## 3.2.3 The Mn<sub>4</sub>Ca cluster

The harsh reaction depriving electrons from water is run by a small cluster of 4 Mn and 1 Ca (Fig. 43) intra-connected with  $\mu$ -oxo and di- $\mu$ -oxo oxygen bridges. Electrons are extracted from the cluster by oxidized P<sub>D1</sub> via redox-active Tyr161 of D1. By repeated excitation of the RC, the OEC (oxygen evolving complex) cycles through five successive oxidation states (Fig. 5 and section 1.2), called S<sub>*i*</sub>-states (i = 0 - 4), leading to the oxidation of two water molecules to oxygen, four protons and four electrons in the *ms* time range [1, 33, 230, 253]. The exact structure of the Mn<sub>4</sub>Ca cluster is the area of extensive research, employing different techniques like X-Ray diffraction, spectroscopy, EXAFS and many others. During last decade several models were suggested [41, 224, 254-257].

The Mn<sub>4</sub>Ca cluster is located at the lumenal side of subunit D1. The shape of its electron density did not change compared to the previous 3.0 Å resolution structure. The Mn<sub>4</sub>Ca cluster can be described by four Mn cations, arranged as "L" numbered 1-4, starting from the bottom of the "L" (Fig. 43).



Figure 43. Schematic representation of the  $Mn_4Ca$  cluster. Distances between Mn (red spheres) and Ca (orange spheres ) are indicated by the connecting lines (grey, 2.7 Å; blue, 3.3 Å, green, 3.4 Å). Amino acids of the first coordination sphere are in black; those of the second sphere are in grey; all are from subunit D1, except Glu354 from CP43. Adapted from [41].

The two pairs, Mn1-Mn2 and Mn2-Mn3, are spaced by 2.7 Å, indicating di- $\mu$ -oxo bridges, while the internal connection Mn1-Mn3 and the terminal Mn3-Mn4 are 3.3 Å long and likely represent mono- $\mu$ -oxo bridges. The Ca<sup>2+</sup> is on the tip of the pyramid and equidistant (~3.4 Å) from three Mn cations, as shown by X-ray data [41]. The found

arrangement is different from the cubane-like arrangement proposed from the 3.5 Å resolution structure [255] as the Mn-Mn distances in the pyramid formed by three Mn and one Ca cations are not equal and the pyramid is connected asymmetrically to Mn4 [41].

The ligation of the Mn<sub>4</sub>Ca cluster in the 2.9 Å resolution model is similar as observed previously (Figs. 43, 44 and Table 5) comprising several residues (D1-Glu189, Glu333, Asp342, Ala344, CP43-Glu354) which could act as bridging ligand connecting two different metals cations. For Mn1, ligation is possibly provided by D1-Glu189, D1-His332 and D1-Asp342. Mn2 is ligated by D1-Asp342, the C-terminus of D1-Ala344 and CP43-Glu354. Mn3 is probably ligated by D1-Glu333 and CP43-Glu354 and for Mn4 ligation by D1-Asp170 and D1-Glu333 is most probable. The Ca ion forms interactions with D1-Glu189 and the C-terminus of D1-Ala344.

|         | residue  | Mn1         | Mn2         | Mn3         | Mn4         | Ca          |
|---------|----------|-------------|-------------|-------------|-------------|-------------|
| Monomer | Asp 170  |             |             |             | 2.31 (2.39) | 2.93 (3.47) |
| 1       |          |             |             |             | OD2         | OD1         |
| (pdb:   | Tyr 161  |             |             |             |             | 4.75 (4.89) |
| 3BZ1)   |          |             |             |             |             | ОН          |
|         | Gln 165  |             |             |             |             | 3.82 (4.11) |
|         |          |             |             |             |             | NE2         |
|         | Glu 189  | 1.75 (1.81) |             |             |             | 2.35 (2.52) |
|         |          | OE2         |             |             |             | OE1         |
|         | His 332  | 2.17 (2.18) |             |             |             |             |
|         |          | NE2         |             |             |             |             |
|         | Glu 333  |             |             | 2.20 (2.31) | 2.81 (2.54) |             |
|         |          |             |             | OE1         | OE2         |             |
|         | Asp 342  | 2.55 (2.42) | 2.28 (2.18) |             |             |             |
|         |          | OD2         | OD1         |             |             |             |
|         |          |             |             |             |             |             |
|         | CP43-Glu |             | 2.63 (2.48) | 2.26 (2.12) |             |             |
|         | 354      |             | OE1         | OE2         |             |             |
|         | Ala 344  |             | 1.63 (1.77) |             |             | 2.50 (2.61) |
|         |          |             | OXT         |             |             | 0           |
| Monomer | Asp 170  |             |             |             | 2.68 (2.72) | 2.78 (3.32) |
| 2       |          |             |             |             | OD2         | OD1         |
| (pdb:   | Tyr 161  |             |             |             |             | 4.94 (5.08) |
| 3BZ2)   |          |             |             |             |             | OH          |
|         | Gln 165  |             |             |             |             | 3.91 (4.18) |
|         |          |             |             |             |             | NE2         |
|         | Glu 189  | 1.81 (1.84) |             |             |             | 2.55 (2.74) |
|         |          | OE2         |             |             |             | OE1         |
|         | His 332  | 2.29 (2.28) |             |             |             |             |
|         |          | NE2         |             |             |             |             |
|         | Glu 333  |             |             | 2.06(2.20)  | 2.45 (2.17) |             |
|         |          |             |             | OE1         | OE2         |             |

| Asp 342         | 2.66 (2.49)<br>OD2 | 2.24 (2.13)<br>OD1 |                    |                  |
|-----------------|--------------------|--------------------|--------------------|------------------|
| CP43-Glu<br>354 |                    | 2.49 (2.32)<br>OE1 | 2.26 (2.12)<br>OE2 |                  |
| Ala 344         |                    | 1.66 (1.69)<br>OXT |                    | 2.41 (2.53)<br>O |

Table 5. Distances (in Å) between ligating amino acids (interacting atom is indicated) and cations of  $Mn_4Ca$ . In parentheses values for old (3.0 Å resolution) structure are given.



Figure 44. Superposition of the  $Mn_4Ca$  cluster and its ligating amino acids from 3.0 (green) and 2.9 (yellow) Å resolution models. Note the additional green sphere in the 2.9 Å resolution model, representing chloride ion.

The most intriguing part of the cluster is the widely debated chloride ion (Cl<sup>-</sup>) which is believed to play a significant role during catalysis. The stoichiometry for Cl<sup>-</sup> : OEC has been shown to be 1:1 [258] and the dependence of oxygen production on Cl<sup>-</sup>-depletion [259] as well as possible substituents of chloride ion [260-263] have been studied. Up to date there was no direct evidence about exact position of Cl<sup>-</sup>, except from a X-ray absorption study

by Haumann [264], which revealed the putative position of  $Br^-$  (that had replaced  $Cl^-$ ) approximately 5 Å away from the Mn<sub>4</sub>Ca cluster.

During modelling at 2.9 Å resolution a spherical patch of electron density in the vicinity of the Mn<sub>4</sub>Ca cluster was revealed. As normally water molecules are not seen at this resolution it was assumed that this position is probably occupied by an ion, and to eliminate high-ordered water as a candidate, this site was refined as water against native data. A positive peak that remained in the difference  $f_0$ - $f_c$  map confirmed that water has not enough electrons to describe the electron density completely. Therefore the Cl<sup>-</sup> ion was assigned to this position and successfully refined with full occupancy.

The chloride ion is located 6.5 Å from the OEC and has a positively charged environment provided by amino acids D2-Lys317, D1-Asn181 and the backbone N of D1-Glu333 (Fig. 45).



Figure 45. The  $Mn_4Ca$  cluster of PSII and the Cl<sup>-</sup>-binding site. Position of Cl<sup>-</sup> (green sphere) located in the native electron density (blue mesh, contoured at 1.2  $\sigma$  level) close to the  $Mn_4Ca$  cluster (red and orange spheres; Mn2 is partially hidden behind Mn1). All coordinating amino acids are from D1 except for D2-Lys317.

A random analysis of more than 40 crystal structures containing Cl<sup>-</sup> deposited in the pdb repository [106] showed that an arrangement involving backbone nitrogens and positively charged residues (His, Lys, Arg and sometimes Asn and Gln) is common in Cl<sup>-</sup> coordination. Moreover residues D1-Asn181 and D2-Lys317 are strictly conserved. An additional non-described patch of electron density in between the Mn<sub>4</sub>Ca cluster and the given Cl<sup>-</sup> could possibly arise from water molecule(s). If water is placed in this electron density, distances Cl<sup>-</sup>…water and water…Mn4 are 3.3 and 3.5 Å (Fig. 46), respectively, and additional ligation of the water by conserved D1-Glu333OE2 and D1-Asp181ND2 is possible.



Figure 46. Enlarged view of the neighbourhood of  $CI^-$  showing coordinating amino acids and electron density (blue mesh, contoured at 1.2  $\sigma$  level) for a putative water molecule (purple sphere) located between Mn4 and  $CI^-$ . Distances are given in Å.

To confirm the position of the  $CI^-$  ion two approaches were used: 1) Br<sup>-</sup>substituted crystals were grown and datasets from them were successfully collected and characterized; and 2) datasets from Xe-derivative crystals were thoroughly inspected for the presence of  $CI^-$  contribution.

As the anomalous signal from chloride ion is rather low (Fig. 47A) and not easily detectable, several datasets from crystals of PSII substituted with Br<sup>-</sup> (which has a detectable signal, see Fig. 47B) were collected to confirm the chloride-binding site, as it is known that Br<sup>-</sup> behaves similarly as Cl<sup>-</sup> and does support oxygen evolving activity of PSII [57].



Figure 47. Theoretical plots of f' and f'' for chloride (A) and bromide (B) respectively.

The best obtained resolution for derivatized crystals was 3.9 Å (see Table 6). A search of peaks around the Mn<sub>4</sub>Ca cluster in the difference  $f_0$ - $f_c$  electron density map was performed and one prominent peak with 7.2 $\sigma$  level identified (Fig. 48), corresponding to the Cl<sup>-</sup> position in native data. Refinement of the Br<sup>-</sup> position yielded 0.7 occupancy of this site.

Inspection of the corresponding location in Xe datasets revealed a positive difference peak. Though the used wavelength of 2.1 Å is far away from the Cl-edge (4.39 Å), weak anomalous contribution from chloride could be expected and was found (Fig. 47). This position is unlikely to be occupied by a Xe atom as it has unfavourable environment (positively charged side chains, while Xe tends to stay at hydrophobic areas [64]), and the  $\sigma$  level of the respective peak is lower (5.4  $\sigma$ ) than that observed for the Xe atoms (10 $\sigma$  or above), confirming the presence of Cl<sup>-</sup> at this position.

|                                    | Bromide (1)         | Bromide (2)         |  |
|------------------------------------|---------------------|---------------------|--|
| Space Group                        | P 21 21 21          |                     |  |
| Unit cell dimensions               |                     |                     |  |
| <i>a</i> , <i>b</i> , <i>c</i> (Å) | 126.1, 223.7, 304.3 | 132.9, 229.4, 309.0 |  |
| $\alpha, \beta, \gamma(^{\circ})$  | 90.0, 90.0, 90.0    | 90.0, 90.0, 90.0    |  |
| Resolution (Å)                     | 30-3.9 (4.0-3.9)*   | 30-4.0 (4.1-4.0)*   |  |
| R <sub>sym</sub>                   | 0.106 (0.362)       | 0.073 (0.532)       |  |
| I/sI                               | 7.52 (2.73)         | 9.83 (2.19)         |  |
| Completeness (%)                   | 82.5 (67.8)         | 89.2 (82.8)         |  |
| Redundancy                         | 2.40                | 3.10                |  |

Table 6. Data collection statistics for Br<sup>-</sup>-derivatized crystals. \* values for highest resolution shells.



Figure 48. Bromide position near the  $Mn_4Ca$  cluster. The anomalous difference peak is shown as a green mesh with  $7\sigma$  level.

The found position of Cl<sup>-</sup> near the OEC and close to the entrance of the possible proton channels (see section 3.3) and the presence of a lysine residue as direct ligand which possesses unusual protonation properties [265], might support the idea of Cl<sup>-</sup> involvement in the hydrogen bond network for fast proton removal from the Mn<sub>4</sub>Ca cluster, as proposed earlier [261]. However, it is unlikely that the Cl<sup>-</sup> interacts directly with substrate water bound to the Mn<sub>4</sub>Ca cluster because the Cl<sup>-</sup> is located opposite to the proposed water channels (*vide infra*) and the closest Mn-cation is Mn4, which was suggested to be redox-inactive during the S-state turnover [266, 267].

Although for spinach PSII it was demonstrated that only one functional Cl<sup>-</sup> can be exchanged [261] and the determination of the PSII:Cl<sup>-</sup> stoichiometry on  ${}^{36}$ Cl<sup>-</sup> grown spinach yielded about one Cl<sup>-</sup> per OEC [259], the presence of additional Cl<sup>-</sup> ions at the Mn<sub>4</sub>Ca cluster can not be completely excluded from our data. If Cl<sup>-</sup> would be a direct ligand to Mn, as