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Zusammenfassung

Viele Alltagsentscheidungen basieren auf Belohnungswerten. Entscheidungsoptionen wie ein
Dessert, Urlaubsziele, ein neues Paar Schuhe usw sind mit gewissen positiven Werten
assoziiert. Allerdings ist es nicht der Belohnungswert allein, den wir betrachten, um
Entscheidungen zu treffen. Vielmehr betrachten wir diese Werte in einen Kontext
eingebettet. Beispielsweise sind die Preise der Schuhe oder die Kosten des Urlaubs negative
Werte die den Kontext darstellen. Kontextabhangigkeit besteht auch, wenn die
Werterwartungen mit dem tatsachlichen Wert verglichen werden. Die Berechnung eines
Erwartungsfehlers (Prediction Error, PE), also die Differenz zwischen dem erwarteten und
dem tatsachlichen Wert, wird der Belohnungshdhe angepasst. Diese Kontextabhangigkeit ist
essenziell fir erfolgreiches Entscheidungsverhalten, da diese die Berlicksichtigung des
gesamten Belohnungsbereichs ermdglicht und gleichzeitig die Sensibilitat fur kleinste
Veranderung garantiert. Fiir diese Dissertation habe ich zwei Experimente durchgefiihrt, um
die neuronalen Korrelate von kontextabhdngiger Wertverarbeitung zu untersuchen.
Insbesondere wurden hier die zwei folgenden Kontexte untersucht: negativer Wert und
Belohnungshodhe. Dafiir wurde die Hirnaktivitdt von gesunden Probanden mit funktioneller
Magnet-Resonanz-Tomografie (fMRT) erfasst. Diese Daten wurden mithilfe von
mathematischen Modellen und funktionellen Konnektivitatsanalysen ausgewertet. Die
Ergebnisse des ersten Experiments zeigen, dass positive Werte mit den assozierten
negativen Werten interagieren und nicht nur additiv integriert werden. Dieser Prozess wird
mit einer Veranderung der Konnektivitat zwischen dem subgenualen anterioren Cingulum
(SGACC) und der Amygdala in Verbindung gebracht. In dem zweiten Projekt wurde
untersucht, wie die Kodierung von Erwartungsfehlern unterschiedlichen Belohnungshéhen
angepasst wird. Die Ergebnisse zeigen, dass die Erwartungsfehler fiir hohe und niedrige
Belohnungen indifferent sind. Des Weiteren stellte sich heraus, dass diese Anpassung durch
eine Veranderung der Konnektivitat zwischen dem prafrontalen Kortex sowie dem Mittelhirn
und dem Striatum implementiert wird. Hierbei war die Konnektivitat bei hohen Belohnungen
geringer ausgepragt als bei niedrigen Belohnungen.

Zusammengefasst zeigen die Ergebnisse der beiden Experimente, wie
kontextabhangige Wertverarbeitung im menschlichen Gehirn implementiert wird. Diese
Ergebnisse erweitern unseren Wissensstand beziiglich der neuronalen Verarbeitung von

Werten, die menschlichem Entscheidungsverhalten zugrunde liegen.



Summary

Everyday choice options are based on reward. We associate decision options such as a
dessert, a holiday destination, a new pair of shoes with certain subjective reward values.
However, it is not only the reward value alone that influences our decisions. These values
are considered in certain contexts. For example, the price of the shoes or the costs of a
vacation are negative values associated with the reward value and serve as contexts. Also,
the computation of prediction errors (PE) is context-dependent. PE refers to the difference
between the expected and received reward and its representation adapts to the different
reward magnitudes. This context dependency is essential for successful decisions making,
because it enables the representation of the whole reward range and at the same time
guarantee the sensibility for the smallest changes. In this thesis, | conducted two
experiments to investigate the neural correlates of context-dependent modulation of
reward processing. Specifically, two essential contexts were considered: negative value and
reward magnitudes. To this end, brain data was collected from healthy subjects using
functional magnetic resonance imaging (FMRI). Computational models and effective
connectivity analyses were applied for data analysis. The results of the first experiment
demonstrate positive and negative values are integrated interactively and not only additively.
This interactive process is accompanied by changes in connectivity between the subgenual
anterior cingulate cortex (SGACC) and the amygdala. In the second project, the reward-
magnitude dependent adaptation of prediction errors was investigated. The results
demonstrate that the striatal coding of prediction errors is indifferent for high and low
rewards. Furthermore, this adaptation is implemented by striatal connectivity changes with
the medial prefrontal cortex (MPFC) and the midbrain.

In summary, the results of the two experiments in this thesis show how context-
dependent value processing is implemented in the human brain. These results extend our

understanding of neural processing of value underlying human decision making.
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1. Introduction

1.1 General Overview

In everyday life, we encounter many different decision options; what to eat for dinner,
where to go for vacation, whether to eat another piece of chocolate. These options are
associated with certain reward values. However, when making decisions, we do not rely on
the reward value alone. Instead, the reward value is considered in a certain context and this
context modulates the valuation process. For example, when deciding among desserts, we
put the reward value of the taste in relation to its price. Here, the context is the cost, like the
monetary price or the perspective of gaining weight that is combined with, and can
modulate the reward value.

Reward magnitude is another important context that modulates value processing.
From receiving a piece of chocolate to winning the lottery, the range of possible rewards in
the world is immense, yet the firing range of reward-sensitive neurons is limited. An efficient
way for the brain to solve this problem is by dynamically adjusting the activity range of
neurons according to the context. Such an adaptive coding mechanism maximizes the
discriminability between different values in a given reward context, thus enabling efficient
information processing.

Within a small fraction of time, our brain represents all the different aspects coupled
with value and computes the subjective value with respect to its context. How is this
context-dependent reward processing implemented in the brain? What is the underlying
mechanism? Although reward coding and reward anticipation in the human brain have been
widely investigated (Montague and Berns, 2002;Rangel et al., 2008;Glimcher and Rustichini,
2004;Peters and Buchel, 2010), it is not clear how our brain actually processes value-related

information in different contexts. This is partly due to the fact that its investigation is
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challenging, because different from the mere representation of reward value, value
processing is a dynamic computational process and subjective, hence not easily observable.

In this dissertation, | present the results of two experiments that investigate the
neural mechanisms of context dependent valuation. Here, | focus on two reward modulating
contexts that are essential for making decisions: 1) the reward valuation process in the
context of negative value (cost) and 2) the prediction error (PE) computation (i.e. the
mismatch between predicted and received reward) in the context of different reward
magnitudes (large or small reward). To investigate the underlying mechanisms, | apply
computational modelling and functional connectivity analysis to human brain data obtained
by functional magnetic resonance imaging (FMRI).

The first study shows that when integrated together, the negative value (i.e. cost)
impacts reward value interactively and not only additively (Park et al., 2011). The results of
this study explain to what degree we perceive expensive products as more valuable and
appreciate rewards resulting from hard work more than easily obtained rewards. The second
study shows how we compute prediction errors in the context of different reward
magnitudes (Park et al., revised manuscript). The results show a mechanism that enables the
flexible adaptation of prediction errors to the momentarily available reward magnitude: A
context dependent process that facilitates successful decision making and learning with
rewards in all sizes in every situation.

In the first chapter, | will summarize the theoretical background of reward and
previous findings on the neurobiology of reward. The second chapter encompasses a brief,
conceptual introduction to the methods used in this thesis. The two experimental studies

will be introduced in more detail in chapter 3. Finally, chapter 4 will discusses the results of
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the two studies. Based on these results | will propose a neurobiological model of context-

dependent value coding as well as how this model can be tested in future experiments.
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1.2 Reward and reinforcement learning
Reward modifies and shapes our behaviour. The psychologist Edward Thorndike (Thorndike,

1911) introduced a basic learning mechanism: the law of effect, which states that every
behaviour, leading to a pleasant event (or to the termination of an unpleasant event), is
more likely to occur again. Skinner (Skinner, 1938;Skinner, 1953) defined this as reinforcer in
his theory of operant conditioning: in a given situation, every stimulus following a certain
behaviour, is a positive reinforcer when it leads to an increase in the probability of this
behaviour. In contrast, when the removal of the stimulus leads to an increase of the
behaviour, this is considered as a negative reinforcer. Both Thorndike’s and Skinner’s
theories describe the mechanism of reinforcement learning to maximize reward and
minimize punishment. In contrast, classical conditioning describes the procedure of how an
initially neutral stimulus (CS) acquires predictive value about a reward (US) via repeated
simultaneous or subsequent presentation (Pavlow, 1927). Here, no instrumental behaviour
is required, although after learning, the CS can elicit the same reward related responses as
the US.

This mechanism of reinforcement learning has been formalized using mathematical
equations (Rescorla, 1972;Jungermann, 1976;Sutton and Barto, 1998). The basic assumption
is that reinforcement learning relies on prediction errors. Prediction errors are the
discrepancy between the predicted and actually received reward outcome and are thought
to act as a teaching signal to update the value of the CS. When the action/cue - outcome
association is newly introduced, the prediction error is large. However, with repeated
pairings of the action/cue and the outcome the value of the action/cue increases and the
prediction error will become smaller and eventually diminish, meaning the action/cue can

fully predict the reward outcome and learning is completed.
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This concept of prediction error has received wide attention and played an essential
role in elucidating the neurobiology of learning and reward-based decision making in the
brain (Schultz et al., 1997;0'Doherty et al., 2006;Pessiglione et al., 2006;Seymour et al.,

2005;Park et al., 2010;Kahnt et al., 2009).
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1.3 Neural representation of reward
In the last decades, there have been immense efforts to investigate the neurobiology of

reward processing across species. Specifically, human FMRI studies have suggested the
involvement of the ventral striatum, the amygdala and the prefrontal cortex including the
orbitofrontal cortex (OFC in reward processing (Knutson et al., 2001b;Breiter et al.,
2001;0'Doherty, 2007;Kahnt et al., 2010). These studies applied both primary rewards such
as food or drinks (O'Doherty et al., 2002;Francis et al., 1999;Aharon et al., 2001;Kringelbach
et al., 2003) and secondary rewards such as money to investigate reward representations in
the human brain (Knutson et al., 2001a;0'Doherty et al., 2001;Elliott et al., 2003;Blood et al.,
1999).

Choice options can be of the same or of different types of reward. i.e. we are able to
decide among dinner menus, but we can also decide between going to the opera or to an
elegant restaurant for dinner. Although the nature of rewards is very different, we are able
to flexibly compare or combine them. According to the observation that different reward
types such as money, food or even social rewards such as attractive faces or erotic pictures
are coded in shared brain networks , it has been suggested that the brain encodes different
reward types by transforming them into a common value currency (Montague and Berns,
2002;Glimcher and Rustichini, 2004;0'Doherty, 2007;Sescousse et al., 2010;Smith et al.,
2010). In line with this, recent experimental studies have directly compared different types
of rewards, such as food, juice, consumables and monetary gambles. These results
demonstrated that all these rewards are represented in the same region, namely the
ventromedial prefrontal cortex (VMPFC) (Chib et al., 2009;Kim et al., 2011;Levy and Glimcher,

2011).
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1.4 Brain mechanisms of context dependent reward processing
Although the neural representation of reward has been well investigated during the last

decade, it is not clear how the valuation process changes depending on the context. Previous
research on the neurobiology of reward-based decision making has mainly focused on
reward options that are presented alone, such as monetary reward. However, in everyday
decision situations, values are mostly embedded in contexts and are not presented in
isolation. Therefore it is inevitable for the brain to flexibly adapt value representation
according to its context. On the neural level, it can be assumed that such dynamic process is
implemented not only by the activation of a single brain region, but in the modulation of the
coupling across multiple regions. Hence, it is important to consider multiple neural systems
carrying out different valuation mechanisms.

Several primate studies have demonstrated that neurons adaptively code reward
values in different contexts. Midbrain dopaminergic neurons adapt to different reward
magnitudes when representing prediction errors. Specifically, these neurons increase their
activity for the larger of two potential reward outcomes and decrease their activity for the
smaller outcome independent of the absolute reward magnitude (Tobler et al., 2005).
Reward coding OFC neurons adapt their firing rate to reward variability (Kobayashi et al.,
2010) and to the reward range (Padoa-Schioppa and Assad, 2008;Padoa-Schioppa, 2009).
Furthermore, a recent study has shown that the primate lateral intra-parietal cortex codes
saccade values of the same option depending on other available choice options (Louie et al.,
2011). Adaptive coding can be also found in the visual system, such that our receptors adjust
their coding range according to the momentarily available light intensity. This context-

dependent adjustment is implemented via feedback loops involving different neurons (Dunn
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et al., 2007). This suggests that context-dependent adaptation requires the interplay
between multiple neuronal systems.

For decades, economic models have assumed that when a person evaluates a choice
option, different values contribute independently to the overall subjective value of the
option (Keeney and Raiffa H, 1976;Wallenius et al., 2008). In contrast, human choice
behaviour often violates this assumption, suggesting interactions between values (Huber,
1974;Wallenius et al., 2008). For example, when choosing a dinner menu with cheese, red
wine has a higher value, whereas with fish, white wine has a higher value. Here, a valuation
mechanism ignoring the context would fail to predict behaviour, whereas a context-
dependent interactive integration would successfully predict choices. Similar interactive
mechanisms modulating hedonic experience have been demonstrated in neuroscientific
studies from different areas. For example, the placebo effect or attention regulates pain
perception interactively (Wager et al., 2006;Bingel et al., 2006;Wiech et al., 2008).
Interestingly, these neuroscientific studies on context-dependent modulation converge onto
the same brain region, namely the subgenual anterior cingulate cortex (SGACC). This region,
in concert with the amygdala has been shown to be involved in modulation of pain and fear
processing (Bingel et al., 2006;Wiech et al., 2008;Phelps et al., 2004).

Another fundamental question is whether prediction errors are coded in a context-
dependent manner. Possible rewards in the world are immense, whereas the range of neural
firing is limited. How can people with the same neural system compute the prediction error
for millions of dollars on Wall Street and at the same time monitor whether their lunch is as
good as predicted? In other words, how can we code the immense range of values and, at
the same time remain sensitive to small differences in reward? One possibility for the brain

to solve this is to dynamically adjust the activity range according to the momentarily
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available rewards. This adaptive coding of reward prediction errors (PEs) has been suggested
by a wide range of theories including economics and reinforcement learning. Prospect
theory suggests that people apply an anchoring heuristic and changes are coded according
to the individual reference outcome (Kahneman and Tversky, 1979). For example, when we
win 50€ with an expectation to win 10€, there will be a prediction error of +40€. However,
when our initial expectation was to win 100€, the same win of 50€ will induce the prediction
error of -50€. In reinforcement learning theory, the PE is considered to be fundamental for
updating the reward values associated with the predicting cue (Frank and Claus, 2006;Sutton
and Barto, 1998). Adaptive coding of prediction errors is essential for two reasons. First, the
reward magnitude (lottery or chocolate) is already encoded during expectation. Hence, in
terms of efficient neural coding, it is not necessary to represent the reward magnitude
redundantly when computing the prediction errors. Second, computation of this quantity
depending on reward magnitude would prohibit learning from small rewards. That is, no
matter in what situation we are, only the prediction error of extremely high rewards would
be behaviourally relevant and prediction errors of small rewards would never impact
behaviour.

In human FMRI studies, PEs were shown to correlate with the BOLD response in the
ventral striatum (Park et al., 2010;Pessiglione et al., 2006;Kahnt et al., 2009). Furthermore,
human imaging studies have demonstrated that the striatal PE coding is adaptive
(Nieuwenhuis et al., 2005;Lohrenz et al., 2007;Fujiwara et al., 2009). Although adaptive
coding in reward-sensitive neurons is well documented (Tobler et al., 2005;Tremblay and
Schultz, 1999;Padoa-Schioppa, 2009;Kobayashi et al., 2010) it remains an open question how
the brain implements the normalization process, bringing different magnitudes onto the

same coding scale. The striatum receives major dopaminergic projections from the midbrain
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and both striatum and midbrain are tightly interconnected with prefrontal cortex (Sesack
and Pickel, 1992;Sesack et al., 1989;Haber and Knutson, 2010;Haber et al., 2000;Haber et al,,
1995;Haber and McFarland, 1999). Hence, the PFC and the midbrain seem to be major
candidate regions for context-dependent adjustment of the striatal PE signal.

Computational mechanisms such as context-dependent modulation of value
processing are not easily observable at the behavioural level. It is also very likely that such
complex processes are expressed not only by the activity of a single brain region, but by
dynamic changes in the connectivity among multiple brain regions that have different
functions. Recent developments in FMRI have led to new analysis methods that enable us to
gain insight into such brain mechanisms. In the following section, | will provide an overview
about two methods, namely model-based FMRI analysis and psycho-physiological
interaction as effective connectivity analysis. Both methods were applied to analyze the

FMRI Data of the two experiments presented in chapter 3.1 and 3.2.
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2. Methods: Model-based FMRI and effective connectivity

2.1 Model-based FMRI
A well established approach to investigate computational processes underlying decision

making is to use cognitive models (Mazur and Biondi, 2009;Navalpakkam et al., 2010;Bhatt
et al.,, 2010). A cognitive mechanism or process can be explicitly formulated using a
mathematical model. These models can then be tested by comparing model predictions on
behavioural data. This allows us to gain insight into the underlying computational
mechanism of the cognitive process in question. However, applying computational models
not only to behavioural data, but also to neural data has several benefits. First, this method
can provide direct evidence about the neurobiology underlying the cognitive process. Here,
instead of using the model’s output to predict the behavioural data, the hidden variables of
the model can be used to predict brain data. This provides information about ‘where’ in the
brain ‘which’ specific mechanism is implemented. Second, by comparing the degree to which
brain activity can be accounted for by different competing models, it is possible to show that
the brain data is better explained by one model over the other. Thus, the brain data provides
a mean to discriminate between different computational models of cognitive functions.
Model-based FMRI refers to applying cognitive models to brain data obtained with
FMRI. The analysis typically begins with fitting a computational model to subjects’
behavioural responses (FIGURE 1). This process involves the estimation of optimal values of
the free parameters for each subject by minimizing the difference between model
predictions and subject’s actual behaviour. The best model can then be selected by testing
their ability to predict behaviour. Once the best model is found, its trial-by-trial
computational variables are regressed against the imaging data using a general linear model

(GLM). By doing so, we can identify brain regions in which activity is significantly correlated

11
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with the model variable. This technique offers great advantage over traditional FMRI analysis
methods by providing the information of ‘how’ a particular cognitive process is implemented
in a specific brain area. In contrast, conventional FMRI analysis methods offer only the
information about ‘where’ by unveiling brain regions showing enhanced BOLD activity while
performing a specific task or condition (O'Doherty et al., 2007;Rangel and Hare, 2010).

A more elaborative approach of model-based FMRI is identifying the model that
accounts best for both subjects’ behavioural and FMRI data. In case competing models make
similar predictions about behaviour, behavioural data are limited in selecting the best model
(Bruni and Sugden, 2007). Here, forcing the models to predict neural activity helps to identify
the underlying computational mechanism. In other words, imaging data provides a more fine
grained and rich source of evidence that can be used to constrain different computational
models (Glimcher and Rustichini, 2004;Hampton et al., 2006;Hampton et al., 2008;Kable and
Glimcher, 2007;Loewenstein et al., 2008;Mohr et al., 2010).

The great advantage of model-based FMRI is that the hypotheses about cognitive
mechanisms are clearly defined as mathematical equations and the quantitative model
predictions are directly testable. However, when comparing the fit between models, it is
important to be aware of the fact that complex models with more free parameters tend to
fit the data better (Stone, 1974). Hence, it is necessary to punish the model with more free
parameters when comparing the fitness of models with different numbers of parameter
(O'Doherty et al., 2007). Alternatively, instead of comparing model fits, the ability of the
model to predict new data can be compared (O'Doherty et al., 2007). Here, the data are split
into two sets and the model parameters can be estimated based on one data set and then

be tested on the other data set. This procedure can be repeated, using leave-one-out cross

12
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validation, until all the data sets have been used to fit and to test the model (von Helversen

B. and Rieskamp, 2009).

A B

History of offers and choices Time series of model variable (trials)
Subjective value e \/\’\/V\J\\/\/\’_’\/\/\/J\/A’\/\/V
SV(x) = BraioPs + Prnones M+ B x money P
Probability of choice 0 10 20 30 40 50 60

Time (trials)
placcept ,t):w C +
Time series of model variable (real time)
Find best fitting parameter set (behavior) A ll Ll 1 l l A

ki . | P A
ﬁrrT v "H'rl "'”'”r ' Y
SIO ,

100 150 200 250 300
Time (scans)

0

i . P ® N
Statistical map Design matrix D

GLM regressor of model variable (real time)

300 B= = 0 50 100 150 200 250 300
Time (scans)

FIGURE 1 Model-based FMRI

A. By maximizing the correlation between the model output (p(accept x)) and the actual
choice behaviour, the model parameters can be estimated. B. Using these individual
parameters, a regressor is created, in which trials are parametrically modulated by the
model-derived subjective values (SV). C. A time-series is generated, by time-logging the trials
to real time. D. The resulting regressor is convolved with a hemodynamic response function
(HRF) to account for sluggishness of the BOLD response. E. Using a general linear model
(GLM), the regressors are used to predict the FMRI data. F. The statistical map represents
the degree of correlation between the parametric regressor and the BOLD signal in each

voxel.

13
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2.2 Psycho-physiological interaction analysis with FMRI data
Different from a conventional univariate FMRI-analysis, which reveals the BOLD response in

certain psychological conditions, a connectivity analysis unveils how brain regions change
their correlation depending on the condition (Friston et al., 1997;Gitelman et al., 2003). As
its name suggests, the psycho-physiological interaction (PPI) can be considered as a factorial
model, in which the main effect of the psychological variable (which captures pure task
related BOLD responses), the physiological main effect (capturing the non-specific
correlation with the seed region), and their interaction (reflecting task-related changes in the
correlation between the activity in the seed region and other brain areas) can be tested. This
method has been widely applied to investigate inter-regional connectivity modulations that
accompany different cognitive states (Camara et al., 2008).

The basic procedure of PPl analysis begins with extracting the entire BOLD time
course over the experiment from the seed region in each subject (FIGURE 2). The seed
region can be defined either anatomically (e.g. using an anatomic atlas) or functionally. The
time series (physiological factor) are first averaged across the voxels within the seed region
and then undergo pre-processing steps such as high-pass filtering, global-mean
normalization, removal of noise caused by subject’s movement, etc. The psychological factor
represents a cognitive state or task condition. To create the interaction between the
physiological and the psychological factor (the PPI regressors), the time series is multiplied
with condition vectors containing ones for 12 seconds after each psychological condition and
zeros otherwise. The time window of approximately 12 seconds is necessary to capture the
entire hemodynamic response function (HRF), which peaks after 6 seconds and is back at
baseline about 14 seconds after the stimulus onset (Handwerker et al., 2004). These

regressors are used as covariates in a GLM, which also contains the psychological regressors

14
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and the entire time series of the seed region as physiological regressor. The psychological
regressors are convolved with a HRF to predict the BOLD response during a condition.
Importantly, all the regressors need to be regressed simultaneously, so that the shared
variance can not be attributed to any of the regressors. The resulting parameter estimates of
the PPI regressors represent the extent to which activity in each voxel correlates with
activity in the seed region in that specific task condition. The method described above relies
on correlations in the observed BOLD time-series data, and makes no assumptions about the
nature of the neural event contributing to the BOLD signal (Park et al., 2010;Park et al.,
2011;Park et al., revised manuscript;Kahnt et al., 2009;Pessoa et al., 2002).

It is important to note that meaningful connectivity results require the comparison
between two conditions and cannot be interpreted alone. An essential pre-processing step
requires global-mean normalization (the mean of all the voxels in the whole brain) to reduce
non-specific correlations between brain regions. This shifts the whole-brain correlation
distribution to have a mean near zero and thus forces negative correlations to appear, even
if no such correlations are initially present in the data (Van Dijk et al., 2010;Murphy et al.,
2009;Fox et al., 2009). Hence, the direction of the correlation cannot be interpreted, but

only the size of the difference in correlations between two (or more) conditions.
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FIGURE 2 Psycho-physiological interaction analysis (PPI)

A. Physiological regressor, i.e. the entire time series extracted from the seed region. This
regressor captures the correlation with activity in the seed region. B. The psychological
regressors are conventional onset regressors convolved with a HRF to predict the BOLD
response during a condition. C. Psychological-physiological interaction term. Note that the
regressors are modulated by the physiological regressor, only for 12 seconds after trial onset
of each condition. D. All regressors are entered simultaneously into a GLM. E. Finally, by
contrasting the PPl regressors between two conditions, statistical maps can be created. Here,
the statistical brain map represents the condition-related change in the correlation between

activity in each voxel and the seed region.
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3. Experiments: Neural mechanisms underlying context-dependent
modulation of reward processing

This chapter summarizes two experiments (Park et al., 2011;Park et al., revised manuscript)
that constitute the main part of this dissertation. In these experiments, model-based FMRI
and effective connectivity analyses were applied to investigate context-dependent reward
processing. The first study compared different computational models directly on neural data
and demonstrated that valuation of the very same reward is modulated depending on the
combined negative value. Specifically, the neural data provided decisive information that
this modulation was interactive. This interaction of different values was accompanied by
changes in connectivity between the SGACC and the amygdala (Park et al.,, 2011). The
second experiment investigated how the brain represents the mismatch between predicted
and received rewards in different reward contexts. This aimed to define whether our
prediction error representation is invariant for high and low rewards and if so, how this
context-dependent adaptation process is implemented. The results showed that the
prediction error coding in the striatum is invariant across different reward magnitudes,
whereas this invariance is achieved by a context-dependent modulation of striatal coupling
with other reward sensitive brain regions, namely the MPFC and the midbrain (Park et al.,

revised manuscript).

3.1 Value impacts valuation
Most decision options have both positive (benefit) and negative (cost) aspects. To facilitate

decisions we need to integrate these values and build an overall subjective value of an
option (Kable and Glimcher, 2007). One possible integration mechanism is context-

independent valuation; i.e. a simple weighted sum of different values. In contrast, an
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interactive integration mechanism, where valuation of the different aspects depends on the
value of the other aspects, accounts for the context dependency.

| developed a decision task, in which subjects could accept or reject a choice option in
each trial. The choice options incorporated two attributes that were of positive and negative
value and of different nature; physical pain (electric shock) and monetary gain. The
monetary amount and the pain level varied pseudo-randomly in each trial and when the
offer was accepted, the subject received both money and pain, whereas when rejected,
neither was given (FIGURE 3A). Two sets of models were tested. The independent models
assume that the subjective value of an option results from a weighted sum of money and
pain:

SV (X) = Bran Px + Brnoney M (1)
Whereas the interactive models assume an additional parameter accounting for the
interaction of the two:

SV (X) = Brain P + BrnoneyMx + Bcinx money P My ()
Here, SV is the subjective value of the option, py is the pain level, m, is monetary gain of the
option, the 8s represent the weight for pain, money and their interaction, respectively. For
completeness, we modelled both mechanisms with linear and non-linear value functions,
resulting in four models (FIGURE 3C).

The first step was to compare the models on the behavioural data. Here, the
interactive models made better predictions when comparing models with linear value
functions. However, with nonlinear value functions, the models were equally good (FIGURE
3B). Hence, the behavioural data could not provide decisive information about which
integration model is more likely to be correct. The application of the models to imaging data

showed a similar correlation pattern with BOLD responses for all four models (FIGURE 3C).
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Here, the outputs of all four models, that is, the subjective values of the option were
represented in the MPFC/OFC. The MPFC/OFC has been previously shown to encode value
signals (Philiastides et al., 2010;Rangel and Hare, 2010;0'Doherty, 2007;Kahnt et al., 2010). A
statistical model comparison on the imaging data, however, revealed that BOLD responses in
the SGACC could be significantly better predicted by the interactive models (FIGURE 4A).
This superiority was present for both linear and non-linear value functions, indicating that
the imaging data is able to provide decisive information about the superiority of the
interactive model (FIGURE 4B). Finally, a psycho-physiological interaction analysis was
performed with the SGACC as a seed region and different levels of money and pain as
psychological variables. This analysis revealed that the SGACC modulates its connectivity
with the amygdala as a function of the pain-by-money interaction (FIGURE 4C). Specifically,
the connectivity was modulated by money only under the high pain condition, whereas
under the low pain condition, the modulation was not present (FIGURE 4D). This PPI result
demonstrates that the value interaction relies on a dynamic modulation of the SGACC-

amygdala coupling.
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FIGURE 3 Subjective value computation based on four different integration models

A. Task design. In each trial, subjects could either accept or reject a choice option that was a
combination of physical pain and monetary gain. B. MSE (mean squared error) of the four
models in predicting choice behaviour. When value functions were modelled linearly,
interactive model made less errors compared to the independent models, however, with
non-linear value functions, both models performed equally well. Error bars indicate s.e.m. C.
On the left side of each panel, the subjective values of each model are depicted. Note that in
interactive models (lower row), the subjective values from different pain levels are not only
shifted on the y axis, but also have different slopes; i.e. the increase in monetary value is
modulated by the combined pain level (data from a single subject for demonstration). The
right side of panel shows brain regions encoding the subjective value of the four models

(group data, sagittal view).
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FIGURE 4 Model comparisons on FMRI data and connectivity analysis

A. The comparison of the models on neural data revealed that SGACC activity is significantly
better predicted by the interactive compared to the independent integration mechanism
(collapsed over value functions). B. This result was still significant when testing within each
value function separately. C. The PPI analysis with the SGACC as seed region and the money-
by-pain interaction as psychological variable revealed significant modulation of SGACC-
amygdala connectivity. D. Mean corrected connectivity strength between the amygdala and
the SGACC. Functional connectivity between the SGACC and the left amygdala is enhanced
when comparing high and low monetary offers in the context of high pain. Importantly, this

connectivity modulation is absent in the low pain condition. Error bars indicate s.e.m.
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3.2 Adaptive coding of reward prediction errors
The second project investigates the context-dependent coding of prediction errors in the

human brain. PEs have been shown to be invariant across different reward magnitudes and
this is only possible with a magnitude dependent normalization process. Hence, the context
here is reward magnitudes and the modulation refers to the normalization of different
reward magnitudes that enables adaptive coding of PE. Subjects were asked to perform a
simple reward prediction task with different reward magnitudes (FIGURE 5A). In each trial,
they first saw a reward-predicting cue. After a delay, the reward was delivered or omitted
depending on the cued probability. Importantly, we had four different cues; high and low
magnitude (1€ and 10cent, respectively) combined with high and low probability (66% and
33%, respectively).

The first analysis aimed to test whether the striatal PE was adaptively coded, focusing
on the time point of reward outcome. By comparing the correlation between PE and striatal
BOLD signal across the two magnitudes, we confirmed the indifference in PE coding; i.e.
context-dependent adaptation (FIGURE 5B & 5C). Furthermore, an explicit comparison of
context-dependent PE and context-independent PE showed that the context-dependent PE
could significantly better predict the striatal BOLD response (FIGURE 5D). In a next step, to
investigate how this context-dependent normalization is implemented, an effective
connectivity analysis was performed, with the striatum as seed region. Here, the
psychological variable was the different reward contexts. This analysis revealed significant
context-dependent modulation of effective connectivity between the striatum and the MPFC
/midbrain (FIGURE 5E). Importantly, in high reward conditions, there was less connectivity

compared to the low reward condition (FIGURE 5F).
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FIGURE 5 Adaptive coding of reward prediction errors is gated by striatal connectivity

A. Task design. In each trial, a reward-predicting cue was presented, after which subjects
were asked to press a button. After a variable delay, the reward outcome was shown. B.
Striatal BOLD responses showed a significant correlation with reward prediction errors. C.
Importantly, this prediction error was indifferent for high and low rewards, confirming
adaptive coding of prediction errors in the striatum. D. The adaptive PE (modulated only by
probability) could predict the striatal BOLD significantly better compared to the non-
adaptive PE (product of magnitude and probability). E. PPl analysis with striatal seed region
revealed that striatal connectivity with MPFC and midbrain was significantly modulated by
reward magnitudes. F. Specifically, the striatal coupling was significantly lower during high
compared to low reward, indicating down-regulation of striatal activity during high reward

outcomes to implement adaptation of prediction errors. All error bars indicate s.e.m.

23



So Young Park Dissertation

4. Conclusions and future directions

In the previous chapter, | have presented the results of two studies investigating context-
dependent modulation of value processing. Here | will first discuss the results of the two
projects. The second part proposes a neurobiological model for value processing in a
broader frame. Finally, the third part suggests how the proposed model of value processing
can be tested in future experiments.

The results presented in this thesis demonstrate how reward processing flexibly
adapts to a given context. Why is this important? What is the benefit of this mechanism?
One possible answer is that this mechanism facilitates behavioural adaptation. The results of
the first project show that reward valuation is interactively modified in the context of
negative values. An interactive process changes the valuation of the positive reward
depending on the negative value, thus facilitating optimal behaviour to maximize reward
and minimize punishment (Fields, 2007;Dum and Herz, 1984). E.g. in face of great danger, it
is beneficial to ignore the combined small benefit and to avoid the option. Accordingly,
interactive value integration downscales the positive reward value, assigning less value to it
than it would be the case without the negative value. In this case, the subjective value
created by the interactive model is smaller than that of the additive model. This may serve
to reduce the conflict of approach and avoidance behaviour and facilitate decision making.

However, such a beneficial mechanism can also produce irrational behaviours such as
intransitivity. Transitivity postulates, that in case an apple is preferred over an orange, and
an orange over a pineapple, the apple should also be preferred over the pineapple. Choices
need to be transitive, because one option cannot be better and worse than another option
at the same time (von Neumann and Morgenstern, 1944;Samuelson, 1938). However,

humans and animals often violate transitivity (Tversky, 1969;Shafir, 1994). Specifically,
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intransitive choices are revealed when individuals choose between outcomes that vary along
several aspects, such as different values (Tversky, 1969). The interactive value integration
mechanism is able to predict such intransitive choice behaviour, because this model predicts
that the valuation of one and the same reward changes depending on the cost associated
with it. Furthermore, a recent FMRI study investigating intransitivity demonstrates that
activity in the SGACC correlates with context-dependent desirability, a variable that accounts
for intransitivity (Kalenscher et al., 2010) in line with the presented result of the thesis (Park
et al., 2011).

The results of the second experiment show that the PE representation adapts
depending on reward magnitudes (Park et al. revised manuscript). This adaptive coding of PE
enables us to remain sensitive across a large range of rewards. In case this PE computation is
context-independent, we could not learn from small rewards. In other words, in all situations,
only the prediction errors of extremely high rewards would be behaviourally relevant and
prediction errors of small rewards would never impact behaviour.

This context-dependent normalization is accompanied by a change in the
connectivity between the striatum and the MPFC/midbrain. Studies investigating the
dynamics of neuronal activation in this anatomical network support our connectivity finding.
These studies indicate that activation of the PFC regulates striatal dopamine release via
inhibitory midbrain neurons (Haber and McFarland, 1999;Haber et al., 1995;Haber and
Knutson, 2010). Specifically, PFC neurons activate midbrain GABAergic cells that in turn
inhibit neighbouring dopaminergic neurons projecting to the striatum (Karreman and
Moghaddam, 1996;Sesack and Pickel, 1992;Sesack et al., 1989;Frankle et al., 2006).

Taken together, the results of both experiments lead to a broader picture of how the

brain can flexibly process values in different contexts. Based on these results, the following
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model can be proposed (FIGURE 6). Changes in SGACC-amygdala coupling modulate the
value of the reward depending on the cost associated with it. The output of this
computation, the subjective value, is represented in the MPFC/OFC. Evidence from previous
studies points toward a role of MPFC/OFC as working memory for expected rewards
(Schoenbaum et al., 1998;Wallis, 2007). Specifically, a recent study has shown that when a
reward predicting cue is presented, the activity pattern in the MPFC/OFC mimics the pattern
of reward receipt (Kahnt et al., 2010;Kahnt et al., 2011). Furthermore, it has been suggested
that this expected value representation in the MPFC/OFC is updated by means of PE signals
from the midbrain (VTA) (Schoenbaum et al., 2009;Takahashi et al., 2009;Takahashi et al.,
2011). Hence, it can be assumed that the MPFC/OFC bridges the delay between the reward
cue and the outcome by maintaining expected outcome representations. At the time of the
reward outcome, this representation of expected reward enables the MPFC/OFC in concert
with the midbrain to regulate activity in the striatum to adjust the prediction error
depending on the expected magnitude of reward. Prediction errors in turn, change the
expected value of cues in the OFC and thus future behaviour. All these regions have different
roles in processing specific aspects of reward. However, these different regions do not work
in isolation but are linked together by means of changes in functional connectivity. Thus, this
network allows the representation of all aspects of reward and, because it represents value
in a context-dependent fashion, remains sensitive to small differences in value at the same

time.

26



So Young Park Dissertation

time

Reward predicting cue Reward outcome

Cost-dependent modulation of value Magnitude-dependent modulation
of reward prediction error

Y Y
Interactive Prediction
integration error

( \ mPFC/OFC ( \
sgACC — — striatum

— —

lT Representation of lT
subjective value

SR )
amygdala midbrain

— —

./ .

FIGURE 6 A potential mechanism of context-dependent value processing

When encountering a reward predicting cue with cost and benefit aspects, SGACC and
amygdala modulate the reward value depending on its cost. The output of this computation,
namely the subjective value is subsequently represented in the MPFC/OFC and is used to
guide choice behaviour. Furthermore, the MPFC/OFC sustains the subjective value
information until the predicted reward outcome occurs. The maintained information is then
used to regulate the striatal PE to enable adaptive coding. This context-dependent
modulation is implemented by changes in functional connectivity between regions

(represented by small arrows).

This model suggests several questions to be tested. First, people tend to seek
immediate rewards and delayed pay (Weber et al., 2004;Weber and Johnson, 2006). This
asymmetric discounting (Loewenstein, 1988) is typically explained by loss aversion as

formalized by prospect theory (Kahneman and Tversky, 1979). Hence, people prefer an
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option in which the reward value is presented first, then its cost, compared to an option with
the opposite sequence, even if those options are objectively the same. The model based on
the results presented in this thesis would predict that the sequence-dependent modulation
also relies on the SGACC-amygdala network. Specifically, depending on the sequence, it is
likely that the modulation is stronger in the reward-cost compared to the cost-reward
sequence. Furthermore, it could be tested, whether individual differences in loss-aversion
are reflected in SGACC-amygdala coupling.

Second, this model can be tested in addicted patients, such as substance dependence
or gambling. For these patients, the reward value of the drug is so powerful, triggering
strong drug seeking behaviour, whereas all the other potential rewards seem be
behaviourally irrelevant (Kalivas and Volkow, 2005;Nesse and Berridge, 1997). Recently, it
has been shown that the prediction error coding itself is not impaired in alcohol-dependent
patients (Park et al., 2010). However, in the frame of our model, it can be hypothesized, that
these patients have an impaired context-dependent adaptation, such that their behaviour is
only influenced by the substance related PE signal.

Third, it is an open question, whether context-dependent adaptation of value
processing is also applied in the social domain. Theory-of-mind, the ability to understand
other’s mental state has been associated with distinct brain regions, such as dorsomedial
prefrontal cortex (DMPFC), temporo-parietal junction (TPJ) and superior temporal sulcus
(STS) (Behrens et al., 2009). It is possible that these regions interact with the network of the
suggested model. Hence, future studies could investigate 1) whether there is active context-
dependent reward processing for another person in the same manner and 2) whether this

also relies on the same brain network.
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In conclusion, the results of this dissertation considerably advance our knowledge
about the neurobiology of context-dependent value modulation in humans. Using
sophisticated FMRI analysis methods, they show that reward value is flexibly adapted to its
context, and that reward prediction error computation adapts to different reward
magnitudes. Furthermore, they shed light onto its underlying neural mechanism. Finally,

these findings and the model derived from them raise new questions for future research.
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Neurobiology of Value Integration: When Value
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Everyday choice options have advantages (positive values) and disadvantages (negative values) that need to be integrated into an overall
subjective value. For decades, economic models have assumed that when a person evaluates a choice option, different values contribute
independently to the overall subjective value of the option. However, human choice behavior often violates this assumption, suggesting
interactions between values. To investigate how qualitatively different advantages and disadvantages are integrated into an overall
subjective value, we measured the brain activity of human subjects using fMRI while they were accepting or rejecting choice options that
were combinations of monetary reward and physical pain. We compared different subjective value models on behavioral and neural data.
These models all made similar predictions of choice behavior, suggesting that behavioral data alone are not sufficient to uncover the
underlying integration mechanism. Strikingly, a direct model comparison on brain data decisively demonstrated that interactive value
integration (where values interact and affect overall valuation) predicts neural activity in value-sensitive brain regions significantly
better than the independent mechanism. Furthermore, effective connectivity analyses revealed that value-dependent changes in valua-
tion are associated with modulations in subgenual anterior cingulate cortex-amygdala coupling. These results provide novel insights

into the neurobiological underpinnings of human decision making involving the integration of different values.

Introduction

In everyday life, we choose between options with multiple attributes.
The attributes of an option (e.g., shoes) can be qualitatively different
(aesthetics and expenses) and are associated with positive or negative
values. For successful choice behavior, individuals need to integrate
the different values into an overall subjective value.

Behavioral economics has investigated value integration mecha-
nisms to predict choice behavior across a distribution of positive and
negative values. Multiattribute utility theory suggests that the sub-
jective value of multiattribute options equals the attributes’ weighted
sum (Keeney and Raiffa, 1976; Wallenius et al., 2008). Although
these models can predict choice behavior well (Huber, 1974; Walle-
nius et al., 2008), they require that the preference order of one attri-
bute is independent of other attributes. However, human choice
often violates this (Keeney and Raiffa, 1976); for example, when
selecting a dinner menu with cheese, red wine has a higher value than
white wine. But, with fish, white wine has a higher value. Here, an
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independent model fails to predict choice, whereas an interactive
integration model would successfully predict choice by permitting
an extra term for the dependence of attributes.

How the neural systems mediate the value integration is not well
understood. The subgenual anterior cingulate cortex (sgACC) has
been shown to encode both positive and negative values (Blood et al.,
1999; Plassmann et al., 2010). Also, the amygdala represents values
independent of valence (Breiter et al., 1996,2001; Becerra et al., 2001;
Gasic et al., 2009). Furthermore, these structures play a key role in
both affect (Phelps et al., 2004) and pain regulation (Bingel et al.,
2006; Wiech et al., 2008). Thus, the sgACC and the amygdala are
ideally suited to facilitate interactive value integration.

In this study, we investigated how the brain integrates values
across discrete stimuli into one subjective value to guide decision
making. We hypothesized that (1) different values affect each other
and (2) the sgACC and amygdala are critically involved. To test these
hypotheses, we measured brain activity using fMRI while subjects
accepted or rejected offers that were combinations of qualitatively
different values of different valence (pain and money). The combi-
nation of values included a parametric variation in their intensities.

A well established approach to investigate cognitive processes
underlying decision making is to compare cognitive models on
behavioral data (O’Doherty et al., 2007; Mazur and Biondi, 2009;
Talmi et al., 2009; Bhatt et al., 2010; Navalpakkam et al., 2010).
However, if competing models predict the same pattern of
choices, behavioral data are limited (Bruni and Sugden, 2007). In
these cases, forcing the models to predict neural activity can pro-
vide decisive evidence (Glimcher and Rustichini, 2004; Hampton
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etal., 2006, 2008; Sanfey et al., 2006; Kable
and Glimcher, 2007; Loewenstein et al.,
2008). We tested four different subjective
value models with either independent or in-
teractive value integration mechanisms. We
applied these models directly on behavioral
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Twenty-four healthy male subjects (age: 26.79 *
0.66 years) were included in the study. Subjects
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reported no psychiatric or neurological disorder.
Written informed consent was obtained from all
participants after the procedure had been fully
explained. The study was approved by the Eth-
ics Committee of the Charité—Universitidtsme-
dizin Berlin.
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Task
Individual pain stimulus selection. Before the
scanning session, subjects received 30 mild
shocks of varying levels in randomized order
and gave ratings on a visual analog scale (VAS)
(Price etal., 1994; Brooks et al., 2010). The very
left extreme of the VAS was labeled as 0 (not
unpleasant at all); the very right extreme was
labeled as 100 (worst imaginable unpleasant-
ness) (Fig. 1A). For the tactile-stimulus appli-
cation, we used a DS5 (Digitimer) stimulator
controlled by a stimulation computer. A ring electrode was placed on the
back of the left hand between thumb and index finger. For each subject,
we fitted a power function to these ratings (Price et al., 1983) and defined
five different pain stimuli with equal intervals in subjectively perceived
unpleasantness (Fig. 1 B). All visual and tactile stimuli as well as response
recordings were controlled using Cogent2000 and MATLAB.

Associating tactile stimuli with visual stimuli. The set of five different
pain stimuli obtained for each individual was then associated with five
visual cues via a classical conditioning procedure. In each trial, a visual
cue predicting a specific stimulus strength was presented for 1 s. After a
1 s delay, the corresponding tactile stimulus was applied to the subject in
paired trials (80%), and no stimulation occurred in unpaired trials
(20%). Each association was repeated 10 times (Fig. 1C).

fMRI decision-making task. fMRI acquisition consisted of four runs with
60 trials each. In each trial, subjects viewed one offer. The offer was a com-
bination of a monetary amount and a visual pain cue that was learned pre-
viously. After a variable delay, subjects either accepted or rejected the offer by
a left- or right-hand button press (Fig. 1 D). Subjects were told that after the
entire experiment, 15 trials of each run would be randomly selected and the
accepted offers would be delivered to the subject (both money and pain),
whereas the rejected offers would not. We had 12 monetary offers for each
subject ranging from 1 to 99 cents (€) (mean 38 cent = 2 SEM). For each
subject, all combinations of money—pain cue pairs occurred equally often.
All pain levels were paired with the complete range of monetary amounts.
Before entering the scanner, subjects performed a practice version of the task
from which the range of monetary offers was selected for each subject, en-
suring that a similar number of offers would be accepted as well as rejected.

Figure1.

Subjective value models and behavioral analysis

The subjective value models integrated pain and money either indepen-
dently or they additionally assumed an interaction between both attri-
butes. The interactive term can be thought of as modulating the slope of
the value of money as a function of pain. It quantifies by how much the
increase in money (i.e., 1 to 99 cents) paired with low pain differs from

D fMRI decision making task
i |S| 6-10 sec

max.response time 2sec ITI 6 - 10 sec

-
yes

Multiattribute decision-making task. A, Subjects rated tactile stimulations of different strengths ona VAS. B, To select
five pain stimuli for each individual, we estimated individual power functions using the subjective unpleasantness ratings. ¢, The
five selected pain stimuli were then associated with five different visual cues using a classical conditioning procedure. D, fMRI
experiment. In each trial, subjects saw an offer, which was a combination of a visual pain cue and an amount of money. After a
variable delay, subjects either accepted or rejected the offer. Subjects were told that 15 trials would be randomly selected at the end
of the experiment and both money and pain would be given in case the selected trial was an accepted offer and that they would
receive nothing if it was a rejected offer. IS1, Interstimulus interval; ITI, intertrial interval.

the same monetary increase paired with high pain (Fig. 2A-D). Behav-
ioral studies have suggested nonlinear value functions that allow concav-
ity for positive values and convexity for negative values (Kahneman and
Tversky, 1979). For completeness, we modeled the value functions for
pain and money in both a linear and nonlinear manner. We refer to these
models as (1) linear independent, (2) nonlinear independent, (3) linear
interactive, and (4) nonlinear interactive (Fig. 2A-D). Mathematically,
all models can be represented as a special case of the nonlinear interactive
model, which defines the subjective value of a choice option x by the
subjective value of the monetary amount and the pain level of the option:

SV (x) = Bum™ + Bpp” + Bupm"pihs

where SV is the subjective value, m, is the monetary amount, p, is the
pain level, and the Bs represent the weights for money, pain, and the
interaction, from left to right. The shape of the value functions for pain
and money is modulated by an exponent « and thus allowed to deviate
from linearity (o = 1) to be concave (o < 1) or convex (e > 1). In case
the weight B,,,, for the interaction of pain and money is set to zero,
Equation 1 represents the two independent models (Fig. 24, B), and in
case the exponent for the value functions is 1, Equation 1 represents the
two linear models (Fig. 24, C). For all models, we assumed that the
probability of accepting an option is a monotonic function of the op-
tions’ subjective value, as defined by the soft-max choice rule:

1

placcept x) = 1 s

where 7 is a sensitivity parameter defining the slope of the sigmoid
function, that is, the choices’ stochasticity (the percentage of accepted
offers plotted as a function of subjective value of the nonlinear indepen-
dent model for demonstration; Fig. 2 F).

Individual model parameters were estimated using a leave-one-out
cross-validation procedure by minimizing the mean squared errors
(MSE: average squared difference between the model prediction and sub-
jects’ actual choice behavior). Data from three runs were used to fit the free
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Figure2. Subjective values of the four models. The subjective values (SV) of the corresponding model as a function of money are plotted. Color of the data points indicates the level of pain i.e.,

the darker the points, the higher the pain level). 4, Linear independent; B, nonlinear independent; C, linear interactive; D, nonlinear interactive. In the interactive models (C, D), the subjective values
from different pain levels are not only shifted on the y-axis but also have different slopes, that is, the difference between high money versus low money is modulated depending on the combined
pain level (data from one subject for demonstration). £, MSE of the four models in predicting choice behavior. When value functions were modeled in a linear fashion, the interactive models predicted
the choice behavior better compared with the independent models (,5) = 4.17, p << 0.0001). However, when value functions were modeled nonlinearly, both integration mechanisms did not
differ substantially (t,,3) = 1.28, p = 0.21). Note that the better predicting model has smaller MSE. Error bars indicate SEM. F, The probability to accept increases as a function of subjective value

(nonlinear interactive model). Error bars indicate SEM.
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Figure3.  Predicted and actual percentage of accepted offers. The probability to accept plotted as a function of the subjective

values (SV) derived from the four models. Blue lines indicate the model predictions and red dots indicate the actual choice behavior
(percentages of accepted offers, binned in 10 categories). Data of a single subject are shown for llustration. 4, Linear independent;

B, nonlinear independent; C, linear interactive; D, nonlinear interactive.

model parameters, and their prediction accuracy
was computed on the fourth independent test
run. This procedure was repeated four times,
each time using a different run as the indepen-
dent test dataset. The prediction accuracy of a
given model was defined as the average MSE in
predicting the independent test data across all
four cross-validation steps. This procedure al-
lowed us to compare the MSE of four models
against each other in predicting choice behavior,
independent of the models’ complexities (i.e., num-
ber of free parameters) (Stone, 1974; Hampton et
al., 2008). MSE scores did not significantly deviate
from a normal distribution (Kolmogorov—Smirnov
test, all pvalues > 0.7). We thus compared the mod-
els’ ability to predict choice behavior usinga 2 X 2
ANOVA (integration mechanism X shape of value
function).

fMRI acquisition and preprocessing
Functional imaging was conducted on a 3 tesla
Siemens Trio scanner with 12-channel head
coil. In each of the four runs, 465 T2*-weighted
gradient-echo EPIs containing 33 slices (3 mm
thick) separated by a gap of 0.75 mm were ac-
quired. Imaging parameters were as follows:
TR = 2000 ms, TE = 30 ms, flip angle = 90°,
matrix size = 64 X 64, and FOV = 192 mm,
voxel size = 3 X 3 X 3.75 mm.

Functional data were analyzed using SPM5
(Wellcome Department of Imaging Neurosci-
ence). The first three volumes of each run were
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discarded to allow for magnetic saturation ef-
fects. Images were slice time corrected, re-
aligned, spatially normalized to a standard T2*
template of MNI, resampled to 3 mm isotropic
voxels, and spatially smoothed using an 8 mm
FWHM Gaussian kernel. All included subjects
moved less than the size of a single voxel (3
mm; maximal between-scan movement in
mm, mean = SEM, x = 0.15+ 0.02; y = 0.36 =
0.04; z = 0.61 % 0.1; in radians, mean * SEM,
pitch = 0.0087 = 0.0025; roll = 0.0031 =
0.0004; yaw = 0.0025 = 0.0003).

Independent

Linear
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Model-based fMRI data analysis

To test the four models against each other at
the neural level, for each subject, we set up a
GLM with a parametric design (Biichel et al.,
1998) for each subjective value model, result-
ing in four GLMs per subject. Each GLM had
three regressors of interest: (1) onset of the of-
fer, (2) the trial-wise subjective value of the of-
fer, and (3) response onset. The subjective
value regressor was created by parametrically
modulating the stimulus function of the offer
onset by the standardized (mean = 0, SD = 1)
trial-wise subjective values derived from the
four models. The regressors were convolved
with a canonical HRF and orthogonalized with respect to the offer onset.
All regressors were simultaneously regressed against the BOLD signal in
each voxel. The regressors for offer and response onset are identical in all
subjective value models; thus, the individual # maps of the subjective
value regressors are proportional to the amount of variance in the BOLD
response that is explained solely by each of the subjective value models in
each voxel (i.e., effect size). The t maps of all four models were taken to a
second-level random effect analysis.

First, to identify brain regions significantly correlating with the aver-
age of all four subjective value models, the four effect size images were
averaged and tested (p < 0.001, uncorrected, k = 10). Second, analogous
to the behavioral comparison, we set up a second-level random effect
analysis, using a 2 X 2 ANOVA. Because the aim of this study was to
identify which integration mechanism is used by the brain, the important
comparison is the difference between interactive and independent mod-
els (and vice versa, collapsing across the value function shapes). The same
procedure was applied to compare nonlinear and linear subjective values
on the neural level. For this analysis, we applied a threshold of p < 0.005,
k = 5, uncorrected within the mask of the average map of subjective
values (p < 0.05). After having identified the regions in which changes in
BOLD signal were significantly better predicted by the interactive models
compared with independent models, we extracted the effect sizes of this
region. We then performed post hoc t tests to investigate whether the
interactive models made better predictions also for both linear and non-
linear value functions separately.

Finally, to resolve the question that could not be answered with the
behavioral data, namely the superiority of the integration mechanism
within the nonlinear models, we compared the effect sizes of the nonlin-
ear interactive and the nonlinear independent models on a whole brain
level using voxelwise paired ¢ tests (p < 0.001, uncorrected).

Integration mechanism

Interactive

Figure 4.

superimposed statistical maps.

Task-dependent changes in connectivity with the sgACC

We performed a whole-brain psychophysiological interaction (PPI)
analysis (Friston et al., 1997; Kahnt et al., 2009; Park et al., 2010) with the
sgACC as a seed region. After having shown that the sgACC is involved in
interactive value integration, we aimed to investigate how the interaction
between pain and money actually modulates the effective connectivity of
the sgACC with any other brain region. In contrast to the standard PPI
analysis with only one psychological factor, we set up a PPI using two
psychological factors (pain and money). We then searched for changes in
effective connectivity with the interaction of pain and money. We first
sorted all trials according to their pain and money levels into nine classes
(3 money [low, middle, and high] X 3 pain [low (levels 1 and 2), middle

y=45 x=-3

Brain regions encoding the subjective value of the four models. 4, Linear independent; B, nonlinear independent; C,
linear interactive; D, nonlinear interactive. Slices represent coronal (left) and sagittal (right) views of structural brain images with

Table 1. Average effects of subjective values (p < 0.001, k = 10)

MNI

Region name BA X y z tvalue
L OFC " =21 33 =15 3.83

Medial OFC 32 0 39 -3 3.69
L Central OFC 10 —36 48 —6 439
R dIPFC 8 2 30 51 4.09
L dIPFC 8 —24 36 54 3.67
L Parietal cortex 7 —24 —63 54 3.67
R Parietal cortex 40 =51 —42 57 3.43
L Occipital lobe 18 12 —9% 6 7.70
R Occipital lobe 18 27 -99 —6 439
L Cerebellum —27 —81 —48 3.65
R Cerebellum 2 —81 -33 418

A mp<0.01 B

p <0.005

(a.u.) sgACC

effect size of subjective value
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Figure5. sgACCisinvolved when value affects valuation. A, sgACC (0, 27, —15) show-
ing significantly larger effect sizes for the subjective values (SV) of the interactive com-
pared with the independent models in a direct whole-brain model comparison. Slice
represents the sagittal view of structural brain image with superimposed statistical map.
B, This difference was also significant when testing the linear and nonlinear models
separately. Error bars indicate SEM.

(level 3), and high (levels 4 and 5)]). We extracted the entire time series
from each subject in the cluster of the sgACC, in which activity showed
significantly higher correlation with subjective values of the interactive
models compared with that of the independent models (see Results,
Neural representation of different subjective values). We first created
regressors for each of the three pain levels. Within each of these three
regressors, we coded the three money levels; that is, six TRs following the
onset of high money trials were coded as 1, whereas six TRs following the
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Table 2. Comparison between interactive and independent models [ collapsed
across the curvature of value function; p < 0.005, k = 5, masked with the average
map of subjective values (p < 0.05)]

MNI
Region name BA X y z tvalue
sgACC 25 0 27 =15 2.87
R dIPFC 8 4 33 4 3.43
R OFC n 12 39 —21 3.23
L Inferior parietal cortex 40 —42 —4 48 2.82
R Inferior parietal cortex 40 45 —4 57 2.82
L Cerebellum n —36 —48 =30 3.16
R Thalamus 6 —15 9 3.12
Periaqueductal grey 3 -33 —6 3.45
R Precentral cortex 6 54 —6 54 2.89
L Angular gyrus 7 36 —63 48 2.80
L Middle occipital gyrus 37 —51 —63 20 331
L Occipital lobe 19 =27 —66 'y} 3.10
R Occipital lobe 19 36 —81 21 2.89
B C

z2=42

effect size comparison

SVhon-linear interactive VS. SVnon-linear independent

Figure 6.  Whole-brain direct comparison between nonlinear interactive versus nonlinear independent models (A, B) and the
whole-brain effective connectivity of sgACC (C). 4, B, Brain regions showing significantly larger effect sizes for the nonlinear
interactive model compared with the nonlinear independent model. Slices represent sagittal (left) and transversal (right) views of
structural brain images with superimposed statistical maps. The circled areas indicate anterior vmPFC [BA 11(6, 48, —9), t g =
3.18,p << 0.001] (A) and dIPFC[BA 9 (30, 45, 42), .o, = 3.78, p << 0.001] (B). , Functional connectivity between sgACCand left
amygdala is enhanced as a function of money offers within the high-pain compared with the low-pain condition [(—12, —3,
—12), t,49) = 4.14,p < 0.001; coronal view of structural brain image with superimposed statistical map].

Table 3. Nonlinear interactive > nonlinear independent (p < 0.001, k = 10)

MNI
Region name BA X y z tvalue
R OFC 10/11 6 48 -9 3.18
R dIPFC 8 30 45 42 3.78
R Posterior cingulate cortex 6 3 =30 57 3.81
L Posterior cingulate cortex 6 -3 —30 72 3.42
R Occipital lobe 19 -33 —78 27 3.77
R Thalamus 12 —-12 9 3.57
L Cerebellum —36 —48 —30 3.48
L Midbrain -12 —12 =27 337
L Parietal cortex 7 =27 —78 45 333
R Temporal cortex 37 51 —63 —18 332
R Midfrontal cortex 6 36 6 60 3.30
L Precentral gyrus 6 —30 -9 60 3.47
L Parahippocampal gyrus 30 =21 —36 =15 3.25
R Parahippocampal gyrus 30 21 —24 —18 3.3

onset of low money trials were coded as — 1, and the middle money trials
were coded with zeros. The time window of six TRs was selected to
capture the entire hemodynamic response function (Kahnt et al., 2009;
Park et al., 2010). These regressors were then multiplied by the nor-
malized time series of sgACC. Thus, for each pain level, the resulting

sgACC connectivity
money X pain
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regressor represents the interaction between sgACC activity and
money for one pain level. The middle regressors of pain and money
were included in the single-subject model, but were not used to com-
pute the group contrasts because of the smaller number of trials in
these classes. Importantly, the created PPI regressors were used as
covariates in a separate regression, which also included all the psy-
chological regressors [three onset regressors for three pain levels, each
regressor coding the onset of high money (as +1), middle money (as
0), and low money (as —1), convolved with an HRF] and the physi-
ological regressor (the entire time series of sgACC). Because the seed
region is defined (the contrast interactive vs independent) in a similar
way as the psychological factor of the PPI regressors (interaction
between pain and money), the psychological, PPI, and physiological
regressors may be correlated. Note that this deviates from the stan-
dard PPI approach, in which the seed ROI definition is usually or-
thogonal to the psychological factor. However, because we entered all
regressors simultaneously into the model, the shared variance would
not be attributed to any of the regressors. According to this, the PPI
regressor explains the incremental variance that is neither explained
by the psychological regressors nor by the
physiological regressor. Individual contrast
images for sgACC connectivity modulated
by money for high-pain and low-pain levels
were then entered into second-level £ tests.

m p<0.01
p <0.001

Results

Model predictions on choice behavior
The Kolmogorov—Smirnov test revealed
that all MSEs did not differ from normal
distributions (p values for MSE linear in-
dependent = 0.996; linear interactive =
0.877; nonlinear independent = 0.993;
nonlinear interactive = 0.734). A 2 X 2
ANOVA (integration mechanism X
shape of value function) with the four
models revealed that the nonlinear mod-
els had higher predictive power com-
pared with the linear models (F, 53, =
17.17, p < 0.001). However, we found a
significant interaction effect (F(, ,3, =
21.35, p < 0.001) demonstrating the su-
periority of the interactive model over
the independent model only when the
value functions were modeled linearly. Within the nonlinear
value functions, the predictive power of both integration
mechanisms did not differ substantially (¢,;, = 1.28, p =
0.21) (Fig. 2E; Fig. 3A-D shows choice behavior of a single
subject as a function of the subjective values derived from the
four models). Thus, we conclude that, on the basis of choice
behavior, it is not possible to identify the integration mecha-
nism. Therefore, we further compared the predictive power of
the models directly on neural data to gain insight into the
underlying cognitive integration mechanism.

Model-based fMRI data analysis

Neural representation of different subjective values

The four models showed similar patterns of correlation with
BOLD responses (Fig. 4). On average, the subjective values of the
four models showed significant correlation in the medial pre-
frontal cortex [mPFC (0, 39, —3), t(9,, = 3.69, p < 0.001], the
central orbitofrontal cortex [cOFC (—36, 48, —6), t(,, = 4.39,
p < 0.001], and the dorsolateral prefrontal cortex [dIPFC (—24,
36, 54), ty) = 3.67, p < 0.001] (see Table 1 for whole-brain
results).
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Next, we performed a whole-brain model comparison by sta-
tistically testing the effect sizes of the different models. The inter-
active models showed significantly larger effect sizes in sgACC
[BA 25 (0, 27, —15), (9, = 2.87, p < 0.005] compared with the
independent models (collapsed across linear and nonlinear mod-
els) (Fig. 5A, see Table 2 for whole-brain results). In contrast,
there were no voxels in which BOLD responses were better pre-
dicted by the subjective values of the independent models. Fur-
thermore, we did not find any voxels in which BOLD responses
were significantly better predicted by the subjective values of the
nonlinear compared with the linear models or vice versa.

A post hoc ROI analysis revealed that in the sgACC, the effect
sizes of the interactive models were larger than those of the inde-
pendent models in both linear and nonlinear models separately
(tas) = 2.47, p < 0.05; t(53) = 2.87, p < 0.05, respectively) (Fig.
5B). Thus, we conclude that values are integrated by means of an
interactive integration mechanism and that sgACC plays a crucial
role in this function.

Identifying the neural integration mechanism

We have shown that both nonlinear models made better behav-
ioral predictions than the two linear models. However, within the
nonlinear models, both integration mechanisms (interactive
and independent) predicted choice behavior equally well (see
above). Therefore, we used the brain data to identify which of
the nonlinear integration mechanisms is superior in predicting
the BOLD signal in value-sensitive brain regions. Thus, this anal-
ysis can serve as a tiebreaker between competing models of brain
processes underlying decision making. The nonlinear interactive
model revealed voxels with higher effect sizes than the nonlinear
independent model in the medial OFC [(6, 48, —9), t(o,, = 3.18,
P <0.001] and the dIPFC [(30, 45, 42), o,y = 3.78, p < 0.001] as
well as other regions (Fig. 6 A, B, Table 3). In contrast, we did not
find any voxel in which BOLD changes were significantly better
predicted by the nonlinear independent model compared with
the nonlinear interactive model. Hence, we conclude that the
nonlinear interactive model provides the better description of the
neural processes underlying choice behavior among multiattrib-
ute options.

Effective connectivity of sgACC

Finally, the whole-brain PPI analysis with the sgACC as seed
region revealed a significant difference in the money-
dependent connectivity modulation when contrasting high
versus low pain in the amygdala/sublenticular extended
amygdala (SLEA) [(—12, —3, —12), t(49) = 4.14, p < 0.001]
(Fig. 6C).

Discussion

In the present study, we showed that value affects valuation when
advantages and disadvantages are integrated into an overall sub-
jective value. This study provides a concrete example of how
neuroimaging directly allows one to test between computational
models of decision making and facilitates the evaluation of cog-
nitive computations. Thus, our study supports the promise of
neuroeconomics that neuroimaging can significantly contribute
to the evaluation of economic questions.

Although independent and interactive subjective value mod-
els rely on different assumptions, both models make very similar
predictions about the choice behavior. Indeed, in our case, the
interactive and independent models performed equally well in
predicting subjects’ behavior when the value functions were
modeled nonlinearly. Thus, behavioral data alone were insuffi-
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cient to conclude which integration mechanism (interactive vs
independent) best describes the cognitive process of integrating
the attributes’ values into the subjective value of multiattribute
options. Therefore, we went on to compare the predictive power
of the models on the neural data. This revealed that interactive
models are superior to the independent models in predicting
neural activity in the sgACC, independent of the curvature of the
value functions. Thus, this analysis of neural activation provides a
potential solution for the computational mechanisms of value
integration, for which behavioral measures in this study were not
informative. Only a few studies so far have compared different
models directly on neural data (Hampton et al., 2006, 2008;
Montague et al., 2006; Kable and Glimcher, 2007; Rangel et al.,
2008). This approach is related to some model-based fMRI stud-
ies (Breiter et al., 2001; O’Doherty et al., 2004; Seymour et al.,
2004; Kim et al., 2006; Talmi et al., 2009) and provides a concrete
example of using neural signals with modeling to identify inte-
gration computations that cannot be easily identified by behav-
ioral measures. The identification of the better describing model
is essential, even if the two models may yield similar patterns of
prediction for choice behavior on one dataset, because this does
not imply that this will be the case in other decision situations.
Specifically, it is important to identify more accurate descriptions
of the underlying process because such models will make new and
more precise predictions in future and alternative situations (see
also Camerer, 2007). In line with this, future studies should create
decision situations in which those models make diverging predic-
tions and compare the models’ accuracy in predictions.

Finally, we showed that the connectivity between the sgACC
and the amygdala/SLEA was modulated as a function of money
only during high-pain conditions. This suggests that interactive
value integration relies on the interplay between the sgACC and
the amygdala/SLEA.

Subjective values of all four models showed significant corre-
lations with the BOLD signal in medial PFC and OFC. This is in
line with evidence suggesting that the ventral part of the medial
PFC and OFC encodes the reward value of choice options (Aha-
ronetal.,2001; Daw et al., 2006; Kim et al., 2006; Plassmann et al.,
2008; Gasic et al., 2009; Hare et al., 2009; Kahnt et al., 2010, 2011;
Philiastides et al., 2010; Smith et al., 2010). Talmi and colleagues
(2009) have demonstrated that activity in this region increases
with rewards and is attenuated by the prospect of pain. Further-
more, our result that sgACC, together with the amygdala/SLEA, is
involved in interactively modulating hedonic experience is con-
sistent with a large body of evidence from cognitive neuroscience.
In studies investigating monetary gains and losses, Breiter et al.
(2001) have reported that SLEA activity is modulated not only by
the prospect of monetary gains and losses but also by their out-
comes. In monkeys and rats, analogous regions are involved in
regulating fear by exerting inhibitory control over amygdala ac-
tivity (Sotres-Bayon et al., 2004; Quirk and Beer, 2006; Milad and
Rauch, 2007). Studies on fear extinction in rats have shown that
stimulating this PFC region modulates amygdala responses,
thereby affecting the expression of conditioned responding
(Quirk et al., 2003; Rosenkranz et al., 2003). In humans, during
extinction and the regulation of learned negative values, the
sgACC is actively engaged together with the amygdala indepen-
dent of the modulation strategy (Phelps et al., 2004; Etkin et al.,
2006; Delgado et al., 2008; Schiller and Delgado, 2010). Similarly,
sgACC-amygdala coupling is involved in pain regulation such as
placebo analgesia and pain habituation (Mayberg et al., 2002;
Bingel et al., 2006, 2007). An interesting question is whether our
results can be generalized to other types of cost—benefit integra-
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tion. Recent evidence suggests distinct valuation subsystems for
different types of costs and benefits. For example, Prévost et al.
(2010) have shown that delay and effort discounting engage dif-
ferent neural circuits (see also Croxson et al., 2009). Also, besides
sgACC and amygdala, ventromedial PFC, and striatum have been
shown to play a key role in initial acquisition and modulation of
the fear response (Schiller and Delgado, 2010).

In summary, the present study compared different subjective
value models with independent and interactive value integration
mechanisms directly on fMRI data. This procedure provided
neural evidence that an interactive rather than an independent
integration mechanism is implemented in the brain. Further-
more, it suggests that the sgACC, in concert with the amygdala, is
critically involved in this process. By demonstrating how differ-
ent values are integrated in the brain, our results substantially
extend our knowledge about the neurobiological underpinnings
of human choice behavior. Moreover, they contribute to the field
of neuroeconomics by showing that direct model comparisons
on brain data can be used to uncover cognitive processes and
thereby to decide among competing models of decision making.
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Abstract

To efficiently represent all the possible rewards in the world, dopaminergic midbrain
neurons dynamically adapt their coding range to momentarily available rewards. Specifically,
these neurons increase their activity for an outcome that is better than expected and
decrease it for a worse than expected, independent of absolute reward magnitude. Although
this adaptive coding is well documented, it remains unknown precisely how this rescaling is
implemented. To investigate this, we used human functional magnet resonance imaging
(fMRI) in combination with a reward prediction task that involved different reward
magnitudes. We demonstrate that reward prediction errors in the human striatum are
expressed according to an adaptive coding scheme. Strikingly, we show that adaptive coding,
a de facto context invariance, is gated by changes in effective connectivity between the
striatum and other reward sensitive regions, namely the midbrain and medial prefrontal
cortex. Our results provide evidence of how striatal prediction errors are normalized by a
magnitude-dependent alteration in inter-regional connectivity within the brain reward
system.

Introduction

From receiving a piece of chocolate to winning a lottery, the range of possible rewards in the
world is immense, yet the coding range of reward-sensitive neurons is limited. An efficient
way for the brain to solve this problem is by dynamically adjusting the activity range of
neurons according to the momentarily available rewards. Such an adaptive coding
mechanism maximizes the discriminability between different values in a given reward
context, thus enabling efficient information processing.

Specifically, adaptive coding of reward prediction errors (PEs) has been suggested by a wide
range of theories from economics and reinforcement learning. A PE quantifies the mismatch
between the expected and actually received reward. For example, when our expectation is
to win 50€, but we win 30€ instead, there is a prediction error of -20€. However, in case our
initial expectation was to win 20€, the prediction error will be +10€. Prospect theory
suggests that changes are coded according to an individual reference outcome, such as the
status quo or individual expectations (1, 2). In reinforcement learning theory, on the other
hand, the PE is considered to be essential for updating the reward values associated with the
predicting cue, thus acting as a teaching signal (3, 4).

Adaptive coding of PE is essential for two reasons. First, the reward magnitude (lottery or
chocolate) is already encoded during expectation. Hence, in terms of effective neural coding,
it is not necessary to represent the reward magnitude redundantly when computing the
prediction errors. Second, in the context of learning, computing this quantity depending on
reward magnitude would prohibit learning from small rewards. That is, no matter in what
situation we are, only the prediction error of extremely high rewards would be behaviorally
relevant and prediction errors of small rewards would never impact behavior. Indeed, animal
recording studies have shown that dopaminergic midbrain neurons encode reward
prediction errors (5, 6) according to an adaptive coding scheme (7). Specifically, these
neurons increase their activity for the larger of two potential reward outcomes and decrease
their activity for the smaller outcome independent of the absolute reward magnitude (7).
Human studies using functional magnetic resonance imaging (fMRI) highlight PE-related
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activity in the ventral striatum (8-14), activity often presumed to reflect a dopaminergic
input from the midbrain.

Adaptive coding is a normalization process that brings different magnitudes onto the same
coding scale. Although adaptive coding in reward-sensitive neurons is well documented (7,
15-17) it is unknown how the brain normalizes different ranges of rewards to enable the
adaptive coding. One possible mechanism for such normalization is via modulation of
connectivity with other reward coding areas, including areas that might show sensitivity to
actual reward magnitudes. The major dopaminergic innervations to the striatum originates
in the ventral tegmental area (VTA) and the substantia nigra (SN) (18). Additionally, there is a
strong input from regions encoding reward value, notably orbitofrontal and ventromedial
prefrontal cortex (OFC/vmPFC) (19-24). On this basis we hypothesized that changes in
striatal connectivity with these regions would underlie an adjustment in the coding range of
striatal PEs. Specifically, when a high reward magnitude is encountered, a dynamic change in
connectivity would render striatal PE coding comparable to that of a lower reward
magnitude.

Here, we aimed to investigate the normalization process underlying adaptive coding by
means of fMRI. First, we addressed the question of whether prediction errors are
represented according to an adaptive coding scheme in the human striatum. Second, we
investigated how the brain implements the reward rescaling for adaptive coding.

Subjects performed a simple reward prediction task that induces PEs. In each trial, subjects
saw a cue indicating the possible reward; in trials with high reward magnitude, subjects saw
1€ combined with either high or low probability (66% or 33%). In trials with low reward
magnitude, subjects saw 10 Cents with high or low probability (Fig. 1A). The reward cues
appeared either on the right or left side of the screen and subjects were asked to indicate
the position of the reward cue using a button press. After a variable delay, subjects saw
either the corresponding coin indicating the outcome was obtained, or they saw the coin
with a superimposed cross indicating the outcome was omitted (Fig. 1A). Importantly, in our
task, the reward magnitudes were combined with different probabilities that allowed us to
disentangle PE related activity from outcome related activity.

Results

Behavioral Results. Subjects correctly indicated the location of the cue in 99.33 £ 0.02 % of
the trials. A two-by-two ANOVA (reward magnitude x probability) on the reaction time (RT)
data revealed a significant main effect of magnitude (F;27=13.75, P<0.001) and a significant
main effect of probability (F;,7=12.67, P<0.001). There was no significant magnitude-by-
probability interaction (F,,7=1.73, P=0.2). Subjects responded faster in the high compared to
low reward magnitude (high=555 ms, low=568 ms) and in the high compared to low
probability trials (high=557 ms, low=567 ms) indicating that both reward magnitude and
probability affected reward expectations independently (Fig. 1B).

Neuroimaging Results. Our first analysis of imaging data focused on the question of adaptive

coding of prediction errors. We applied a whole-brain general linear model (GLM) that
included onset regressors for the reward cue, outcome and two parametric regressors at the
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time of reward outcome. The first parametric regressor coded outcome delivery as one for
received and minus one for omitted rewards. The second parametric regressor accounted
for the PE related variance and was orthogonalized with respect to the first parametric
regressor. Hence, this PE regressor accounts for variance in the BOLD (brain-oxygen-level-
dependent) signal that is independent of outcome-related activity. Voxel-wise one-sample t-
tests on the parameter estimates of the parametric PE regressor revealed a significant
correlation between PE and activity in the ventral striatum (Fig. 2A; P < 0.05, FWE small
volume corrected (SVC), [-6 18, -3]; t = 4.19).

After having identified the region in ventral striatum coding reward prediction errors, we
determined if this striatal region adaptively codes PE responses. Specifically we tested
whether the striatal PE responses were invariant for different reward magnitudes. In case
where prediction errors are coded according to an adaptive coding scheme, representations
of striatal PEs for high reward should not differ from those of low reward. We applied a GLM
to the striatal data, but this time all the regressors were split for high and low reward trials.
The onset regressors for cue, outcome and the two parametric regressors for outcome-
related variance and two PE coding regressors were regressed against the BOLD signal in the
striatum. Both prediction-error regressors were orthogonalized with respect to the
parametric modulation of reward outcome. This comparison of PE-related responses in high
vs. low reward magnitudes revealed no significant difference in the striatum (Fig. 2B; ty7=-
0.98, P=0.34).

We further performed an additional analysis in which we directly tested whether the striatal
changes in BOLD signal are significantly better predicted by an adaptive PE (PE modulated
only by probability) than by a non-adaptive PE (PE modulated by both probability and
magnitude, i.e., their product). If an adaptive PE predicts striatal activity better than a non-
adaptive PE, this would support adaptive PE coding in the striatum. In a case where
prediction errors are modulated by reward magnitude, then a non-adaptive PE would
provide a better prediction of striatal activity. Importantly, our analysis shows that the
striatal BOLD signal is significantly better predicted by an adaptive, compared to a non-
adaptive PE (Fig. 2C; t,7=2.82, P=0.0089; mean parameter estimates for adaptive PE:
0.37+0.014; non-adaptive PE: 0.29+0.018). This invariance in the representation of striatal
PEs is consistent with an adaptive coding scheme shown in dopaminergic neurons in
primates (7).

Having shown that PEs are adaptively coded in the striatum, our next analysis sought to
determine whether there were dynamic changes in striatal coupling associated with this
magnitude-dependent rescaling. We hypothesized that reward sensitive brain regions with
striatal innervations, specifically the vmPFC and the VTA/SN, would modulate striatal activity
as a function of reward magnitude. To test this, we performed a whole-brain
psychophysiological interaction analysis (PPl) where the entire striatal time series of PE-
related activity (Fig. 3A) was selected as a physiological variable and the reward magnitude
as a psychological variable (high vs. low reward). Comparing striatal connectivity between
reward magnitudes revealed significant (P<0.001, k=10) modulations in the VTA/SN ([6 -8 -
21]; P < 0.05, FWE SVC corrected, t,;=4.74, Fig. 3B) and the vmPFC ([3 54 -3], BA10/BA9; P <
0.05, FWE SVC corrected, t,7=4.85, Fig. 3D). Specifically, this reflected significant less
coupling during the high compared to the low reward magnitude between the striatum and
both VTA/SN and vmPFC, respectively (Fig. 3C).
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Discussion

From visual neurons (25, 26) to reward coding dopaminergic neurons, scale invariance is an
ubiquitous encoding principle in the brain. Retinal neurons rapidly adapt to an enormous
range of light to guarantee high visual discriminability. Dunn and colleagues (27) have shown
that this adaptation is implemented via a relay from cone bipolar cells to ganglion cells. This
demonstrates that such a rapid rescaling of range occurs via influences of innervating
neurons. Analogously, we demonstrate that prediction error related activity in the human
striatum adapts to the momentarily available reward magnitude and this effect is driven by
changes in neuronal dynamics associated with different reward magnitudes.

Reward prediction errors act as a teaching signal for learning (4) and accounts for a wide
range of situations (8, 13, 28, 29), including perceptual learning (30). Adaptive coding of
prediction errors enables an enhanced discriminability to remain sensitive for mismatches of
all sizes. This optimizes efficient coding in neural circuits with given limitations, namely its
coding ranges. In a case where PEs were computed based on reward magnitude, learning
would be much more sensitive to high rewards while relatively small rewards would not lead
to learning. Adaptive coding of reward prediction errors allows the brain to flexibly learn
across different reward magnitudes and disturbances in this system would lead to deficits in
learning and decision making.

Previous animal studies have provided evidence of neuronal adaptation in coding different
aspects of reward. Whereas midbrain dopaminergic neurons adaptively code reward
prediction errors (7), OFC neurons show adaptive coding of reward preference (15). OFC
neurons also adapt their firing range according to the momentarily available reward range
and distribution of rewards (16, 17). Furthermore, recently it has been shown that the
primate lateral intraparietal cortex codes saccade values depending on other available
choice options. This context-dependence is precisely predicted by the divisive normalization
mechanism (31). In humans, fMRI studies have also shown that BOLD signals in reward
sensitive areas show magnitude adaptation across possible rewards (14, 32-35).

In our data, we observe significantly less connectivity between the striatum and
mPFC/midbrain in high reward compared to low reward conditions (Figure 3C). During the
PPI analysis, non-specific correlations across the brain were removed by regressing out the
global-mean from every voxel. However, this shifts the correlation distribution to have a
mean near zero and forces negative correlations to appear (36-38). Therefore, it is important
to interpret only the difference in connectivity between task conditions.

Our PPI results are in accord with previous studies investigating the dynamics of neuronal
activation in this anatomic network. The primate striatum is tightly interconnected with the
midbrain as well as with cortical areas (18, 39-41). Specifically, the striatum receives
dopaminergic input from midbrain regions creating an ascending midbrain-striatal loop (13,
42). Furthermore, PFC activation modulates striatal dopamine release via inhibitory midbrain
neurons (43) . More specifically, PFC neurons activate GABAergic cells in the midbrain that in
turn inhibit neighbouring dopaminergic neurons projecting to the striatum (44, 45). Thus,
one possible pathway underlying our connectivity result is that high magnitudes of reward
activate PFC neurons thereby increasing midbrain GABA inhibition, which in turn results in
reduced dopamine release in the striatum (46, 47). This pathway may underlie the
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adjustment of prediction error signals during high reward outcomes and explain the relative
decrease in connectivity between the mPFC/midbrain and the striatum in high vs. low
magnitudes.

Taken together, our results provide evidence that adaptive coding of prediction errors in
humans is gated by striatal coupling. In line with recordings from primate dopamine neurons
(7), we show that striatal prediction errors do not differ for high and low reward magnitudes.
Using an effective connectivity analysis, we show that mPFC and midbrain significantly
modulate their coupling with the striatum in the face of a high reward magnitude, rendering
striatal prediction errors comparable to the lower reward magnitude. Because adaptive
prediction errors are essential for learning from high and low rewards this mechanism
provides a rich framework within which mechanistic hypotheses for problems such as drug
addiction can be examined.

Materials and Methods

Experimental Design. In each trial of the task, a reward predicting cue was presented either
on the left- or right-hand side of fixation. Subjects were asked to press the corresponding
button on a response box as fast as possible. Each cue contained information about both the
probability (67% or 33%) and the magnitude (1€ or 10ct) of the possible reward. According
to this, there were four different cues, indicating high probability of 1€, low probability of 1€,
high probability of 10ct, low probability of 10ct, respectively (Fig. 1A). After the button press,
a green circle highlighted the stimulus and after a variable inter-stimulus-interval, the
outcome cue was presented for 2 seconds. In high reward trials, the outcome was 1€ coin
(for received reward) or a red cross superimposed on the 1€ coin (for omitted reward).
Analogously, in low reward trials, subjects saw either a 10 ct coin in received trials or a red
cross superimposed on the 10 ct coin in omitted trials. The actual reception or omission of
reward was determined by the probability indicated by the cue. Subjects performed 5
sessions with 60 trials each. 33 healthy subjects were tested in the study. 5 subjects were
excluded from the sample (one due to extreme head movement during scanning [more than
3mm or 3 degrees], three subjects aborted the scanning because they felt sick, one subject
was left handed), resulting in a final sample size of n = 28 (13 females and 15 males, mean *
std age = 25.04 + 2.5).

Behavioral data analysis. To monitor subjects’ attention to the task, we analysed the
percentage of correct responses. All following analyses included only the correctly
responded trials. We examined whether subjects established reward expectations during the
reward predicting cue by testing whether reaction time (RT) are influenced by both reward
magnitude and probability. For this, we computed a two-by-two (magnitude x probability)
ANOVA with repeated measures on RT data.

fMRI data acquisition and preprocessing. Functional imaging was conducted on a 3-Tesla
Siemens Trio (Erlangen, Germany) scanner with a 12-channel head coil. In each of the five
runs, 366 T2*-weighted gradient-echo echo-planar images (EPI) containing 37 slices (3 mm
thick) separated by a gap of 0.75 mm were acquired. Imaging parameters were as follows:
repetition time (TR) 2000 ms, echo time (TE) 30 ms, flip angle 70°, matrix size 64x64 and 192
mm field of view, voxel size 3 by 3 by 3.75 mm. A T1-weighted and a T2-weighted structural
data set were collected for the purpose of anatomical localization. The parameters were as
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follows; T1: TR 1900 ms, TE 2.52 ms, matrix size 256x256, FOV 256 mm, 176 slices (1mm
thick), flip angle 9°; T2: TR 8170 ms, TE 0.93 ms, matrix size 256x256, FOV 256 mm, 48 slices
(3mm thick), flip angle 120°.

Functional data were analyzed using SPM5 (Wellcome Department of Imaging Neuroscience,
Institute of Neurology, London, UK). Images were slice time corrected, realigned, spatially
normalized to a standard T2* template of the Montreal Neurological Institute (MNI),
resampled to 3 mm isotropic voxels and spatially smoothed using an 8 mm full width at half
maximum Gaussian kernel. All included subjects moved less than the size of a single voxel
(3mm).

Model-based fMRI data analysis. We computed a general linear model (GLM) with a
parametric design (48) to identify brain regions coding prediction errors in an adaptive
fashion. In each trial t, the prediction error 6 was defined as:
d=ri-py (1)

where r; is the reward outcome (1 for received and 0 for omitted outcomes) and p; is the
expected probability of the reward (0.33 or 0.66). Note that the task is not a learning task,
because the reward probability and magnitudes were explicitly shown and did not change
over the experiment. Four regressors were included in the GLM in the following order; 1)
onset of the cue, 2) onset of the outcome 3) parametric modulation of the outcome (coded
as one when received and minus one when omitted), 4) parametric modulation of the trial-
wise prediction errors. The prediction-error regressor was created by parametrically
modulating the stimulus function of the outcome by the normalized (mean =0, SD = 1) trial-
wise prediction errors. All regressors were convolved with a canonical hemodynamic
response function (HRF). Individual contrast images were computed for prediction-error
related responses and taken to a second-level mixed effect analysis using voxel-wise one-
sample t-tests.

Reward magnitude dependent changes in striatal connectivity. We performed a whole brain
“psycho-physiological interaction” (PPl) analysis (12, 13, 49) with the striatum as a seed
region. Here, the entire time series over the experiment was extracted from each subject in
the clusters of the striatum, in which activity significantly correlated with PE on the group
level. To create the PPl regressor, we multiplied the normalized time series with two
condition vectors containing ones for 6 TRs after each reward-magnitude type (one
regressor for high and one for low magnitudes) and zeros otherwise. The method used here
relies on correlations in the observed BOLD time-series data and makes no assumptions
about the nature of the neural event contributing to the BOLD signal (13). The time window
of 6 TRs (12 seconds) was selected to capture the entire hemodynamic response function,
which peaks after 3 TRs and is back at baseline about 8 TRs after stimulus onset. These PPI
regressors were used as covariates in a separate PPI-GLM, in which the following regressors
were included; 1) cue onset, 2) psychological regressor accounting for high and 3) low
reward outcomes, 4) physiological regressor, (i.e. the entire time series of the seed region
over the whole experiment), 5) the PPI regressor for high reward outcomes and 6) the PPI
regressor for low reward outcomes. The onset regressors were convolved with an HRF. The
resulting parameter estimates of the two PPl regressors represent the extent to which
activity in each voxel correlates with activity in the striatum for each condition. Individual
contrast images for functional connectivity during high vs. low reward magnitude were then
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computed and entered into one-sample t-test. We then identified voxels with significant
connectivity during low vs. high reward magnitude.

We applied an omnibus threshold for all whole-brain analyses of P<0.001, uncorrected with
a cluster extent threshold of k=10 (whole brain results are shown in Table S1 and Table S2).
Correction for multiple comparisons (P<0.05, family-wise error (FWE) correction) was then
performed for clusters surviving this threshold using 12mm spheres around previously
reported peak voxels (small volume correction (SVC)): For the ventral striatum; [-8, 8, -4] and
midbrain; [8, -18, -20] from (6) , mPFC; [3, 54, -15] from (25). All reported coordinates (x y z)
are in the MNI space.
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Figure 1. Task description and behavioural data.

(A) In each trial, subjects saw a visual cue indicating the reward magnitude and probability
on the left or right side of the screen. Subjects indicated the location of the cue using a
button press, after which a green circle surrounded the cue. After a variable delay, the
reward outcome was shown to the subjects.

(B) Mean corrected reaction time. Left two bars stand for high and low reward magnitudes

and right two bars, for high and low reward probabilities. The greater the reward magnitude,
and the higher the probability, the faster the subjects responded. Error bars are s.e.m.
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Figure 2. Adaptive coding of prediction errors in the striatum.

(A) Parametric modulation with trial-wise prediction error revealed significant correlation
with BOLD responses in the striatum.

(B) Across different reward magnitudes, no significant difference in PE related responses was
observed (t,7=-0.98, P=0.34), confirming an adaptive coding of striatal PE. Y-axis represents
the parameter estimates of prediction error. Errorbars indicate s.e.m.

(C) Adaptive PE predicted striatal BOLD response significantly better compared to non-

adaptive PE (t,7=2.82, P=0.0089). Y-axis represents the parameter estimates of prediction
error. Errorbars indicate s.e.m.
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Figure 3. Striatal coupling gates adaptive coding of prediction error

(A) The striatum showing adaptive coding of prediction errors was used as seed region in the
functional connectivity analysis.

(B) SN/VTA (box: activity superimposed on T2-weighted image) and (D) vmPFC (box: a

coronal view) showing significant magnitude-dependent connectivity modulation with the
striatum.

(C) Bar graph depicts significantly less midbrain-striatal and fronto-striatal connectivity
during high compared to low reward magnitudes. Errorbars indicate s.e.m.
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