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1 Introduction 

1.1 Universal Polymer Coatings 

Polymer coatings on solid materials play an increasingly important role in modern 

physical, chemical, and medical science.
[1-2]

 Thiol and siloxane chemistry are 

commonly used to modify noble metal and hydroxylated surfaces, respectively.
[3-4]

 

Besides the widely used self-assembled monolayer (SAM) and chemical surface 

immobilization that are induced by these and other anchor groups, Langmuir-Blodgett 

deposition,
[5]

 layer-by-layer assembly,
[6]

 irradiation,
[7]

 and electrostatic or 

hydrophobic adsorption
[8-9]

 are well established. However, most of these technologies 

require specific chemical or physical substrate properties, and thus have failed to 

become substrate-independent universal coatings. 

Chemical specificities like a covalent binding between polymeric modifiers and 

surfaces must be avoided in order to modify a wide range of substrates, because no 

anchor can be active on all of the different surface compositions. Although, some of 

the irradiation technologies can activate many kinds of surfaces, the efficiency and the 

density of the active sites are relatively low on some surfaces. Therefore, they should 

be treated by other methods, e.g., polymerization, to obtain dense surface 

coatings.
[10-11]

 On the other hand, noncovalent interactions like electrostatic 

interaction, hydrogen bonding, hydrophobic attraction, and van der Waals interaction 

occur on nearly all types of interfaces. Thus multiple noncovalent interactions can be 

recognized as the driving force for constructing polymer coatings on different kinds of 

surfaces. Admittedly, most of the noncovalent interactions in interfaces are not strong 

enough to tether polymer coatings for practical applications. Therefore additional 

intra-layer interactions, i.e., physical and chemical crosslinking must take place to 

enhance the stability of the coatings. 

Crosslinking can either be initiated while anchoring the coating, or in the interior 

of precast layers (Figure 1). In the former case, one-pot coating is easy and rapid. 

However, spontaneous crosslinking may cause the polymeric modifiers to aggregate, 
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which makes the surface morphology less controllable. In the latter case using precast 

layers, further crosslinking procedures like heating or irradiation are required, which 

must be well designed to avoid decreasing the performance of the coatings. 

 

 

Figure 1. Universal coatings can be stabilized on different kinds of surfaces by 

interior crosslinking, which can be achieved either (A) by initiating crosslinking 

together with anchoring or (B) by crosslinking a precast layer. 
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A secondary functionalization of these universal coatings is normally required to 

achieve specific surface characteristics. Thus, there must be enough active groups 

remaining in the coatings for further modification. The most important surface 

coatings in biomedical applications include bioinert, biospecific, and antibacterial 

coatings. A bioinert surface requires dense and stable coatings to prevent protein 

adsorption on the molecular level and to further repel cell adhesion.
[2]

 These coatings 

must be hydrophilic and electrically neutral, and contain hydrogen bond accepting 

groups but not hydrogen bond donating groups.
[12-13]

 Biospecific surfaces, which 

contain cell recognition motives, are another approach to modulate cell interaction on 

the surface of a biomedical device.
[1]

 A relatively low density of functionalization is 

sufficient to trigger cell adhesion. In the case of arginylglycylaspartic acids (RGDs), a 

minimum density as low as 1 fmol per cm
2
 was reported for cell spreading and 10 

fmol per cm
2
 for forming focal contacts and stress fibers on a surface.

[14]
 Inspired by a 

cell membrane that contains bioactive carbohydrates and proteins in the bioinert 

background of a phospholipid bilayer, biospecific molecules can be combined with 

bioinert coatings to increase the efficacy of the biological communication.
[1-2]

 As a 

result, implanted surfaces would only integrate with, for example, endothelial cells, 

and prevent leukocyte and other cells. When constructing such combined coatings, it 

is important to achieve multifunctionalization on universal coatings. Antibacterial 

agents are usually immobilized for antibacterial surfaces.
[15]

 Bioinert materials are 

often combined with antibacterial agents to repel bacteria adhesion and improve the 

biocompatibility of the coatings. Besides these three kinds of coatings, multiple 

functional surfaces, e.g., infection-resistant, anticoagulated, self-cleaning surfaces, 

can be developed by immobilizing different functional molecules
[16-17]

 on the active 

universal coatings. 

Summarizing and understanding the present universal coating systems is a good 

way to identify common features and general rules for developing universal polymer 

coatings and to reveal drawbacks that still need to be improved. Some perspectives on 

future development will be also raised. 
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1.2 Irradiative Chemisorption 

High energy ionizing radiation can directly generate initiation sites by liberating 

electrons from atoms or molecules near the material surfaces. These positively 

charged initiation sites can immediately react with other molecules to generate 

functional groups for further surface modifications. Different radiation methods, 

including plasma, ultraviolet (UV), gamma ray, microwave, laser, electron beam, etc., 

have been employed to active correspondingly material surfaces.
[18]

 

Plasma exposure is the most common radiation method. However, plasma, which 

can easily activate organic surfaces, does not do equally well with inorganic 

surfaces.
[10]

 Thus, plasma polymerization of monomers with vinyl groups has become 

a general way to functionalize different solid surfaces.
[10, 19-20]

 As a result, highly 

crosslinked polymer films can be stably deposited on substrates via polyvalent 

anchoring.
[19]

 Various chemical surface functionalities like anhydride-,
[10]

 amino-,
[19]

 

epoxide-,
[21]

 and perfluoroalkyl- groups,
[22]

 can be achieved by employing different 

monomers (Figure 2). 

 

 

Figure 2. Various functional universal coatings can be achieved by plasma 

polymerization with different monomers. 
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Long-term irradiation may change the properties of the functional groups of the 

monomers. Pulsed plasma with short on-periods and long off-times was proven to 

deposit polymer films with a higher degree of molecular specificity than traditional 

continuous wave plasma.
[10]

 The active sites in gas phase and at the growing film 

surface could be generated in the short plasma duty cycle on-period (microseconds), 

which initiated polymerization during the longer plasma off-period (milliseconds).
[23]

 

Alternatively, polymeric targets, such as polytetrafluoroethylene (PTFE), 

polyimide, and polyolefin, have been sputtered to form coatings by radio frequency 

(RF) magnetron sputtering.
[24]

 Powerful magnets cause the emission of volatile 

fragments from the polymeric targets. These fragments take part in the plasma 

polymerization process and line up on the substrates to form thin films. Since the 

polymeric targets are provided in a solid state, fewer safety precautions are required 

than handling the gas of monomers in plasma polymerization.
[25]

 To achieve the 

secondary modification, amino-rich thin films were prepared by sputtering Nylon 6,6 

target in a mixture of N2/H2 or N2/Ar. As a result, a high NH2/C ratio in the coatings 

was achieved.
[25]

 

The amino groups presented in the plasma polymerized polyallylamine coatings 

and RF magnetron sputtered nylon coatings are suitable for immobilization of atom 

transfer radical polymerization (ATRP) initiators via amide linkages.
[11, 19]

 Bioinert 

polymer brushes of poly(oligoethylene glycol methacrylate) or poly(carboxybetaine 

acrylamide) can be subsequently initiated from the functional surfaces, which has 

resulted in dramatically decreased protein adsorption on the solid surfaces.
[11]

 

The plasmachemical functionalization of surfaces with poly(4-vinyl pyridine) 

coatings yielded bactericidal activity towards Staphylococcus aureus (Gram positive) 

and Klebsiella pneumoniae (Gram negative), after quaternization of the pyridine 

moieties with bromobutane.
[26]

 

Patterned functional surfaces were developed by depositing two separate 

functional nanolayers, including an active bottom layer of poly(glycidyl methacrylate) 
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and a passive release top layer of poly(pentafluorostyrene) on the substrates. A 

selective lift-off of the top layer by a prepatterned adhesive template resulted in the 

exposure of the underlying active layer.
[27]

 

Surface irradiation methods are easy control methods for film growth on different 

substrates. In many cases, solvent is not required and the coating processes are 

suitable for large-scale film deposition. However, the irradiation may change the 

property of the substrates, especially the ultrathin substrate layers. Additionally, 

irradiation or deposition can be limited by the shape of the substrates. Thus, 

physisorbed universal coatings can be considered as alternatives. 

 

1.3 Physisorption 

Typical physisorption methods to prepare surface coatings include electrostatic 

attraction, van der Waals force, and hydrophobic interaction. Based on these universal 

interactions, some technologies, including layer-by-layer (LbL) assembly, spin 

coating, and chemical vapor deposition (CVD), have been developed to achieve some 

universal coating systems. 

 

1.3.1 Electrostatic Attraction 

Polyelectrolytes are the candidates to anchor the substrate surface via electrostatic 

attraction. Monolayer brushes of block copolymers, which can be adsorbed through 

the polyionic block onto the surface and prevent further adsorption via the other 

flexible block, only work on inorganic oxide surfaces.
[28]

 The layer-by-layer (LbL) 

assembly technique is more universal, because it does not dependent the nature, size, 

and topology of the substrate so much.
[6]

 Some LbL assembly systems indeed 

successfully fabricate multicomponent thin films on a wide range of surfaces by 

consecutive adsorption of polyanions and polycations. The electrostatic attraction 

between oppositely charged and flexible polymers has the least steric demand of all 
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the chemical bonds building and stabilizing fuzzy layered LbL assembled multilayers. 

   An alternate electrostatic assembly of cationic poly(allylamine hydrochloride) 

(PAH) and anionic poly(sodium 4-styrenesulfonate) (PSS) has been deposited on a 

variety of material surfaces, including glass, gold, mica, silicon, and polymer. The 

properties of the different underlying surfaces were completely converted to the 

surface properties of the polyelectrolyte coatings.
[29]

 This chemically active scaffold 

can be further utilized to fabricate protein microarrays. Mouse IgG has been 

immobilized on PAH-capped polyelectrolyte coatings. The rest of the surface was 

then blocked with bovine serum albumin (BSA). The nearly identical specific signal 

intensities of anti-mouse IgG with low nonspecific binding can be observed on the 

tested dissimilar substrates.
[29]

 

The LbL assembly is however a time-consuming process, especially for 

fabrication of thick films.
[30]

 Large dimensional building blocks with fast adsorption 

kinetics can realize a rapid fabrication and have been built with mesoporous silica 

(MSiO2) nanoparticles were employed with cationic poly(diallyldimethylammonium 

chloride) (PDDA) to assemble a substrate-independent thick coating with only three 

coating cycles.
[31]

 This coating exhibited both antireflection and antifogging 

properties, because the rough surface morphology and nanopores in the MSiO2 

nanoparticles resulted in superhydrophilic surface performance. A maximum 

transmittance of 99.9% was achieved in the visible spectral range, under optimal 

conditions. 

 

1.3.2 Van der Waals and Hydrophobic Interactions 

The relatively weak van der Waals and hydrophobic interactions can also be used to 

anchor universal coatings, if the intra-coating crosslinking is well designed. 

A mixture of hydrophilic amine- and epoxy-terminated four-arm polyethylene 

glycols (PEGs) was spin-coated on a flat substrate. After chemically crosslinking 

these macromonomers under gentle heating, a hydrogel-like coating with tunable film 
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thicknesses of 4-200 nm was fabricated on a broad variety of solid substrates. Because 

of its controllable swelling behavior, this coating was able to adsorb a high density of 

citrate-stabilized gold nanoparticles (AuNP) from aqueous solution and resulted in 

PEG/AuNP composite films.
[32]

 

In a similar approach, hydrophobic benzocyclobutene-functionalized random 

copolymers of styrene and methyl methacrylate [P(S-r-BCB-r-MMA)] were spin 

coated on a wide variety of metal, metal oxide, semiconductor, and polymeric 

surfaces to produce thin films.
[33]

 The styrene moieties of the copolymers induced 

balanced interfacial interactions on the surfaces.
[34]

 After heating under 200-250°C, 

the reactive benzocyclobutene (BCB) moieties resulted in the crosslinking reactions. 

These crosslinked films were resistant to solvents and formed a robust coating on the 

substrates. By the same way, a hybrid polymer composed of 

poly(methylsilsesquioxane) (PMSSQ) block and poly(pentafluorophenyl acrylate) 

(PFPA) blocks has been employed to coat different materials.
[35]

 PMSSQ blocks 

initiated crosslinking after spin coating, while the PFPA blocks enabled a variable 

secondary functionalization of the coatings. 

In the above crosslinkable PEGs, the coating mainly interacted with substrates by 

van der Waals force. Keeping this kind of hydrophilic coating stable in water solution 

for long term is a big challenge, because water can shear off the whole coating, which 

makes it preferable to use hydrophobic coatings. Nonpolar substances tend to 

aggregate or adsorb on solid surfaces in aqueous solution and repel water molecules. 

Since water is the most common solvent in our daily life, the hydrophobic interactions 

have successfully generated a set of universal coatings including chemical vapor 

deposition (CVD) of poly(p-xylylenes). 

Chemical vapor deposition (CVD), which is often used in the semiconductor 

industry to produce thin films, can also fabricate hydrophobic coatings of 

poly(p-xylylenes) and derivatives for a wide range of substrates including PTFE 

(Figure 3).
[36]

 In the CVD polymerization process, diradicals of [2.2]paracyclophane 

or its derivatives have been obtained during vaporization under heating and vacuum. 
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The diradicals are then deposited on the substrate during polymerization. It has been 

reported that these CVD polymers strongly anchor on substrate surfaces and are 

insoluble in common organic solvents.
[37]

 It is reasonable to speculate that the chain 

transfer in such radical-rich polymerizations may have resulted in chemical 

crosslinking, which highly stabilized the deposited coatings as well as intermolecular 

hydrophobic interactions and π-stacking. The copolymers of [2.2]paracyclophane and 

its functionalizal derivatives have generated multifunctionalizal CVD coatings, which 

can be widely used in biomedical applications. Using a vacuum deposition overcomes 

the limitations caused by solvents and additives in dip coating procedures,
[37]

 so that 

highly pure coatings can be obtained. However for production every CVD step 

requires a vacuum chamber. 

 

 

Figure 3. Chemical vapor deposition (CVD) polymerization with various monomers 

to achieve multifunctional universal coatings. Reprinted from Ref. 
[38-41]

 with kind 

permission of Wiley and The American Chemical Society. 
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Bioactive surface CVD coatings are good platforms for immobilizing 

biomolecules and even mammalian cells. The anhydride-rich coating of 

poly(p-xylylene-2,3-dicarboxylic anhydride) can immobilize amino-terminated biotin 

ligands which selectively bind to streptavidin. The biotin-conjugated human 

anti-α5-integrins were then immobilized on the streptavidin and specifically interacted 

with endothelial cells.
[42]

 Surfaces that “click” have been developed by 

alkyne-containing vapor deposited polymer coatings. The polymers with monoalkyne 

grafted [2.2]paracyclophane have generated excellent adhesion and stability, even at 

680°C and in many organic solvents. On the other hand, enough alkynes were 

exposed on the surfaces to react with azide-containing biotin-based ligands
[43]

 or 

support the dip-pen nanolithography by “click chemistry”.
[40]

 In a further 

development, a bioorthogonal immobilization of biotins and streptavidins was carried 

out with a copper-free click reaction on the CVD coatings.
[41]

 A propiolate moiety, 

which contained a electron-withdrawing group in proximity of the alkyne, was 

identified for copper-free click reaction with azide groups. Moreover, this propiolate 

moiety modified [2.2]paracyclophane derivative was compatible with the processing 

conditions during CVD polymerization without decomposition or side reactions. With 

alkynyl moiety for copper-catalyzed reactions, a two-step cascade of bioorthogonal 

reaction sequentially immobilized different biomolecules on separate areas of the 

same surface.
[41]

 Additionally, aldehyde functionalized CVD coatings could link to 5’ 

amine modified complementary DNA sequences by forming imine bonds. Thus, 

poly(4-formyl-p-xylylene-co-p-xylylene) was deposited on different substrates to 

serve as a “replica” to collect DNA microarrays from microcontact printing.
[38]

 

Besides the immobilization of biomolecules, initiators for atom transfer radical 

polymerization (ATRP) can be directly immobilized to the CVD monomers and be 

polymerized and deposited on the different kinds of substrates including stainless 

steel, glass, silicon, poly(dimethylsiloxane), poly(methyl methacrylate), 

poly(tetrafluoroethylene), and polystyrene.
[39]

 This polymeric initiator coating 
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initiated ATRP of oligo(ethylene glycol) methyl ether methacrylate to produce a 

bioinert polymeric coating as thick as 300 nm. Both protein adsorption and cell 

adhesion were significantly inhibited on this bioinert coating. 

Overall, versatile physisorption based universal coatings have been developed that 

overcome many problems in irradiated chemisorptions. The inherently weak 

anchoring interactions of the physisorbed coatings, however, can become thermally 

unstable. These coatings may also be displaced by other solutes in solution. 

 

1.4 Bioinspiration 

Nature has a tendency to excellently and precisely solve problems from which many 

artificial systems are suffering. Learning from nature is an endless source of 

inspiration. In the present section, the universal coatings that have been inspired or 

directly collected from the natural biological systems of blood proteins, mussel foot 

proteins, and plant phenols will be described and discussed. 

 

1.4.1 Blood Proteins 

It is well known that blood proteins nonspecifically adsorb on blood contact surfaces 

within seconds via multiple interactions such as van der Waals force, ionic or 

electrostatic attraction, hydrogen bonds, and hydrophobicity.
[2]

 An approach involving 

blood proteins to modify both flat and nonwoven substrates has been reported.
[44]

 A 

set of proteins, including α-lactalbumin, lysozyme, fibrinogen, and soy globulins 

(glycinin and β-conglycinin), were denatured at their isoelectric point (pI). Under 

these conditions, a maximum amount of proteins could be adsorbed onto the 

substrates, because the electrostatic repulsion among protein molecules was limited.
[45]

 

Denaturation helped the hydrophobic domains of the proteins be adsorbed on the 

substrates with the result that the hydrophilic amino and hydroxyl groups could be 

exposed on the surface for secondary modification. To stabilize the coatings, the 
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adsorbed protein layers were crosslinked with glutaraldehyde in the presence of 

sodium borohydride. The ATRP initiator molecules could then be immobilized on the 

amino and hydroxyl groups, from which poly(2-hydroxyethyl methacrylate) (PHEMA) 

polymer brushes were grown. By combining the fluorinating moieties, these 

amphiphilic polymer brushes efficiently prevented further nonspecific protein 

adsorption.
[46]

 Although these protein based coatings were only reported for 

modifying polyolefin surfaces, it is possible to apply these coatings on a wide range 

of material surfaces because of the nonspecific adsorption of proteins quite general on 

solid surfaces. The main problem for this coating system may be long-term stability, 

since protein layers can be degradable in physiological environments. 

 

1.4.2 Mussel Foot Proteins 

1.4.2.1 Dopamine 

Mussels adhere to virtually all types of material surfaces with byssus as the holdfast. 

The byssus contains 25-30 kinds of mussel foot proteins (mfps), which are the keys 

for fast solidification and strong adhesion.
[47]

 Inspired by the most two abundant 

functional groups of catechol and amine in mfps, dopamine has been recognized as a 

new and efficient precursor for developing active universal coatings with just a simple 

immersion (Figure 4).
[48]

 To initiate the coating process, the catechol in dopamine 

must first be oxidized to quinone in alkaline solution or in the presence of an 

oxidant.
[48-49]

 Although the mechanism for further polymerization of dopamine is still 

being debated,
[50-52]

 it is widely agreed that dopamine forms oligomers up to the 

tetramer level
[51]

 which then aggregate to form coatings via hydrogen bonding and 

π-stacking.
[50, 52]

 Many mechanistic details of surface anchoring have already been 

revealed. Either a charge-transfer complex can form between the catechol and metal 

oxide surface
[53]

 or a hydrogen bond between the catechol and a mica or silica 

surface.
[54-55]

 Covalent bonds on nucleophile containing surfaces have also been 

reported.
[56]

 The hydrophobic interaction, π-stacking, and van der Waals interaction 
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between the catechol and inert polymer surfaces have been discussed as well.
[57-58]

 

Whereby, the high crosslinking by both covalent and noncovalent bonding definitely 

enhances the stability of the polydopamine coatings. 

 

 

Figure 4. Mussel-inspired polydopamine as universal mltifunctional coatings. The 

structures of Mfp-1 and Mfp-5 were extracted from Ref. 
[47]

. Reprinted from Ref. 
[59-63]

 

with kind permission of Wiley and The American Chemical Society. 

 

   Native polydopamine coatings already show low cytotoxicity and can promote the 
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adhesion of osteoblasts
[64]

 and endothelial cells,
[65]

 because the critical surface tension 

of polydopamine (39.2 dynes/cm) is in the suitable range for cell adhesion (35-40 

dynes/cm).
[66]

 Furthermore, a number of secondary modifications can be applied by 

immobilizing different functional molecules to polydopamine coatings via the 

residual free amines and catechols.
[17]

 Bioinert polymer layers have been created by 

both “grafting to” and “grafting from” approaches, as well as by LbL assembly on 

polydopamine coatings to achieve substrate-independent surface modification.
[60, 67-68]

 

Biospecific molecules, such as vascular endothelial growth factor,
[59]

 adhesion 

peptides,
[69]

 and glycosaminoglycan,
[70]

 have been easily immobilized onto 

polydopamine coatings with an one-step immersion, and have resulted in specific cell 

adhesion. The metal chelating ability of the catechol groups in the coatings can cause 

in situ deposition of silver nanoparticles.
[61]

 The silver nanoparticles or the grafted 

quaternary ammonium groups
[62]

 on the coatings have exhibited strong and 

broad-spectrum antimicrobial activities. Moreover, the combination of bioinert layers 

with antibacterial moieties produced the dual fouling resistance and antibacterial 

properties of the coatings, which significantly improved the antibacterial performance 

of the surfaces.
[61-62]

 The deposited silver nanoparticles on polydopamine coated 

microparticles resulted in a hierarchical structure similar to the micromorphology of 

lotus leaf. These composite particles became extremely water repellence after 

fluorination.
[63]

 Although synthetic polydopamine coatings were just identified in 

2007 by the Messesmith group,
[48]

 it has already become one of the most widely 

applied universal coating due to its facile procedure and chemical versatility. 

 

1.4.2.2 Dopamine Derivatives 

Several dopamine derivatives have been also identified that form different 

functionalized coatings. 3,4-Dihydroxyphenylalanine (DOPA) contains one more 

carboxylic group than dopamine. During the coating formation, the deprotonated 

carboxyl groups may repel the noncovalently bonded polyDOPA aggregates by 
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electrostatic repulsion, thus more covalently bonded DOPA molecules can be 

incorporated into the coatings. As a result, the polyDOPA coating showed better 

stability in strongly acidic and alkaline solutions.
[71]

 A smoother coating can be 

developed by norepinephrine.
[72]

 Norepinephrine represents the intermediate of 

3,4-dihydroxybenzaldehyde (DHBA), which deactivates the amino group of 

norepinephrine by forming DHBA-norepinephrine. The deactivated amino group 

results in less crosslinking and obviously suppresses the aggregation of the coating. 

Polynorepinephrine can be used as an NO-loading scaffold for biomedical 

applications. NO can be stored as diazeniumdiolates which react with aliphatic 

secondary amino groups in the coatings. In addition, the extra hydroxyl group allows 

an efficient ring-opening polymerization of biodegradable monomers like 

ε-caprolactone.
[73]

 The presence of the electron-withdrawing nitro group in the 

p-position lowers the pK of the nitrocatechol. This enhances the acidity and hydrogen 

bond donor character of catechol and increases its stability against oxidation.
[74]

 The 

other significant feature is that the o-nitrophenyl ethyl moiety can be 

photocleavable.
[75]

 Furthermore, chloro-catechol prevents microbial fouling due to its 

toxicity. The appropriate polymer-bound chloro-catechol groups showed effective 

antibacterial activity and were not toxic for the attached cells.
[76]

 Functional molecules 

can also be immobilized onto the amine group of dopamine to obtain synthetic 

derivatives. A lysine-dopamine coating improved cell adhesion, promoted cell growth, 

accelerated endothelialization on the substrate surface, and provided plasma clot lysis 

activity.
[77]

 The copolymerization of dopamine and ATRP initiator bearing dopamine 

(1:2) resulted in a colorless coating. Surface-initiated ATRP of 2-hydroxyethyl 

methacrylate (HEMA) can be performed from this coating.
[78]

 A fluorinated dopamine 

derivative was developed by conjugating perfluorinated chains to the carboxyl group 

of DOPA.
[79]

 The remaining amine and catechol groups resulted in a structurally 

rough film with the static water contact angles larger than 150° as a superhydrophobic 

surface. 
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1.4.2.3 Catecholic Polymers 

Polymers with the appropriate amount of catechol groups can be directly coated onto 

material surfaces as functional universal coatings. Catechol-grafted PEG with 4-5 

catechol side groups per polymer chain was employed for PEGylation on many 

different substrates.
[80]

 Catechol-grafted poly(ethoxyethyl glycidyl ether-co-allyl 

glycidyl ether) with around 70 catechol side groups per polymer chain was also 

successfully coated on many types of substrates including PTFE.
[81]

 This polymeric 

coating prevented cell attachment without further modification. After the coating was 

immobilized with 3-mercaptopropionic acid in a thiol-ene reaction, it exhibited 

excellent cell adhesion. Thus, it is possible to design and adjust cell adhesion with this 

universal coating. 

Systematic studies, on how the grafting amount of catechol groups affects the 

coatings on different types of surfaces also have also been reported.
[82]

 The thickness 

and stability of the polymer coatings can be controlled by catechol groups which work 

as both anchors and crosslinkers. In the case of metal oxide surfaces, although even 

one catechol group can tether the polymer chain, multiple catechol units are required 

in the anchor group to prevent the oxidative detachment.
[83]

 In the case of inert 

polymeric substrates, such as PTFE, polystyrene, and polyolefin, the interaction 

between the catechol group and these surfaces is relatively weak.
[57, 84]

 Besides weak 

anchoring, the other role of catechol as a crosslinker is important to stabilize the 

coatings on inert substrates. Therefore, a relatively large amount of catechol groups is 

required to achieve universal coatings. For the design of bioinert surface coatings, 

however, an overrepresentation of catechol groups leads to protein adsorption and cell 

adhesion. Only a well-balanced amount of catechol groups can supply coatings with 

both good stability and bioinertness. 

Although catechol is a powerful anchor for surface coating, its effectiveness has 

been somewhat over praised in some previous publications, in which catecholic 

polymers were employed to coat inert surfaces. Actually, many multiple catechol 

functionalized polymers hardly reached a very high surface coverage on inert 
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surfaces.
[82]

 The hydrophobic effect of the polymer itself has often been ignored, 

which may be the reason why effective coatings are obtained rather than catechol 

anchoring. Control experiments should be well designed to explore the further role of 

catechols in these cases. 

   Besides catechol induced surface adhesion, mussels limit the auto-oxidation of 

catechols on the surface of byssal plaques to enhance the adhesion by the thiol-rich 

mfp-6.
[85]

 Other hydrophobic amino acid residues, mainly in mfp-3 “slow”, can retard 

oxidation of catechols by shielding them from the solvent and, more importantly, 

compensate the adhesion by hydrophobic interactions.
[86]

 The adhesion of mussel 

byssus, however, is more complicated than a simple catechol-mediated recipe. There 

is still a long way to go in chemistry and materials science to really mimic mussel foot 

proteins to generate the best universal coatings. 

 

1.4.3 Plant Phenols 

Tea cups are often stained by tea water. Inspired by this phenomenon, a number of 

phenolic biomolecules that are present in tea, red wine, chocolate, and many other 

plants have been identified for versatile universal coatings. These biomolecules 

possess abundant and dense catechol (1,2-dihydroxyphenyl) and gallol 

(1,2,3-trihydroxyphenyl) functional groups and thus exhibit strong solid-liquid 

interfacial properties. A plant polyphenol of tannic acid (TA) and a simple phenolic 

mimic of pyrogallol were deposited from buffered saline (0.6m NaCl, pH 7.8) to form 

polydopamine-like films.
[87]

 These phenolic films retained most of the advantages of 

polydopamine films as multifunctional universal coatings, but they were low cost and 

colorless. In addition, these coatings could scavenge radical and non-radical reactive 

oxygen species. In a subsequent work, a library of about 20 kinds of natural and 

synthetic phenolic molecules was screened.
[88]

 Among them, eight catechol-, gallol-, 

and resorcinol-rich molecules were identified to form excellent universal coatings. 

Besides TA and pyrogallol, the other six precursors were epigallocatechin gallate 
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(EGCG), epigallocatechin (EGC), catechin, catechol, hydroxyhydroquinone (HHQ), 

and Morin (Figure 5A). As the polymerization and deposition of dopamine could be 

accelerated by oxidant,
[49]

 the laccase-catalyzed polymerization of plant phenols also 

resulted in a rapid coating formation.
[89]

 In fact, the research on oxidant-induced 

polydopamine coatings and the enzymatic polymerization of phenols can be unified 

with each other. 

 

 

Figure 5. (A) Chemical structures of the natural and synthetic phenols that were 

identified to form universal coatings.
[88]

 (B) Scheme of the assembly of iron-based 

coordination complexes. Reprinted from Ref. 
[90]

 with kind permission of AAAS. 

 

Besides polydopamine type crosslinking, another self-assembly process based on 

polyphenols for surface modification was explored. Phenolic moieties are weakly 

acidic and can donate an electron or electron pair to chelate metal ions.
[90]

 Thus, 

polyphenols like TA can be crosslinked by coordination with iron, e.g. Fe(III) (Figure 

5B), then deposited and bound to substrates to form versatile coatings with negligible 

cytotoxicity.
[91]

 This coordinative crosslinking is pH responsive. At low pH, the 
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hydroxyl groups should be protonated, which leads to a destabilization of crosslinking 

and disassembly of the coatings.
[92]

 In the case of a coordination between TA and 

Fe(III), only mono-complexes formed at pH < 2.0, with the result that the coating 

disassembled. Even at 3 < pH < 6, when bis-complexes existed, the coatings could not 

be kept stable. Only when tris-complexes formed at pH > 7, the coatings showed good 

long-term stability. A library of functional TA-metal networks showed that this pH 

sensitivity was controllable by changing the metal species and feed concentrations.
[93]

 

Moreover, varying the feed concentration of the lanthanide metals allowed control 

over the fluorescence intensity of the coatings. Therefore, this new type of coatings is 

a potential candidate for biomedical applications. 

In summary, all three types of bioinspired universal coating systems, i.e., blood 

proteins, mussel foot proteins, and plant phenols, bind to substrate surfaces by 

combined multiple interactions, besides simple chemisorption or physisorption. 

Natural systems, e.g., mussel byssus, can even adjust the balance of each interaction 

to reach optimal adhesion on different kinds of surfaces. The joint surface anchoring 

interactions, together with the high degree of intra-coating crosslinking, resulted in 

several stable universal coatings which were presented above. 

 

1.5 Conclusion and Perspective 

An ancient Chinese proverb says “A single chopstick can be gently broken, a pillar of 

ten chopsticks firmly holds dough”. Both intra-coating crosslinking and the 

polymerization process let all of the monovalent anchorings (one root chopstick) on 

the substrate surface group together to reach the multi-/polyvalent anchoring (pillar of 

ten chopsticks) level. Thus, the coating can be indeed stabilized to reach a universal 

coating, even if the force of the monovalent anchoring is relatively small. Therefore, 

the common features of the presented universal coatings can be summarized, and the 

general rules for developing new universal coatings can be proposed that: (1) There 

must be some interaction between the coating materials and the substrate surfaces, 
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even though the interaction is relatively weak; (2) Intra-coating crosslinking, either 

covalent or noncovalent, must be present; (3) A coating should be prepared with the 

available functions or it can be further functionalized. Stronger interfacial interaction 

and a higher degree of crosslinking can result in more stable coatings, especially on 

chemically inert surfaces. 

Among the large family of surface modification systems, however, still only a few 

universal coatings can be successfully used for practical applications. More 

importantly, it is necessary to further establish a mechanistic understanding of the 

stabilization of universal coatings and the theoretical guidelines for developing such 

coatings. Therefore, future research should be focused on the following points: 

● Quantitative studies are needed to figure out the crosslinking’s contribution in 

stabilizing coatings. 

● Mechanisms for the adsorption of materials onto different surfaces should be 

further explored. 

● A set of theories to guide the development of universal coatings must be 

established. 

● New interactions for anchoring, especially on the chemical inert surfaces, can be 

explored. 

● New in situ crosslinking technology, especially in the area of “green chemistry”, 

should be investigated. 

● The stability of the universal coatings, especially in harsh environments, should be 

enhanced. 

● A set of universal coatings with similar chemistry but different properties, e.g., 

stiffness, hydrophilicity, color, should be developed. 

● Universal coatings with well-defined coating structures, like monolayer coatings, 

hierarchical coatings, and patterned coatings, are of great interest for applications. 

Overall, it remains a big challenge to further develop a family of universal 

coatings to become a real universal tool in our daily lives, however, universal polymer 

coatings have already added a new page to materials surface modification.  
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2 Scientific Goals 

In the previous work, polyglycerol (PG) and its derivatives were identified as 

excellent bioinert polymers,
[94-95]

 which were successfully immobilized on both gold 

and silica surfaces via thiol and silane chemistry for bioinert coatings.
[96-98]

 However, 

universal PG coatings that can be applied to all surfaces using the same chemistry still 

remains a challenge. 

In this work, nature’s amazing bioadhesive catechol groups will be combined with 

hyperbranched polyglycerols (hPGs) (Figure 6) to achieve universal coatings under 

mild conditions for bioinert surfaces and other biomedical applications. 

 

 

Figure 6. Functional hyperbranched polyglycerols (hPGs) 

 

The effect of the catechol multiplicity on the immobilization, surface morphology, 

stability, and antifouling performance of the coatings shall be studied. When the 

catechol groups on the hPG polymers are underrepresented, the tethering of the 

coating may be not effective; while an overrepresentation of catechol groups may lead 

to nonspecific protein adsorption and cell adhesion. An optimized amount of catechol 

groups to supply the coatings with both good stability and antifouling ability on 

various material surfaces will be explored. 

   Coatings with different architecture can be fabricated by simply controlling the 
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pH values of the coating solution, as well as by introducing extra crosslinkers (Figure 

7). The bioinertness and stability of monolayer, crosslinked monolayer, and multilayer 

coatings will be compared to reveal how multivalent anchoring and crosslinking 

enhanced the stability of the coatings. 

 

 

Figure 7. Catecholic hyperbranched polyglycerols (hPGs) for different coating 

architectures. Under acidic conditions, the oxidation of catechols can be avoided, thus 

catechol groups can only serve as anchors to result in monolayer coatings. The vinyl 

groups in the monolayer coatings can further initiate the intra-layer crosslinking to 

generate crosslinked monolayer coatings. Under weak basic conditions, parts of 

catechols can be oxidized to quinones. The crosslinking of the quinones can cause 

multilayer formation. The free catechols that are exposed on the surface of the 

multilayer coatings can be terminated by single catechol functionalized hPG to 
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achieve surface bioinert hierarchical multilayer coatings. Moreover, a 

heteromultivalent catechol and amine functionalized hPG can generate universal 

multifunctional coatings. 

 

   The free catechol groups that exposed on the surface of the coatings still initiate 

some protein adsorption. The new coating architecture of hierarchical multilayer will 

be developed to exhibit the optimized surface bioinertness in the meanwhile to show 

high stability even on chemical inert substrates. hPGs with different catechol 

functional degree will be employed to achieve this goal. 

   Furthermore, a heteromultivalent catechol and amine functionalized hPG can 

mimic mussel foot proteins (mfps) from three aspects: functional groups, molecular 

weight, and molecular structure. A rapid and universal coating is expected to be 

prepared by this new mfp inspired polymer. Versatile secondary functionalization will 

be developed for multiple applications. 

   Overall, the mechanism of the generation of universal coatings will be explored. 

The new biomedical applications based on the universal coatings will be developed. 
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4 Conclusions and Outlook 

In this thesis, a set of universal polymer coatings with tunable chemical activity and 

bioinertness were developed by mussel-inspired catecholic hyperbranched 

polyglycerols (hPGs) via simple dip coating. A wide range of material surfaces, 

including metal oxides, noble metals, ceramics, and polymers, were successfully 

modified by these new coatings to achieve versatile biomedical applications. 

   Under weak basic condition, parts of the catechol groups in the catecholic hPGs 

can be spontaneously oxidized to quinones which can crosslink with each other. The 

remaining catechol groups still anchored the polymers to the substrates, while the 

crosslinking of the quinones caused the formation of multilayer coatings. In the case 

of acidic conditions, the oxidation can be avoided, thus catechol groups can only 

serve as anchors to result in monolayer coatings. However, monolayer coatings are 

only stable on metal and metal oxide surfaces, on which catechols form coordinative 

bonds with the surface metal atoms. Moreover, a single catechol group even failed to 

efficiently anchor hPG molecules on metal oxide surface due to the oxidative 

detachment. Therefore, it is necessary to employ multivalent anchoring for long-term 

stable coatings. As a result, only the multivalently anchored and crosslinked 

multilayer coatings can be stabilized on various surfaces. 

Bioinert surface coatings can be directly prepared by catecholic hPGs with 

appropriate amount of catechol groups. Thirty percent of catechol functionalization 

switched the bioinert hPG to a protein-adhesive molecule, because quinones strongly 

interact with amine and thiol groups in proteins. As mentioned above, single catechol 

anchor group suffers oxidative detachment. Our results revealed that hPGs with 5 to 

10 percent of catechol functional degree showed an excellent antifouling performance, 

and at the same time, can generate stable multilayer coatings. However, there were 

still a few free catechol groups exposed on the surface of the coatings. In order to 

generate perfect bioinert hPG surfaces, hierarchical hPG multilayer coatings were 

developed. In this case, mono-catecholic hPGs were used to terminate all of the free 
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catechol groups and to construct a flexible bioinert top layer via quinone crosslinking. 

In addition, an extra chemically active catecholic hPG foundation layer can stabilize 

coatings even on chemically inert substrates including polytetrafluoroethylene (PTFE). 

This foundation layer can be further shielded by the above mentioned bioinert 

catecholic hPGs, and the mono-catecholic hPG terminal layer via the same chemistry. 

As a result, the chemical activity of this new type of coatings gradually decreases and 

the bioinert property gradually increases from bottom to top. With these 

characteristics, this new architecture was employed to form a highly stable 

material-independent surface coating with outstanding antifouling properties. 

The highly adhesive catecholic hPG that used as foundation layer contains 40% of 

catechol groups and 60% of amine groups. Both two kinds of functional groups are 

abundant in mussel foot proteins (mfps) and play key roles in the rapid formation of 

mussel byssus. Furthermore, the molecular weight of this catecholic hPG reaches 10 

kDa, which is similar to the most adhesive mussel foot protein mfp-5 (about 9 kDa). 

Also, the dendritic structure, exhibits a relatively distinct “interior”, and exposes its 

functional groups on the surface of the polymer, while natural proteins exhibit 

important domains on the surface as well. Based on the mimicry of functional groups, 

molecular weight, and molecular structure, this new mussel-inspired hPG formed a 

considerably stable coating on virtually any type of material surface within 10 min or 

a micrometer scale coating in hours, which is comparable to the formation of mussel 

byssal threads in nature. Functional molecules, like collagen A and rhodamine B, can 

be post-functionalized or pre-functionalized to the coatings to generate different kinds 

of functional biosurfaces. Additionally, the controllable surface roughness resulted in 

superhydrophilic or superhydrophobic surface properties for self-cleaning 

applications. 

This bioinspired copy of mussel foot proteins reaches a new level of functional 

mimicry. What more can we learn from these proteins to design synthetic molecules 

for material surface modification? Mussels employ thiol-rich mfp-6 to reduce 

quinones in the adhesive interface back to catechols to enhance its adhesion, while 
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inside catechols can be oxidized to quinones to enhance cohesion. How to achieve 

controllable redox balance of catechol groups in coatings remains a tremendous 

challenge and can be a direction to develop next generation of mussel-inspired 

coatings. Besides catecholic surface chemistry, mussels also employ hydrophobic 

aromatic sequences, mainly present in mfp-3 “slow”, on the one hand to retard 

oxidation of catechols by shielding the groups from aqueous solution, on the other 

hand to increase the hydrophobic interaction which is not pH dependent. Combining 

this hydrophobic interaction with catecholic chemistry, universal polymer coatings 

with well defined thickness and surface morphology may be achieved. 
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5 Zusammenfassende Bewertung und Ausblick 

Die vorliegende Arbeit beschreibt neuartige Polymerbeschichtungen mit einstellbaren 

chemischen und bioinerten Eigenschaften, welche durch einfaches Eintauchen in von 

Muscheln-inspirierten brenzcatechinhaltigen, hyperverzweigten Polyglycerinen (hPG) 

hergestellt werden können. 

Eine große Anzahl von Materialoberflächen, wie zum Beispiel die von 

Metalloxiden, Edelmetallen, Keramiken und Polymeren können mit Hilfe dieser 

neuartigen Beschichtung modifiziert werden, wobei unterschiedlichste 

biomedizinische Anwendungsfelder adressierbar sind. 

Unter leicht basischen Reaktionsbedingungen gelingt es Teile der 

Brenzcatechingruppen der hyperverzweigten Polyglycerine (hPG) spontan zu 

Chinonen zu oxidieren, welches zu einer Vernetzung innerhalb der Moleküle führt 

und hierdurch eine Multilagenbeschichtungen entsteht. Die übrig gebliebenen 

Brenzcatechingruppen dienen als stabile Anker für das hPG an die Substratoberfläche. 

Im Fall von sauren Reaktionsbedingungen wird die Oxidation vermieden und die 

vorhandenen Brenzcatechingruppen können hierdurch als Anker dienen, wobei nur 

Monolagen des hPG ausgebildet werden. Solche Monolagenbeschichtungen sind nur 

stabil auf Metall- und Metalloxidoberflächen, bei welchen die Brenzcatechingruppen 

koordinative Bindungen mit den Metallatomen an der Oberfläche ausbilden können. 

Anzumerken ist hierbei, dass eine einzelne Brenzcatechingruppe nicht in der Lage 

ist das hPG Molekül fest an die Metalloxidoberfläche anzukoppeln, da es hier zu einer 

oxidativen Ablösung kommen kann. Vor diesem Hintergrund müssen für eine feste 

Oberflächenankopplung auf unterschiedlichsten Substraten multivalente und vernetzte 

Multilagenbeschichtungen verwendet werden.  

Bioinerte Oberflächenbeschichtungen können direkt durch die Verwendung von 

hPGs mit entsprechend eingestellten Brenzcatechingruppenanteilen erzeugt werden. 

Hierdurch können vorher bioinerte hPGs durch die Funktionalisierung mit 30% 

Brenzcatechingruppen zu für Proteine adhäsive Moleküle umgewandelt werden. Dies 
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beruht auf den nun vorhandenen Chinongruppen, welche mit den Amino- und 

Thiolgruppen der Proteine reagieren können. 

Wie oben erwähnt, haben einzelne Brenzcatechingruppen den Nachteil, dass diese 

als Ankergruppen oxidativ abgelöst werden können. Die erhaltenen Daten belegen, 

dass hPGs mit fünf bis zehn Prozent Brenzcatechinfunktionalisierung exzellente 

Antifouling-Eigenschaften aufweisen und stabile Multilagenbeschichtungen 

generieren. Nur wenige freie Brenzcatechingruppen sind hierbei an der Oberfläche 

vorzufinden. 

Zur Herstellung perfekter bioinerter hPG Oberflächen wurden in dieser Arbeit 

eine neue hierarchische hPG Multilagenbeschichtungen entwickelt. Hierfür wurden 

für den Aufbau einer flexiblen bioinerten äußeren Schicht die freien 

Brenzcatechingruppen mit monobrenzcatechinhaltigen hPGs über Chinonvernetzung 

terminiert. Zusätzlich kann mit Hilfe einer weiteren chemisch aktiven 

brenzcatechinhaltigen hPGs Grundschicht eine stabile Beschichtung selbst auf inerten 

Materialien, wie z. B. Polytetrafluorethylen (PTFE), erreicht werden. 

Im Ergebnis führte die Kombination der Grundschicht mit einer äußeren Schicht 

dazu, dass die chemische Reaktivität graduell abnahmen und die bioinerten 

Eigenschaften graduell zunahmen – dies von der Grundschicht zur äußeren Schicht. 

Hierdurch konnte eine neue Schichtarchitektur erzeugt werden, die sich durch eine 

hochstabile und materialunabhängige Beschichtung mit hervorragenden 

Antifouling-Eigenschaften auszeichnete. 

Dieses hochreaktive brenzcatechinhaltige hPG-Schicht enthält 40% 

Brenzcatechin- und 60% Aminogruppen. Diese beiden funktionellen Gruppen sind 

auch in den mfp Proteinen des Muschelfußes (Muschelfußprotein = mfp) vorzufinden 

und spielen hier eine entscheidende Rolle bei der Ausbildung des 

Byssusklebapparates der Muscheln.  

Die in dieser Arbeit vorgestellten brenzcatechinhaltigen hPG weisen mit etwa 10 

kDa eine molekulare Masse auf, welche sehr ähnlich zu der des Muschulfußproteins 

mfp-5 ist (ungefähr 9 kDa). Weiterhin ist festzustellen, dass die dendritische Struktur 



5 Zusammenfassende Bewertung und Ausblick 

185 
 

der hPG ein kompaktes Inneres aufweist und die funktionellen Gruppen an der 

Oberfläche des Polymers zu finden sind – eine weitere Ähnlichkeit zu natürlichen 

Proteinen, die ebenfalls wichtige Bindungsdomänen an der Oberfläche tragen. 

Auf Basis der biomimetisch funktionalen Gruppen, der molekularen Masse und 

der molekularen Struktur ist das hier beschriebene von Muscheln inspirierte hPG in 

der Lage, innerhalb von 10 Minuten auf nahezu allen Oberflächen stabile 

Beschichtungen auszubilden, die sogar nach wenigen Stunden Dicken im 

Mikrometerbereich ausmachen können. Hierdurch ist das neue hPG Polymer 

vergleichbar mit dem Byssussystem der Muschel.  

Die beschriebenen brenzcatechinhaltigen hPG Beschichtungen können 

anschließend mit unterschiedlichen bioaktiven Fähigkeiten mit Biomolekülen wie 

Kollagen A oder Rhodamine B ausgestattet werden. Zusätzlich kann die 

Oberflächenrauheit gezielt eingestellt werden, um z.B. superhydrophobe oder 

superhydrophile Oberflächeneigenschaften zu erhalten. Dieses kann u.a. für das 

Design von selbstreinigenden Oberflächen genutzt werden.  

Die hier vorgestellten Daten tragen dazu bei, die biomimetischen Ansätze im 

Bereich der Muschelfußproteine auf eine neue Entwicklungsstufe zu bringen. In 

diesem Kontext stellt sich die Frage, welche weiteren chemische Zusammenhänge 

von diesen Muschelproteinen gelernt werden können, um innovative Materialien für 

synthetische Oberflächenfunktionalisierungen zu generieren. So nutzen zum Beispiel 

die Muscheln das thiolgruppenhaltige Protein mfp-6, um Chinone an der 

Adhäsionsgrenzschicht zu Brenzcatechingruppen zurück zu reduzieren und hierdurch 

die Adhäsion zu verbessern. Im Inneren des Proteinklebstoffes werden dahingegen die 

Brenzcatechine zu Chinonen oxidiert, um hierdur die Kohäsion des Klebstoffes zu 

verbessern. 

Die Kontrolle des Redox-Gleichgewichtes der Brenzcatechingruppen in einer 

Muschel-inspirierten Beschichtung bleibt bis heute eine Herausforderung, könnte aber 

eine Richtung für nachfolgende Forschungsarbeiten darstellen. Neben der 

brenzcatechinbasierten Oberflächenchemie, nutzen Muscheln hydrophobe 
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aromatische Sequenzen – vor allem im Protein mfp-3, zum Einen, um die Oxidation 

der Brenzcatechingruppen zu verlangsamen, wobei hier die Abschirmung der 

Gruppen von der wässrigen Umgebung im Vordergrund steht. Zum Anderen werden 

hierdurch, in einem pH unabhängigen Prozess, die hydrophoben Interaktionen im 

Klebstoff erhöht. 

Die Kombination der hydrophoben Interaktionen mit der Brenzcatechinchemie 

könnte genutzt werden, um eine neue Generation von biomimetischen 

Beschichtungen von Polymeren zu erzeugen, wobei die Schichtdicke und die 

Oberflächenmorphologie gezielt eingestellt werden kann. 
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