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Chapter 3 

Cognitive Aging and Strategy Application 
 

 

Cognitive aging has been described at different levels. At the behavioral level, 

researchers have identified age differences in learning rate and asymptotic performance 

(Baltes & Kliegl, 1992), interference susceptibility (Zacks & Hasher, 1997), complexity cost 

(Lair, Moon, & Kausler, 1969), and intra- and interindividual variability (Lindenberger & 

Baltes, 1997). At the neurological level, neuroanatomical (Bertoni-Freddari, Fattoretti, Casoli, 

Meier-Runge, & Ulrich, 1990) as well as neurochemical changes due to aging have been 

reported (e.g., Arnsten, 1998). Finally, at the information processing level, it has been 

proposed that there are age related reductions in general processing resources (Salthouse, 

1996), working memory (Grady & Craik, 2000), and attentional mechanisms (McDowd & 

Shaw, 2000). But how do these different levels of description come together as a whole? How 

do they relate to decision behavior and, in particular, the application of decision strategies? 

As reviewed in Chapter 1, some studies suggest that older adults look up less 

information and take longer to make a choice than younger adults (e.g., Johnson, 1990). 

Additionally, as reported in Chapter 2, which investigated the impact of cognitive aging on 

strategy selection, older adults tend to use simpler strategies compared to younger adults. 

Hence, some preliminary evidence exists supporting the idea that age-related cognitive 

decline impacts strategy use. However, past work did not focus on age differences in strategy 

application, namely, age differences in the tendency to make application errors when using 

decision strategies. Thus, it is not known how efficiency in the application of decision 

strategies changes as a function of age.  

A principled way of investigating this issue is to consider already detailed models of 

decision making, associate them with a theory of aging and, subsequently, design empirical 

studies to test the models’ predictions against data. This is the strategy taken here. 

Accordingly, the present chapter integrates the neurological, and information processing 

levels of description by presenting a neurocomputational account of aging effects in the 

efficiency of strategy use. Additionally, at the behavioral level, a test of the predictions 

derived from the approach is reported. 

Using a connectionist framework to model the effect of aging on decision making 

capitalizes on the age-related decline in neural functioning being naturally modeled with 
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subsymbolic systems (see Polk, Simen, Lewis, & Freedman, 2002, for the same argument; Li 

& Lindenberger, 1999). Hence, the approach adopted here connects the connectionist and the 

adaptive toolbox frameworks to understand age differences in strategy application. 

Combining the Connectionist and Adaptive Toolbox Frameworks 

A considerable number of decision making approaches, including the adaptive toolbox 

one, have defined decision strategies as production rules (if preconditions 1 and 2 are met, 

take action A; Svenson, 1979; Gigerenzer et al., 1999; Payne et al., 1993). Thus, they have 

endorsed the view that the mind manipulates symbols, executing operations over variables to 

produce behavior (Newell, 1980). However, the emergence of connectionism has lead some to 

question the extent to which the mind can be seen as a symbol manipulator (cf., Marcus, 

2001; Mills, 1992). 

The Eliminative View of Connectionism 

McCulloch and Pitts’s (1943) seminal work showed that a network of computational 

units resembling neurons (as they were believed to function at the time) � simple threshold 

units with binary states, performing summation of excitatory or inhibitory inputs � could 

compute various logical functions (e.g., AND, OR). Since then, researchers have investigated 

the computational power of artificial networks in the hope of understanding how the brain 

may perform various cognitive processes. Connectionist models are loosely based on the 

principles of neural information processing, and subscribe to the idea that cognitive processes 

involve the basic computations being performed in parallel by a large number of densely 

interconnected neurons. Perhaps the most significant publication supporting this view has 

been Parallel Distributed Processing by Rumelhart, McClelland, and the PDP Research 

Group (1986) which applied the connectionist framework to various cognitive domains, from 

motor planning to language acquisition (see Elman, Bates, Johnson, Karmiloff-Smith, Parisi, 

& Plunkett, 1996, and McLeod, Plunkett, & Rolls, 1998, for introductions to connectionist 

modeling).  

Some connectionist enthusiasts have questioned the ontological status of production 

rules and portrayed neural network models as markedly opposed to the symbol-manipulation 

perspective (e.g., Churchland, 1995). According to this eliminative view of connectionism, the 

basic components of cognition have to do with distributed processing of individual units 

whose global behavior cannot be said to represent a rule. 

The field of decision making research has been no exception in witnessing the 

proliferation of connectionist accounts of cognitive processes. Several connectionist models 
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of decision making have been proposed (e.g., Chater, Oaksford, Nakisa, & Redington, 2003; 

Roe, Busemeyer, & Townsend, 2001; Usher & McClelland, 2004; see Busemeyer & Johnson, 

in press, for a review) and shown to handle complex processes of information integration. 

This contrasts with the adaptive toolbox and adaptive decision maker approaches’ attempts to 

define decision mechanisms as production rules (Payne et al., 1993; Schooler & Hertwig, 

2005). As a consequence, it is understandable that attempts have been made to pit 

connectionist models against heuristics (Chater et al., 2003). Nevertheless, as I argue below, 

this opposition is not warranted.  

The Implementationist View of Connectionism 

An alternative implementationist perspective to connectionism is well established in 

cognitive science (Marcus, 2001; Pinker & Prince, 1988; Smolensky, 1988). According to this 

position, the functioning of connectionist networks can be interpreted as implementing 

aspects of symbol manipulation. Consequently, one can implement production rule type of 

processes using connectionist architectures. For example, one can model decision strategies, 

such as TTB, using neural networks. The modeling efforts reported below can be seen as an 

existence proof of the possibility of understanding the workings of prototypical decision 

strategies, such as compensatory and noncompensatory rules, as the combined functioning of 

units in an artificial neural network. Thus, it is argued that these networks implement aspects 

of decision strategies usually defined as production rules, thus, supporting an 

implementationist view of connectionism. 

Combining the adaptive toolbox and the connectionism frameworks provides clear 

benefits. First, the models proposed by the adaptive toolbox approach can inform a 

connectionist agenda in the domain of inference by supplying plausible algorithms to be 

modeled. Second, the synergy can help connect different levels of explanation, from the 

behavioral, to the information processing, to the neurological levels. Finally, as proposed 

here, it can help tackle issues such as ontogenetic change in efficiency of strategy use due to 

age-related cognitive decline. 

In the next sections, I introduce a formal account of aging and present how 

connectionist implementations of decision strategies can be associated with an aging theory to 

obtain predictions regarding age differences in strategy application.  
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Formal Modeling of Aging 

Theories of aging have worked at cross-level unification (Li, 2002) by relating three 

major levels of description: the behavioral, the information processing, and the neurological. 

The neurological level has been rich in providing evidence of how increased age is related to 

neuroanatomical and neuromodulatory changes. For example, age-related changes have been 

reported in synapse morphology and decrements in number of synapses, although not in 

number of neurons (Bertoni-Freddari et al., 1990; Geinisman, DeToledo-Morrell, Morrell, & 

Heller, 1995). In addition, some have proposed that milder cognitive deficits during normal 

aging may be caused by neurochemical changes in relatively intact neural circuits (cf. 

Morrison & Hof, 1997). Li and collaborators (Li, 2002; Li, Lindenberger, & Frensch, 2000; 

Li, Lindenberger, & Sikström, 2001) have argued that age-related decline in 

cathecolaminergic function, in particular dopaminergic modulation, is responsible for major 

age differences found between younger and healthy older adults at the behavioral level. 

Support for this view comes from studies showing that aging-related attenuation of particular 

dopamine receptor binding mechanisms is statistically associated with age differences in 

processing speed and episodic memory (Bäckman, Ginovart, Dixon, Robins-Wahlin, Wahlin, 

Halldin, & Farde, 2000).  

At the information processing level, there have been attempts to link neurological facts 

to computational models of cognitive processes, such as the role of dopamine in cognitive 

control and executive functions (Cohen, Braver, & Brown, 2002; Montague, Hyman, & 

Cohen, 2004; see Fellous & Linster, 1998, for an overview of computational models of 

neuromodulation). One approach particularly concerned with aging was adopted by Li and 

colleagues (e.g., Li et al., 2000, 2001) who conceptualized deficits in neuromodulatory 

efficiency due to aging as noisy information processing and the existence of less distinct 

neural representations. Specifically, Li et al. (2001) proposed that deficits in 

catecholaminergic activation in the prefrontal cortex (Arnsten, 1998) can be modeled by 

adjusting the gain (G) parameter of the sigmoidal activation function of neural networks (see 

Cohen & Servan-Schreiber, 1992, Servan-Schreiber, Printz, & Cohen, 1990, for a similar 

approach). According to this approach, the activation function of neural units takes the form: 

 

  (1) 
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Servan-Schreiber et al., 1990). Finally, G is a random number sampled from a uniform 

distribution (Gi, ∈ [Gmin, Gmax], Gmin > 0; see Figure 3.1 for the values of G used by Li & 

Lindeberger, 1999).  

Figure 3.1: The S-shaped logistic activation function at different values of G (adapted from Li et al., 

2001) 

Reducing mean G flattens the logistic activation function such that a unit’s average 

activation responsivity is reduced (see Figure 3.1). As a consequence, such as unit becomes 

less discriminative in responding to differences in inputs. In addition, reducing mean G 

increases the variability in the unit’s activation. 

Providing an encouraging example in the effort of cross-level unification, Li and 

colleagues have shown that manipulation of the G parameter allowed modeling major results 

stemming from aging research, specifically, age differences in mean performance, age by task 

difficulty effects (i.e., complexity cost), and increases in performance variability with 

increased age (Li & Lindenberger, 1999; Li & Sikström, 2002; Li et al., 2000, 2001; Li, 

Naveh-Benjamin, & Lindenberger, 2005). 

The next section reports efforts to implement decision strategies using connectionist 

networks and an attempt to use the gain manipulation method to model age-related changes in 

efficiency of strategy use. 
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A Neurocomputational Account of Age-related Changes in Strategy 

Application 

I used simple recurrent networks (SRN; Elman, 1990) to implement two decision 

strategies: TTB, and an evidence accumulation strategy (EAS), which can be thought of as a 

version of Franklin’s Rule that implies sequential information search. Simple recurrent 

networks have been used extensively in the modeling of various aspects of cognition 

involving sequential processing of information, such as language and spatial orientation (see 

Elman, 2005). SRN are well suited to deal with sequential processing of information because 

internal states are fed back at every step, which supplies such networks with a memory, and 

allows them to process information sequentially over time. The feature of sequential 

processing is also a common requirement in decision making tasks like pair-comparison ones 

which are the focus of the reported modeling efforts. Hence, SRN are well-matched to the 

modeling efforts reported below. 

Decision strategies such as TTB and EAS are composed of different building blocks, 

namely, a search rule, which determines the order in which cues are looked up, a stopping 

rule, which determines when search for information ends, and a decision rule, which 

determines which object is chosen. In the work reported below I focused only on the decision 

rules of TTB and EAS because I was particularly interested in how differences between input-

output mappings’ of different strategies determine age differences in performance.  

Age-related decline in neuromodulation and its effect on strategy efficiency was 

modeled by varying G stochastically (cf. Li et al., 2001) in the activation function of SRN’ 

artificial neural units. In general, sampling G from a distribution with a lower mean at the 

hidden unit level should produce less pronounced activations (cf. Li et al., 2000), which 

should in turn be reflected in the output units’ activations. Additionally, the gain manipulation 

should influence variability in units’ activations because it makes use of the property of 

squashing functions (see Figure 3.1), by which changing their slope influences activation 

variability. In general, it was expected that changing the networks’ G parameter would 

increase the probability of choosing an alternative not compatible with that prescribed by the 

strategy being implemented. 

Another issue being investigated was whether information intensive strategies were 

more susceptible to G manipulations, revealing a complexity cost effect. One reason to predict 

such an effect is that the code underlying the use of TTB is sparser than that of EAS: The 

input-output mapping required to implement TTB is simpler (all inputs lead either to [0,0], 

[1,0], or [0,1] outputs) than that for EAS (inputs can lead to several different outputs, such as 
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[0,0], [.125,0], [0,.125], [.125,.125], [.25,.125], and so on). Because G manipulation should 

produce networks with restricted computational power (Li et al., 2000) one would predict 

these to have more difficulties with a more complex input-output mapping. 

Method 

The general method underlying the experimental procedure was to train a number of 

SRN with the goal of finding a set of networks that would implement the decision strategies 

correctly and age only this successfully trained subset. The SRNs used to implement the two 

decision strategies had 2 input, 20 hidden, 20 context, and 2 output units (see Figure 3.2). The 

decision problem that the networks faced was a paired comparison between objects on the 

basis of 8 cue values. One-hundred networks with different initial random weights were 

trained using both TTB-congruent and EAS-congruent target activations. Thus, each network 

was trained once to implement TTB and once to implement EAS.  

Figure 3.2: Architecture and transfer functions of the simple recurrent networks. 

The number of possible input patterns for training, given all combinations of 8 binary 

cues for two alternatives, is 65536. However, because it was impractical to train networks 

using the complete set of input patterns, a random sample of 500 input patterns was selected. 

In addition, to insure the networks correctly implemented TTB and EAS, an additional set of 

100 trials was randomly selected to be used after training in a generalization test. The total 

number of input patterns used to train the networks was, therefore, 500. Each training epoch 

consisted of supplying as input the same sequence of 500 sets of 16 vectors with 1 cue value 
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each, corresponding to 500 decisions between 2 different objects based on 8 cues. Note that 

the hidden layer received at each step a vector with 1 cue value as well as vector with its own 

activation pattern from the previous time-step, whose values were reset at the beginning of 

each decision.  

At the end of each epoch the network weights were updated using a gradient descent 

backpropagation algorithm (Rumelhart, Hinton, & Williams, 1986) with adaptive learning 

rate and momentum. The networks were trained for 500 epochs. Target activations were 

constrained to range between 0 and 1. The two versions, TTB and EAS, differed in terms of 

the inputs and respective targets provided. The crucial difference between the inputs reflects 

the fact that TTB and EAS algorithms look up information differently. While TTB searches 

for information in a cue-wise fashion, EAS searches information in an alternative-wise 

manner. The targets also reflected this input scheme. In the TTB implementation the first 

object having a positive value on a discriminating cue had an activation of 1, while for the 

EAS each positive cue value led to a proportion of the maximum possible activation1. For 

example, given 8 cues with equal validities, the contribution of each cue to an object’s 

activation is .125. Thus, EAS targets reflected the principle of information accumulation (see 

Tables 3.1 and 3.2). 

Table 3.1: Example of Mapping between Input 
and Activation of Alternatives for TTB 

 TTB Inputs  TTB Targets 
 A B  A B 

1 -  0 0 Cue 1 - 1  0 0 
0 -  0 0 Cue 2 
- 0  0 0 
0 -  0 0 Cue 3 - 0  0 0 
1 -  0 0 Cue 4 - 0  1 0 
1 -  1 0 Cue 5 - 1  1 0 
1 -  1 0 Cue 6 - 1  1 0 
1 -  1 0 Cue 7 - 0  1 0 
1 -  1 0 Cue 8 - 0  1 0 

 

                                                 
1 For EAS, the object target activation corresponding to each input cue value was defined by: 

valuei × vi/Σv, where valuei represents the object’s value on cue i, vi the validity of that cue, and Σv the 
sum of all cue validities.  
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Table 3.2: Example of Mapping between Input 
and Activation of Alternatives for EAS 

 EAS Inputs  EAS Targets 
 A B  A B 

Cue 1 1 -  .125 0 
Cue 2 0 -  .125 0 
Cue 3 0 -  .125 0 
Cue 4 1 -  .250 0 
Cue 5 1 -  .375 0 
Cue 6 1 -  .500 0 
Cue 7 1 -  .625 0 
Cue 8 1 -  .750 0 
Cue 1 - 1  .750 .125 
Cue 2 - 0  .750 .125 
Cue 3 - 0  .750 .125 
Cue 4 - 0  .750 .125 
Cue 5 - 1  .750 .250 
Cue 6 - 1  .750 .375 
Cue 7 - 0  .750 .375 
Cue 8 - 0  .750 .375 

 

Age-related decline in neuromodulation and its effect on strategy efficiency was 

modeled by varying G stochastically (cf. Li et al., 2001) in the activation function of the 

hidden layer of the trained SRNs. All networks were tested using 6000 trials (i.e., each trial 

consisting of a set of 16 vectors corresponding to the 8 cue values for each option) which 

corresponded to 10 runs through the set of 600 trials used to train and test the generalization 

performance of the SRN. Decisions were made using a difference choice rule: the difference 

between activations in the output units was computed and the object with the highest value 

was chosen.  

Results 

The results section is structured in the following way; first, the results of the training 

procedure are described. Second, the outcomes of the gain manipulation are presented 

generally. Afterwards, the latter results are quantified and linked to the major and most robust 

findings in aging research, namely, age differences in mean performance, complexity cost, 

and performance variability. 

Training Results 

After 500 training epochs the mean MSE was considerably small (MSETTB = .0007; 

MSEEAS = .0051). However, performance was not perfect: only 20 networks showed perfect 
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performance in the sense that the outputs closely matched the target activations and the 

difference between activations was in the prescribed direction both when trained with TTB 

and EAS targets. This subset of networks was further analyzed concerning the generalization 

set and it was found that only 10 generalized perfectly to the new 100 trials (MSE < .003). No 

systematic variation of the architecture (e.g., number of hidden units) or learning parameters 

(e.g., learning algorithm) was attempted because the focus of the simulation was to create a 

set of networks that performed TTB and EAS input-output mappings successfully, rather than 

to provide a thorough explanation of how these parameters influenced the training procedure.  

G Manipulation 

The effects in performance of both the TTB and EAS implementations of the 

systematic variation of G can be observed in Figure 3.3. This figure shows that both the 

implementations of TTB and EAS show decline in performance with decreasing values of G. 

However, there are differences between the strategies’ performance; while TTB and EAS 

seem to differ little at extreme levels of G, differences between the two are accentuated when 

middle values of G are considered. Furthermore, as suggested by differences in the size of the 

error bars (SD) in Figure 3.3, TTB and EAS show different variability levels in performance 

as a function of G. In sum, TTB is a more robust strategy compared to EAS when signal-to-

noise ratio of neural units decreases.  

Figure 3.3: Accuracy in choosing the right object when implementing TTB and EAS given different 

values of G. Error bars correspond to intra-network variability (SD) on different runs through the 

testing set. 
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The following paragraphs summarize these results which can be viewed as predictions 

regarding the effects of age-related cognitive decline on the application of decision strategies. 

The predictions made are based on the G values used by Li and Lindenberger (1999). 

Mean performance. Young and older adults usually differ in terms of mean 

performance even after considerable periods of training (Baltes & Kliegl, 1992). Also, 

research on strategy use in mental arithmetic and memory domains suggests that older adults 

use strategies more poorly than younger adults (e.g., Dunlosky & Hertzog, 1998; Lemaire et 

al., 2004). The results from the simulations mirror these effects: networks with low values of 

G (.1 to .5) show worse performance than those with high values of G (.6 to 1). The difference 

between the performance of young and old networks represents a large effect (97% vs. 71%; d 

= 1.09). In sum, as expected, young networks perform on average better than the old, leading 

to the prediction that older adults will more often make mistakes when using a decision 

strategy than their younger counterparts. 

Complexity cost. Another robust empirical finding in the aging literature is an age by 

task complexity effect, that is, an increase in the difference between the performance of young 

and older adults with increasing processing demands or task difficulty (i.e., complexity cost; 

e.g., Lair et al., 1969). Several researchers have claimed that lexicographic rules are less 

computationally demanding than other more information-intensive decision strategies (Dosher 

& Russo, 1983; Gigerenzer et al., 1999; Payne et al., 1993). In accordance with these claims, 

an age by complexity effect was observed in the simulation results: The difference between 

the performance of TTB and EAS for young networks was considerably smaller than the 

difference between the two strategies when the performance of old networks is considered 

(2% vs. 9%). One interpretation of this result is that older networks deal better with sparser 

codes (cf. Li et al., 2000) and that TTB has an advantage in this respect.  

Performance variability. Behavioral data points to an increase in intra-individual 

variability in performance with increased age (e.g., Fozard, Thomas, & Waugh, 1976). To 

evaluate whether the simulations also showed this effect, each network was run ten times on 

the testing set. The standard deviation in overall performance of each network was then used 

as a measure of network intra-variability. As expected, the variability of old networks (SD = 

.09) was greater than that of young networks (SD = .03). However, there may exist a bottom 

effect, whereby decreasing performance to chance level necessarily diminishes the variability 

in performance; this effect is visible in Figure 3.3 for extremely low values of G.  
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Discussion 

A neurocomputational approach was presented which builds on previous accounts of 

decision making (Gigerenzer et al., 1999) and formal modeling of aging (Li et al., 2000, 

2001) to predict effects of age-related cognitive decline on the efficiency of decision 

strategies. The underlying rationale was that age-related changes in neuromodulatory 

processes impact cognition at the level of its basic information processing components, such 

as working memory and processing speed. In turn, these age-related changes produce age 

differences at the behavioral level, including differences in aspects of higher-order cognition, 

namely, decision making. The remainder of the discussion addresses potential extensions to 

the approach, and, additionally, how the approach relates to integrative theories and models of 

cognition. 

Extensions to the Approach 

Two main extensions to the modeling approach should be attempted. First, one should 

consider information search and make predictions regarding age differences in this respect. As 

it stands, only TTB’s decision rule, but not its stopping rule, was modeled (cf. Gigerenzer et 

al., 1999). However, one could add an output node to the SRNs to signal stopping search and 

train networks appropriately. Extending the approach in this manner would allow making 

predictions about age differences in information search behavior.  

Second, the underlying dynamics of SRNs implementing the decision strategies should 

be investigated. Simple recurrent networks are discrete-time dynamical systems (Beer, 2000), 

which can thus be described by mathematical models (a set of equations) that represent the 

time dependence of units’ activations in a geometrical space. Hence, the tools of dynamical 

systems theory can be used to investigate how, first, these networks arrive upon a solution to 

these simple inference problems (see Elman, 2005, and Rodriguez, Wiles, & Elman, 1999, for 

such an approach) and, secondly, the effects of the aging manipulations on the underlying 

dynamics.  

Integration, Integration, Integration 

An integrative theory is one that attempts to connect different levels of description. 

This approach is the result of such an attempt: Neurological and information processing levels 

were connected to provide a picture of the relation between age-related cognitive decline and 

decision making.  
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A different sort of integration can be done at the level of models. The adaptive toolbox 

approach is based on the assumption that people possess a repertoire of strategies. However, 

some concern has been expressed concerning the proliferation of strategies and the resulting 

lack of parsimony (Newell, 2004). Consequently, it has been argued that general, 

parameterized models should be tested in competition with simple heuristics (Lee & 

Cummins, 2004). The work put forward here is compatible with the perspective that a general 

model may account for individuals’ behavior because the architectures used for the two 

different decision strategies were the same. However, the mapping between inputs and 

outputs, in the form of connections between units, differed considerably, making the networks 

conceptually distinct. As a consequence, this approach is also well-matched to the idea that 

people have at their disposal a set of tools adapted to specific environments. Nevertheless, 

there is some room for bringing closer the concerns of the adaptive toolbox and the general 

process perspectives. The potential intersection resides in the need to specify a theory of how 

weights of connections in networks get adjusted at different time scales, including 

evolutionary time, the lifecourse, or through learning during a short and novel task. One 

interesting avenue of inquiry is to try to understand how decision makers set off from a 

general model, such as SRN with random weights, to distinct mechanisms. It would be 

particularly important to question how one can model these changes over the different 

timescales. 

Summary of Predictions  

The simulation results provided a clear set of predictions to be tested. First, older 

adults should generally have more difficulties in strategy application, which should be 

reflected in the mean number of application errors when applying decision strategies (mean 

performance). Second, older adults should show a larger decrement in performance with more 

difficult strategies when compared to younger adults, leading to an age by strategy difficulty 

effect (complexity cost). Third, older adults should show larger intra-individual variability in 

performance (performance variability). These empirically testable predictions are examined in 

Study 4.  

Study 4: Age Differences in Application of Decision Strategies 

Study 4 investigates younger and older adults’ application of decision strategies. In 

particular, the study tests the predictions derived from the neurocomputational approach 

adopted, which include (1) age differences in mean performance, (2) an age by strategy-

difficulty effect, with the performance of older adults showing a larger decrement with more 
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cognitively demanding strategies compared to younger adults, and (3) larger intra-individual 

variability in performance with increased age.  

In addition to testing these main predictions, further support for the idea that success 

in strategy application is related to basic components of cognition was sought. This was 

investigated by, first, fitting the models’ G parameter to mimic individual participants’ 

behavior and, second, relating the fitted values to measures of the cognitive constructs of 

interest, such as working memory capacity and speed of processing. Finding a relation 

between fitted parameter values and individuals’ performance in independent cognitive tasks 

would provide some support for the thesis that individual differences in cognitive capacity, in 

particular those due to aging, play a major role in the efficiency of strategy use. 

In most decision making experiments participants are usually classified as users of a 

particular strategy by, first, evaluating the fit between their search and decision behavior to 

that prescribed by different strategies, and, subsequently, selecting the strategy with highest fit 

as representing the participant’s overall behavior. One difficulty with such an approach is 

trying to determine whether participants’ deviations from the search and choice prescribed by 

particular strategies reflect participants’ use of a different, not previously considered strategy 

or, alternatively, an application error. Therefore, it is not possible to reliably estimate 

application errors on the basis of data from usual decision making experiments. One 

alternative is to teach participants how to use different decision strategies and later ask them 

to perform each one independently (see Bettman et al., 1990, for such a design in the decision 

making domain, and Siegler & Lemaire, 1997, for one in the arithmetic computation domain). 

Consequently, our study made use of trained participants to investigate potential age 

differences in the application of decision strategies. 

The study involved teaching participants two decision strategies, TTB and EAS, in the 

context of a paired comparison task. After a training period, young and older participants 

were asked to use these strategies in a series of trials. I have argued above that age differences 

in strategy use will be evident in the accuracy of strategy application, therefore, Study 4 

assessed whether participants correctly chose the options recommended by TTB and EAS. In 

addition, participants were asked to rate the cognitive demand of the two strategies on 7-point 

Likert scales. Past research has shown that decision makers’ estimates of cognitive demand of 

strategies match closely the theoretical predictions of researchers (Bettman et al. 1990; Chu & 

Spires, 2003), thus, these variables were expected to corroborate the results found in terms of 

performance accuracy.  
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Finally, measures of cognitive capacity were used to assess working memory and 

processing speed constructs.  

Method 

Participants 

A total of 22 adults participated in the study, 12 young adults (8 female, 4 male, M age 

= 25.58 years, SD = 3.68), and 10 older adults (2 female, 8 male, M age = 71.00, SD = 3.94). 

The study took about 1 1/2 hrs. Most young adults were students in various departments of 

the Free University of Berlin (80%), and older adults were healthy community dwellers. 

Payment was contingent on participant’s performance: for each correct choice participants 

received 0.05 euro; on average, a total of about 3.5 euro each was paid plus a basic 

participation payment of 15 euro, making a total average of 18.5 euro per participant.  

Design 

The independent variable in this study was the strategy used in a particular block of 

trials (TTB vs. EAS; within subjects design). Each participant observed two blocks of 24 pair-

comparisons each concerning 2 objects and up to 8 cue values on each object. To allow 

testing for age differences in performance variability, each block was composed of two 

presentations of the same set of 12 trials. On the second presentation the order of the objects 

was reversed on each trial and trials were placed in a different random order to prevent 

participants memorizing the decisions.  

Measures 

Two components of the mechanics of cognition (Baltes et al., 1999) were measured 

using standard working memory and speed of processing measures. In addition, participants’ 

ratings of the cognitive demands of strategies were assessed. 

Operation span. The stimuli of Hamm (unpublished) were used for this task. The 

version used included all items with 5 words (see Engle et al. 1999); thus, the possible score 

ranged from 0 to 48. Participants saw individual operation-word strings (e.g., IS (8/4)-1=1? 

bear). They had to solve the math problems, each of which was followed by a lowercase 

word, which was to be read aloud. On hearing the word “bear” the experimenter would press 

a key that would cause the presentation of the next string. After a set of these operation-word 

strings, participants recalled the words. The dependent measure was the cumulative number of 

words recalled from perfectly recalled trials.  
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Digit symbol substitution. Subjects had to write as many symbols as possible within 

90s. The regular paper-and-pencil format was used (Lindenberger, Mayr, & Kliegl, 1993). 

Estimates of cognitive demand of strategies. Participants’ effort estimates were elicited 

using two 7-point Likert scales concerning each of the two strategies (“1 = not cognitively 

demanding, 7 = extremely cognitively demanding”). 

Procedure 

Initially participants were familiarized with the paired comparison task, the concept of 

cue validity was explained, and the validity of the binary cues, as well as their direction was 

introduced. To match the simulation procedure described above all cues had equal validities, 

that is, they had equal predictive power. Participants then received extensive written 

instructions concerning two decision strategies, TTB and EAS, which included 3 detailed 

examples relative to each strategy. These examples encompassed both the correct sequence of 

acquisition and the final choices appropriate for each strategy.  

Regarding TTB, participants were instructed to search for information in a cue-wise 

fashion and to make a decision as soon as a discriminating piece of information was found. In 

contrast, participants were instructed to apply EAS by performing an alternative-wise search, 

gathering information using weighted cue values, and performing a decision based on the 

final difference between scores. Note that because cues had equal validities the final decision 

of EAS was equivalent to both Franklin’s Rule (FR) and Tallying. However, while FR implies 

weighting cue values and adding them, Tallying dispenses with cue weighting altogether. 

Tallying simply keeps track of positive cue values for each object, and makes a decision 

based on the difference between the two final tallies. Nevertheless, both versions of EAS 

require more information to be processes compared to TTB being, consequently, more 

cognitively demanding than the latter. 

After learning how to apply the decision strategies, the participants were subsequently 

introduced to the computerized inference task. The task consisted of deciding, based on a set 

of cues, which of two diamonds was more expensive. Participants performed all decisions 

based on information search in a computerized display and were told to use a particular 

strategy in a given experimental block. An experimental block consisted of one practice trial, 

in which the experimenter made sure that the participant understood how to use the prescribed 

strategy. This measure ensured that all participants were able to perform the strategy equally 

well at the beginning of each set. Afterwards, 24 experimental trials followed in which the 

participants used the same strategy consecutively. The order of blocks was counterbalanced 

within age-group.  
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Although participants were instructed to use particular strategies their final decisions 

were otherwise unconstrained. Participants had at each step the choice between acquiring one 

piece of information about one of the two diamonds, up to a total of 8 cue values per 

diamond, or making a decision. Each cue value was presented briefly (2 seconds) and only 

once. The cues available to the participants were the following: size, overall proportions of 

the diamond, crown proportions, pavilion proportions, size of table, color, clarity, and 

certification laboratory. All cues had binary values (e.g., big vs. small diamond, colored vs. 

uncolored diamond). Both cue validities and cue labels were the same for all individuals. 

Participants had to touch appropriate buttons on a touchscreen to ask for information and 

make a decision. The order of information acquisition was partially constrained, with 

participants having to follow a predetermined cue order. However, participants had the 

possibility of choosing which alternative they wanted to find out more about at a particular 

time, and they were able to alternate between objects. After performing the decision task, 

participants’ working memory and speed of processing were assessed, as well as their 

estimates of cognitive demands of strategies. 

Results 

In the results section, I first consider the main predictions outlined above. Second, I 

present results concerning information search in the decision task more generally. Finally, the 

relation between cognitive capacity and strategy application is assessed.  

Age Differences in Mean Performance 

The first prediction stated that older adults’ mean performance should be worse than 

that of young adults, with older adults making on average more application errors than 

younger adults. Because a within-subjects design was used, and thus the performances using 

the two strategies were not independent, I conducted a multivariate analysis of variance 

(MANOVA) to test this hypothesis.  In this analysis, the proportion of correct decisions when 

using TTB and EAS were used as dependent variables and age group (younger vs. older 

adults) as the independent variable. The main effect of age group was significant, F(2, 19) = 

4.04, p = .034, partial �2 = .30. As can be seen in Figure 3.4, young and older adults’ 

performance does seem to differ at the level of mean performance. Nevertheless, note that 

older adult’s performance was on average still considerably high (M = 96.04, SD = .04) 

compared to a close to perfect performance of younger adults (M = 99.65, SD = .01).  
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Age Differences as a Function of Strategy Difficulty 

A second prediction was an age by strategy difficulty effect: It was predicted that the 

performance of older adults would show a larger decrement with more cognitively demanding 

strategies compared to younger adults.  

Proportion correct decisions. Figure 3.4 shows that that the difference between young 

and older adults’ performance when using EAS is not larger than when using TTB. To 

quantify these differences, I calculated contrasts between young and older adult’s proportion 

of correct decision when using TTB and when using EAS. The difference between young and 

older adults’ performance when using TTB was -.042, F(1, 20) = 4.96, p = .030, partial �2 = 

.20, while when using EAS it was -.031, F(1, 20) = 4.03, p = .058, partial �2= .17. Also, 

please note that the differences in performance between younger and older adults represented 

rather small effects (partial �2= .20; partial �2= .17; TTB and EAS, respectively). 

 

 
Figure 3.4: Proportion of Correct Decisions of Younger and Older Adults as a Function of Strategy 

Used. Error bars represent mean standard errors. 

Estimates of cognitive demand of strategies. Although an interaction between strategy 

and age group did not emerge at the outcome level, individual estimates of effort could reveal 

that older adults found EAS a more cognitively demanding strategy compared to younger 

adults. Table 3.3 summarizes the estimates of cognitive demand of TTB and EAS for younger 

and older adults. An inspection of this table shows that this was not the case. Older and 
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younger adults showed very similar estimations of effort when TTB is considered. However, 

concerning EAS, older adults on average reported this strategy as being less demanding in 

comparison with younger adults. One possibility is that younger and older adults used 

strategies differently. While younger adults made use of EAS with weighted cue values, older 

adults may have computed simple tallies to arrive at a decision. 

 

Table 3.3: Means (and SDs) of Participants’ Estimates of Cognitive Demand of 

Strategies and Tests of Significant Differences Between Younger and Older Participants  

 TTB  EAS 

 M SD  M SD 

Younger Adults (n=12) 1.08 .29  3.00 1.13 

Older Adults (n=10) 1.30 .48  2.00 1.63 

t tests t(20) = 1.30, p = .207  t(20) = 1.69, p = .106 

 

Age Differences in Performance Variability 

A third prediction concerned the existence of larger intra-individual variability in 

performance with increased age. Please recall that participants performed each decision twice, 

thus, it was possible to investigate this issue by calculating the difference between 

performance in a first set of trials compared to a second set. Comparing the two age groups, 

the difference in performance was significant, t(20) = 3.60, p = .002, d = 1.5, with older adults 

varying more between sets (M = .10, SD = .09) than younger adults (M = .01, SD = .02). 

Age Differences in Search Behavior 

Although the adopted modeling approach did not make predictions concerning search 

behavior, it was of interest to consider potential age differences in this respect. One robust 

finding in the aging literature is that older adults show significant increases in reaction time 

when performing cognitive tasks (e.g., Salthouse, 1996) and this result has also been 

recognized in previous research on the use of decision strategies (e.g., Johnson, 1990). To 

investigate the existence of such an effect, a MANOVA was conducted with age group as 

independent variable (younger vs. older adults) and the decision time when using TTB and 

EAS as the two dependent variables. A main effect of age group emerged, F (2, 19) = 5.28, p 

=.015, partial �2 =.357, suggesting that overall older adults took longer to arrive at a decision. 

However, follow up univariate tests showed that this pattern held when TTB (Myoung = 13.49, 
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SDyoung = 3.84; Mold = 43.06, SDold = 37.41) but not when EAS was considered (Myoung = 

16.03, SDyoung = 6.24; Mold = 93.90, SDold = 158.45). 

Another important aspect was whether participants searched for the appropriate 

information. Assuming that older adults have more problems with processing large amounts 

of information one would expect that they show less information-intensive search behavior 

compared to younger adults. To analyze this issue I computed the number of cue values 

searched by young and older adults when using both TTB and EAS. As can be seen in Figure 

3.5 both young and older adults searched close to exactly the information prescribed by the 

TTB strategy, and thus no age difference was found, t(20) = .78, p = .446.  

Figure 3.5: Cue Values Searched by Younger and Older adults as a Function of Strategy Used. The 

horizontal lines represent (respectively, from top to bottom) 1) the maximum number of cue values 

searchable, 2) the minimum cue values required to use EAS, 3) the minimum number of cue values 

required to use TTB. 

The interpretation of results regarding EAS is less straightforward as there are two 

criteria concerning the correct amount of information to be considered. First, decision makers 

can look up all the information. However, it is also possible to use EAS without searching all 

the available cue values: There exists a point at which, having observed all cue values on one 

option, the decision maker knows that this option will not be overuled by the second one. For 

example, having identified that the first object has 8 positive cue values and knowing that the 

second object scores negatively on the first cue, it is already evident that no combination of 
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cues will overturn the decision. As can be seen in Figure 3.5, both young and older adults’ 

average search falls within the bounds of these criteria, indicating that participants sometimes 

viewed less than all information available to them but usually not less than the minimum 

required by EAS. The difference between age groups in what regards this variable is also not 

significant t(20) = 1.47, p = .158. In sum, the two age groups were remarkably homogeneous 

in the amount of information they search, with older adults not differing significantly from 

younger ones. 

Cognitive Capacity Measures 

Results of the individual differences measures are displayed in Table 3.4 for the 

younger and older samples. Compared with younger adults, older adults displayed slower 

speed of processing (d = 1.56) and lower working memory capacity (d = .51).  

 

Table 3.4: Individual Difference Measures: Means (and SDs) and Tests of Significant Differences 

Between Younger and Older Participants 

 WM  Speed 

 M SD  M SD 

Younger Adults (n=12) 36.92 3.97  58.75 9.64 

Older Adults (n=10) 34.80 4.83  45.40 8.04 

t tests t(20) = 1.13, p = .272, d = .51  t(20) = 3.48, p = .002, d = 1.56 

 

Relation between Cognitive Capacity Measures and Strategy Application 

One aim of Study 4 was to gather further support for the idea that success in strategy 

application is related to basic components of cognition. This was investigated by, first, fitting 

the models’ G parameter to mimic individual participants’ behavior and, second, relating the 

fitted values to measures of working memory capacity and speed of processing. 

Fitting procedure. To be able to assign a value of G to each participant, the relation 

between performance accuracy and G was determined by fitting a function linking the average 

performance of the successfully trained networks when using TTB and EAS and levels of G. 

This resulted in G being a nonlinear transformation of average performance accuracy when 

using the two strategies. The mean G values were significantly different between age groups, 

t(20)=3.921, p = .001, with older adults showing on average lower G values (M = .78, SD = 

.14) compared to younger adults (M = .96, SD = .08). Recall that the original average values 

of G used by Li and Lindenberger (1999) in their modeling efforts were .8 (Min = .6; Max = 
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1) and .3 (Min = .1; Max = .5) for younger and older adults, respectively. Thus, although the 

fitted G values for the younger adults from Study 4 are within the range originally proposed, 

the value of G for older adults is higher than the original. The latter result suggests that the 

performance of older adults would not have been fit by Li and Lindenberger’s original 

modeling efforts. 

Correlation analysis. After assigning a value of G to each participant, it was possible 

to compute the correlation between this parameter and the individual differences measures. 

Table 3.5 shows the correlation between G and cognitive capacity. For comparison purposes, 

I also report the correlations between these measures and proportions of correct decisions 

when using TTB and EAS.    

 

Table 3.5: Correlations Between Fitted G and Individual Differences 

Measures (N = 22) 

 WM Speed 

Proportion correct TTB .14 
(.54) 

.12 
(.58) 

Proportion correct EAS .41 
(.06) 

-.08 
(.73) 

Fitted G .32 
(.15) 

.16 
(.48) 

Number is brackets represent p values 

The proportion correct decisions when using TTB was not associated with the 

cognitive capacity measures. However, when proportion correct EAS was considered, a 

medium effect emerged between working memory and proportion of correct decisions (albeit 

this was not the case for the speed measure). These results suggest that while individual 

differences in working memory capacity were predictive of application accuracy when using 

EAS this was not the case when TTB was considered.  

Regarding the relation between fitted G and cognitive capacity measures, there was a 

medium effect size concerning working memory but only a small one concerning speed, 

suggesting that the G parameter captured some individual differences in working memory but 

not speed.  

As large effects were expected, the sample size used was rather small. However, 

considering a medium effect size concerning the correlations found here, a post hoc power 

analysis (Erdfelder, Faul, & Buchner, 1996) indicates that the actual power was low .54 (e.g., 

r = .30; N = 22; � = .05). To obtain a reasonable power value of .85 the significance level 



Chapter 3 – Cognitive Aging and Strategy Application 121 

should be reset, � = .16. In the future, to properly test these effects a larger sample should be 

used (a priori power analysis: r = .40, power = .85, � = .05, N = 40). 

Discussion 

Study 4 set out to test the predictions originating from the neurocomputational 

approach outlined above. These included 1) differences between young and older adults’ 

mean performance when using decision strategies, with older adults making on average more 

application errors than younger adults, 2) an age by strategy difficulty effect, with the 

performance of older adults showing a larger decrement with more cognitively demanding 

strategies compared to younger adults, and 3) larger intra-individual variability in 

performance with increased age. The experiment made use of younger and older adults 

trained to use the frugal TTB and the more information-intensive EAS, and evaluated how 

accurate the two age groups were in applying the two decision strategies. 

The results indicated that older adults made more application errors and that their 

performance was more variable across similar sets of trials compared to younger adults. 

However, no age by strategy difficulty effect was found, suggesting that older adults did not 

have more difficulties in using EAS than TTB compared to younger adults. One possible 

reason why this was the case is that older adults used EAS as Tallying, thus neglecting 

weighted cue values. Using weighted cue values implies multiplication and adding up 

fractions, which older adults may be at a disadvantage compared to younger adults (Siegler & 

Lemaire, 1997). In contrast, Tallying implies simple addition, an ability which is persevered 

in old age (Geary & Wiley, 1991). In this study, using weighted or unweighted cue values 

would lead to the same decision, consequently, it was not possible to investigate whether 

older adults preferred the less cognitively demanding version. However, the estimates of 

cognitive demands of strategies suggest that this may have been the case, as older adults on 

average considered the evidence accumulation strategy as less effortful compared to younger 

adults. Although this seems a plausible explanation for an otherwise puzzling finding, future 

studies should include discriminating cases between the two versions of EAS so that a more 

direct test of this hypothesis is possible. 

To my knowledge, there exists only one other study investigating accuracy in the 

application of decision strategies. In this study, Bettman et al. (1990) reported that 11% of 

choices made by 7 college students were application errors as measured by choosing the 

wrong option prescribed by a strategy. Comparatively, the proportion of application errors 

identified in Study 4 for the younger sample is negligible. However, Bettman et al. 
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investigated application of strategies in decisions involving larger consideration sets, which 

may explain the discrepancy between findings. This possibility suggests that, in the future, 

studies should consider more demanding environments in their designs.  

Using more demanding decision environments would also help understanding the 

relation between individual differences in cognitive capacity and strategy application. In this 

study, most younger and some older adults performed at ceiling level, making it impossible to 

reliably estimate the relation between individual differences in cognitive capacity and strategy 

application. However, heterogeneity in strategy application will most likely be larger in more 

demanding environments. Consequently, using larger consideration sets should allow a better 

exam of the role of individual differences, including those due to aging, in the application of 

simple lexicographic strategies similar to TTB, and other more information-intensive 

strategies.  

General Discussion 

Linking brain, mind, and behavior is a major aim of cognitive science (Gardner, 1985) 

and cognitive neuroscience (Cohen et al., 2002). The work put forward here contributed to 

this goal by introducing a neurocomputational approach that coupled the adaptive toolbox 

program (Gigerenzer et al. 1999) with a formal theory of aging (Li et al., 2000) to predict age 

differences in strategy application.  

The remainder of the discussion will focus on the general merits of the approach, its 

limitations, and potential avenues for future research. 

Theoretical and Empirical Contribution  

Most efforts in bridging brain, mind, and behavior levels of description have focused 

on fairly low levels of cognition, such as vision (e.g., Sitton, Mozer, & Farah, 2000), memory 

(e.g., Li et al., 2000), and attention (e.g., Cohen & Servan-Schreiber, 1992; Braver et al., 

2001). The approach presented here, however, joined recent attempts (Anderson, Bothell, 

Byrne, Douglass, Lebiere, & Qin, 2004; Polk et al., 2002) to consider brain-mind-behavior 

relations in the domain of higher order cognition, and adopted formal computational methods 

to understand this connection, a strategy largely underrepresented in cognitive neuroscience 

research (Chatterjee, 2005). Moreover, it did so in the service of understanding developmental 

issues, in particular, age-related cognitive decline.  

In this respect, the neurocomputational approach provided clear predictions to be 

tested, which were partly supported in an empirical study. As predicted, older adults made on 

average more application errors and showed larger intra-individual variability in performance 



Chapter 3 – Cognitive Aging and Strategy Application 123 

compared to younger adults. However, contrary to expectations, no age by strategy difficulty 

effect was found: Older adults did not show more difficulties with a more cognitively 

demanding strategy compared to a simpler one than younger adults, possibly because they 

used a simplified version of the more cognitively demanding strategy.  

This last finding is particularly interesting as it raises that possibility that complexity 

cost effects are not pervasive in decision making research. For example, Finucane et al. 

(2005) also failed to find an age by task complexity effect in comprehension of decision 

problems. This of course contrasts with most aging research showing considerable age by 

complexity effects (Li et al., 2000). Nevertheless, the results presented here also suggest why 

this may be the case in decision making situations. In most decision tasks it is possible to 

adopt strategies that are relatively cognitively undemanding (e.g., TTB, Tallying).  Thus, the 

results contribute to the view of older adults as adaptive decision makers which adapt their 

strategy use to their individual characteristics, namely, their cognitive limitations. 

Potential Extensions to the Approach 

In the next few paragraphs I consider the implications of relaxing some of the 

assumptions underlying the approach present above. First, the theory assumed that most of 

human cognitive aging is related to losses in dopaminergic function and can be modeled as 

reduced signal-to-noise ratio. As Band, Ridderinkhof and Segalowitz (2002) pointed out 

“more neurotransmitter changes take place than just the loss of dopamine receptors and more 

neural changes take place than changes in transmitter systems” (p. 264). Consequently, it may 

be interesting to explore other aspects of cognitive aging that may impact decision making 

abilities. Moreover, and although simplicity breeds tractability, the restricted scope of 

predictions suggests that the approach must be extended, for example, concerning age 

differences in information search.  

Second, the approach addressed the specific issue of aging-related changes, making it 

a less than general model of the development of human decision making abilities. However, 

one could in principle extend the present approach to early cognitive development. Working 

memory and processing speed show an inverted-U shape function over the lifecourse (Kail & 

Salthouse, 1994; Siegel, 1994) and neuromodulation of prefrontal cortex activity is related to 

these basic capacities (Arnsten, 1998). Hence, it is conceivable that the methods applied here 

would be successful in modeling strategy use during early development, thus expanding the 

approach to the full scope of human ontogeny. 

Third, while the approach capitalizes on decline in neural functioning being naturally 

modeled with subsymbolic systems (e.g., neural networks), it could potentially profit from the 
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potential of symbolic systems to deal with complex problem solving and decision making 

tasks (see Polk et al., 2002, for a similar argument). One possible future direction would be to 

model strategy use using a hybrid system, such as ACT-R, which combines a symbolic 

production system with a set of massively parallel processes (Anderson & Lebiere, 1998). 

ACT-R is a particularly well-suited architecture for such enterprise for several reasons. First, 

some aspects of strategy use have already been investigated using this framework (Nellen, 

2003; Schooler & Hertwig, 2005). Second, ACT-R’s architecture has been shown to model 

both commission and omission errors (Lebiere, Anderson & Reder, 1994) which are hallmark 

effects of age-related cognitive decline. Furthermore, ACT-R could help when making 

predictions about brain functioning underlying strategy use (see Anderson et al., 2004, for 

applications of ACT-R to understanding brain function).  

Finally, one future goal of the theory should be to make direct predictions concerning 

behavior based on changes in brain functioning. It has been shown that older adults under the 

effects of a dopamine agonist significantly improve their performance in cognitive tasks 

(Volkow, Gur, Wang, Fowler, Morberg, Ding, Hitzemann, Smith, & Logan, 1998) while 

younger adults under the effects of a dopamine antagonist significantly decrease their 

performance (Luciana, Hanson, & Whitley, 2004). Potentially, the approach could use 

measures of cognitive capacity to estimate model’s parameters, such as G, to make a priori 

predictions concerning decision performance of younger and older adults under the effects of 

pharmacological drugs. Having a computational model whose parameters relate both to 

measures of cognitive constructs and decision behavior under pharmacological stimulation 

could provide new insights concerning the missing link between brain, mind, and behavior. 


