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Abstract
Magnetic Impurities on a Superconductor: from Single Atoms to Coupled Chains

by Michael KLEINERT

Motivated by one of the most intriguing devices in modern technology, the quantum
computer, we investigate the interplay between magnetism and conventional super-
conductivity on the nano-scale. The inherent contradiction at the interface — magnetic
versus superconducting order — promises topological edge states at the boundaries of
the system. Moreover, these states may provide a stable system immune to quantum
decoherence which is a prerequisite on the long term to bring quantum computation
from the lab to a broad range of applications.

We study here the coupling of magnetic impurities on a conventional superconductor
by means of low-temperature scanning tunneling microscopy (STM) and scanning
tunneling spectroscopy (STS). This work comprises experiments that start with the bare
superconducting substrate, and end at one-dimensional magnetic chains of nano-meter
length scale adsorbed on the substrate’s surface. Although lead (Pb) is among the
best characterized type I superconductors available, we observed a subtle detail in the
spectral intensity of superconducting lead (Pb) single crystals which, so far, has not
been ambiguously explained: it is the double-peak nature of the superconducting gap.
For the first time, it is proven experimentally by our experiment that Pb is a two-band
superconductor.

Our journey continues to single non-magnetic adsorbates, which influence the trans-
port properties from a probe electrode to the substrate. Introducing additionally a local
magnetic moment induces bound states in the substrate at subgap energies. The experi-
mental signature is a manifold of resonances in STS. In collaboration with theorists, we
elaborated the transport mechanisms through these states. Finally, we could explain
the formation of a manifold of subgap states by a single atomic transition metal impurity.
Unlike previously anticipated, we found that it originates from the atomic orbitals of
each impurity. Moreover, if two of such impurities lie close to each other, they form a
dimer. Strong experimental evidence was found that bonding and anti-bonding states
are formed by hybridization of subgap states with different symmetries. The strength of
the hybridization depends on the relative orientation and distance with respect to each
other.

In the end, we focus on larger systems, namely on nano-meter scale one-dimensio-
nal transition metal chains. The coupling within the chain is of a ferromagnetic order.
Nevertheless, proximity to the substrate induces superconductivity within the chain,
and sets the system into a topological regime. At this limit, so-called Majorana zero
modes (MZMs) had been predicted to be localized at the ends of the chains. Those
are prime candidates for fault-tolerant information storage in quantum computers. We
elucidate the subtle differences in the spectroscopic details of two different systems,
namely in iron (Fe) and cobalt (Co) chains. Only the first provided evidence for MZMs.
In collaboration with theorists, we suggest a possible explanation for this behavior.

All these investigations ask for further experiments on similar systems. As an
outlook, we provide preliminary results of manganese (Mn) chains with substantially
different structures.
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Kurzfassung
Magnetic Impurities on a Superconductor: from Single Atoms to Coupled Chains

von Michael KLEINERT

Motiviert durch die Vision des Quantencomputers untersuchten wir die Wechsel-
wirkung zwischen Magnetismus und Supraleitung auf der Nanoebene. Es wird ange-
nommen, dass der Widerspruch zwischen supraleitender und magnetischer Ordnung
zu topologischen Zuständen an der Grenzschicht zwischen beiden Ordnungen führt.
Diese vielversprechenden Zustände könnten die Dekohärenz von Quanten-Zuständen
vermeiden, unter welcher aktuelle Experimente zu Quantencomputern leiden.

Die Kopplung von magnetischen Atomen, die auf der Oberfläche eines konven-
tionellen Supraleiters adsorbiert sind, wurden mit Hilfe von Rastertunnelmikroskopie
und -spektroskopie untersucht. Unsere Experimente begannen mit Messungen an der
sauberen Substratoberfläche und endeten bei eindimensionalen Ketten magnetischer
Atome mit Nanometerlänge. Obwohl Blei zu den am besten charakterisierten Typ I
Supraleitern zählt, konnte die in Experimenten beobachtete Doppel-Peak Struktur der
supraleitenden Bandlücke bis zu unserer Untersuchung nicht eindeutig erklärt werden.
Wir zeigten experimentell, dass diese Struktur auf die Zwei-Band-Supraleitung in Blei
zurückgeführt werden kann.

Nach Aufbringen nicht-magnetischer Atome auf einen Bleikristall untersuchten wir
deren Einfluss auf die Transport-Eigenschaften zwischen der Spitze und der Oberfläche
der Probe. Bei Durchführung des Experiments mit Atomen der Übergangsmetalle,
welche ein zusätzliches magnetisches Moment besitzen, konnten wir zusätzliche lo-
kalisierte und gebundene Zustände bei Energien innerhalb der supraleitenden Band-
lücke finden. Durch die Kombination von Theorie und Experiment konnten wir den
Transport durch diese Zustände erklären. Schließlich widmeten wir uns der Frage, wie
ein einzelnes Atom eine Vielzahl solcher Zustände erzeugen kann. Anders als bisher
angenommen sehen wir, dass im Falle von Einzelatomen deren jeweilige Atomorbitale
für diese Zustände verantwortlich sind.

Der nächste Schritt unserer Untersuchung befasste sich mit der Kopplung von Ato-
men in Dimeren. Wir fanden bindende und antibindende Gesamtzustände vor, welche
durch die Hybridisierung der lokalen Einzelzustände erzeugt wurden und von der
Symmetrie und dem Abstand der Atome im jeweiligen Dimer abhingen.

Abschließend untersuchten wir eindimensionale magnetische Übergangsmetallket-
ten von mehreren Nanometern Länge. Die Ketten waren ferromagnetisch, wurden
jedoch durch die Nähe zum Bleisubstrat supraleitend. Dies erzeugte an den Enden der
Ketten lokalisierte topologische Zustände, die sogenannten Majorana-Zustände. Diese
spielen möglicherweise eine wichtige Rolle für die Entwicklung von fehlerresistenten
Quanten-Speichern. In unseren Forschungen fanden wir Unterschiede zwischen Eisen-
und Kobalt-Ketten. Nur in Eisen-Ketten zeigten sich Majorana-Zustände. In Zusamme-
narbeit mit Theoretikern konnten wir zeigen, dass sich dies möglicherweise durch eine
Änderung des Fermi-Niveaus erklären lässt.

All diese Resultate weisen darauf hin, dass weitere Experimente an ähnlichen System
erforderlich sind. Als Ausblick präsentierten wir einige unserer vorläufigen Resultate
von Messungen an Mangan-Ketten, welche eine völlig unterschiedliche Struktur zu den
Eisen- und Kobalt-Ketten aufweisen.
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Chapter 1

Magnetism and superconductivity:
a path towards quantum computers

The ignition point of nano-physics dates back to the late 1950s, when physicists started
to have a vision of nanoscopic devices, built from scratch, atom by atom. One of the
most cited contributions was R.P. Feynman’s talk at CALTECH in 1959, entitled “There’s
Plenty of Room at the Bottom”. A major breakthrough in this field was the invention of
the scanning tunneling microscope in 1981 which allowed the imaging of surfaces and
adsorbates in atomic scale precision.

The difference between nanoscopic devices and their larger classical counterparts
is the non-deterministic quantum behavior of the former. At nanoscopic length scales,
effects such as the uncertainty principle set in. This settles an unbreakable barrier to
the ongoing miniaturization of classical devices and circuits of today’s information
technology.

1.1 Classical versus quantum computation

Classical computer chips require deterministic results. They store information, and
perform calculations in units of bits, which are represented by currents controlled via
transistors. Either the circuit is open (representing a binary 0), or closed (representing a
binary 1). An operational unit manipulating such states is called a gate.

In a quantum device, the information is stored by the wave function of a physical
system, a so-called qubit. In such a device, only probabilities (a2 and b2) are fixed to find
the qubits in a specific state (a |1〉+ b |0〉). Certainly, in larger physical systems more
than two levels are imaginable. The quantum gates performing operations on the qubits
are designed to induce constructive and destructive interference of the wave function,
such that they reduce or increase selectively the amplitudes a2 and b2. This is done by
manipulation of the phase factor. The final result is then obtained after all operations of
the quantum gates by simply ‘measuring’ the final state of the system.

In the 1980s several proposals had the long term vision to use the non-deterministic
behavior of a quantum state to actively process information [1, 2]. An important mile-
stone in this emerging field was the publication of an efficient algorithm that factorizes
large integers into their prime number components by P.W. Shor in 1994 [3]. It scales only
polynomially with the length of the number N, compared to its classical counterpart
which scales exponentially in N. Most of today’s public-private key encryption methods
used in the end-to-end communication of modern computer networks rely on this fact
(e.g. the RSA algorithm [4]). It is an unsolvable task for classical systems to factorize
large numbers N.
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Another charming capability of quantum computation is the so-called quantum
annealing, which solves optimization algorithms in far less time [5–8]. It targets technical
topics, for example in database searches, path finding algorithms, and financial markets.
It is also useful in reasearch, for example in physical simulations of large systems. A
prominent use case for the latter are protein folding dynamics in bio-physics. There,
it is of immense computational cost to obtain an optimized spatial structure of a large
molecule on a classical computer, as the problem is defined in a high-dimensional
parameter space. Classical optimization algorithms, such as the Levenberg-Marquardt
[9] or Nelder-Mead [10] algorithm, start with an initial set of parameters, and ‘walk’ step-
by-step through the multi-dimensional potential landscape until they are trapped in a
local, or at best, in the global minimum. Independent of the algorithm, this optimization
method is prone to steep local minima, and therefore it requires a careful choice of the
initial conditions. Generally speaking, one has to know in advance a roughly optimized
set of parameters, or use some tricks to avoid the trapping at local minima. E.g., by
simulated annealing one randomly increases some parameters to jump out of a local
minimum. In a quantum computer the parameters are encoded in a quantum mechanical
state. Thus, the system tends to transit by itself to the global potential minimum, namely
its ground state. This is even possible without any external influence by quantum
tunneling through the potential barriers.

1.2 Open challenges in quantum computation

A major challenge in the development of quantum computers is to reduce the sources
of external perturbations. This increases the decoherence time of the wave function at
which the information encoded in the quantum state is lost. On the other hand, within
that time, the system must allow a control by an external circuit. The initial state prior to
the calculation has to be set, the logical operations have to be performed successively,
and finally the state of the system has to be measured to obtain the outcome.

In the mid 1990s, the first lab experiments started with a few qubits at the NATIONAL

INSTITUTE OF STANDARDS AND TECHNOLOGY in Colorado by using a trapped atom [11].
Afterwards, it was demonstrated that devices made up by such ‘natural’ systems can
efficiently solve simple algorithms. The trapped ions were cooled to their ground-
state where all degrees of freedom freeze out [11, 12]. Later, one focussed on the
more isolated spins of nuclei, using the well-established technique of nuclear magnetic
resonance (NMR) at larger ensembles [13, 14]. Experiments with solid state devices stood
in contrast to these approaches. Here, the quantum information is encoded in excitations,
e.g., in the spin of a quantum dot [15]. A breakthrough was the first commercially
available quantum computation chip, published in 2008 by the company D-WAVE

SYSTEMS. It was based on circular Josephson junctions, and encoded information in
magnetic flux quanta [16]. However, the challenge to reduce quantum decoherence
effects remains. The experiments rely on a proper cooling to milli-Kelvin temperatures,
and devices for real world scenarios require error correction algorithms.

A new idea targeting this issue is topological quantum computation (TQC), which
seeks to store the information in a way that it is protected to any kind of external
perturbation. It is based on topological phases of many-body systems — a topic, which
also gained the Nobel prize in 2016 to D.J. Thouless, F.D.M. Haldane, and J.M. Kosterlitz.
In a topological system, the information can be stored in a non-local way. Physically,
a qubit in such a system comprises two spatially separated states that do not appear
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individually in any Hamiltonian. Weak local perturbations, such as the noise of a gate
electrode can only act on a pair of states. Therefore, the system is immune to any local
interaction which unlikely acts on both states simultaneously if they are separated in
space, and allow the realization of fault-tolerant topological quantum computation.

An approach to find a system that enters such a topological state, is to combine two
types of order, magnetism and conventional superconductivity. Each order by itself is
well understood. Until now, people also described theoretically the fundamental mecha-
nisms of the interaction of a local magnetic moment with a superconductor. However,
experimentally many questions were unsolved. Moreover, the advances in experimental
techniques provide a higher energy resolution which may reveal subtle, formerly hidden
spectroscopic features. As it turns out, even in the simplest type of system such features
are found, namely at single magnetic atoms adsorbed on a conventional superconductor.
This requires a reinterpretation of earlier experimental observations, before proceeding
to larger nano-structures, which may be suitable candidates for topological systems.

1.3 Outline

The topics discussed in this thesis are sketched in fig. 1.1. From left to right we start
from scratch with a clean substrate, and end at a larger, nanoscopic system. We first char-
acterize the clean superconducting substrates employed in the follow-up experiments,
and clarify spectroscopic details, such as the — so far — unambiguously explained
double-gap structure of the superconducting gap. We continue with the investigation
of the influence of non-magnetic adsorbates on the transport to the superconducting
substrate. We proceed with changing the impurity to a transition metal element, giv-
ing it a magnetic moment. A pure potential scatterer has no effect on the delocalized
many-body ground state of the superconductor. However, a magnetic impurity breaks
time-reversal symmetry, which introduces local bound states within the superconducting

Pb(001)

-50 mV, 50 pA5 x 5 nm2

Pb adatom

50 mV, 50 pA

Mn adatom

40 mV, 40 pA

Mn dimer

5 mV, 150 pA

Fe chain

700 mV, 50 pA

FIGURE 1.1: Topics discussed in this thesis (from left to right). The system is sketched in
the top row, and the analogous experimental observation is given in the bottom row. First,
spectroscopic details on the bare substrate are discussed. Second, the influence of non-
magnetic local impurities on the transport process is investigated. Third, local bound states
induced by magnetic adatoms are analyzed. The transport through these states, the nature
of these states, and their lateral decay within the substrate are treated. Fourth, evidences for
the coupling between two adatoms are given. Finally, the properties of magnetic transition
metal chains are mapped, and the dependence of the acquired data on the element of the
chain is tested.
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gap by exchange scattering with the many-body system. We also investigate in detail
the transport mechanisms through these states, their nature, and their lateral decay
within the substrate. With this knowledge, we continue with two atoms at close distance,
where the local bound states start to overlap, and finally couple. Last but not least, we
investigate the properties of linear nanoscopic transition metal chains, where we observe
signatures of states localized at the end of iron (Fe) chains. These states are predicted to
be a key ingredient in TQC. Finally, we test the universality of their appearance with
different transition elements as alternative building blocks of the chains. The majority
of the results presented in this thesis were published in peer-reviewed research articles.
They are reprinted in appendix B.

In each chapter we first introduce the theoretical background and finally present
the main message of the article, which puts the individual publications into a larger
framework. Unpublished results are discussed in more detail. Chapter 2 starts with
experiments on the clean superconductor. In chapter 3 we continue with experiments on
single atomic adsorbates. Finally, in chapter 4, we discuss the one-dimensional transition
metal chains. A summary and an outlook to the upcoming challenges in this field of
research are given in chapter 5. The experimental methods employed in this work are
described in appendix A, where also the evaluation software written by the author of
this thesis is briefly introduced.
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Chapter 2

Lead (Pb): a (not so) simple
conventional superconductor

In the last decades, experiments on superconductors gained a large interest, as they
possess some unique properties. They have a small energy gap in the band structure
around the Fermi energy, and show a characteristic behavior under the influence of
an external magnetic field. We briefly introduce the basics of superconductivity in sec-
tion 2.1, and discuss the mechanism of Bardeen-Cooper-Schrieffer (BCS) or ‘conventional’
superconductivity in section 2.2. Then, we have a detailed look at the superconduc-
tivity of lead (Pb) single crystals in section 2.3. It is of a BCS-type nature, but details
in spectroscopy reveal a two-band character. The sample preparation is described in
appendix A.4.

2.1 Introduction to superconductivity

Superconductivity describes the spontaneous drop of resistance, which appears in many
solids if they are cooled below a critical temperature. For pure elements within the
periodic table, those with the highest transition temperatures are niobium (Nb) (9.5 K),
technetium (Tc) (7.8 K), and lead (Pb) (7.2 K). Low temperatures, required to observe
the drop of resistance, hindered the discovery of superconductivity. Only after the
technologically challenging liquefaction of helium (He) by H.K. Onnes in 1908 the basis
for superconductivity was laid. In addition, he was the first in 1911, who observed the
loss of resistance in mercury (Hg) when cooled below 4.2 K. Both discoveries awarded
him the Nobel Prize in 1913.

The first phenomenological description of superconductivity was based on the
observation of the Meissner-Ochsenfeld effect, which is the perfect diamagnetic behavior
of superconductors below a critical external magnetic field (susceptibility χ = −1). Two
brothers, E. and F. London, suggested that the total expel of a magnetic field requires
an electron density at the surface that flows in a circular current to compensate the
external field. Within a thin layer the external field decays exponentially with e−x/λ. The
penetration depth λ is usually in the order of several tenth of nanometers.

An important theoretical step forward in the understanding of superconductivity was
the Ginzburg-Landau theory [17]. It treats superconductivity in terms of a second order
phase transition, in accordance with the general Landau theory of phase transitions [18].
The free energy F(r, T) of the system in the Landau expansion is given by

F(r, T) = F0(r, T) + α|ψ|2 + β

2
|ψ|4 + αξ2|∇ψ|2 . (2.1)
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The parameters α and β are phenomenological. The so-called order field ψ is obtained
by a mean-field approach. It describes the superconducting electrons. Later on, we
will define it as the superconducting wave function. The last term originates from the
interaction between the electrons in the system. It implies the existence of a coherence
length ξ, and it defines the length scale over which the order field varies. For Pb at zero
temperature, the length scale is ξ0 = 96 nm [19]. It gets as large as ξ0 = 1600 nm for
aluminum (Al) [20]. The ratio between the two length scales λ and ξ is the Ginzburg-
Landau-parameter κ = λ/ξ. It is used to classify superconductors into two types: In a
type I superconductor the coherence length is much larger than the penetration depth
(0 < κ < 1/

√
2). Thus superconductivity is maintained up to a critical field. For a

type II superconductor the penetration depth is much larger than the coherence length
(κ > 1/

√
2), which allows the field to penetrate the material even at low fields in certain

domains by the formation of vortices [21]. The actual size of the parameters λ and ξ,
however, can only be determined in a microscopic description of superconductivity.

The most important milestone was reached in 1957 with the so-called BCS theory. It
was observed that not only different elements show different transition temperatures,
but also different isotopes of the same element. This so-called ‘isotope effect’ was
already reported in 1950 for the species 202Hg and 198Hg [22]. The effect requires that
superconductivity depends on the weight of the nuclei, and hence that lattice vibrations
of the solid (phonons) play a crucial role.

2.2 BCS theory of superconductivity

The BCS theory of superconductivity, published in 1957 [23, 24], earned J. Bardeen,
L.N. Cooper, and J.R. Schrieffer the Noble Prize in physics in 1972. The quantum
mechanical Hamiltonian of the system considers all interactions between the electrons
and the lattice:

H = Hel.−el. + Hph.−ph. + Hel.−ph. . (2.2)

The components on the right side in eq. (2.2) are given by the electron-electron, the
phonon-phonon, and the electron-phonon interaction, respectively:

Hel.−el. = ∑
k,σ

εk a†
k,σ ak,σ + ∑

k′,k,q,σ,σ′
VCoulomb(k, k′, q) a†

(k+q),σ a†
(k′−q),σ′ ak,σ ak′,σ′ (2.3)

Hph.−ph. = ∑
k

ωk C†
k Ck (2.4)

Hel.−ph. = ∑
k′,k

Mk′,kC(k′−k) a†
k′,σ ak,σ + ∑

k′,k
M∗k′,kC†

(k′−k) a†
k,σ ak′,σ . (2.5)

Here, a†
k,σ, ak,σ and C†

k, Ck are the electron and phonon creation and annihilation opera-
tors, respectively. The initial electron momenta k and k′ are changed by the momentum
q that is transferred between the electrons with spin σ. The energy of the electrons
is introduced by εk, and the energy of the phonons by ωk. The size of the Coulomb
repulsion between the electrons is expressed by VCoulomb, and the scattering amplitude
between electrons and phonons by Mk′,k.
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k, σ

k−q, σ

k, σ

k+q, σ

qq

electron-phonon interaction(b)(a)

k, σ

k+q, σ

k’, σ’

k’−q, σ’

q

mediated electron-electron interaction

FIGURE 2.1: Interactions described by the Hamiltonians in eq. (2.5). (a) Electron-electron
interaction mediated by a photon or a phonon q, which changes the electron momenta k
and k′, and leaves the electron spin σ unchanged. (b) Electron-phonon interaction leading
to an emission or an absorption of a phonon. Diagrams adapted from [20].

The interactions described by the Hamiltonians are sketched as Feynman diagrams
in fig. 2.1(a) and (b). The electron-electron interaction is mediated by the emission
and re-absorption of a photon or a phonon. The electron-phonon interaction leads to
a phonon-creation or -annihilation by the scattering of an electron, which is possible
because the number of phonons is not conserved.

The Coulomb interaction is commonly known to induce a long-range repulsion be-
tween two electrons. Notwithstanding this common knowledge, L.N. Cooper discovered
that, under certain conditions, the weak attractive electron-phonon interaction excels
the Coulomb repulsion. In an intuitive picture, he considered that the time scales of
both interactions are inherently different. The Coulomb repulsion is an instantaneous
process, as it is mediated by a photon. In direct comparison, the coupling of electrons
via phonons is slow, as the decay of lattice vibrations is slow. Thus, the electron travels a
long distance after an interaction, before the phonon decays. Within that time a second
electron can interact with the not-yet-decayed phonon, without being repelled by the
first electron. This leads to a weak attractive interaction over a range in the order of the
coherence length ξ.

However, the maximum energy transferred through phonons is limited by the Debye
frequency ωD, which is two to three orders of magnitude smaller than typical electronic
energies defined by the Fermi energy EF. Hence, the attractive interaction mediated
by phonons is weak, whereas the repulsive electronic interaction is strong. Therefore
an overall attractive interaction is achieved only for the smallest possible value of the
Coulomb repulsion. A Fourier transformation of the Coulomb potential for two electrons
to reciprocal space gives:

VCoulomb(r) =
e2

r

VCoulomb(q) =
4πe2

q2

VCoulomb(q) =
4πe2

q2 + (1/r0)2 . (2.6)

Here q is the difference between the momenta of both electrons. The last equation
includes a shielding of the electrons in the range of r0, which avoids the unphysical
divergence at q = 0. Hence, the electrons must have opposite momenta k = −k′ to
decrease the repulsive potential as much as possible. Furthermore, the exchange energy
is the weakest for electrons with opposite spin. All these conditions allow to summarize
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FIGURE 2.2: (a) Dispersion relation of the single-particle excitation energy Ek in comparison
to the normal state energy εk. (b) Single-particle density of states of a 3D metal in the normal
state (

√
E behavior), and in the superconducting state with a gap of 2∆k around the Fermi

level EF.

the interactions in a mean-field approach, with an effective attractive potential Vk′,k for
particles with opposite spin and momenta, and for energies in the range of h̄ωD around
the Fermi level. This simplifies eq. (2.5) to:

H = ∑
k,σ

εka†
k,σak,σ + ∑

k′,k,σ
Vk′,k a†

k,σ a†
−k,−σ a−k′,−σ ak′,σ . (2.7)

An important operation within the BCS theory was the adaptation of a Bogoljubov
transformation to a system of fermions1. The system gets unstable against the formation
of a new ground state of paired states in k-space, the so-called Cooper-pairs [26]. A
gap-operator ∆ is introduced, which is determined by the expectation value of a pair
occupied or unoccupied [20]:

∆(†)
k ≡ −∑

k′,k
Vk′,k

〈
a(†)k,σ a(†)−k,−σ

〉
. (2.8)

All other particles are transformed to spinless non-interacting quasi-particles η
(†)
k and

γ
(†)
k , which are linear combinations of the single electron operators a(†)k :

ak,↑ = u∗kηk + vkγ†
k

a†
−k,↓ = −v∗kηk + ukγ†

k . (2.9)

The amplitudes uk and vk fulfill the relation |uk|2 + |vk|2 = 1 and give the probability
to find a Cooper pair occupied or empty, respectively. Finally, the Hamiltonian becomes

H = ∑
k,σ

(
εk + ∆k

〈
a†

k,σa†
−k,−σ

〉)
+ ∑

k

√
(εk − µ)2 + ∆2

k

(
η†

kηk + γ†
kγk

)
. (2.10)

All single particle excitations have to break a Cooper-pair, which requires a minimum
energy of ∆k:

Ek =
√
(εk − µ)2 + ∆2

k . (2.11)

Here, µ is the chemical potential and εk the energy of a free electron in its normal
conducting state. A comparison between the normal state and the superconducting state
dispersion around zero energy is sketched in fig. 2.2(a). The particle-hole symmetry

1The initial Bogoljubov transformation was developed for bosons [25].
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of the Hamiltonian in eq. (2.10) is an important property of superconductors. The
condensate degree of freedom of the Cooper-pairs allows a hole to be transformed
to a particle by the annihilation of a pair, and vice versa. This is of special interest if
impurities are introduced to the system that break this symmetry. Such a scenario is
discussed in section 3.2.

2.2.1 Superconducting density of states

In our experiment, we measure the conductance from the tip to the sample under
variation of a bias voltage applied to the sample. The method of scanning tunneling
spectroscopy (STS) is described in appendix A.2. The quantity we are interested in is
usually the DOS of the sample. If we know the dispersion relation for single-particle
excitations, we can derive the density of states easily by the integral over the momentum
space:

N = V
∫ d3 p

(2π)3 = V
4π

(2π)3

∫
dp p2 = V

4π

(2π)3

∫
dE

1
dE/dp

p2 . (2.12)

The dispersion relation for a conventional superconductor is given in eq. (2.11). We can
transform this to

dE
dp

=
∂E
∂ε

dε

dp
=

ε− µ√
(ε− µ)2 + ∆2

p
me

=

√
E2 − ∆2

E
p

me
. (2.13)

If we insert eq. (2.13) into eq. (2.12), and if we approximate that only a small range of
energies around the Fermi level contributes to the current (p =

√
2mEF = const.), we

obtain for the DOS:

ρ(E, ∆) =
dN
dE

1
V

=

√
EFm3

e
2π4 <

(
E√

E2 − ∆2

)
∝ <

(
E√

E2 − ∆2

)
. (2.14)

It shows a gap of width 2∆ around the Fermi energy, which is sketched in fig. 2.2(b). At
the gap edges, the DOS diverges into narrow quasiparticle resonances (QPRs) at ±∆.

2.3 Scanning tunneling spectroscopy (STS) on Pb

Tunneling experiments are perfectly suited to probe superconductors and their proper-
ties, as they directly measure the electronic structure in the vicinity of the Fermi level
with a high energy resolution. The prime candidate experiment to determine the band
structure of a material — angle-resolved photo-emission spectroscopy (ARPES) — lacks
the required energy resolution for superconducting gaps, which are usually in the order
of a few meV. Thermal broadening sets the limit for the achieved resolution, and it
would require cooling to millikelvin temperatures. However, tunneling experiments can
overcome this limit by using a superconducting tip.

2.3.1 Spectroscopy with superconducting tips

The energy resolution of metal tips is limited by thermal occupation of the DOS. Follow-
ing Fermi-Dirac statistics, each electrode has an electron distribution at the Fermi level
with a full width at half maximum (FWHM) of 3.5 kBT. At a temperature of ≈ 1.1 K
this leads to a Gaussian-like broadening of ≈ 331 µeV. If we cover the tip with a thick
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FIGURE 2.3: Simulated dI/dV spectra at elevated temperatures. In (a) the tip gap is equal
to the sample gap (∆tip = ∆sample = 1.2 mV), whereas in (b) is is smaller (∆tip = 1.0 mV).
Only in (b) the zero bias resonance is split. Spectra with a line shape as shown in (a) indicate
good quality of the superconducting tip.

layer of Pb, the apex gets superconducting. This is done by deep indentations into the
clean Pb surface while applying a high voltage. The DOS of the tip follows BCS theory.
Together with an elaborated grounding and radio frequency filtering setup this yields an
effective energy resolution of ≈ 50 µeV. However, it comes at the cost of a convolution
of the densities of states of tip and substrate. Mainly, this induces an energy shift of all
spectroscopic features in the sample by ±∆tip.

The tip quality after indentation is controlled by dI/dV spectra on the pristine
substrate. For a good tip, this results in spectral line shapes resembling the textbook
example of a superconductor-superconductor junction. If the tip and sample gaps
are almost equal (∆tip ' ∆sample) the measured gap of zero conductance amounts
to 2(∆tip + ∆sample) [27]. At elevated temperatures (4.5 K), an additional zero bias
resonance is found because of tunneling of thermally excited quasiparticles across the
gap (see fig. 2.3).

SpectraFox, a software for data deconvolution and evaluation

Most of our experimental data is measured with superconducting tips. Hence, a decon-
volution is required to extract the desired quantity, the sample DOS from the measured
spectral intensity. We implemented such a procedure in the software ‘SpectraFox’, which
was written in the framework of this thesis. In this software, we use an inverse approach.
We convolve the DOS of a superconducting tip with a theoretical model of the supercon-
ducting DOS of the sample, and fit the result to the experimental data. This evaluation
technique successfully contributed to several publications [28–33].

Furthermore, we extended the software to provide an elaborate system for displaying,
evaluating and managing the experimental data of scanning tunneling microscopes of
various manufacturers. An article describing all features of the software is published
by M. Ruby. “SpectraFox: A free open-source data management and analysis tool for
scanning probe microscopy and spectroscopy”. In: SoftwareX 5 (2016), pp. 31–36. ISSN:
2352-7110. It is reprinted in appendix B.1. After publication of the article, the software
was made publicly available under an open source license. It is thus open to other
scientists. At the time of publication, the source code comprised ≈ 43 000 lines of code.

SpectraFox contributed a major part to the data evaluation presented in this thesis. It
was furthermore used in Refs. [28–33, 35].
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FIGURE 2.4: Experimental dI/dV-spectra on bare Pb(100), measured with a supercon-
ducting tip. Setpoints: (a) 20 mV, 900 pA, (b) 4 mV, 400 pA. Deviations from the ideal
BCS-DOS are pinpointed. In (b), effects from finite lifetime of the quasi-particles are not
observed, but the regions are marked where a finite signal is expected.

2.3.2 Experiment vs. theory: spectral features of lead (Pb)

Soon after the development of the BCS formalism, tunneling experiments on planar
tunnel junctions were carried out on a variety of single crystal substrates. It turned out
that even elemental superconductors such as Pb, vanadium (V), or tantalum (Ta) showed
deviations from the expected BCS description of the DOS, which is given in eq. (2.14).
In the particular example of Pb, effects from a finite quasi-particle lifetime, from strong
electron-phonon coupling, and from the two-band nature of the substrate are observed.
The deviations are highlighted in fig. 2.4.

Finite lifetime effects on the DOS

A common correction applied to eq. (2.14) when comparing it to experimental data is
an additional broadening term, modeled by an imaginary damping factor iΓ — often
referred to as ‘Dynes parameter’ [36]. It transforms all energies E to (E + iΓ), and
accounts for a finite lifetime of the Cooper-pairs under a finite current, or for crystals
with high impurity concentrations. In an intuitive picture, a current adds a common
drift moment K to the Cooper-pairs, which slightly lifts the time-reversal symmetry for
quasi-particles with opposite momenta k + K and −k + K. This smears out the DOS,
as it reduces the gap in this direction, and leads to a finite spectral intensity at subgap
energies in the range 2∆ > ε > ∆ [see fig. 2.4(b)]. However, none of these features were
observed in most of our measurements.

Superconductors with strong electron-phonon coupling

Lead (Pb) has the special property of possessing a strong electron-phonon coupling.
It implies that approximations made within the BCS framework become inaccurate.
In particular, considering only electrons within the range of the finite energy cut-off
with the highest phonon energy — the Debye frequency — the approximations do
not hold anymore. Instead, electrons in a larger energy range have to be considered,
especially, where the phonon DOS shows van Hove singularities. This leads to an
energy dependent gap operator [∆ → ∆(E)] [37]. In dI/dV-spectra measured with a
superconducting tip on Pb, so-called ‘phonon shoulders’ emerge at ' ±11.1 meV and
' ±6.6 meV [see fig. 2.4(a)]. They result from the phonon branches at 4.0 meV and
8.3 meV [38], respectively, as the sum of tip and sample gap gives an additional offset of
' 2∆ ≈ 2.7 meV to the energies of the van Hove singularities.
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(b) 3rd zone surface(a) 2nd zone surface

1st fcc Brillouin zone

(c) reduced zone scheme

FIGURE 2.5: Fermi surface of Pb plotted in the reduced zone scheme in the first fcc Brillouin
zone. The Fermi surface consists of a second zone surface (a) and a third zone surface (b),
which are well separated from each other (c). The plotted Fermi surface data is from Ref. [43].

The two-band nature of Pb

Early measurements in planar Pb tunneling junctions with a high energy resolution
revealed a spectrum with two QPRs, and thus two distinct gap parameters ∆ [39–42]
[see also fig. 2.4(b)]. The first interpretation of these experiments targeted the crystal
anisotropy, which is reflected in both, the electronic and the phonon band structure.
Especially the latter plays a crucial role in BCS theory.

Details of the Fermi surface of Pb were known quite early by experiments with the
de Haas–van Alphen effect [44]. It consists of two well-separated sheets (see the plot
of the reduced zone scheme in fig. 2.5). The inner Fermi surface is of spherical shape,
whereas the outer surface has a tubular structure. The anisotropy in the electronic bands
is accompanied by a strong anisotropy in the phonon bands [45]. Additionally, Pb has
a strong electron-phonon coupling. The explanation of the observation of multiple
QPRs was hence a k-dependent order parameter within the crystal. Depending on the
transport along a specific crystal orientation, a single superconducting gap is observed
that varies in energy [46]. The observation of multiple gaps in a single measurement in
planar tunneling experiments was explained by simultaneous tunneling into different
crystal directions.

Decades after this explanation, composite superconductors, such as MgB2 [47–51]
and CaC6 [52–55], were discovered. They gained a lot of interest because of their un-
expected high transition temperatures (39 K and 11.5 K, respectively). Their band
structure is highly anisotropic, and they show only two distinct gaps. Still, the latter
could not be explained by the first. Instead, an old concept turned out to be of impor-
tance, which is multi-band superconductivity [56]. The overlapping bands of the two
compounds possess different electron-phonon coupling strengths. This not only leads
to two distinct gaps for each band, but it crucially contributes to the high transition
temperatures [57].

The simple explanation for the nature of superconductivity in composite materials
raised the need to reinvestigate the elemental superconductors with respect to a possible
multi-band character. For Pb, density functional theory (DFT) calculations were per-
formed by A. Floris et al. [58]. They concluded that the superconductivity in Pb is also of
a two band-nature, which leads also in this case to the quite high critical temperature of
7.2 K. The two bands inherently distinguish themselves in their properties because of
a hybridization of the original p-bands with s- and d-bands [59]. The compact second
zone Fermi surface [fig. 2.5(a)] has a more delocalized s-p character, the tubular third
zone Fermi surface has a more localized p-d character. They argued that the different
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orbital nature leads to different electron-phonon coupling strengths, and thus causes
different pairing energies ∆ for each band.

Experimentally, it is difficult to distinguish between the two-band model and the
earlier explanation of an anisotropic variation of the order parameter by an anisotropic
electron and phonon band structure. The experiments on planar tunnel junctions have
always revealed two QPRs in the gap structure [39–42]. However, the disadvantage
of planar junction is that they average over a large area, which includes step edges,
vacancies, impurities, etc. The tunneling current is the sum of all tunneling paths, and
thus the tunneling electrons may propagate into many different lattice directions in these
experiments. This forbids an ambiguous decision between the two explanations.

We use the high lateral resolution of today’s scanning tunneling microscopy (STM)
experiments to avoid this shortcoming. Atomically flat surfaces are guaranteed, and
scanning tunneling spectroscopy (STS) is used to explore the variations in the supercon-
ducting gap. The lateral precision allows to probe well-defined defects. We can also
tune the tunneling contributions parallel to the surface by controlling the tip-substrate
distance. The results of our experiments are presented in the article by M. Ruby et al.
“Experimental Demonstration of a Two-Band Superconducting State for Lead Using
Scanning Tunneling Spectroscopy”. In: Phys. Rev. Lett. 114 (15 Apr. 2015), p. 157001,
reprinted in appendix B.2.

We observe direct evidence for the two-band nature of superconductivity in Pb, as
predicted by A. Floris et al. [58]. Measurements with high energy resolution reveal
an energy separation of the two superconducting gaps of 150 µeV. The shape of the
two gaps is still BCS-like. It can be modeled by a simple linear combination of two
DOS, each given by eq. (2.14). Measurements on different surface orientations of the Pb
single crystals prove two distinct gaps for the two different bands. Depending on the
crystal orientation, the intensities of the QPR peaks vary, which we explain by k-selective
tunneling into the two Fermi surfaces. In STS experiments the tunneling occurs mainly
with k-vectors perpendicular to the surface. Because of the open pores in the third zone
Fermi surface [see fig. 2.5(b)], the tunneling into this band is reduced significantly for
crystal orientations with a pore perpendicular to the surface. The same is confirmed by
approach experiments, where the tip-sample distance is varied.

Furthermore, our experiments answer the question which QPR, or rather which
pairing energy, is associated to which particular Fermi surface. Our data confirms the
prediction of A. Floris et al. [58] that the compact second zone surface [see fig. 2.5(a)] has
a smaller gap than the tubular third zone surface [see fig. 2.5(b)]. In an intuitive picture
the more localized p-d-like band couples stronger to phonons, as it is in average closer
to the ion cores. Thus, it has a larger pairing energy. To prove this, we investigated
scattering patterns around subsurface neon (Ne) impurities at the energies of the two
QPRs. As a direct consequence of the anisotropy of the Fermi surfaces in k-space, an
anisotropic electron propagator exists in the crystal [60–63]. This leads to characteristic
signatures of the shape of the respective Fermi surfaces in the spatial scattering patterns,
which allow us to assign the patterns at a specific energy to the originating Fermi surface.

Last but not least, we show that the distinct orbital character of the Fermi sheets is
also reflected in spectra at local non-magnetic adatoms. The results will be discussed in
more detail in section 3.1, which deals with single atomic impurities in superconductors.
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Chapter 3

Atomic impurities on a BCS
superconductor

Superconductivity relies on the formation of a tiny gap ∆ which separates single-particle
excitations from the Fermi level by bonding the electrons in Cooper pairs. This leads to
zero electrical resistance, as any scattering event has to overcome the energy to break a
pair1. An important property of superconductors is the inherent particle-hole symmetry,
discussed in section 2.2. It raises the following questions: How do superconductors react
on defects that break this symmetry? Moreover, the Cooper pairs in conventional super-
conductors form a spin singlet. Hence, magnetism and BCS superconductivity contradict
each other. So, what is the effect of magnetic atoms adsorbed on a superconductor?

In general, one has to distinguish between high and low impurity concentrations,
independent of their type of impurities. In this chapter, we focus on the low coverage
regime, and investigate how single atoms affect the superconductivity in the vicinity
of the adsorption site on the surface of a Pb single crystal. To do so, we first probed
the influence of non-magnetic Pb adatoms on the substrate, where they act as potential
scatterers (section 3.1). These have no effect on superconductivity by themselves, but
change the local electronic structure of the substrate.

We continued our measurements with magnetic adatoms, namely we evaporated
various transition metal atoms [scandium (Sc), V, Mn, Fe, Co, and nickel (Ni)], and
the rare-earth element gadolinium (Gd). The preparation of the samples is described
in appendix A.4.1. The magnetic moment of such an adatom interacts with supercon-
ductivity, and induces local bound states at energies within the superconducting gap.
The measurements yield that only Mn and Fe adatoms show signatures of significant
interaction.

A theory describing the scattering process was published in the 1960s. It is introduced
in section 3.2. We solve the question how transport evolves through such an induced
local bound state in experiment. As it is a subgap bound state, it is isolated by the
superconducting gap and requires relaxation mechanisms. Later, by looking at the
vicinity of the impurity, we discuss how a single impurity can lead to multiple subgap
resonances. In fact, we discovered a spatial extension of the bound states within the
substrate. Its origin is discussed in section 3.4. The observed lateral extension suggested
a possible coupling between impurities, when bringing two impurities at close distance
to each other. This is investigated at the example of two Mn adatoms in section 3.5.

1The interaction with the lattice vibrations is anyhow considered in BCS theory.
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3.1 Non-magnetic impurities

In a conventional BCS superconductor the Cooper pairs form a singlet ground-state. Non-
magnetic impurities are pure potential scatterers. They break particle-hole symmetry
by a local Coulomb repulsion. Time-reversal symmetry, however, is untouched if the
superconductor has an isotropic conventional pairing potential. Only for unconventional
superconductors with an anisotropic pairing potential the broken particle-hole symmetry
also diminishes the pairing mechanism.

The impurity density plays an important role for the effects on superconductivity.
The Cooper pair wave function varies in the order of the coherence length ξ. If the
average distance between the impurities is larger than ξ, only a weak perturbation acts
on its pairs, but superconductivity is not affected at all. If the impurity density is larger,
the superconductor has to be treated in the ‘dirty’ limit [64]. The lifetime of Cooper pairs
is effectively decreased by the subsequent scattering events. This increases the Dynes
parameter (introduced in section 2.2.1), which overall broadens the DOS, and leads to
an averaging of the signal for transport into all lattice directions.

Examples for non-magnetic impurities are crystal defects, such as step edges and dis-
locations, or non-magnetic adsorbates, such as atoms and molecules. In our experiment,
we investigated the influence of step edges, large sub-surface impurities, and single
non-magnetic Pb adatoms on single crystal Pb. Parts of this observation were published
by M. Ruby et al. “Experimental Demonstration of a Two-Band Superconducting State
for Lead Using Scanning Tunneling Spectroscopy”. In: Phys. Rev. Lett. 114 (15 Apr. 2015),
p. 157001. The result was discussed already in parts in section 2.3.2, and is reprinted in
appendix B.2.

Since Pb is a two-band superconductor it has two distinct superconducting gaps,
originating from different bands. Independent of the exact type of local impurity, we
observe that the intensity of the QPR peak with larger energy increases at the impurity
site, in contrast to the QPR peaks with lower energy. We explain this phenomenon
by the different localization of the bands, of which the two QPRs originate from. The
electronic bands of the substrate are usually described by delocalized Bloch waves. A
local impurity can only perturb the delocalized states in the vicinity of the impurity site.
Hence, the QPR associated with the more localized p-d-like band is more influenced
by a local impurity than the more delocalized s-p-derived states. This increases the
probability of tunneling into these bands at the impurity site.

3.2 Yu-Shiba-Rusinov bound states at magnetic impurities

Magnetic impurities differ from non-magnetic ones by additionally breaking time-rever-
sal symmetry. Their local magnetic potential acts on the spin-component of the Cooper
pair wave function. Hence, they locally perturb the Cooper pairs independent of the
pairing potential symmetry. This leads to the formation of localized bound states below
the superconducting gap at the impurity site. The microscopic nature of these states
was described in the 1960s by L. Yu, H. Shiba, and A.I. Rusinov [65–67]. They are often
referred to as Yu-Shiba-Rusinov (YSR) or Shiba states2.

2They should not be confused with Andreev bound states (also called multiple Andreev reflections),
which also arise within the superconducting gap. These are a pure transport phenomenon which appears
in mesoscopic superconductor-normal-superconductor junctions.
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FIGURE 3.1: (a) Scattering phase δ± as introduced by Rusinov [67], and defined by eq. (3.3),
depending on the potential scattering strength U and the exchange scattering JS. The
positive and negative components represent the hole-like and electron-like resonances,
respectively. (b) Bound state energy εb versus the phase difference. According to eq. (3.4),
εb shifts continuously through the gap between ±∆.

The scattering between an incident quasi-particle with a magnetic impurity is de-
scribed by the exchange interaction Hamiltonian:

Hexch. = −
J

2N ∑
k,k′

a†
k σ ak′ S . (3.1)

Here, J is the interaction strength, S is the impurity spin, a(†)k is the incident (scattered)
single-particle operator, and σ is the Pauli matrix that describes the incident electron
spin. To simplify calculations, the impurity is often considered in the classical limit.
The spin is assumed to be large (S→ ∞), but the total interaction should still be finite
(J → 0, w = JS = finite). Within this approximation the impurity is immune to internal
transitions. It only scatters the incoming particle. For nanoscopic impurities this scenario
is not necessarily correct, however it is well suited to understand the scattering processes.

The exchange scattering of incident bulk spins with the impurity spin reduces locally
the pairing energy of the Cooper pairs, and induces the YSR states. Because of the
inherent particle-hole symmetry of the superconductor, each bound state is indicated by
two resonances in the DOS, an electron-like and a hole-like peak. They lie symmetric
in energy with respect to the Fermi-level at ±εb, and within the superconducting gap
(εb < ∆). It is important to keep in mind that both resonances belong to the same bound
state. The energy εb follows:

εb = ∆
1− [JSπρ/2]2

1 + [JSπρ/2]2
, (3.2)

where w = JS is the exchange interaction strength, and ρ is the normal state DOS at the
Fermi level. The first experimental observation of these states was reported in tunneling
experiments on single Mn and Gd atoms adsorbed on a Nb substrate [68].

Rusinov further modified eq. (3.2) by introducing a scattering phase δ± for the
hole-like and electron-like resonance, respectively. The phase is given by the exchange
scattering w = JS, and the potential scattering from Coulomb interaction U:

tan δ± = U ± JS = U ± w . (3.3)

The relation is plotted in fig. 3.1(a). Potential scattering simply produces an offset,
whereas exchange scattering leads to different values of δ±. The bound state energy is
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finally given by the difference between both phase components:

εb = ∆ cos
(
δ+ − δ−

)
. (3.4)

The evolution of eq. (3.4) is plotted in fig. 3.1(b). A pure potential scatterer has a bound
state energy of εb = ∆. Thus its resonances are located at the superconductor’s QPRs.
When exchange scattering increases (w = JS > 0), the bound state shifts to lower
energies. An important property of the two YSR resonances is their spin-polarized
nature. For the case of a ferromagnetic coupling, the spin of the bound state is aligned
parallel to the classical impurity spin; for the case of an anti-ferromagnetic coupling, it is
aligned anti-parallel. The mirror-symmetric hole-component caused by the particle-hole
symmetry of the superconductor has the opposite spin of the electron-component. This
means that, lets say, an electron with spin-up would be equal to a hole with spin-down
in a superconductor.

An interesting phenomenon occurs at a phase difference of (δ+ − δ−) = π/2. At
this point, the exchange interaction reaches a critical value w = wc, and the system gets
unstable against a quantum phase transition, where the bound state crosses the Fermi
level. As sketched in fig. 3.2(a) and (c), this changes the occupation of the bound state
from unoccupied to occupied. Accordingly, the ground state of the superconductor
changes from a S = 0 to a S = 1/2 spin state, with an electron in the bound state.

3.2.1 Tunneling into YSR states: the excitation picture

Employing tunneling experiments on magnetic impurities implies the successive in-
jection or extraction of an electron into or out of the YSR bound states. Each process
excites the system, which lifts it in energy. Therefore, compared to the simple bound
state picture mentioned above, we can also sketch the ‘excitation’ picture [69–71]. It is
shown in fig. 3.2(b) and (d). Tunneling into the weakly coupled YSR state increases the
spin of the host from an S = 0 ground state to an S = 1/2 excited state. In the strong
coupling regime, the ground state is already S = 1/2. Emptying the state by a tunneling
event puts it into the S = 0 excited state.

The excitation picture is useful to understand an experiment by N. Hatter et al. [30],
where molecules with a multitude of different adsorption sites are used to follow the
phase transition between the weakly coupled and the strongly coupled regime. It is
described in section 3.4.

3.3 Transport through YSR bound states

The excitation picture, introduced in section 3.2.1, describes a tunneling event to a
YSR state in terms of population or depopulation of the state with a single electron.
When probing YSR states in experiment by STS, a steady current through the state is
established, which means a consecutive number of tunneling events occurs. However,
the YSR state is isolated from the quasi-particle continuum by the superconducting gap.
Therefore, the elemental question arises, which relaxation mechanisms are involved in
bringing the system back to the ground state after each single excitation, in order to allow
the subsequent excitation to occur. Moreover, the maximum current pushed through the
state depends crucially on the involved processes. To interpret the measured signal, we
need to investigate the details of the relaxation mechanisms. The results are published by
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FIGURE 3.2: YSR bound states in weak coupling (w < wc) and strong coupling (w > wc).
Within the bound state picture (a,c) the YSR state at εb crosses the Fermi level at a critical
exchange coupling JcS = wc. At this point the system undergoes a quantum phase transi-
tion, which changes the occupation of the bound state. Here, the anti-ferromagnetic case is
sketched, in which the bound state spin and the impurity spin are anti-aligned. The asym-
metry of the resonances in the density of states is given by a local Coulomb interaction. The
excitation picture (b,d) shows the change of the system under the lowest possible excitation.
It is measured by electron tunneling in our case, and changes the spin state of the system.
The classical impurity spin S→ ∞ is not affected at all. At the quantum phase transition,
the bulk changes its ground state from an S = 0 to S = 1/2 spin configuration.

M. Ruby et al. “Tunneling Processes into Localized Subgap States in Superconductors”.
In: Phys. Rev. Lett. 115 (8 July 2015), p. 087001. They are also reprinted in appendix B.3.

In our work we employed STS on single Mn adatoms on a Pb(111) single crystal.
The data were measured with a superconducting tip. As described in section 2.3.1 we
obtain high energy resolutions in the order of 50–70 µeV. Preceding work by S.-H. Ji et
al. on this system showed two YSR resonances at the center of the impurity [72]. In our
experiment we discovered that single atoms adsorb in two different sites on the surface
substrate. Both species show significantly different spectral properties. Five pairs of YSR
resonances were observed for atoms at the initial adsorption site, which all atoms reside
in after evaporation. Because the adatoms appear with a lower topographical height, we
name them Mndown

Pb(111). We could prove that it is the same species as reported in Ref. [72].

An approach with the tip of our STM to a Mndown
Pb(111) atom lifts it to the second adsorption

site. It appears with a larger topographical height, and we name it Mnup
Pb(111). It shows

only three pairs of YSR resonances. The difference between the two adsorption sites and
the origin of the multiple resonances will be discussed later, in section 3.4.

In this section we want to focus on the lowest energy YSR resonances appearing at
εb ' ±0.22 meV on the Mnup

Pb(111) species. The resonance is pointed out in fig. 3.3(a). We
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FIGURE 3.3: (a) dI/dV spectra on a Mnup
Pb(111) adatom at two different tip-sample distances.

Spectra are normalized to the “normal-state” conductance measured at 4 meV, which
is given in units of the quantum of conductance G0 = 2e2/h. The lowest energy YSR
resonances and their thermal counterparts are marked by ±α and ±β, respectively. For
clarity, an offset is applied to the spectra, and they are scaled when indicated for better
visibility. For comparision, a spectrum acquired on the clean Pb(111) substrate overlays the
top curve. The spectral intensity (recorded with a lock-in modulation amplitude of 15 µVrms
at a frequency of 912 Hz) changes between the two normal-state conductance values. (b–d)
A current through a YSR bound state at εb requires relaxation processes after each excitation
process. A tunnel event occurs with rate Γe,h, for electrons and holes, respectively. The rates
for thermal relaxation to the continuum are given by Γ1,2. Single electron tunneling from
tip to sample and sample to tip is sketched in (b,c). An Andreev process incorporating two
tunneling events is sketched in (d).

name it ±α. Additionally, each YSR state is accompanied by a thermal peak (±β) when
tunneling thermally excited particles at the measurement temperature of 1.2 K. The
spectra are recorded in two different conductance regimes, at high and low tip-sample
distance, respectively. The values for the normal state conductance are indicated in the
figure. Obviously, the spectral intensities of the resonances change between the two
regimes. Moreover, the asymmetry between ±α and ±β inverts. In collaboration with
theorists we show that the inversion is inherently connected to two different relaxation
processes of the excited YSR state after a tunneling event. These compete and contribute
two separate components to the totally measured current.

The first is a single-particle relaxation process, which is thermally driven by absorp-
tion of phonons or photons from the bulk. It contributes a current Is:

Is = e
∫ dω

2πh̄

{
Γ1[ΓenF(ω−)− ΓhnF(ω+)]

(ω− ε0)2 + (Γ/2)2

− Γ2[Γe(1− nF(ω−))− Γh(1− nF(ω+))]

(ω− ε0)2 + (Γ/2)2

}
. (3.5)

The second mechanism is an Andreev relaxation process, which uses the condensate
degree of freedom of the Cooper pairs to create and annihilate pairs from the bulk. Here,
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a second particle tunnels across the barrier. Overall, this contributes a current Ia:

Ia = 2e
∫ dω

2πh̄
ΓhΓe[nF(ω−)− nF(ω+)]

(ω− ε0)2 + (Γ/2)2 . (3.6)

In eq. (3.5) and (3.6), the Fermi functions nF(ω) are evaluated at ±α, with ω± = ω ± eV.
The broadening Γ = Γe + Γh + Γ1 + Γ2 is defined by the rates Γe,h that transfer a particle
or hole from the tip to the sample, respectively, and by the rates Γ1,2 that thermally
occupy or empty a state from or to the quasi-particle continuum. They are sketched in
fig. 3.3(b–d).

The different nature of both processes leads to an opposite weight at weak and
strong tunneling currents. The single-particle current [eq. (3.5)] only requires a single
transition through the tunnel barrier between tip and sample (terms Γ1,2Γe,h ∝ t2, with the
tunnel matrix element t). However, elevated temperatures are needed for the relaxation
processes Γ1,2. The Andreev current [eq. (3.6)] crosses the tunnel barrier twice (terms
ΓeΓh ∝ t4), but it is independent of the temperature. Hence, in the low conductance
regime we yield a spectrum which is dominated by the single-particle current because of
the weakness of the Andreev current. The opposite is the case in the high conductance
regime. Here, the Andreev contribution by far outruns the thermally limited single-
particle current. We prove this additionally by measurements at elevated temperatures
(4.5 K), where the transition point between the two regimes shifts. In the case of Mn
adatoms on Pb(111), the thermal relaxation times at 1.2 K amount to h̄/Γ1 ' 0.2 ns and
h̄/Γ2 ' 0.6 ns.

A main message of our work targets the data interpretation of the STS spectra in
these different regimes. The dI/dV signal in the low conductance regime is directly
proportional to the sample DOS — besides the convolution of tip and sample DOS
because of a superconducting tip. In the high conductance regime we can access the
thermal relaxation rates of the system, but instead loose the direct access to the sample
DOS.

Moreover, our experiments show that one can tune the system continuously between
the two regimes. This bridges nanoscopic and mesoscopic physics. In nanoscopic
physics, the currents are usually low. They are seen in the single-particle picture and
are interpreted in terms of single-particle DOS. In mesoscopic physics, the currents
are usually large. They are interpreted in the Andreev transport picture. Last but
not least, we want to point out that our analysis is applicable to all bound states in
superconductors, as long as they are isolated by a superconducting gap. Thus the results
may be useful in a variety of fields dealing with transport in superconductors.

3.4 Multiple YSR bound states from a single impurity

In section 3.3 we discussed the transport through a single YSR state. In the following, we
restrict our experimental data to the low conductance regime, where the dI/dV signal is
directly proportional to the DOS. Yet, we have not discussed how a single impurity can
induce multiple pairs of YSR resonances, as it was first observed in the experiment of
Ref. [72], as well as later by us in Ref. [29]. This phenomenon is barely explained in the
YSR theory.

As it turns out, the bound state and the excitation picture, introduced in section 3.2,
are helpful to describe an impurity with multiple magnetic moments. The two different
extremal cases of the interaction of such an impurity with the substrate are sketched
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FIGURE 3.4: A magnetic impurity with multiple spins si induces a different number of YSR
states in the superconducting substrate, depending on the coupling strength W between
the spins within the impurity, and the coupling strength wi of each spin to the substrate.
(left) For W > w, the impurity with multiple spins can be approximated by an impurity
with a single magnetic moment, which is the sum of the individual spin moments (S = ∑ si).
The large moment S induces a single YSR state with energy εb(w) in the substrate, but it
may be split by a magnetic anisotropy. (right) For W < w, each impurity spin si couples
individually to the substrate with different coupling strength wi. This induces a single YSR
state per spin at energy εbi(wi).

in fig. 3.4. In the first scenario, the coupling W between the spins of the impurity is
larger than the coupling w of each spin to the substrate. The impurity with multiple
spins may be approximated by an impurity with a single spin moment, which is the
sum of the individual spin moments. Such an impurity induces only a single YSR state
in the superconductor. However, in experiment, we may still observe more than a single
pair of YSR resonances from tunneling into the bound state, because of excitations from
different spin projections. An example for such a case is briefly discussed in section 3.4.1.
In the second scenario, the coupling between the spins of the impurity is smaller than
the coupling of each spin to the substrate. This requires that each spin is treated as
individual scattering potential, which interacts independently with the substrate. Hence,
there are as many YSR states as there are spins. Each state is observed as a single pair
of resonances in spectroscopy, and follows the simple description given in eq. (3.4). An
example for this case is discussed in section 3.4.2.

3.4.1 Multiple resonances of a YSR state split by magnetic anisotropy

Within the framework of this thesis, the first scenario plays only a minor role. Never-
theless, it is briefly discussed below as a short excursion. The presented results were
obtained mainly by N. Hatter within the framework of his PhD thesis and are published
in Ref. [30]. There, a molecular layer was evaporated on the superconducting substrate,
in which each individual molecule is adsorbed at a slightly different site in a nanoscopic
scale. The local variation of the environment changes the coupling strength JS to the
substrate, and it shifts the observed YSR bound state through the quantum phase transi-
tion. Hence, a broad range from weakly coupled to strongly coupled molecules exists.
In this particular molecular system, it changes the total ground state because of different
screening from S = 1/2 to S = 1.

The experiment showed three pairs of YSR resonances in dI/dV spectra on the
molecules. While the resonances shifted in energy through the gap for the different
coupling strengths of the molecules [remember eq. (3.4)], their separation in energy with
respect to each other stayed constant. Moreover, only their relative intensities changed
during the transition from the weak to the strong coupling regime.
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This makes unlikely an interpretation in terms of multiple individual YSR states from
the different spins within a single molecule. Instead, it suggests that the molecule is in a
total spin state of S = 1, which acts as single scattering potential for the superconductor.
We explain the observation of multiple resonances in experiment by a local crystal field
splitting of the ground state or of the excited state with respect to the spin quantum
number, and in dependence of the coupling strength, respectively. This splitting becomes
visible, if the crystal field energy is in the same order as the transition energies of the
YSR system (recall the excitation picture introduced in section 3.2.1). It is obvious that
an additional splitting of, let’s say, the excited state leads to a manifold of resonances
corresponding to transitions from the ground state, although all excitations still belong
to the same YSR scattering potential. Thus, their separation in energy will not change,
unless the crystal field splitting is modified. The variation in intensity of the resonances
is explained by the thermal occupation of the ground state. The levels are occupied with
Maxwell-Boltzmann distribution if they are split, and thus lead to different transition
probabilities for the transitions from these levels.

3.4.2 Multiple individual YSR states from a single magnetic impurity

The focus of this thesis, however, is laid on the second scenario, where the exchange
coupling between the spins of an impurity is weaker than the coupling of the spins to
the substrate. This leads to a single pair of YSR resonances for each individual spin.

In section 3.3 we already reported on the first experiment on single Mn adatoms
on Pb(111) by S.-H. Ji et al. [72], where they observed two pairs of YSR resonances.
Their explanation followed the initial theoretical prediction of A.I. Rusinov [67]. Higher
order scattering channels with angular momenta (l = 1, 2, . . .) would induce subsequent
peaks next to the main YSR resonances which originate from isotropic scattering (l = 0).
Thereby, the resonances shift closer to the gap edge (±∆) because the coupling strength
decreases with increasing scattering order [73]. In addition, with increasing scattering
order, the spectral intensity should decrease, as the processes get more unlikely.

At first sight, their explanation matches their experimental data. They observed two
resonances up to the order of l = 1, which decrease in intensity with higher order. How-
ever, in our experiments on the same system (see section 3.3), we saw that the number of
YSR resonances in this system is much larger than anticipated. We observed five pairs of
resonances for the initial species that was found after evaporation (Mndown

Pb(111)), and three
pairs for the species that was obtained after manipulation of the adatoms with the tip
(Mnup

Pb(111)). Additionally, the intensities of the resonances do not decrease towards the
gap edge. Hence, the explanation by the higher order channels is insufficient, and the
appearance of multiple resonances requires an alternative interpretation which does not
solely depend on the energetic alignment of the YSR resonances. This is why we again
performed measurements on this system. However, this time, we focused on the lateral
extension of the states. Our results showed that we can establish a link between the
individual YSR states and the shape of the scattering potential that each state originates
from, the latter being the orbital structure of the magnetic impurity. The results were
published by M. Ruby et al. “Orbital Picture of Yu-Shiba-Rusinov Multiplets”. In: Phys.
Rev. Lett. 117 (18 Oct. 2016), p. 186801. The article is reprinted in appendix B.4.

In our experiment, we employed again single Mn adatoms on Pb, and used STS to
measure the on-site conductance in the vicinity of the adatoms. The main advantage
of this setup is that the adatoms are supposedly in the Mn++ configuration with five
d-electrons and a fully emptied s-shell because of hybridization with the substrate. The
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electronic configuration of the Mn d-shell according to Hund’s rules is 6S5/2. Hence, it
is spherically symmetric. As emphasized by J.R. Schrieffer [74], only l = 2 electrons
can scatter at such an impurity. The ion cannot change the angular momentum of
the itinerant conduction electrons in an isotropic environment and in the absence of
spin-orbit coupling. Moreover, this implication was mainly ignored by literature (one
exception being Ref. [75]).

In collaboration with theorists we showed that, indeed, the YSR states inherit the
symmetry from the scattering potential. In this particular case, when scattering at atomic
d-orbitals, the observed lateral scattering patterns in the vicinity of an adatom reflect
these symmetries3.

In our experiment we observed multiple pairs of YSR resonances at single adatoms.
The scattering patterns at the different resonance energies distinguish significantly
in shape. With the above explanation, this requires that each YSR state originates
from scattering at different d-orbitals of the adatom. Moreover, the orbitals need to be
separated in energy, namely without lifted degeneracies the scattering potential would
be degenerate and fully spherically symmetric.

The most simple explanation is a crystal field splitting of the orbitals induced by the
adsorption on the substrate. This yields degenerate and non-degenerate alignments of
the orbitals to a scattering potential at a specific energy. Moreover, it implies that each
of the scattering potentials is coupled stronger or weaker to the substrate. Hence, each
potential creates a YSR state with different energy.

In our article, we studied different surface orientations of the substrate. In addition
to the Pb(111) surface, known from above, we used a Pb(001) crystal. Here, the surface
symmetry matches with that of the d-orbitals of the Mn adatoms, both being C4v. This
reduces the effects of the lattice symmetry on the scattering patterns. We denote the
Mn impurities on this substrate in the following by Mndown

Pb(001). They show three pairs of
YSR resonances. The adsorption at a high symmetry hollow site on Pb(001) leads to a
square-pyramidal crystal field. In the ideal case, this splits the five d-orbitals into three
levels, of which one of them is three-fold degenerate [77]. It matches with the number
of YSR resonances obtained from experiment. Indeed, the lateral pattern of the states
is a reminiscent d-orbital symmetry. However, it is an order of magnitude larger than
the size of the d-orbitals themselves, and it is visible ' 1.6 nm away from the impurity
center.

On the Pb(111) substrate we observed two adsorption sites of the Mn adatoms
(Mndown

Pb(111) and Mnup
Pb(111)). Both showed a different number of YSR states. Moreover,

they also differ in their topographical shape. Mndown
Pb(111) has a slightly oval shape, and

Mnup
Pb(111) is spherical symmetric. However, the adsorption geometry is a crucial in-

gredient for the crystal field splitting which determines the number of induced YSR
states. The oval shape of Mndown

Pb(111) indicates a low-symmetry adsorption site. So do the
five pairs of YSR resonances, which require all d-orbital degeneracies to be lifted. The
symmetric shape of Mnup

Pb(111) indicates a high-symmetry adsorption site. The substrate
Pb atoms of the (111) surface impose a trigonal-pyramidal crystal field. It splits the
orbitals into a single degenerate and two double degenerate levels [77], which matches
with the observed number of resonances for Mnup

Pb(111). The lateral scattering patterns of
the YSR states show only a slow decay along the high symmetry directions of the crystal.

3A similar conclusion was made in a parallel work by D.-J. Choi et al. [76], where they investigated
chrome (Cr) adatoms on a Pb thin film with STS, and performed DFT calculations for the adsorption
geometry and the observed scattering patterns.
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The oscillations in the spectral intensity are visible up to 5 nm away from the impurity
center.

Theoretically, the largest intensity of a YSR bound state is localized at the center of
the impurity. Yet, its wave function has a finite decay with lateral distance r from the
center. It differs between substrates with two and three dimensions, and is given by [67,
68, 71, 78]:

ψ±3D(r) ∝
sin (kF r + δ±)

kF r
exp

[
−
∣∣sin

(
δ+ − δ−

)∣∣ r
ξ

]
, (3.7)

ψ±2D(r) ∝
sin (kF r− π/4 + δ±)√

kF r
exp

[
−
∣∣sin

(
δ+ − δ−

)∣∣ r
ξ

]
. (3.8)

Here, kF is the Fermi wave vector, ξ is the coherence length, and δ± is the scattering
phase of the electron and hole component of the YSR state. The wave function amplitude
decreases with r−1 in 3D substrates, and with (

√
r)−1 in two-dimensional (2D) materials4.

Observation of the lateral decay in experiment is additionally influenced by the crystal.
The symmetry of the host lattice is imprinted to the shape of the scattering pattern
because of scattering at the anisotropic Fermi surface. This is discussed theoretically in
Ref. [69], and is the same effect that we observed in experiments on non-magnetic neon
impurities embed in Pb [28]. Interestingly, this effect is strong enough that it leads to a
similar decay constant for the 3D substrate of our experiment and the recently reported
one for a 2D superconductor [78].

When comparing our observations with the predicted behavior in eq. (3.7), we find a
match of the oscillation period of the spectral intensity with the Fermi wavelength λF
of the p-d-like Fermi surface of the Pb crystal. An intuitive explanation can be given
in analogy to the scattering at non-magnetic impurities in section 3.1. Electrons from
the more localized p-d-like band scatter stronger at a local magnetic impurity than those
from the more delocalized s-p-like band of Pb.

The oscillations also yield the phase difference between the electron and the hole
component of the YSR wave function (δ+ − δ−). However, we obtain only a few data
points, which are plotted in fig. 3.5 together with the theoretical prediction [eq. (3.4)].
The rough match between experiment and theory is acceptable, when considering the
simplicity of the theoretical model.

3.5 Coupling of two magnetic impurities

One of the main observations in section 3.4.2 is the large lateral extension of the YSR
states, which appear even on 3D bulk substrates. The slow decay raises the question of
what happens when two impurities lie at close distance to each other, where their YSR
states overlap. Answering this question helps to understand larger nano structures of
magnetic impurities, and the nature of the coupling within such structures. Moreover,
we can estimate the rough limits of the coupling between the two adatoms. Initially,
the interaction starts as a small perturbation to the single atomic YSR states. Finally, it
ends in the formation of a dimer with hybridized YSR states. In larger systems, it would
even evolve to the formation of bands. However, the nature of the coupling, whether

4In close vicinity to the impurity, the exponential decay is negligible compared to the r−1 or (
√

r)−1

term, respectively. In particular, the coherence length is usually in the order of several 10 to 100 nm (see
section 2.1).
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FIGURE 3.5: Energy of the YSR bound state versus the phase difference between the electron
and the hole component (δ+ − δ−) of the bound states in Mnup

Pb(111) adatoms. The difference
was determined by the intensity oscillations of the laterally decaying YSR states. The solid
line gives the expected behavior according to eq. (3.4).

it is ferromagnetic or anti-ferromagnetic, is yet unknown. To answer this question, we
investigate pairs of atoms adsorbed at various distances and angles with respect to each
other. The content presented in this section is not yet published, and hence elaborated in
more detail.

Our experiment relies on arbitrarily adsorbed adatom pairs5, which was tuned by
different surface coverages of Mn adatoms up to 410 adatoms per 100× 100 nm2. Still,
we stay below the regime where artifacts from high coverage appear, i.e., where YSR
bands form across the whole surface. The spectra of single adatoms with a next-neighbor
distance < 4 nm do not deviate from those recorded in the low coverage regime [32].

In Ref. [32] (section 3.4.2) we reported that Mndown
Pb(001) adatoms show three pairs of

YSR resonances. We named them ±α, ±β, and ±γ, and assigned them to scattering
of incident Cooper-pairs at the atomic d-orbitals dx2−y2 , dz2 , and dxy,xz,yz, respectively.
In collaboration with theorists we showed that the spatial shape of the YSR states is
inherited from the corresponding d-orbital. Hence, the spatial extension of β was the
weakest, with the strongest intensity at the center of the impurity. The states α and γ
were more extended within the surface plane, and weak at the center of the impurity.
Both were hardly probed by STM because of a weak extension perpendicular to the
surface. Moreover, we show evidence in this section that γ is actually a degenerate state.
In addition to the orbital symmetry, each YSR state gets the symmetry of the host lattice
imprinted on the shape of the scattering pattern because of scattering at the anisotropic
Fermi surface.

In fig. 3.6 two Mndown
Pb(001) are adsorbed along the [100] high symmetry crystal direction

at a distance of ' 1.5 nm. All YSR wave functions overlap at this distance and angle.
The dI/dV spectrum recorded on top of one of the adatoms is shown in fig. 3.6(a) and
(b) as red curve. In comparison with a single adatom (the blue dashed curve), each
resonance±α,±β, and±γ is split into a pair of peaks, and furthermore shifted in energy.
We denote the resonance which is lower in energy by the sub-index b and the one which
lies higher in energy with sub-index a.

We recorded dI/dV-maps of the spectral intensity in the vicinity of the adatoms at
the energies of the split resonances [see fig. 3.6(d–o)]. Interestingly, the ones denoted
by sub-index b show an increased intensity between the adatoms [fig. 3.6(e,g,i,k,m,o)],
whereas the opposite is observed in the maps of the resonances with a sub-index a.

5Lateral manipulation of adatoms with the STM tip would be the most elegant way to vary the angle
and distance. However, it requires a weak coupling between the impurity and the substrate, which is not
the case for Pb crystals.
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FIGURE 3.6: Two Mn adatoms at a distance of 1.54± 0.08 nm along the [100] direction.
(a,b) dI/dV-spectra on top of the left adatom (solid red curve), and on the bare substrate
(gray curve). The recorded locations are marked by arrows in the topography in (c). For
comparison, the spectrum on a single adatom without a neighbor is shown as a blue dashed
curve. The energies of the non-split resonances ±α, ±β, and ±γ are indicated by vertical
gray dashed lines. The subgap states are split into bonding and anti-bonding resonances
αb,a, βb,a, and γb,a, respectively, and shifted in energy. Setpoint: 200 pA, 4 mV. Lockin
modulation: 15 µV. (c) Topography of the adatoms. The positions of the adatoms are
framed by blue dotted circles. Setpoint: 150 pA, 5 mV. (d–o) dI/dV-maps at the subgap
resonance energies. The blue dotted circles mark the adatom positions, as depicted in (c).
The bonding states (±αb,±βb,±γb) have a high spectral intensity between the adatoms. The
anti-bonding states (±αa, ±βa, ±γa) show a reduced intensity and nodal-planes between
the adatoms. The scale in (h–k) is cut to emphasize the laterally extended intensity around
the high intensity at the impurity center.

There, a reduced spectral intensity and nodal-planes are observed between the adatoms
[fig. 3.6(d,f,h,j,l)]. Still, the overall spatial symmetry of the resonances preserves the case
of the single adatoms (see Ref. [32]), which strengthens the idea that the states keep their
character, but split, and do not form new mixed states.

A closer look at fig. 3.6(a) and (b) reveals a different size of the splitting for α, β
and γ. In this particular example, resonances αa,b are split with roughly ' 140 µV,
resonances βa,b with roughly 60 µV, and resonances γa,b with roughly 160 µV. Most
probably this variation is caused by the different lateral shape and symmetry of the
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YSR states. It implies a different overlap of the particular YSR states, depending on the
relative orientation of the adatoms with respect to each other. Hence, we investigated
the dependence of the splitting on the lateral arrangement of the adatoms by comparing
many Mn pairs. We sorted the data in two categories: the data shown in fig. 3.7(a)
and (b) are recorded at Mn pairs oriented along the [100] and [110] directions, but at
different distances. The data shown in fig. 3.7(c–e) are recorded at Mn pairs with the
same interatomic distance, but oriented along different directions.

In the dI/dV spectra in fig. 3.7(a) the splitting of the states increases with decreasing
distance between the adatoms. Thereby, all peaks are strongly split at close distance,
but only γ maintains a large splitting at larger distances and at both orientations. This
becomes obvious in fig. 3.7(b), where we plot the splitting of all resonances with respect
to the distance. For an orientation along the [100] direction, α and β start to split
simultaneously below distances of ≈ 1.75 nm. However, pairs along the [110] direction
show a splitting below ≈ 1.25 nm. In both cases γ is split also at distances larger than
2 nm.

The dI/dV spectra in fig. 3.7(c–e) emphasize the angular dependence of the splitting.
This is a consequence of the different lateral shape of the YSR states, which they inherit
from the atomic d-orbitals. In fig. 3.7(c), all states are strongly split, similar to the first
dimer in fig. 3.7(a). With an increasing angle, the splitting reduces, first for α [fig. 3.7(d)],
but later also for β [fig. 3.7(e)]. At this particular distance, γ is always split. Interestingly,
in fig. 3.7(e), three resonances are visible for γ, proving the degenerate nature of the
underlying YSR states (see section 3.4.2). The three-fold degeneracy of the dxy,xz,yz-
orbitals is lifted, which leads to a splitting of one of the YSR bound states, but leaves the
others untouched.

The observed splitting of the YSR states may help to answer the question whether the
coupling between the impurity spins is ferromagnetic or anti-ferromagnetic. Recently,
Refs. [79, 80] dealt with a very similar question, namely with the competing interaction
processes between two impurities with classical spins at different arrangements. By the
way, the question is quite old. Already the early work by A.I. Rusinov [67] discussed in
detail how YSR bound states hybridize when overlapping.

Mainly two processes play a role, a direct exchange interaction between the impurity
spins, and an indirect exchange interaction via the spins of the conduction electrons,
the so-called Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [81–83]. The latter
oscillates between ferromagnetic and anti-ferromagnetic coupling with the distance,
and mainly dominates the coupling of bound states in metals at intermediate length
scales. However, the distances where we observe a coupling in our experiment are quite
short, and they are directly connected to the lateral extension of the YSR states which
we observed in Ref. [32] (section 3.4.2). It is correlated with the order of the Fermi wave
length of the crystal, rather than with superconducting length scales of the order of the
coherence length (λF � ξ).

In general, a ferromagnetic coupling splits the states into a ‘bonding’, and an ‘anti-
bonding’ component. The first lies lower and the latter lies higher in energy. In addition,
a Zeeman interaction between the impurities may give an overall shift in energy com-
pared to the unperturbed states. In the anti-ferromagnetic case, the states will not split,
as the spin-component is anti-symmetric. Still, the states are sensitive to the effective
Zeeman interaction of the impurity field, which might shift the state. Hence, the strong
splitting of all states, independent of the angle at close distance between the adatoms,
suggests a ferromagnetic coupling. Furthermore, the dI/dV maps reveal the characteris-
tic spatial distribution of bonding and anti-bonding states. The resonances denoted by
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sub-index b and a in fig. 3.6 and fig. 3.7 have a bonding and an anti-bonding character,
respectively. The size of the splitting is proportional to the coupling strength between
the spins. Thus, the coupling of state γ is the strongest, whereas it is weaker for the states
α and β. However, as the distance increases, the splitting successively vanishes. Either
this indicates that the coupling gets too small, or that it changes to an anti-ferromagnetic
nature, where only a shift of the states in energy is expected. To solve this question
experimentally, one would need YSR states that decay even slower, which would allow
to observe a much larger coupling range.

We also employed measurements with a spin-polarized tip to probe the magnetic
moments of both adatoms in a direct way (the method is described later, in section 4.2.1).
Yet, we did not observe any spin polarization of the adatoms. This is most probably
caused by a missing or too small magnetic anisotropy that stabilizes the magnetic
moments with respect to an easy axis of magnetization. Considering the involved
energy scales, magnetic anisotropy energies of single atoms on metallic substrates are
expected to be very small compared to the energy of the tunneling electron. This is
mainly due to the interactions with the substrate. For a heavy element (holmium),
and a special environment with several intrinsic symmetries (time reversal symmetry,
the internal symmetries of the total angular momentum, and the point symmetry of
the local environment of the magnetic atom), an anisotropy in the order of 8 meV is
reported on a Pt(111) substrate [84]. For Mn with a much lower magnetic moment we
expect the anisotropy energy to be considerably smaller. Hence, we have to compare
this value to two quantities of our experiment: the bias voltage in the millivolt range
required to probe the YSR states, and the temperature, providing energies in the order
of ≈ 330 µeV at 1.1 K. We conclude that the magnetic moments of the adatoms most
probably fluctuate in time — even when coupled together. If it is faster than the rate
of the tunneling current, it averages out the spin sensitive signal to zero. For typical
currents in the order of 100 pA this limit lies in the order of nanoseconds.
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FIGURE 3.7: (a) dI/dV spectra of several Mn pairs ordered by their distance, and with the
connection axis oriented along the surface lattice vectors [100] (blue solid lines) and [110]
(orange solid lines). The energies of the non-split resonances ±α, ±β, and ±γ of a single
adatom without neighbor are indicated by gray dashed lines. The spectra are recorded at
the center of one of the pair’s adatoms, but the spectra at the respective other adatom are
qualitatively the same. Setpoint: 200 pA, 4 mV. Lockin modulation: 15 µV. Accuracy of
distance and angle: ±0.08 nm, ±4 .̊ (b) Energy splitting of the peaks α, β and γ into bonding
and anti-bonding resonances, depending on the interatomic distance for the angle defined
above. (c–e) dI/dV spectra of several Mn pairs at the same distance of ' 1.5 nm, but at
different angles of the connection axis with respect to the surface lattice vectors [100] and
[110]. In (d) and (e), the spectrum multiplied by 30 is shown as gray overlay to emphasize
the splitting of resonance γ. Setpoint: 200 pA, 4 mV. Lockin modulation: 15 µV
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Chapter 4

Chains of coupled magnetic adatoms

In the preceding chapters we investigated the interaction of single magnetic impurities
with a superconducting substrate. It appears as a single or as multiple YSR bound states
induced in the substrate at energies within the superconducting gap. We observed a
coupling of two impurities at close distance when the impurities were oriented in a way
that their bound states overlap. In this chapter of the thesis, we finally focus on the
vision of topological quantum computation (TQC), which promises fault-tolerant qubit
operations [85]. This requires the qubits to be protected from external perturbations,
which is achieved by a non-local way of information storage. In the following, we
investigate a promising platform for such type of qubits, namely one-dimensional (1D)
chains of magnetic adatoms on a conventional s-wave superconductor with strong
spin-orbit coupling.

The elemental excitations we are looking for are so-called Majorana zero modes
(MZMs), predicted to appear at the ends of magnetic 1D chains on superconductors [86].
A pair of these states may act as a single qubit, fulfilling the necessary conditions for
TQC. Localized at the chain ends they are separated in space and, hence, immune to
local perturbations. A brief introduction to the theory governing these excitations is
given in section 4.1. Later, we report the results of experiments on Fe, Co, and Mn
chains on Pb(110). Literature predicts a quite universal appearance of MZMs, which is
independent of the individual element investigated. In collaboration with theorists we
test this prediction for its validity in section 4.2.

An interesting property of MZMs is their non-abelian exchange statistics. They are
neither fermions, nor bosons, but anyons [85]. For a pair of these states, the ground state
is degenerate. After exchange of two particles the system is still in the ground state,
but in a different absolute state (|c1, c2〉 = eiΦ |c2, c1〉), indicated by the phase Φ. For
bosons it would be 0, and for fermions if would be π. For anyons, however, it is arbitrary.
Moreover, this makes a pair of MZMs a prime candidate for a qubit in TQC. It allows
to store information in such a pair via the phase. The information may be accessed by
so-called braiding operations, which are the controlled exchange operations triggered
by low excitations.

4.1 Topological superconductivity and Majorana Zero Modes

The terminology of Majorana zero modes (MZMs) arises from the field of particle physics.
There, one of the salient predictions — not yet experimentally confirmed — was made in
1937 by E. Majorana [87]. He forecast a particle which is its own anti-particle, a so-called
‘Majorana fermion’. The most promising candidates in experiment are neutrinos, but
to prove their existence a rare double-beta decay needs to be observed. There, the two
neutrinos may annihilate, if they are Majorana particles [88].
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FIGURE 4.1: (a) Toy model of a 1D Kitaev chain with N electronic sites. Each site with
creation operator a†

j can be expressed by two Majorana operators c†
j,a and c†

j,b. A supercon-
ducting gap and hopping of the cj operators between different sites puts the chain into a
topological state. Pairing of the operators in this state occurs between different sites, and
it leaves two unpaired operators at the chain ends (c†

1,a and c†
N,b). (b) Two proposals for

the realization of a Kitaev chain that host MZMs at the chain ends. A magnetic chain with
helical order on an s-wave superconductor (top), and a ferromagnetic chain on an s-wave
superconductor with strong spin-orbit coupling (bottom). The latter weakens the singlet
nature of the spins in the Cooper pairs. In both cases a fraction of the Cooper pairs may
enter the chain giving rise to proximity superconductivity within the chain (indicated by
black lines symbolizing the pairing between the individual sites).

Most often in condensed matter physics, the particles of interest are electrons. The
analogue to an anti-particle is a ‘hole’. Hence, the profound question arises, if an
emergent quasiparticle corresponding to a ‘Majorana fermion’ may exist in solid state
systems as a collective many-body state. In this sense, superconducting materials
are prime candidates to host such particles, as they provide an inherent particle-hole
symmetry. It connects excitation of electrons and holes via the Cooper pair condensate.
We have seen in chapter 3 that all states appear as a pair of resonances at positive and
negative energy. A ‘Majorana excitation’ would thus require to be bound at zero energy.
An interesting property of such an excitation becomes obvious when we think of an
artificial defect that induces a single bound state of such a type. The state is fixed to
zero energy to fulfill the Majorana condition for the creation and annihilation operators
(c† = c), which gives it the name Majorana zero mode (MZM). Any interaction with this
state would shift its energy away from zero. However, in a superconductor, a single state
with finite energy requires always a second state, to fulfill the particle-hole symmetry.
Hence, as long as no second MZM is close to the first, it is ‘topologically protected’
against any perturbation that would lift its energy away from zero.

4.1.1 Theoretical toy model: the Kitaev chain

The basic ingredients for a system to allow MZMs are rather general. First, it requires a
laterally extended system to be able to separate states in space. Second, the electronic
bands of the system must possess a finite energy gap at the Fermi level. This prevents
the recombination of two spatially separated MZMs. Finally, the bands must have in
total an odd number of Fermi points within the first half of the Brillouin zone. At each
of these points a single MZM is induced. Hence, only for an odd number of states all
but a single MZM recombine in pairs.

The most simple proposal to realize such a system was set up by A.Y. Kitaev [86].
His idea has the charming nature to be exactly solvable. He suggested a linear magnetic
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chain of single atomic sites on a conventional superconducting substrate. The magnetism
of the chain implies that only bands of the same spin-flavor are located at the Fermi
level. Moreover, this makes the spin superfluous, giving the band the property of being
spin-less. To make the chain superconducting, even though it has magnetic order, Kitaev
proposed to place it in proximity to a bulk superconductor, which transfers the pairing
amplitude to the chain.

Furthermore, Kitaev assumed that each atomic site j of the chain has only a single
electronic level. It is described by a pair of electron creation and annihilation operators
(a(†)j ). Formally, he introduced the MZMs by splitting each site into two new operators,
defined by

cj,a = aj + a†
j , cj,b =

aj − a†
j

i
, (4.1)

cm = c†
m , {cl , cm} = clcm + cmcl = 2δlm . (4.2)

The model is sketched in fig. 4.1(a). Each operator can be seen as contributing ‘half’ a
fermion.

The system enters a topological regime, when including the superconductivity of
the chain, and when allowing a finite hopping amplitude w of the operators cj between
different chain sites. In this case, the operators pair between different sites (j and j + 1),
which is described by the simple Hamiltonian:

H = i w
N

∑
j=1

cj,b cj+1,a . (4.3)

In fact, this Hamiltonian ignores an unpaired operator at each chain end. Hence, as
long as no second MZM is interacting with the first, it is immune to local perturbations
introduced by the Hamiltonian. The system is ‘topologically protected’, unless the
superconducting gap is closed.

Two proposals to realize a Kitaev chain in experiment are sketched in fig. 4.1(b). The
first is a chain with a helical spin structure on an s-wave superconductor. The helicity
of the spins allows the singlet Cooper pairs to enter the chain. The second system is a
ferromagnetic chain on an s-wave superconductor with strong spin-orbit coupling. The
latter softens the singlet nature of the Cooper pairs, which otherwise would not be able
to enter the ferromagnetic band. In both scenarios a tiny part of the pairing amplitude
is transferred to the band structure of the chain. This small induced gap is sufficient to
protect the localized MZMs at the chain ends from the continuum of states.

4.1.2 Experimental realizations of a Kitaev chain

A first approach to realize a Kitaev chain experimentally was suggested by L. Fu and
C.L. Kane [89]. They proposed a hybrid system, where the superconductivity of the
host is combined with helical edge states of a topological insulator at the interface. The
first salient success in building a mesoscopic system that hosts MZMs in experiment
was achieved in 2012 [90]. They employed a semiconducting nanowire adsorbed on
an s-wave superconductor under a magnetic field. It followed preceding theoretical
suggestions [91–93], and was verified by other experimental work later [94–98]. Still,
these types of experiments lack to show the spatial localization at the chain end, as they
use mesoscopic methods [99].
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A complete different proposal suggested a bottom-up fabrication of Kitaev chains
using nanoscopic methods [100]. By means of STM one would be able to directly probe
the MZMs at the chain ends. In 2014, S. Nadj-Perge et al. realized such a system in a
ground breaking experiment [101]. They evaporated Fe chains on Pb(110), where chains
grew up to 20 nm in length by self-assembly. These chains emerged from larger Fe
clusters along the [110] direction of the substrate. However, chains without a cluster at
one of the ends were not observed. The chains are ferromagnetic, and hence resemble
a system similar to the one sketched in fig. 4.1(b, bottom). By DFT simulations, they
gave evidence that the chains were arranged in a zig-zag stacking of three Fe atoms
perpendicular to the surface. The neighboring Pb surface atoms stabilize the chain to
a single atomic width. Although this system is far away from Kitaev’s toy model, STS
measurements indicated signatures of a single zero energy resonance localized at the
free chain end (the one not attached to the Fe cluster). They attributed this to an isolated
MZM.

4.1.3 Iron chains on Pb(110)

Reference [101] laid the ignition point for a manifold of further theoretical works dis-
cussing the particular investigated system [102–105]. However, several questions were
still open from the experimental side, which asked for further investigations. The major-
ity of spectra shown in Ref. [101] were measured with a metallic tip. At a temperature
of ' 1.4 K this limited the energy resolution by Fermi-Dirac statistics to ' 180 µeV.
As reported in chapter 3, a single adatom creates a variety of bound states, which ad-
ditionally split when coupled with those of other adatoms. Therefore, a full chain of
adatoms induce extended subgap bands, because of hybridization of all neighboring
YSR states. Hence, measurements with a low resolution are not capable to distinguish
between true zero energy states, and trivial resonances from YSR bands at low, but finite
energy. A minority of spectra in Ref. [101] was measured with a superconducting tip.
However, the data was only shown in half, just at positive bias voltages. Remember that
measurements with a superconducting tip shift all spectra by the tip gap ±∆tip because
of the convolution of tip and sample DOS. Hence, a zero energy state appears as a pair of
resonances at ±∆tip. Showing only the positive half of the spectrum forbids an analysis
of the asymmetry of the two zero energy resonances. If they originate from a MZM,
they have to be symmetric in intensity, as they indicate transport into the same state.
Moreover, this is always the case, independent of whether being in the strong, or in the
weak tunneling regime. Furthermore, such zero energy state facilitates perfect Andreev
reflections, which leads to a quantized conductance with size G = (4− π) 2e2/h [106].

To answer the open questions we employed the same experimental setup. We carried
out high resolution measurements with a superconducting tip at' 1.1 K on Fe chains on
Pb(110). The results were published by M. Ruby et al. “End States and Subgap Structure
in Proximity-Coupled Chains of Magnetic Adatoms”. In: Phys. Rev. Lett. 115 (19 Nov.
2015), p. 197204. The article is reprinted in appendix B.5.

Our measurements reveal Fe chains up to ' 10 nm in length. They were obtained
by slightly different preparation conditions than suggested in Ref. [101]. We performed
STS on various chain ends. Only some of them exhibit clear zero-energy signatures,
often accompanied by two resonances at higher energies. An important result is that all
investigated chains showed a substantially different intensity between the positive and
negative bias resonance (at ±∆tip). This indicates that they originate, at least not solely,
from MZMs, but have some contribution from trivial YSR resonances.
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Another outcome was that the resonance at lowest finite energy is observed at
' 80 µeV. In terms of a topological system, this would indicate the edge of the induced
topological gap, or at least give an upper limit for this quantity. It turns out to be much
smaller than anticipated in Ref. [101], where they estimated values of 200− 300 µeV
from their experiment.

In addition to dI/dV spectra at the ends of the chains, we had a closer look at the
full chain bodies. We found a localization of the zero-energy resonance at the chain end,
whereas the low-energy excitations below ' 100 µeV appeared also along the chain, but
with slightly varying energies and intensities. Interestingly, the other subgap resonances
of the YSR bands oscillate in intensity along the chain. It appears correlated to some
slight variations in the topography of the chain. Spectra at energies of the d-bands
revealed a similar oscillation of these bands along the chain.

In close collaboration with theorists we were able to explain all these findings. Indeed,
the oscillations of the YSR resonances and of the d-bands in energy are connected. They
are given by local variations in the potential landscape. In contrast, the fluctuations of
the low-energy resonance below ' 100 µeV (indicating the topological gap) are solely
influenced by finite size effects, and they are insensitive to details of the impurity. Last
but not least, the exponential localization of the zero-energy resonance at the chain
end matches with a possible MZM. Its localization length is much shorter than the
superconducting coherence length because of renormalization of the Fermi velocity
within the chain [103].

Our experiment contributed important additional details to the system of Fe chains
on Pb(110). We emphasized the advantages of measurements with a superconducting
tip over a metal tip. It not only increases the energy resolution, but delivers information
about the nature of the states by the asymmetry of their spectral intensities at positive
and negative energies. However, a conclusive confirmation of MZMs is not possible
with the energy resolutions of our setup. An unambiguous result requires considerably
lower temperatures in future measurements.

Recently, the group of Ref. [101] implemented a follow-up experiment. Their new
measurements were carried out in a dilution refrigerator setup at 20 mK [107]. Using
a metal tip, they confirmed a high intensity zero-energy resonance at the chain end,
which was apparently separated from other states. Furthermore, in their experiments,
the resonance did not deviate from zero energy within their resolution limit of 80 µeV.
Following the suggestion of our work [31], they used superconducting tips. However,
their resolution was even lower than what they achieved with their metal tips. Neverthe-
less, they reported symmetric zero-energy resonances for some tip-chain combinations,
but also cases with asymmetric intensities. This confirms our observations. All in all it is
clear that more effort is required to figure out the reason for these variations.

4.2 Other transition metal chains on Pb(110)

Literature predicts that linear suspended transition metal chains on Pb(110) are quite
generic in hosting MZMs, as long as the chains exceed a certain length [102]. To test this
hypothesis, we performed measurements at Co and Mn chains, which we report in the
following sections. As chains of these elements were not investigated before, we first had
to check thoroughly that all necessary conditions for a topological state were fulfilled,
namely a ferromagnetic band structure, and topological superconductivity. The first was
probed by spin-polarized scanning tunneling microscopy (SPSTM), a technique in which
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FIGURE 4.2: Spin-polarized tips have a majority and a minority spin density n↑/↓(E) at the
Fermi level. The spin-sensitive current is large if the majority of spins in tip and sample
are aligned (a), or else it is low (b). Both cases are measured in SPSTM to obtain the
magnetization of the sample. Sketch adapted from Ref. [108]. The hysteresis loop of the
tip used in section 4.2.2 is shown in (c). It has a remanence at zero field, and a coercivity of
≈ 50 mT.

a spin-sensitive current is measured. The latter was probed by high energy resolution
measurements with superconducting tips, similar to the experiments described in the
chapters above.

4.2.1 Spin polarized scanning tunneling microscopy (SPSTM)

The technique of spin-polarized scanning tunneling microscopy (SPSTM) uses a magne-
tized tip apex to probe the sample with a spin-polarized tunneling current [108, 109].
If tip and sample magnetization are aligned, the current is increased, in the opposite
case, it is decreased versus measurements with an unpolarized tip. This is sketched in
fig. 4.2(a) and (b), where each electrode possesses a density of states n↑/↓(E) for each
spin-direction (↑ / ↓).

To achieve a magnetization of the tip in experiment, we cover it with a thick layer of
Co by electron beam evaporation at room temperature. The spin-sensitivity is checked
prior to the measurements on two-monolayer high cobalt islands on copper (Cu)(111).
The islands possess an out-of-plane magnetization and represent a standard reference
system for SPSTM [110]. Our experimental setup allows an out-of-plane magnetic field
up to ±3 T, which we use to flip the out-of-plane component of the tip’s magnetization.
Hence, we are sensitive to any sizeable polarization of the sample in this direction. Spin-
polarized measurements on superconductors at subgap energies require a remanence of
the tip at zero field. Applying a magnetic field to align the tip during the measurement
would quench the superconductivity. The hysteresis loop of the tip used in the following
section is shown in fig. 4.2(c). It has a coercivity of ≈ 50 mT.

4.2.2 Co chains on Pb(110)

Deposition of Co onto Pb(110) yields clusters and 1D chains with lengths up to ' 10 nm.
In topography, Co chains look like Fe chains. The chains emerge along the [110] direction
of the crystal, and in most cases start at larger Co clusters. An overview image is shown
in fig. 4.3(a).

We probed the magnetic properties of the Co chains by spin-polarized scanning
tunneling microscopy (SPSTM), and observe a resonance at −0.17 V [see fig. 4.3(b)]. It
exhibits different intensities for oppositely polarized tips (labeled by tip-↑ and tip-↓,
respectively). We ascribe it to the van Hove singularity of a spin-polarized Co d-band.
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respectively, revealing spin-dependent dI/dV intensities all along the chain. Feedback:
300 mV, 400 pA. (d) Difference map between both dI/dV maps in (c).

The magnetic order along the entire chain is revealed by dI/dV maps at the energy
of this resonance. The maps in fig. 4.3(c) uncover that the intensity along the chain is
stronger for tip-↑ than for tip-↓. This becomes clearer in the difference of both maps,
shown in fig. 4.3(d). There, a positive contrast (red) is observed all along the chain, which
suggests a ferromagnetic ground state, in full similarity to the Fe chains on Pb(110)
reported in Ref. [101].

We performed a similar type of measurement at subgap energies. However, we relied
in this case on a remanence in the tip at zero field1. The dI/dV spectrum in fig. 4.4(a) on
pristine Pb(110) shows a BCS-like gap. It is broadened by the Fermi-Dirac distribution
of the normal state tip at 1.1 K. On the chain, there are broad resonances by YSR bands
within the gap. They vary in intensity along the chain. When measured with opposite
tip magnetization, the spectra are qualitatively similar everywhere, but they vary in their
signal strength. The overall intensity at negative energies is stronger for tip↑ than for tip↓.
Accordingly, at positive energies, it is the opposite. Again, to obtain the spin-texture of
the entire chain, we recorded dI/dV maps at both orientations of the tip magnetization.
They are shown in fig. 4.4(c) and (d), respectively. The difference map in fig. 4.4(e)
exhibits an overall positive polarization along the chain at −850 µV, but a negative
polarization at +850 µV (not shown here). This sizable spin polarization is remarkable.

1The measurements at higher energies were carried out under an applied field. This quenches the
superconductivity.
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FIGURE 4.4: Co chain on Pb(110). (a) dI/dV spectra taken at the two positions on the Co
chain depicted in the topography in (b). For clarity, the spectrum on the bare surface is
divided by three. The data is recorded at 0 T with a spin-polarized tip. It has an out-of-plane
remanence perpendicular to the sample surface. Setpoint: 4 mV, 200 pA. The dashed
line at −850 µV marks where the dI/dV maps in (c,d) are recorded with parallel and
anti-parallel tip-magnetization, respectively. The feedback was opened at 4 meV, 200 pA
where no spin-polarization is observed. (e) Difference between (c) and (d) characterizing the
spin-polarization of the chain.

It provides direct evidence for the magnetic nature of YSR states. The hybridization of
states of neighboring adatoms along the chain results in entire spin-polarized YSR-bands.
In section 4.1.3 we showed that confinement effects and variations in the local potential
along the chain cause intensity variations of the YSR-bands. Still, the spin-polarization is
uniform (at −850 µV). We detect only at the chain end a region of opposite polarization.

The robust ferromagnetic nature of the Co d- and YSR-bands was thus proven. Next,
we investigated the subgap structure in more detail, and searched for possible MZM
at the chain ends. Thus, we employed measurements with a superconducting tip to
enhance the energy resolution.

The dI/dV-spectra along the chain in fig. 4.5(a) and (b) show a rich subgap structure,
similar to the case of Fe chains. Three regions of resonances were observed, which
are labeled α, β and γ in fig. 4.5(b). In the case of Fe chains, only a single pronounced
resonance was resolved. Within these regions, the van Hove singularities of the YSR-
bands of the Co chains vary in intensity and in energy because of a local variation of
potential, and because of confinement effects [31]. At zero energy, i.e., at a bias voltage
' ±∆tip, we observed resonances (or shoulders) which could at first sight be reminiscent
of MZMs, albeit, the signal was present all along the chain with no sign of localization at
the chain end.

A possible explanation for the missing localization of the zero-energy resonances
at the chain end is a too short chain length, which allows hybridization of the MZM.
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FIGURE 4.5: (a) dI/dV-spectra acquired with a superconducting tip at the positions which
are indicated by symbols in the topography in (c). Chain length ' 6.3 nm. For clarity, the
spectra are offset by 0.1 µS. The spectrum on the bare surface (gray) is divided by four. The
tip gap is marked by dashed lines (±∆tip = ±1.32 meV). (b) False-color plot of 40 dI/dV
spectra measured along the dashed black line in (c). Spectral intensity appears mainly
in the six energy intervals (±α, ±β, ±γ), with α ' (2.5± 0.1) mV, β ' (2.0± 0.2) mV,
and γ ' (1.5± 0.2) mV. As a guide, the dashed-dotted lines indicate the gap edge at
eV = ±(∆tip + ∆sample). Setpoint: 4 mV, 500 pA.

In view of the expected localization length of the order of atomic distances [103], we
assumed that the length is sufficiently long. Further measurements are required to testify
this. The observed zero-energy resonance along the entire chain can be understood
as a consequence of the subgap band structure. In the case of Fe chains, the induced
superconducting gap amounts to at most 80 µV [31]. It is possible that the induced gap
is even smaller in Co chains. With an experimental energy resolution of ' 60 µV, the
coherence peaks associated with the gap edges would then not be resolved. Instead,
they appear as a sizable feature at zero energy. Clearly, the coherence peaks are a bulk
feature of the chain and the corresponding peaks in dI/dV should persist along the
entire chain.

Anyhow, we want to discuss a possible explanation for the missing indications of
MZMs in this particular system. All necessary ingredients for topological superconduc-
tivity and MZMs appear to be fulfilled. The chain is ferromagnetic, with spin-polarized
bands at the Fermi level, and it is coupled to an s-wave superconductor with strong
spin-orbit coupling.

Tight-binding calculations with the elemental bulk parameters [111] yield a rough
idea of the band structure of linear suspended chains2. It is plotted for a free Co chain

2Ref. [112] points out that results, obtained by using the bulk tight-binding parameters, are not suited to
reproduce exact details, such as the placement of the Fermi level. Hence, we rely on counting the number
of valence electrons to place the Fermi level.
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FIGURE 4.6: Tight-binding band structure in half of the Brillouin zone of a Co chain with a
lattice constant of a = 2.486 Å. Within this simple model, the band structure for elements
above a half filled d-shell is similar. An estimation for the Fermi levels in the atomic limit
is sketched in (a–c) by dashed lines for the elements Fe, and Co. In (a), the calculations
were done without spin-orbit coupling, and with the orientation of the magnetic moments
perpendicular to the chain direction. The d-orbital character of the bands is indicated
beneath. The majority and minority bands are split by exchange interaction. In (b) and (c),
the calculations consider spin-orbit coupling with a coupling constant λso = 0.2 eV, which
intermixes the different d-characters. In (c), the spin texture of the chain is additionally
altered by a canting of the magnetic moments with an angle of 2π/5 with respect to the
chain normal. Calculations were done by Y. Peng.

in fig. 4.6(a). In total, the atomic d-orbitals hybridize into three bands for each spin
flavor, of which two are doubly degenerate. Two broad bands with a width of ≈ 2 eV
originate from the dz2 and dxz,yz orbitals, and a more narrow band with a width of
≈ 0.3 eV originates from the dxy,x2−y2 orbitals. The ferromagnetic order leads to a strong
exchange splitting of minority and majority spin bands, separating them in energy. The
s-bands are higher in energy and thus have no significant overlap with the d-bands. The
band structure is similar to the one obtained for Fe chains in Refs. [101, 102]. Without
neglecting spin-orbit coupling, the bands intermix in their character and cannot be
assigned to originate from specific d-orbitals anymore. Most significant, though, is the
splitting of the bands, and the opening of gaps between them [fig. 4.6(b) and (c)].

A crucial difference to the Fe chains is the placement of the Fermi level. It is an
important property for the formation of MZMs, as it determines the number of Fermi
points of the band structure. In section 4.1.1 we emphasized that an odd number of
points is required to establish a topological regime, as one MZM is induced at each point.
Only with an odd number of MZMs, a single MZM remains after hybridization.

Two different plausible scenarios have to be distinguished for this system. The first
is the atomic limit, in which the number of valence electrons is deduced from a single
adatom on the Pb substrate. Within this picture, electrons are transferred into the bulk,
and the atom gets a positive charge. Presumably, the s-shell is emptied, leading to an
oxidation state of 2+ to 3+, which is the most common oxidation state of transition
metals. Accordingly, the Fermi levels for the elements Fe and Co are sketched in fig. 4.6(b)
and (c) by dashed lines.
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The second scenario is the bulk limit. It considers all valence electrons. Thereby, the
electrons in the s-bands redistribute partly to the d-bands [113] because of an energetic
overlap between the bands. This is, however, sensitive to the bandwidth of the involved
states. A change in coordination number from 3D to 1D reduces this width. As men-
tioned above, our calculations yield no significant overlap between the d- and s-bands
for linear suspended chains.

In the following, we focus on the first scenario, which we consider the most likely. As
shown in fig. 4.6(b), we find two broad minority bands crossing the Fermi energy EF. One
is twofold degenerate. In addition, a narrow, doubly degenerate band lies close to the
Fermi level. This band might give rise to the resonance at−0.17 mV, which we observed
in fig. 4.3(b). As long as the on-site magnetization is exactly perpendicular to the
chain direction, the system has an odd number of Fermi points within half the Brillouin
zone. However, a tilt of the magnetization parallel to the chain lifts all remaining
degeneracies of the bands. This may yield an even number of Fermi points within half
the Brillouin zone, as sketched in fig. 4.6(c) for a canting of 2π/5 with respect to the chain
normal. Hence, even if most prerequisites for the formation of MZMs are fulfilled, the
hybridization between the Fermi points prevents establishing a topological phase. In the
case of the Fe chain the adatoms have one less d electron, resulting in a correspondingly
lower EF. For comparison, this case is shown in fig. 4.6(b) and (c). There, three Fermi
points are present. This is consistent with the formation of a topological state hosting
MZMs, and it matches with the results reported in section 4.1.3.

4.2.3 Mn chains on Pb(110)

Let us now return to chains of the element at which our investigations for single impuri-
ties began, to Mn chains. We report here some preliminary results for measurements on
this system, because they appear to provide interesting properties for future experiments.

The preparation conditions of Fe and Co chains did not suffice to form Mn chains.
Only clusters were obtained. Already for Co chains, the maximum growth temperature
was lower (' 263 K) than for Fe chains (' 290 K). We discovered that linear Mn
structures are obtained when decreasing the temperature to ' 170 K. To our surprise,
the topography of these chains is substantially different [see fig. 4.7(a)]. The chains
appear submerged below the surface. Topographies with atomic resolution suggests
that the Mn chains are covered by the first surface layer. The Pb adatoms also rearrange
over the chain, where two atomic rows of the surface along the [110] direction merge to
a single row [see the blue lines in fig. 4.7(a)].

In search for MZMs, people came up recently with the idea to cover linear semi-
conducting nano-wires by an additional monolayer of the substrate, to enhance the
coupling to the bulk [114]. A similar setup was suggested for the transition metal chains
on Pb(110), e.g., by evaporation of an additional monolayer [107]. Hence, chains that
grow by themselves below or within the first surface layer might be of high interest.

Our experiment started again by testing the spin-texture of the Mn chains. We
employed measurements with oppositely polarized magnetic Co tips at zero-field, but
with a non-zero remanence. The chains showed no resonances in the energy range of
±750 meV. However, at subgap energies, two broad YSR resonances at ' ±600 µV
were observed in the entire chain region, which show a spin contrast [see fig. 4.7(b)].
Towards the chain ends, the resonances were shifted to lower energies. No zero-energy
resonance was observed within the thermally limited resolution of ' 330 µeV. To
obtain the full spin-texture of the chain, we recorded dI/dV-maps at the energy of the
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FIGURE 4.7: (a) Atomic resolution of a Mn chain on Pb(110). The chain appears as depression,
suggesting that it is embedded below the surface. The surface Pb adatoms rearrange over
the chain, where two atomic rows (marked by blue lines) merge to a single row. Setpoint:
70 pA, 500 mV. (b) dI/dV-spectra on the locations depicted by ‘x’ and ‘o’ in the topography
in (c). Opposite tip magnetization is indicated by ↑ and ↓, respectively. (d,e) dI/dV maps at
600 µeV [marked by the dashed line in (b)]. The difference map (f) shows a spin contrast
along the chain, which switches between positive and negative with a period of ' 1.9 nm.
Setpoint: 200 pA, 4 mV. Lockin: 50 µVrms.

YSR resonances with opposite tip magnetization [fig. 4.7(d) and (e)]. Interestingly, the
two depleted rows, symmetric to the central axis of the chain, had the largest spectral
intensity. Both rows were laterally separated by a region with almost no spectral intensity.
This suggests that these Mn chains are actually more complex than assumed. They may
consist out of two separated parallel rows of Mn, instead of a single row of adatoms.

The difference map in fig. 4.7(f) shows a strong periodic change between positive
and negative spin contrast at the left row, which oscillates with a period of ' 1.9 nm.
This is much larger than the atomic scale, and therefore opens the possibility of a helical
spin arrangement. Such a case would not be distinguishable from an anti-ferromagnetic
arrangement in our experiment. The right row shows almost no contrast, which may be
a measurement artifact, occurring because of a weaker wave function overlap of tip and
sample within this region.

The observations differ significantly from the ferromagnetic Fe and Co chains inves-
tigated so far. Moreover, further experiments are required to find out more details of
the spin-texture of the Mn chains. To obtain these results requires a vector field, which
allows to precisely control the orientation of the tip magnetization. Independent of
this specific system, we suggest to investigate whether other transition elements form a
similar type of buried structure. Chains of this kind could have a stronger coupling to
the substrate, and thus an enhanced topological superconductivity.

Finally, the implications of a helical or an anti-ferromagnetic spin arrangement on the
topological phase shall be discussed briefly. A helical arrangement of the spins within the
chain may be a direct consequence of the low-dimensionality of the system. In particular,
the spin-orbit coupling of the electrons in combination with the symmetry of the chain
leads to an anisotropic super-exchange interaction between next-nearest neighbor atoms:
the Dzyaloshinskii–Moriya interaction [115, 116]. It favors a successive canting of each
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spin with respect to the nearest neighbors. Compared to a ferromagnetic arrangement,
such an arrangement allows a long-range hopping in the order of the helical period.
We pointed out in section 4.1.1 that, in this case, superconductivity in the chain may be
induced even without strong spin-orbit coupling of the substrate. Hence, topological
superconductivity by proximity may establish on any s-wave superconductor for a
helical spin arrangement, and thus may mediate a topological phase. This was discussed
in many recent theoretical publications [117–124]. An important prerequisite for the
system to host MZMs is a strong Rashba spin-orbit coupling along the wire, which leads
to a spin-momentum locking. Additionally, a weak external magnetic field is required to
open a tiny gap in the band structure for the bands with different spin directions, which
closes at the chain ends, and which gives rise to the MZMs. Interestingly, the chain may
be pushed as well into a topological regime by a local variation of the chemical potential,
e.g., by gate electrodes underneath it [117]. This is a convenient property for TQC, as it
allows to artificially manipulate the individual MZMs along the wire. However, in the
particular system of Mn chains, the spin-orbit coupling may be too weak to facilitate
a topological phase. This suggests to repeat the experiment with rare-earth elements,
where this quantity is enhanced, and to search for chains of these elements with a similar
arrangement.

In the second possible scenario, the oscillation between negative and positive spin-
contrast along the Mn chain in fig. 4.7(f) may indicate an anti-ferromagnetic spin-texture.
Such a coupling can also be mediated by an RKKY interaction through the electron gas.
However, it forbids the formation of a Kitaev chain as described in section 4.1.1. In an
anti-ferromagnetic chain, the individual YSR states are localized only at the atomic sites
and not extended to electronic bands along the chain. Nevertheless, a proposal suggests
a topological phase also in this scenario [125]. It requires a setup where a super-current is
imposed to the superconductor parallel to the chain. This leads to a gradient in the phase
of the superconducting order parameter along the chain, which changes the hopping
amplitude between the individual sites, and imposes a time-reversal symmetry breaking.
To push the system into a topological phase, an additional weak in-plane Zeeman
field has to be applied, which lifts the spin degeneracy, and leads to an engineered
spin-momentum locking. Then, MZMs may arise from the YSR states of the system
at the edge of the chain. Interestingly, the MZMs are spin-polarized, which should be
detectable with SPSTM. Moreover, the spins of the MZMs at opposite chain ends may
be aligned anti-parallel for an odd number of adatoms in the chain.
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Chapter 5

Summary

The research of this thesis deals with the coupling of magnetic impurities on a con-
ventional s-wave superconductor by means of low-temperature scanning tunneling
microscopy (STM) and scanning tunneling spectroscopy (STS). We started with clean
surfaces of single crystal lead (Pb). This substrate is among the best characterized type
I superconductors available. It provides a straight forward experimental preparation
technique. We were able to resolve the double-peak nature of the superconducting gap
in high-resolution measurements of the electronic structure around the Fermi level. This
had been observed before, but to date two theoretical explanations regarding this feature
were contradicting each other. It can be described by an anisotropic electron-phonon
coupling term or by two distinct electronic bands at the Fermi level. The latter was
supported by recent density functional theory calculations. Our first experiment showed
clear fingerprints for the two-band nature of superconductivity. Furthermore, we could
map the energetically well-separated Fermi-surfaces in real space by scattering at sub-
surface impurities. The different shapes of the Fermi surfaces lead to focusing along
specific directions, and allowed to assign them to the two superconducting gaps.

Our journey continued to single non-magnetic atoms adsorbed on the substrate.
It turned out that they locally influence the band-structure of the substrate, which
favors tunneling into one of the bands. Together with the focusing properties of the
curved Fermi surface, this specific behavior might be used in future tunneling devices
for momentum-selective filtering. Moreover, it is important for the interpretation of
experiments with all kinds of local adsorbates, such as molecules or larger structures.

We proceeded to single magnetic adatoms. These induce local bound states in
superconductors at energies below the superconducting gap by breaking time-reversal
symmetry with their local magnetic moment. In STS-spectra we observed a manifold
of the subgap resonances. Our first investigation targeted different transport regimes
through these states. If the local bound state is occupied by a single quasiparticle, it needs
to relax, before a second quasiparticle can pass through the junction. In experiment,
this yields a change of the spectral intensity of the subgap resonances at positive and
negative energies with respect to the tunneling strength. By combining experiment with
theory we could show that we probe the subgap states with both, single-electron and
Andreev tunneling. In the weak-tunneling regime, the current is dominated by single-
electron tunneling and it is linear in the normal-state conductance. The dI/dV-signal is
proportional to the bound state wave function, according to what is usually assumed in
STM-experiments. In the strong tunneling regime, the dependence on the normal-state
conductance becomes sub-linear, and one can directly access the quasiparticle relaxation
rates.

The second experiment on single magnetic adatoms focused on the number of subgap
resonances, and their origin. Earlier experiments and theory assumed that multiple
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subgap states result from scattering channels with higher order angular momentum.
Combining our experimental results with theory we could show that, instead, the
dominant scattering channel is l = 2. To prove this, we investigated how the number of
states of a single transition metal adatom evolves on different high symmetry surfaces
of the substrate. It turned out that the adsorption site imposes a distinct crystal field
splitting on the d-orbitals. The subgap resonances that appear because of scattering
at these orbitals, inherit the symmetry. With spatially resolved conductance maps, we
could identify the corresponding d-orbitals for each subgap resonance. It worked best
on the Pb(001) surface, where the influence of the substrate on the symmetry of the state
is diminished. On the Pb(111) surface, the strong influence of the anisotropic Fermi
surface prevents an ambiguous assignment, but long range oscillatory patterns were
observed, according to the theory of these subgap bound states. The oscillation period
matched with the Fermi wavelength of one of the two Fermi surfaces of Pb. It proved a
dominant scattering from the more localized bands.

The slow decay, and the directional nature of the subgap states make them promising
candidates to design coupled adatom nano-structures. Hence, in our third experiment,
we had a closer look at dimers of transition metal atoms. We observed a coupling of
the adatoms, which manifested in a splitting of the subgap states. We investigated
this coupling in dependence of distance and angle with respect to the substrate lattice
underneath. In particular we could show that the bound states form bonding and
antibonding states, if the bound state wave functions overlap. On the high symmetry
Pb(001) surface, spatial conductance maps revealed nodal planes between two adatoms
for the higher lying anti-bonding states, and a larger intensity between the adatoms for
the lower lying bonding states. This is in full analogy to the standard textbook examples
for the formation of a molecular orbital.

The last section of this thesis comprises investigations on one-dimensional transition
metal chains, which are prime candidates for elemental building blocks in fault-tolerant
quantum computers. The system can enter a topological state, in which it hosts a so-
called Majorana zero mode (MZM) at the chain ends. As long as the states are separated
by a superconducting gap, they are protected against any kind of local perturbation.

Recent experimental success in realizing a simple system of iron (Fe) chains on
Pb(110) [101] motivated us to independently reproduce this experiment, and solve
remaining open questions. Our investigations used superconducting tips, where MZMs
are expected to appear as a pair of resonances at ±∆tip, the superconducting gap of the
tip, with symmetric spectral intensities. However, in all our chains we observed an
asymmetric intensity. We associated this with a nearby low-energy subgap resonance
at 80 µeV, which we interpreted as the coherence peak of the induced topological gap.
An unambiguous proof of MZMs at the chain ends still requires further experiments at
much lower temperatures. Moreover, our experiment investigated the subgap structure
along the chain, which showed oscillatory variations in energy and in spectral intensity.
With the help of theory, we could show that the variation of the first is induced by
confinement effects, and of the second by a variation of the local potential in the vicinity
of the chain.

Motivated by the prediction from theory that transition metal chains are a generic
system hosting MZMs nearly independent of the element [102], we deposited cobalt (Co)
and Mn on Pb(110) to check the formation of chains and their spectral properties. Chains
of Co turned out to be structurally similar to Fe chains regarding their topographical
appearance, and they also show ferromagnetic order. Furthermore, we found strong
evidence that the subgap structure is spin-polarized. However, although all prerequisites
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for the formation of MZMs were fulfilled, we observed only delocalized resonances at,
or close to, zero energy along the chains. We take this as an indication that no MZMs
form in this system. In collaboration with theory model calculations were performed
which explained the absence of a topologically non-trivial phase by an even number of
Fermi level crossings of the d-bands. This originated from the larger electron occupation
compared to Fe chains, which shifts the Fermi level in energy. The extended resonances
close to zero energy along the entire chain might be ascribed to the induced topological
gap, which is probably smaller than the experimental energy resolution and thus leads
to the prominent features. Future experiments have to repeat the measurements, to see
if this explanation holds as well for longer chains.

As an outlook, preliminary results of measurements on Mn chains are reported. Their
topologic and spectroscopic structure is inherently different from what we observed
before. They appear embedded in or below the first surface layer. We found evidence
for either an anti-ferromagnetic or a helical spin-texture. Both are not distinguishable in
our setup. They require further measurements.

5.1 The journey continues . . .

One dimensional transition metal chains on conventional superconductors are an intrigu-
ing platform for qubits that may be suited for topological quantum computation (TQC).
The chase for topologically non-trivial particles with non-abelian counting statistics is
well underway. However, many challenges are open — mainly from the experimental
side. To get a rough idea of the future pathway in this field of research, we finally sketch
here a possible setup which brings the 1D chains to an application.

The operations in a topological quantum computer are represented by braiding
operations. In section 4.1.1 we discussed that the ground state of a system with MZMs
is degenerate. An exchange of two MZMs acts in this degenerate space, and leads to
the transition between the different ground states. This is possible by the so-called
non-abelian statistics of anyons. An information encoded by the degenerate states is
protected against local perturbations, but needs to be accessed to perform calculations.
As Ref. [126] points out, linear 1D chains are not suited for braiding operations in general.
As soon as two MZMs meet, they hybridize, and their statistics are mixed up. However,
in a one-dimensional device they unavoidably meet. Hence, one requires at least a three
terminal device, in which each site is separated from the others. The simplest setup are
two wires perpendicular to each other, the ‘T’-junction-geometry. To braid the particles
one pushes the MZMs along the wires to the chain ends. We showed for Co chains that
a variation in the Fermi level may inherently change the number of Fermi points of the
system. An easy way to push the MZMs along the wires is to apply a local gate voltage,
which intentionally puts the system locally into a non-topological regime.

However, it is still a long journey to develop such devices, either by a bottom-up
approach of manipulating single adatoms, or by a top-down approach coming from
nano-lithography.
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Appendix A

Experimental details

The experimental techniques employed for our measurements comprise a combination
of scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS).
The first is capable to resolve surface structures with atomic scale precision, and to
address measurements to single adsorbates. It is often used to manipulate adsorbates
on the sample by controlled contact or voltage pulses. As a spectroscopy tool it reveals
the local electric structure around the Fermi level, the local spin-polarization, and the
local transport properties of the sample. In this appendix we first give an introduction to
the operating principle of STM, and a more elaborate picture of its capabilities for STS.
Finally, we provide details of our setup, and of the preparation of our experiment.

A.1 Scanning tunneling microscopy (STM)

The idea of STM is based on the fundamental principle of tunneling in quantum me-
chanics. A quantum particle may cross a high narrow potential barrier, which would be
impossible for its classical counterpart. Moreover, this process is extremely dependent
on distance. Hence, one may use it to bring a nanoscopic probe close to the surface of a
sample in order to analyze its topography. A first proof-of-principle of this concept was
shown in 1972 [127], when scientists observed a distance dependent tunneling current at
structures of a microscopic grating. They achieved lateral resolutions up to 400 nm. The
first prototype, which is capable of resolving atomic resolution, was presented in 1981
by G. Binnig et al. at IBM Zürich [128, 129].

The salient invention of STM opened a manifold of new techniques in the early days
of nano-physics. Five years after the first prototype was built, G. Binnig and H. Rohrer
were awarded the Nobel price. Comparing it to older, but established experimental
techniques, STM has the major advantage of working in real space. Furthermore, it
neither requires a periodic ordering, nor it averages over large areas. Instead, it allows
to observe local physical phenomena on the nanoscale. Today, STM has become a key
technology in nano-science as a tool for electron spectroscopy. This comprises, e.g.,
inelastic tunneling spectroscopy [130–132], STM induced light emission [133–135], or
spin-polarized scanning tunneling microscopy (SPSTM) [108, 136].

A.1.1 Theory of scanning tunneling microscopy

A standard textbook exercise is the calculation of the quantum tunneling probability of
a plane electron wave through a barrier. Although this picture is extremely simplified, it
provides one of the important relations relevant for STM:

I(z) ∝ e−2 z
√

2mΦ/h̄ . (A.1)
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The tunneling current I depends exponentially on the barrier width z. The work function
of the sample is given by Φ. This exponential relation of the current on the distance
allows the high spatial resolution achieved by STM.

A long time before the invention of STM, tunneling through planar junction was
already used for transport measurements in experiments. Hence, theories describing the
tunneling characteristics in such a junction were already elaborate [137]. However, the
change of the junction geometry to the sharp apex of a metallic tip at one side, and the
flat sample surface on the other side, required a new viewpoint.

A first theory was given by Tersoff and Hamann [138]. They started using the
approach from Bardeen [137], who treated the tunneling process by first order pertur-
bation theory. For an electron that scatters from an eigenstate of one electrode Ψt to an
eigenstate of the second electrode Ψs, it reads according to Fermi’s golden rule:

I =
2πe

h̄ ∑
t,s

f (Et) [1− f (Es + eV)] |Mts|2 δ (Et − Es) . (A.2)

Here, Et,s are the energies of the two states, and V is the applied bias voltage between
them. The Fermi-Dirac distribution f (E) gives the occupation of each eigenstate. The
transition matrix element which depends on the wave function overlap is given by Mts.
Note, that both eigenstates are non-orthogonal, and they belong to different Hamilto-
nians. Bardeen showed that Mts can be obtained when integrating over an arbitrary
surface S within the vacuum barrier:

Mts =
h̄2

2m

∫
dS · (Ψ∗t∇Ψs −Ψs∇Ψ∗t ) . (A.3)

Hence, the tunneling current depends essentially on the wave functions of both elec-
trodes. Since the surface is a periodic system, Tersoff and Hamann assumed that Ψs is a
Bloch wave decaying exponentially into the vacuum [eq. (A.4)]. The wave function of
the tip, Ψt, has to describe the apex of a tip. Hence, they used a spherical potential well,
with a local curvature R [eq. (A.5)].

Ψs ∝ ∑
G

e−
√

k2+|kG |2 z eikGx , (A.4)

Ψt ∝
kR

k |r− r0|
e−k|r−r0| . (A.5)

The reciprocal lattice vector of the surface is denoted by G. The surface Bloch wave
vector is given by kG. Furthermore, z is the distance perpendicular to the surface, and
x is the spatial vector parallel to the surface. The concept of these wave functions is
sketched in fig. A.1. Although the assumptions for the tip geometry are quite simple,
they turn out to deliver rather accurate results. Often, the tip apex is a single metal atom.
There, the spatially largest orbital is s-like, and thus spherical, which matches well the
model that was chosen.

A further extension of eq. (A.2) to eq. (A.5) finally leads to an expression for the tunnel
matrix element which depends only on the DOS of both electrodes, ρt,s, respectively. In
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tip
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R

FIGURE A.1: Layout of the junction geometry assumed by Tersoff and Hamann [138]. The
wave function of the tip is an exponentially decaying spherical potential well of radius
R. The sample is modeled by a Bloch wave with reciprocal lattice vector G, which decays
exponentially into the vacuum towards the tip. The integral of the tunnel matrix element in
eq. (A.3) can be calculated along any surface S between tip and sample.

the Wentzel-Kramers-Brillouin (WKB) approximation it is given by [139]:

I(V, z) =
4πe

h̄

∫ ∞

−∞
ρs (EF −V + ε) ρt (EF + ε)

· [ f (EF −V + ε)− f (EF + ε)] |M(ε, V, z)|2 dε . (A.6)

The Fermi level EF of both electrodes defines the occupation of the DOS by Fermi-Dirac
statistics f (E). The tunnel matrix element M(ε, V, z) is given by:

|M(ε, V, z)|2 = exp

(
−2z
√

2m
h̄

√
Φs + Φt

2
+

eV
2
− ε

)
. (A.7)

It depends on the energy ε, on the sample bias V, on the tip-sample distance z, and on
the work function of tip and sample Φt,s, respectively. Furthermore, eq. (A.6) considers
both, tunneling from tip to sample, and vice versa. Hence, if the tip DOS is known, the
sample DOS can be deduced from the measured tunneling current.

A common method to control the DOS of the tip is, e.g., to indent the tip into a clean
part of the sample surface, which covers the tip with a known species of atoms. The
ability to control the tip DOS has been further improved over the years. Today, sometimes
adsorbates on the tip are intentionally used to functionalize it, and to emphasize certain
physical quantities in the tunneling current by the modified tip wave function [140].
For example, one can display the gradient of the sample DOS by attaching a carbon
monoxide molecule to the tip, which has a p-orbital shape [141].

A.1.2 Imaging with Scanning Tunneling Microscopy

The sensitivity of the tip-sample distance is used to image the surface topography by
STM. The topography is defined by the iso-surface with a constant DOS. The tip is
approached by a feedback loop to the sample until a tunneling current in the order of
0.01 nA to 10 nA is established. Commonly, images are recorded with a closed feedback
loop, which keeps the current constant while scanning the sample surface. Measuring
with an open feedback loop allows a faster scan speed, but increases the risk of a crash
of the tip with the surface.
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A.2 Scanning tunneling spectroscopy (STS)

The scanning tunneling microscope has a major advantage over other surface sensitive
spectroscopic methods, namely the ability to address individual adsorbates, and probe
their electronic structure. Several different methods have been established to measure
this quantity. The most common one is the I(V) spectroscopy. There, one measures the
local conductance to deduce the local DOS.

A.2.1 I(V) spectroscopy

The I(V) spectroscopy is carried out by applying a small varying bias voltage V to the
sample, and by recording in parallel the current across the junction, while the tip-sample
distance is fixed. Differentiating the current [eq. (A.6)] with respect to the bias voltage
gives the differential conductance dI/dV(V). At zero temperature, we obtain:

dI/dV(V) =
4πe

h̄
ρs(EF + V) ρt(EF) |M(V, V, z)|2

+
4πe

h̄

∫ V

0
ρs(EF + ε) ρt(EF −V + ε)

d |M(ε, V, z)|2

dV
dε

+
4πe

h̄

∫ V

0
ρs(EF + ε)

dρt(EF −V + ε)

dV
dε . (A.8)

The dI/dV signal is the sum of three components. The first is a convolution of the
tip and sample DOS. In this term, the fixed tip-sample distance during the experiment
causes a constant tunnel matrix element M, as long as the bias voltage is low compared
to the work functions (V � Φs,t). The second component becomes zero for the same
reason. The third component becomes zero, if the sample DOS is only weakly voltage
dependent. Hence, the dI/dV(V) signal is — in first approximation — proportional to
the DOS of tip (ρt) and sample (ρs):

dI/dV(V) ∝ ρs(EF + V) ρt(EF) . (A.9)

dI/dV(V) measurements with a lock-in amplifier

The technically easiest method to obtain the dI/dV signal is, of course, to calculate the
numerical derivative of the measured current across the junction. However, as every
numeric method, it is extremely prone to noise. The sources of noise in our experiment
are mechanical vibrations in the tunnel junction, external radio frequency radiation, and
thermal noise within the amplifier electronics. Typically, the noise amounts to 1− 2 % of
the wanted signal. Hence, one prefers to measure directly the dI/dV(V) signal without
further numerical operations. This is possible by using a lock-in amplifier, which is
basically a frequency generator with a signal multiplier and an integration circuit.

The frequency generator adds a small oscillating modulation voltage Vmod sin (ωreft)
on top of the bias voltage Vb. Hence, the measured current oscillates at the same reference
frequency (ωref). The period is chosen faster than the sensitivity of the microscope’s
feedback loop, so that the tip-sample distance is unaffected (ωref ≈ 900 Hz). The
measured junction current is then multiplied by the reference signal, and integrated over
as many oscillation periods as possible. This filters all frequencies, except for the wanted
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signal oscillating with ωref.

I(Vb) =
1
π

∫ +π

−π
I [Vb + Vmod sin (ωreft)] · sin (ωreft) d(ωreft) . (A.10)

Furthermore, the lock-in amplifier is able to directly output the differential conductance.
Calculating the Taylor expansion of the static current at voltage Vb, while modulating it
with a small amplitude Vmod, gives up to the third order in the sample bias V:

Vbias ≡ Vb + Vmod sin (ωreft) (A.11)
I(V)|Vbias

≈ I(Vbias)

+
dI(Vbias)

dV
[V −Vb −Vmod sin (ωreft)]

+
d2 I(Vbias)

dV2
[V −Vb −Vmod sin (ωreft)]

2

2!
+ . . . . (A.12)

The first term is constant. It is averaged to zero when performing the integral in eq. (A.10).
The second and third terms are directly proportional to the first and second derivative
of the current. Hence, to directly obtain the dI/dV signal, one simply sets the amplifier
to the first harmonic of ωref. Moreover, the amplifier can also be set to higher harmonics,
which gives higher derivatives of the current, but implies a proportionally reduced
amplitude of the signal.

Limits of spectral resolution

In eq. (A.9) we pointed out that dI/dV(V) spectra are commonly interpreted as DOS of
the sample. However, the use of a lock-in amplifier has the flaw that its voltage modula-
tion additionally broadens the data. The effective broadening can be calculated by an
ansatz of Ref. [142]. It starts with eq. (A.10), where E is substituted by Vmod sin (ωreft),
and a partial integration is performed:

I(Vb) =
1
π

∫ +Vmod

−Vmod

I (Vb + E) · E√
V2

mod − E2

1
Vmod

dE

I(Vb) =
1
π

∫ +Vmod

−Vmod

dI(Vb + E)
dE

·

√
V2

mod − E2

Vmod
dE . (A.13)

Hence, the lock-in amplifier output is broadened by convolution with the function√
V2

mod − E2/Vmod. It is a semi sphere between ±Vmod with a FWHM of 1.73 Vmod. To
observe narrow spectral features without broadening them artificially, the modulation
amplitude has to be appropriately selected. It should be as large as possible, but stay
well below other experimental broadening effects.



54

The largest experimental broadening, however, enters through thermal occupation
of the electrodes DOS with Fermi-Dirac statistics. The derivative of the Fermi function is
a Gaussian-like resonance, given by:

d f (E)
dE

=
1

kBT
e−

E
kBT(

1 + e−
E

kBT
)2 . (A.14)

The width of this resonance is ≈ 3.5 kBT, which smears out all spectral features at
non-zero temperature. However, we overcome the thermal resolution limit in our
experiments, by using a superconducting tip. The tiny superconducting gap cuts of the
tails of the Fermi-Dirac function, as long as the temperatures are well below the width
of the superconducting gap. More details are discussed in section 2.3.1.

Spatial maps of the dI/dV signal

The high lateral resolution of STM allows to map the differential conductance over larger
areas. For time reasons, this is done mainly at discrete energies, which are selected prior
to the measurement. Three common techniques have been established.

The first operates with a constant tunneling current. The feedback loop is closed. It
gives a strong signal on topographically non-flat areas, since the current is always at the
same level. However, it often gives rise to measurement artifacts. In addition to changes
in the DOS of the sample, the tunnel matrix element changes by the variation of the
tip-sample distance. Moreover, the exact influence of this change on the signal is often
unknown.

The second mode operates at a constant tip-sample distance, which avoids the prior
source of artifacts. However, this comes at the cost of a lower signal in regions of lower
topographic height. This makes it difficult to map the influence of adsorbates on the
surface DOS. At the adsorbate the signal is high, but it rapidly drops on the surface.

Both techniques are unsuited for our experiments. We are investigating the interac-
tion of adsorbates with the superconducting substrate. This occurs mainly at energies
below the superconducting gap. There, the surface without the substrate is not conduct-
ing at all. The solution is to use a hybrid of the two techniques mentioned above for our
experiment. We perform a constant current map, which ensures a high signal on surface
and adsorbate, but we control the feedback at a bias voltage with lies in a featureless
region of both, tip, adsorbate and sample DOS. Hence, the actual signal of the adsorbate
is not influenced by a change of the tunnel matrix element which also depends on the
measured quantity.
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A.3 Experimental setup: the Joule-Thomson
Scanning Tunneling Microscope (JTSTM)

Our experimental setup is a commercially available Joule-Thomson Scanning Tunneling
Microscope (JTSTM), manufactured by SPECS1. It operates at a base temperature of
≈ 1.1 K under ultra-high vacuum (UHV) conditions, and allows to apply a magnetic
field up to ± 3 T perpendicular to the sample surface. Furthermore, it has elaborate
radio-frequency filters for high energy resolutions in the order of 50 µeV when measur-
ing with superconducting tips.

In our experiment we are interested in the intrinsic properties of the surface and its
interaction with single well-defined adsorbates. Hence, to circumvent any contamina-
tion with other atoms and molecules, our setup operates at UHV conditions at pressures
below 1× 10−10 mbar. Thermal rearrangements of the adsorbates and thermally in-
duced fluctuation of the tip-sample distance during the measurement are avoided by
working at temperatures below ≈ 5 K. This is achieved by a liquid He cryostat, which
cools the whole microscope to ≈ 4.5 K. Moreover, the temperature determines crucially
the energy resolution of the setup. For our investigations in the µeV energy range we
further cool the setup to its base temperature of ≈ 1.1 K by a Joule-Thomson unit.

A.3.1 Joule-Thomson Cooling

Joule-Thomson cooling is a common technique used in many applications, such as in
refrigerators and in air-condition units. In our setup, the JTSTM, we use it to cool the
sample below the temperature of liquid helium (≈ 4 K). It is based on the discovery by
J.P. Joule and W. Thomson in 1852 that nearly all gases cool under adiabatic expansion.
The process is parametrized by the thermodynamic derived Joule-Thomson coefficient
which describes the rate of temperature change ∂T per pressure drop ∂P under the
constant enthalpy H, so without heat exchange with the environment [143]:

µJT =

(
∂T
∂p

)
H
=

[
T
(

∂V
∂T

)
P
−V

]
1

CP
= (αT − 1)

V
CP

. (A.15)

The volume of the system is given by V, the specific heat capacity of the gas by CP, and
the thermal expansion coefficient of the gas by α. A gas cools when the coefficient is
positive, which means α > 1/T. Interestingly, the ideal gas equation PV = NkBT yields
α = 1/T, which implies that cooling is only possible with gases that deviate from this
model. It is a direct consequence of the interaction of the gas particles. In a non-ideal
gas an expansion of the volume has two competing effects: On one hand, the attraction
between the gas particles increases with the average distance between them. On the
other hand, the larger joint volume of the particles decreases their collision probability
and, thus, their potential energy. Depending on which of the processes dominates, the
Joule-Thomson coefficient is positive or negative. A change in the potential energy has
to be compensated by a change of the kinetic energy, as the energy in the system is
conserved.

At room temperature almost all gases have the Joule-Thomson coefficient µJT < 0,
which means they are cooled by expansion. In our setup, we use helium as cryogenic gas,
and pre-cool it to ≈ 4 K, which is below its inversion temperature of about 32− 50 K at
ambient pressure. The Joule-Thomson unit itself is thermally coupled to the microscope

1SPECS Surface Nano Analysis GmbH

http://www.specs.com/
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FIGURE A.2: High-resolution surface topographies of clean Pb(111), Pb(100), and Pb(110),
respectively (from a–c). A 2D-reverse FFT filter was applied to each image, which highlights
the crystalline periodicity. Setpoints: 50/−50/500 mV, 50/50/70 pA.

stage and consists of a thin gas capillary that tapers at the end. The gas is applied to
the capillary at a pressure of about 2 bar and is expanded to a small reservoir which
is pumped to a rough vacuum. This leads to a cooling power of the order of several
milliwatt, and allows a continuous operation mode.

A.3.2 Magnetic field

The JTSTM has a pair of superconducting Helmholtz coils which encapsulate the whole
microscope. They induce a homogeneous magnetic field at the center between the two
coils, where sample and tip are positioned. The field strength follows the Biot-Savart
law:

Bcenter =

(
4
5

)3/2 µ0nI
R

. (A.16)

Here, R is the radius of the coils, n is the number of windings, I is the current running
through the coils, and µ0 is the vacuum permeability. The maximally achieved magnetic
fields in our setup are ± 3 T perpendicular to the sample surface, at a current of roughly
20 A through the coils. Hence, copper wires are no suitable coil material, as the induced
ohmic heat would prevent measurements at ≈ 1.1 K. Therefore, they are made out of a
superconductor cooled by the liquid helium cryostat.

A.4 Sample preparation

The superconducting substrates in our experiments are high purity single crystals of Pb.
The bulk lattice of Pb is a face-centered cubic (fcc). For our experiments, the crystals were
cut and polished2 along the three main surface orientations [(100), (110), and (111)]. After
transfer to UHV, they were cleaned by several cycles of neon ion sputtering at 900 eV
at a pressure of 1.5× 10−4 mbar (background pressure < 1.5× 10−9 mbar). Heating to
430 K for 60 min anneals the damage that was introduced by the sputter cycles. This
results in clean, flat, and superconducting terraces. Atomic resolution on each surface is
shown in fig. A.2.

2Crystals are commercially available by MaTecK GmbH.

http://www.mateck.de/
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A.4.1 Evaporation of transition metal atoms

Transition metal atoms were evaporated by electron beam heating onto the sample at
various temperatures. At high temperatures, thermal diffusion of the adsorbates is
possible, at low temperatures the adsorbates stick to where they initially adsorb.

Single adatoms were obtained by evaporation at cold temperatures, with the sample
installed in the microscope. Hence, the temperature stays below 15 K, and thermal
diffusion is avoided. The surface gets covered randomly with adatoms in the order of
' 100 atoms per 100× 100 nm2, where single adatoms and dimers are found.

The growth of 1D atomic chains requires elevated temperatures and a larger coverage.
Several regimes between 170 K and 390 K were tested in our experiments. We obtained
an element specific optimal temperature for the formation of chains. Fe-chains self-
assemble at room temperature, Co-chains at ' 260 K, and Mn-chains at 170 K. The
appearance of Mn-chains differs significantly from the others. Details of their structure
are still an open question.
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List of Acronyms

1D one-dimensional
2D two-dimensional
3D three-dimensional
Al aluminum
ARPES angle-resolved photo-emission spectroscopy
BCS Bardeen-Cooper-Schrieffer
Co cobalt
Cr chrome
Cu copper
DFT density functional theory
DOS density of states
fcc face-centered cubic
Fe iron
FFT Fast-Fourier transformation
FWHM full width at half maximum
Gd gadolinium
He helium
Hg mercury
JTSTM Joule-Thomson Scanning Tunneling Microscope
LT-STM low-temperature scanning tunneling microscopy
Mn manganese
MZM Majorana zero mode
Nb niobium
Ne neon
Ni nickel
NMR nuclear magnetic resonance
Pb lead
QPR quasiparticle resonance
RKKY Ruderman-Kittel-Kasuya-Yosida
Sc scandium
SP spin polarized
SPSTM spin-polarized scanning tunneling microscopy
STM scanning tunneling microscopy
STS scanning tunneling spectroscopy
SQUID superconducting quantum interference device
Ta tantalum
Tc technetium
TQC topological quantum computation
UHV ultra-high vacuum
V vanadium
W tungsten
WKB Wentzel-Kramers-Brillouin
YSR Yu-Shiba-Rusinov
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Publications

The articles presented in the framework of this thesis are reprinted below in the order
of their discussion in the main text. They were published by the author of this thesis,
Michael KLEINERT, under his scientific pseudonym ‘Michael RUBY’. The work was
carried out in the research group of Prof. Dr. Katharina Franke under supervision of
Dr. Benjamin Heinrich. The results were mostly achieved in close collaboration with
theoretical physicists of the group of Prof. Dr. Felix von Oppen. Contributions of the
authors to the publications are as follows:

• SoftwareX 5, 31 (2016): The software ‘SpectraFox’ was written over the period of
five years by the author of this thesis. At the time of publication of the article, it
was made available under an open source license, and comprised ≈ 43000 lines
of code. The manuscript and software manual were written by the author of this
thesis.

• Physical Review Letters 114, 157001 (2015): The author of this thesis performed
the experimental measurements and the data analysis. All authors contributed to
the interpretation of the data. The initial manuscript was written by the author of
this thesis. All authors contributed to the writing of the final version.

• Physical Review Letters 117, 186801 (2016): The author of this thesis performed
the experimental measurements and the data analysis. The theoretical model
was developed by Y. Peng and F. von Oppen. All authors contributed to the
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The type I superconductor lead (Pb) has been theoretically predicted to be a two-band superconductor.
We use scanning tunneling spectroscopy (STS) to resolve two superconducting gaps with an energy
difference of 150 μeV. Tunneling into Pb(111), Pb(110), and Pb(100) crystals reveals a strong dependence
of the two coherence peak intensities on the crystal orientation. We show that this is the result of a selective
tunneling into the two bands at the energy of the two coherence peaks. This is further sustained by the
observation of signatures of the Fermi sheets in differential conductance maps around subsurface defects.
A modification of the density of states of the two bands by adatoms on the surface confirms the different
orbital character of each of the two subbands.

DOI: 10.1103/PhysRevLett.114.157001 PACS numbers: 74.55.+v, 73.20.-r, 74.20.Fg, 74.25.Jb

The theory of Bardeen, Cooper, and Schrieffer (BCS)
has been extremely successful in describing many aspects
of superconductivity (SC). It predicts the formation of a
condensate of quasiparticles, the so-called Cooper pairs, as
a result of electron-phonon coupling. The corresponding
quasiparticle excitation spectrum exhibits a characteristic
gap of width 2Δ around the Fermi level, with Δ being the
order parameter reflecting the bonding strength of the
Cooper pairs. However, soon after the development of
the BCS formalism, it was realized that the theory has to be
extended for describing the properties of even the simplest
elemental superconductors such as Pb, V, Ta, etc. In
particular, two quasiparticle resonances have been observed
in planar Pb tunneling junctions [1–4]. The initial inter-
pretations of these experiments proposed an anisotropic
electron-phonon coupling leading to a k-dependent order
parameter as the origin of this behavior [5].
With the discovery of superconductivity in highly

anisotropic, composite materials, such as MgB2, NbSe2,
CaC6, etc., with two distinct energy gaps and unexpectedly
high critical temperatures [6–14], the importance of the
concept of multiband superconductivity, which had been
proposed already in 1959 [15], was realized. This moti-
vated a renewed theoretical treatment of conventional
superconductors with state-of-the-art methods. These
revealed that two disjoint Fermi sheets (FSs) with different
electron-phonon coupling strengths lead to two distinct
energy gaps and an increased critical temperature as
compared to a single isotropic gap [16].
Floris et al. identified by density functional theory

(SCDFT) that two-band superconductivity also plays a
role in the elemental superconductor Pb [17]. They found
that the Fermi surface of Pb is composed of a compact
Fermi sheet with mostly s-p character and a tubular Fermi
sheet of p-d character. The different orbital nature leads

to different electron-phonon coupling strengths [18] and
causes different pairing energies in the SC condensate.
Experimentally, it is difficult to distinguish between a

two-band model and an anisotropic variation of the order
parameter. Angle-resolved photoemission spectroscopy, a
prime candidate for experimental band structure determi-
nation, lacks the required energy resolution. Planar tunnel-
ing junctions have revealed two peaks in the gap structure
[1–4], but the tunneling current is the sum of all tunneling
paths, including step edges, vacancies, impurities, etc. This
prohibits an unambiguous interpretation of the tunneling
spectra.
Here, we overcome this shortcoming using scanning

tunneling microscopy (STM) and spectroscopy (STS) to
probe atomically flat surfaces as well as well-defined
defects and distinguish between the different contributions
to tunneling. We present direct evidence for the two-band
nature of superconductivity in Pb. Two BCS-like resonan-
ces with an energy separation of 150 μeV are observed.
Depending on the surface orientation, the intensity of these
peaks varies due to k-selective tunneling into the two Fermi
sheets. Scattering patterns around subsurface Ne impurities
at the energies of the two coherence peaks reveal signatures
of the shape of the respective Fermi sheets as a result of an
anisotropic electron propagator in the crystal [19–22].
Furthermore, we show that the distinct orbital character
of the Fermi sheets is reflected by the modification of
density of states (DOS) at adatoms, which tends to increase
the weight of tunneling into more localized d states over the
delocalized s-p-derived states.
Our experiments were carried out in a SPECS JT-STM

under ultrahigh vacuum conditions at a base temperature of
1.2 K. Pb is a type I superconductor with a critical
temperature of Tc ¼ 7.2 K and a coherence length of
83 nm. The single crystals were cleaned by cycles of
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Neþ ion sputtering at 900 eV with a Ne pressure of
1.5×10−4mbar (background pressure: < 1.5×10−9 mbar)
and annealing to 430 K for 30 min until a clean, atomically
flat, and superconducting surface was observed. To achieve
high energy resolution, we cover etched W tips with Pb
by deep indentations into the clean Pb surface until
superconductor-superconductor tunneling spectra are
measured [23] (see Supplemental Material for details
[24]). The use of a superconducting tip together with an
elaborated grounding and rf-filtering scheme yields an
effective energy resolution of ≈45 μeV at 1.2 K (compared
to ≈360 μeVwith a normal metal tip, in which Fermi-Dirac
broadening limits the energy resolution). Crystalline direc-
tions were determined by atomically resolved topographies
of the clean Pb surface (see Fig. S1 [24]).
We record spectra of the differential conductance

dI=dVðVÞ on clean terraces of the three low-index surfaces
(111), (100), and (110) of Pb single crystals to probe their
superconducting energy gaps (Fig. 1). Around EF, the
superconducting gap (zero conductance) is framed by
quasiparticle resonances (QPRs) at ≈� 2.7 meV [29]. In
the spectra of all surface orientations, we observe two pairs
of QPRs separated by ≈150 μeV [30]. Because of the
superconducting state of the tip, the spectra are a con-
volution of two SC density of states. In particular the
position of the QPRs is shifted by Δtip. To extract the exact
energy positions and intensities of the two QPRs, we
deconvolute the spectra as described in the Supplemental
Material [24]. We can unambiguously link the appearance

of the two peaks with ≈150 μeV separation to a property of
all samples, independent of the tip’s single gap. Similar
splittings have been observed earlier in planar Pb tunnel
junctions and attributed to the anisotropy of the FS and of
the electron‐phonon coupling of Pb [1,3–5]. More recently,
however, Floris et al. predicted that Pb is a two-band
superconductor with two well-separated FSs, with one of
them being highly anisotropic and the other almost spheri-
cal (see the inset in Fig. 1) [17]. The inner FS (FS1) has an
almost spherical shape. The outer FS (FS2) has a tubular
shape [31]. FS1 is mostly of s-p character with a smaller
pairing energy than FS2, which is of p-d-like character
[17]. A manifestation of the different pairing energy
associated to each FS is the different position of the
corresponding quasiparticle resonances QPR1 and QPR2
in the dI=dVðVÞ spectra. Hence, we identify the inner and
outer peaks as tunneling into FS1 and FS2 of the sample,
respectively. The existence of a single gap in the STM tip is
in agreement with its expected microcrystalline character
[32]. While the energy separation between QPR1 and
QPR2 is constant for all surfaces, we observe distinct
relative peak intensities for the different surface orienta-
tions (Fig. 1). The tunneling probability depends on
transition matrix elements, which depend on the k⊥
component of the wave vector k. A strong tunneling
contribution thus requires access to the FS with the wave
vector k being mostly perpendicular to the surface. The
insets in Fig. 1 show the top views of the two FSs for the
given crystal orientations. FS1 is compact, which implies
that tunneling with a strong k⊥ contribution into the (111),
(100), and (110) surface is possible. In contrast to this, FS2
exhibits open pores along the kΓ→L and kΓ→X directions.
Hence, for these directions, tunneling into FS2 is only
possible with wave vectors with a considerable k∥ compo-
nent, which is accompanied by a reduced tunneling
probability. Therefore, the ratio of intensities of QPR1
and QPR2 is largest on the (111) surface, where FS2
exhibits the largest pore, followed by the (100) surface. On
the (110) surface, QPR2 is even more intense than QPR1
(see the Supplemental Material for a quantitative analysis
of the intensities [24]). Both FSs can be accessed by
electrons with k vectors with a mostly k⊥ contribution and
can therefore participate almost equivalently in tunneling.
The observed energy splitting in STS together with the

dependence of the QPR intensities on the surface orienta-
tion agrees well with the two-band superconductivity
connected to the FSs of Pb, as predicted by Floris et al.
[17]. The difference between the pairing energies of ≈10%
is, however, smaller than calculated (≈30% [17]). We link
this to interband scattering, which diminishes the difference
in the pairing energy of the two bands [33].
We now search for more direct evidence of the presence

of the two FSs with different order parameters. One way
to image the different symmetries of the two FSs is to
inspect dI=dV maps around buried impurities which show
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characteristic modulation of the DOS around them (see
Figs. 2 and S3 in the Supplemental Material [24]). On the
Pb(100) surface we find typical patterns in STM topogra-
phies (see Fig. S2 [24]). These consist of a bright or dark
center which is framed by patterns of fourfold symmetry.
The impurities are most likely Ne-filled subsurface

nanocavities, which are residuals of the Neþ ion sputtering
[20,34]. They act as scattering centers and give rise to
quantum well states between the surface and the impurity
[34]. The subsurface inclusion appears then as a protrusion
or a depression, depending on whether or not the sample
bias matches the quantization condition of the quantum
well state. The quantum well state typically has a width
of several hundreds of meV (e.g., Fig. S3h in the
Supplemental Material [24]). Therefore, it is present in a
wide energy range. Laterally away from the impurity
center, the two constant-height dI=dV maps at the energy
of the two QPRs show quite different patterns of charge
density oscillations. The map at 2.64 meV, which results
from tunneling into QPR1, exhibits a squarelike pattern
with the edges along the h110i directions around the bright
center [highlighted by orange ellipses in Fig. 2(c)]. The
map at the energy of QPR2 [2.76 meV, Fig. 2(d)] shows
areas of high intensity along the h100i (shaded purple
ellipses) and h110i (open purple ellipses) directions,
respectively. Additionally, long-ranging oscillations appear
in the dI=dV signal along the h110i directions (indicated by
purple stripes).
According to Weismann and his co-workers, the charge

density oscillations result from a scattering and a focusing
of bulk electrons (holes) at subsurface impurities with an

anisotropic electron (hole) propagation [21]. Analogous to
the Huygens principle, the group velocity of the electrons
(holes) dE=dk is perpendicular to the FS and therefore
nearly parallel for beams arising from areas of low FS
curvature. This leads to a focusing of the electron propa-
gator into the normal direction of these regions [19]. Hence,
the real space distribution of the DOS on the surface above
the impurity, which is resolved via dI=dV mapping, is
directly related to the shape of the FS.
We can now assign the features of the dI=dV maps to

low-curvature regions of FS1 and FS2, respectively. The
curvature of the respective FSs is color coded onto the 3D
models in Figs. 2(e) and 2(f). FS1 contains two groups of
low-curvature regions [dark blue in Fig. 2(e)]: eight large
regions with the group velocity (i.e., FS surface normal)
pointing into the h111i directions, i.e., along the Γ-L
direction, and six smaller regions with the surface normal
pointing towards h100i, i.e., along the Γ-X direction.
Projected onto the (100) surface, we can assign the four
squarelike stripes of high conductance [the orange ovals in
Fig. 2(c)] to the focusing of electron propagation in the
h111i direction. Also, for the h100i direction a higher
intensity is expected. However, this direction is dominated
by the quantum well state, as discussed above. Both signals
are superimposed and are thus not distinguishable.
FS2 can be described as a complex structure with tubes

connecting the U and W points, and connecting the K
and W points, respectively. Despite having a large three-
dimensional curvature [Fig. 2(h)], the tubes exhibit one-
dimensional low-curvature regions (lines). Along the line
the group velocity is therefore pointing in the same
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direction, giving rise to an enhanced scattering pattern,
analogous to a decreased decay of Friedel oscillations in
two dimensions [22]. The fourfold symmetry of the U-W
and K-W tubes, respectively, then gives rise to the
octagonal pattern [the purple ovals in Fig. 2(d)] projected
on the surface, as seen in the dI=dV map. The oscillations
at a larger distance can be linked to a long-range interfer-
ence of electrons (holes) due to a scattering at side facets of
the inclusion [20,35] or due to an interference of electrons
(holes) with the same group velocity, but originating from
different areas on the FS [22]. The distinct appearance of
these patterns at QPR1 and QPR2 is thus further proof of
the geometrically very different FSs with different pairing
energies.
According to the SCDFT calculations in Ref. [17], each

FS has a different orbital character. We expect that this
character will be reflected in the interaction with local
potentials. Adsorbates interact with the electronic bands of
the surface and locally modify the corresponding density of
states. To probe this interaction with both the s-p- and
p-d-derived FSs, we deposited Pb adatoms from the lead-
covered tip onto the surface by applying voltage pulses of
6 to 10 V at a tip-sample distance of approximately 1 nm.
The inset of Fig. 3(b) shows a topography of an as-
deposited adatom. The excitation spectrum above the
center of the adatom [Fig. 3(a), bottom] shows that
QPR2 is more intense than QPR1, in contrast to the
spectrum on the clean surface [Fig. 3(a), top].
The spatial extension of this intensity variation is

reflected in a series of spectra taken along a line over
the adatom [see the inset of Fig. 3(b)]. The relative
intensities R ¼ A1=A2 of the QPRs—with A1 and A2 being
the intensities of QPR1 and QPR2, respectively, after
deconvolution—are shown in Fig. 3(b). The value
decreases continuously from 2 over the clean surface to

0.65 on top of the adatom. Thus the adatoms increase
the tunneling probability into FS2 compared to FS1.
The variation of R is constricted to the adatom site [36].
In principle, a protruding feature such as an adatom
geometrically favors tunneling with a large k⊥ contribution
and may thus enhance the tunneling probability into FS1,
leading to a larger R. The opposite trend observed in the
experiment suggests another scenario. The increased inten-
sity of QPR2 indicates that tunneling into the band of FS2
is particularly enhanced at the localized potential of the Pb
adatom. This is a consequence of a strong confinement of
localized d-derived states around an impurity potential.
Therefore the band that is associated with FS2 and is
hybridized with d states is more affected than the extended
s-p band that creates FS1 [18].
Despite Pb being one of the best characterized type I

superconductors, the theoretical prediction of Pb being a
two-band superconductor has not been experimentally
evidenced unambiguously to date. The early-on observed
splitting of QPRs could either be described by an aniso-
tropic electron-phonon coupling term or by two distinct
electronic bands at the Fermi level. We have shown clear
fingerprints of the two-band nature of superconductivity in
Pb. STS resolved the differing pairing energy on the two
bands as 150 μeV, which is smaller than was theoretically
predicted. Calculations of interband scattering events may
be able to explain this deviation. The energetically sepa-
rated FSs allowed for a direct mapping of their symmetry in
real space. This method is complementary to quasiparticle
interference mapping by STM [38], which is frequently
used to resolve characteristics of the FS of, e.g., high-Tc
superconductors. Most importantly, the intensity of
quasiparticle interference falls off too rapidly in three-
dimensional electron systems (such as Pb) and, therefore,
requires two-dimensional states. Furthermore, it does not
involve reconstruction of the Fermi surface by Fourier
transformation, but it directly reflects the symmetry of
reciprocal space in real space.
The tuning of orbital contributions around atoms allows

us, in a proof-of-principle experiment, to favor tunneling
into one or the other FSs and might be used—together with
the focusing properties of the curved FSs—for k-selective
filtering in future tunneling devices.
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Numerical Deconvolution of dI/dV -spectra

A numerical deconvolution routine has been used to extract the spectral intensities of tip and sample from the
dI/dV -data. The STM junction is modeled by a superconducting tip with a single-gap and a two-gap superconductor
as the substrate. The current across the tunnel junction can be expressed as [1]:

I(Vbias) ≈
∫ ∞
−∞

dE ρtip(E, T, ε)ρsample(E + eVbias, T, ε) [f(E, T )− f(E + eVbias, T )] |Ms,t|2 . (S1)

Here ρ(E, T ) represents the density of states of tip and sample, respectively, and f(E, T ) is the Fermi-Dirac distribution
describing the occupation of the states. Ms,t is the tunnel matrix element between initial and final state, which is
assumed to be constant for the small bias voltages in our experiment.

The DoS of the tip is simulated by a conventional BCS DoS. The sample DoS is represented by a weighted sum of
two BCS DoS. The weighting factors A1,2 and their ratio R = A1/A2 reflect different tunneling contributions to the
two Fermi sheets.

ρtip(E, T, ε) = Re

(
E + iε√

(E + iε)2 −∆t(T )2

)
,

ρsample(E, T, ε) =
A1 ρs1(E) +A2 ρs2(E)

A2

= R Re

(
E + iε√

(E + iε)2 −∆s1(T )2

)
+ Re

(
E + iε√

(E + iε)2 −∆s2(T )2

)
. (S2)

The two gap parameters of the sample ∆s1,2 give the energy of the two sharp BCS resonances in the dI/dV -spectra.
The imaginary energy iε is included to account for lifetime effects of the quasi-particles [2].

Instrumental broadening leads to a Gaussian-type broadening of the measured signal. Origins for this are the
lock-in modulation voltage and radio frequencies in the set-up. To minimize the influence of the modulation voltage,
we choose it such that no additional broadening of the measured signal could be detected. In our model, we account
for all instrumental broadening by a convolution of the current (Eq. (S1)) with a Gaussian function of width ω. The
numerical derivative dI/dV is then calculated and fitted to the experimental dI/dV -curves. The least χ2-fit yields
the set of parameters (T , ∆t, ∆s2, ε, ω, R). Note that ∆t,s1,s2 are not independent parameters in the fit as the energy
position of the dI/dV resonance is the sum ∆t + ∆s. We therefore fix ∆s1 in all fits to 1.274 meV.

A set of experimental dI/dV curves on the different surface orientations together with their fits is shown in
Fig. S1(a,d,g). The corresponding spectral intensity of the tip and sample contributions are shown in Fig. S1(b,e,h).
We accompany these spectra with high-resolution topographies of the three surfaces (Fig. S1(c,f,i)). In (c) and (f)
the atomic corrugation of the respective surface is resolved.
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Pb(100) and Pb(110). (b,e,h) The deconvoluted spectral intensities of the sample (orange) are a weighted linear-combination
of two BCS DoS (gray). The tip spectral intensity is shown in black. The fit is referenced to the gap ∆s1 = 1.274 meV. All
fit parameters are given as inset in the corresponding figure. (c,f,i) High-resolution topographies of the corresponding clean
surfaces (setpoint: 50/−50/5 mV, 50/50/400 pA).
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Topography of Pb(100)

The Pb(100) single crystal surface was prepared by sputter/anneal cycles as described in the main manuscript.
Typical surface topographies is shown in Figure S2. In (b) subsurface Ne inclusions are visible as square-like patterns
as described in the main manuscript. The scattering patterns are of different size depending on the depth and size of
the Ne inclusion. Most notably, the center of the pattern may appear bright or dark, depending on the quantum-well
state, which is formed between the inclusion and the surface. If the energy of the tunneling electrons matches the
quantization conditions, the center appears bright; if it is off-resonance, the center appears dark. This does not
effect the symmetry of the scattering patterns at the energies of the quasi-particle resonances (compare Fig. S3 and
Fig. 2 of the main text). Furthermore, we measured many samples with different impurity concentrations without any
noticeable effect on the dI/dV spectra.

0

285

pm

(a)

0

33

pm

(b)

FIG. S2: Topographies of the Pb(100) surface: (a) 80×100 nm2, feedback parameters: 50 pA; 40 mV; (b) 27×40 nm2, feedback
parameters: 50 pA; 50 mV. Subsurface Ne inclusions are visible in (b) as square-like scattering patterns.

Ne Inclusion

The topography and dI/dV maps in Fig. 2 of the main manuscript show the scattering pattern of a sub-surface Ne
inclusion on the Pb(100) surface. In that case the Fermi energy matches the quantization conditions of the quantum-
well established between the surface and the inclusion. This yields high intensity contrast in the center of the STM
topography and dI/dV maps.

Here, we present data of a different sub-surface inclusion on the same surface (see Fig. S3). The dI/dV spectrum in
Fig. S3(h) shows that the quantum-well state lies at ≈ −150 mV, whereas the dI/dV signal at EF corresponds almost
to the minimum between two quantum-well states. In the dI/dV maps in (d,e) the center of the scattering pattern
is now no longer dominated by the increased intensity due to the quantum well state (as is the case in Fig. 2 of the
main manuscript), but shows some signatures due to electron focusing effects from the Fermi sheets as described in
the main manuscript. The dI/dV map at QPR1 shows a square-like pattern with the edges along the 〈110〉 directions
highlighted by orange ellipses in Fig. S3(d). The dI/dV map at QPR2 exhibits areas of high intensity along the
〈100〉 (shaded purple ellipses) and 〈110〉 (open purple ellipses) directions, respectively (Fig. S3(e)). The intensity
along the 〈100〉 directions is stronger than the intensity along the 〈110〉 directions, but with the latter being wider.
Long-ranging oscillations as indicated by the purple lines are also present. Note that there are additionally long-range
oscillations visible, which originate from nearby scatterers. Comparison to the scattering patterns presented in the
main manuscript evidences the same characteristic features. Small deviations, as, e.g., the different resolution, may
be influenced by the size and depth of the Ne inclusion.

Tip Preparation and its Influence on dI/dV -Spectra

The main advantage of the use of a superconducting tip is the increased energy resolution beyond the temperature
broadening of ≈ 360µeV at 1.2 K of the Fermi-Dirac distribution [3]. To obtain a superconducting tip, we indent the
tip into the Pb sample while applying a high voltage (100 V). At sufficiently thick coating the tip behaves as a ”dirty”
superconductor, in which the DoS can be described by a single gap due to the amorphous nature of the material
[4]. The gap width strongly depends on the thickness of the coating. To assure bulk-like gap width, we first record
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FIG. S3: (a–d) Subsurface Ne inclusion. High-resolution topography (a) on an atomically flat Pb(100) terrace (setpoint:
5 mV, 50 pA). The constant-height dI/dV spectrum (h) shows the maximum of a first quantum well state at ≈ −150 mV and
the onset of the next quantum well state above 1 V (3 mVrms, 912 Hz, setpoint: 1 V, 1 nA). Constant-height dI/dV maps at
2.63 mV (d), and 2.83 mV (e), respectively (15µVrms, 912 Hz, setpoint: 5 mV, 250 pA). In the duplicated maps, prominent
scattering signatures are highlighted as guide for the eye. At EF the quantization conditions are close to off–resonance (see
dI/dV spectrum in (h)) and the center of the scattering pattern therefore appears as a depression in topography (a). (b,c,f,g)
3D-models of the two FSs of lead from Ref. 6. The curvature of the FS is color-coded onto the 3D model in (f) and (g), which
are oriented according to the crystalline directions in (a,d,e). Dark blue and dark red correspond to low and high curvature,
respectively. (i) constant-height dI/dV spectrum on the center of the scattering pattern (black curve, location marked by a
cross in (a)) and on the clean surface away from the impurity (grey) (5 mV, 250 pA, 15µVrms, 912 Hz).

dI/dV -spectra at 4.8 K. These exhibit additional resonances at eV = ± |∆s −∆t| due to the thermal occupation of
the DoS. For a tip-coating with a gap parameter similar to the bulk superconductor, these thermal resonances appear
at zero bias in dI/dV . This procedure is reliable if the junction resistance R >∼ 20 MΩ, as Josephson tunneling and
Andreev reflections are negligible in this regime [5].

Nevertheless small variations in the tip’s gap parameter can not be resolved by this technique due to the limited
energy resolution at 4.8 K. At 1.2 K, we then observe small variations of the gap parameter measured with different
tips. Note that these variations only result in an overall shift of the resonances in the dI/dV , but do not affect their
separation associated to the different gaps in the surface.

Magnetic field dependent dI/dV -spectra

A magnetic field is known to suppress superconductivity in type I superconductors above a critical field strength.
Here, we present excitation spectra measured with a magnetic field of differing strength applied perpendicular to the
surface (Fig. S4). The dI/dV spectra were acquired with a Pb-covered tip on a clean Pb(110) surface. At 0 T the
dI/dV spectrum shows a gap with a width of ≈ 4∆, which is due to the convolution of the superconducting DoS of
tip and sample. The observed double resonance at the gap edge is linked to the two-band superconductivity in the
sample as discussed in the main manuscript. The spectrum recorded at 100 mT exhibits a gap with a width of 2∆
and no signs of splitting of the BCS-like peaks. In this field, the superconducting state of the single crystal sample is
quenched as expected for Pb (with its critical field strength of 80 mT). The shape of the tip favors an increased Hc

compared to bulk Pb. Notably, the energy resolution is now limited to ≈360µeV due to Fermi-Dirac broadening in
the metallic sample DoS. At 200 mT additional broadening due to decoherence in the superconducting grain of the
tip apex is observed. At a field of 500 mT, superconductivity in the tip is finally quenched. We note that the critical
field of the tip varies significantly for different tips and depends on its microscopic structure.
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We combine scanning-tunneling-spectroscopy experiments probing magnetic impurities on a super-
conducting surface with a theoretical analysis of the tunneling processes between (superconducting) tip and
substrate. We show that the current through impurity-induced Shiba bound states is carried by single-
electron tunneling at large tip-substrate distances and Andreev reflections at smaller distances. The single-
electron current requires relaxation processes, allowing us to extract information on quasiparticle
transitions and lifetimes.
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Introduction.—Impurity-induced subgap states provide
a fruitful window into conventional and unconventional
superconductors [1–3]. The Yu-Shiba-Rusinov states
[4–6] bound by magnetic impurities in conventional
s-wave superconductors are a simple model system for
nonmagnetic impurity resonances in unconventional
superconductors, probe the competition between super-
conducting and Kondo correlations [7–9], and might
provide a platform for engineering topological super-
conducting phases with Majorana end states [10–13].
In scanning-tunneling spectroscopy, Shiba states induce

resonances which occur symmetrically at positive- and
negative-bias voltages [2,3,7,14]. Given their subgap
nature, it is natural to describe the current into Shiba states
as carried by Andreev processes. These processes transfer a
Cooper pair into the condensate and are resonantly
enhanced by the Shiba state [15–18]. Nevertheless, scan-
ning-tunneling microscopy (STM) experiments on Shiba
states are typically analyzed in terms of the tunneling
density of states which is appropriate for single-electron
tunneling [1,19,20]. This allows one to understand the
observed asymmetry in height between the positive- and
negative-bias peaks while Andreev processes would nec-
essarily be symmetric in bias (for normal-state tips) [18].
Here, we combine scanning-tunneling microscopy and

spectroscopy of Shiba states using superconducting tips
with a comprehensive theoretical analysis to elucidate the
nature of the tunneling processes. We show that both
single-electron and Andreev tunneling contribute in experi-
ments and explain the observed inversion of peak-height
asymmetry as a function of tunneling rates. Our analysis
shows that STM experiments on Shiba states provide
access to quasiparticle relaxation rates in superconductors,
complementing recent work on superconducting quantum
dots [21–23] and Josephson junctions [24–27].
Experiments.—We have performed STM experiments

probing Mn adatoms on a Pb(111) single crystal surface.
The experiments were carried out with a SPECS JT-STM at

the base temperature of 1.2 K as well as at 4.8 K. The Pb
single crystal surface was cleaned by repeated sputter-
anneal cycles until a clean, atomically flat, and super-
conducting surface was obtained (critical temperature Tc ¼
7.2 K and gap Δ ¼ 1.35 meV at 1.2 K). Mn adatoms were
evaporated onto the clean sample at a temperature below
10 K, resulting in a density of 30 atoms per 100 × 100 nm2

(see the Supplemental Material [28]). Our STM experi-
ments were carried out with a Pb-covered, superconduct-
ing tip (see Ref. [7] for the preparation procedure)
which improves resolution far beyond the Fermi-Dirac
limit [30,31].
Figure 1 shows spectra of the differential conductance

dI=dV as a function of sample bias V, acquired at various
tip-sample distances and thus tunneling strengths with the
tip placed above a Mn adatom. All spectra share the same
characteristic peaks [32] but their intensities (normalized to
the normal-state conductance) depend strongly on the
tunneling strength and the sign of the bias voltage.
The peaks in the dI=dV spectra appear at thresholds

for various fundamental tunneling processes between a
superconducting tip and a superconducting substrate with a
magnetic adatom. (i) Single electrons can tunnel when the
negative-energy quasiparticle continuum of the tip overlaps
with the positive-energy continuum of the substrate (or
vice versa). This requires a threshold voltage eV ¼ �2Δ.
(ii) Thermally excited quasiparticles (holes) in the positive-
(negative-) energy quasiparticle continuum induce a
single-particle current even near zero bias. (iii) With a
Shiba state of energy ϵ0, a single-particle current flows
when the negative-energy continuum of the tip overlaps
with the Shiba state, or the positive-energy continuum with
the symmetric energy −ϵ0. These processes have threshold
biases eV ¼ �ðΔþ ϵ0Þ. (iv) Because of thermal occupa-
tion, a single-electron current can also flow when the
positive-energy continuum overlaps with the Shiba state
(and symmetrically when the negative-energy continuum
overlaps with −ϵ0). This requires a threshold bias
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eV ¼ �ðΔ − ϵ0Þ. (v) At ejVj < 2Δ, an electron from, say,
the tip can be reflected as a hole, transferring a Cooper pair.
As all tunneling electrons and holes gain an energy eV,
(multiple) Andreev processes between the quasiparticle
continua have thresholds eV ¼ �2Δ=n, with n ¼ 2; 3;….
Andreev processes require two or more particles to cross
the tunnel barrier and thus become relevant for strong
tunnel coupling only [33]. (vi) Shiba states induce addi-
tional resonant Andreev processes which become relevant
at much lower tunneling rates. An electron from the
negative-energy continuum of the tip can virtually tunnel
into the Shiba state, reflect as a hole, and resonantly transfer
a Cooper pair into the condensate of the substrate. Together
with a similar process at reverse bias, this leads to thresh-
olds at eV ¼ �ðΔþ ϵ0Þ which coincide with those for the
single-electron processes. The principal tunneling proc-
esses involving the Shiba states are sketched in Fig. 2.
There is an important difference between the single-

electron and resonant Andreev processes [18]. Single-
electron processes change the occupation of the Shiba
state, while Andreev processes merely transfer Cooper

pairs into the condensate. Thus, a continuous current flow
by single-electron processes requires relaxation processes
which empty the Shiba state after it is occupied from the tip
(or occupy the empty Shiba state); see Fig. 2. At finite
temperature, a quasiparticle in the Shiba state can be
excited to the continuum by absorption of a phonon or a
photon (with rate Γ1). Conversely, a thermally excited
quasiparticle can relax into the Shiba state by emission
(with rate Γ2).
The observed peaks in the dI=dV spectra can now be

correlated with Shiba states of energy ≃0.22, ≃0.77, and
≃1.18 meV, respectively. The multiple Shiba states may
reflect different angular-momentum channels or spin states
S > 1=2 [14,34,35]. To analyze the tunneling processes, we
focus on the most intense Shiba state at ϵ0 ≃ 0.22 meV.
This state not only leads to the two main peaks at eV ¼
�ðΔþ ϵ0Þ (with peak height α�), but also to two pro-
nounced thermal peaks at eV ¼ �ðΔ − ϵ0Þ (with peak
height β�). As it is the deepest state, its theoretical
interpretation turns out to be least affected by the presence
of the other Shiba states.
The heights of the peaks associated with this Shiba

state are plotted in Fig. 3(a) over several decades in normal-
state tunneling conductance. We draw attention to two
important features of these data. First, the peak heights vary
linearly over a wide region before turning sublinear at
larger tunneling rates. Second, the asymmetry in the peak
heights α� between positive and negative biases inverts
as a function of tunneling strength: At small tunneling
rates, αþ < α−, while at large tunneling rates, αþ > α−.
It is also evident that the inversion of the peak heights
occurs at the crossover between the linear and sublinear
regimes.

FIG. 2 (color online). Principal tunneling processes involving a
Shiba state (solid line) within the superconducting gap (enclosed
by BCS quasiparticle peaks). The chemical potential is repre-
sented by a dashed line. (a) Single-electron tunneling from tip to
substrate [rate ΓeðωÞ] with subsequent relaxation from the Shiba
state to the quasiparticle continuum (rate Γ1). (b) Andreev process
transferring a Cooper pair to the substrate by electron and hole
tunneling [with rates ΓeðωÞ and ΓhðωÞ, respectively]. The
processes in (a) and (b) both contribute near the threshold
eV ¼ Δþ ϵ0. (c) Single-electron tunneling from substrate to
tip [with rate ΓeðωÞ] after occupation of the Shiba state by the
relaxation of a thermal quasiparticle (with rate Γ2), contributing
to the thermal peak at eV ¼ −ðΔ − ϵ0Þ. The current at the other
two thresholds eV ¼ −ðΔþ ϵ0Þ and eV ¼ Δ − ϵ0 is carried by
analogous hole processes (see the Supplemental Material [28]).

FIG. 1 (color online). dI=dV spectra measured on an isolated
Mn adatom on Pb(111) for increasing tunneling strength from top
to bottom (recorded with a lock-in modulation amplitude of
15 μVrms at a frequency of 912 Hz). Spectra are normalized to
the “normal-state” conductance measured at 4 meV (i.e., well
outside the superconducting gap) in units of G0 ¼ 2e2=h, offset
for clarity and scaled when indicated for better visibility. The
distance to the closest neighboring Mn atom was larger than
5 nm. A spectrum acquired above the clean Pb(111) surface
overlays the smallest-conductance trace (top curve) for compari-
son. The four peaks originating from the deepest Shiba level are
marked by dashed lines at ejVj ¼ �ðΔ� ϵ0Þ.

PRL 115, 087001 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

21 AUGUST 2015

087001-2

94



Theoretical analysis.—It is often assumed [1] that the
peak heights at positive and negative biases measure the
electron and hole components u and v of the Shiba wave
function. The observed inversion of peak heights implies
that this cannot hold, in general. To gain further insight, we
calculate the subgap current theoretically by a standard
Keldysh calculation [36–38] (see the Supplemental
Material for details [28]). Here, we focus on the physics
underlying the results. Our calculation includes single-
electron and Andreev processes involving the Shiba state as
well as phenomenological rates Γ1 and Γ2 for relaxation
processes between the Shiba state and the quasiparticle
continuum. We neglect the nonresonant Andreev reflec-
tions at the superconducting tip (and thus multiple Andreev
reflections [39]), which is justified except in the regime of
very strong tunneling. With this approximation, the tunnel-
ing current becomes a sum of single-particle and Andreev
currents, I ¼ Is þ Ia, with

Is¼e
Z

dω
2πℏ

�
Γ1½ΓenFðω−Þ−ΓhnFðωþÞ�

ðω−ϵ0Þ2þðΓ=2Þ2

−
Γ2fΓe½1−nFðω−Þ�−Γh½1−nFðωþÞ�g

ðω−ϵ0Þ2þðΓ=2Þ2
�
; ð1Þ

Ia ¼ 2e
Z

dω
2πℏ

ΓhΓe½nFðω−Þ − nFðωþÞ�
ðω − ϵ0Þ2 þ ðΓ=2Þ2 : ð2Þ

Here, the Fermi functions nF are evaluated at ω� ¼ ω�
eV and Γ ¼ Γe þ Γh þ Γ1 þ Γ2.
The expressions for Is and Ia can be understood in terms

of the basic processes discussed above. The Andreev
current Ia involves tunneling of an electron, described
by ΓeðωÞ ¼ 2πu2ρðω − eVÞt2, and a hole, described by
ΓhðωÞ ¼ 2πv2ρðωþ eVÞt2. Here, t is the amplitude for
tunneling between tip and substrate. The rates Γe and Γh are

strongly ω dependent through the tip’s BCS density of
states ρðωÞ. The denominator in Eq. (2) reflects the
intermediate virtual occupation of the Shiba state. It
includes the rates Γ1 for depopulating the Shiba state by
excitation to the continuum and Γ2 for occupying the
Shiba state by a thermally excited quasiparticle. The latter
processes are assumed to be ω independent. The four
contributions to the single-particle current Is directly
correspond to the peaks αþ [term ∝ Γ1Γe; see Fig. 2(a)],
α− (term ∝ Γ1Γh), β− [term ∝ Γ2Γe; see Fig. 2(c)], and βþ
(term ∝ Γ2Γh).
Equations (1) and (2) provide the following basic picture

consistent with the data in Fig. 3(a): At weak tunneling, the
relaxation rates Γ1 and Γ2 are faster than the tip-substrate
tunneling. Once an electron tunnels into the Shiba state
from the tip, it is rapidly excited to the quasiparticle
continuum. In this regime, the tunnel current is dominated
by the single-electron current Is which is proportional to t2,
and thus to the normal-state conductance. The Andreev
current Ia is a small correction scaling as t4. This explains
the wide linear regime in Fig. 3(a). At stronger tunneling,
the tunneling rates become comparable to and eventually
larger than the relaxation rates Γ1 and Γ2. Here, the t
dependence of the broadening Γ leads to a sublinear or
even a decreasing dependence of the peak heights on the
normal-state conductance. As the relaxation processes are
thermally activated, the crossover point between the linear
and the sublinear regime is strongly temperature dependent,
moving to lower normal-state conductances for lower
temperatures. This is consistent with a comparison between
the two panels of Fig. 3(a).
Linear regime.—This picture is substantiated by quanti-

tatively analyzing the linear regime. At weak tunneling,
the broadening is dominated by quasiparticle relaxation,
Γ≃ Γ1 (for Γ1 ≫ Γ2, i.e., ϵ0 ≫ T). Then, Eq. (1)
yields

FIG. 3 (color online). (a) Peak heights α� and β� of the four resonances associated with the deepest Shiba level (marked by dashed
lines in Fig. 1) as a function of normal-state conductance at T ¼ 1.2 K (left panel) and T ¼ 4.8 K (right panel). The full (dashed) lines
are fits to Eqs. (1) and (2) for the main (thermal) peaks. The crossover points between single-electron and Andreev contributions to α�
are indicated by arrows. (b) Experimental dI=dV traces of the Shiba peak near eV ¼ −ðΔþ ϵ0Þ≃ −1.57 meV at different junction
conductances (solid lines). The spectra are normalized to the peak maximum. The dashed lines are theoretical fits of the Shiba peaks
excluding multiple Andreev reflections.
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αþ ∼
2e2

h
γe

ffiffiffiffi
Δ

p

ðΓ1Þ3=2
; β− ¼ αþ

Γ2

Γ1

ð3Þ

for the peak heights [28]. Here, we introduced the
normal-state electron (hole) tunneling rate γe ¼ 2πt2ν0u2

(γh ¼ 2πt2ν0v2), where ν0 is the normal-state density of
states of the tip. The expressions for α− and βþ simply
differ by the substitution u↔v (or γe↔γh). Thus, in this
regime, the peak height is indeed a measure of the Shiba
wave function at the tip position. From the data in Fig. 3(a),
we extract αþ=α− ¼ ðu=vÞ2 ≈ 0.13.
All four peaks are related by the relation αþβþ ¼ α−β−.

This is readily checked against the data in Fig. 3(a) and
indeed, we find that this identity is well satisfied in the
linear regime [28]. Moreover, the thermal and main peaks
in Eq. (3) differ only by a ratio of relaxation rates,
αþ=β− ¼ Γ1=Γ2 ¼ expðϵ0=TÞ. Here, the last equality fol-
lows from detailed balance. This is in excellent agreement
for the data at T ¼ 4.8 K. At T ¼ 1.2 K, we extract a
slightly higher temperature of T ¼ 1.6 K from the ratio of
peak heights. Still, these considerations point to a relax-
ation process involving thermal activation rather than the
quasiparticle bath suggested in Ref. [18].
Regime of strong tunneling.—At stronger tunneling, the

broadening is dominated by tunneling, Γ≃ Γe þ Γh.
Because of this broadening, the single-particle conductance
reaches a maximum and eventually decreases with tunnel-
ing strength. As a result, the thermal peaks β� should
exhibit a maximum vs normal-state conductance. The
situation is different for the main peaks α� with their
additional Andreev contribution, which keeps increasing
and eventually dominates the peak magnitude. Sufficiently
far into this regime, Eqs. (1) and (2) yield

αþ ∼ ð2e2=hÞ½γh
ffiffiffiffiffiffiffiffiffiffi
Δ=ϵ0

p
=ðγe

ffiffiffiffi
Δ

p
Þ2=3�; ð4Þ

β− ∼ ð2e2=hÞ½Γ2=ðγe
ffiffiffiffi
Δ

p
Þ2=3�; ð5Þ

as well as α− and βþ, which differ again by u↔v. The main
peaks α� keep increasing with tunneling γe;h, albeit with a
sublinear dependence. The strong voltage dependence
of the tunneling-induced broadening leads to a change in
the line shape at strong tunneling. Indeed, we observe a
vanishing of the negative differential conductance dip [see
Fig. 3(b)] signaling the transition to the strong-tunneling
regime [28].
Unlike for normal-metal tips [18,28], the Andreev

contribution to the main peaks α� is asymmetric for a
superconducting tip, but with the asymmetry reversed
relative to single-electron tunneling. While we have
αþ=α− ¼ ðu=vÞ2 in the linear regime, Eq. (4) predicts
αþ=α− ¼ ðv=uÞ10=3 in the Andreev-dominated regime.
Indeed, an inversion of the peak heights α� is seen in
Fig. 3(a), as pointed out above.

Equation (5) predicts that the thermal peaks also invert,
from β−=βþ ¼ ðu=vÞ2 in the linear regime to β−=βþ ¼
ðv=uÞ4=3 in the sublinear regime. This inversion is con-
sistent with the data in Fig. 3(a). In addition, theory predicts
that the thermal peaks will assume a maximum as a
function of normal-state conductance. We observe such a
maximum only for βþ. For β−, the peak is expected to occur
only at rather large normal-state conductance where our
approximations of neglecting multiple Andreev reflections
and a peak width smaller than ϵ0 break down.
To further substantiate our analysis, we have used

Eqs. (1) and (2) to fit all four peaks α� and β� over the
entire range of tunneling strengths; see Fig. 3(a) in the
Supplemental Material [28]. There is excellent agreement
between theory and experiment. We attribute the deviations
for β− at large normal-state conductance to additional
contributions from multiple Andreev reflections. We can
also extract the normal-state conductance at which the
Andreev and single-particle contributions to the main
peaks become comparable; see the arrows in Fig. 3(a).
(Note that this is distinct from the crossover between
linear and sublinear dependence.) For αþ, this happens
when 2Γhð2ϵ0Þ ∼ Γ1, and for α−, when 2Γeð2ϵ0Þ ∼ Γ1. As
v2 > u2, the Andreev contribution sets in considerably
earlier for αþ than for α−.
Relaxation rates.—At T ¼ 4.8 K, the relaxation rate can

be extracted directly from the peak width, yielding
Γ1 ≃ 6 ps. In contrast, the linewidth is resolution limited
at T ¼ 1.2 K, masking the broadening due to quasiparticle
relaxation. We can still extract the relaxation rate by relying
on the current. In the sublinear regime, the thermal peak βþ
contributes a current I ∼ eΓ2=ℏ [28]. Moreover, Eq. (3)
predicts Γ1 ¼ ðαþ=β−ÞΓ2 in the linear regime. Thus, we
can extract both relaxation rates directly from the exper-
imental data. This yields (to about a factor of 2) ℏ=Γ1 ≃
0.2 ns and ℏ=Γ2 ≃ 0.6 ns.
For magnetic impurities binding a single Shiba state,

relaxation relies on quasiparticle excitation to the con-
tinuum. This yields a ratio of relaxation rates at the two
experimental temperatures of order ∼104. We can account
for the apparent discrepancy with our observations by
including the second Shiba state at energy ϵ1≃
0.77 meV. Then, relaxation can occur via the formation
of Cooper pairs from quasiparticles in the first two Shiba
states. This process is limited by the thermal occupation of
the second Shiba state and thus involves a much smaller
activation energy. Such processes are allowed even for
Shiba states with equal spin due to the strong spin-orbit
coupling of Pb. An analysis in terms of rate equations is
quantitatively consistent with our observations [28].
Conclusions.—We show that STM experiments on sub-

gap states in superconductors probe both single-electron
and Andreev tunneling. We emphasize that such experi-
ments are particularly fruitful when performed with super-
conducting tips. In this case, thermal smearing can be
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neglected and the temperature dependence of the current
arises entirely from activated quasiparticle relaxation proc-
esses. Moreover, the additional thermal peaks facilitate the
analysis and provide access to the relaxation rates. We find
that at weak tip-substrate tunneling, the current is domi-
nated by single-electron tunneling and is linear in the
normal-state conductance. This regime can be used to map
out the bound-state wave function. At stronger tip-substrate
tunneling, the dependence on the normal-state conductance
becomes sublinear. While the dependence on the Shiba
wave function becomes more involved, this regime pro-
vides access to pertinent quasiparticle relaxation rates
involving the subgap states. Specifically, we can extract
the rates for quasiparticle relaxation into and out of the
bound state. The present experiment was restricted to two
different temperatures. To further probe the microscopic
nature of the relaxation processes, it would be rewarding to
perform more systematic experiments as a function of
temperature.
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Tunneling processes into localized subgap states in superconductors
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I. EXPERIMENTAL DETAILS

A. Topography of Mn adatoms on Pb(111)

The Pb(111) surface was cleaned by Ne+ sputtering, followed by annealing to T = 430 K. This yields an atomically
clean surface with terraces of several nm width, which are separated by mono-atomic steps [see Fig. S1(a)]. Residual
Ne atoms from sputtering form nonmagnetic nano-cavities below the surface, which appear as hexagonal protrusions
or depletions of different sizes in topography [1]. They do not show any signatures of subgap resonances.

Manganese atoms were deposited on the clean Pb(111) sample inside the STM at a temperature below 10 K. All
Mn adatoms have the same apparent height after the evaporation. By contacting the adatom with the tip at a bias
of 5 mV, we can induce a change in the adsorption configuration. The resulting species has a larger apparent height
[Fig. S1(b) and (c)]. The manipulation is reversible: contact formation at a bias of −180 mV results in the initial
apparent height. After back-manipulation the adatom is shifted laterally with respect to the initial position [see
line-profiles in Fig. S1(c)]. Thus, the manipulation controllably changes the adsorption site of the adatom. We took
care that the absolute tip height did not change during the manipulation to rule out a change of the tip apex.

Both configurations show distinct dI/dV spectra [Fig. S1(d)]. The initial adsorption site has been investigated by
Ji et al. [2], showing multiple Shiba states. Our spectra on this configuration show the same characteristic features
when considering an improved energy resolution [Fig. S1(d,i)]. In the main manuscript we focus on the manipulated
species (ii), because it is stable upon tip approach at low bias. It thus allows the investigation of dI/dV spectra over
a large conductance range. We focus on adatoms with a next nearest neighbor distance larger than 5 nm, where we
exclude coupling between Shiba states.
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Figure S1: (a) Topography of three terraces of the Pb(111) surface with an evaporated Mn density of ≈ 30 adatoms per
100 × 100 nm2. Mn adatoms are marked by black circles. The dark depletions of different sizes are nonmagnetic sub-surface
inclusions of Neon, that originate from the sample cleaning process. Setpoint: 50 mV, 200 pA. (b) Topography of a single Mn
adatom in its two different adsorption states. (c) Line profiles across the atom for all adsorption states. The lateral shift of
the adatom after the back-manipulation (orange, dotted) is due to jumping into a neighboring adsorption site equivalent to the
initial one. (d) dI/dV spectra show multiple Shiba states for both configurations. Setpoint: 5 mV, 200 pA. Lock-in modulation:
15µVrms at 912 Hz.
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B. dI/dV spectra on a Mn adatom at 4.8 K

In Fig. S2 we show three examples of dI/dV spectra at the higher temperature of 4.8 K at different tip–sample
distances, i.e., different tunneling strengths. At this temperature, only two Shiba states are well resolved due to the
increased width of the resonances. An additional zero-energy resonance is observed due to tunneling of thermally
excited quasiparticles in tip and sample [process (ii), as described in the main text]. The peak heights α+, α−, β+,
and β− as shown in the right panel of Fig. 3(a) were extracted from these spectra. Notice that the relative intensities
of α± change with increasing tunneling strength. However, unlike at 1.2 K, we do not observe a full inversion of peak
heights due to the larger relaxation rate.
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Figure S2: dI/dV spectra acquired on a Mn adatom at 4.8 K (912 Hz, 35µVrms). Spectra are normalized to the normal-state
conductance (indicated in the graph). The figure includes assignments of the peaks to the main peaks (α±) and the thermal
peaks (β±).

C. Experiments with a normal-metal tip at 1.2 K

In the main manuscript, we focus on experiments with a superconducting tip. For completeness, we include spectra
and corresponding peak-height vs. conductance curves acquired with a normal-metal tip at 1.2 K (Fig. S3). Due to
thermal broadening of the tip’s Fermi edge (≈ 360µV), the energy resolution is drastically decreased compared to
measurements with superconducting tips and only one pair of Shiba resonances is resolved in Fig. S3(a). From a set
of such spectra, we extract the peak heights α± [Fig. S3(b)]. In agreement with Ref. [3], we observe an asymmetry in
the weak coupling regime, which reduces when approaching the Andreev regime and reaches (almost) equal intensity
for the strongest coupling accessible in the experiment.
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Figure S3: (a) Two dI/dV spectra acquired on a Mn adatom at 1.2 K with a normal-metal tip (912 Hz, 80µVrms). Spectra are
normalized to the normal-state conductance, as indicated in the graph. (b) Peak heights α+ and α− of the Shiba level as a
function of normal state conductance at T = 1.2 K, measured with a normal-metal tip.

II. THEORETICAL DETAILS

Here, we derive the expressions for the tunneling current between a superconducting tip and a superconducting
sample with magnetic impurity, as given in Eqs. (1) and (2) of the main text. We apply the nonequilibrium Green
function method used in [4].

A. Green-function expression for the current

The system is described by the Hamiltonian Ĥ = ĤL + ĤR + ĤT , where the three parts describe the tip, the
substrate, and the tunnel coupling. The superconducting tip is described by the BCS Hamiltonian

ĤL =

ˆ
dk

(2π)3

[∑
σ

ξk ĉ
†
L,kσ ĉL,kσ + (∆ĉ†L,k↑ĉ

†
L,−k↓ + h.c.)

]
, (S1)

where ξk = k2/2m − µ, µ is the chemical potential, ∆ is the superconducting gap, and cL,kσ (c†L,kσ) annihilates
(creates) an electron in the tip with momentum k and spin σ. The Hamiltonian of the substrate contains a magnetic
impurity, located at the origin, with spin S pointing along the z direction. The impurity couples to the substrate via
a potential V δ(r) and exchange coupling JSσzδ(r), where σz is a Pauli matrix in spin space. The Hamiltonian takes
the form

ĤR =

ˆ
dk

(2π)3

[∑
σ

ξk ĉ
†
R,kσ ĉR,kσ + (∆ĉ†R,k↑ĉ

†
R,−k↓ + h.c.)

]
+
∑
σ

(V − JSσ)ĉ†R,σ ĉR,σ, (S2)

where the operator ĉR,σ =
´
dkĉR,kσ/(2π)3 annihilates an electron with spin σ at the origin. One can always choose

a gauge such that the superconducting order parameters in tip and substrate are real. The superconducting phase
difference φ(τ) then enters the tunneling Hamiltonian

ĤT (τ) =
∑
σ

[
teiφ(τ)/2ĉ†Lσ(τ)ĉRσ(τ) + te−iφ(τ)/2ĉ†Rσ(τ)ĉLσ(τ)

]
, (S3)

where τ is the time argument, t the hopping strength, and we have made the time dependence of cL/R,σ and c†L/R,σ
explicit. In writing the tunneling Hamiltonian, we have assumed that the substrate is contacted at the impurity
location. The time-dependent phase difference between the tip and the sample, φ(τ) = φ0 + 2eV τ , depends on the
voltage V applied to the junction.
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The current operator can be obtained from the Heisenberg equation of motion Î = −e ˙̂
NL = ie[N̂L, ĤT ], where N̂L

is the electron-number operator of the tip. We obtain

Î(τ) = ie
∑
σ

[
teiφ(τ)/2ĉ†Lσ(τ)ĉRσ(τ)− te−iφ(τ)/2ĉ†Rσ(τ)ĉLσ(τ)

]
. (S4)

Taking the expectation value yields

I(τ) = eTr
{
τz
[
t̂(τ)G<RL(τ, τ)−G<LR(τ, τ)t̂∗(τ)

]}
, (S5)

where τz is a Pauli matrix acting in Nambu space. In the last expression, we introduced the lesser Green function in
Nambu space

G<ij(τ1, τ2) = i

(
〈c†j↑(τ2)ci↑(τ1)〉 〈cj↓(τ2)ci↑(τ1)〉
〈c†j↑(τ2)c†i↓(τ1)〉 〈cj↓(τ2)c†i↓(τ1)〉

)

with i, j = L,R and the hopping matrix

t̂(τ) =

(
teiφ(τ)/2 0

0 −te−iφ(τ)/2

)
. (S6)

The time dependence only enters the phase difference and thus the current is a periodic function of time τ with period
2π/eV . We can expand the current in a Fourier series in terms of the frequency ω0 = eV

I(τ) =
∑
m

Ime
imω0τ . (S7)

The nonequilibrium Green functions depend on two time arguments and have a generalized Fourier expansion

G(τ1, τ2) =
1

2π

∑
m

ˆ
dω e−iωτ1ei(ω+mω0)τ2G(ω, ω + nω0). (S8)

We adopt the notation Gnm(ω) = G(ω + nω0, ω + mω0) for which the relation Gnm(ω) = Gn−m,0(ω + mω0) holds.
The hopping matrix and its conjugate are given by

t̂(τ) = t̂e01e
iω0τ + t̂h10e

−iω0τ =

(
t 0
0 0

)
eiω0τ +

(
0 0
0 −t

)
e−iω0τ , (S9)

t̂∗(τ) = t̂h01e
iω0τ + t̂e10e

−iω0τ =

(
0 0
0 −t

)
eiω0τ +

(
t 0
0 0

)
e−iω0τ , (S10)

with t̂
e/h
nm = t̂

e/h
n−m,0. Here, we focus on the dc current which is given by the zeroth order in the Fourier expansion,

I0 =
e

h

ˆ
dω Tr

[
σ̂z
(
t̂e01G

<
RL,10 + t̂h0,−1G

<
RL,−1,0 −G

<
LR,01t̂

e
10 −GLR,0,−1t̂

h
−1,0

)]
(S11)

=
e

h

ˆ
dω
[
tG<,eeRL,10 + tG<,hhRL,−1,0 − tG

<,ee
LR,01 − tG

<,hh
LR,0,−1

]
, (S12)

where the superscripts ee and hh denote the two diagonal matrix elements in Nambu space. We do not include the
nonresonant Andreev reflections at the superconducting tip and thus neglect multiple Andreev reflection processes,
i.e., gehL = gheL = 0, where gL denotes the bare Green function of the tip in the absence of the tunnel coupling.
Importantly, we retain Andreev reflections at the substrate as they may be resonantly enhanced due to the presence
of Shiba bound states. We can now write the Green functions GLR appearing in Eq. (S12) in terms of gL and the
sample Green functions GR, which includes tunneling only through the self energy of the Shiba state. Using the
Langreth rule [5]

G<RL = GrRt̂
∗g<L +G<R t̂

∗gaL, (S13)

G<LR = grLt̂G
<
R + g<L t̂G

a
R, (S14)
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we obtain

G<,eeRL,10 ' G
r,ee
R,11t̂

e
10g

<ee
L,00 +G<,eeR,11t̂

e
10g

a,ee
L,00, (S15)

G<,hhRL,−1,0 ' G
r,hh
R,−1,−1t̂

h
−1,0g

<,hh
L,00 +G<,hhR,−1,−1t̂

h
−1,0g

a,hh
L,00 , (S16)

G<,eeLR,01 ' g
r,ee
L,00t̂

e
01G

<,ee
R,11 + ĝ<,eeL,00 t̂

e
01G

a,ee
R,11, (S17)

G<,hhLR,0,−1 ' g
r,hh
L,00t̂

h
0,−1G

<,hh
R,−1,−1 + g<,hhL,00 t̂

h
0,−1G

a,hh
R,−1,−1. (S18)

Writing G(ω + neV ) = Gnn(ω), and gL = geeL = ghhL , we obtain for the current

I =
e

h
t2
ˆ
dω
{

[Gr,eeR (ω+)−Ga,eeR (ω+)] g<L (ω) +G<,eeR (ω+) [gaL(ω)− grL(ω)]

−
[
Gr,hhR (ω−)−Ga,hhR (ω−)

]
g<L (ω)−G<,hhR (ω−) [gaL(ω)− grL(ω)]

}
, (S19)

where we used the short-hand notation ω± = ω ± eV . By using the relation G< −G> = Ga −Gr, we arrive at

I =
e

h
t2
ˆ
dω
{
G>eeR (ω)g<L (ω−)−G<eeR (ω)g>L (ω−)

}
− e

h
t2
ˆ
dω
{
G>hhR (ω)g<L (ω+)−G<hhR (ω)g>L (ω+)

}
. (S20)

B. Shiba-bound-state Green function

To determine the Green function GR of the substrate, we first calculate the bare Green function gR neglecting the
tunnel coupling to the tip. Without the magnetic impurity, the Green function of a BCS superconductor in Nambu
space evaluated at the origin is

gR0(ω) = − πν0√
∆2 − ω2

(
ω ∆
∆ ω

)
. (S21)

We can include the coupling to the impurity spin in Eq. (S2) by means of the Dyson equation g−1
R = g−1

R0 +JS−V τz,
and obtain

gR(ω) =
πν0

√
∆2 − ω2

(ω + α
√

∆2 − ω2)2 −∆2 − β2(∆2 − ω2)

(
ω + (α+ β)

√
∆2 − ω2 ∆

∆ ω + (α− β)
√

∆2 − ω2

)
=

πν0

2ωα− (1− α2 + β2)
√

∆2 − ω2

(
ω + (α+ β)

√
∆2 − ω2 ∆

∆ ω + (α− β)
√

∆2 − ω2

)
, (S22)

where we introduced the dimensionless parameters α = πν0JS > 0 and β = πν0V . The subgap states with |ω| < ∆
correspond to the poles of the Green function. In particular, in our model the Shiba state energy is given by the pole
of gR,

ε0 = ∆
1− α2 + β2√

(1− α2 + β2)2 + 4α2
. (S23)

To calculate the tunneling into the Shiba state, we only need gR(ω) with ω close to ε0. In this limit, we set ω = ε0 +δω
and expand the denominator in Eq. (S22) to linear order in δω,

2ωα− (1− α2 + β2)
√

∆2 − ω2 ' 2(ε0 + δω)α− (1− α2 + β2)
√

∆2 − ε20
(

1− 2ε0δω

∆2 − ε20

)1/2

= δω

(
2α+

(1− α2 + β2)ε0√
∆2 − ε20

)

= δω
(1− α2 + β2)2 + 4α2

2α
. (S24)
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The numerator can be evaluated at ω = ε0, which leads to

ω + (α± β)
√

∆2 − ω2 ' ∆
1 + (α± β)2√

(1− α2 + β2)2 + 4α2
. (S25)

Thus the Green function has the approximate form

gR(ω) =
1

ω − ε0

(
u2 uv
uv v2

)
(S26)

with

u2, v2 =
2απν0∆

(
1 + (α± β)2

)
((1− α2 + β2)2 + 4α2)

3/2
. (S27)

Here, u and v are the electron and hole components of the Shiba state (corresponding to the upper and lower sign,
respectively). Note that in general u 6= v when potential scattering by the impurity is included.

C. Self energy due to relaxation processes

Phonon or photon induced relaxation processes introduce a self energy Σph into the substrate Green function

G = g + gΣphg + gΣphgΣphg + . . . (S28)

Approximating the bare substrate Green function g by the contribution of the Shiba state,

g(ω) = |ψS〉
1

ω − ε0
〈ψS | (S29)

with

〈r|ψS〉 =

(
u(r)
v(r)

)
, (S30)

we find

G(ω) = |ψS〉
1

ω − ε0 − 〈ψS |Σph(ω)|ψS〉
〈ψS |. (S31)

We approximate the self energy by its value at ω = ε0 and retain only the imaginary part,

Γph = 2Im〈ψS |Σph(ε0)|ψS〉. (S32)

Thus, the retarded and advanced Green functions of the Shiba state read

gr,aR (ω) =
1

ω − ε0 ± iΓph(ε0)/2

(
u2 uv
uv v2

)
. (S33)

Here we have again restricted attention to the Green function at the position of the impurity.
In quasi-equilibrium, the greater and lesser Green function can be expressed in terms of the retarded and advanced

Green functions,

g<R(ω) = f(ω)(gaR(ω)− grR(ω)) =
Σ<ph(ε0)

(ω − ε0)2 + (Γph(ε0))/2)
2

(
u2 uv
uv v2

)
, (S34)

g>R(ω) = −(1− f(ω))(gaR − grR) =
Σ>ph(ε0)

(ω − ε0)2 + (Γph(ε0)/2)
2

(
u2 uv
uv v2

)
, (S35)

where f(ω) is the quasi-equilibrium distribution function and we used the relations

− iΣ<ph = Γphf , iΣ>ph = Γph(1− f) . (S36)

We introduce Γ1 = iΣ>ph(ε0) and Γ2 = −iΣ<ph(ε0) which can be interpreted as the rates with which the Shiba level is
emptied or occupied. Note that Γph = Γ1 + Γ2.
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D. Self energy due to tip-substrate tunneling

We now include the tunnel coupling of the Shiba state to the tip. For simplicity, we assume that the tip position is
identical with the impurity position. Then, the self energy due to the tunneling is local at the position of the impurity,
and we can suppress spatial arguments in the following. The tunneling gives rise to the self energy

ΣrR = t̂h01g
r
L,11t̂

h
10 + t̂e0−1g

r
L,−1,−1t̂

e
−10 = t2

(
grL(ω−) 0

0 grL(ω+)

)
, (S37)

where we neglect Andreev reflections in the tip as discussed in the main text. Similar relations hold for the self
energies Σa,<,>R . The retarded and advanced Green functions of the Shiba level coupled to the tip can be obtained
from the Dyson equation

Gr,aR =
1

1− gr,aR Σr,aR
gr,aR =

1

ω − ε0 ± iΓ/2

(
u2 uv
uv v2

)
, (S38)

where the imaginary part of the self energy leads to a broadening Γ = Γe(ω) + Γh(ω) + Γ1 + Γ2 with

Γe(ω) = 2πt2u2ρ(ω−), (S39)

Γh(ω) = 2πt2v2ρ(ω+) (S40)

in terms of the BCS density of states

ρ(ω) = ν0
|ω| θ(|ω| −∆)√

ω2 −∆2
(S41)

with ν0 the normal density of states at the Fermi energy. In Eq. (S38) we have neglected the real part of the self
energy which would lead to a shift of the resonance energy ∝ t2. The lesser Green function of the Shiba state is given
by [5]

G<R = g<R + grRΣrRG
<
R + grRΣ<RG

a
R + g<RΣaRG

a
R (S42)

=
1

1− grRΣrR
[g<R(1 + ΣaRG

a
R) + grRΣ<RG

a
R] . (S43)

A straightforward calculation using the relations g<L (ω) = 2πiρ(ω)nF (ω) and g>L (ω) = −2πiρ(ω)(1− nF (ω)) reveals

G<R = i
Γ2 + Γe(ω)nF (ω−) + Γh(ω)nF (ω+)

(ω − ε0)2 + (Γ1 + Γ2 + Γe(ω) + Γh(ω))2/4

(
u2 uv
uv v2

)
. (S44)

Along the same lines we find

G>R = −iΓ1 + Γe(ω)(1− nF (ω−)) + Γh(ω)(1− nF (ω+))

(ω − ε0)2 + (Γ1 + Γ2 + Γe(ω) + Γh(ω))2/4

(
u2 uv
uv v2

)
. (S45)

E. Expressions for the tunneling current

We can now evaluate the current in Eq. (S20) which yields I = Is + Ia, where

Is(V ) =
e

h

ˆ
dω

Γ1[Γe(ω)nF (ω−)− Γh(ω)nF (ω+)]− Γ2[Γe(ω)(1− nF (ω−))− Γh(ω)(1− nF (ω+))]

(ω − ε0)2 + (Γ(ω)/2)
2 , (S46)

Ia(V ) =
2e

h

ˆ
dω

Γe(ω)Γh(ω)

(ω − ε0)2 + (Γ(ω)/2)
2 [nF (ω−)− nF (ω+)] . (S47)

The current Ia originates from resonant Andreev reflection, whereas Is describes single-particle tunneling and subse-
quent relaxation of quasiparticles in the Shiba state. These two equations are given in the main text as Eqs. (1) and
(2).
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F. Relaxation processes

The intrinsic linewidth of the Shiba level is determined by the rates Γ1 for emptying and Γ2 for filling a Shiba state.
These enter as phenomenological parameters in our theory, which may originate from various microscopic mechanisms.
In Ref. [3] the authors considered elastic processes due to a coupling to a fermionic bath as a source of quasiparticle
relaxation. Another possible relaxation mechanism involves transitions between the Shiba state and the quasiparticle
continuum assisted by phonons or photons. This results in a thermal distribution of the Shiba state f = nF (ε0) in
the absence of a tunnel coupling, where f = Γ2/(Γ1 + Γ2) [see Eq. (S36)]. Thus for purely thermal relaxation we
generally find

Γ1

Γ2
= eε0/T . (S48)

The most basic relaxation process involves direct transitions between the Shiba state and the quasiparticle continuum.
Such processes were studied in Ref. [6] where it was shown that the relaxation rates are given by

Γ1 ∼
√
T

∆
e−(∆−ε0)/T

[
(∆− ε0) + (∆ + ε0)e−ε0/T

]
, (S49)

Γ2 ∼
√
T

∆
e−∆/T

[
(∆− ε0) + (∆ + ε0)e−ε0/T

]
. (S50)

The relaxation rate Γ1 for leaving the Shiba state has a thermal factor exp[−(∆−ε0)/T ] involving the required phonon
energy of the transition to the continuum ∆− ε0, whereas Γ2 is limited by the thermal occupation exp(−∆/T ) of the
excited quasiparticles in the continuum. The ratio of the two rates indeed yields Eq. (S48). In the presence of multiple
subgap states, more intricate relaxation dynamics are possible, e.g., pairs of quasiparticles from subgap states may
inelastically relax to form a Cooper pair.

In Sec. III we present theoretical results for the conductance based on Eqs. (S46) and (S47) with phenomenological
relaxation rates Γ1/2. We then turn to a more detailed analysis of the relevant relaxation processes in the experiment
in Sec. IV B.

III. CALCULATION OF CURRENT AND DIFFERENTIAL CONDUCTANCE AT THE THRESHOLDS

In this section, we provide details of the calculations underlying Eqs. (3–5) for the peak conductances in the main
text. We also calculate the currents at these bias voltages which were used in the main text to extract relaxation
rates. At the end of this section we illustrate these results by numerically calculating the current and the differential
conductance as a function of tunneling strength. We organize the calculation by threshold voltages.

A. eV = ∆ + ε0

At this threshold, there are two contributing processes to the current, namely single-electron tunneling into the
Shiba state as well as resonant Andreev processes: I∆+ε0 = Is∆+ε0

+ Ia∆+ε0
. We find

I∆+ε0 =

{
2e
~ (2Γh + Γ1)

ω3/2
e

Γ
3/2
1

ωe � Γ1

e
3~ (2Γh + Γ1) ωe � Γ1

(S51)

for the peak current and

α+ =

 4πe2

h
2Γh+Γ1

Γ1

ω3/2
e

Γ
3/2
1

ωe � Γ1

4πe2

9h
2Γh+Γ1

ωe
ωe � Γ1

(S52)

for the peak conductance. We will now derive these results, first treating the single-electron processes and subsequently
analyzing the Andreev process. The quantities entering into these expressions will be defined as the calculation
proceeds.
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1. Single-electron tunneling

The relevant single-electron process is shown in Fig. 2(a) in the main text. Analytically, this process contributes
the term

Is∆+ε0(V ) = e

ˆ
dω

2π~
Γ1Γe(ω)nF (ω − eV )

(ω − ε0)2 + (Γ/2)2
(S53)

to the current. Here, the subscript denotes the threshold and the superscript the single-particle (as opposed to
Andreev) nature of the contributions. The integration variable ω denotes the energy of the tunneling electron as
measured from the Fermi energy of the substrate superconductor. In Eq. (S53) and throughout this section we
focus on contributions to the current which originate from the vicinity of the BCS singularity. Unlike the differential
conductance, the full current at the main thresholds e|V | = ∆ + ε0 also includes the contributions from terms ∝ Γ2

in Eq. (S46), which are responsible for the thermal peaks. The quantitative comparison with experiment in Sec. IV A
includes all contributions to the current.

At the threshold eV = ∆ + ε0, the coupling Γe(ω) becomes singular exactly at the Shiba energy ω = ε0 because of
the diverging BCS density of states ρ(ω − eV ) [cf. Fig. 2(a)]. The dominant contribution to the current comes from
the vicinity of the singularity at ω = eV −∆ ∼ ε0 and we can approximate

Γe(ω) = 2πu2t2ρ(ω − eV ) ' γe

√
∆

2

θ(eV −∆− ω)√
eV −∆− ω

(S54)

in terms of the normal-state tunneling rate γe = 2πu2ν0t
2. In the region of interest the thermal occupation of the

tip is nF (ω − eV ) ' 1. Note that this insensitivity to thermal smearing is a consequence of the superconducting tip.
(Of course, the current is still sensitive to temperature which enters into the relaxation rates Γ1 and Γ2.) This also
implies that the bias voltage enters into the current only via the BCS density of states which is quite distinct from
the case of a normal-state tip.

With these ingredients, we can now compute the current in the vicinity of the threshold,

Is∆+ε0(V ) ' eγeΓ1

√
∆

2

ˆ
dω

2π~
1

(ω − ε0)2 +

(
Γ1

2 +
γe
√

∆/2

2
√
eV−∆−ω

)2

θ(eV −∆− ω)√
eV −∆− ω

. (S55)

Here, we used that Γ1 � Γ2 for ε0 � T and Γh � Γe. The latter will be justified below. Note that it is however
important to keep both Γ1 and Γe.

We simplify notation by measuring voltages from the threshold,

eV ′ = eV − (∆ + ε0), (S56)

and introducing the characteristic energy

ωe =

(
1

2
γe

√
∆

2

)2/3

. (S57)

Then, we have

Is∆+ε0(V ′) ' 2eω3/2
e Γ1

ˆ ∞
0

dω

2π~
1√
ω

1

(ω − eV ′)2 +
(

Γ1

2 + ω
3/2
e√
ω

)2 (S58)

and

Gs∆+ε0(V ′) ' 4e2ω3/2
e Γ1

ˆ ∞
0

dω

2π~
1√
ω

ω − eV ′[
(ω − eV ′)2 +

(
Γ1

2 + ω
3/2
e√
ω

)2
]2 (S59)

for the corresponding conductance G = dI/dV . The conductance involves an integral over the tip density of states

∼ 1/
√
ω multiplied by the function Z(ω) = (ω − eV ′)/[(ω − eV ′)2 + (Γ1/2 + ω

3/2
e /
√
ω)2]2. We emphasize that Z(ω)
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ωe
ω

Z(ω)

Figure S4: Characteristic function Z(ω) defined in the text at the threshold (eV ′ = 0) and for Γ1 = 0. This function determines
the conductance via Eq. (S59). It is zero at the Shiba state (ω = 0) and peaks at ωe.

is not the spectral function of the Shiba state as it would be for a normal metal tip. This special feature of the
superconducting tip arises because the voltage dependence enters through the tip density of states rather than the
occupation numbers. As shown in Fig. S4 Z(ω) vanishes at the Shiba state (now at ω = 0) because of the divergent
broadening induced by the superconducting tip and also vanishes far from the Shiba energy. In between, it peaks at
a scale set by the maximum of the effective tunneling strength ωe and the thermal relaxation rate Γ1 (in Fig. S4 we
have set Γ1 = 0 in which case the peak is at ωe).

We can now also discuss the hole tunneling rate Γh(ω) with an associated energy scale ωh = (γh
√

∆)2/3/2 in terms
of the normal state hole tunneling rate γh = 2πv2ν0t

2. In principle, hole tunneling introduces another term into the
broadening of Z(ω). The broadening then becomes

Γ1

2
+
ω

3/2
e√
ω

+
ω

3/2
h√

ω + 2ε0
. (S60)

We can neglect the last term (i.e., the hole contribution to the width of Z(ω)) as long as max{Γ1, ωe} �
√
ω3
h/ε0.

In principle, one may imagine situations in which v � u so that Γh(ω) contributes significantly to the broadening in
the strong tunneling regime. As this case is probably irrelevant for this experiment we exclude it from our analytical
considerations. We discuss implications of a broadening due to Γh(ω) in the presentation of the numerical results at
the end of this section.

We focus attention on the peak current and peak conductance. The peak occurs approximately at the threshold
bias eV = ∆+ε0 and we restrict our analytical considerations to the threshold, setting eV ′ = 0 in the following. While
this makes our analysis more transparent it also introduces a small numerical error. We emphasize that our results
exhibit the correct parametric dependence and the quantitative analysis in Sec. IV A is based on the numerically exact
peak heights. The peak position and height relative to the threshold are discussed in detail in Sec. III F.

Evaluated at the threshold, the integral for Is∆+ε0
contains the two energy scales Γ1 and ωe. For weak tip-substrate

tunneling, ωe � Γ1, we can neglect the contribution of Γe to the broadening of Z(ω). In this limit, we find

Is∆+ε0 ' 2eω3/2
e Γ1

ˆ ∞
0

dω

2π~
1√
ω

1

ω2 + Γ2
1/4

=
2
√

2e

π~
ω

3/2
e

(Γ1)1/2

ˆ ∞
0

dx√
x

1

x2 + 1
. (S61)

The integral is elementary and we obtain the result

Is∆+ε0 '
2e

~
ω

3/2
e

(Γ1)1/2
. (S62)
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The peak conductance in the regime ωe � Γ1 can be calculated along the same lines,

Gs∆+ε0 '
4e2

h
ω3/2
e Γ1

ˆ ∞
0

dω

√
ω

[ω2 + Γ2
1/4]

2

=
16
√

2e2

h

ω
3/2
e

(Γ1)3/2

ˆ ∞
0

dx

√
x

[x2 + 1]2

=
4πe2

h

ω
3/2
e

(Γ1)3/2
, (S63)

where the x-integration is again elementary.
In the opposite limit of strong tip-substrate tunneling, ωe � Γ1, we can neglect the contribution of Γ1 to the

broadening of Z(ω). In this limit, we find

Is∆+ε0 ' 2eω3/2
e Γ1

ˆ ∞
0

dω

2π~
1√
ω

1

ω2 + ω3
e/ω

=
e

π~
Γ1

ˆ ∞
0

dx√
x

1

x2 + 1/x
. (S64)

Performing the integral yields

Is∆+ε0 '
eΓ1

3~
. (S65)

The peak conductance in the regime ωe � Γ1 can be calculated along the same lines,

Gs∆+ε0 '
4e2

h
ω3/2
e Γ1

ˆ ∞
0

dω

√
ω

[ω2 + ω3
e/ω]

2

=
4e2

h

Γ1

ωe

ˆ ∞
0

dx

√
x

[x2 + 1/x]2

=
4πe2

9h

Γ1

ωe
. (S66)

2. Andreev contribution

The Andreev current is given by

Ia∆+ε0(V ) = 2e

ˆ
dω

2π~
Γe(ω)Γh(ω)[nF (ω − eV )− nF (ω + eV )]

(ω − ε0)2 + (Γ/2)2
. (S67)

The Fermi functions can be approximated by nF (ω− eV ) ' 1 and nF (ω+ eV ) ' 0, since ω ∼ ε0 and eV ∼ ∆ + ε and
with ωe � ε0 we can approximate Γh(ω) by a constant. In the case ε0 � ∆ it simply reads

Γh(ω) ' Γh =

√
2ω3

h

ε0
. (S68)

With these approximations, the integrals become equal to those for the single-particle contribution, with the replace-
ment Γ1 → Γh in the numerator and an overall prefactor of two. Note that we can still ignore Γh in the broadening
of Z(ω) under the assumptions spelled out above. This yields the result summarized in Eqs. (S51) and (S52) above.

B. eV = −(∆ + ε0)

At threshold the current is again the sum of single-electron and Andreev processes. The relevant single-electron
process is shown in Fig. S5. Analytically, this process contributes the term

Is−∆−ε0(V ) = −e
ˆ

dω

2π~
Γ1Γh(ω)nF (ω + eV )

(ω − ε0)2 + (Γ/2)2
(S69)
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(b)

Γ2

Γh

(a)

Γ1

Γh

Figure S5: Single-particle tunneling processes at (a) eV = −(∆+ε0) and (b) eV = ∆−ε0. At the threshold in (a), an additional
Andreev process contributes to the current (cf. Fig. 2(b) of the main text).

to the current. Up to overall signs, this differs from the corresponding process near eV = ∆ + ε0 discussed above by
exchanging the roles of Γe(ω) and Γh(ω). The same exchange characterizes the Andreev contribution. Thus, in effect,
we can obtain the results for this threshold by interchanging u↔ v in the expressions for eV = ∆ + ε0. This yields

I−∆−ε0 =

{
2e
~ (2Γh + Γ1)

ω
3/2
h

Γ
3/2
1

ωh � Γ1

e
3~ (2Γh + Γ1) ωh � Γ1

(S70)

for the peak current and

α− =

 4πe2

h
2Γh+Γ1

Γ1

ω
3/2
h

Γ
3/2
1

ωh � Γ1

4πe2

9h
2Γh+Γ1

ωh
ωh � Γ1

(S71)

for the peak conductance.

C. eV = −(∆ − ε0)

At this thermal threshold, only single-electron processes contribute which are shown in Fig. 2(c) in the main text.
Analytically, this process is described by

Is−∆+ε0(V ) = −e
ˆ

dω

2π~
Γ2Γe(ω)[1− nF (ω − eV )]

(ω − ε0)2 + (Γ/2)2
. (S72)

Noting that

1− nF (ω − eV ) ' 1 = 1− nF (e|V |+ ω) ' 1, (S73)

we see that this differs from the expression for the single-electron current at the threshold eV = ∆ + ε0 merely by a
factor Γ2/Γ1. Thus, we obtain

I−∆+ε0 =

{
2e
~ Γ2

ω3/2
e

Γ
3/2
1

ωe � Γ1

e
3~Γ2 ωe � Γ1

(S74)

for the peak current and

β− =

 4πe2

h
Γ2

Γ1

ω3/2
e

Γ
3/2
1

ωe � Γ1

4πe2

9h
Γ2

ωe
ωe � Γ1

(S75)

for the peak conductance.
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Figure S6: (a) Differential conductance and (b) current at the threshold eV = ∆ + ε vs. normal state conductance. The curves
are obtained numerically from Eqs. (1) and (2) of the main text. The single-particle (red) and Andreev (orange) contributions
have maxima at distinct values of normal state dI/dV which separate three regimes with dominating relaxation mechanisms

Γ1, ωe, and (ω3
h/ε0)1/2. While analytical expressions for the asymptotes (dashed lines) in the first two regimes are given by

Eqs. (S51) and (S52), a similar analysis also yields expressions in regime (iii). The parameters are chosen such that all three
regimes are visible. We have set Γ1 = 10−10, Γ2 = 0, u2/ν0 = 0.001, v2/ν0 = 1, and ε0 = 0.3, where all energies are measured
in units of ∆.

D. eV = ∆ − ε0

This thermal threshold is dominated by the contribution shown in Fig. S5 and given by

Is∆−ε0(V ) = e

ˆ
dω

2π~
Γ2Γh(ω)[1− nF (ω + eV )]

(ω − ε0)2 + (Γ/2)2
. (S76)

This differs from the thermal threshold at eV = −∆ + ε0 by the replacement of Γe(ω) by Γh(ω). Thus, we obtain the
current at this threshold by the replacement u↔ v. This yields

I∆−ε0 =

{
2e
~ Γ2

ω
3/2
h

Γ
3/2
1

ωth � Γ1

e
3~Γ2 ωh � Γ1

(S77)

for the peak current and

β+ =

 4πe2

h
Γ2

Γ1

ω
3/2
h

Γ
3/2
1

ωh � Γ1

4πe2

9h
Γ2

ωh
ωh � Γ1

(S78)

for the peak conductance.

E. Discussion and numerical results

In Fig. S6(a) we plot the differential conductance from the single-particle and Andreev currents at the threshold
eV = ∆+ε0 according to Eqs. (S46) and (S47) together with the analytical expression in Eq. (S52). We identify three
regimes as a function of the normal state conductance GN ∼ (2e2/h)t2ν2

0 which exhibit characteristic power-laws as a
function of tunneling strength. These regimes can be associated with different dominant broadening mechanisms (from
weak to strong tunneling): (i) intrinsic relaxation Γ1, (ii) electron tunneling ωe, and (iii) hole tunneling (ω3

h/ε0)1/2.
The crossover between regimes (i) and (ii) occurs at a normal state conductance G1

N , which can be evaluated from
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the condition Γ1 ∼ ωe. Equivalently the second crossover point G2
N is obtained from ωe ∼ (ω3

h/ε0)1/2 and we find

G1
N ∼

2e2

h

ν0∆

u2

(
Γ1

∆

)3/2

, (S79)

G2
N ∼

2e2

h

u4ν0∆

v6

(ε0
∆

)3/2

. (S80)

Figure S6(a) shows that the full differential conductance peak α+ = dIs/dV + dIa/dV consists of the sum of
two terms that peak at different tunneling strengths and thus typically exhibits two peaks as a function of normal
state conductance. At the first crossover point the single-particle contribution dIs/dV reaches a maximum of order
2e2/h. This is readily understood from the single-particle current in Eq. (S46), which can be viewed as a resonant
tunneling process through the Shiba state with rates Γe(ω) and Γ1 as depicted in Fig. 2(a) of the main text. When
the effective electron tunneling rate ωe is equal to Γ1 the conductance reaches a universal value of the order of the
conductance quantum. For stronger couplings the conductance decreases and the single-particle current shown in
Fig. S6(b) saturates to a value determined by the relaxation rate. Indeed, Eq. (S51) yields a current Is = eΓ1/3~
independent of tunneling strength in this regime. At even stronger coupling the Andreev current Ia exceeds the
single-particle contribution and thus the total current, Is + Ia, exhibits a shoulder as a function of tunnel coupling.
We remind the reader that the current at the main thresholds would have additional contributions from the terms
∝ Γ2Γe/h(ω) in Eq. (S46), which we have excluded from our analytical considerations. We evaluate the full current
for the quantitative comparison between theory of experiment in Sec. IV A.

We can estimate the normal state conductance G∗N at which the Andreev current becomes the dominant contribution
to the current at the threshold eV = ∆ + ε0 from Γ1 ∼ Γh. We obtain

G∗N ∼
2e2

h

ν0∆

v2

√
ε0Γ2

1

∆3
. (S81)

In Fig. 3(a) of the main text we indicate G∗N for the positive and negative main peaks by arrows using the parameters
given in Sec. IV A.

At the crossover between regimes (ii) and (iii) the effective electron and hole tunneling rates are equal and the
Andreev contribution to the conductance becomes resonant and reaches a maximum of order 2e2/h. In regime (iii)
both contributions to the differential conductance decrease with tunneling strength. This peculiar feature arises
because of the strong energy dependence of the density of states in the superconducting tip and this regime has
a sizable extension only when u2 and v2 differ by several orders of magnitude. In the experiment this regime is
presumably limited to very strong tunneling, GN > 0.1(2e2/h), where our approach ceases to be valid as the peak
width becomes of the order of ε0. Furthermore the extension of this regime is too narrow to observe a decreasing peak
height.

The thermal peak β− originates entirely from single-particle tunneling and its peak height simply follows the single-
particle contribution to α+ up to a prefactor Γ2/Γ1 in regimes (i) and (ii). The remaining peaks α− and β+ have
the same qualitative behavior as α+ and β− although with different regime boundaries, which are obtained from
Eqs. (S79) and (S80) by interchanging u↔ v. The peak heights of all four peaks are shown in Fig. S8(a) as a function
of normal state conductance.

F. Lineshape of the Shiba resonance

In this section we analyze how the lineshape of the Shiba conductance peak is affected by the tunneling strength
with important implications for fitting experimental dI/dV traces. In the linear regime the current is dominated by
the single-particle contribution in Eq. (S53) and can be approximated near eV = ∆ + ε0 by a convolution of the BCS
density of states and a Lorentzian of width Γ1

Islin(V ) = 2πeu2t2
ˆ

dω

2π~
ρ(ω − eV )

Γ1

(ω − ε0)2 + Γ2
1/4

. (S82)

This expression has been used previously [2, 7] to fit experimentally measured Shiba resonances. The intrinsic
Lorentzian lineshape can be obtained by numerical deconvolution of the data with the BCS density of states of the
tip.
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Figure S7: Lineshape of the differential conductance given by Eq. (S59) as a function of bias voltage near the main Shiba
resonance at positive bias. The lineshapes differ qualitatively between the linear (Γ1 � ωe, orange) and sublinear regimes
(Γ1 � ωe, black).

In the sublinear regime, where the broadening of the Shiba resonance is determined by the tunnel coupling Γe to
the tip, the current reads

Isublin(V ) = 2πeu2t2
ˆ

dω

2π~
ρ(ω − eV )

Γ1 + 2Γh(ω)

(ω − ε0)2 + [πu2t2ρ(ω − eV )]2
. (S83)

The tip density of states now also enters the width of the resonance, and this expression does not have the form
of a convolution. Note that single-particle and Andreev currents give rise to almost identical lineshapes as Γh(ω)
only weakly depends on energy. The lineshape of the Shiba resonance changes qualitatively from linear to sublinear
regime as shown in Fig. S7, where we plot the voltage dependence of the differential conductance given by Eq. (S59).
Strikingly, the maximum can occur above or below the threshold eV = ∆ + ε0 depending on the tunneling strength.
This shift must be accounted for when determining the Shiba state energy by fitting experimental lineshapes. In
addition, a characteristic negative differential conductance dip occurs for Γ1 � ωe but is absent in the opposite
regime. The disappearance of this dip in the measured lineshape provides a further indication of the crossover
between weak and strong tunneling regimes.

Our analytical results in the previous subsections refer to the differential conductance exactly at the threshold
voltages e|V | = ∆ ± ε0. The shift of the maximum away from the threshold yields a somewhat larger peak height.
Given that the peak heights vary by orders of magnitude in the experiment this deviation of at most 35% only affects
details but is inessential to our central results. Note that we calculate the actual peak height and not the threshold
values in the quantitative comparison to the experimental data in Sec. IV A.

Figure 3(b) of the main text shows experimental lineshapes for different tunneling strengths. We indeed observe
a vanishing of the negative differential conductance dip as the tunneling strength is increased from the linear to the
sublinear regime. Along with the experimental data in Fig. 3(b) we also plot a theoretical fit based on Eqs. (S46) and
(S47). To correctly fit the lineshape at the lowest normal-state conductance [GN = 4.5× 10−5(2e2/h), orange curve]
we convoluted the theoretical dI/dV trace with a Gaussian to model broadening introduced by the measurement
setup (see also discussion in Sec. IV A). While there is overall good agreement between theory and experiment, the
expected shift of the peak position is not observed. To fit the black curve [GN = 0.125(2e2/h)] we have added a
voltage shift of 40µeV. Such a shift may have various origins such as a decreasing tip gap or a smoothening of the
tip’s BCS singularity with increasing tunneling current. From the experiment, we cannot exclude a decrease of the tip
gap by a few tens of µeV. Moreover, we consistently neglect Andreev reflections from the tip, which would introduce
additional broadening terms that vary with bias voltage and shift the peak maximum. Finally, the black curve in
Fig. 3(b) exhibits an additional Andreev peak with threshold eV = −∆ that overlaps with the bound state resonance
at eV = −(∆ + ε0). This peak was excluded in the fit (a correct description is beyond the scope of our theory) and
may shift the Shiba peak to smaller absolute voltages.
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Figure S8: (a) Differential conductance peaks at the thresholds vs. normal state conductance according to Eqs. (S46) and
(S47). We have used the parameters mentioned in Sec. IV A. (b) Plot of (α+β+)/(α−β−) vs. conductance as extracted from
Fig. 3(a) in the main manuscript. The ratio stays constant up to 10−3 G0, where the sub-linear regime sets in.

IV. THEORETICAL ANALYSIS OF THE EXPERIMENTAL DATA

Our analysis implies that the subgap transport provides insight into the population dynamics of the Shiba state, as
governed by the competition between tunneling and quasiparticle relaxation. We now fit the data against the results
of our model and extract the quasiparticle lifetime in the Shiba state due to thermal relaxation processes. Besides
demonstrating the validity of our description, this also yields valuable information about the dominant transport
mechanisms in experiment as a function of the tunnel coupling between tip and sample.

A. System parameters and theory fit

Here we provide details of the theoretical fits to the conductance and current at the Shiba peaks as a function of
normal state conductance, as shown in Fig. 3(a) of the main text and Fig. S9(a). Several physical parameters can be
extracted directly from the measured data without fitting. The Shiba energy can be determined from the location of
the Shiba peaks as a function of bias voltage. For instance, the separation between the two positive bias peaks α+

and β+ is 2ε0. The same holds for α− and β−. From the data we estimate ε0 ' 0.22 meV for the lowest Shiba level.
According to Eqs. (S52) and (S71) valid in the linear regime we furthermore obtain (u/v)2 = α+/α− ' 0.13. Using
Eq. (S78) in addition yields Γ1/Γ2 = α+/β− ' 4. Finally, we can accurately determine Γ2 = 0.9(3)µeV from the
saturation of single-particle processes as detailed in Sec. IV B. With this the dimensionless Nambu spinor component
u2/ν0∆ that describes the spectral weight of the Shiba state at the impurity site remains the only unknown parameter
in our model. Our results also predict the relation α+β+/α−β− = 1 in the linear regime, which we can use as an
additional check of the robustness of our theoretical description. According to the data shown in Fig. S8(b) this
relation is satisfied remarkably well over more than two decades of normal state conductance, throughout the linear
regime.

The theoretical conductance peak heights obtained numerically from Eqs. (S46) and (S47) are plotted in Fig. S8(a)
as a function of the normal state conductance

GN =
4π2ν2

0 t
2

1 + π2ν2
0 t

2
. (S84)

While several features of the theoretical curves qualitatively agree with the experimental data in Fig. 3(a) of the main
text there are also notable deviations. Most prominently, theory predicts a peak in α− at intermediate tunneling
strength absent in the experiment. We attribute this deviation to broadening introduced by the measurement setup,
e.g., due to radio frequency noise. Indeed, in the low coupling limit we find a peak width w ' 70µeV [see orange
curve in Fig. 3(b) of the main text] exceeding Γ1 by more than an order of magnitude. To account for the broadening
we convolute the theoretical dI/dV curves with a Gaussian of width w and plot the resulting peak heights in Fig. 3(a)
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Figure S9: (a) Measured current at 1.2 K at the two main Shiba peaks (eV = ±(∆ + ε0)), and the corresponding two thermal
peaks (eV = ±(∆ − ε0)). The lines show the theoretical curves using the parameters mentioned in the text. The parameters
are the same as for the fit of the differential conductance in Fig. 3(a) of the main text. (b) Measured current at 4.8 K.

of the main text. We find remarkable agreement with the experimental data over the entire range of normal state
conductance and determine u2/ν0∆ ' 0.23 from the fit. We associate deviations for β− at large normal state
conductances GN & 0.02(2e2/h) with a multiple Andreev reflection resonance involving the second Shiba state at
ε1 ' 0.77 meV. A resonance occurs at eV = −(∆ + ε1)/2 ' −1.06 meV and therefore overlaps with the thermal Shiba
peak at eV = −(∆− ε0) ' −1.13 meV [see black curve in Fig. 3(b) of the main text].

In Fig. S9(a), we plot the current measured at the position of the conductance peaks together with the theoretical
curves. These fits use the same parameters as for the conductance fits, including the extrinsic broadening. We again
find excellent agreement which corroborates that our model calculation correctly captures the essential tunneling
processes.

B. Quasiparticle lifetime and relaxation mechanism

1. Estimates of quasiparticle lifetimes in experiment

The quasiparticle (quasihole) lifetimes of the Shiba state are related to the inverse relaxation rates τ1/2 = ~/Γ1/2.
These rates could in principle be determined from the linewidth of the Shiba resonance at weak coupling (see Sec. III F).
However, the measured linewidth is actually resolution-limited, i.e., increased by an additional broadening from the
measurement setup (' 70µeV). At T = 1.2 K, the intrinsic linewidth is well below the resolution of the experiment
(see Sec. IV A). A more robust way to determine the lifetime relies on the strong-tunneling regime where the data
is unaffected by the energy resolution. As discussed in Sec. III E, the single-particle current saturates when Γ1 < ωe
assuming a value of Is = eΓ1/2/3~ at the main (thermal) thresholds. The current measured at the thermal threshold
eV = ∆ − ε0 shown in Fig. S9(a) indeed exhibits a plateau at strong tunneling. At eV = ∆ − ε0, we extract a
saturation current of 0.09 nA which yields relaxation rates Γ2 = 1.1µeV and Γ1 ' 4Γ2 = 4µeV. The corresponding
lifetimes τ1 ' 0.2 ns and τ2 ' 0.6 ns are quoted in the main text. The current I−(∆−ε0) at the other thermal threshold
does not saturate because of additional subgap features at strong tunneling discussed in Sec. IV A. The main source
of uncertainty of our results is the unknown shift between the peak position, where we measure the current, and the
threshold voltage, where the analytical relation between current and relaxation holds (see discussion in Sec. III F).
We estimate that our results are accurate to within a factor of two.

Alternatively, we can determine Γ1 from the current at the main threshold. Because of the additional Andreev
contribution, the current I−(∆+ε0) exhibits a shoulder instead of a plateau when the single-particle current saturates
[cf. Fig. S6(b)]. The current at the shoulder is 0.4 nA and thus Γ1 = 5µeV, in agreement with the above value. While
determining Γ1 from the shoulder at the main thresholds typically has a larger uncertainty, it is furthermore subject to
a systematic error due to extrinsic broadening introduced in the measurement as detailed in Sec. IV A. Note that the
shoulder is absent in I∆+ε0 because the Andreev current dominates already when the single-particle current saturates.
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Figure S10: (a) Phonon-assisted transitions for a system of two Shiba states. Direct transitions between the bound states
(with rates ΓA and Γ∗A) as well as exchanges of quasiparticle pairs with the condensate (ΓB and Γ∗B) are possible. We neglect
transitions to the quasiparticle continuum. (b) Decay of a quasiparticle excitation in the first Shiba state according to Eqs. (S85)
and (S86) with n0(0) = 1, n1(0) = nF (ε1), ΓA = ΓB = 1 at T = 4.8 K, and ΓA = 1.65, ΓB = 1.4 at T = 1.2 K. This choice
accounts for a larger required phonon energy at the lower temperature. The Shiba energies ε0/1 are given in the text. The plot
shows the nonequilibrium occupation number of the lower state δn0(t) = n0(t) − nF (ε0) normalized to its value at t = 0. The
dashed lines mark the initial decay ∼ exp(−Γpht) with Γph(T = 1.2 K) = 0.016 and Γph(T = 4.8 K) = 0.8.

This behavior is well captured by a quantitative comparison between theory and experiment in Fig. S9(a).
We finally turn to the physical mechanism underlying quasiparticle relaxation in the experiment (cf. Sec. II F). The

experimental data shows no signatures of a quasiparticle bath at subgap energies as the Pb sample exhibits a hard gap
away from the impurities. To assess the effect of inelastic transitions we also study transport at a higher temperature
of T = 4.8 K. While the qualitative temperature dependence of the relaxation rates Γ1/2 indicates thermal relaxation
as discussed in the main text, a more quantitative analysis is required to assess the relevance of particular relaxation
processes. At the higher temperature relaxation is strong enough that the single-particle current does not saturate in
the tunneling regime GN � 2e2/h as shown by the data in Fig. S9(b). To obtain an upper bound for the relaxation
time, we estimate the saturation current to be & 2 nA which yields τ2 . 30 ps. From the conductance peaks shown in
the right panel of Fig. 3(a) of the main text, we find α−/β+ = Γ1/Γ2 ' 1.6 in the linear regime and thus τ1 . 20 ps.

We can more accurately determine Γ1 + Γ2 from the peak width in the weak-coupling regime which we find to
be ' 0.16 meV and thus larger than the broadening induced by the measurement setup. Assuming this broadening
to be the same for both temperatures, we estimate Γ1 + Γ2 ' 0.2 meV [note that the unbroadened peak width is
0.7(Γ1 + Γ2)]. This yields Γ1 ' 120µeV which corresponds to τ1 ' 6 ps consistent with the upper bound estimated
from the current. Hence we find the ratio of relaxation rates at the two temperatures Γ1(4.8 K)/Γ1(1.2 K) ' 35.

2. Relaxation dynamics for multiple Shiba states

In Sec. II F, we have discussed relaxation based on quasiparticle transitions between Shiba state and quasiparticle
continuum. This is the dominant relaxation mechanism for superconductors with only one subgap state. Based on
the corresponding relaxation rate in Eq. (S49), however, we would expect a ratio Γ1(4.8 K)/Γ1(1.2 K) ' 104 (using
ε0 = 0.20 meV and ∆ = 1.21 meV at 4.8 K). This reflects the exponential suppression of thermal relaxation at
temperatures well below the activation energy ∆− ε0. The large discrepancy to the experimental value suggests the
presence of additional relaxation processes in this system.

Such additional relaxation processes are possible when taking the next Shiba state with energy ε1 = 0.77 meV
at T = 1.2 K (ε1 = 0.63 meV at T = 4.8 K) into account. Relaxation can then occur via inelastic transitions of
pairs of quasiparticles from the two Shiba states to the condensate, see process ΓB in Fig. S10(a). The strong spin-
orbit coupling in Pb enables the creation of Cooper pairs even when the Shiba states have equal spin. This process
dominates over transitions to the quasiparticle continuum at low temperatures as it only requires an activation energy
ε1 < ∆ − ε0. A rough estimate for the relaxation rates based on the thermal occupation of the second Shiba state
yields Γ1(4.8 K)/Γ1(1.2 K) ' 300, which is already much closer to the experimentally observed value.

To obtain a more accurate description of the relaxation dynamics, we analyze a minimal rate-equation model of two
Shiba states. Initially, we chose the lower state to be fully occupied (due to tunneling from the lead) and the higher
state to be in thermal equilibrium, i.e., n0(0) = 1 and n1(0) = nF (ε1). Taking into account direct transitions between
the two levels as well as transitions to the condensate with rates depicted in Fig. S10(a), we obtain the following
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nonlinear rate equations

dn0

dt
= −Γ∗An0(1− n1) + ΓA(1− n0)n1 + Γ∗B(1− n0)(1− n1)− ΓBn0n1, (S85)

dn1

dt
= Γ∗An0(1− n1)− ΓA(1− n0)n1 + Γ∗B(1− n0)(1− n1)− ΓBn0n1. (S86)

We assume the transition rates ΓA/B involving phonon emission to be quadratic in the required phonon energies ε0±ε1
(which vary weakly with T ) but otherwise temperature independent [8]. In contrast, the rates Γ∗A/B require absorption

of a phonon and are suppressed by thermal factors Γ∗A = ΓA exp[−(ε1− ε0)/T ] and Γ∗B = ΓB exp[−(ε1 + ε0)/T ]. These
relations ensure that the equilibrium occupation numbers of the two levels are given by the Fermi distribution nF (ε).

Figure S10(b) shows the occupation number for the lower Shiba state relative to its equilibrium value as a function
of time, as obtained from a numerical solution of the rate equations (S85) and (S86). At T = 4.8 K the nonequilibrium
occupation number can be well approximated by an exponential function ∼ exp(−Γpht), from which we can estimate
the relaxation rate Γph defined in Sec. II C. In contrast, at T = 1.2K the occupation number decays rapidly on short
time scales before turning to a somewhat slower decay at longer times. This nonexponential decay follows from the
nonlinearity of the coupled rate equations. The experimental estimate for the relaxation rate at T = 1.2 K is based on
the current relaxation in the strong tunneling regime, where the tunneling is faster than relaxation. In this limit, the
dynamics between two tunneling events is fully determined by the short-time decay. By fitting the occupation number
in Fig. S10(b) at short times with ∼ exp(−Γpht), we obtain an approximate measure of the effective relaxation rate
from which we determine Γ1 = Γph[1−nF (ε0)]. The fit in Fig. S10(b) yields Γ1(4.8 K)/Γ1(1.2 K) ' 33 in quantitative
agreement with the experimentally observed ratio. We have checked that the same result is obtained when transitions
to the condensate are suppressed by the need for spin-orbit interaction, ΓB < ΓA.
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We investigate the nature of Yu-Shiba-Rusinov (YSR) subgap states induced by single manganese (Mn)
atoms adsorbed on different surface orientations of superconducting lead (Pb). Depending on the
adsorption site, we detect a distinct number and characteristic patterns of YSR states around the
Mn atoms. We suggest that the YSR states inherit their properties from the Mn d levels, which are split by
the surrounding crystal field. The periodicity of the long-range YSR oscillations allows us to identify a
dominant coupling of the d states to the outer Fermi sheet of the two-band superconductor Pb.
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Local magnetic moments in metals induce potential and
exchange scattering of quasiparticles. When the metal enters
the superconducting state, this leads to the formation of
localized bound states within the superconducting gap,
referred to as Yu-Shiba-Rusinov (YSR) states [1–3].
In the simplest picture, the magnetic moment is viewed as
a classical impurity spin, which is exchange coupled to
itinerant electrons with an isotropic Fermi surface. Treating
the exchange coupling as local and isotropic, a single
particle-hole symmetric pair of YSR states is predicted
within the gap whose wave functions oscillate with a wave-
length λF (λF being the Fermiwavelength) [3–6]. Anisotropy
of the Fermi surface induces a scattering pattern reflecting
the symmetry of the host lattice, as discussed theoretically
and observed in recent experiments [7,8].
With sufficient resolution, experiments show not only

one, but several pairs of YSR resonances [9–11]. The origin
of multiple YSR resonances was assigned to scattering
channels with different angular momenta (l ¼ 0; 1; 2;…)
[9,12], or to the anisotropy splitting of the magnetic states
of the adsorbate [11,13]. The arguments were based solely
on the energetic alignment of the YSR states and not on the
spatial extension and patterns of the states, which would
allow one to establish a link with the orbital structure of the
magnetic impurity.
Here, we address the origin of multiple YSR states by

combining scanning tunneling microscopy and spectros-
copy (STM and STS) experiments, which are powerful
tools to map the energetic and spatial characteristics of
energy levels, with a theoretical analysis.
Our study is based on Mn adatoms placed on a Pb

substrate. The main advantage of this system is that the Mn
adatoms are expected to be in the Mnþþ configuration with
five d electrons. According to Hund’s rules, the Mn d shell
is in a 6S5=2 configuration and, hence, spherically sym-
metric. Thus, the ion cannot change the angular momentum
of the conduction electrons in an isotropic environment
and in the absence of spin-orbit coupling, which facilitates

comparison between experiment and theory. The s-wave
superconductor Pb is an experimentally well-studied sub-
strate due to its high critical temperature (Tc ¼ 7.2 K),
which can be readily prepared by standard ultrahigh
vacuum preparation techniques [9–11,14]. It also consti-
tutes an appealing substrate for topologically nontrivial
nanostructures [15–21]. Therefore, it would be rewarding
to develop a more systematic understanding of magnetic
adatom systems, reaching all the way from monomers and
dimers to chains or even two-dimensional arrays. Because
Pb possesses two disjunct Fermi surfaces, it is a two-band
superconductor with two distinct gaps [22], which can be
resolved in STM experiments [14]. Our study provides
evidence that the YSR states in this system are predomi-
nantly associated with one of the two bands.
The experiments were carried out in a SPECS JT-STM

under ultrahigh vacuum conditions at a temperature of
1.2 K. The Pb single crystals were cleaned by Neþ ion
sputtering (900 eV, 1.5 × 10−4 mbar, background pressure
<1.5 × 10−9mbar). Annealing to 430 K for 30 min results
in clean, flat, and superconducting terraces. Spectra of the
differential conductance dI=dV as a function of sample
bias V were acquired with a standard lock-in technique at a
frequency of 912 Hz. To achieve high energy resolution, we
cover etched W tips with Pb by deep indentations into the
clean Pb surface until superconductor-superconductor tun-
neling spectra are measured. The use of a superconducting
tip together with an elaborate grounding and rf-filtering
setup yields effective energy resolutions of ≈60 μeV at
1.2 K. Using superconducting tips involves a convolution
of the densities of states of tip and substrate, so that all
subgap states ϵ appear shifted by the superconducting
gap of the tip (Δtip) to an energy eV ¼ �ðϵþ ΔtipÞ [23].
Mn adatoms were evaporated onto the clean sample in the
STM at a temperature below 15 K, resulting in a density of
≃100 atoms per 100 × 100 nm2.
We first deposit Mn atoms on the Pb(001) surface. All Mn

adatoms adsorb in equivalent sites, which we call MnPbð001Þ.
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The adsorption site is stable against manipulation with the
tip. In topography, the adatoms display a fourfold shape
and a height of 0.15 Å at 5 mV [Fig. 1(a), inset]. Spectra on
top of the adatoms reveal three pairs of YSR resonances
inside the superconducting gap. The one with the largest
spectral intensity (labeled �β) is found at a bias voltage of
≃� 2.08 mV [Fig. 1(a)], complemented by two faint
resonances at ≃� 2.47 and ≃� 1.61 mV [Fig. 1(b)].
We label the latter resonances as �α, and �γ, respectively.
The spatial patterns of all three YSR states show

characteristic fourfold symmetries [Fig. 2(b)], with exten-
sions up to ≈1.6 nm. This is an order of magnitude larger
than the atomic radius. The resonances �β show intensity
mainly at the center of the impurity, with some weak
intensity along the h110i directions. Because of their large
intensity we observe a negative differential conductance
(NDC) [see Figs. 1(a) and 1(b)]. The maps at �α are
dominated at the center by this NDC because of the
energetic overlap of �β with �α; hence, the maps show
no spectral intensity here; they show no spectral intensity
here. The intensity is largest at a distance of≃0.9 nm away
from the center. The map at þγ resolves a clover leaf
pattern along the h100i directions, whereas we hardly
detect any signal for −γ.
The YSR patterns resemble the shape of d orbitals and

thus suggest a correlation of the YSR resonances and the
orbitals hosting an unpaired electron spin. This requires a
splitting of the d states of Mn due to the crystal field
imposed by the adsorption site. In a hollow site, the nearest
neighbors form a square pyramidal coordination symmetry,
which removes the degeneracy of the five d levels
[Figs. 2(c) and 2(d)]. According to simple arguments of
crystal field theory, the dx2−y2-orbital lies highest, followed
by the dz2 orbital, the degenerate dxz and dyz orbitals, and
the dxy orbital at the lowest energy. The energy separation

between dxz=yz and dxy depends on the ratio of in-plane
and out-of-plane bonding distances and the levels become
degenerate for an adsorption configuration with all dis-
tances being equal. Indeed, we find hints that resonance�γ
is composed of almost degenerate states, as it splits up upon
interaction with neighboring atoms (see Supplemental
Material [24]).
Simple models of YSR states rely on scattering of l ¼ 0

conduction electrons (for a notable exception, see
Ref. [27]). However, as emphasized by Schrieffer [28],
only l ¼ 2 conduction electrons are (potential and
exchange) scattered by Mnþþ impurities in an isotropic
metal, which is a consequence of their S-state nature.
Starting with the isotropic case, we can then account for
lattice and surface effects by the addition of anisotropic
crystal fields which (partially) remove the degeneracy
between the d levels and make the potential and exchange
coupling with the impurity orbital dependent [27] (as
follows from a standard Schrieffer-Wolff transformation
[28,29]). This structure is then inherited by the YSR states
(see Supplemental Material [24]). This picture suggests that
Mnþþ impurities actually induce five pairs of YSR states
whose degeneracies and spatial patterns reflect the crystal-
field-split d orbitals.
We now aim for an identification of the specific d

orbitals that give rise to the YSR resonances �α, �β, and
�γ. The fact that β is the most intense resonance indicates
that it has the largest wave function overlap with the tip

FIG. 1. (a),(b) dI=dV spectrum of a Mn adatom (black) and of
clean Pb(001) (orange). The inset shows a topography of the
adatom. Three subgap resonances�α,�β, and�γ are marked by
arrows. Set point: 300 pA, 5 mV; modulation: 15 μVrms.

−γ

+γ

−β

+β

−α

 +α

−
−

FIG. 2. (a) Topography of a Mn adatom on Pb(001). Set point:
50 mV (zoom: 5 mV), 150 pA. (b) dI=dV maps of the adatom
depicted in (a) at the energy of the subgap resonances �α, �β,
and �γ (feedback opened in each pixel at 5 mV and 150 pA;
modulation: 25 μVrms). The color scale of �β is stretched to
enhance low intensity features (inset shows�β with linear scale).
The center is ∼100 times more intense than the fourfold
symmetric lobes. (c) Schematic top view of the adsorption of
a Mn adatom in the (001) hollow site. (d) Corresponding crystal
field splitting of the d levels.
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[note the color scale in Fig. 2(b)]. Moreover, the main
intensity is spherically symmetric [inset of Fig. 2(b)].
Both arguments suggest that β originates from scattering
at the dz2 orbital, which is oriented along the surface
normal. We note that both resonance α and γ exhibit the
largest intensity along the h100i directions, i.e., towards the
nearest neighbors. Hence, an assignment solely based on
directions is not a priori possible. Instead, we rely on the
above mentioned observation of the degeneracy of �γ.
It includes the dxz;yz and dxy orbitals as scattering centers,
whereby the latter is oriented in plane and thus only
contributes weakly to tunneling. Then, resonance α is
induced by scattering from the dx2−y2 orbital.
In addition to the influence of the orbital symmetry, the

long-range scattering pattern obtains structure from the
anisotropy of the Fermi surface [7]. In case of Pb(001),
the projected Fermi surface obeys a C4 symmetry. Electron
(hole) propagation along the h110i directions appears
enhanced due to focusing perpendicular to the low-curvature
regions of the Fermi surface [14,30,31]. The anisotropy of
the Fermi surface thus amplifies theC4v angular dependence
of the d orbitals. This imprints a faint fourfold shape on the
YSR patterns. In the case of the dz2 orbital (�β) it is ∼100
times smaller than the spherically symmetric central part of
the resonance [compare Fig. 2(b) with insets].
In order to test the validity of our model, we carried out

similar experiments on Pb(111). This surface imposes a
different crystal field on the adsorbate so that we expect
different characteristic YSR energies and patterns.
Deposition of Mn on Pb(111) leads to a unique adsorption
site for all adatoms. In topography, they appear with a
height of ≈0.5 Å at 50 mV and a slightly oval shape along
one of the three h110i directions [see inset in Fig. 3(a)].

By approaching the STM tip on top of a Mn adatom at
V ¼ þ5 mV until contact formation, the atom is transferred
from the initial adsorption site to a site with a larger apparent
height (≈1.1 Å at 50 mV) and a fully symmetric appearance
in topography [10]. The initial adsorption configuration is
recovered by contact formation at V ¼ −180 mV, which
yields the original height and shape, with the oval shape
being oriented along one of the three h110i directions,
though not necessarily the initial one. We refer to the
two adsorption sites according to their apparent heights as
MndownPbð111Þ and MnupPbð111Þ, respectively.
Both adsorption sites show several YSR resonances

inside the superconducting energy gap at eV¼�ðϵþΔtipÞ
[Figs. 3(a) and 3(b)]. [In addition, we also observe reso-
nances at eV ¼ �ðΔtip − ϵÞwhich originate from thermally
activated tunneling into or out of YSR states [10] and are
restricted to small ϵ at 1.2 K.] The deconvolved density of
states is plotted in Figs. 3(c) and 3(d) [32]. Interestingly, we
observe different numbers of YSR resonances for the two
adsoption sites, in addition to shifts in energy. For MndownPbð111Þ
adatoms, we resolve five YSR resonances, independent of
the direction of the oval appearance. In contrast, MnupPbð111Þ
adatoms exhibit only three resonances.
The multiplicity of the YSR states is consistent with

certain adsorption sites. The threefold multiplicity of the
MnupPbð111Þ adsorption site agrees with a hollow site, which is

subject to a trigonal pyramidal crystal field. This induces a
d-level splitting with the dz2 orbital lying highest in energy,
followed by the degenerate dxy and dx2−y2 orbitals. Lowest
in energy are the degenerate dxz and dyz orbitals [Fig. 3(g)].
The fivefold multiplicity of the YSR resonances of
MndownPbð111Þ indicates the removal of all degeneracies of

+η

+ε+δ+γ+β+α

+ζ +θ

−

+γ

+ε

−ε
+δ−β −δ

−γ

+β +α−α

−θ

−η
−ζ +θ

+η

+ζ

FIG. 3. (a),(b) dI=dV spectra of the same Mn adatom on Pb(111) in the two adsorption sites as indicated in the figure. The shaded
areas mark the two BCS coherence peaks [14] and the normal state. The dashed lines indicate the tip gap (�1.38 mV). Set point:
100 pA, 5 mV; lock-in modulation: 15 μVrms. The insets show topographies of the adatom in the respective adsorption site
(2.6 × 2.6nm2). (c) Deconvolved sample density of states of MndownPbð111Þ exhibits five YSR resonances (�α;…;�ε). (d) Deconvolved

density of states of MnupPbð111Þ shows three YSR resonances (�ζ,�η,�θ). (e),(f) dI=dV maps of the YSR resonances in both adsorption

sites (feedback opened in each pixel at 5 mVand 400 pA; modulation: 20 μVrms). Crosses denote the same position in all maps. The dark
spot in the top right corner is a subsurface neon inclusion. The color scale is stretched to give the best contrast to spatially extended
features (for maps with linear color scale, see Supplemental Material [24]). (g) Crystal field splitting of the d levels for an adatom in a
hollow site.
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the d orbitals. This is the case when the atom is slightly
displaced from a hollow site, which is consistent with its
oval-shaped appearance.
Next, we investigate the spatial distribution of the YSR

resonances by dI=dV maps at the respective energies.
They are shown for positive bias voltages in Fig. 3(e) for
MndownPbð111Þ and in Fig. 3(f) for the same atom after manipu-

lation into the MnupPbð111Þ adsorption state. Maps at negative

bias voltages reveal similar patterns (see Supplemental
Material [24]). The maps do not reflect the typical fourfold
shape of the Mn d orbitals. The C3v symmetry of the ligand
field polarizes the d orbitals due to hybridization with the p
orbitals [33]. As a result, the characteristic d-orbital shapes
are deformed, resulting in an overall twofold symmetry as
reflected in the YSR maps. We may tentatively assign the
YSR states by arguments of wave function overlap with
the tip. Both �θ and �ζ show a large intensity signifying
an out-of-plane extension of the wave function. The
spherical symmetry of �θ at the impurity site suggests
that it originates from scattering at the dz2 orbital.
Resonances �ζ would thus correspond to the degenerate
dxz and dyz orbitals. The in-plane dx2−y2 and dxy orbitals
possess the smallest wave function overlap and hence the
lowest intensity at �η.
Another interesting feature is the large lateral extension

of several of the YSR states. Three (β,γ, ε) of the five states
of the MndownPbð111Þ adatoms and two (η, θ) of the three states of

MnupPbð111Þ persist up to 4 nm away from the adsorbate

[Figs. 3(e) and 3(f)]. The beamlike extension along the
h110i axes is due to the focusing of scattering electrons
from the flat parts of the Fermi surface. We identify
oscillating intensities within the beams. Indeed, an oscil-
lation with 2kF is expected for YSR states, because their
wave functions obey [3]

ψ�ðrÞ ∝ sinðkFrþ δ�Þ
kFr

exp

�
−j sin ðδþ − δ−Þj r

ξ

�
: ð1Þ

Here, kF is the Fermi wave vector, ξ is the coherence length,
and δ� are the scattering phase shifts of the YSR states at
positive and negative bias, respectively. The electron
density jψðrÞj2 thus decays as 1=r2. We have removed
this dependence by a fit to the decaying intensity of states
�θ and �η (for details see Supplemental Material [24]).
The result is plotted in Fig. 4 and highlights the oscillations.
We observe up to four periods with a periodicity of
≃5.8 Å, which should be compared to the Fermi wave-
length of the substrate. Pb possesses two disjunct Fermi
sheets [22]. One sheet is s-p-like and originates from the
second Brillouin zone, the other one is p-d-like and
originates from the third Brillouin zone. The peculiar band
structure gives rise to two superconducting energy gaps
[14,22], which we also observe in the dI=dV spectra. The
corresponding Fermi wavelengths along the h110i direction

are λF ¼ 7.8� 0.8 Å for the first, and λF ¼ 12.1� 0.5 Å
for the second band [34]. The observed periodicity agrees
with λF=2 of the second Fermi sheet. Hence, the YSR
resonances arise due to magnetic scattering with electrons
in the p-d-like band. This is a reasonable conjecture in
view of the more localized character of this band compared
to the more delocalized nature of the s-p-like band.
The oscillations of holelike and electronlike YSR

resonances are phase shifted in Fig. 4 with a larger shift
between resonances �θ compared to resonances �η.
This agrees with the dependence of the binding energies
of the YSR states on the phase shifts according to
ϵ ¼ Δ cosðδþ − δ−Þ. It implies that the closer states are
to the gap edge the smaller is the phase shift between the
positive and negative YSR component.
To summarize, we investigated YSR states of transition

metal adatoms on high symmetry surfaces of the BCS
superconductor Pb. The adsorption site imposes a distinct
crystal field splitting on the d orbitals. We could show
that the YSR states inherit the symmetry of the scattering
potential from the individual d orbitals of the adatom.
On the Pb(001) surface, spatially resolved conductance
maps allow us to identify the corresponding d orbitals.
The strong influence of the anisotropic Fermi surface
overwhelms this assignment on the Pb(111) surface.
The oscillatory patterns reveal the Fermi wavelength of
the p-d-like Fermi sheet to be responsible for the
scattering pattern. The long-range and directional nature
of the states are promising for the design of coupled
adatom structures.

+θ
−θ

−η
+η

FIG. 4. Lateral evolution of the spectral intensity at positive
(black) and negative bias (blue) of the two YSR resonances with
lowest binding energy for MnupPbð111Þ. Set point: 400 pA, 4 mV;
modulation: 20 μV. The blue curve is offset by þ1.5. The 1=r2

decay has been removed (for full data see Supplemental Material
[24]). The insets show the dI=dV maps at the corresponding
energies. The arrows mark the direction along which the intensity
is plotted. The z profile gives the apparent height along the
distance from the impurity center.
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Note added.—Recently, we became aware of related work
on Cr atoms on Pb(111) [35].
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Orbital Picture of Yu-Shiba-Rusinov Multiplets
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THEORETICAL BACKGROUND

The Manganese (Mn) adatoms are presumably in a 6S5/2 configuration. When placed in an isotropic environment,
this implies that the exchange interaction is with the l = 2 conduction electrons and conserves angular momentum
[1]. Lifting the degeneracy between the d-levels is the result of crystal-field splittings reflecting the anisotropy of the
host, and the resulting multiplicities are largely determined by symmetry considerations. The splittings as well as the
orbital dependence of the hybridization imply that the exchange and potential couplings between magnetic impurity
and conduction electrons become orbital dependent.

When the magnetic impurity is placed in an isotropic superconductor, one thus expects five pairs of degenerate YSR
states. Similar to the d-levels, the YSR states will split due to the symmetry reduction by crystal fields. One way
of thinking about this splitting is as a result of the modification of the d-level energies and hybridizations mentioned
above. Alternatively, we can first compute the Shiba states for a completely isotropic environment and then consider
their splitting resulting from the symmetry reduction. As the results are controlled by group theory, both approaches
give identical results as long as we do not attempt to compute specific values of energy levels. In the following, we
briefly sketch the second approach.

Yu-Shiba-Rusinov states

Let us consider a homogeneous s-wave superconductor whose Hamiltonian in real space can be written as

Hs =

∫
dr

{∑
σ

ψ†σ(r)

[
−∇2

2m
− µ

]
ψσ(r) + ∆∗ψ↑(r)ψ↓(r) + ∆ψ†↓(r)ψ†↑(r).

}
(S1)

Here ψσ(r) annihilates an electron with spin σ at position r, ∆ is the superconducting order parameter and µ is the
chemical potential. It is convenient to represent the electron field operators in the basis of spherical waves centered
at the position of the impurity atom, namely

ψσ(r) =
∑
klm

cklmσφklm(r), (S2)

where

φklm(r) = jl(kr)Y
m
l (r̂), m = −l,−l + 1, . . . l (S3)

with l ∈ N0, jl the spherical Bessel function of order l, and Y ml the spherical harmonics of degree l and order m.
Thus, we decompose the electrons in the superconductor into different angular-momentum channels,

Hs =
∑
klm

c†klmσcklmσξk + (−)m
[
∆cklm↑ckl−m↓ + ∆c†kl−m↓c

†
klm↑

]
(S4)

ξk =
k2

2m
− µ. (S5)

In the situation we are considering here, the impurity atom is Mn++, whose ground state is 6S5/2 with a half-filled
3d shell. It was shown [1, 2] that, to lowest order, only the l = 2 channel electrons get scattered due to the impurity.
Hence, in the following, we will only include the l = 2 conduction electrons in the Hamiltonian, and suppress this
index. The full Hamiltonian including the impurity becomes

H =

2∑
m=−2

{∑
kσ

c†kmσckmσξk + (−)m
∑
k

(
∆ckm↑ck−m↓ + ∆c†k−m↓c

†
km↑

)}
+
∑
σσ′

∑
kk′

(JS · σσσ′ + V δσσ′) c†kmσckmσ′ ,

(S6)
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where J and V are the strengths of the exchange the potential coupling between the impurity atom and the conduction
electrons. If we assume the impurity spin S to be aligned along z direction, the last term in the Hamiltonian can be
written as

JS(c†km↑ckm↑ − c
†
km↓ckm↓).

Introducing Nambu spinor Ckm = (ckm↑, c
†
k−m↓)

T , we have the Bogoliubov–de Gennes Hamiltonian

H =

2∑
m=−2

{∑
k

C†kmHsCkm +
∑
kk′

(JS + V τz)C
†
kmCk′m

}
(S7)

Hs = ξkτz + (−)m∆τx. (S8)

Here, τα denotes Pauli matrices in particle-hole space.
The Green function corresponding to the above Hamiltonian fulfills the Dyson equation

Gkk′m(E) = gkm(E)δkk′ + gkm(E) (JS + V τz)
∑
k1

Gk1k′m(E), (S9)

where gkm is the Green function of the homogeneous superconductor without the impurity,

gkm(E) = (E − ξkτz − (−)m∆τx)−1 =
E + ξkτz + (−)m∆τx

E2 − ξ2k −∆2
. (S10)

In particular, we have

∑
k

Gkk′m(E) = gk′m(E) +

[∑
k

gkm(E)

]
(JS + V τz)

[∑
k1

Gk1k′m(E)

]
, (S11)

which gives

Gkk′m(E) = gkm(E)δkk′ + (JS + V τz)gkm(E)

[
1−

∑
k

gkm(E)(JS + V τz)

]−1
gk′m(E). (S12)

One can identify the T matrix as

T (E) = (JS + V τz)

[
1−

∑
k

gkm(E) (JS + V τz)

]−1
. (S13)

Since ∑
k

gkm(E) '
∫
dξ ν0

E + (−)m∆τx
E2 − ξ2 −∆2

=
−πν0(E + (−)m∆τx)√

∆2 − E2
, (S14)

with ν0 a one-channel density of states at the Fermi level (∝ 1/(πvF )) for the conduction electrons, we find that

T (E) =
1

πν0

(α2 − β2)E + (α+ βτz)
√

∆2 − E2 + (−)m(α2 − β2)∆τx

(1− α2 + β2)
√

∆2 − E2 + 2αE
, (S15)

whose poles give the Shiba state energies1

Em = −∆
1− α2 + β2√

(1− α2 + β)2 + 4α2
, (S16)

where α = JSπν0 > 0, β = V πν0. This expression is the same as the one for the Shiba states induced by an exchange
potential of the form of a δ-function. The difference is that the Shiba states obtained here are fivefold degenerate.

1 J as defined here differs from the J in the real-space representation (for s-wave scatterers) Jψ†(0)σψ(0) · S by a normalization factor;
however, the value of the dimensionless quantity α remains unaffected.
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Table I. Character table for the irreducible representations for group C4v and reducible representation D+

E 2C4 C2 2σv 2σd linear, rotations quadratic

A1 1 1 1 1 1 z x2 + y2, z2

A2 1 1 1 −1 −1 Rz

B1 1 −1 1 1 −1 x2 − y2

B2 1 −1 1 −1 1 xy

E 2 0 −2 0 0 (x, y) (Rx, Ry) (xz, yz)

D+ 5 −1 1 1 1

Table II. Character table for the irreducible representations for group C3v and reducible representation D+

E 2C3 3σv linear, rotations quadratic

A1 1 1 1 z x2 + y2, z2

A2 1 1 −1 Rz

E 2 −1 0 (x, y) (Rx, Ry) (x2 − y2, xy) (xz, yz)

D+ 5 -1 1

Crystal field splitting

Above, the Shiba states were obtained from scattering electrons of an isotropic superconductor off an impurity
potential with a certain angular momentum component with l = 2. Thus, the Shiba states are 5-fold degenerate, and
their wave functions resemble the shape of d atomic orbitals. The degeneracy is (partially) removed by the crystal
field describing the local environment of the magnetic impurity. The nature of the splitting is essentially determined
by symmetry. We briefly summarize the standard results of group theory which govern these splittings for the surfaces
of interest in the main text.

The point group symmetries for the Pb(001) and Pb(111) surfaces are C4v and C3v with the corresponding character
tables in Tables I and II, respectively [3]. As long as the adsorption sites respect this symmetry, we can then read off
the generic multiplicities of the Shiba states. In our experiments, we find this to be the case for the Pb(001) surface as
well as the for Mnup

Pb(111) site on the Pb(111) surface. If the adsorption site further reduces the symmetry, the Shiba

states will split even further. In our experiments, we conclude that this is the case for the Mndown
Pb(111) adsorption site.

For the case that the absorption sites respect the symmetry of the surface, we thus find from the character tables:

• Pb(001):

D+ = A1 ⊕B1 ⊕B2 ⊕ E. (S17)

dxz and dyz orbitals are doubly degenerate, and dxy , dx2−y2 and dz2 are nondegenerate.

• Pb(111):

D+ = A1 ⊕ 2E. (S18)

dx2−y2 and dxy are degenerate. dxz and dyz are degenerate. dz2 is non degenerate.

EXPERIMENTAL DATA

dI/dV maps with full contrast and at negative bias voltages

In Fig. 3 of the main text we provided dI/dV maps at positive bias voltages for a Mn adatom in the Mndown
Pb(111)

and in the Mnup
Pb(111) adsorption site. The contrast of some of the maps was stretched to emphasize the long-range

patterns of the YSR states. For completeness, we provide the same maps with a linear color scale in Fig. S1 (+α
to +ε and +ζ to +θ). We provide also dI/dV maps of the YSR resonances at negative bias voltages, which show
patterns similar to those at positive voltages.
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Figure S1. dI/dV maps of a Mn adatom on Pb(111) in the two adsorption sites denoted by Mndown
Pb(111) (±α, ±β, ±γ, ±δ, ±ε)

and Mnup
Pb(111) (±ζ, ±η ±θ), respectively. The corresponding topographies are shown. × denotes the same position in all maps.

The dI/dV maps are recorded with the tip-sample distance adjusted in each pixel to a setpoint of 400 pA at 5 mV. Lock-in
modulation: 20 µVrms. The maps of +α to +ε and +ζ to +θ reproduce the same data as in Fig. 3 (e,f) of the main text, but
with a linear color scale. The maps of the negative energy resonances −α to −ε and −ζ to −θ are shown with a linear (top)
and with a stretched (bottom) color scale, respectively. Note that the dark spot in the top right corner of the imaged area is a
subsurface neon inclusion [4].

Further arguments for the orbital assignment
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Figure S2. dI/dV spectrum recorded at a pair of adatoms, which lie at close distance. Splitting of the states reveals three
resonances close to the original energy of ±γ (marked by arrows). Setpoint: 4 mV at 200 pA. Lock-in modulation: 15 µVrms.

In the main text we deduced the symmetry of the scattering potential from the spatial pattern of the YSR-states
observed in the dI/dV maps of a Mn adatom on Pb(001). We assigned the distinct states α, β and γ to originate
from scattering of the Mn adatom’s d-orbitals. The assignment of resonances ±β to dz2 was unambiguous because
the intensity is strongest at the center of the adatom and only weak into the 〈110〉 directions. Resonances α and γ
originate either from scattering at dx2−y2 and/or from the orbitals dxz,yz and dxy. An assignment from the spatial
shape of the YSR state alone is ambiguous. At higher coverage, we also observe pairs of adatoms at close distance.
The interaction leads to a splitting of the resonances ±γ into three pairs of resonances [see Fig. S2]. This requires ±γ
to actually consist of (at least) two resonances. Thus, we assigned ±γ resonances to scattering at the orbitals dxz,yz
and dxy, which are degenerate in the single atom. Resonances ±α then originate from scattering at dx2−y2 .

Lateral decay of dI/dV intensity

In the main text we showed the lateral decay of spectral intensity of YSR states along the 〈110〉 high-symmetry
directions in the vicinity of a Mnup

Pb(111) adatom. The curves were extracted from high-resolution dI/dV maps at the

energies of the YSR states. To emphasize the oscillatory intensity variations, we subtracted a background b(r), which
is derived from the 1/r dependence of the YSR wavefunction ψ(r) at distances r < ξ (ξ is the coherence length of the
superconductor):
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Figure S3. Lateral decay of the spectral intensity at positive (black) and negative bias (blue) of the two YSR resonances
with lowest binding energy for an adatom on Pb(111) in the Mnup

Pb(111) adsorption site. Setpoint: 400 pA, 4 mV. Lock-in

modulation: 20 µV. The blue curves in (c,d) are offset for clarity by 0.02. (a,b) show the full profiles as extracted from
high-resolution dI/dV maps along the 〈110〉 crystal directions. (c,d) show a zoom of the gray shaded areas in (a,b). Removal
of the strongly decaying background, which is shown as orange line, leads to Fig. 3 of the main text. The z profiles show the
apparent height as a function of distance from the impurity center.

b(r) =

∣∣∣∣y0 +
1

k |r − r0|

∣∣∣∣2 . (S19)

Here, k and y0 are independent fit parameters, and r0 is set to the center of the adatom. Figure S3 shows the full
datasets of the spectral intensity at positive and negative bias in (a,b). The region of interest is shaded with a gray
background, and displayed in (c,d). Subtracting the decay function (orange) leads to Fig. 3 of the main text.
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A recent experiment [Nadj-Perge et al., Science 346, 602 (2014)] provides evidence for Majorana zero
modes in iron (Fe) chains on the superconducting Pb(110) surface. Here, we study this system by scanning
tunneling microscopy using superconducting tips. This high-resolution technique resolves a rich subgap
structure, including zero-energy excitations in some chains. We compare the symmetry properties of the
data under voltage reversal against theoretical expectations and provide evidence that the putativeMajorana
signature overlaps with a previously unresolved low-energy resonance. Interpreting the data within a
Majorana framework suggests that the topological gap is smaller than previously extracted from
experiment. Aided by model calculations, we also analyze higher-energy features of the subgap spectrum
and their relation to high-bias peaks which we associate with the Fe d bands.
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Building on advances in nanofabrication [1], engineering
topological phases by proximity in superconducting hybrid
structures has come within reach of current experiments.
A major motivation for realizing such phases is their
non-Abelian Majorana quasiparticles [2–4], and their
subsequent applications. The underlying topological super-
conducting phases can be realized in one-dimensional (1D)
helical liquids contacted by conventional s-wave super-
conductors [5–9]. Among the most promising platforms
studied in experiments are semiconductor nanowires
[10–14], edges of two-dimensional topological insulators
[15,16], and chains of magnetic adatoms [17,18]. While the
proximity coupling to a superconductor is needed to induce
a gap protecting the topological phase, it also has more
subtle consequences. Magnetic interactions mediated by
the superconductor can stabilize magnetic order in the 1D
system [19–22]. Conversely, the spin structure may affect
the superconductor. This is particularly apparent for adatom
chains, where a band of subgap Shiba states [23–26] may
strongly modify the low-energy properties of the system
[8,27–31] and possibly induce trivial zero-energy features
at the chain end [32]. At strong coupling, the 1D states
bleed substantially into the superconductor, reducing the
effective coherence length at low energies [33].
Nadj-Perge et al. [17] recently provided intriguing

evidence for Majorana states in Fe chains on Pb(110).
Here, we present data on the same system employing
scanning tunneling microscopy (STM) and scanning tun-
neling spectroscopy (STS) with superconducting tips (see
also Ref. [17]). We show that the use of superconducting
tips not only provides enhanced resolution of the subgap
structure but also allows for additional consistency checks
on the interpretation of the data in terms of Majorana
quasiparticles. Our observations indicate that the subgap
spectrum comprises a flat Shiba band and strongly

dispersing Fe states. An interpretation in terms of
Majorana states suggests that the induced gap is smaller
than the value previously extracted from experiment.
We carried out the experiments in a SPECS JT-STM at a

temperature of 1.1 K. Cycles of sputtering and annealing of
a Pb(110) single crystal (Tc ¼ 7.2 K) resulted in an
atomically flat and clean surface. We employed Pb-covered
superconducting tips (see Ref. [34] for the preparation
procedure), which provide a resolution beyond the Fermi-
Dirac limit [35–37] (in our measurements: ≃70 μV). Fe
chains were prepared by e-beam evaporation from an iron
rod (99.99% purity) onto the clean surface at room temper-
ature, similar to Ref. [17]. Without further annealing, we
obtained chain lengths of up to ≃10 nm (measured
between the chain end and the intervening Fe cluster).
Single adatoms and dimers were prepared by e-beam
evaporation onto the cold sample in the STM (T < 10K)
with a density of ≈350 adatoms per 100 × 100 nm2.
The differential conductance dI=dV as a function of
sample bias was recorded using standard lock-in technique
at 912 Hz (subgap spectra: bias modulation Vmod ¼
15 μVrms, set point V ¼ 5 mV, I ¼ 250 pA; large-scale
spectra: Vmod ¼ 2 mVrms, V ¼ 2 V, I ¼ 850 pA).
STS with a superconducting tip measures a convolution

of the density of states of tip and sample as long as the
tunneling rate is slower than the quasiparticle relaxation of
the subgap states [38]. This is the case for all measurements
presented in this Letter. As the tunneling electrons leave
behind an unpaired electron in the tip, sample resonances
are shifted by �Δtip, the superconducting gap parameter of
the tip. The coherence peaks of the superconductor appear
at eV¼�ðΔtipþΔsampleÞ, while a subgap state of energy ε
yields a resonance peak at eV ¼ �ðΔtip þ εÞ. Accordingly,
zero-energy Majorana states are signaled by resonances at
eV ¼ �Δtip [17]. At finite temperatures, quasiparticles can
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be thermally excited to the unoccupied subgap states. These
excited quasiparticles contribute to tunneling and yield
additional, “thermal” resonances that appear at �ðΔtip − εÞ
[34,38]. At our experimental temperature, this effect is
limited to small energies ε.
Figure 1 shows subgap dI=dV spectra, recorded at the

termination of six independent Fe chains. Figures 1(a)–(d)
display chains terminated by a small cluster, visible as a
protrusion in the STM images. The chains in Figs. 1(a) and
1(d) exhibit a clear zero-energy signature at a bias ofþΔtip,
which has been interpreted as a fingerprint of a Majorana
bound state [17] (for the determination of the value of Δtip,
see the Supplemental Material [39]). The zero-energy
feature is accompanied by two resonances at higher
energies. In contrast, the chains in Figs. 1(b) and 1(c) do
not exhibit a clear peak at þΔtip, but they exhibit a low-
energy resonance at a bias of around 1.47 and 1.52 mV,
respectively. Figures 1(e) and 1(f) show data for chains
without a protrusion at their ends. These appear rarely, and
we can only provide data with reduced resolution
(≃330 μV) due to inferior tip preparation. These chains
also lack an unambiguous signature of a zero-energy
resonance, perhaps masked by the larger resonance, which
contributes considerable spectral intensity atΔtip. However,
the presence of a Majorana state only depends on the
topological phase in the chain and should not be affected by
structural details of the chain end, as long as the termination
has a (trivial) energy gap.

Figure 1(a) shows that the peaks at opposite biases�Δtip
differ substantially in intensity. The same is observed in all
other chains [39]. This is in contrast to expectations for
Majorana peaks, which should be symmetric because a
Majorana state has identical electron and hole wave
functions [40]. This indicates that these peaks originate,
at least partially, from trivial subgap states near zero energy.
For a more detailed analysis, we focus on the chains shown
in Figs. 1(a) and 1(b).
It is interesting to contrast the spectra of chains with

those of individual Fe adatoms and dimers. Figure 2(a)
shows the dI=dV signal of two species of single adatoms
with different apparent heights. For both types, we observe
a single, shallow Shiba state at ε≃ 1.1 meV (type 1) and
ε≃ 1.2 meV (type 2), respectively. In contrast, the dimer
shown in Fig. 2(b) exhibits a richer subgap structure with a
series of resonances with energies as low as≃150 μeV. We
find that the subgap spectrum varies in detail between
different dimers, depending on interatomic distance, angle,
and adsorption site [39]. This demonstrates strong coupling

Δ

FIG. 1 (color online). dI=dV spectra recorded at the end of six
different chains (small arrows mark the position on the chain).
Chains in (a)–(d) are terminated by a small cluster; in (e),(f) they
have a sharp cutoff. The energy resolution in (e),(f) is reduced
(width of BCS resonance: ≃330 μV) due to nonbulklike super-
conductivity of the tip. Δtip in meV: (a) 1.36; (b) 1.42; (c),(d)
1.38; (e),(f) 1.24. Chain lengths measured between the chain end
and the cluster onset in nm: (a) 13.9, (b) 9.5, (c) 6.2, (d) 6.0,
(e) 7.7, (f) 4.0. Scale bars correspond to 4 nm. For the full spectra
of (b)–(f), see the Supplemental Material [39].

−Δ Δ

Δ−Δ

FIG. 2 (color online). dI=dV spectra of different Fe entities on
Pb(110). (a) Two types of single adatoms: both spectra exhibit a
single Shiba resonance close to the gap edge. The adatoms differ
in apparent height by ≃20 pm at 50 mV, 50 pA. (b) Fe dimer: a
variety of Shiba states with the lowest energy resonance at
ε≃ 150 μeV is observed. Δtip ¼ 1.39 meV. (c) Chain end (the
blue line) as in Fig. 1(a), and bare Pb(110) (the gray line) for
comparison. (d) Zoom on (c): a manifold of Shiba resonances is
resolved. A peak at þΔtip may be the fingerprint of a Majorana
bound state. Low-energy states lie at ε≃ 80 μeV (the black solid
arrow) and ε≃ 270 μeV (the blue dashed arrow). At 1.1 K, low
intensity thermal resonances are expected at ð�Δtip − εÞ [38].
Albeit not resolvable, they contribute to the tail in intensity at
biases between �Δtip. Scale bars in the topography insets
correspond to 1 nm.
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of Shiba states which can ultimately lead to the formation
of Shiba bands in adatom chains.
Figure 2(c) provides the data of Fig. 1(a) over a wider

voltage range, with a zoom in on the voltage range nearΔtip

shown in Fig. 2(d). In addition to the peak at þΔtip and a
faint shoulder at −Δtip, there is a nearby subgap resonance
at ε≃ 80 μeV (the black solid arrows). These combine into
a plateaulike structure near and just above �Δtip. The data
are also consistent with corresponding thermal resonances
at �ðΔtip − 80 μeVÞ. The superposition with a low-energy
subgap resonance may explain the asymmetric peaks in
Fig. 1(a). While a Majorana peak must be symmetric,
conventional subgap resonances can be asymmetric,
reflecting the asymmetry between the electron and hole
wave functions.
Further subgap peaks occur at higher energies, the next

higher one at ε≃ 270 μeV [the blue dashed arrows in
Fig. 2(d)]. Similar peaks were identified in Ref. [17] as the
coherence peaks of the induced topological gap (estimated
at 200–300 μeV). In view of the lower-energy peaks, this
interpretation seems implausible for our chains. Instead, a
Majorana-based interpretation would suggest that the low-
est nonzero energy peak originates from the topological gap
or is shifted above the topological gap by size quantization.
This suggests that the topological gap is comparable to or
smaller than ≃80 μeV.
While the Majorana states should be localized at the chain

end, the topological gap is a property of the bulk spectrum
and should be observable throughout the entire chain. In
Fig. 3, we present spatially resolved dI=dV spectra of the
same chain as in Fig. 1(b) [and Fig. S2(b)]. Spectra at the end
of the chain, e.g., Nos. 1 and 29, exhibit a peak or shoulder at
�Δtip. The asymmetry may again be due to the overlap with
nearby resonances with energies below 100 μeV. The latter
resonances are observable throughout the chain, but they
vary in intensity and/or energy (marked in Fig. 3). This is in
contrast to the zero-energy resonances, which only exist at
the ends of the chain.
The most likely scenario for topological superconduc-

tivity in adatom chains is that an odd number of
spin-polarized d bands cross the Pb Fermi energy

Δ−Δ

FIG. 3 (color online). Spatially resolved dI=dV spectra along
the chain in Fig. 1(b), going from the onset of the Fe cluster
(No. 1) to the bare surface (No. 35). At the chain end [No. 29,
same as in Fig. 1(b) and Fig. S2(b)], a zero-energy resonance at
−Δtip, and at the Fe cluster (No. 1), a resonance at þΔtip are
visible as local maxima. At the opposite bias, a shoulder is
observed. The lowest nonzero energy resonance is found at
ε≃ 80 μeV in No. 29 and is modulated along the chain. As a
guide for the eye, local maxima or shoulders with energies
0 < ε < 100 μeV are marked by ticks. The high intensity peaks
at positive bias shift along the chain with ε ranging from
700 to 1000 μeV. Offset for clarity: −30 nS/spectrum. Distance
between spectra: 0.33 nm. Δtip ¼ 1.42 meV.

Δ−Δ

−

π

2Δ

FIG. 4 (color online). False-color plot of the dI=dV spectra of (a) the subgap (the same spectra as in Fig. 3) and (c) the d-band
structure, aligned with the topography in (b). The subgap structure (a) exhibits variations of the Shiba peak energies and intensities, as
well as modulations of the low-energy resonance at ε≃ 80 μeV along the chain. A zero-energy resonance is found at both chain
terminations. Resonances linked to the d-band structure (c) vary around −380 mV (α), and 450 mV (α0) along the chain. (d) Sketch of a
spin-polarized d band (the full line) and its hole complement (the dashed line) crossing the Fermi level of the superconductor.
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[9,17,33], as illustrated in Fig. 4(d). Spin-orbit coupling in
the substrate enables proximity-induced p-wave pairing
even for ferromagnetic chains. The subgap bands combine
the rapidly dispersing d bands, yielding gapped V-shaped
structures and weakly dispersing Shiba-like states near k ¼
0 and k ¼ π=a, where the d bands are far from the Fermi
energy. The resulting subgap band is illustrated in Fig. 5(c)
for a chain of spin-1=2 Anderson impurities on a BCS
superconductor, assuming that the spin-up band is fully
occupied and the spin-down band crosses the Pb Fermi
energy. We now explore these relations between subgap
excitations and high-energy band structure.
The weakly dispersing Shiba states contribute van Hove–

like subgap resonances at nonzero energies. Indeed, in
addition to the resonance at ε≃ 270 μeV already men-
tioned above, many of the spectra exhibit a strong subgap
resonance at a bias of ≃2.3 mV. The false-color plot in
Fig. 4(a) (the same dI=dV spectra as in Fig. 3) reveals that
its intensity oscillates with a period of ≃2 nm and shifts
slightly to lower energy in the center of the chain. The
lower-energy resonances near �Δtip do not show such a
clear periodicity. Interestingly, the periodic variations
appear correlated with the topography of the chain, as
shown next to the false-color plot in Fig. 4(b). The apparent
height and width of the chain show variations with a similar
period of ≃2 nm, in agreement with Ref. [17].
Moreover, the band edges of the Fe d bands contribute

van Hove peaks in STS. In Fig. 4(c), we provide a false-
color plot of dI=dV spectra along the chain in a larger bias
range between �1.1 V. In the interior of the chain, we
observe two prominent features: a narrow resonance α at
around −380 mV and a broader resonance α0 at around
450 mV. Similar resonances are present for all chains
shown in Fig. 1, and they are in agreement with Ref. [17].
These resonances decrease in intensity and finally disap-
pear at the end of the chain or close to the Fe cluster,
respectively (see additional traces in Ref. [39]). We

interpret these resonances as the van Hove singularities
of the d bands. The simultaneous disappearance of α and α0
suggests that these are the upper and lower edges of the
same band crossing the Fermi level. Interestingly, reso-
nance α shifts with the above observed periodicity of about
2 nm [39].
To understand how the spatial variations in the d bands

affect the peaks in the subgap spectra, we have performed
model calculations for a chain of Anderson impurities
coupled to an s-wave superconductor with spin-orbit
coupling (see Refs. [33] and [39]). We model the modu-
lations by a potential which varies along the chain and
reflects the local environment of the adatoms [see
Fig. 5(b)]. We choose parameters such that one band
crosses the Fermi level with band edges corresponding
to α and α0 and assume strong adatom-substrate coupling.
Following Ref. [33], we calculate the subgap local density
of states from a mean-field treatment of the impurity chain
(see Ref. [39]) and the differential conductance. As temper-
ature exceeds the typical energy separation between subgap
levels, we assume efficient quasiparticle relaxation, which
results in dominant single-particle tunneling. The exper-
imental resolution is modeled by broadening of the tip
density of states. Note that these conditions preclude the
observation of a quantized Majorana peak height [40].
Figure 5(a) shows the subgap differential conductance of

a finite chain, including the spatially varying potential. The
numerical results are consistent with key features of the
experimental data. (i) The Majorana bound state has a short
decay length of a few lattice sites as a consequence of the
strong chain-substrate coupling [33]. (ii) Prominent peaks
at eV ¼ �1.5Δtip and �1.9Δtip signal the van Hove
singularities of the Shiba band. Their intensity modulations
are correlated with the potential landscape of the impurity
atoms. Here, the effect of the corrugation is most visible
because the Shiba energy explicitly depends on the energy
of the impurity level. (iii) The induced gap varies along the
chain on atomic scales but is uncorrelated with the potential
landscape. Indeed, at strong coupling the induced gap only
depends on the substrate gap and the spin-orbit interaction
and is insensitive to details of the impurities. The fluctua-
tions reflect finite-size quantization which is most visible at
low energies due to the low density of states in the
V-shaped dip of the band structure [Fig. 5(c)].
Motivated by Ref. [17], we investigated the subgap

spectra and the possible Majorana signatures of Fe chains
on a superconducting Pb(110) substrate by scanning
tunneling spectroscopy. Using superconducting tips, a
Majorana state is expected to appear as a pair of resonances
at �Δtip with symmetric intensities. We associate the
absence of this symmetry in the data with a nearby low-
energy subgap resonance at 80 μeV. Within a Majorana
framework, it is natural to interpret this additional reso-
nance as the coherence peak of the induced topological gap,
which would then be smaller than previously measured. We
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FIG. 5 (color online). Numerical results for a chain of 30 sites.
(a) Color plot of the differential conductance along the chain
at subgap energies for a superconducting tip. (b) Spatially
varying on-site energies of impurity levels. (c) Bulk subgap
band structure of an impurity chain on the surface of an s-wave
superconductor. We used Δsample=Δtip ¼ 0.958. See Ref. [39] for
other parameters.
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show by model calculations that such an interpretation is, in
principle, consistent with our observations. However, a
conclusive confirmation of Majorana end states in adatom
chains would be greatly facilitated by experiments at
considerably lower temperatures. Using superconducting
tips at temperatures well below the induced gap might even
provide access to the elusive conductance quantization of
Majorana states [40].
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Supplementary Material
End states and subgap structure in proximity-coupled chains of magnetic adatoms

Michael Ruby,1 Falko Pientka,2 Yang Peng,2 Felix von Oppen,2 Benjamin W. Heinrich,1 and Katharina J. Franke1

1Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
2Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany

I. Fe MONOMERS AND DIMERS

In the main text we show dI/dV -spectra of the two species of Fe adatoms, which are present on the (110) surface
after the evaporation of Fe onto the cold sample (Tsample < 10 K). Both species are adsorbed in between the [110]
corrugation lines of the surface, yet they have different apparent heights (∆z ' 20 pm at Vbias = 50 mV, I = 50 pA).
In dI/dV spectroscopy between ±3.5 V, we did not detect any d-state resonances. We occasionally found – besides
single adatoms – also larger protrusions of different size and shape. As diffusion is hindered at the temperature of
deposition, it is reasonable to assume that the vast majority of these are Fe dimers. We show the dI/dV -spectra of
three distinctly different dimers in Fig. S1. All of them show a rich subgap structure, indicating a strong interaction
of the Shiba states. However, the subgap structure varies strongly, and depends on the inter-atomic distance, the
angle, and the adsorption site of the Fe atoms.
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Figure S1: (a-c) dI/dV -spectra of various Fe dimers [reference spectrum on pristine Pb(110) in grey as guide to the eye]. The
spectra show diverse subgap structures, probably due to different adsorption configurations. (a) is the dimer shown in Fig. 2(b)
of the main text. ∆tip in mV: (a) 1.39, (b) 1.38, (c) 1.37. Setpoint: 5 mV, 250 pA. Lock-in: 15 µVrms, 912 Hz.

II. dI/dV -SPECTRA OF THE SUBGAP STRUCTURE OF SIX DIFFERENT CHAINS

In Fig. 1(a-f) of the main text we show dI/dV -spectra at positive bias voltage of the subgap structure at the end of
six different chains. For the sake of completeness, we show here the same spectra, but both positive and negative bias
side [Fig. S2(a-f)]. All spectra exhibit an asymmetric intensity of the spectral weight at ±∆tip, i.e., at zero-energy.
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Figure S2: dI/dV -spectra recorded at the end of six different chains. Same spectra as in Fig. 1(a-f) of the main text, but here
we present both positive and negative bias side. Chains in (a-d) are terminated by a small cluster, in (e,f) they have a sharp
cut-off. The energy resolution in (e,f) is reduced (width of BCS resonance: ' 330 µV), due to non bulk-like superconductivity
of the tip. ∆tip in mV: (a) 1.36, (b) 1.42, (c,d) 1.38, (e,f) 1.24. Chain lengths measured between chain end and cluster onset
in nm: (a) 13.9, (b) 9.5, (c) 6.2, (d) 6.0, (e) 7.7, (f) 4.0. Setpoint: 5 mV, 250 pA. Lock-in: 15 µVrms, 912 Hz.
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In the main text we plot in Fig. 3 the spatial dependence of the low-energy dI/dV -spectra along the chain shown in
Fig. 1(b). To be able to compare the characteristic features of the spectra between the chains, we show in Fig. S3(a-f)
a collection of the data recorded along the six chains.
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Figure S3: Spatial dependence of the dI/dV -spectra along the chains from Fig. 1(a-f) of the main text. Spectra at the
chain ends [same as Fig. 1(a-f)] are printed bold. Fig. S3(b) is the same data as Fig. 3 of the main text. Chains in (a-d)
are terminated by a small cluster, in (e,f) they have a sharp cut-off. The energy resolution in (e,f) is reduced (width of BCS
resonance: ' 330 µV), due to non bulk-like superconductivity of the tip. ∆tip in mV: (a) 1.36, (b) 1.42, (c,d) 1.38, (e,f) 1.24.
Chain lengths measured between chain end and cluster onset in nm: (a) 13.9, (b) 9.5, (c) 6.2, (d) 6.0, (e) 7.7, (f) 4.0. Scale bars
correspond to 4 nm. Offset between spectra for clarity in nS: (a,c,d) -80, (b) -45, (e) -53, (f) -110. Spatial distance between
the spectra along the chain in Å: (a,c,d,f) 0.4, (b,e) 0.3. Setpoint: 5 mV, 250 pA. Lock-in: 15 µVrms, 912 Hz.
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III. dI/dV -SPECTRA OF THE IRON CHAIN D-BANDS

Figure S4 shows dI/dV -spectra acquired on the chain presented in Fig. 4 of the main text. The spectra visualize
the variations in intensity and energy of the resonances α and α′ along the chain. At the protrusion at the chain
end, these resonances have not yet developed. Instead, we observe a resonance around −930 mV (spectrum #40). It
decays quickly along the chain. In spectrum (#38) it is hardly visibly anymore, while resonances α and α′ start to
gain intensity. Both increase in intensity when moving towards the center of the chain. In the center (∼#20), α′ is
resolved as double-peak structure. This correlates with the tight-binding calculations presented in Ref. [1], and may
be a hint that the broad resonance α′ actually consist out of two resonances. The simultaneous appearance of α and
α′ suggests that they originate from the same band. Different positions within the chain show a shift of the resonance
α by up to 150 meV, which is plotted in the bottom right of Fig. S4. At the Fe cluster both resonances decrease in
intensity again (#1).

A similar behavior of the state α is found in a chain, which is not terminated with an Fe cluster. As an example, we
show a set of spectra in Fig. S5. The resonances α and α′ again appear simultaneously close to the end of the chain.
We do not observe a resonance at larger negative bias at the end of the chain, which resembles the one at −930 mV
in Fig. S4. This supports the correlation of its appearance with the protrusion at the end of the chain. Though,
approaching the large Fe cluster, α and α′ vanish, and resonances at −800 mV and around 150 mV appear in the
bottom of Fig. S5(e). Within the chain, resonance α exhibits a clear oscillation in its peak position with a periodicity
' 2 nm, similar to the previously described chain. Resonance α′ also shows a variation in its peak position, but not
with a clearly identifiable periodicity. We also present the corresponding subgap structure in Fig. S5(a). The most
prominent Shiba state at 2.17 mV shows an intensity oscillation, in accordance with the variation of α. Due to the
limited energy resolution in these spectra, we cannot unambiguously conclude on an energy variation.
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Figure S4: dI/dV -spectra (left) from top to bottom recorded along the chain (top right) starting from the iron cluster and
going towards the chain end. The spectra are numbered from #1 to #50. The data is the same as plotted in Fig. 4(c) of the
main text. Resonances α and α′ are marked by dashed lines. The energetic position of α is plotted versus the spectrum number
and the distance (bottom right). The values are determined from a fit with a Gaussian peak and a linear background. Spectra
are smoothed to the adjacent average of 25 points. Point distance 230 pm. Offset for clarity: −0.05 nS/spectrum. Setpoint:
2 V, 850 pA. Lock-in: 2 mVrms, 912 Hz.
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Figure S5: dI/dV -intensity of the subgap structure (a), and the large bias range (c) as color plot with respect to the location
along the chain and the sample bias. The topography in (b) is aligned to the position of the spectra in the color plot. The
chain is the same as shown in Fig. 1(e) of the main text. The tip has a reduced energy resolution of 330 µV. The position of
α is plotted in (d). The values are determined from a fit with a Gaussian peak and a linear background. (e) shows the full
dI/dV -spectra of the data shown in (c). Data is smoothed to the adjacent average of 15 points. Point distance 3 Å. Offset for
clarity: −0.1 nS/spectrum. Setpoint: 2 V, 850 pA for (c) and (e), and 5 mV, 250 pA for (a). Lock-in: 2 mVrms, 912 Hz for
(c) and (e), and 15 µVrms, 912 Hz for (a).

IV. DETERMINATION OF THE TIP GAP

We use superconducting tips in order to improve the energy resolution beyond the Fermi-Dirac limit at 1.1 K
and to detect asymmetries in the electron and hole components of the subgap states. dI/dV -spectra show thus the
measured spectral intensity of the sample convolved with the BCS-like density of states of the tip. A consequence of a
superconducting tip with gap ∆tip is the shift of a sample resonance with an energy±ε to a bias value of± (∆tip ± ε) /e.
The exact determination of “real” energies of the sample resonances thus relies on the correct determination of the
superconducting gap of the tip ∆tip.

Pb is a two-band superconductor with two gap parameters (∆1 ' 1.42 meV and ∆2 ' 1.27 meV). They originate
from two separated Fermi surfaces, and give rise to the double-peak structure in the dI/dV -spectra [2]. The tip is
prepared by controlled indentation into the clean Pb surface with a high voltage applied to the tip. This creates an
amorphous superconducting Pb layer on the tip and yields a single gap parameter ∆tip, which is averaged over all
directions. Depending on the layer thickness and quality, ∆tip can be similar or smaller than the bulk gap values.

We cannot determine the parameters ∆1, ∆2, and ∆tip independently from the BCS resonances in the spectra
of pristine Pb(110) alone. An independent determination of the full set of parameters (∆1, ∆2, and ∆tip) is only
possible using spectra with a pronounced low-energy Shiba state, which gives rise to well-resolved thermal resonances.
Fe dimers show such low-energy Shiba resonances (Fig. S1). The Shiba resonance and its thermal counterpart occur
symmetric to ∆tip at ± (∆tip + ε) and ± (∆tip − ε), respectively. This allows us to determine ∆tip unambiguously.
Spectra of the pristine surface acquired with the same tip show clear BCS resonances at ∆tip + ∆1,2. Because ∆1 and
∆2 are bulk properties of the substrate, their energy can then serve to determine ∆tip for every tip. This procedure
enables a reliable determination of the energies of subgap resonances in each Fe chain.

V. THEORETICAL MODEL

We use the model introduced in Ref. [3], where the Fe adatoms are modeled as a chain of Anderson impurities,
including both direct hopping between the adatom orbitals and hybridization with the substrate BCS superconductor.
This describes the adatoms as spin-1/2 impurities, and their fully polarized spin-up and spin-down bands model the
d-bands of the Fe chain. Consistent with the formation of a ferromagnetic state, we assume that the spin-up band is
fully occupied, while the spin-down band crosses the Pb Fermi energy. Thus, there is only a single spin-polarized band
at the Fermi energy and we expect the adatom chain to realize a topological superconducting phase by proximity
coupling to the superconductor. Assuming the ferromagnetic ordering and treating the onsite Hubbard interactions
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Figure S6: Numerical results for the differential conductance measured with a superconducting tip at subgap energies along a
chain of 30 sites. (a) Sample with a larger p-wave induced gap with kFa = 4.3π, same as the color scale plot in Fig. 5(a) of the
main text. (b) Sample with a smaller p-wave induced gap with kFa = 8.3π, only the last 5 traces around ∆tip are shown. The
dashed lines indicate eV = ±(∆tip + ∆p), with ∆p the induced p-wave gap for an infinite chain. In (a) ∆p = 0.096∆tip and in
(b) ∆p = 0.045∆tip. The remaining model parameters and the process of evaluating the conductance are the same.

in mean-field theory, this model can essentially be solved analytically. This is described in detail in Ref. [3] and will
not be reproduced here.

In addition to the Hamiltonian as discussed in Ref. [3], we include a spatially varying on-site energy of the Anderson
levels to model the corrugation of the chain. As described in Ref. [3] we can evaluate the Green function within mean-
field theory, from which we numerically obtain the local density of states (LDOS) at subgap energies. In our numerical
calculations, the average on-site energy of the spin-down levels is Ed,↓ = 200∆sample, with roughly 10% spatial
modulation [see Fig. 5(b) of the main text]. The on-site energy of the spin-up states is Ed,↑ = Ed,↓ − 40000∆sample.
We choose the bandwidth of the spin-down band as 1000∆sample, the hybridization strength between the adatoms
and the substrate superconductor Γ = 256∆sample, and the ratio ∆sample/∆tip = 0.958. Finally, we set the Fermi
wavevector kFa = 4.3π and the Rashba spin-orbit wavevector kha = 0.26π with a the lattice constant.

We start from the expression for the tunneling current (see supplement of Ref. [4]),

I =
et2

2h

�
dω Tr

{
G>,ee

R (ω)g<L (ω−)−G<,ee
R (ω)g>L (ω−) + g>L (ω+)G<,hh

R (ω)− g<L (ω+)G>,hh
R (ω)

}
, (S1)

where R and L label the sample and the superconducting tip and all Green’s functions are located at the tunneling
position. The electron and hole blocks are denoted by ee and hh. In the experiment, the tunneling current is
dominated by single-particle tunneling events (cf. Ref. [2]), and we can approximate

−iG<
R(ω) = A(ω)f(ω), (S2)

iG>
R(ω) = A(ω)(1− f(ω)), (S3)

where f(ω) is the quasi-equilibrium distribution of the steady state and A(ω) = −2ImGr
R(ω) the LDOS of the sample.

The distribution f(ω) satisfies the condition f(−ω) = 1− f(ω), as in the case of the Fermi distribution function. For
our numerical calculations, we assume that the system remains close to thermal equilibrium, f(ω) = nF (ω). Using
the relations for the tip Green function g<L (ω) = 2πiρ(ω)nF (ω), g>L (ω) = −2πiρ(ω)nF (ω), we can write the current
as

I =
πet2

h

�
dω ρ(ω−) TrAe(ω) [nF (ω−)− f(ω)]− ρ(ω+) TrAh(ω) [nF (ω+)− f(ω)] (S4)

=
2πet2

h

�
dω ρ(ω−) TrAe(ω) [nF (ω−)− f(ω)] , (S5)

where Ae,h denotes the 2 × 2 electron (hole) block of A. In the last line, we have used TrAe(ω) = TrAh(−ω) due
to particle-hole symmetry, and the property f(−ω) = 1 − f(ω). The conductance is then obtained by taking the
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Figure S7: Numerical results for the differential conductance measured with a superconducting tip at subgap energies along a
longer chain of 200 sites with the same parameters as in Fig. S6(a), in particular the same modulation in the on-site energy of
impurities. (a) Color scale plot of the conductance. (b) Waterfall plot for 30 sites in the middle of the chain. The dashed lines
indicate the bias ±(∆tip + ∆p) corresponding to the p-wave gap of an infinite chain.

derivative with respect to the voltage,

G(eV ) = −2πe2t2

h

�
dωTr{Ae(ω)} {ρ′(ω−) [nF (ω−)− f(ω)] + ρ(ω−)n′F (ω−)} , (S6)

where ρ′(ω) = dρ(ω)/dω, and n′F (ω) = dnF (ω)/dω. Inverting the sign of the bias voltage, we find

G(−eV ) = −2πe2t2

h

�
dωTr{Ae(−ω)} {ρ′(ω−) [nF (ω−)− f(ω)] + ρ(ω−)n′F (ω−)} . (S7)

Since in general TrAe(ω) 6= TrAe(−ω) = TrAh(ω), the conductance is not necessarily symmetric under reversal of
bias voltage. However, an isolated zero-energy resonance yields symmetric peaks at eV = ±∆tip [4]. In Fig. S6(a)
we show a waterfall plot of the differential conductance along the chain for the same parameters as the color plot
in Fig. 5(a) of the main text. The dashed line indicates the p-wave gap for an infinite chain. The lowest-energy
resonance in the finite chain is somewhat higher and varies along the chain due to finite size effects. In Fig. S6(b)
we show that a smaller p-wave gap leads to an asymmetry at eV = ±∆tip. In Fig. S7 we show the conductance plot
for a longer chain, where the lowest-energy resonance is now more homogenous along the chains and closer to the
induced gap. The small offset from eV = ±(∆tip + ∆p) originates from the energy-dependent density of states in the
superconducting tip and is not due to finite-size effects.
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