
Chapter 1

Vector Measures

In this chapter we present a survey of known results about vector mea-
sures. For the convenience of the readers some of the results are given
with proofs, but neither results nor proofs pretend to be ours. The only
exception is the material of Section 1.5 that covers the results of our
joint paper with V. M. Kadets [18].

1.1 Elementary properties

The results of this section may be found in [7].

Definition 1.1.1 A function µ from a field F of subsets of a set Ω to
a Banach space X is called a finitely additive vector measure, or simply
a vector measure, if whenever A1 and A2 are disjoint members of F
then µ (A1 ∪A2) = µ (A1) + µ (A2).

If in addition µ
( ∞⋃

n=1
An

)
=

∞∑
n=1

µ (An) in the norm topology of X

for all sequences (An) of pairwise disjoint members of F such that
∞⋃

n=1
An ∈ F , then µ is termed a countably additive vector measure, or

simply µ is countably additive.

Example 1.1.2 Finitely additive and countably additive vector mea-
sures. Let Σ be a σ-field of subsets of a set Ω, λ be a nonnegative
countably additive measure on Σ. Consider 1 ≤ p ≤ ∞. Define
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µp : Σ → Lp (Ω,Σ, λ) by the rule µp (A) = χA for each set A ∈ Σ
(χA denotes the characteristic function of A). It is easy to see that µp

is a vector measure, which is countably additive in the case 1 ≤ p <∞
and fails to be countably additive in the case p = ∞.

Definition 1.1.3 A vector measure µ : F → X is said to be nonatomic
if for every set A ∈ F with µ (A) 6= 0 there exist A1,A2 ⊂ F \ Ø such
that A1 ∪ A2 = A and µ (Ai) 6= 0 (i = 1, 2).

Definition 1.1.4 Let µ : F → X be a vector measure. The variation
of µ is the nonnegative function |µ| whose value on a set A ∈ F is given
by

|µ| (A) = sup
π

∑
B∈π

‖µ (B)‖ ,

where the supremum is taken over all partitions π of A into a finite
number of pairwise disjoint members of F . If |µ| (Ω) <∞, then µ will
be called a measure of bounded variation.

The semivariation of µ is the extended nonnegative function ‖µ‖
whose value on a set A ∈ F is given by

‖µ‖ (A) = sup {|x∗µ| (A) : x∗ ∈ X∗, ‖x∗‖ ≤ 1} ,
where |x∗µ| is the variation of the real-valued measure x∗µ.

Example 1.1.5 A measure of bounded variation. Let µ1 be the mea-
sure discussed in Example 1.1.2. Since ‖µ1 (A)‖ ≤ λ (A), it is plain
that |µ1| (A) ≤ λ (A), so that µ1 is of bounded variation.

The next proposition presents two basic facts about the semivaria-
tion of a vector measure.

Proposition 1.1.6 Let µ : F → X be a vector measure. Then for
A ∈ F one has

(a) ‖µ‖ (A) = sup
{εn},π

∑
Bn∈π

‖εnµ (Bn)‖, where the supremum is taken

over all partitions π of A into a finite number of pairwise disjoint
members of F and over all finite collections {εn} satisfying |εn| ≤
1;
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(b) sup{‖µ(B)‖: A ⊇ B ∈ F} ≤ ‖µ‖(A) ≤ 2 sup{‖µ(B)‖: A ⊇ B ∈
F}. Consequently a vector measure is of bounded semivariation
on Ω if and only if its range is bounded in X.

It is easy to define the integral of a bounded measurable function
with respect to a bounded vector measure. To this end, let F be a field
of subsets of a set Ω and µ : F → X be a bounded vector measure.

If f is a scalar-valued simple function, say f =
n∑

i=1
αiχAi

, where αi

are nonzero scalars and A1, ..., An are pairwise disjoint members of F ,

define Tµ (f) =
n∑

i=1
αiµ (Ai). It is easy to show that this formula defines

a linear operator Tµ from the space of simple functions of the above
form into X. Moreover, if f is as above and β = sup {|f (ω)| : ω ∈ Ω},
then

‖Tµ (f)‖ =

∥∥∥∥∥
n∑

i=1

αiµ (Ai)

∥∥∥∥∥ = β

∥∥∥∥∥
n∑

i=1

αi

β
µ (Ai)

∥∥∥∥∥ ≤ β ‖µ‖ (Ω) .

by Proposition 1.1.6 (a). Thus Tµ is a continuous linear operator, which
acts on the space of simple functions on F , equipped with the supre-
mum norm. Another look at the Proposition 1.1.6 (a) and the above
calculations shows that

‖Tµ‖ = ‖µ‖ (Ω) (1.1)

Then Tµ has a unique continuous linear extension, still denoted by Tµ,
to B (µ), the space of all scalar-valued functions on Ω that are uniform
limits of simple functions modeled on F . (Note that in the case F is a
σ-field, B (µ) is precisely the familiar space of bounded F -measurable
scalar-valued functions defined on Ω).

This discussion allows us to make

Definition 1.1.7 Let F be a field of subsets of a set Ω and µ : F → X
be a bounded vector measure. For each f ∈ B (µ), the integral

∫
fdµ is

defined by ∫
fdµ = Tµ (f) ,

where Tµ is as above.
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It is easy to see that this integral is linear in f (and also in µ) and
satisfies ∥∥∥∥∫ fdµ

∥∥∥∥ ≤ ‖f‖∞ ‖µ‖ (Ω) .

Moreover, if x∗ ∈ X∗, then x∗
∫
fdµ =

∫
fdx∗µ; indeed, for simple

functions this equality is trivial and density of simple functions in B (µ)
proves the identity for all f ∈ B (µ).

Definition 1.1.8 A family {µτ : F → X | τ ∈ T} of countably addi-
tive vector measures is said to be uniformly countably additive when-
ever for any sequence (An) of pairwise disjoint members of F , the series
∞∑

n=1
µτ (An) converges in norm uniformly in τ ∈ T .

There are many alternative and useful formulations of countable
additivity. We present two of them.

Proposition 1.1.9 Any one of the following statements about a vector
measure µ defined on a field F implies all the others.

(i) µ is countably additive.

(ii) The set {x∗µ : x∗ ∈ X∗, ‖x∗‖ ≤ 1} is uniformly countably additive.

(iii) The set {|x∗µ| : x∗ ∈ X∗, ‖x∗‖ ≤ 1} is uniformly countably addi-
tive.

1.2 Bartle-Dunford-Schwartz’ theorem

The results of this section may be found in [7].

Definition 1.2.1 Let F be a field of subsets of a set Ω, µ : F → X
be a vector measure, and λ be a finite nonnegative real-valued measure
on F . If lim

λ(A)→0
µ (A) = 0, then µ is called λ-continuous and this is

denoted by µ � λ. Sometimes we will say µ is absolutely continuous
with respect to λ.
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It should be noted that writing µ � λ is not the same as saying µ
vanishes on λ-null sets unless both λ and µ are countably additive and
defined on a σ-field.

Theorem 1.2.2 (Pettis) Let Σ be a σ-field of subsets of a set Ω,
µ : Σ → X be a countably additive vector measure, and λ be a finite
nonnegative real-valued measure on Σ. Then µ is λ-continuous if and
only if µ vanishes on sets of λ-measure zero.

Proof. To prove the sufficiency, suppose µ vanishes on sets of λ-
measure zero, but lim

λ(A)→0
µ (A) > 0. Then there exist an ε > 0 and a

sequence (An) in Σ, such that

‖µ (An)‖ ≥ ε and λ (An) ≤ 2−n

for all n. For each n select an x∗n ∈ X∗ such that

‖x∗n‖ ≤ 1 and |x∗nµ (An)| ≥ ε

2
.

As µ is countably additive on Σ, then in accordance with Proposition
1.1.9 the set {|x∗µ| : x∗ ∈ X∗, ‖x∗‖ ≤ 1} is uniformly countably addi-

tive. Now set Bn =
∞⋃

i=n
Ai. Evidently λ

( ∞⋂
n=1

Bn

)
= 0. Consequently µ

vanishes on every set D ∈ Σ that is contained in
∞⋂

n=1
Bn = B. It follows

that |x∗µ| (B) = 0.
Let C1 = Ω \ B1 and Cn+1 = Bn \ Bn+1 for all n. Then (Cn)

constitutes a sequence of pairwise disjoint members of Σ for which

Bn−1 \B =
∞⋃

i=n

Ci.

Also, since |x∗nµ| (B) = 0 for all n, one has

lim
m
|x∗nµ| (Bm) = lim

m
|x∗nµ|

( ∞⋃
i=m

Ci

)
= lim

m

∞∑
i=m

|x∗nµ| (Ci) = 0

uniformly in n, by the uniform countable additivity of the family {|x∗nµ|}.
But now∣∣∣x∗n−1µ

∣∣∣ (Bn−1) ≥
∣∣∣x∗n−1µ

∣∣∣ (An−1) ≥
∣∣∣x∗n−1µ (An−1)

∣∣∣ ≥ ε

2
.
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This contradicts the last calculation and proves the sufficiency; the
converse is transparent.

The following theorem is central to the theory of vector measures.

Theorem 1.2.3 (Bartle-Dunford-Schwartz) Let µ be a bounded
countably additive vector measure defined on a σ-field Σ. Then there
exists a nonnegative real-valued countably additive measure λ on Σ such
that µ is absolutely continuous with respect to λ. If µ is nonatomic, then
λ can be chosen nonatomic. (λ can be chosen such that 0 ≤ λ(A) ≤
‖µ‖ (A) for all A ∈ Σ.)

Corollary 1.2.4 Let Σ be a σ-field, µ : Σ → X be a bounded countably
additive vector measure, λ be a measure from Theorem 1.2.3. Then
there exist an operator T : L∞ (λ) → X, which is continuous for the
weak∗ topology on L∞ (λ) and weak topology on X such that TχA =
µ (A) for any A ∈ Σ.

Proof. Define T : L∞ (λ) → X by Tf =
∫
Ω
fdµ. Then for each

x∗ ∈ X∗, one has

x∗Tf =
∫
fdx∗µ =

∫
f
dx∗µ
dλ

dλ,

where dx∗µ/dλ = gx∗ ∈ L1 (λ) is the Radon-Nikodym derivative of x∗µ
with respect to λ. If (fα) is a net in L∞ (λ) converging weak∗ to f0,
then for each x∗ ∈ X∗,

lim
α
x∗Tfα = lim

α

∫
fαgx∗dλ =

∫
f0gx∗dλ = x∗Tf0,

i.e., (Tfα) converges weakly to Tf0. Hence T is a weak∗ to weak con-
tinuous linear operator.

Corollary 1.2.5 (Bartle-Dunford-Schwartz) Let µ be a bounded
countably additive vector measure on a σ-field Σ. Then µ has a rel-
atively weakly compact range.

Proof. Let T be the operator from Corollary 1.2.4. It follows that T
maps the weak∗ compact set {f ∈ L∞ (λ) : ‖f‖∞ ≤ 1} onto a weakly
compact set R ⊆ X. But now

{µ (A) : A ∈ Σ} = {T (xA) : A ∈ Σ} ⊆ {T (f) : ‖f‖∞ ≤ 1} ⊆ R,

and the proof is complete.
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Corollary 1.2.6 Let µ and λ be as in Corollary 1.2.4. Then

co (µ (Σ)) =


∫
Ω

fdµ : 0 ≤ f ≤ 1, f ∈ L∞ (λ)

 .
Proof. Let

U = {f ∈ L∞ (λ) : 0 ≤ f ≤ 1} and V =


∫
Ω

fdµ : f ∈ U
 .

Note that U is weak∗ compact and {1A : A ∈ Σ} = exU (where exU
is the set of the extreme points of U). By the Krein-Milman theorem
U = cow∗ (exU). Then a glance at Corollary 1.2.4 proves that V =
co (µ (Σ)).

The following theorem shows that the measure λ from the Bartle-
Dunford-Schwartz theorem may be taken of the form |x∗µ| for a certain
x∗ ∈ X∗.

Theorem 1.2.7 (Rybakov) Let µ : Σ → X be a countably additive
vector measure. Then there is x∗ ∈ X∗ such that µ� |x∗µ|.

1.3 Lyapunov’s convexity theorem

The results of this section may be found in [7].
One of the most important results in the theory of vector measures

is the Lyapunov convexity theorem which states that the range of a
nonatomic vector measures with values in a finite dimensional space is
compact and convex. As it was mentioned above, this theorem fails in
every infinite dimensional Banach space.

Example 1.3.1 (Uhl) A nonatomic vector measure of bounded vari-
ation whose range is closed but nonconvex and noncompact.

Let Σ be the Borel sets in [0, 1] and λ be Lebesgue measure. Define
µ : Σ → L1 (λ) by µ (A) = χA. If Π ⊂ Σ is a partition of [0, 1], it is evi-
dent that

∑
A∈Π ‖µ (A)‖1 =

∑
A∈Π λ (A) = 1. Since every L1-convergent

sequence contains an almost everywhere convergent subsequence, µ (Σ)
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is closed in L1 (λ). To see that µ (Σ) is not a convex set, note that
1
2
χ[0,1] ∈ coµ (Σ) while if A ∈ Σ∥∥∥∥µ (A)− 1

2
χ[0,1]

∥∥∥∥
1

= [µ ([0, 1] \E) + µ (E)] /2 =
1

2
.

To see that µ (Σ) is not compact let An = {t ∈ [0, 1] : sin (2nπt) > 0}
for each positive integer n. A brief computation shows that

‖µ (An)− µ (Am)‖ =
1

2

for m 6= n. Hence µ (Σ) is not compact.
Example 1.3.1 suggests that nonatomicity may not be a very strong

property of vector measures from the point of view of the Lyapunov the-
orem in the infinite dimensional context. Let us attempt to understand
what nonatomicity means.

Let µ : Σ → Rn have the form

µ (A) = (λ1 (A) , . . . , λn (A)) , A ∈ Σ,

where each λi is a countably additive finite signed scalar measure on Σ.

Set λ (A) =
n∑

k=1
|λk| (A). Then ‖µ‖ (A) → 0 if and only if λ (A) → 0.

Now if µ is nonatomic, then λ is nonatomic. Consequently, if A ∈
Σ and λ (A) > 0 the mapping on the infinite dimensional subspace
{fχA : f ∈ L∞ (λ)} that takes f into

∫
A
fdµ is never one-to-one. We will

see that in the infinite dimensional case, this latter condition is precisely
what is needed to make the Lyapunov theorem work. Throughout, Σ
is a σ-field of subsets of Ω and X is a Banach space.

Theorem 1.3.2 (Knowles; Lyapunov convexity theorem in the
weak topology) Let µ : Σ → X be a countably additive vector measure
and λ be a finite nonnegative countably additive measure on Σ from
Theorem 1.2.3. The following statements are equivalent.

(i) If A ∈ Σ and λ (A) > 0, then the operator f 7→ ∫
A
fdµ on L∞ (λ) is

not one-to-one on the subspace of functions in L∞ (λ) vanishing
off A.
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(ii) For each A ∈ Σ, {µ (B ∩ A) : B ∈ Σ} is a weakly compact convex
set in X.

(iii) If 0 6= f ∈ L∞ (λ), there exists a function g ∈ L∞ (λ) such that
‖fg‖∞ > 0 but

∫
Ω
fgdµ = 0.

Proof. Note that (iii) implies (i). To show that (i) implies (iii) let
f ∈ L∞ (λ), ‖f‖∞ > 0. Then there is an ε > 0 and A ∈ Σ such that
|fχA| > ε and µ (A) > 0. According to (i), there is an h ∈ L∞ (λ) such
that ‖hχA‖∞ > 0 and

∫
A
hdµ = 0. Set g = h/f on A and g = 0 off A.

Then fg = h on A and so ‖fgχA‖∞ > 0. Also
∫
Ω
fgdµ =

∫
A
hdµ = 0.

Hence (iii) holds.

To check that (ii) implies (i), suppose (i) is false. Without loss
of generality, we can assume that A = Ω, so that the operator f 7→∫
A
fdµ (f ∈ L∞ (λ)) is one-to-one. It is not difficult to see that this

means that µ (Σ) =

{∫
Ω
χAdµ : A ∈ Σ

}
is a proper subset of the set

V =

{∫
Ω
fdµ : f ∈ L∞ (λ) , 0 ≤ f ≤ 1

}
. But by Corollary 1.2.6, V =

co (µ (Σ)); thus µ (Σ) cannot be both closed and convex. Hence (ii)
is false. To complete the proof, we shall verify that (iii) implies (ii)
again. It is enough to show that µ (Σ) is convex and weakly compact.
Let f ∈ L∞ (λ) be such that 0 ≤ f ≤ 1. Since by Corollary 1.2.4 the
operator

∫
Ω

(·) dµ is continuous for the weak∗ topology on L∞ (λ) and

the weak topology on X, the set

H =

g ∈ L∞ (λ) : 0 ≤ g ≤ 1,
∫
Ω

fdµ =
∫
Ω

gdµ


is a weak∗ compact convex set in L∞ (λ) and therefore has extreme
points. If we can show that the extreme points of H , denoted by
ext (H), are all in {χA : A ∈ Σ} it will follow that there exists A ∈ Σ
such that µ (A) =

∫
Ω
fdµ. Then an appeal to Corollary 1.2.6 will yield
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the equalities

co (µ (Σ)) =


∫
Ω

fdµ : f ∈ L∞ (λ) , 0 ≤ f ≤ 1

 = µ (Σ)

and prove that µ (Σ) is weakly compact and convex.
To this end, suppose f0 ∈ ext (H) but ‖f0 − χA‖ > 0 for each

A ∈ Σ. A simple calculation shows that there exists f1 ∈ L∞ (λ)
with ‖f1‖∞ > 0 such that 0 ≤ f0 ± f1 ≤ 1. An appeal to (iii) gives
us a g1 ∈ L∞ (λ), that may be selected with ‖g1‖∞ ≤ 1 such that
‖f1g1‖∞ > 0 but

∫
Ω
f1g1dµ = 0. Then f0 ± f1g1 ∈ H ; thus f0 is not an

extreme point of H . This completes the proof.
Note that in light of the remarks before Theorem 1.3.2 the classical

Lyapunov theorem is contained in this theorem; in fact, the above proof
of (iii) ⇒ (ii) in the case X = Rn is Lindenstrauss’s argument [23] to
prove the Lyapunov theorem.

Theorem 1.3.3 (Lyapunov) Let Σ be a σ-field of subsets of Ω, X
be a finite dimensional Banach space and µ : Σ → X be a countably
additive vector measure. If µ is nonatomic, then the range of µ is a
compact convex subset of X.

Corollary 1.3.4 Let Σ be the σ-field of Borel subsets of [0, 1]. If X is
an infinite dimensional Banach space, then there is a countably additive
vector measure of bounded variation µ : Σ → X and a set A ∈ Σ such
that {µ (B ∩A) : B ∈ Σ} is not a weakly compact convex set in X.

Proof. Let λ be Lebesgue measure on Σ. Select a sequence (fn) in
L1 (λ) such that ‖fn‖1 = 1 and the only g ∈ L∞ (λ) with

∫
[0,1]

fngdλ = 0

for all n is g = 0. Choose a sequence of pairs (x∗n, xn) such that x∗n ∈ X∗,
xn ∈ X, x∗m (xn) = 0 if m 6= n and x∗n (xn) = 1 for all n. Define
T : L∞ (λ) → X by

T (g) =
∞∑

n=1

xn

(
2n ‖xn‖−1

) ∫
[0,1]

fngdλ.
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If T (g) = 0, then x∗nT (g) =
(
2n ‖xn‖−1

) ∫
[0,1]

fngdλ = 0 for all n. Hence

T is one-to-one on L∞ (λ). To produce the advertised measure, define
µ (A) = T (χA) for A ∈ Σ. It is not hard to see that µ is countably
additive and T (.) =

∫
[0,1]

(.) dµ. Hence µ violates (i) of Theorem 1.3.2.

By Theorem 1.3.2, µ is as advertised.

1.4 lp-valued measures

The main results of this section are contained in [17].
Another way of generalizing the Lyapunov convexity theorem is

considering the closure of the range of the vector measure in the norm
topology.

Further by an X-valued vector measure we mean a countably addi-
tive vector measure µ defined on a σ-field Σ of subsets of a set Ω.

Definition 1.4.1 A nonatomic X-valued vector measure µ is said to
be Lyapunov if the closure of its range is convex.

In 1969 Uhl [7] proved the following theorem.

Theorem 1.4.2 Let Σ be a σ-field of subsets of Ω and suppose X has
the Radon-Nikodym property. If µ : Σ → X is a nonatomic and count-
ably additive measure of bounded variation, then µ is a Lyapunov mea-
sure.

If we waive the requirement that the variation be bounded, then
Uhl’s theorem no longer holds, in particular there exists a nonatomic
measure with values in a Hilbert space such that the closure of its range
is not convex. (It is enough to consider the measure µ2 from Example
1.1.2.)

In 1991 V. M. Kadets and M. M. Popov [16] obtained the following
strengthening of this result.

Theorem 1.4.3 The following conditions are equivalent for the space
X:
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1. Each nonatomic X-valued measure of bounded variation is a Lya-
punov measure;

2. There does not exist a sign-embedding of the space L1 [0, 1] in X.

Definition 1.4.4 A Banach space X is said to have the Lyapunov
property if every nonatomic countably additive vector measure with val-
ues in X is a Lyapunov measure.

As already mentioned above, an infinite dimensional Hilbert space
does not have the Lyapunov property. Consequently, all spaces con-
taining isomorphic copies of the space l2 do not have the Lyapunov
property; in particular, Lp [0, 1], C [0, 1], l∞ do not have the Lyapunov
property. Nevertheless, spaces having the Lyapunov property exist. In
1992 V. M. Kadets and G. Schechtman proved that lp (1 ≤ p < ∞,
p 6= 2) and c0 have the Lyapunov property [17]. Before proving this
result we need some lemmas.

Lemma 1.4.5 If the measure µ is not a Lyapunov measure, then there
exist a number ε > 0 and a set V ∈ Σ such that

∥∥∥µ (U)− 1
2
µ (V )

∥∥∥ ≥ ε

for any subset U ∈ Σ|V (here and below, Σ|V denotes the family of ele-
ments of the σ-algebra Σ that are subsets of the set V : the “restriction
of Σ to V ”).

Proof. Assume the contrary, i.e., assume that for any ε > 0 and any
V ∈ Σ there exists a U ⊂ V such that

∥∥∥µ (U)− 1
2
µ (V )

∥∥∥ < ε. Let x

and y be arbitrary elements of µ (Σ), x = µ (A), y = µ (B). We prove
that (x+ y) /2 ∈ µ (Σ). This means that µ is a Lyapunov measure,
contrary to assumption. We choose U ε

1 ⊂ A \ B and Uε
2 ⊂ B \ A such

that ∥∥∥∥12µ (A \B)− µ (Uε
1 )

∥∥∥∥ < ε,

∥∥∥∥12µ (B \ A)− µ (Uε
2 )

∥∥∥∥ < ε.

Then
∥∥∥1

2
(x+ y)− µ (W ε)

∥∥∥ ≤ 2ε for the set W ε = Uε
1 ∪ U ε

2 ∪ (A ∩ B),

i.e., (x+ y) /2 can be approximated by values of the measure to any
degree of accuracy. The lemma is proved.
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Lemma 1.4.6 Suppose that λ is a nonatomic positive numerical mea-
sure on Σ, and µ : Σ → X is a vector valued measure that is absolutely
continuous with respect to λ but is not a Lyapunov measure. Then there
exist a number a > 0 and a subset Ω1 ∈ Σ with λ (Ω1) > 0 having the
following property : for any subsets A1, A ∈ Σ|Ω1, A1 ⊂ A,∥∥∥∥µ (A1)− 1

2
µ (A)

∥∥∥∥ ≥ aλ (A) . (1.2)

Proof. Suppose that ε > 0 and V ∈ Σ are as in the statement of
Lemma1.4.5. Take a = ε/λ (V ) as the required number a. A set A ∈
Σ|V is said to be a narrow if there exists a subset A1 ⊂ A such that the
inequality converse to (1.2) holds. By construction, V is not a narrow
set. It suffices for us to prove the existence of a set Ω1 ∈ Σ|V with
λ (Ω1) > 0 that does not have narrow subsets. Assume the contrary,
i.e., assume that the quantity

narr (A) = sup {λ (A1) : A1 ∈ Σ|A, A1 is narrow}
is positive for any A ∈ Σ|V with λ (A) 6= 0. We use induction to
construct a chain V = V0 ⊃ V1 ⊃ V2 ⊃ ... of sets such that at each step
the set Wn = Vn \ Vn+1 is narrow and ”large”: λ (Wn) ≥ 1

2
narr (Vn).

Then W =
⋃∞

n=0 Vn is a narrow set. Consequently, since V is not
narrow, λ (Ω1) 6= 0 holds for the set Ω1 = V \W =

⋂∞
n=0 Vn. At the

same time, the sets Wn are disjoint and
∑∞

n=1 λ (Wn) = λ (W ) < ∞;
therefore, λ (Wn) → 0. We get that narr (Ω1) ≤ narr (Vn) ≤ 2λ (Wn) →
0; i.e., narr (Ω1) = 0, although λ (Ω1) > 0. This contradiction proves
the lemma.

Lemma 1.4.7 The following two conditions are equivalent for a Ba-
nach space X:

(i) X does not have the Lyapunov property.

(ii) There exist a triple (Ω,Σ, λ) with a nonatomic numerical measure
λ on Σ and an operator T : L∞ (Ω,Σ, λ) → X such that

(a) T is continuous for the weak∗ topology on L∞ (Ω,Σ, λ) and the
weak topology on X, and
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(b) there exists an ε > 0 such that ‖Tf‖ ≥ ελ (supp f) for any “sign”
f ∈ L∞ (Ω,Σ, λ), i.e., any function taking only the values 0 and
±1.

Proof. We first show that (i) implies (ii). Let (Ω,Σ, λ) be a triple
(Ω1,Σ|Ω1, λ) as in Lemma 1.4.6, we get the existence of a measure
µ : Σ → X and a number a > 0 such that the inequality (1.2) holds for
any A1 ⊂ A ∈ Σ. According to Corollary 1.2.4, there exists a weak∗-
weak continuous operator T : L∞ (Ω,Σ, λ) → X connected with the
measure µ by the relation

T (χA) = µ (A) , A ∈ Σ. (1.3)

It remains to verify the condition (b). Suppose that f is a “sign”; then
f = χA1 − χA2 , where A1, A2 ∈ Σ and A1 ∩ A2 = Ø. Let A = A1 ∪ A2

and ε = 2a. We get

‖Tf‖ = ‖µ (A1)− µ (A2)‖ = 2
∥∥∥µ (A1)− 1

2
µ (A)

∥∥∥
≥ 2aλ (A) = ε · λ (supp f) .

(ii) implies (i). Suppose that the operator T satisfies the conditions
(a) and (b). The measure µ is given by (1.3). It is easy to verify that
µ is nonatomic and not a Lyapunov measure. The lemma is proved.

Remark 1.4.8 Since µ : Σ → X, µ (A) = TχA is absolutely con-
tinuous with respect to λ, the operator T will also have the following
property:

(c) for every ε > 0 there is δ > 0 such that ‖Tf‖ ≤ ε ‖f‖ for any
f ∈ L∞ (Ω,Σ, λ) with λ (suppf) ≤ δ.

Let us introduce some additional symbols for the sequel. Let ri =
ri (ω) be a sequence of independent random variables taking values
+1 and −1 with probability 1

2
. Fix a number N ∈ N and denote the

random variable

T (ω) = inf

j :

∣∣∣∣∣∣
j∑

i=1

ri (ω)

∣∣∣∣∣∣ ≥
√
N

 .
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Further define the stopped martingale
k∑

i=1
si by the rule

si (ω) =

{
ri (ω) if i ≤ T (ω)

0 if i > T (ω)

The constructed martingale is evidently symmetric and its absolute
value is bounded by

√
N + 1.

Lemma 1.4.9 Let k be a function of N . If N = o (k), then

lim
N→∞

P

(∣∣∣∣∣
k∑

i=1

si

∣∣∣∣∣ < √N
)

= 0.

If k = o (N), then

lim
N→∞

P

(∣∣∣∣∣
k∑

i=1

si

∣∣∣∣∣ < √N
)

= 1.

Proof. We have,

P

(∣∣∣∣∣ k∑
i=1

si

∣∣∣∣∣ < √N
)

= P

(
max
1≤j≤k

∣∣∣∣∣ j∑
i=1

ri

∣∣∣∣∣ < √N
)

≤ P

(∣∣∣∣∣ k∑
i=1

ri

∣∣∣∣∣ < √N
)

= P

(∣∣∣∣∣ 1√
k

k∑
i=1

ri

∣∣∣∣∣ < √
N
k

)
.

By the central limit theorem, the last expression tends to zero if N =
o (k). On the other hand, if k = o (N), then

P

(∣∣∣∣∣
k∑

i=1

si

∣∣∣∣∣ < √N
)

= 1− P

(∣∣∣∣∣
k∑

i=1

si

∣∣∣∣∣ ≥ √N
)
≥ 1− e−N/2k −→

N→∞
1.

The lemma is proved.

Lemma 1.4.10 Suppose that x, xn ∈ lp, 1 ≤ p < ∞ and xn
w−→ 0.

Then for any ε > 0 there exists an index n ∈ N such that

‖x‖p + ‖xn‖p − ε < ‖x+ xn‖p < ‖x‖p + ‖xn‖p + ε.

But if x, xn ∈ c0, then under the same assumptions it is possible to
ensure that

max {‖x‖ , ‖xn‖} − ε < ‖x+ xn‖ < max {‖x‖ , ‖xn‖}+ ε.
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The method in the following theorem due to V. M. Kadets and G.
Schechtman will often be used in the main results of the thesis.

Theorem 1.4.11 The spaces lp with p 6= 2, 1 ≤ p <∞, and the space
c0 have the Lyapunov property.

Proof. The case 1 ≤ p < 2. Fix N ∈ N for the present, and let
k = [N/ lnN ]. We assume that X = lp fails the Lyapunov property,
and we use Lemma 1.4.7. Let Ω,Σ, λ, ε, and T : L∞ → X be as in
that lemma, with λ (Ω) = 1. We prove by induction on j that there
exist functions {tj}∞i=1 ∈ L∞ (Ω,Σ, λ) such that for each j the functions

{ti}j
i=1 are jointly equidistributed with the {si}j

i=1 in Lemma 1.4.9 and∥∥∥∥∥∥T
 j∑

i=1

ti


∥∥∥∥∥∥

p

>
j∑

i=1

‖T (ti)‖p − 1. (1.4)

Indeed, everything is obvious for j = 1. Suppose that the asser-
tion is already proved for j = m, and that {ti}m

i=1 have been con-
structed that satisfy (1.4) with j = m. We consider the set A ={
ω ∈ Ω :

∣∣∣∣ m∑
i=1

ti

∣∣∣∣ < √N} and a sequence {zn}∞n=1 of functions indepen-

dent on A, equal to zero off A, and taking the values ±1 with probabil-
ity λ (A) /2. For any n the system {{ti}m

i=1 , zn} is equidistributed with
{si}m+1

i=1 . The sequence zn tends to zero in the weak∗ topology; hence
Tzn

w−→ 0, and by Lemma 1.4.10 it is possible to choose n such that∥∥∥∥∥T
(

m∑
i=1

ti

)
+ T (zn)

∥∥∥∥∥
p

>

∥∥∥∥∥
m∑

i=1

T (ti)

∥∥∥∥∥
p

+ ‖T (zn)‖p − δ,

where δ is arbitrarily small. Choosing δ sufficiently small and letting
tm+1 = zn, we get the required inequality (1.4) with j = m+ 1.

We now use the fact just proved. Suppose that {ti}k
i=1 is equidis-

tributed with {si}k
i=1 and subject to the condition (1.4) with j = k.

Then

‖T‖p ·
∥∥∥∥∥

k∑
i=1

ti

∥∥∥∥∥
p

≥
∥∥∥∥∥T

(
k∑

i=1

ti

)∥∥∥∥∥
p

≥
k∑

i=1

‖T (ti)‖p − 1.

In view of the condition (ii) of Lemma 1.4.7, which T satisfies by con-
struction, we have ‖T (ti)‖ ≥ ε · λ (supp ti) ≥ ε · λ (supp tk) for i ≤ k.
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Since {ti}k
i=1 and {si}k

i=1 are equidistributed, this gives us by the choice
of k that(√

N + 1
)p ‖T‖p + 1 ≥ ∑k

i=1 ‖T (ti)‖p ≥ kεp (P (sk 6= 0))p ≥
≥ (N/ lnN − 1) · εp ·

(
P
(∣∣∣∑k−1

i=1 si

∣∣∣ < √N))p
.

By Lemma 1.4.9, the last factor tends to 1; hence this inequality cannot
hold for large N . This contradiction completes the analysis of the first
case.

The case 2 < p < ∞. Assume that X = lp fails the Lyapunov
property. By analogy with the first case, we fix an N ∈ N, let k =
[N lnN ], and construct functions {ti}k

i=1 equidistributed with {si}k
i=1

and satisfying the requirement∥∥∥∥∥T
(

k∑
i=1

ti

)∥∥∥∥∥
p

<
k∑

i=1

‖T (ti)‖p + 1 ≤ ‖T‖p · k + 1. (1.5)

We define the auxiliary function fN by

fN =


1 if

k∑
i=1

ti ≥
√
N

−1 if
k∑

i=1
ti ≤ −

√
N

0 for the rest

.

and denote supp fN by A. Since

∣∣∣∣∣ k∑
i=1

ti

∣∣∣∣∣ < √N + 1,

∣∣∣∣∣fN − 1√
N

k∑
i=1

ti

∣∣∣∣∣ ≤ 1√
N

on A.

Consequently, ∥∥∥∥∥χA ·
(
fN − 1√

N

k∑
i=1

ti

)∥∥∥∥∥
∞
−→
N→∞

0. (1.6)

Further, according to Lemma 1.4.9, λ (Ω\A) → 0, and by Remark 1.4.8∥∥∥∥∥T
(
χΩ/A · 1√

N

k∑
i=1

ti

)∥∥∥∥∥ −→N→∞
0. (1.7)
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Comparing (1.6) and (1.7), we get that∥∥∥∥∥T
(

1√
N

k∑
i=1

ti

)∥∥∥∥∥ ≥ ‖T (fN)‖+ o (1) . (1.8)

By (1.5) and the property (1.8) of T,

[ε · λ (A)]p ≤ ‖T‖p · k(√
N
)p + o (1) = o (1) .

This contradicts Lemma 1.4.9, which asserts that lim
N→∞

λ (A) = 1.

The case X = c0 is analysed just like the preceding case. The
theorem is proved.

There are simpler proofs for c0 and l1, due to V. Kadets, which were
never published before. We use the chance to present (with the kind
permission of V. Kadets) these proofs too.

Proposition 1.4.12 c0 has the Lyapunov property.

Proof. Let µ : Σ → c0 be a nonatomic countably additive vec-
tor measure. According to Corollary 1.2.4 there is an operator T :
L∞ (Ω,Σ, λ) → c0 such that µ (A) = TχA for all A ∈ Σ and which is
continuous for the weak∗ topology on L∞ (Ω,Σ, λ) and the weak topol-
ogy on c0, where λ is a nonnegative nonatomic real-valued countably
additive measure on Σ such that µ is absolutely continuous with re-
spect to λ. By Lemma 1.4.5, it is sufficient to show that for every A
and every ε > 0 there exists a set B ∈ Σ|A such that∥∥∥∥µ (B)− 1

2
µ (A)

∥∥∥∥ ≤ ε. (1.9)

Let {ei}∞i=1 be the unit vector basis of c0 and {fi}∞i=1 be the coordinate
functionals on c0. Then Tx =

∑∞
i=1 fi (Tx) ei. Denote Tix = fi (Tx).

Take an arbitrary A ∈ Σ and an ε > 0. Fix N ∈ N for the present.
As µ is a nonatomic measure we can decompose A into the union of
mutually disjoint sets Ak ∈ Σ|A (k = 1, . . . , N) with µ (Ak) 6= 0 for all
k, λ (Ak) = λ (Ω) /N . Let r1

1 be a Rademacher function on A1. Put

n1 = 1 and m0 = 0. Select m1 ∈ N such that

∥∥∥∥Tr1
1 −

m1∑
i=1

Tir
1
1

∥∥∥∥ ≤
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1
2N+1 . Consider a sequence {r2

n}∞n=1 of Rademacher functions on A2. By
Corollary 1.2.5, Tr2

n −→
n→∞ 0 in the weak topology. Hence there are a

number n2 such that

∥∥∥∥m1∑
i=1

Tir
2
n2

∥∥∥∥ ≤ 1
2N+3 and a number m2 such that∥∥∥∥∥ ∞∑

i=m2+1
Tir

2
n2

∥∥∥∥∥ ≤ 1
2N+3 . Consequently

∥∥∥∥∥∥Tr2
n2
−

m2∑
i=m1+1

Tir
2
n2

∥∥∥∥∥∥ ≤ 1

2N+2
.

Continuing this process we obtain the sequences of numbers {nk}N
k=1

and {mk}N
k=0 and the set of functions

{
rk
nk

}N

k=1
such that rk

nk
is a

Rademacher function on Ak and∥∥∥∥∥∥Trk
nk
−

mk∑
i=mk−1+1

Tir
k
nk

∥∥∥∥∥∥ ≤ 1

2N+k

for k = 1, . . . , N . Consequently∥∥∥∥∥T
(

N∑
k=1

rk
nk

)∥∥∥∥∥ ≤
∥∥∥∥∥∥

N∑
k=1

mk∑
i=mk−1+1

Tir
k
nk

∥∥∥∥∥∥+ 1

2N
= max

1≤k≤N

∥∥∥∥∥∥
mk∑

i=mk−1+1

Tir
k
nk

∥∥∥∥∥∥+ 1

2N
.

If the maximum is reached at k0 then applying the equation (1.1) we
have∥∥∥∥∥T

(
N∑

k=1

rk
nk

)∥∥∥∥∥ ≤
∥∥∥∥∥∥

mk0∑
i=mk0−1+1

Tir
k0
nk0

∥∥∥∥∥∥+ 1

2N
≤
∥∥∥T |Ak0

∥∥∥+ 1

2N
≤ ‖µ‖ (Ak0)+

1

2N
.

As µ is absolutely continuous with respect to λ and λ (Ak) = λ (Ω) /N
for k = 1, ..., N and by Proposition 1.1.6, the last sum tends to zero
as N → ∞. Thus choosing N sufficiently large and taking B =⋃N

k=1

{
ω ∈ Ω : rk

nk
= 1

}
we obtain the required inequality (1.9). The

proposition is proved.
Before we prove that l1 has the Lyapunov property, let us recall

that Schur has proved that in l1 the norm-convergence and the weak-
convergence coincide. We will show that all Banach spaces, which have
this property, have the Lyapunov property.
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Definition 1.4.13 A Banach space X is said to have the Schur prop-
erty if a sequence (xn) of elements of X converges in the weak topology
if and only if it converges in the norm topology.

Proposition 1.4.14 If a Banach space X has the Schur property, then
it has the Lyapunov property.

Proof. Let µ be a nonatomic countably additive vector measure on a
σ-field Σ and T : L∞ (λ) → X be the operator from Corollary 1.2.4.
Take an arbitrary A ∈ Σ and consider on A the sequence of functions
fn = 1+rn

2
, where (rn) are Rademacher functions on A. As fn −→

n→∞
1
2
χA

in the weak∗ topology, then by Corollary 1.2.5 we have Tfn −→
n→∞

1
2
µ (A)

in the weak topology. It follows that
∥∥∥Tfn − 1

2
µ (A)

∥∥∥ −→
n→∞ 0. But

fn = χAn , where An ∈ Σ. Thus we have∥∥∥∥µ (An)− 1

2
µ (A)

∥∥∥∥ −→n→∞ 0.

By Lemma 1.4.5, the proposition is proved.

1.5 The three-space problem

The results of this section have been published in [18], [5].
The “three-space problem” arises for every Banach space property.

Namely, do a subspace Y and the quotient spaceX/Y have the property
if X does and does X have the property if Y and X/Y do? Some
of these problems can be solved easily in the case of the Lyapunov
property. Indeed, if X has the Lyapunov property and Y ⊂ X , then
Y has the Lyapunov property, but X/Y needs not have the Lyapunov
property (for instance, X = l1 because the set of its quotient spaces
contains all separable Banach spaces [24, p.108]). At the same time
the answer to the last problem runs into difficulties. The purpose of
this section is the positive solution of the above mentioned problem
: let Y be a subspace of a Banach space X. If Y and X/Y have the
Lyapunov property, then X has the Lyapunov property.

The following three lemmas are of technical nature.
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Lemma 1.5.1 Let X have the Lyapunov property and µ : Σ → X be
a nonatomic measure. Then there is a nonatomic nonnegative measure
λ : Σ → R such that for every A ∈ Σ and n ∈ N there exists Bn ∈ Σ|A
satisfying the following inequalities:∥∥∥∥µ (Bn)− 1

2
µ (A)

∥∥∥∥ ≤ 1

2n
and

∣∣∣∣λ (Bn)− 1

2
λ (A)

∣∣∣∣ ≤ 1

2n
. (1.10)

Proof. By Theorem 1.2.7 there is a functional x∗ ∈ X∗ with ‖x∗‖ =
1 for which µ � |x∗µ|. Put λ = |x∗µ|. Let A ∈ Σ. In accordance
with the Hahn decomposition theorem let us denote by Ω+and Ω−the
positivity and negativity sets for x∗µ respectively. Then λ (C) =
x∗µ (C

⋂
Ω+) − x∗µ (C

⋂
Ω−) for any C ∈ Σ. Put A+ = A

⋂
Ω+and

A− = A
⋂

Ω−. Since X has the Lyapunov property, we can choose
B+

n ∈ Σ|A+ and B−
n ∈ Σ|A−such that∥∥∥∥µ (B+

n

)
− 1

2
µ
(
A+

)∥∥∥∥ ≤ 1

2n+1
and

∥∥∥∥µ (B−
n

)
− 1

2
µ
(
A−)∥∥∥∥ ≤ 1

2n+1
.

Then∣∣∣∣x∗µ (B+
n

)
− 1

2
x∗µ

(
A+

)∣∣∣∣ ≤ 1

2n+1
and

∣∣∣∣x∗µ (B−
n

)
− 1

2
x∗µ

(
A−)∣∣∣∣ ≤ 1

2n+1
.

Define Bn = B+
n

⋃
B−

n . It is easy to check that for Bn the inequalities
(1.10) are true.

Lemma 1.5.2 Let X have the Lyapunov property, µ : Σ → X be a
nonatomic measure, λ be the measure from Lemma 1.5.1. Then for
every A ∈ Σ with λ (A) 6= 0 and ε > 0 there exist G

′ ∈ Σ|A, G′′
=

A\G′
such that

(i) λ
(
G
′)

= λ
(
G
′′)

= λ (A) /2,

(ii)
∥∥∥µ (G′)− 1

2
µ (A)

∥∥∥ < ε.

Proof. Let us choose Bn as in Lemma 1.5.1. We can select Cn ∈
Σ|Bn if λ (Bn) ≥ 1

2
λ (A) or Cn ∈ Σ|A\Bn if λ (Bn) < 1

2
λ (A) for which

λ (Cn) =
∣∣∣1
2
λ (A)− λ (Bn)

∣∣∣ (because λ is a nonatomic real-valued mea-

sure). By (1.10), λ (Cn) →
n→∞ 0 . Put G

′
n = Bn4Cn, G

′′
n = A\G′

n. Then
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we obtain λ
(
G
′
n

)
= λ

(
G
′′
n

)
= 1

2
λ (A) , and λ

(
G
′
n\Bn

)
→

n→∞ 0, and

λ
(
Bn\G′

n

)
→

n→∞ 0. Since µ is absolutely continuous with respect to

λ the last condition implies that µ
(
Bn\G′

n

)
→

n→∞ 0 and µ
(
G
′
n\Bn

)
→

n→∞
0. Together with inequality (1.10) this gives us∥∥∥∥µ (G′

n

)
− 1

2
µ (A)

∥∥∥∥ →
n→∞ 0.

So for sufficiently large n the sets G
′
= G

′
n and G

′′
= G

′′
n will satisfy

the conditions (i) and (ii).

Lemma 1.5.3 Under the conditions of Lemma 1.5.2 for every A ∈
Σ with λ (A) 6= 0 and ε > 0 there exists a σ-algebra Σ

′ ⊂ Σ|A such that
for every B ∈ Σ

′
we have∥∥∥∥∥µ (B)− λ (B)

µ (A)

λ (A)

∥∥∥∥∥ ≤ ελ (B) (1.11)

and the measure λ is nonatomic on Σ
′
.

Proof. Take A ∈ Σ and ε > 0. Employing Lemma 1.5.2, we choose
sets A1 ∈ Σ|A, A2 = A\A1 with λ (A1) = λ (A2) = 1

2
λ (A) and∥∥∥µ (A1)− 1

2
µ (A)

∥∥∥ ≤ 1
4
ε (note that

∥∥∥∥µ (A1)− 1

2
µ (A)

∥∥∥∥ =
1

2
‖µ (A1)− µ (A2)‖ =

∥∥∥∥µ (A2)− 1

2
µ (A)

∥∥∥∥ ≤ 1

4
ε).

Employing Lemma 1.5.2 twice (for A = A1 and A = A2) we obtain
A1,1 ∈ Σ|A1 , A1,2 = A1\A1,1;A2,1 ∈ Σ|A2 , A2,2 = A2\A2,1 with λ (A1,1) =
λ (A1,2) = λ (A2,1) = λ (A2,2) = 1

4
λ (A) and∥∥∥∥µ (A1,1)− 1

2
µ (A1)

∥∥∥∥ ≤ ε

16
,
∥∥∥∥µ (A2,1)− 1

2
µ (A2)

∥∥∥∥ ≤ ε

16
.

When we continue this process, we obtain a tree of sets Ai1,i2,...,in, ik ∈
{1, 2} , n ∈ N with

Ai1,i2,...,in+1 ⊂ Ai1,i2,...,in, Ai1,i2,...,in,2 = Ai1,i2,...,in\Ai1,i2,...,in,1,∥∥∥µ (Ai1,i2,...,in)− 1
2
µ
(
Ai1,i2,...,in−1

)∥∥∥ ≤ 1
4nε, λ (Ai1,i2,...,in) = 1

2nλ (A)
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Let Σ
′
be a σ-algebra generated by the sets Ai1,i2,...,in. We are going

to show that the algebra Σ
′
has the required property.

Let B = Ai1,i2,...,in. Then∥∥∥µ (B)− λ(B)
λ(A)

µ (A)
∥∥∥ =

∥∥∥µ (Ai1,i2,...,in)− 1
2nµ (A)

∥∥∥
≤
∥∥∥µ (Ai1,i2,...,in)− 1

2
µ
(
Ai1,i2,...,in−1

)∥∥∥
+1

2

∥∥∥µ (Ai1,i2,...,in−1

)
− 1

2
µ
(
Ai1,i2,...,in−2

)∥∥∥+ ...

+ 1
2n−1

∥∥∥µ (Ai1)− 1
2
µ (A)

∥∥∥
≤ 1

4n ε+ 1
2

1
4n−1 ε+ ... + 1

2n−1
1
4
ε

= ε
(

1
22n + 1

22(n−1) + ...+ 1
2n+1

)
≤ 1

2n ε

= ελ (Ai1,i2,...,in) .

Hence by the triangle inequality and the σ-additivity of µ and λ we

get (1.11) for B =
∞⋃

n=1
Bn, where the Bn are disjoint sets of the form

Ai1,i2,...,ik. Then we obtain (1.11) for every B ∈ Σ
′
using approximation

of λ (B) by bigger sets of the form B =
∞⋃

n=1
Bn.

Lemma 1.5.4 The statements of Lemmas 1.5.2 and 1.5.3 are valid for
an arbitrary nonatomic measure λ.

Proof. Let µ : Σ → X, λ : Σ → R+ be nonatomic measures. Let ν be
the measure which played the role of λ in Lemma 1.5.1. Consider two
cases.

Case 1: λ � ν.Take A ∈ Σ, n ∈ N. In view of Lemma 1.5.3, there
is Σ

′ ⊂ Σ|A such that for any B ∈ Σ
′

∥∥∥∥∥µ (B)− ν (B)

ν (A)
µ (A)

∥∥∥∥∥ ≤ 1

2n
ν (B) , (1.12)

ν is a nonatomic measure with respect to Σ
′
. Applying the Lyapunov

theorem to the measure σ : Σ
′ → R2 : σ (A) = (ν (A) , λ (A)), we

obtain sets G
′
, G

′′ ∈ Σ
′

such that λ
(
G
′)

= λ
(
G
′′)

= 1
2
λ (A) and

ν
(
G
′)

= ν
(
G
′′)

= 1
2
ν (A). Then (1.12) implies inequality (ii) which

we need.
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Case 2: λ 6� ν. We decompose λ into the sum of absolutely con-
tinuous and strictly singular measures with respect to ν : λ = λ1 + λ2.
Then λ2 is concentrated on a ν-negligible set S. Now we consider
A\S and S

⋂
A separately. By the case 1 chose G

′
1 ⊂ A\S so that

λ1

(
G
′
1

)
= 1

2
λ1 (A) ,

∥∥∥µ (G′
1

)
− 1

2
µ (A)

∥∥∥ ≤ 1
2n and G

′
2 ⊂ S

⋂
A with

λ2

(
G
′
2

)
= 1

2
λ (S

⋂
A). Because λ1

(
G
′
2

)
= 0, µ

(
G
′
2

)
= 0 and

λ2

(
G
′
1

)
= 0 it is clear that G

′
= G

′
1

⋃
G
′
2 satisfies (ii). The proof

of the Lemma 1.5.3 shows that if Lemma 1.5.2 is valid for an arbitrary
λ then Lemma 1.5.3 is valid too for an arbitrary nonatomic measure
λ.

The following statement is evident.

Lemma 1.5.5 If X is a Banach space, Y is a subspace of X, µ : Σ →
X is a nonatomic measure, then µ̄ : Σ → X/Y (µ̄ (A)-the equivalence
class of µ (A)) is a nonatomic measure too.

Theorem 1.5.6 Let Y be a subspace of a Banach space X. If Y and
X/Y have the Lyapunov property, then X has the Lyapunov property
too.

Proof. Let µ : Σ → X, λ : Σ → R+ be nonatomic measures, λ (Ω) = 1.
Fix A ∈ Σ, λ (A) 6= 0, and ε > 0. By Lemmas 1.5.4 and 1.5.5 there is
a σ-algebra Σ

′ ⊂ Σ|A such that∥∥∥∥∥µ (B)− λ (B)

λ (A)
µ̄ (A)

∥∥∥∥∥ < 1

2
ελ (B) (1.13)

for all B ∈ Σ
′
and λ is nonatomic on Σ

′
. Define σ : Σ

′ → X by the rule
σ (B) = µ (B) − λ(B)

λ(A)
µ (A) . Now we show that there exist a σ-algebra

Σ̃ ⊂ Σ
′
and a nonatomic measure β : Σ̃ → Y such that

‖σ (B)− β (B)‖ < 2ε

for all B ∈ Σ̃. Indeed, by inequality (1.13) and nonatomicity of λ we
can choose sets A1,A2 ∈ Σ

′
such that A = A1

⋃
A2, λ (A1) = λ (A2) =

1
2
λ (A) , and ‖σ (A1)‖ < ε1

2
λ (A). Clearly, there is x ∈σ (A1) such that

‖x‖ ≤ ε1
2
λ (A) . Denote

α (A1) = x, α (A2) = −x,
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Applying step by step Lemma 1.5.2 and Lemma 1.5.4, we get sets
Ai1,...,ik ∈ Σ

′
, k = 2, 3, ...; i1, ..., ik = 1, 2, such that Ai1,...,ik−1

=

Ai1,...,ik,1
⋃
Ai1,...,ik,2, λ (Ai1,...,ik) = 1

2
λ
(
Ai1,...,ik−1

)
= 1

2kλ (A) , and∥∥∥σ (Ai1,...,ik−1,1

)
− 1

2
σ
(
Ai1,...,ik−1

)∥∥∥ < ε 1
22kλ (A) . It is readily seen that

in every equivalence class σ
(
Ai1,...,ik−1,1

)
− 1

2
σ
(
Ai1,...,ik−1

)
⊂ X there

exists an element xi1,...,ik−1
such that

∥∥∥xi1,...,ik−1

∥∥∥ ≤ ε 1
22kλ (A). Put

α
(
Ai1,...,ik−1,1

)
= 1

2
α
(
Ai1,...,ik−1

)
+ xi1,...,ik−1

,

α
(
Ai1,...,ik−1,2

)
= 1

2
α
(
Ai1,...,ik−1

)
− xi1,...,ik−1

.

Evidently, α
(
Ai1,...,ik−1,1

)
∈ σ̄

(
Ai1,...,ik−1,1

)
and α

(
Ai1,...,ik−1,2

)
∈

σ̄
(
Ai1,...,ik−1,2

)
. By Σ̃ denote σ-algebra generated by the sets Ai1,...,ik.

Iterating the inequality ‖α (Ai1,...,ik)‖ ≤ 1
2

∥∥∥α (Ai1,...,ik−1

)∥∥∥ + ε 1
22kλ (A),

we obtain ‖α (Ai1,...,ik)‖ ≤ ε 1
2k−1λ (A) = 2ελ (Ai1,...,ik) . Let us extend α

to Σ̃ and show that
‖α (B)‖ ≤ 2ελ (B) (1.14)

for any B ∈ Σ̃. For this purpose we take B =
⋃
I

Ai1,...,ik, where I

is a finite set of indices and Ai1,...,ik are mutually disjoint sets. Put
α (B) =

∑
I
α (Ai1,...,ik) .Clearly,

‖α (B)‖ ≤∑
I

‖α (Ai1,...,ik)‖ ≤ 2ε
∑
I

λ (Ai1,...,ik) = 2ελ (B) .

This proves that inequality (1.14) is valid for elements of the algebra
S, generated by the sets Ai1,...,ik. Now applying the Kluvanek-Uhl ex-
tension theorem [6, Chapter 6, Section 8, Addition 4] we obtain an
extension of α to Σ̃. Thus, we have constructed a measure α : Σ̃ → X
such that α (B) ∈ σ (B) for any B ∈ Σ̃ and ‖α (B)‖ ≤ 2ελ (B) . α is a
nonatomic measure because λ is nonatomic by construction. It is clear
that β = α− σ has the required property. The statement is proved.

Let us complete the proof of the theorem. Since β : Σ̃ → Y is a
nonatomic measure and Y has the Lyapunov property, we see that by
Lemma 1.5.2 there is B ∈ Σ̃ such that λ (B) = 1

2
λ (A) and∥∥∥∥β (B)− 1

2
β (A)

∥∥∥∥ ≤ ε.
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Thus we have∥∥∥σ (B)− 1
2
σ (A)

∥∥∥ ≤ ‖σ (B)− β (B)‖+
∥∥∥1

2
σ (A)− 1

2
β (A)

∥∥∥
+
∥∥∥β (B)− 1

2
β (A)

∥∥∥ ≤ 3ε.

Since σ (B)− 1
2
σ (A) = µ (B)− 1

2
µ (A) , the proof is completed.

Let us stress an important particular case of this theorem.

Corollary 1.5.7 Let X = X1 ⊕ X2 where X1, X2 have the Lyapunov
property. Then X has the Lyapunov property too.

It is clear that by induction we can extend this property to any
finite sum of Banach spaces.

Corollary 1.5.8 The spaces Xp from the work [19] (“twisted sums” of
lp spaces) have the Lyapunov property for p 6= 2.


