutions of IMCF. Thus if the initial hypersurface for IMCF is the minimal surface Mg,
MHaw(M?) — mapm and the flow remains smooth one obtains

M2
|16?T| = mHaW(Mg) < mHaW(ME) — TMADM

if the surfaces M? become round in the limit.

Remark 4.49. Note that the flow does not remain smooth in general. Therefore, a key
ingredient in the proof of the Riemannian Penrose inequality by Huisken and Ilmanen [29]
was to develop a weak formulation for inverse mean curvature flow which exists for all
time and keeps mpaw (M?) monotone.

Now we want to understand what kind of results we can expect in our case where the
hypersurfaces possess a boundary. Therefore, we assume that the flow remains smooth
and investigate under which conditions the Hawking mass is monotone. We will need the
following lemma.

Lemma 4.50. Let M?,%? C R? be orientable C*-surfaces and p be the unit normal to
Y2 pointing away from M?. Assume that M? has a boundary which is a subset of £2 such
that M? touches ¥? orthogonally. Let

_ b

vl — M*NX%: s q(s), A= I’

4] = 1. (4.50)

Then the geodesic curvature of OM? in M? is given by ky = Zzhw with 4 € TY2NTM?.

2Roughly speaking a manifold M = C' U D is asymptotically flat if C' is compact and D is diffeomorphic
to R™ \ K for some compact set K. See e.g. [29] for an exact definition.



4.5. Outlook : Monotonicity of the Hawking mass 77

Proof. Let « satisfy (4.50). The geodesic curvature k4 of the boundary curve v bounding
the region M? is

kg = (Ds4,m).

where 7 € TM? N NOM? is the normal to 9M? pointing towards M?2. Since M? touches
¥? orthogonally we have 7 = —pu. Furthermore, 0 = (%, —u) which implies

0= <DW, —u> - <% Dw>-

This yields

2

kg = <DW —M> = <"%Dw> = " hyy
which is the desired result. O

Proposition 4.51 (Monotonicity of my,, - smooth case). Let X2, M} C M? be
orientable C*®-surfaces such that M§ touches X2 orthogonally. Let (Mt2)teR+ C R3 be
a family of smooth, connected solutions to (IMCF) which exist for all time. If %% is
mean-conver, i.e. H(X?) > 0, then the Hawking mass

_ oy . | MP[2 2
MHaw (M?) := (82 8T — M2H du

18 monotone in t.
Proof. Remember that the evolution equation for H given in (3.3) reads

OH AH |AP 2|DHP

4.51
ot H? H H3 (4.51)
and the Neumann condition for H derived in (3.6) is

D,H = —H>h,,. (4.52)

Furthermore, we make use of the Gauss-equations which for M? C R? has the special
form
1 1

K=o = (()\1 + )= (A2 4 A%)) - <H2 - ym?) (4.53)

where A1 and \g are the principal curvatures of a surface M? and K is its Gauss-curvature.
Finally, we will use the Gauss-Bonnet theorem (see [39], Theorem 9.3). It states that for
a 2-dimensional, orientable C?-surface which is homeomorphic to a disc we have

Kd;z—}—/ kyds =27
M2 oM?2

where kg is the geodesic curvature of M 2 in M?2. Lemma 4.50 tells us that in our case
this reads

Kdp=2n —/ Phoods for TeTM?*NTS?, |r|=1. (4.54)
M? OM?
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Putting everything together we obtain

d H
— H2dut:/ (H2+2Ha> dp
M}

(4.51) o 42, 2AH 2IDH]* ., 2|DHJ?
5 /Ms <H AP + = e — AP = 2 )

(159 2AH 2DHP H2 (A —X)? 2/DHJ
= 2K - = - - d
/ 2 ( T H 7 2 2 m )M

(*) H? . |DH|? _1
< 2/M2 (K—4—<DH,D(H )>— 7 dut+2/8M2H D, H ds;
t t

. H2
(152 / K— ") duy —2 / 2 b ds
M2 4 OM?

IN

1
- (87r — H? dut>
2 Mt2

where we threw away the last two terms in (%) and performed an integration by parts on
the term involving the Laplacian. This yields the desired result

d _ oy d [|MPM? 2
amHaw(Mt)— dt <(87r)3/2 81 — M2H dpt

1 1 15 d|M?]
_ SIM2IL2 t _
(87)3/2 <2| ‘| dt 8T M2

t

since |M?| = ce'. O

Remark 4.52. Notice that for convex supporting surfaces we get % i) w2 H Zdu; < 0.
Furthermore, comparing our calculation with the calculation for closed 2t—surfaces in a
Riemannian 3-manifold we see that the monotonicity formula also holds if we replace R3
by a Riemannian 3-manifold with positive scalar curvature.

Remark 4.53. Proposition 4.51 shows that the most general case in which we can expect
the monotonicity of m.y to hold is the case of mean-convex supporting hypersurfaces
2. To make use of this property we first have to prove the existence of weak solutions
in that situation. The only missing part in this procedure is the gradient estimate on .2
for mean-convex (instead of convex) supporting hypersurfaces. If this is done, one has to
carry over the smooth calculation we presented in the proof of Proposition 4.51 to the
e-level as in the work of Huisken and Ilmanen [29]. This project is ongoing research.



Appendix

A.1 Parabolic Neumann problems

We start with a definition of the domain and the Holder norms.
Definition A.1. Let 2 be an open, bounded, connected subset of R"™. We denote with
S := 91 the boundary of Q. For some T > 0 we define

Qr ::QX(O,T), St = 8Q><(O,T), I'r:= STUQX{O}.

Analogous to Holder spaces for functions depending on z € € we define Holder spaces for
functions depending on (x,t) € Q x [0,7T] by:

ket ke — re)
C +o, =5 (QT) = {u : QT —R: | HquJra,HTa,QT < OO}

with

k
llpa, iz g = >, > sup|DI'Diul
i=0 2yitl=j ©T

+ Y DIDYl,, + > (DI D3l g
21+ vz | =k 0<k+a—2vi—|vz|<3

where 20 := k + o — 2y — |y,|. Here 7, is a multi-index and the brackets [h], , denote
p-Holder coefficients of the function h with respect to z.

Remark A.2. By definition a function u € C%%(Qy) is continuous and has continuous
derivatives up to second order in & and up to first order in ¢t. Additionally the following
Holder coefficients are defined: [Diuly.a, [Diult s, [D2u]y 0 [D%u]t%, [Dyu], 14a.

T2

Remark A.3. The above definition can be extended to the case where { = M" is a
compact manifold. In this case one uses locally the Euclidean definition from above and
constructs global norms with the help of a finite partition of the unity.

Note that without this localized definition it is not obvious what it means to calculate
the Holder norm of Du when u is a function defined on a manifold. One way to obtain a
useful definition would be to involve the push forward to compare the two vectors Du(x1)
and Du(x2) as it is described in [5], Chapter 1.4. Another interesting way to make a chart-
independent definition of Holder norms on manifolds is given in [17] Chapter 11.8.18 but
the same author remarks in [18], Chapter 2.5 that a local definition via the partition of
the unity is reasonable and completely sufficient.

We consider a linear parabolic problem with Neumann boundary condition
Lu = fi in M™x (0,T)
(1)¢ Nu = f, on OM™ x (0,T)

u(.,0) = wug on M"

79
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where L and N are linear operators of the form

o g
Lu = 87? _a”Dz‘ju+kaku+CU, Nu := MkaU‘HW

with coefficients a™,b*, ¢, u*,n € L>®(Qr). Furthermore, we assume L to be uniformly
parabolic, i.e. for some 0 < A < A we have

A? < a8 < AP in Qp, VEeR™
Additionally we impose the transversality condition
97 #0 on OM" x [0,T] (TC)
where v is the outward unit normal to OM™ and the 0t"-order compatibility condition
Nug = fo on OM"™. (CC)
In this situation the following theorem holds.

Theorem A.4. Let 0 < o < 1. Let M™ be a smooth, compact, manifold with smooth,
compact boundary. Suppose that the coefficients of L belong to Ca’%(QT) and p €

Cl+“’HTa(?T) satisfies (T'C). Furthermore suppose that fi € C*%(Qr) and that fo €
Cl+a’HTa(?T) and ug € C*T*(M™) satisfy (CC). Then the problem (1) has a unique
solution u € C2+°"2+Ta(@). Furthermore, the estimate

||u”2+a,2+Ta,QT <C <||f1||a,%7QT + Hf2||1+azl+Ta’ST + ||“0H2+a,M")

holds.

Proof. The proof from [38], Chapter IV, Theorem 5.3. can be adjusted to work in the
case where 2 is replaced by the compact, smooth manifold M™. O

The most important tool for second order parabolic equations is the maximum principle.
Before we mention it we have to define sub- and supersolutions.

Definition A.5. Let v, v~ € C2(M™ x (0,T))NCY(M™ x [0,T]). We say that v™ is a

supersolutions to (1) if it satisfies
Lvt > fi in M™% (0,T)
Not > fo on OM™ x (0,T)
vT(.,0) > ug on M"
The function v~ is called subsolution if the opposite inequalities hold.

Now we can state the version of the maximum principles which we use in this work.

Theorem A.6. Let u € CO(M™ x [0,T]) N CHL(M™ x (0,T)) be a solution to (1). As-
sume that L and N have bounded coefficients, that L is uniformly parabolic and that the
transversality condition (T'C) is satisfied. If v™ and v~ are super- and subsolutions to (1)
the v~ <u <ot in Qp.
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Proof. Note that for w := v™ — v and w := u — v~ we have Lw > 0, Nw > 0 and
w(.,0) > 0. So we can reduce the proof to the case of the upper bound for f; =0, fo =0
and ug = 0. This proof is contained in [52] Chapter 3, Section 3, Theorem 5,6 and 7.
Furthermore Stahl proved in [59] the generalization which in particular allows for the
more general operator N which occurs here. O

Corollary A.7. If fi =0 and fo =0, then v := maxym ug is a supersolution if

cmaxug > 0 and nmax ug > 0.
Mn Mn
Furthermore v~ := minpm ug s a subsolution if
cminug < 0 and nmin ug < 0.
MTL Mn

In particular these inequalities are all satisfied for c =0 and n = 0.

Corollary A.8. Assume that f1 =0, fo =0, n =0 and c(z,t) = c(t). Then v* given as
a solution to

0
DLt >0 on M™x (0,T)

18 a supersolution. Furthermore, the function v~ satisfying the same ODE with the reverse
inequality and the initial value minym ug is a subsolution.

A.2 Elliptic mixed boundary value problems

Let Q C R™ be a bounded Lipschitz domain. We denote by X a relatively open part of
0Q and write o = 9Q \ . Let v be the outward unit normal to £ on ¥. We consider the
following mixed Dirichlet-Neumann boundary value problem

Lu = aijDiju + kaku = f in Q
(2)< v*Dru=0 on X

U =" on o.

We assume uniform ellipticity in the form u|¢|? < a¥¢;€; < [€]? for all £ € R™ and some
i > 0. Since the outward unit normal occurs in the Neumann condition the problem is
uniformly oblique. Before we come to the existence and uniqueness results we want to
state some more classical maximum principles.

Proposition A.9. Let u € C?(Q). Assume that the coefficients of L are locally bounded.
If Lu > 0 then u can not attain a non-negative mazimum M at an interior point unless
u=M.

Proof. See [52], Chapter 2, Section 3, Theorem 6. O
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Proposition A.10. Assume that ¥ is at least C*. Let u € C2(Q)NCHQUX)NCQ)
and assume that u < M in Q and u(zg) = M for some xo € X. If Dyu < 0 then u can
not attain a non-negative mazimum at ro unless u = M.

Proof. See [52], Chapter 2, Section 3, Theorem 7. O]

For the next result we have to define sub- and supersolutions.
Definition A.11. Assume that v*, v~ € C?(Q)NCHOQUX)NCO(Q). If vT satisfies
Lot < f inQ, Vka’l)+ >0 onX, vt >v ona

then v* is called a supersolution to (2). If v~ satisfies the reverse inequalities it is called
a subsolution to (2).

Proposition A.12. Let ¥ be at least C*. Let u,v—,v" € C?*(Q) N CHOQUX)NCQ).
Assume that u is a solution to (2) and that v™,v™ are super- and subsolutions to (2).

Then v~ < u < vt in Q.

Proof. See [52], Chapter 2, Section 6. O]

We want to state an existence and regularity result for elliptic mixed problems in
domains with corners V := @ N ¥. Therefore, we have to introduce weighted Hélder
spaces. Similar to [43] we set Q5 := {z € Q| dist(x,V) > 0} where 0 is a sufficiently
small positive number. Using the well known Holder norms ||.||5,q.0 as they appear in [21]
we define for k € N, € (0,1) and b > —k — «

b a b b
lellPon =0l o, HEQ(®) = {u | lulig < oo} (A55)

These norms have the following useful properties.

Proposition A.13. Let k1, ko, k,l € N and o, 8 € (0,1). If k+« > 1+ 3 then

H79(Q) c ¢ @) nche (). (A.56)

e’

Let ki1 + o > b > 0. If (up)new C H,gl_l;) (Q) is bounded. Then there is a subsequence
(Un, )ken such that

Up, = U (k — o0) (A.57)
forO<b <b,0<ko+fB<ki+aandka+p>0.

Proof. See [41], Section 1 and the introduction of [42]. O

Now we can state the main existence and regularity result for mixed elliptic boundary
value problems which is due to Lieberman [43,44].
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Theorem A.14. Let ¥ and o be subsets of C*-hypersurfaces. Let Q C R™ be a bounded
Lipschitz domain with boundary 0 = & UY where o and ¥ are relatively open in OS).
Assume that a¥ is uniformly continuous in Q and that L is uniformly elliptic. Further-
more, assume that for all x € V :=&NY the boundary parts o and ¥ enclose the domain
at an angle 0 < 0(x) < Opax < 5. Then there exists some B(Omaz) € (0,1) such that if

ol e HO@), veH V@), feHP@), wvecP@

then there exists a unique solution u € C*(Q\ V)N C%Q) of (2). Furthermore, each such
solution of (2) satisfies the estimate

—1— 1—
[ull§ o™ < CUIFISE + 1ol 52)-

Proof. The existence and uniqueness result can be found in [43], Theorem 2. This theorem
requires a so called wedge condition on Y as well as an interior and exterior cone condition
on @. Both are satisfied since ¥ and ¢ are C?-hypersurfaces which meet at an non-zero
angle. The regularity of the coefficients is satisfied by assumption as well. Note that in
Lieberman’s notation ¢ = 0 and vy = 0 so we have to make use of his remark that in this
case a Fredholm alternative applies. Furthermore, L is uniformly elliptic and 8 = v and
so the operator which occurs in the Neumann condition is uniformly oblique. Finally,
note that we have

lim 814 o iy < lim 871510 ), = 0
since b € H(gl; P )(Q) and so the convergence to zero as required in [43], Theorem 2 holds
too. Altogether we obtain a unique solution v € C?(Q2\ V) N C%(Q).

The optimal regularity result is contained in [44], Theorem 4. This Theorem makes
some requirements on the contact angle between ¥ and o as well as on the vector occuring
in the Neumann condition. In our case these conditions are satisfied as long as the contact

™

angle is strictly less than 7. O

Remark A.15.

(i) Note that the weighted norms for the existence result [43] contain a weight with
respect to the Dirichlet boundary whereas the weighted norms which are used for
the regularity statement [44] have a weight with respect to the whole boundary of
the domain. Since our boundary parts o and ¥ are both C%® we decided to use a
weight which only affects V := & NX. So we use slightly more restrictive norms to
be able to obtain existence and regularity in the same weighted spaces.

(ii) In general a solution u € C**(2) of (2) will only be in C1#(Q) if the angle between
the Dirichlet and the Neumann boundary parts is strictly less than 7/2. See also
the review article of Lieberman [46].

(iii) Note that we only stated the result in the form which is needed in this work. Lieber-
man’s result holds under more general assumptions. In particular one can include a
linear term cu in the operator L and one can treat other oblique derivative boundary
conditions such as 3'Dju = f» on X.
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A.3 Geometric measure theory

We start with the definitions and properties of measures. Especially, we consider Radon
measures and Hausdorff measure. For the next definitions we follow [15], Section 1.1.

Definition A.16 (Borel regular measure). Let X be a set. We denote by P(X) the set
of all subsets of X. The map p: P(X) — [0, oo] which satisfies

p(@) =0,  u(A) <> Ay,  VAACX st Ac | Ak
keN kelN

is called measure. The sets A C X which satisfy
u(B) = (AN B) + u(B\ 4), ¥BCX

are called p-measurable. The family F C P(X) of all y-measurable subsets of X forms
a o-algebra. The smallest o-algebra of X = RR™ which contains all open sets is called
Borel o-algebra and is denoted by B(IR™). A measure p is called Borel regular if all sets
B € B(R™) are p-measurable and if

VACR" 3B e B(R")s.t. AC B and u(A) = u(B).

Definition A.17 (Radon measure). Let p: R™ — [0, 00] be a Borel regular measure. If
additionally we have u(K) < oo for all compact sets K C R™. Then u is called a Radon
measure.

Theorem A.18 (Lebesgue-Besicovitch differentiation theorem). Let p be a Radon mea-
sure on R™ and f € L} (R", ). Then

loc

f(xo) = lim f(x)du(z) p-a.e. xg € R™.
=0 J B(xzo,r)

In particular for f € LY (R"™, n) we have

loc

0= lin%) |f(x) — f(z0)|P dp(x) p-a.e. v € R™.
=Y J B(zo,r)

The points xog € R™ where this holds are called Lebesgue points of f.
Proof. See [15], Section 1.7, Theorem 1 and Corollary 1. O

Theorem A.19 (Riesz representation theorem). Let L : C.(R",R™) — R be a bounded
and linear functional. Then there exists a Radon measure u on R™ and a p-measurable’
function o : R™ — R™ such that |o(z)| =1 for p-a.e. x € R™ and L can be represented
as

L(f)= [ f(@)o(z)du(z)

R
for all f € C.(R™, R™).
Proof. See [15], Section 1.8, Theorem 1. O

3A map f: X — Y is called y-measurable, if f~(U) is u-measurable for all U C Y open.
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Definition A.20 (Weak convergence of Radon measures). Let & € IN and pu, ux be Radon
measures on R". We say that ui converges weakly to u, denoted by pp — p if and only
if one of the two equivalent statements hold

0 Jm [ f@am@) = [ @ du.  VFeCm).

k—o0 R
(ii) klim pr(B) = u(B), VB € B(R"), B bounded, u(0B) = 0.
Proof. The equivalence of (i) and (%) is proved in [15], Section 1.9, Theorem 1. O

Next we define Hausdorff measures. The definition and properties can be found in [15],
Chapter 2.

Definition A.21 (Hausdorff measure). Let 0 < § < oo and 0 < k < co. The Hausdorff
measure H* : R" — [0,00] : A +— H¥(A) is defined by

HE(A) = lim HE(A)

4 . N
=liminf { — 3 (dlamcj> ‘ Ac ¢y diamC; <6
6=0 r (§ + 1) jEN 2 jEN

where I'(s) := [;¥ e “25 1 dz for s € (0,00). The Hausdorff measure is a Borel regular

measure with the following properties

(i) H is the counting measure.
(ii) H* = A\¥ on R*¥ where A¥ is the k-dimensional Lebesgue measure.

(iii) H* =0 on R" for k > n.
Note also that for general k € IN the measure H* is not a Radon measure.

In order to define sets of finite perimeter and the reduced boundary we have to consider
functions of bounded variations. The following definition can be found in [15], Section
5.1.

Definition A.22 (Functions of bounded variation). Let U C R"™ be open and let f €
LY (U, \™). We define the symbol

IDANU) = sup{ /U f() div () AN (z)

@ € CHU,RM), |p| <1 }

and || fllgvw) = Ifllor @y + [IDFIIU). The set

BV(W):={ fe ') | Iflpvw < oo}

is called the space of functions of bounded variation. The map || - || gy () is @ norm and
BV (U) equipped with this norm is a Banach space (see [22], Remark 1.12). Furthermore,
the set

BVieo(U) 1= { f € LL,.(U) | Ifllpv(v) < o0 ¥V CC U open }
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is called the space of functions of locally bounded variation. Note that for U C R™ open
and f € WHHU) we have | Df||(U) = [,; |[Df|dX (see [22], Example 1.2).

Lemma A.23 (Lower semicontinuity in BV). Let U C R"™ be open. If a sequence
(fn)nen C BV(U) converges in L}, (U) to f € BV(U) then

IDFI(U) < liminf [ DF, (V).
Proof. See [22], Theorem 1.9. O
Lemma A.24. The following inclusions hold

whl(U) c BV(U), Wist (U) € BVige(U).

Note that we do not have equality. This can be seen by considering the characteristic
function of a bounded set E C R™ with C?-boundary and finite boundary length, i.e.
H* Y OENU) < co. It turns out that

IElsvw) = 1elnw) + ID1l(U) = |ENU|+ H*H(OENU) < 00
but 15 is not a Sobolev function. Thus WHY(U) # BV (U) and I/Vli’cl(U) # BVioe(U).
Proof. See [15], Section 5.1. O

Sets for which 1 is a function of locally bounded variation are given a special name.

Definition A.25. Let E C R"™ be a A"-measurable set. If 15 € BVj,.(U) we say that
E has locally finite perimeter in U C R™. If 15 € BVj,.(U) for every bounded, open set
U C R", then F is called a Caccioppoli set.

Furthermore, we have the following structure theorem.

Theorem A.26 (Structure theorem for BVi,.). Let U C R™ be open and let f €
BViee(U, A™). Then there exists a Radon measure i on U and a p-measurable function
o:U — R", such that |o(z)| =1 for p-a.e. © € U and

/U £ (@) div p(z) dA(x) = — /U ()0 () du(z) = - /U o(@)o(z) d|Df|

for all o € CL({U,R™). In the case that f = 1 where E is a set of locally finite perimeter
in U, we define ||0F| := ||D1g|| and vg := —o. This allows us to rewrite the statement

/ div p(x) dA(z) = / o(@)vi(z) d|OE|
E U

for all p € CLHU,R™). ||Df|| is the variation measure of f, |OE)|| is the perimeter measure
of E and ||OF||(U) is called the perimeter of E in U.

Proof. See [15], Section 5.1, Theorem 1 and the Remarks of Section 5.1. O

The following approximation result holds.
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Lemma A.27 (Approximation of BV -functions). Let A be open. Assume f € BVj,.(A).
Then there exists a sequence (fx)rew C BVioe(A) N C*(A) such that fr — f in L}, (A).
Furthermore, for the Radon measures (ux)gen and p defined by

w(B) = [ D, u(B) = / cd|Df|  BeBRY)
BNA BNA

we have p — p (see Definition A.20). In particular

/A Dl dA" = [ DSlI(A) — [DF]I(A)

as k — oo.
Proof. See [15], Section 5.2, Theorem 2 and Theorem 3. O
Next we follow [15], Section 5.7 and define the reduced boundary.

Definition A.28 (Reduced boundary). Let C R™ be a set of locally finite perimeter in
R"™. We call 9*F the reduced boundary of E. A point x belongs to the reduced boundary
if the following conditions hold

i) |0E|(B(z,7)) >0  Vr > 0.
(i) vi(e) =lm f vp(x)d|oB].

(iii) |vp(x)| = 1.
The structure of 9*F' is characterized by the following result.

Theorem A.29 (Structure theorem for the reduced boundary). Assume that E C R"
has locally finite perimeter in R™. Then

OE=J KiUN
kelN

where ||OE||(N) = 0 and K}, are compact subsets of C'-hypersurfaces Sy. Furthermore
UE‘Sk is the classical normal to S;, and

I0E|| = | D1g| = H" " [9*E
where |OE||(A) = H* Y(ANOE).
Proof. See [15], Section 5.7, Theorem 2. O

Lemma A.30. Let Q C R™ be open. Let E,FF C R". Then
10(EU F)[[(Q2) + [[0(E N F)[|(©2) < [0(E)[[(€2) + [[0(F)]I(€2)
Note that ||0A] = H" 1| 9% A.

Proof. See [2], Section 3.3, Proposition 3.38. O



88 Appendix

Lemma A.31 (Area formula). Let n < m and f : R™ — R™ be Lipschitz. Then for each
A"-summable function g : R™ — R (i.e. a function satisfying fRn lg| AN < o00) we have

| s@is@ae = [ > s

zef-t

where Jf == |det((Df)* o (Df)|"/? and (Df)* is the adjoint map* to Df. Especially,
/ g(@)|det(D f(x))| dA(z) = / g(f () AH™ (y)
U ()
ifn=mand f: U CR" — f(U) is injective.
Proof. Jf is the Jacobian of f defined in [15], Subsection 3.2.2. The formula of Jf that

we used is contained in [15], Section 3.2. Theorem 3. The area formula itself is stated
n [15], Section 3.3, Theorem 2. O

Lemma A.32 (Co-area formula). Let n > m and f : R™ — R™ be Lipschitz. Then for
each A"-summable function g : R — R (i.e. a function satisfying [, |g|dN* < o0) we
have

[Lomnmave = [ [ a@aermars

where Jf := |det((Df) o (Df)*|'/? and (Df)* is the adjoint map to Df. Especially

9(x)|Df(x)] X" (z §) dH" () A ()
R 1(y)

if m = 1. Note that during this lemma we denote the k-dimensional Lebesgue measure by
dN* to prevent misunderstandings. In the rest of this work we always use d\ to denote
the Lebesgue measure of the appropriate dimension.

Proof. Jf is the Jacobian of f defined in [15], Subsection 3.2.2. The formula of Jf that
we used is contained in [15], Section 3.2. Theorem 3. The co-area formula itself is stated
n [15], Section 3.4, Theorem 2. O

‘For a linear map A : R® — R™ we denote by A* its adjoint which is by the relation (A*y, z)grn =
(Az, y)rm.
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German thesis summary

Zusammenfassung der Arbeit

Diese Arbeit befasst sich mit Hyperflachen, welche sich in Richtung der Einheitsnormalen
mit der Geschwindigkeit reziprok zur mittleren Kriimmung bewegen. Diese Evolution-
sgleichung heisst Flufl entlang der inversen mittleren Kriimmung (engl. inverse mean
curvature flow, kurz IMCF). Die hier betrachteten Hyperflichen besitzen einen Rand.
Dieser soll senkrecht auf einer festen Stiitzflache aufsitzen und sich entlang dieser bewe-
gen.

In Kapitel 1 wird ein Uberblick iiber geometrische Evolutionsgleichungen im Allge-
meinen und IMCF fiir geschlossene Fldchen im Speziellen gegeben. Der dritte Abschnitt
des ersten Kapitels beschreibt das Evolutionsproblem fiir Hyperflichen mit Rand und
stellt somit den Startpunkt fiir die folgenden Untersuchungen dar.

Die erste Frage, die man sich stellen muss ist, ob die Evolutionsgleichung wenigstens
fiir eine kurze Zeitspanne eine Losung besitzt. Dieses Resultat iiber Kurzzeitexistenz
erhalten wir im Kapitel 2, Theorem 2.12, indem wir die Hyperfliachen fiir kleine Zeiten als
Graphen iiber der Anfangsfliche darstellen. Dadurch l&sst sich die Evolutionsgleichung
auf ein skalares, parabolisches Neumannproblem reduzieren. Dieser Zugang wurde auch
von Stahl [59] fiir den FluB entlang der mittleren Kriimmung (engl. mean curvature flow)
verwendet.

Die natiirliche Frage, die sich als néchstes stellt, ist die der Langzeitexistenz. Das
Gegenbeispiel eines Halb-Torus, welcher sich auf einer Ebene bewegt zeigt, dass man fiir
den klassischen Flufl im Allgemeinen keine Langzeitexistenz erwarten kann. Daher betra-
chten wir im Kapitel 3 den Spezialfall eines konvexen Kegels als feste Stiitzflache und be-
trachten Anfangsflichen positiver mittlerer Kriimmung, welche beziiglich der Kegelspitze
sternférmig sind. In Kapitel 3, Theorem 3.21 beweisen wir unter diesen Voraussetzungen
Langzeitexistenz und Konvergenz zu einer sphérischen Kappe. Fiir geschlossene Flachen
geht dieses Resultat auf Gerhardt [16] zuriick.

Um Aussagen fiir allgemeinere Stiitzflichen zu erhalten, folgen wir im Kapitel 4 den
Ideen von Huisken und Ilmanen [29] und definieren schwachen Losungen. Dafiir fithren
wir eine Niveauflichenformulierung des Evolutionsproblems ein. Dies fiihrt zu einem de-
generierten elliptischen Problem mit gemischten Randwerten in einem Gebiet mit Kanten.
Dieses Problem lasst sich durch elliptische Regularisierung zunédchst approximativ 1osen.
Die approximativen Losungen erlauben es, eine Folge von schwache Losungen in einer
hoéheren Dimension zu konstruieren. Zusammen mit einem Kompaktheitsresultat erhalt
man schlielich eine Grenzfunktion, die der eindeutige Minimierer eines mit dem Evo-
lutionsproblem zusammenhéngenden Funktionals ist. Dies fiihrt in Kapitel 4, Theorem
4.47 zu einem Existenz- und Eindeutigkeitssatz fiir schwache Loésungen des IMCF fiir
Hyperldchen mit Rand. Dieses Theorem ist das Hauptergebnis dieser Arbeit.
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