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Zusammenfassung

Topologische Phasen in kondensierter Materie faszinieren Physiker seit mehr als drei
Jahrzehnten. Die beispiellose Quantisierung der Leitfähigkeit durch den Quanten-Hall-
Effekt oder die vielbeachteten Dirac-Randzustände in topologischen Isolatoren gehen
auf topologische Eigenschaften zurück. Seit kurzem sind neuartige topologische Phasen
in Supraleitern im Fokus intensiver experimenteller und theoretischer Forschung. Von
besonderem Interesse sind eindimensionale topologische Supraleiter, da hier exotische
Majoranateilchen als Randzustände auftreten. Dabei handelt es sich um gebundene
Zustände verschwindender Energie mit nichtabelscher Vertauschungsstatistik, die viel-
versprechende Anwendungen in der Quanteninformationsverarbeitung ermöglicht.

Durch jüngste theoretische und experimentelle Fortschritte erscheint die Realisierung
von Majoranazuständen im Labor möglich. Das Ziel dieser Arbeit ist einerseits eine re-
alistische theoretische Beschreibung aktueller experimenteller Bemühungen. Anderer-
seits schlagen wir neue Versuchsaufbaue mit charakteristischen Signaturen von Majo-
ranateilchen vor. Ein besonderer Fokus liegt hierbei auf nicht idealen experimentellen
Bedingungen und neuen Effekten, die daraus entstehen.

Signaturen von Majoranateilchen können im Josephsonstrom zwischen zwei topolo-
gischen Supraleitern auftreten, obgleich diese Signaturen im DC-Josephson-Effekt meist
durch unvermeidbare Quasiteilchenrelaxationen im Supraleiter vernichtet werden. In
dieser Arbeit entwerfen wir einen Messaufbau basierend auf mesoskopischen supralei-
tenden Ringen, in dem die Majorana-Signaturen selbst für beliebig schnelle Relaxation
erhalten bleiben. In einem weiteren Projekt beschreiben wir eine alternative Methode
zum Nachweis von Majoranas im Rahmen des Josephson-Effekts. Dabei werden Su-
praströme nicht durch eine Phasendifferenz der Supraleiter induziert, sondern durch
gegeneinander verdrehte Magnetfelder auf den zwei Seiten des Josephsonkontakts.

Eine weitere wichtige Nachweismöglichkeit für Majoranas im Experiment liefert die
Messung des differentiellen Leitwerts. Wir zeigen, dass der für Majoranateilchen cha-
rakteristische Peak im Leitwert kleiner ausfällt, wenn in dem topologischen Supraleiter-
draht mehrere Teilbänder besetzt sind. Dies bietet eine plausible Erklärung für jüngste
experimentelle Ergebnisse. Darüber hinaus erläutern wir, wie geeignet plazierte Stör-
stellen die Signatur verstärken und so einen überzeugenden Nachweis für Majoranas
liefern können.

Ein aktueller Vorschlag für die Realisierung von Majoranateilchen basiert auf Ketten
magnetischer Störstellen auf der Oberfläche von konventionellen Supraleitern. Dazu
leiten wir ein mikroskopisches Modell her, das die Kette durch sogenannte Shibazustän-
de beschreibt, die an die einzelnen Störstellen gebunden sind. Unter realistischen Be-
dingungen weist dieses Modell langreichweitige Kopplungen auf, welche einen neuarti-
gen Phasenübergang und erstaunliche Lokalisierungseigenschaften der Majoranas zur
Folge haben. Abschließend untersuchen wir die Tunnelspektroskopie von lokalisierten
Zuständen in Supraleitern. Dazu entwickeln wir eine Theorie für den differentiellen
Tunnelleitwert für eine supraleitende Tunnelspitze unter Berücksichtigung thermischer
Relaxationsprozesse von Quasiteilchen im Supraleiter. Unsere Ergebnisse stimmen gut
mit Messungen zu Shibazuständen überein und erlauben die Bestimmung zentraler
Eigenschaften wie die lokale Zustandsdichte oder die Art der Relaxationsprozesse.
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Abstract

Topological states of matter have fascinated condensed matter physicists for the past
three decades. Famous examples include the integer and fractional quantum Hall states
exhibiting a spectacular conductance quantization as well as topological insulators in
two and three dimensions featuring gapless Dirac fermions at the boundary. Very re-
cently, novel topological phases in superconductors have been subject of intense experi-
mental and theoretical investigation. One-dimensional topological superconductors are
particularly intriguing as they host exotic Majorana end states. These are zero-energy
bound states with nonabelian exchange statistics potentially useful for topologically pro-
tected quantum computing.

Recent theoretical and experimental advances have put the realization of Majorana
states within reach of current measurement techniques. In this thesis we investigate
signatures of Majorana bound states in realistic experiments aiming to improve the theo-
retical understanding of ongoing experimental efforts and to design novel measurement
schemes, which exhibit convincing signatures of Majoranas. In particular we account
for nonideal experimental conditions which can lead to qualitatively new features.

Possible signatures of Majoranas can be accessed in the Josephson current through a
weak link between two topological superconductors although the signatures in the dc
Josephson effect are typically obscured by inevitable quasiparticle relaxation in the su-
perconductor. Here we propose a measurement scheme in mesoscopic superconducting
rings, where Majorana signatures persist even for infinitely fast relaxation. In a separate
project we outline an alternative to the standard Josephson experiment in topological su-
perconductors based on quantum wires. We delineate how Majoranas can be detected,
when the Josephson current is induced by noncollinear magnetic fields applied to the
two banks of the junction instead of a superconducting phase difference.

Another important experimental manifestation of Majoranas is a zero-bias peak in
the differential conductance. Here we show that in multi-subband wires the Majorana
conductance peak can be suppressed compared to a strictly one-dimensional system,
thereby providing a plausible explanation for recent experimental results. Based on
this analysis, we furthermore predict an enhancement of the signature by deliberately
introducing disorder, which could establish strong evidence for a Majorana bound state.

A very recent proposal to realize a topological superconductor is based on a chain
of magnetic impurities on the surface of a conventional superconductor. Here we de-
rive a microscopic model in terms of the Shiba states bound to the individual impuri-
ties in the superconductor. Under realistic experimental conditions, the model involves
long-range couplings leading to a new kind of topological phase transition and remark-
able localization properties of the Majoranas. Finally, we investigate the tunneling spec-
troscopy of subgap states in superconductors. We develop a theory to describe the dif-
ferential tunneling conductance from a superconducting tip into a localized quasiparti-
cle state including relaxation processes present at nonzero temperature. Our result are
in good agreement with experimental data on Shiba states and give access to proper-
ties of the bound state such as the local density of states and the nature of the relevant
relaxation processes.
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1. Introduction

In 2012 popular and scientific media celebrated the discovery of Majorana particles
after a seven-decade-long chase [Wilc 09, Fran 10b, Ster 10, Hugh 11, Serv 11, Fran 13,
Spei 12, Nest 13] when the group of L. Kouwenhoven in Delft reported signatures of
Majorana particles in a superconductor–quantum wire hybrid device [Mour 12]. The
existence of Majorana fermions is certainly among the major puzzles in particle physics.
Already in 1937 Ettore Majorana had shown [Majo 37] that the Dirac equation, which
describes fermions, allows for purely real solutions. As particles and antiparticles in
Dirac’s theory are related by complex conjugation, Majorana’s fermion is described by
real operators and must be identical to its own antiparticle. This initiated a long search
for Majorana fermions in the zoo of elementary particles with neutrinos being the prime
candidate, but no evidence has been found to date [Avig 08].

In contrast the interest in the condensed matter realization of emergent Majorana
quasiparticles is much younger and of an entirely different background [Alic 12, Been 13,
Elli 14]. The existence of Majorana quasiparticles has first been predicted in ν = 5/2

fractional quantum Hall systems [Moor 91] and later in superfluid Helium-3 [Volo 99,
Volo 03], while the Majoranas investigated in Delft are midgap excitations in super-
conductors whose theoretical discovery dates back little more than a decade [Read 00,
Kita 01]. While the possibility of an elementary fermionic particle being its own antipar-
ticle is of fundamental importance this concept is not unusual for emergent particles in
many-body systems. In fact the ubiquitous Bogoliubov particles, the elementary exci-
tations of superconductors, are their own antiparticle [Cham 10] and could be called
Majorana fermions. In contrast the claimed signatures of the Delft experiment belong
to a very different species, which we will refer to as Majorana bound states or Majorana
zero modes. These particles are not fermions (although they are frequently referred to
as such), which clearly distinguishes them from Majorana’s original proposal.

In fact Majorana bound states are interesting to condensed matter physicists precisely
because they are neither fermions nor bosons but nonabelian anyons. To illustrate the
difference between these types of particles we consider a two-dimensional system with
a degenerate ground state. While the exchange of two fermions or bosons leaves the
ground state invariant up to a sign, exchanging nonabelian anyons effects a unitary
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1 Introduction

space

time

Figure 1.1.: Exchanging Majoranas is a nonabelian operation transforming the ground
state of the system. The exchange operations can be imagined as braiding
the worldlines of the Majoranas in two spatial and one time dimension.

transformation in the degenerate subspace of ground states. Two such transformations
generally do not commute and thus the final state of the system after interchanging sev-
eral pairs of Majorana bound states depends on the order of the exchange operations
much like braiding strings (see Fig. 1.1). This property is unique to emergent particles
in many-body systems and is only possible in two dimensions.

Along with their unusual exchange statistics Majorana bound states exhibit another
remarkable feature: they are topologically protected zero-energy excitations. Hence the
system’s ground state has a degeneracy in the presence of Majoranas, which cannot
be broken by weak local perturbations. Accordingly superconductors hosting Majo-
rana bound states are called ’topological superconductors’. Our considerations above
demonstrate that a ground state degeneracy is a prerequisite for nonabelian exchange
statistics and therefore nonabelian anyons are always accompanied by protected zero-
energy excitations.

Majorana zero modes constitute the boundary excitations associated with a bulk topo-
logical phase in superconductors, similar to the massless Dirac edge states inherent to
topological insulators. Like the Dirac edges states Majorana modes mediate quantized
transport phenomena characteristic of topological phases. Recent progress towards
the realization of Majorana bound states has renewed the excitement about topologi-
cal phases, which have captivated condensed matter physicists since the discovery of
topological insulators almost a decade ago.

Besides the fundamental importance of realizing nonabelian anyons potential appli-
cations in quantum computation motivate the quest for Majorana particles in condensed
matter physics. Pairs of Majoranas form qubits, the quantum version of a classical bit
and information storage unit of a quantum computer. In contrast to conventional qubits
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(e.g., two energy levels of a quantum dot) the two Majorana states comprising a single
qubit can be separated on macroscopic length scales. Hence Majorana qubits store the
information nonlocally and are immune to local sources of decoherence such as noise
of a gate potential. Furthermore, we have already seen that exchanging Majoranas re-
sults in nontrivial unitary transformations and therefore realizes qubit manipulations.
If the exchange operations are adiabatic the final state of the system depends only on the
topology of the trajectories and not on their exact shape. Hence the nonabelian exchange
statistics of the Majorana bound states allows for fault-tolerant quantum computation.1

Although Majorana bound states in superconductors are just one incarnation of non-
abelian anyons, they are a particularly promising candidate to be realized experimen-
tally owing to the simplicity of the host system. In a seminal work Fu and Kane [Fu 08]
predicted Majorana states in hybrid structures of conventional superconductors and
topological insulators. The basic principle of this proposal is to combine the proper-
ties of different systems, namely a pairing potential and helical edge states, to engineer
topological superconductors. Following this line of thought numerous hybrid systems
have been suggested to host Majorana bound states exploiting that the requirements for
a topological superconductor are surprisingly generic: it suffices to realize a ’spinless’
superconductor, i.e., a superconductor with only a single band without spin degeneracy
at the Fermi level.

This abundance of theoretical proposals has triggered substantial efforts to realize
topological superconductors in the laboratory, in particular since many of the model
systems and measurement schemes are within reach of current experiments. The topo-
logical origin of Majoranas facilitates this search as it guarantees robustness to a fair
amount of disorder and other imperfections of the system. In addition to the broad
range of tentative host systems, Majorana bound states are also predicted to give rise to
various experimental signatures. Most prominently transport measurements can iden-
tify zero-energy bound states. Here the special nature of the Majoranas as robust zero
modes irrespective of external manipulations leads to very distinct signatures. Nev-
ertheless, it typically remains a challenge to exclude other effects possibly mimicking
the Majorana signatures. The experimentally most relevant systems and signatures are
reviewed in Sec. 3.2, the Delft experiment being only the first of several detailed inves-
tigations.

Despite the excitement about the first reports on signatures of Majorana bound states
in the condensed matter community and beyond, crystal-clear evidence remains to be
found. The aim of this thesis is to improve the theoretical understanding of concrete ex-

1The exchange statistics of Majorana bound states do not generate all qubit operations necessary for uni-
versal quantum computation. Hence a quantum computer based on Majoranas needs to be supple-
mented by unprotected qubit gates (see [Naya 08] for details).
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1 Introduction

perimental realizations and the corresponding signatures of Majorana bound states. On
the one hand we extend the theoretical description of existing experiments by develop-
ing realistic models, which allow us to predict qualitatively new features. On the other
hand we theoretically design new measurement schemes that can give rise to distinct
signatures of Majorana bound states and determine realistic conditions for such exper-
iments. The specific projects covered in this thesis will be outlined in the remainder of
this introduction.

1.1. Outline

In the introductory Chapter 2 we show that superconductors in one and two dimensions
can host robust Majorana bound states with exotic exchange statistics. We further give
a basic account of generic topological superconducting phases in one-dimensional sys-
tems (wires) and show that Majorana bound states emerge at the wires’ ends. The topo-
logical phase can be characterized by integer quantum numbers which directly relate to
experimental observables. We further discuss the stability of the topological phase with
respect to disorder. Throughout most of the discussion we illustrate these general con-
cepts by considering a simple model of a p-wave superconductor wire, which contains
all essential features of a topological superconductor and therefore serves as a prototype
of the various systems discussed in this thesis.

Various more realistic manifestations of topological superconductors are presented
in Ch. 3. We first briefly introduce the proximity effect by which a superconducting
gap can be opened in ordinary metals. This phenomenon enables engineering effec-
tive p-wave superconductors in hybrid structures and thereby gives rise to a plethora of
physical realizations of topological superconductors. As this thesis is primarily moti-
vated by experimental efforts to find Majorana bound states we focus on three systems
which are currently actively investigated in the laboratory, namely topological insulator
edges, quantum wires, and chains of magnetic impurities all in contact with a conven-
tional superconductor. We discuss specific experiments exhibiting signatures of Majo-
rana bound states and comment on the progress of ongoing experimental work aimed
at detecting topological superconducting phases.

The main part of the thesis comprises Chs. 4–8. In several independent projects we in-
vestigate signatures of Majorana bound states taking into account realistic experimental
conditions. In Ch. 4 we investigate multichannel effects on the conductance signatures
of Majorana bound states in proximity-coupled quantum wires. We show that under
realistic conditions the Majorana conductance peak can be suppressed by additional
topologically trivial subbands in the wire providing a possible explanation for recent
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experimental findings. Furthermore we predict an enhancement of the signature by the
deliberate introduction of disorder which results in a mixing of subbands. We quantify
this effect by a combination of numerical calculations and analytical considerations and
also discuss other mechanisms that can lead to an enhancement of the Majorana peak.

Chapter 5 reports on signatures of the topological phase in the Josephson current.
The current through a Josephson junction hosting Majorana states on either side of the
junction exhibits a unique 4π periodicity in the superconducting phase difference. In-
evitable quasiparticle relaxation processes in the superconductor typically obscure this
signature of Majorana states. In this chapter we show that in mesoscopic p-wave su-
perconductor rings the signature is recovered as a peak in the 4π periodic Josephson
current in the vicinity of the topological critical point. The peak results from the com-
petition of two couplings between the two Majorana states across the insulating junc-
tion and through the interior of the superconducting ring. Such a system can emerge in
semiconductor rings with induced superconductivity, which have been experimentally
realized in [Forn 13]. To make this prediction more reliable we demonstrate the robust-
ness of this signature with respect to disorder. Interestingly we find as a byproduct of
this work that weak disorder can drive the system further into the topological phase.

We remain with the topological Josephson effect in Ch. 6 and discuss supercurrents
driven by a twist of the magnetic field direction instead of a superconducting phase
gradient. The so-called magneto-Josephson effect serves as an alternative to the elusive
ordinary Josephson effect, whose 4π periodicity signals the presence of Majorana states.
It has been previously investigated for topological superconductor realized on the edge
of topological insulator. Here we study the magneto-Josephson effect for quantum-wire-
based topological superconductors. We show that signatures of Majorana states in the
magneto-Josephson effect occur only for a certain domain configuration of the Joseph-
son junction. We furthermore contrast the ordinary and magneto-Josephson effects in
the two realizations based on quantum wires and topological-insulator edges. We find
that the bound state spectrum can be markedly different in the two cases even when the
low-energy bulk spectra are identical. To draw the connection to possible experiments
we estimate the magnitude of the topological Josephson effect for realistic parameters.

Finally, Chs. 7 and 8 are dedicated to Shiba states, i.e., localized states induced by
magnetic impurities in s-wave superconductors, and their relation to topological super-
conductivity. Chapter 7 contains a detailed analysis of chains of magnetic impurities
forming a spin helix on top of a conventional superconductor possibly hosting Majorana
bound states. Such systems are currently investigated in experiment and first claims
of signatures of Majorana states have been made. Here, we derive an effective tight-
binding model of the impurity band formed by the individual Shiba states in the gap of
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1 Introduction

the substrate superconductor. This Shiba band constitutes an effective one-dimensional
topological superconductor and supports Majorana bound states at the chain ends. We
show that under realistic conditions the system involves long-range couplings giving
rise to power-law (rather than exponentially) localized Majoranas with important con-
sequences for experimental observations and possible applications. Furthermore the
model exhibits an unconventional topological phase transition unparalleled in other sys-
tems. Quite remarkably, Majorana states become more strongly localized at the critical
point in stark contrast to the usual delocalization of the Majorana wavefunction when
approaching the phase transition.

In Ch. 8 we investigate the tunneling conductance of generic subgap states in super-
conductors. Tunneling spectroscopy is a major tool for the characterization of Shiba
states and has also proven to be a valuable technique in the quest for Majorana bound
states. This work combines a theoretical calculation of the differential tunneling con-
ductance with scanning tunneling spectroscopy measurements on Shiba states using a
superconducting tip. In particular we discuss competing transport mechanisms, which
can give rise to multiple resonances and qualitative changes in the differential conduc-
tance maps as a function of tunneling strength. Our theoretical results are in good agree-
ment with experimental findings and allow us to quantitatively determine system pa-
rameters such as the local density of states and the quasiparticle relaxation rate. An
important implication of our work is that careful investigations are required to deter-
mine the local density of states of Shiba states, which cannot be extracted immediately
from the tunneling conductance.

Finally we summarize our findings in the concluding chapter 9 and provide an out-
look to future research directions.
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2. Topological superconductors and Majorana

bound states

2.1. Majorana excitations in superconductors

The Bogoliubov–de Gennes spectrum of superconductors has particle-hole symmetry
and thus for each particle excitation γε at energy ε there must be a hole excitation at
the negative energy γ†−ε. This requires all levels with the exception of zero modes to
come in pairs symmetric in energy. States at zero energy cannot be extended in gapped
superconductors and must therefore be localized at defects or boundaries. Imagine an
isolated defect with one zero-energy state bound to it. This state must remain precisely
at zero energy even when weak local perturbations are introduced. A shift of the bound
state energy to, say, positive energies would require a second state at negative energies to
satisfy particle-hole symmetry. Other subgap states crossing zero energy as a function
of some external parameter (e.g., an external magnetic field) may exist but they will
always come in pairs and symmetry requires that at least one zero mode always exists
for an odd number of levels.

Another interesting property is that an isolated zero mode must satisfy γ† = γ, and
therefore the creation is equivalent to the annihilation of this quasiparticle. In high-
energy physics fermionic particles that are their own antiparticles are known as Ma-
jorana fermions [Majo 37], however, the zero modes in our case are not fermions and
we hence refer to them as Majorana zero modes. In writing the Bogoliubov–de Gennes
Hamiltonian one doubles the number of fermions. This leads to a redundancy that the
particle excitation γε and the symmetric hole excitation γ†−ε describe the same fermionic
state, in contrast to the Dirac equation where particle and antiparticles are separate
fermions. In this sense a Majorana zero mode represents only half a fermion and two
Majorana zero modes are required to form one fermionic state d = γ1 + iγ2. One re-
markable consequences of the Majorana nature of the zero modes γi are the unusual
anticommutation relations

{γi, γ†j} = 2δij , {γi, γj} = 2δij . (2.1)

7



2 Topological superconductors and Majorana bound states

Using γi = γ†i one readily verifies that the fermions di constructed from pairs of Majo-
rana zero modes satisfy the usual Dirac anticommutation relations

{di, d†j} = 2δij , {di, dj} = 0. (2.2)

We will see below that indeed Majorana zero modes are not fermions but nonabelian
anyons, i.e., they exhibit nonabelian exchange statistics. Furthermore Majorana zero
modes in superconductors only exist in one or two dimensions and do not have a dis-
persion, which distinguishes them from three-dimensional Majorana fermions in parti-
cle physics. The latter also occur as emergent particles in superconductors. Particle-hole
symmetry ensures that all Bogoliubov quasiparticles, the elementary excitations of a su-
perconductor, can be written in a real form and are therefore Majorana fermions satisfy-
ing γε = γ†−ε [Cham 10]. Two Bogoliubov excitations can annihilate and their Majorana
nature can be tested by interferometry [Been 14].

In contrast single Majorana bound states are tied to the middle of the gap. Their en-
ergy can move away from zero only if a second defect with an attached zero mode is
brought close to the first one. The two Majorana bound states can hybridize and form a
finite energy excitation, which is exponentially small in the distance. Another way to re-
move the single level at zero is to close the gap so that the zero mode becomes extended.
It can then couple to other spatially separated zero modes. Thus superconductors with
isolated Majorana bound states (i.e., all defects with zero modes are infinitely far away
from each other) cannot be deformed by a smooth variation of parameters into super-
conductors without zero modes unless the gap closes during the deformation. They are
in two topologically distinct phases and the phase transition between them is accom-
panied by a closing of the bulk gap. This parallels well-known topological phases in
integer quantum Hall systems and topological insulators, where gapless modes appear
at well-separated defects in an otherwise gapped system. In general transitions between
phases with different topological indices require a closing of the gap.

As stated above Majoranas are nonabelian anyons meaning that the final state of the
system after exchanging several pairs of Majoranas depends on the order of the ex-
change operations. In order to illustrate the exotic exchange statistics of Majorana bound
states we consider a concrete example where Majorana bound states arise. A supercon-
ducting flux quantum h/2e penetrating a 2d superconductor creates an Abrikosov vor-
tex. Due to the suppression of the superconducting gap by the magnetic flux such a
vortex binds localized states with equidistant energy levels En = (n+α)δ with n an in-
teger and δ ∼ ∆2/EF [Caro 64, Genn 99], where ∆ is the superconducting gap and EF
the Fermi energy. Particle-hole symmetry restricts α to 0 or 1/2. For massive electrons
as in an s-wave superconductor zero point motion enforces α = 1/2. In contrast, a p-
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Figure 2.1.: Exchanging Majoranas bound to h/2e vortices in p-wave superconductor.
Each vortex has a branch cut where the superconducting phase jumps by 2π
(dotted line).

wave superconductor with the pairing potential ∆′(px+ipy) features a linear dispersion
describing massless Dirac fermions where α = 0 and thus a zero mode is bound to the
vortex [Jack 81]. The origin of this shift by 1/2 can be understood semiclassically as an
additional Berry phase π accumulated by electrons moving around closed orbits due to
the locking of the momentum and the superconducting phase in p-wave superconduc-
tors. This yields an energy shift canceling the zero-point energy. 1

We can obtain an intuitive understanding of the nonabelian nature of the Majoranas
bound to vortices following Ivanov [Ivan 01, Ster 04, Alic 12]. The penetrating flux leads
to a winding of the superconducting phase around the vortex and creates a branch cut
where the phase jumps by 2π. When two vortices with Majoranas γ1,2 are exchanged as
shown in Fig. 2.1, one vortex has to cross a branch cut and the phase of the Majorana
wavefunction jumps by π, i.e., half of the superconducting phase change. Accordingly
the corresponding annihilation operators transform2 as γ1 → γ2, γ2 → −γ1. This trans-
formation can be described by the unitary operator U12 = (1 + γ1γ2)/

√
2. Indeed one

readily confirms that U12γ1/2U
†
12 = ∓γ2/1. We now consider two processes: exchanging

γ1 and γ2 and exchanging γ2 and a third Majorana γ3. The corresponding unitary trans-
formations do not commute [U12, U23] = γ1γ3 confirming that Majoranas are nonabelian
anyons.

In this thesis we focus on Majorana bound states in one-dimensional systems. We
commence by discussing a model for p-wave superconducting wires in detail in the
next section showing that Majorana bound states manifest themselves at domain walls.
The exceptional exchange statistics of Majoranas can also be accessed in wires although
braiding is ill defined in strictly one dimension. A way out is provided in [Alic 11] by

1This result is well known in the context of Graphene and surface states of topological insulators where
due to the massless Dirac fermions and spin-momentum locking the Landau levels have energiesEn ∼√
n instead of En ∼ (n+ 1/2) for massive fermions.

2This transformation already illustrates that Majoranas are neither bosons nor fermions. Exchanging
bosons once or fermions twice will leave the system’s ground state unchanged. In contrast for Ma-
jorana bound states four exchanges are necessary to return to the initial state consistent with calling
them “half fermions.”
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2 Topological superconductors and Majorana bound states

considering wire networks (e.g., T-junctions). For the experimental realization of Ma-
jorana bound states the one-dimensional realization is advantageous, since accessing
and manipulating vortices in 2d superconductors is presumably much more challeng-
ing than contacting or moving domain walls in wires.

2.2. Topological phases in one-dimensional p-wave superconductors

We can readily convince ourselves that topologically distinct phases cannot be realized
in plain s-wave superconductors. The s-wave gap is always nonzero and the super-
conductor can be smoothly deformed into a (trivial) vacuum phase by decreasing the
chemical potential µ → −∞. Whenever two phases can be deformed into each other
without closing of the gap we call them topologically connected. This is different for a
spinless p-wave superconductor with a BdG Hamiltonian

H =

(
p2

2m
− µ

)
τz + ∆′pτx (2.3)

in one dimension. Here ∆′ is the p-wave pairing strength and τj are Pauli matrices in
Nambu space. The excitation spectrum is readily obtained by squaring the Hamiltonian.
We find

E± = ±
√(

p2

2m
− µ

)2

+ (∆′p)2. (2.4)

The Pauli principle forbids p-wave pairing at zero momentum and thus the gap closes
at µ = 0. For µ < 0 the chemical potential is outside of the band and the system can be
adiabatically deformed into a trivial insulator. We now show that the superconducting
phase with µ > 0 is indeed topological.

Two phases are topologically distinct if an integer invariant exists, which takes dif-
ferent values in the two phases. We can indeed construct such an integer for one-
dimensional spinless p-wave superconductor. To this end we define the unit vector
ĥ = h/|h| that describes the matrix structure of the Hamiltonian in particle-hole space
as H = hz(p)τz + hx(p)τx. The two components of this vector are plotted in Fig. 2.2(a).
Figures 2.2(b) and (c) illustrate the winding of this vector when the momentum p is
tuned from−∞ to∞. While there is no winding in the insulating phase µ < 0, ĥwinds
once in the superconducting phase µ > 0. Since the winding number takes integer val-
ues it cannot be changed by small variations of parameters. It thus defines a topological
index ν and proves that the gap closing at µ = 0 marks a topological phase transition
to a nontrivial phase for µ > 0. Indeed we note that ĥ becomes ill-defined at gap clos-
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ĥ
z
(p

)
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Figure 2.2.: (a) Normal state spectrum hz(p) = p2/2m−µ and pairing hx(p) = ∆′p of the
p-wave superconductor forming the two components of the vector h. (b+c)
Winding of the normalized vector ĥ in the (b) topological phase (µ > 0) and
(c) the trivial phase (µ < 0).

ings, whereH = 0. This is a manifestation of the fact that a change of topological index
must involve a closing of the gap. In Fig. 2.3 we display the entire phase diagram of the
p-wave superconductor described by Eq. (2.3).

This simple construction of a topological index is limited to systems with translation
symmetry. In order to detect the topology in experiments the sample must have bound-
aries (e.g., where a lead is attached) and the topological phase needs to be stable to a
certain amount of disorder. To this end we will discuss more general constructions of
topological indices in terms of scattering matrices or in terms of boundary conditions
(similar to Laughlin’s argument for the quantum Hall effect) in Sec. 2.3 below. Never-
theless, this basic definition of a topological index is very helpful to understand several
more general concepts important for the classification of topological insulators and su-
perconductors [Ryu 10, Hasa 10].

(i) The topological index ν defined here is a winding number and can therefore take
any integer value. For the simple model in Eq. (2.3) only the values −1,0, and 1 are
possible as indicated in the phase diagram in Fig. 2.3. In accordance with earlier obser-
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2 Topological superconductors and Majorana bound states

μ

Δ'0

ν=0

ν=1ν=-1

Figure 2.3.: Phase diagram of the spinless p-wave superconductor. For µ < 0 the sys-
tem is trivial (gray area) and for µ > 0 there are two topologically nontrivial
phases (green and yellow). The gap closings signaling topological phase
transitions are marked by red lines. The vector ĥ shown in Fig. 2.2(b) winds
in opposite directions for different signs of the pairing ∆′ indicating a topo-
logical quantum number ν = ±1. The two nontrivial phases are separated
by a metallic line ∆′ = 0.

vations the transition between the two nontrivial phases ±1 occurring at ∆′ = 0 and
µ > 0 involves a closing of the gap. In fact, since the topological index changes by two,
also the gap closes at two distinct points in momentum space p = ±pF . This differs
from the µ = 0 transition with only a single gap closing at p = 0. Higher indices can
in principle also be realized when terms of order higher order in p are present in the
Hamiltonian. For instance, a band structure with more than two Fermi points and in-
duced f -wave pairing may yield a topological index±3. A two-dimensional realization
of such a system is discussed in Ref. [Mao 11].

(ii) The symmetry of the Hamiltonian determines the topological phase. Eq. (2.3)
has time-reversal symmetry (TR) [H, T ] = 0. Together with particle-hole symmetry
this puts the system in the symmetry class BDI [Altl 97]3. When a term ∼ τy is added
to the Hamiltonian in way that cannot be removed by a simple gauge transformation,
time-reversal symmetry is broken and the system is now in class D. For instance, the
multichannel generalization of Eq. (2.3) reads

Hquasi−1d =

(
p2

2m
− µ

)
τz + ∆′(pxτx − pyτy). (2.5)

In a quasi one-dimensional system, where py is quantized, we could in principle still
use the winding number definition of the topological index as the Hamiltonian depends
only on one momentum component px, but time-reversal symmetry is broken due to the

3In a spinless model time reversal only involves complex conjugation, T = K, and thus T 2 = 1

12



interchannel pairing ∆′pyτy.4 Our definition of ν ceases to describe a topological index
since the vector ĥ now lives on a sphere instead of a circle and all windings are trivial.
It is possible to define a different topological index for Eq. (2.5). The vector ĥ points
towards the north pole of the sphere ĥ∞ → ẑ for p→ ±∞. At p = 0 the pairing vanishes
and thus ĥ0 = ±ẑ points either to the north or south pole depending on whether the
band is empty or partially filled. Hence ν = ĥ∞ · ĥ0 defines a Z2 index. This shows that
the change of symmetry class usually comes along with a change of topological index.5

(iii) The definition of the winding number ν is restricted to a (quasi) one-dimensional
system as it assumes only one momentum component p. There are higher order gen-
eralization of a winding number. For instance, the Chern number in two dimensions
ν =

∫
d2p/4π(ĥ · (∂px ĥ × ∂py ĥ) can only assume integer values that count the twists in

the mapping of the 2d plane onto a 2-sphere. The Hamiltonian of a two dimensional
p-wave superconductor is the same as the one in Eq. (2.5) and the corresponding vector
ĥ lives on a 2-sphere. Thus a p + ip-wave superconductor in 2d (which breaks time-
reversal symmetry) also has an integer invariant given by the Chern number. Phases
with indices higher than 1 are again only realized in the presence of higher order pair-
ing and a more complicated band structure [Mao 11].

The relation between the one- and two-dimensional p-wave superconductors is an
example of the dimensional hierarchy that is at the basis of the periodic table of topo-
logical insulators [Kita 09, Schn 08, Ryu 10, Qi 08]. We have seen that a two-dimensional
system in class D (without time-reversal symmetry) has the same topological structure
as a one-dimensional system in class BDI (with time-reversal symmetry). A topologi-
cal index similar to a winding number can also be defined in higher dimensions as the
number of twists in the mapping of the n-sphere onto itself. 6 In each dimension this
is realized in a different symmetry class. This can be formalized in various ways in-
cluding K-theory [Kita 09] as well as topological field theories and nonlinear σ-models
[Qi 08, Schn 08, Ryu 10]. A less rigorous but insightful derivation of the dimensional
hierarchy in terms of scattering theory showing the transformation of the symmetry
classes under a dimensional reduction procedure has been given in [Fulg 12].

The discussion so far has focused on the topological properties of the bulk system.

4Another example of time-reversal breaking in 1d occurs in effective p-wave superconductors that can be
formed by the proximity effect in superconducting heterostructures in the presence of a magnetic field
(cf. Sec. 3.2). The effective model is spinless and therefore the magnetic field is not enough to break TR,
but a supercurrent flowing in the superconducting substrate induces a phase gradient in the pairing
and thus breaks TR [Romi 12]. The conditions for a supercurrent to break TR are discussed in Sec. 5.

5This definition can be easily extended to arbitrary lattice Hamiltonians with odd-momentum pair-
ing [Alic 12]. The pairing term vanishes at the Brillouin zone center and boundary and thus
ĥp=±π/a, ĥp=0 = ±ẑ. The relative sign ĥp=±π/a · ĥp=0 defines a Z2 topological index.

6More formally, the n-th homotopy group of the n-sphere is isomorphic to the integer numbers, πn(Sn) =
Z.
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2 Topological superconductors and Majorana bound states

The most important manifestation of the topology, however, are edge states associated
with the topological phase—in this case Majorana bound states. In the previous sec-
tion we have seen that the number of Majorana bound states at one edge (or defect) can
also define a topological index. We will see here and in the next section that the index
in terms of Majorana bound states is equivalent to the bulk topological quantum num-
ber. In order to first understand how Majoranas emerge in p-wave superconductors we
consider a tight-binding (TB) version [Kita 01, Motr 01] of Eq. (2.3)

HTB = −µTB

N∑
i=1

c†ici −
N−1∑
i=1

(tc†ici+1 + h.c.)−
N−1∑
i=1

(∆TBcici+1 + ∆∗TBc
†
i+1c

†
i ). (2.6)

This Hamiltonian describes a chain of spinless fermions and consequently on-site pair-
ing ∼ cici is ruled out by the Pauli principle. Therefore nearest neighbor pairing terms
have to be taken into account and the order parameter has p-wave symmetry. The Hamil-
tonian (2.6) is also called Kitaev chain for its use in Kitaev’s seminal work [Kita 01] on
Majoranas and their use as topologically protected qubits. The bulk spectrum can be
obtained by Fourier transformation

εTB(k) =
√

(2t cos ka+ µTB)2 + 4∆2
TB sin2 ka (2.7)

with lattice spacing a. The continuum limit ci → ψ(x) of the lattice model (2.6) reads∫ L

0
dx

[
ψ†(x)

(
p2

2m
− µ

)
ψ(x)− ψ(x)

∆′

2
pψ(x)− ψ†(x)

∆′∗

2
pψ†(x)

]
(2.8)

with the substitutions aN → L, a2t → 1/2m, µTB + 2t → µ, and a∆TB → ∆′/2. The
Fourier transformation of Eq. (2.8) can be written in Nambu notation, which yields the
Bogoliubov–de Gennes Hamiltonian of the p-wave superconducting wire in Eq. (2.3).
Similar to the continuum case the TB model is in a topologically nontrivial phase when
the chemical potential is inside the band. Since the TB dispersion is bound from above
and below the system has two topological phase transitions at µTB = ±2t.

We can find the solution to this Hamiltonian for specific sets of parameters illustrating
how the change of topological phase manifests itself in samples with boundaries. To
this end we perform a transformation to the Majorana basis ci = (γA,i + iγB,i)/2 with
Hermitian operators γ = γ†. The γ operators formally describe Majorana particles, but
their occurrence is purely mathematical so far as two such operators can be recombined
to form a Dirac fermion. In the insulating phase for t = ∆ = 0 and µ < 0, Eq. (2.6) reads

HTB = −µTB

N∑
i=1

c†ici = −iµTB

2

N∑
i=1

γA,iγB,i. (2.9)
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Here Majorana particles on the same site pair up to form Dirac fermions. With the choice
of parameters t = ∆ and chemical potential at the center of the band, µ = 0, which places
the system in the topological phase, the Hamiltonian (2.6) takes the form

HTB = −it
N−1∑
i=1

γA,iγB,i+1 = 2t
N−1∑
i=1

(
d†idi −

1

2

)
, (2.10)

where we have introduced new fermion operators di = γA,i + iγB,i+1. Now the Ma-
joranas from different sites are paired. Two Majorana operator have dropped out of
the Hamiltonian leaving only N − 1 excitations of energy 2t. The N -th fermion dN =

γA,N + iγB,1 has zero energy, but different from the other d operators it is delocalized
with contributions at both ends of the chain. The two operators γA,N and γB,1 now rep-
resent two uncoupled Majorana states each forming one zero-energy excitation in the
Bogoliubov–de Gennes spectrum as discussed in the previous section.

These two states exactly at zero energy exist only at t = ∆ and µ = 0. Let us consider
a semi-infinite chain for this special choice of parameters with one zero-energy state
localized on the last site. When tuning away from this point in parameter space the
energy of this state must remain at zero due to particle-hole symmetry, but the wave-
function may be extended over several sites. Because of the gap in the bulk of the wire,
the Majorana wavefunction decays exponentially. The behavior in finite chains, where
the two end state can hybridize, can then be inferred from a perturbative argument: the
overlap of the Majorana states is exponentially small in the length of the wire, which
generically leads to an exponentially small energy splitting. The exponential decay of
the Majorana wavefunction of the lattice model (2.6) has been given in [Kita 01]. Details
of the result for the continuum model (2.3) are discussed in Ch. 5 and the corresponding
energy splitting is derived from perturbation theory in App. A.

Hence the topological phase is characterized by end states with an energy exponen-
tially small in system size. They are protected in the sense that the energy of the two
Majoranas cannot be increased by any local perturbation added to the Hamiltonian. This
is very different from other subgap states such as Andreev bound states whose energy
can be changed by locally changing the Hamiltonian.

The existence of Majorana bound states in the TB model and their use as qubits dis-
cussed in a seminal work by Kitaev [Kita 01] has initiated a series of realistic proposals
for realizations of topological superconductors. We will discuss various realizations and
corresponding experimental signatures in Ch. 3.
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2 Topological superconductors and Majorana bound states

2.3. Definitions of topological indices and robustness to disorder

We have seen that the Majorana bound states at the ends of a wire are robust to disorder.
To see that also the bulk topological phases persist in disordered systems we define a
topological index in terms of the scattering matrix at the Fermi level [Merz 02, Akhm 11,
Fulg 12]. To this end we assume a semi-infinite (quasi) one-dimensional p-wave super-
conductor attached to a lead. For subgap energies the transmission amplitude vanishes
and due to the unitarity of the S matrix we have | det r| = 1, where r is the reflection
matrix. In the presence of particle-hole symmetry we can choose a basis7 in which the
reflection matrix satisfies r(ε) = r∗(−ε), thus at the Fermi level the reflection matrix is
real, i.e., det r = ±1. This allows us to define a Z2 topological index Q = det r, which
distinguishes between the two phases in class D. Consistent with our previous obser-
vation the index can only change when the gap closes and finite transmission leads to
|det r| 6= 1.

Similar definitions of topological indices in terms of the scattering matrix can be found
for other symmetry classes and dimensions [Fulg 11, Fulg 12]. For instance, the reflec-
tion matrix of a time-reversal symmetric p-wave superconductor in class BDI is real and
symmetric in the Majorana basis. Thus it has real eigenvalues and |det r| = 1 ensures
that none of the eigenvalues changes sign within a gapped region of parameter space.
Hence the number of, say, negative eigenvalues constitutes a topological quantum num-
ber. It can assume any integer value, which is compatible with the topological index
defined in terms of the band structure in Sec. 2.2.8

The topological indices in terms of scattering matrices are particularly useful as they
directly relate to experimentally observable phenomena. The number of bound states
at the end of the wire can be determined by placing a lead between the superconductor
with reflection matrix r and a hard wall with r0 = diag(−1, . . . ,−1). A bound state ψ
in the lead must obey r0rψ = ψ and, hence, each zero-energy end state corresponds
to an eigenvalue −1 of the reflection matrix r evaluated at the Fermi level. Thus the
topological index in class BDI counts the number of zero-energy bound states at the
end of the wire.9 A similar statement holds for class D: In the nontrivial phase with
det r = −1 there is an odd number of bound states, while the trivial phase supports an
even number. 10

7This is equivalent to the transformation to the Majorana basis we used for the Kitaev chain.
8Here we see again that indices higher than 1 can only be realized in p-wave superconductor wires with

several channels where the reflection matrix has multiple rows.
9There is some ambiguity for the termination of the normal lead in the chiral classes that can lead to

additional unprotected bound states (see Ref. [Fulg 11]).
10In class D, r is orthogonal in the Majorana basis and its eigenvalues are±1 or come in complex conjugate

pairs. Hence the condition det r = −1 requires an odd number of eigenvalues −1.
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The S matrix formulation of the topological index remains well defined for disor-
dered systems, which immediately establishes the robustness of Majorana states to a
small amount of disorder. For very large disorder, on the other hand, superconductiv-
ity is suppressed and the system turns trivial. Therefore a topological phase transition
must occur at some intermediate strength of disorder. This result has originally been
published in 2001 [Motr 01], independent of Kitaev’s work, based on a strong disorder
renormalization group approach. The critical disorder strength has been determined in
Ref. [Brou 11a] using scattering theory. Deep inside the topological phase the transition
to the trivial phase occurs when the coherence length of the clean superconductor is
twice the mean free path, ξ = 2l, i.e., when disorder starts to suppress superconducting
correlations.

Based on the results of Ref. [Brou 11a], we show in Sec. 5 (originally published as
Ref. [Pien 13c]) how weak disorder may also drive a system further into the topologi-
cal phase. In fact, a small region in the trivial phase becomes topological when weak
disorder is introduced. The phase diagram of the disordered p-wave superconductor is
shown in Fig. 5.8. An analytical theory for the phase diagram of individual disordered
samples has been developed later [Adag 14] confirming and extending these results.
The phase diagram of multichannel p-wave superconductors can be obtained along sim-
ilar lines [Ried 13]. In systems withN topological channels generically a sequence ofN
disorder-induced phase transitions occurs, which can be understood from simple argu-
ments. Consider first a collection ofN uncoupled strictly one-dimensional p-wave wires
in the topological phase. Each channel then exhibits a disorder-induced transition to the
trivial phase, where the critical disorder strength depends on the chemical potential rel-
ative to the bottom of the band. When weak hopping between different chains is allowed
the system is in class BDI and has an integer index which directly connects to the num-
ber of topological channels in the uncoupled system. Therefore also the sequence of
N disorder-induced phase transitions persists. When inter- and intrachannel hopping
have the same strength (which is equivalent to Eq. (2.5) with the interchannel pairing
∆′pyτy set to zero) there are still N phase transitions, but the topological phases persist
up to much higher disorder strengths. The transitions occur at ξ = l(N + 1)/n with
n = 1, . . . , N and thus the upper critical disorder strength above which the system is
trivial is ξ/l = (N + 1) instead of ξ/l = 2 for the uncoupled channels. When interchan-
nel pairing ∆′pyτy is present the system is in class D with a Z2 index. Thus the Majorana
end states gap out in pairs and the odd (even) integer phases are mapped to the topo-
logical (trivial) phase. This results in a sequence of N transitions between topological
and trivial phases [Ried 13].

Finally, we discuss a third possibility to define a topological index for superconduc-
tors in class D by means of the Josephson effect. Consider a Josephson junction of two
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2 Topological superconductors and Majorana bound states
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Figure 2.4.: (a) Superconducting ring with a Josephson junction possibly hosting cou-
pled Majorana bound states. Threading a flux through the ring causes a
phase difference at the junction. (b+c) Typical subgap spectrum of a Joseph-
son junction as a function of phase difference φ in (a) a topological supercon-
ductor ring hosting Majorana bound states and (b) a trivial superconductor
ring hosting Andreev bound states. The dark and light red states denote par-
ticle and hole levels of the same fermionic excitation related by particle-hole
symmetry. The subgap contribution of the Majoranas is 4π periodic whereas
a trivial junction exhibits 2π periodicity. The continuum (grey) depends only
very weakly on the superconducting phase difference with period 2π.

superconductors with a phase difference φ across the junction. The energy spectrum
is 2π periodic in φ and particle-hole symmetry furthermore ensures the spectrum to
be symmetric about zero energy. These two properties allow for two distinct phases
in which the spectrum has an even or odd number of zero-energy crossings when the
phase difference is tuned from 0 to 2π as shown in Fig. 2.4(b) and (c) . Here, a “single”
crossing involves two states related by particle-hole symmetry. Transitions between the
two states require the addition of single electrons and single crossings are therefore pro-
tected by fermion parity conservation. For an odd number of crossings between 0 and
2π the ground state changes its parity while for an even number of crossings the initial
and final ground states are identical. In the latter case the spectrum can be smoothly
deformed so that all crossings gap out in pairs leaving the system gapless throughout
the cycle.

Instead of using two superconductors we can bend a single superconducting wire
into a ring and couple the two ends by introducing end-to-end hopping as shown in
Fig. 2.4(a). The topological phase is then characterized by a change of the ground state
parity when the flux threading the ring is tuned adiabatically from zero to the super-
conducting flux quantum h/2e, which corresponds to a phase difference of 2π. This
property can be viewed as a manifestation of the nonabelian statistics and is equivalent
to the change of the ground state when moving one Majorana around another in two
dimensions (cf. discussion on nonabelian exchange in Sec. 2.1). The change of parity re-
mains unaffected by disorder as long as the bulk gap does not close and thus provides a
valid definition of a topological index in non-ideal systems. This index is equivalent to
the indices defined above in terms of the winding of the BdG Hamiltonian or the scat-
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tering matrix. In Sec. 3.3.2 we show that the presence of Majorana bound states at the
junction indeed implies an odd number of zero-energy crossings.

The change of the ground state by threading a flux quantum through a ring is closely
related Laughlin’s argument [Laug 81] for the integer quantum Hall effect. Similar argu-
ments can be used for the characterization of topological insulators in class AII [Fu 06],
or as a general scheme for a dimensional reduction procedure used for the construction
of the periodic table of topological insulators, where the flux is considered as a momen-
tum component in d+1 dimensions [Qi 08]. The change of parity can also be used for
detection of the topological phase, since the current in a topological Josephson junction
has a period of h/e instead of the usual h/2e period as long as parity is conserved. This
is discussed in detail in Sec. 3.3.2. Section 5 describes signatures of the topological phase
in the Josephson current even for systems where the fermion parity is not conserved.

The general properties of the topological phase and Majorana bound states arising in
p-wave superconductors apply to all models of topological superconductors discussed
in this thesis.11 The topology is determined by the dimension and symmetry class. Here
we consider the chiral class BDI (e.g., a p-wave superconductor in one dimension) and
class D (e.g., a quasi-one-dimensional p-wave superconducting wire), where the effec-
tive time-reversal symmetry is broken. Nevertheless in experiments also nontopological
properties may be important and seriously affect the physical manifestations of topol-
ogy. We therefore elucidate the most relevant systems hosting Majorana bound states
in the next chapter, in particular, addressing realization specific phenomena.

11An exception occurs in the context of helical Shiba chains elucidated in Sec. 7. In a certain limit the
effective description of such chains involves long-range couplings and therefore a mapping to a simple
p-wave superconductor is impossible.
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3. Physical realizations of one-dimensional

topological superconductors

In this chapter we review various proposals for systems hosting a topological supercon-
ducting phase and discuss how signatures of Majorana bound states can be detected
in experiment. We have seen in the previous chapter that one dimensional p-wave su-
perconductors support a topological phase hosting Majorana bound states. Although
intrinsic p-wave superconductors have not been unambiguously identified to date (for
a review on the prime candidate for intrinsic p-wave superconductivity Sr2RuO4, see
[Kall 12]), the realization of topological superconductors is within reach of state-of-the-
art experimental techniques. An important observation that goes back to Fu and Kane
[Fu 08] is that an effective p-wave superconductor can be engineered in superconduct-
ing hybrid systems. The strategy is to induce superconductivity by proximity in a sys-
tem where the Fermi level crosses only a single spin-split band. In such an effectively
spinless superconductor pairing of states at k = 0 is impossible (as there is only one
available state) and thus the gap closes when the chemical potential crosses the disper-
sion at k = 0. Assuming that the pairing potential is linear around k = 0, the system
is topologically equivalent to a p-wave superconductor and the gap closing marks the
topological phase transition. Hence superconductors with a single band at the Fermi
level generically support a topological phase.

The prospect of realizing Majorana bound states in superconducting hybrids has trig-
gered much experimental effort. Before discussing particular examples of effective p-
wave superconductors in Sec. 3.2 we briefly introduce the proximity effect by which
normal metals can inherit pairing correlations from neighboring superconductors. The
most relevant signatures of Majoranas and the current status of experiments are re-
viewed in Ch. 3.3

3.1. Proximity effect

Due to recent advances in nanotechnology it has become possible to artificially design
superconducting materials by means of the proximity effect [Doh 05, Fran 10a, Nish 11,
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3 Physical realizations of one-dimensional topological superconductors
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Figure 3.1.: (a) Incident electrons are Andreev reflected as holes at an interface between
a normal metal (N) and a superconductor (S) creating a Cooper pair in the
superconductor. The electrons may also be partially normal reflected by an
opaque interface. (b) Proximity effect in a wire. Sequential normal and An-
dreev reflection lead to electron-hole correlations and thus a superconduct-
ing gap throughout the wire. An opaque interface leads to repeated normal
reflections which increase the dwell time and reduce pairing correlations in
the wire.

Nils 12]. To understand this phenomenon we consider an interface between a normal
metal (N) and a superconductor (S) as shown in Fig. 3.1(a). Single electrons near the
Fermi energy in the normal metal cannot enter the superconductor due to the gap. Pairs
of electrons, however, may form Cooper pairs and pass into the condensate of the super-
conductor. This can alternatively be viewed as an Andreev reflection, where incident
spin up electrons are reflected from a superconductor as spin down holes with the op-
posite energy relative to the Fermi level. Such reflection processes create correlations
between electronic states in the normal metal close to the interface, which can be de-
scribed by a correlator 〈ψ↑ψ↓〉. This effectively creates an order parameter ∆ind ∝ 〈ψ↑ψ↓〉
in the normal metal even in the absence of attractive interactions between electrons.

Here we are interested in wires with only a few transverse modes placed on top of
a superconductor depicted in Fig. 3.1(b). In this case the entire system becomes super-
conducting. The induced gap is mainly determined by the interface transparency. For
an ideal interface to a strictly one-dimensional wire the induced gap is equal to ∆, the
gap of the host superconductor [Alic 12]. When the interface transmission is small the
energy scale of the lowest excitation is set by the Thouless energy, i.e., by the inverse
time electrons spend in the normal metal [McMi 68]. This estimate remains valid as
long as the Thouless energy remains small compared to ∆. This is typically the case for
Andreev billiards, where the extension of the normal system determines the lowest ex-
citation energy [Been 05]. In case of a 1d wire the Thouless energy is set by the tunneling
rate. Thus if Γ� ∆ the induced gap ∆ind ∼ Γ becomes independent of the host super-
conductor. The same result can be obtained from second-order perturbation theory in
the tunneling amplitude. A more accurate theory involves integrating out the supercon-
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ductor’s degrees of freedom from the action [Pott 11, Alic 12], which yields the induced
gap also for intermediate interface transparencies. In addition to the proximity effect,
the coupling to the superconductor also renormalizes the bare energy scales of the 1d
wire downwards (i.e., it reduces the quasiparticle weight) due to electrons leaking into
the superconductor [Pott 11, Alic 12]. Thus a stronger coupling to the superconductor
enhances pairing but diminishes all other energy scales of the 1d system.

3.2. Topological phases in superconducting hybrid systems

To open a proximity-induced gap in a metal requires the metallic states of opposite mo-
mentum to have different spin orientations because incident electrons can only be An-
dreev reflected from the superconductor as holes with opposite spin. This poses a ma-
jor complication to several Majorana proposals as an external magnetic field required to
break spin degeneracy generally renders the s-wave proximity effect inefficient. At the
same time the competition between a spin-polarizing magnetic field and spin-singlet su-
perconductivity that antialigns spins may be beneficial as it allows tuning through the
topological phase transition. In this section we elucidate three suitable systems with a
single partially-occupied band, which have received much attention. Although the ob-
servation of Majorana bound states has not yet been proven indisputably, experimental
progress has been achieved in all of these systems.

3.2.1. Topological insulator edge

In a seminal work Fu and Kane [Fu 08] realized that the surface of a three-dimensional
topological insulator (TI) coupled to a superconductor realizes an effective two dimen-
sional p+ip superconductor. In a subsequent paper [Fu 09a], the same authors proposed
the realization of a one-dimensional p-wave superconductor on the proximity-coupled
edge of a 2d topological insulator. The 1d edge channels can be described by a Dirac
Hamiltonian, where opposite momenta have antiparallel spins. Due to this favorable
relation between spin and momentum the proximity effect can open a sizable gap in
the edge channel comparable to the gap of the nearby superconductor itself. We can
readily convince ourselves that the induced pairing has indeed p-wave symmetry as a
consequence of the broken spin degeneracy: ∆k = 〈ψk↑ψ−k↓〉 = −〈ψ−k↓ψk↑〉 = −∆−k.

In order to realize Majorana bound states the effective topological superconductor on
the edge needs to be terminated. This can be achieved by inducing a Zeeman term ei-
ther by applying a magnetic field or placing a ferromagnet next to the edge. The Zeeman
term breaks the time-reversal symmetry protecting the edge states and therefore opens
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3 Physical realizations of one-dimensional topological superconductors

FM SC

2d TI

FM

Figure 3.2.: Two dimensional topological insulator with counterpropagating edge
modes. The edge channels can be gapped by a superconductor or a ferro-
magnet with Majorana bound states existing at the interfaces between dif-
ferent gapped regions.

a gap by introducing backscattering between the counterpropagating modes. The Zee-
man gap has a very different nature than the superconducting gap as the former tends
to align spins whereas the latter favors an antiparallel spin configuration. This leads to a
competition between the two mechanisms, which results in an intermediate gap closing
when the system is adiabatically tuned from a magnetically gapped state to one with a
superconducting gap.

To make these arguments more quantitative we consider the effective Bogoliubov–de
Gennes Hamiltonian describing the 2d topological insulator edge [Fu 09a]

HTI = upσzτz − µτz + ∆τx +Bσx (3.1)

in the Nambu spinor basis (ψ↑, ψ↓, ψ
†
↓,−ψ

†
↑), where σ and τ denote Pauli matrices in spin

and particle-hole space, u is the edge-state velocity, B is the Zeeman field, ∆ the prox-
imity strength, and µ the chemical potential. The energy spectrum can be obtained by
squaring the Hamiltonian twiceE2

TI = (up)2+µ2+∆2+B2±2
√
B2∆2 +B2µ2 + (up)2µ2.

At p = 0 we find for the energy of the lower band involving the minus sign

ETI,−(p = 0) =
∣∣∣B −√∆2 + µ2

∣∣∣ (3.2)

and the gap closes whenB2 = ∆2+µ2. We can therefore distinguish two gapped phases
dominated by B or (∆2 + µ2)1/2 which are separated by a gapless critical point where
the two quantities are equal.

We now show that interfaces between the B and ∆ dominated phases support Majo-
rana bound states as shown schematically in Fig. 3.2. We follow [Oreg 10] setting µ = 0

and B = ∆ + bx with the spatial coordinate x so that the phase boundary lies at x = 0.

24



By squaring the Hamiltonian we obtain

H2
TI = B2 + ∆2 + 2B∆τxσx + ubσyτz + (up)2. (3.3)

Using U † = (τz − iτx − iσxτz + σxτx)/2 we find that UH2
TIU

† is diagonal with entries
(up)2+(B±∆)2±ub. The entries that involveB−∆ have the form of a harmonic oscillator
with energies E2 = 2ub(n + 1/2) ± ub. Thus there is exactly one zero mode localized
at the interface whose wavefunction is a Gaussian ∼ exp(−x2/2l2) with a localization
length l =

√
u/|b|. Undoing the rotation shows that the lowest excitation is indeed a

Majorana state γ = γ† = (ψ↑ + ψ†↑ − iψ↓ + iψ†↓)/2. The shift −ub in the bound state
energies from half integer to integer quanta and the occurrence of a single zero mode is
due to the Dirac spectrum and parallels the shift of bound state energies in Abrikosov
vortices in 2d p-wave superconductors discussed in Sec. 2.1.

As argued above the ∆ dominated phase can be mapped onto a p-wave supercon-
ductor, for which Majorana end states are expected to occur. Thus one is tempted to
associate the B dominated phase with the trivial vacuum. This is refuted by an inter-
esting duality of the model in Eq. (3.1): for µ = 0 the Hamiltonian is invariant under the
exchange of magnetic and superconducting quantities (∆, τ)↔ (B, σ) [Nils 08, Jian 13].
The duality of the two gapped phases thus suggests that both phases have topological
properties.1 When discussing the topological 4π Josephson effect in Sec. 3.3.2, we will
see that both phases indeed exhibit signatures of a nontrivial phase either in the conven-
tional or the magneto-Josephson effect [Jian 13]. Note that the nonexistence of a trivial
phase is a consequence of the Dirac spectrum of the TI edge. This model does not have
a genuine vacuum phase corresponding to the atomic limit of the Kitaev chain as it re-
mains gapless for B = ∆ = 0 even in the limit µ→ −∞.

Although topological insulators in two and three dimensions are readily available
in experiment, only little progress has been made towards the realization of effective
p-wave superconductors via the proximity effect since the proposal of Fu and Kane
[Fu 08]. Several groups have studied the Josephson effect on top of a 3d TI [Will 12,
Maie 12, Veld 12, Oost 13, Cho 13, Soch 13, Kurt 13], but clear signatures of Majorana
modes have not been observed. In two recent works [Hart 13, Prib 14] the authors report
a supercurrent induced in the edge of a 2d topological insulator. This may represent a
major step towards the realization of zero-dimensional Majorana bound states. Possible
signatures of Majorana states in Josephson junctions on a TI edge have been discussed,
e.g., in [Fu 09a] (see also Sec. 3.3.2).

1In a mapping of the TI edge low-energy degrees of freedom to a p-wave superconductor theB dominated
phase indeed corresponds to the trivial phase. Nevertheless, the B phase can also be mapped to a
topological phase in a different model.
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3 Physical realizations of one-dimensional topological superconductors
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Figure 3.3.: (a) A semiconductor quantum wire placed on top of a superconductor and
subject to a magnetic field perpendicular to the direction of the effective
Rashba spin-orbit field may exhibit Majorana bound states at its ends. (b-d):
Normal band structure of a semiconductor quantum wire for (b)B = 0 (with
the two spin components marked by different colors), (c) B � εso = mu2

and (d) B � εso. (e) Excitation spectrum of the superconducting quantum
wire for ∆ . B � εso. The spectrum has three low-energy subspaces at
p = 0 and p = ±pF .

3.2.2. Semiconductor quantum wires

Following earlier work on two-dimensional semiconductor structures [Alic 10, Sau 10]
two seminal papers [Oreg 10, Lutc 10] proposed that proximity-coupled semiconductor
quantum wires host a topological superconducting phase in the presence of a magnetic
field. This setup is shown schematically in Fig. 3.3(a). To understand how a topological
phase can arise in this system we consider a single channel of free electrons in 1d with
a Zeeman field B that pushes one spin band above the Fermi level so that only one pair
of Fermi points remains [cf. Fig. 3.3(d)]. The spins at these two Fermi points are parallel
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and proximity coupling to an s-wave superconductor is frustrated. If in addition Rashba
spin-orbit coupling is present, the spins are tilted away from the parallel configuration,
enabling proximity coupling to an s-wave superconductor. The system thus forms an
effective spinless superconductor. The resulting Hamiltonian reads

HQW =

(
p2

2m
− µ

)
τz + upσzτz + ∆τx +Bσx (3.4)

in the same Nambu basis as Eq. (3.1) with Zeeman strength B, spin-orbit velocity u,
proximity strength ∆, and chemical potential µ. In writing Eq. (3.4) we have assumed
the magnetic field (along x̂) to be perpendicular to the effective spin-orbit field (along ẑ)
resulting in the mixing of the two spin components required for the proximity effect. We
can find the eigenvalues by squaring the Hamiltonian twiceE2 = ξ2

p+∆2 +B2 +(up)2±
2
√

∆2B2 +B2ξ2
p + (up)2ξ2

p with ξp = p2/2m−µ. At p = 0 we findE = ±B±
√

∆2 + µ2

and the gap closes when B2 = ∆2 + µ2. Similar to the TI edge the competition between
Zeeman field and superconductivity induces a phase transition between the two gapped
phase. We can easily convince ourselves that the gap does not close at any other value
of the momentum.

An important difference to the TI-edge proposal, however, is the nature of the phases.
In the limit of large B the normal dispersion has only a single band crossing the Fermi
level. Therefore the B phase (B2 > ∆2 + µ2) can be identified with the topological p-
wave superconductor. On the other hand the ∆ phase (B2 < ∆2 + µ2) is trivial. This
reversal of the phases with respect to the TI-edge proposal can be understood from the
spectrum shown in Figs. 3.3(b), (c), and (e) for the case µ = 0 and B � εso, where
εso = mu2/2 is the spin-orbit energy. The dispersion for B = 0 in Fig. 3.3(b) has three
crossing points with the Fermi level at zero energy at p = 0 and p = ±pF with pF = 2mu.
For 0 < B � εso a small gap of magnitude B opens at p = 0 [Fig. 3.3(c)]. A pairing po-
tential additionally opens gaps of magnitude ∆ at the wings p = ±pF and modifies the
gap at the central Fermi point, which becomes |B−∆| [Fig. 3.3(e)]. As detailed in Sec. 6
(see also App. B) the model can be effectively described in this limit by two weakly cou-
pled low-energy subspaces: a p-wave superconductor at the wings p = ±pF and a 2d TI
edge described by Eq. (3.1) at p = 0. The topological invariant of the quantum wire is
then determined by the sum of the individual quantum numbers of the two subspaces.
While the outer subspace represents a p-wave superconductor deep in the topological
phase (i.e., the chemical potential is inside the band), the inner subspace at p = 0 de-
pends on the competition of B and ∆ as we have seen in the previous section. In the
∆ phase the inner subspace is equivalent to another topological p-wave superconductor
with opposite sign of the effective p-wave pairing amplitude and the topological quan-
tum numbers add up to zero. Thus the presence of the wings of the spectrum at p = ±pF
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3 Physical realizations of one-dimensional topological superconductors

are responsible for the reversal of the topological phases between the quantum-wire and
TI-edge models. In Sec. 6 we substantiate this interpretation by numerically calculating
the subgap spectrum of topological Josephson junctions. Indeed, we can identify hy-
bridized Majorana bound states originating from both low-energy subspaces in the ∆

phase.

This discussion suggests that an s-wave superconductor [corresponding to Eq. (3.4)
with B and u set to zero] can be thought of as a two-band p-wave superconductor with
topological indices ±1. In such a (topologically trivial) system the two Majorana states
at each end are coupled and form a finite-energy excitation. The energy depends on
details of the termination of the wire which determines the coupling between the two
Majorana states [Kell 12b].

Semiconductor quantum wires are well-studied in experiment and provide a promis-
ing venue for the realization of topological phases. Proximity induced superconduc-
tivity in quantum wires with very high interface transparencies has been shown exper-
imentally [Doh 05, Dam 06]. Driving semiconductor–superconductor hybrid systems
into a topological phase furthermore requires a large Zeeman splitting to overcome su-
perconductivity as well as strong spin-orbit coupling to twist the spins away from the
direction dictated by the magnetic field and to allow for a sizable superconducting gap.
Particularly promising candidates are InSb or InAs quantum wires, which exhibit con-
siderable Rashba spin-orbit coupling with a spin-orbit energy εso ∼ 250µeV and large
g factors gInAs ∼ 8 and gInSb ∼ 50 [Fast 07, Nils 09]. Several groups have attempted the
realization of a topological phase in semiconductor wires. The current experimental
status in reviewed in Sec. 3.3.

3.2.3. Chains of magnetic impurities

A third promising venue for topological superconductors involves a spatially rotating
magnetic field creating a noncollinear spin configuration in a one-dimensional system.
Similar to the quantum wire proposal such a system is effectively spinless but pairing
can be induced via proximity to an s-wave superconductor due to the twisted spins. In-
deed, a constantly winding field applied to a 1d superconductor yields the Hamiltonian

H =

(
p2

2m
− µ

)
τz + ∆τx +B cos(x∇θ)σx −B sin(x∇θ)σy, (3.5)
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Figure 3.4.: Bogoliubov–de Gennes spectrum of a single Shiba bound state as a function
of exchange splitting.

where x is the position and θ is the magnetic field angle with∇θ = const. Performing a
gauge transformation U = exp(ix∇θ/2σz) yields

U †HU =

(
p2

2m
− µ+

(∇θ)2

8m

)
τz +

∇θ
2m

pσzτz + ∆τx +Bσx, (3.6)

which has just the same structure as the quantum wire Hamiltonian (3.4) with the wind-
ing of the magnetic field taking the role of spin-orbit interaction. This can be used to con-
struct various alternative realizations of topological superconductors in hybrid struc-
tures without strong spin-orbit interaction, for instance, proximity-coupled quantum
wires close to arrays of nanomagnets [Kjae 12] or rare earth compounds with coexisting
superconductivity and helical magnetism [Mart 12].

The perhaps most promising candidate involves a chain of magnetic impurities on top
of a conventional s-wave superconductor [Choy 11, Nadj 13, Nako 13b, Klin 13, Vazi 13,
Brau 13, Pien 13a, Pien 14]. A classical impurity with pure exchange interaction in a 3d
superconductor can be described by the BdG Hamiltonian

Himp =

(
p2

2m
− µ

)
τz + ∆τx + JSδ(r)σz, (3.7)

where J is the exchange coupling and S the impurity spin. Such impurities bind local-
ized states at subgap energies called Shiba states [Yu 65, Shib 68, Rusi 69, Bala 06]. The
bound state energy is

ε0 = ±∆
1− α2

1 + α2
(3.8)

with α = πν0SJ , where ν0 the normal density of states. The Shiba state wavefunction
has the form φShiba ∼ exp(−r

√
∆2 − ε20/vF )/r. It decays exponentially on the scale
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3 Physical realizations of one-dimensional topological superconductors

Figure 3.5.: A chain of magnetic impurities forming a spin helix. The impurities induce
overlapping subgap states in the superconductor, which may form a one-
dimensional topological superconductor.

of the superconducting coherence length and as a 1/r power-law on shorter scales.
Conveniently such states can be probed directly by scanning tunneling spectroscopy
[Yazd 97, Yazd 99], which considerably facilitates the detection of possible Majorana
bound states. Chapter 8 examines tunneling spectroscopy of Shiba states in detail show-
ing how competing transport mechanisms determine the differential tunneling conduc-
tance.

The Shiba state generates a quantum phase transition at α = 1, where the Shiba state
energy changes sign as shown in Fig. 3.4. At the transition the spin of the ground state
of the superconductor changes by 1/2. For quantum spins a very similar phase tran-
sition occurs between the BCS ground state at weak exchange coupling and a Kondo
state when the exchange coupling is strong enough to break a Cooper pair in order to
screen the impurity [Bala 06, Fran 11, Baue 13, Yao 14]. A chain of impurities leads to
the formation of an impurity band in the gap of the superconductor. For deep Shiba
states when α ∼ 1 the band crosses zero energy and a topological phase is supported
once the impurity band itself turns superconducting.

In order to induce superconductivity in the impurity band it is envisioned that the
impurities’ magnetic moments form a spin helix due to RKKY interaction. While for the
one-dimensional RKKY interaction a spin helix with wavevector 2kF is stable [Kitt 68],
a one-dimensional chain on a three-dimensional substrate generally exhibits ferromag-
netic or antiferromagnetic ordering. Here the substrate is superconducting which sup-
presses the susceptibility at wavevector q = 0 (this has been first discussed for the 3d
susceptibility in [Ande 59]) making ferromagnetism unfavorable and supporting the
formation of a spin helix. In addition, spin-orbit interaction in the substrate can cause
helical ordering of spins by inducing a Dzyaloshinsky–Moriya interaction (for one and
two-dimensional systems see [Imam 04]). There is some evidence for such a spin helix
on three dimensional metal surfaces [Menz 12].
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Assuming that a spin helix forms one can derive an effective tight-binding model in
terms of the helical Shiba states induced by the spin chain as shown in Fig. 3.5. In this
model on-site pairing is suppressed since the individual impurities are spin polarized,
but the noncollinear spins on neighboring atoms allow for nearest neighbor pairing.
If the electron and hole branches of the impurity band inside the gap overlap at the
Fermi level the pairing correlations open a gap in the impurity band turning it into
an effective one dimensional spinless superconductor. This suggests that the impurity
chain can effectively be described by the Kitaev model (2.6). This is indeed the case for
very short coherence lengths comparable to the lattice spacing ξ ∼ a when the Shiba
states decay exponentially ∼ exp(−x/ξ). In contrast, for long coherence lengths ξ � a,
which is typically the case in experiments, the Shiba states have a power-law decay on
scales shorter than ξ giving rise to long-range hopping and pairing terms. In Ch. 7
we derive the corresponding effective tight-binding model and discuss the remarkable
implications of the long-range terms on the topological phase diagram and the Majorana
bound states.

Finally we point out that a ferromagnetic chain can also host a topological supercon-
ducting phase in the presence of spin-orbit coupling in the superconducting substrate.
A similar setup has been studied in [Duck 11, Chun 11], where a halfmetallic wire in
proximity to a spin-orbit-coupled superconductor has been shown to host a topological
phase. By virtue of the transformation U in Eq. 3.6 the model for the helical spin chain
derived in Ch. 7 equally describes a ferromagnetic chain on top of a superconductor
with Rashba spin-orbit coupling, where the helix pitch corresponds to the spin-orbit
length λso. This mapping is valid in the case of large impurity spacing kFa� 1 and not
too strong spin-orbit interaction kFλso � 1, where kF is the Fermi momentum.

3.3. Experimental signatures of topological superconductivity

For experimental purposes the one-dimensional realizations of topological supercon-
ductors are most promising. In the proposals outlined in the previous section the Ma-
jorana bound states are pinned to domain walls and it is possible to tune through the
topological phase transition with gates [Oreg 10, Lutc 10], magnetic fields [Fu 08, Li 14],
or supercurrents [Romi 12, Ront 14]. Moreover a variety of methods for the characteri-
zation and manipulation of bound states in one-dimensional superconductors exist. In
this section we discuss the most important experimental signatures in one dimension
and provide an overview over the current status of experimental work.
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Figure 3.6.: (a) Resonant Andreev reflection in anN−S junction can be seen as coupling
an isolated level at ε0 to an electron lead at energy eV (red) and a hole lead
at energy−eV (blue). For a Majorana state the ingoing electrons and outgo-
ing holes have equal transmission probability through the tunneling barrier,
which results in a quantized zero-bias peak in the differential conductance.
(b) Typical differential conductance trace of a N − S tunnel junction host-
ing a Majorana bound state at zero temperature. The zero-bias conductance
peak of quantized height 2e2/h serves as a signature of the Majorana states.
The peaks at |eV | = ∆ originate from the BCS singularity in the supercon-
ductor’s density of states.

3.3.1. Conductance signatures

Current experimental efforts to detect signatures of Majorana bound states mainly fo-
cus on conductance measurements. As predicted in [Law 09, Flen 10] tunneling into a
Majorana end state yields a quantized conductance of 2e2/h. Consider a junction of a
normal metal (N) and a superconductor (S) with a tunnel barrier in between. Such a
setup can be realized, for instance, by tunneling from an STM tip or by contacting the
quantum wire with a normal electrode at one end and inducing a tunnel barrier with
gates.

There are two principle mechanisms responsible for transport through anN−S junc-
tion: tunneling of single-electrons and Andreev reflection. At subgap voltages the su-
perconductor can only accommodate single electrons by exciting subgap quasiparticles
and a dc current requires relaxation of these quasiparticle states (so-called quasiparti-
cle poisoning), e.g., by phonon-induced transitions to the continuum. Tunneling spec-
troscopy measurements inN−S andS−S junctions including such relaxation processes
are discussed in detail in Sec. 8. At low temperatures we may neglect quasiparticle poi-
soning and only consider Andreev reflection as the dominant transport mechanism.

Bound states resonantly enhance Andreev reflection and therefore appear as peaks in
the differential conductance as a function of bias voltageV . Resonant Andreev reflection
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is equivalent to tunneling between two reservoirs through a resonant level as depicted
in Fig. 3.6(a), where the tip serves as the lead for the incoming electrons at energy eV
and the outgoing holes at−eV [Law 09] (see also [Mart 13] and Sec. 8). The peak height
of such a resonance is given by the usual expression for resonant tunneling [Naza 09](

dI

dV

)
reson.

=
2e2

h

4TeTh
(Te + Th)2

, (3.9)

where Te/h are the electron and hole tunneling probabilities. When the superconductor
is in a topological phase the junction harbors a Majorana state at zero energy which
thus appears as a zero-bias peak. Since the Majorana is a quasiparticle with an equal
superposition of electrons and holes the incoming electrons and outgoing holes, both
at zero energy, have equal transmission probability through the barrier Te = Th. As
a result the conductance is equal to the superconducting conductance quantum 2e2/h

independent of the tunneling strength. The differential conductance as a function of bias
voltage for a normal metal–topological superconductor junction is shown in Fig. 3.6(b).

Such a quantized zero-bias peak in the differential conductance can serve as an ex-
perimentally accessible fingerprint of a Majorana bound state. Indeed, in several ex-
periments a zero-bias peak appearing at finite magnetic fields has been observed in the
conductance of superconducting quantum wires [Mour 12, Das 12, Deng 12a, Lee 12,
Chan 13, Finc 13, Chur 13, Lee 14], although not all of the reports attribute the observa-
tions to Majorana bound states. In all cases the reported zero-bias conductance is much
smaller than the conductance quantum. Such a reduction in height can be explained by
a combination of temperature broadening and multichannel effects. A detailed discus-
sion of the peak height in a general multichannel wire is given in Sec. 4. At the same
time a nonquantized peak at zero-bias can have various origins other than topological
superconductivity:

(a) The Kondo effect in superconductors can result in a zero-bias peak above a cer-
tain strength of magnetic field. In normal metals the Kondo effect leads to screening
of an impurity spin by electrons at the Fermi level and manifests itself as a zero-bias
peak without requiring an external magnetic field. By contrast, in a superconductor the
condensate depletes the density of states at the Fermi level leaving the Kondo impurity
unscreened. An applied magnetic field reduces pairing and when the Kondo tempera-
ture is large enough screening is established once the density of states at the Fermi level
becomes finite. In this case the zero-bias peak only appears at finite fields mimicking
the behavior of a Majorana peak only appearing beyond a critical magnetic field. Im-
portantly, quasiparticle subgap states or a soft gap can lead to coexistence of a Kondo
peak and superconductivity as observed in Refs. [Lee 12] and [Chan 13].
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3 Physical realizations of one-dimensional topological superconductors

(b) Disorder can result in a spectral peak at the center of the gap resulting in a zero-bias
peak. In disordered topological superconductor wires (in class D) close to the critical
point disorder-induced subgap levels cluster at zero-energy [Bagr 12, Neve 13]. At the
end of the superconducting domain, e.g., in the N − S junction possibly hosting Majo-
rana states, this leads to the formation of a small region (an effective “quantum dot” in
the language of Ref. [Bagr 12]), where a gapless diffusion mode forms. This mode orig-
inates from coherent scattering off order parameter fluctuations due to disorder and
it appears as a zero-bias peak in the conductance. The same phenomenon can alter-
natively be understood in terms of weak antilocalization in class D [Piku 12]. At zero
energy the Andreev-reflected holes are the phase conjugate of the incident electrons
leading to constructive interference which enhances the conductance. The phase conju-
gation relies on particle-hole symmetry only present at zero energy and therefore weak
antilocalization leads to a zero-bias peak. The general statements above only apply to
ensemble averages rather than individual disorder realization. Nevertheless, it can be
argued [Bagr 12, Piku 12, Neve 13] that the zero-bias excess conductance of the ensem-
ble average originates mainly from certain disorder configurations. Thus a zero-bias
peak occurs in specific samples and may even persist upon a variation of parameters.

One instance where a disorder-induced zero-bias peak could persists for a certain
range of magnetic field occurs in disordered proximity-coupled quantum wire. When
the gap is smaller than a certain threshold the density of states of such wires develops
a Dyson singularity at zero energy [Brou 11b]. Since the gap is small in the vicinity of
the topological critical point, a zero-bias peak can occur in a finite range of magnetic
field on both sides of the topological phase transition. This effect is exclusively due to
clustering of disorder-induced subgap states near zero energy but mimics the typical
magnetic field dependence of Majorana peaks in finite wires.

(c) Pairs of Andreev bound states can be close to zero energy resulting in a zero-bias
conductance peak. Usually Andreev bound states can be identified from their magnetic
field dependence as they disperse as gµBB/2. The usually very large g factor makes
such states easily discernible as in Ref. [Mour 12]. Nevertheless, it is possible for An-
dreev states to remain near zero energy in a finite range of magnetic field with a much
weaker field dependence than the Zeeman energy. This occurs due to a combination of
level repulsion and a decreasing superconducting gap, which pushes all subgap levels
towards the center of the gap. This effect was observed experimentally and supported
by theoretical calculations in Ref. [Lee 14]. Moreover, the authors comment that the pre-
sumed conductance signatures of Majorana particles in Ref. [Das 12] are consistent with
weakly dispersing Andreev bound states.

Such zero-bias peaks originating from Andreev bound states can be ruled out by us-
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ing, e.g., InSb wires with a g factor g ∼ 50 ensuring a strong dispersion of Andreev
states.

(d) Pairs of end states in trivial s-wave superconducting wires can be close to zero en-
ergy. A 1d s-wave superconductor is topologically equivalent to two copies of a p-wave
wire with indices ±1. Such a wire hosts two bound states at a single end, which can be
thought of as two coupled Majorana states originating from the two p-wave channels.
For an abruptly terminated wire the coupling energy is usually of the order of the gap
but when the confining potential is smooth the coupling can become exponentially sup-
pressed [Kell 12b]. Similar low-energy subgap states appear in quasi one-dimensional
p-wave wires [Kell 12a, Pott 12, Ried 12]. If close enough to zero energy such states can
appear as zero-bias peaks in the differential conductance although the system is in a
trivial phase.

A different setup has been investigated in Ref. [Deng 12a], where a zero-bias conduc-
tance peak has been observed in an S−S junction and attributed to the presence of Ma-
jorana bound states. One likely origin of such a peak is a supercurrent flowing across
the Josephson junction. The supercurrent originating from the Majorana states, how-
ever, cannot be distinguished from the ordinary bulk supercurrent or current through
Andreev bound states in conductance measurements.2 On the other hand, tunneling
from the continuum into the zero-energy Majorana state produces a peak at eV = ∆

and not zero. Unfortunately, a peak at ∆ can also originate from pure Andreev reflec-
tion without Majoranas and it thus does not provide unambiguous evidence for the
Majorana.

Nevertheless, it is possible to differentiate between the two processes. At moderate
temperatures single electron tunneling into the Majorana state is possible due to phonon
induced relaxation (see Ch. 8 for a general discussion of tunneling into bound states in
a superconductor). As a consequence in the limit of very weak tunneling the Majorana
peak height should be linear in the junction transmission T , whereas an Andreev pro-
cess involves two tunneling events and scales as ∼ T 2. The presence of single-electron
tunneling processes proves the existence of a bound state at zero energy. Showing
furthermore that this state appears only at finite magnetic fields and then remains at
eV = ∆ for larger fields constitutes a strong signature of a Majorana. In this sense the
S − S setup may be advantageous compared to an N − S junction, since, for instance,
weak antilocalization can be ruled out as a possible origin of the peak.

2In Sec. 3.3.2 we discuss how the Majorana mediated supercurrent can be differentiated by phase-sensitive
methods.
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Figure 3.7.: (a) A Josephson junction between two topological superconductors hosting
two Majorana bound states. (b) Spectrum of a topological Josephson junc-
tion. The two Majorana excitations have period 4π in the superconducting
phase difference.

3.3.2. The 4π Josephson effect

Tunnel junctions between two superconductors exhibit the Josephson effect, where a
supercurrent flows only due to a phase difference between the superconductors. This
phase difference can be controlled, for instance, by threading a flux through a supercon-
ducting ring. The Josephson current is periodic in the superconducting phase difference
corresponding to a flux period of h/2e. This period reflects the charge 2e of Cooper pairs
carrying the supercurrent. The Josephson current flowing between two superconduc-
tors in the topological phase is obviously affected by the Majorana bound states located
at the junction shown in Fig. 3.7(a). The Majorana states form single-particle states at
zero energy allowing individual quasiparticles with charge e to cross the junction giving
rise to a flux period h/e. In terms of the phase difference the Josephson current becomes
4π periodic [Kita 01].

In order to substantiate this heuristic argument we consider the spectrum of two Ma-
jorana bound states γ1 and γ2 on two sides of an initially impenetrable barrier. We can
construct a zero-energy fermionic excitation d0 = γ1 +iγ2 from the two Majoranas. Now
consider an operation that adiabatically tunes the phase of the order parameter φ in the
right superconductor from 0 to 2π. This effects the rotation γ2 → eiπγ2 = −γ2 and the
fermion d0 then evolves to d2π = γ1 − iγ2. Now we allow for a finite coupling through
the barrier, which is weak enough that the operators d are a good description of the ex-
citations. At zero phase difference the Majoranas acquire an energy splitting and the
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fermion d0 annihilates an excitation of energy E0. By virtue of particle-hole symmetry
d†0 = γ1 − iγ2 annihilates an excitation of energy −E0. The same is true at phase differ-
ence φ = 2π, but now dπ = d†0 annihilates an excitation of energy−E0. Thus the positive
energy state at φ = 0 becomes negative at φ = π as illustrated in Fig. 3.7(b). This shows
that the excitation d has an odd number of zero-energy crossings when tuning the phase
difference by 2π and hence the current J ∝ ∂φE is 4π periodic, since fermion-parity con-
servation forbids transitions between the two states.

In Sec. 2.3 we discussed that an odd number of crossing points and the change of
fermionic parity of the ground state associated with it is a topological property. There-
fore, although the above argument assumes coupling through a weak link, the 4π-pe-
riodic Josephson effect is present for any junction as long as the two banks are in the
topological phase and serves as a signature of topological superconductivity. The zero-
energy crossings can also be understood from the phase diagram of the p-wave super-
conductor in Fig. 2.3. A phase difference φ = π corresponds to a junction between two
p-wave superconductors with positive and negative pairing. The two banks thus have
topological indices ±1 which signals that there are two zero-energy Majorana bound
states at the interface,3 and thus the crossing occurs at φ = π.

For the p-wave superconductor in Eq. (2.3) the bound state energy is given by E(p)
0 =

∆′pF
√
D cosφ/2, where D is the junction transparency and pF the Fermi momentum

[Kwon 04], reflecting the robust zero-energy crossings. In contrast, the energy of an
Andreev bound state in a trivial s-wave superconductor junction reads E(s)

0 = ∆[1 −
D sin2 φ/2]1/2. Incidentally, in the case of unit transmission the two dispersions are iden-
tical with a zero-energy crossing at π. The fermion parity of the s-wave superconductor,
however, does not change when the phase advances by 2π resulting in an unprotected
crossing which opens for D < 1.

Observing this 4π periodicity in experiment requires the conservation of fermionic
parity. If the parity is allowed to change, e.g. by phonon-induced transitions, the system
will relax to the ground state at each value of the flux restoring 2π periodicity. Hence
the observation of the 4π-periodic current in a typical junction via the dc Josephson
effect might be difficult. A way out is provided in Sec. 5, where the Josephson current
in mesoscopic topological superconductor rings is investigated in detail. Such systems
exhibit a 4π dc Josephson effect even without fermion parity conservation. The required
setup has already been realized in a recent experiment [Forn 13], where a semiconductor
ring in proximity to a superconductor has been fabricated by etching techniques.

In an ac measurement the current may be 4π periodic for several cycles [Kwon 04], but

3The interface between two phases characterized by topological quantum numbers ν and ν′ hosts |ν− ν′|
bound states.
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switching events induced by the finite bias leads to a 2π-periodic average current. Sig-
natures of the 4π periodicity can still be accessed in the finite-frequency noise [Badi 11].
A different possibility to access the 4π signature consists of a Shapiro step measurement
[Jian 11b, Houz 13], where a dc and an ac voltage are applied. Resonances between the
ac voltage and the phase winding due to the dc voltage result in so-called Shapiro steps
in the I − V characteristic [Shap 63, Tink 75]. The 4π periodicity of the bound states
leads to an enhancement of every second step. Such an enhancement might be hard to
detect on top of large steps due to the conventional 2π Josephson effect mediated by the
bulk states (for a detailed discussion see [Houz 13]). This problem can be circumvented
in a three-leg junction as described in Ref. [Jian 11b]. In this perhaps experimentally
challenging setup only the 4π-periodic contribution to the current survives and the odd
(conventional) Shapiro steps vanish.

The first experimental signatures of the 4π Josephson effect have been claimed in a
Shapiro step measurement in Ref. [Rokh 12], where current-biased Josephson junctions
in InSb quantum wires have been investigated. Instead of an enhancement of even steps
the authors observed a vanishing of the first step, which they attribute to single charge
transfer via Majorana bound states. Numerical results for a current-biased junction in-
deed indicate the vanishing of odd steps [Domi 12], but more detailed investigations are
needed to rule out other possible explanations for single-charge transfer.

In Sec. 3.2.1 we have pointed out a duality of superconducting and magnetic quanti-
ties of the TI edge model in Eq. (3.1). This duality has remarkable manifestations in the
Josephson effect. The dual of the superconducting phase is the angle of the magnetic
field in a plane perpendicular to the effective spin-orbit field. Since the ∆ dominated
phase of the TI edge model is topologically equivalent to a p-wave superconductor it
also exhibits a 4π Josephson effect. By virtue of the duality the B dominated phase
supports a magneto-Josephson effect, which is 4π periodic in the magnetic field angle
[Jian 13]. This corroborates the view that neither phase of the TI edge model is trivial
as discussed in Sec. 3.2.1. The magneto-Josephson effect for the quantum wire model in
Eq. (3.4) is investigated in detail in Sec. 6. In contrast to the TI edge the quantum wire
has a trivial phase, which is topologically connected to the vacuum. In that phase both
types of Josephson effects are trivial. The topological phase, on the other hand, displays
a 4π periodicity in both the conventional and the magneto-Josephson effect.

3.4. Other signatures and physical realizations

An overwhelming number of topological superconductor realizations in one dimen-
sion has been put forward since the pioneering work of Fu and Kane [Fu 08], ranging
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from variants of the three proposals presented in the previous chapters over halfmet-
als [Duck 11, Chun 11], 3d topological insulator nanowires [Cook 11], cold atomic sys-
tems [Jian 11a], and proximity-coupled integer quantum Hall edges to parafermions on
edges of fractional topological insulators or fractional quantum hall systems [Lind 12,
Chen 12, Clar 13, Vaez 13]. In addition a series of proposals to realize time-reversal in-
variant topological superconductors in class DIII have been made [Fu 10b, Wong 12,
Deng 12b, Zhan 13, Kese 13, Nako 13a, Gaid 14, Haim 14]. In these systems the ends
support Kramers pairs of zero-energy Majorana bound states protected by time-reversal
and particle-hole symmetry. According to a recent work [Wolm 14] adiabatic qubit ma-
nipulations are not protected against local perturbations making Majorana Kramers
pairs inept for topological quantum computing.

Many experimental signatures of Majorana bound states in addition to the ones dis-
cussed here have been predicted including the conductance of quantum point contacts
[Wimm 11], thermal and magneto conductance [Akhm 11], signatures of the nonlocal
transport in the correlated current [Nils 08, Fu 10a], shot noise in tunneling experiments
[Bole 07], and interferometry [Fu 09b, Akhm 09, Hass 10, Benj 10, Stru 11]. Finally a list
of proposals exists to realize braiding of Majoranas including spatially moving domain
walls and braiding in T-junctions by means of gates [Alic 11, Halp 12] or supercurrents
[Romi 12], manipulating couplings between different Majoranas with gates [Sau 11] or
fluxes [Heck 12], and changing the parity of various Majorana qubits using quantum
dots [Flen 11]. Moving domain walls hosting Majorana bound states have been investi-
gated in [Karz 13].

The above compilation illustrates the large variety of condensed matter systems sup-
porting topological superconducting phases, which can be traced back to the generic
requirements for such a phase to be realized: s-wave superconductivity in conjunc-
tion with broken spin degeneracy and spin-rotation symmetry. To obtain undisputed
evidence for the existence of Majorana bound states, however, remains a challenging
task. For instance, a proximity-coupled quantum wire is typically hard to control using
gates or magnetic fields due to screening from the nearby superconductor. Moreover the
combination of superconductivity as well as time-reversal and spin-rotation symmetry
breaking gives rise to a number of distinct physical phenomena which are expected to
appear under similar conditions as Majorana bound states. We have encountered a few
examples such as the Kondo effect, Andreev bound states or weak antilocalization in
the discussion of the conductance signatures in Sec. 3.3.1. This demonstrates that signa-
tures associated with a single Majorana state may have various possible origins, which
must be ruled out to verify the existence of Majorana bound states. One goal of this the-
sis is to improve the theoretical understanding of various experimental setups currently
under investigation in order to clarify how Majoranas can be uniquely identified. We
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3 Physical realizations of one-dimensional topological superconductors

finally remark that bullet-proof evidence for Majorana states requires the observation
of their nonlocal properties (e.g., in current correlations) or even braiding.
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4. Zero-bias Majorana peak in disordered

multi-subband quantum wires

A recent experiment [Mour 12] reports the realization of proximity-induced topological
superconductivity and the formation of Majorana bound states in InSb quantum wires.
Following the theoretical suggestions reviewed in Sec. 3.2.2, superconducting order is
induced in an InSb quantum wire by proximity to a Nb lead attached alongside the wire.
At the other end, the quantum wire is contacted to a normal lead via a gate-induced
tunnel junction. Evidence for the formation of Majorana bound states is found through
measurements of the differential conductance, which exhibits a zero-bias peak when a
magnetic field is applied in certain directions (cf. Sec. 3.3.1). In subsequent experiments
similar results have been reported for the same system [Chur 13] and for normal-metal–
superconductor structures based on InAs quantum wires [Das 12, Finc 13].

At zero temperature and in single-subband quantum wires, the Majorana-induced
zero-bias peak is predicted to have a height of 2e2/h [Flen 10, Law 09]. At finite temper-
ature, the zero-bias peak broadens with its weight fixed, so that the peak height is no
longer expected to reach 2e2/h. The expected suppression is given by the ratio of the
tunnel coupling to the lead and temperature. In the experiment reported in [Mour 12] a
zero-bias peak of height∼ 0.05e2/hwas observed. Such a strong suppression cannot be
explained within this simple theory in view of the small temperature (T = 60mK) and
fairly high contact transparency (∼ 25%) in the experiment. Furthermore, the exper-
imental data showed no signature of a gap closing and reopening associated with the
emergence of the zero-bias peak although creating a Majorana bound state requires tun-
ing through a topological phase transition. A plausible interpretation of the observed
zero-bias peak as originating from Majorana bound states necessitates resolving these
apparent contradiction between theory and experiment.

In this chapter (previously published as [Pien 12b]), we consider the current-voltage
characteristic of multi-subband wires — a situation which is presumably relevant to
the experiment of Ref. [Mour 12]. Importantly, we find that the zero-bias peak as well
the closing of the gap, which marks the topological phase transition, are suppressed
under realistic conditions in clean multi-subband wires. This result provides a natu-

41



4 Zero-bias Majorana peak in disordered multi-subband quantum wires

N S
NWW
LG

(a)

p

-10

-20

Ε HmeVLHbL

Figure 4.1.: (a) Setup of multi-subband quantum nanowire (NW) with gate-induced tun-
nel barrier (G) and proximity coupled s-wave superconductor (S). As in Ref.
[Mour 12] we consider the conductance between the normal lead (N) and the
superconductor. Subband mixing is induced through disorder in the short
segment of length L between the tunnel barrier and superconductor. (b)
Normal-state dispersion in the absence of disorder for four subbands with
B = 1 meV and mα2/2 = 50 µeV.

ral explanation for the experimental findings in [Mour 12] and rehabilitate Majoranas
as a possible origin of the zero-bias peak. Furthermore we show that, remarkably, the
weight of the Majorana-induced zero-bias peak is typically enhanced as the tunnel junc-
tion becomes more disordered. The basic idea is that disorder couples the topological
channel, which itself is only weakly transmitted through the barrier, with the other non-
topological subbands which have higher transmission coefficients. This coupling broad-
ens the conductance peak and hence, in the presence of a finite temperature, enhances
the zero-bias conductance. The intentional inclusion of disorder in or near the barrier,
either during the fabrication process of the InSb nanowires used in the experiment, or
after fabrication of the device, could thus lead to an additional, strong signature of the
Majorana end state. It is important to note that the mechanism discussed here is differ-
ent from reflectionless tunneling [Kast 91, Quir 02, Been 92] induced by disorder on the
normal side of NS tunnel junctions. A similar effect is expected if the tunnel barrier is
replaced by a point contact [Wimm 11], provided the point contact is non-adiabatic.

4.1. Model system

We consider a geometry close to that of the experiment in Ref. [Mour 12] shown schemat-
ically in Fig. 4.1a. It consists of a two-dimensional multi-subband semiconducting wire
with spin-orbit velocity α, chemical potential µ, and widthW . At one end, the semicon-
ductor is coupled laterally to a superconducting lead. At the other end, it is contacted
to a normal metal via a tunnel barrier defined by the gate potential U . The system is
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placed in a magnetic field parallel to the wire direction with Zeeman energy B. Taking
the x direction to be along the wire, the system is then described by the Bogoliubov–de
Gennes Hamiltonian [Oreg 10, Lutc 10, Lutc 11, Alic 12, Been 13]

H =

(
p2

2m
+ αpxσy − αypyσx + U(x) + Vdis(r)− µ

)
τz −Bσx + ∆(x)τx, (4.1)

where the Pauli matrices σ and τ operate on the spin and particle-hole degrees of free-
dom, respectively. The parameter αy is included for future reference and equals α for
the case of Rashba spin-orbit coupling. The lateral contact to the superconductor covers
the region x > 0, so that we set ∆(x) = ∆ for x > 0 and ∆(x) = 0, otherwise, where ∆

is the proximity-induced gap for B = 0. The disorder potential Vdis(r) is nonzero in the
region −L < x < 0 between the gate-defined tunnel barrier and the superconducting
contact only. In this region, we choose a Gaussian random potential with 〈Vdis(r)〉 = 0

and
〈Vdis(r)Vdis(r

′)〉 =
v2
F

kF l2d
δ(r− r′), (4.2)

where vF =
√

2µ/m and l2d are the Fermi velocity and mean free path.

We numerically calculate the normal and Andreev reflection matrices ree(ε) and rhe(ε)

for the Hamiltonian (4.1), using the technique described in Ref. [Brou 11b]. The differ-
ential conductance G(V ) is then evaluated according to [Blon 82]

G(V ) =
e2

h
tr [1 + rhe(eV )rhe(eV )† − ree(eV )ree(eV )†],

where the trace is in spin and channel space. In a wire of width W lateral momenta are
quantized as py,n = ~nπ/W with n = 1, 2, . . .. In our numerical calculations we use an
effective mass m = 0.015me, me being the bare electron mass, proximity induced gap
∆ = 250 µeV, spin-orbit energy mα2/2 = 50 µeV, and width W = 110 nm.1. This choice
corresponds to the parameters of the InSb quantum wires used in Ref. [Mour 12]. The
chemical potential in the nanowire is chosen as µ = 32.1 meV, corresponding to N = 4

occupied channels (cf. Fig. 4.1b). The subbands in the nanowire are therefore separated
by several meV and for Zeeman energies less than 1.5 meV (corresponding to B < 1 T
for InSb) only the highest channel (subband index n = N = 4) can be in the topological
phase.

1Here we assume the same induced gap in all subbands. We have confirmed numerically that different
induced gaps (cf. Ref. [Faga 05]) lead only to minor changes in the peak width, leaving our conclusions
qualitatively unchanged.
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Figure 4.2.: (a) Zero-bias conductance peak at zero temperature in a quantum wire with
B = 0.5 meV and N = 4 transverse subbands, one of which is in the topo-
logical phase with barrier transmission T4 = 0.01. The three nontopological
subbands have transmissions 20T4, 10T4, and 4T4. The red curves show the
conductance for four different disorder configurations with l = 10L. The
black dashed line shows the peak shape for the clean wire. (b) Same as in
(a), but for a temperature T = 60 mK, larger than the zero-temperature peak
width.

4.2. Clean multi-subband quantum wires

We first consider a clean multi-subband wire with αy = 0. To a good approximation, a
gate-induced tunnel barrier exposes the electrons to a potential which depends only
on the coordinate x along the wire. Consequently, the tunnel barrier does not mix
the transverse subbands (channels) of the quantum wire and the subbands can effec-
tively be considered as independent. Each subband is characterized by a Fermi velocity
vF,n = 1

m(2mµ− p2
y,n)1/2, an excitation gap ∆n, and a transmission coefficient Tn of the

gate-induced tunnel barrier. Since the highest occupied subband n = N determines
whether the wire is in the topological phase, we refer to this subband as the “topologi-
cal subband.” A nontrivial topological phase exists if B2 > B2

N = ∆2 + (µ− p2
y,N/2m)2

[Lutc 10, Oreg 10]. At the topological phase transition, i.e., for B = BN , the topological
gap ∆N vanishes, whereas the excitation gaps for the other subbands remain finite.

The topological phase is characterized by a zero-bias conductance peak

G(V ) =
2e2

h

Γ2

Γ2 + (eV )2
, (4.3)

with width Γ = β0∆NTN if L � ξ = ~vF,N/∆N . The numerical constant β0 takes the
value β0 ≈ 0.375 for the range of parameters we investigated (TN � 1, ∆ between 0
and 60 µeV). This width may be very small, since the transmission coefficient TN of the
topological subband is typically much smaller than the transmission coefficients of the
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Figure 4.3.: (a) Probability distribution of the zero-bias peak width Γ in the presence of
disorder in the nanowire segment −L < x < 0 between the superconduct-
ing part and the barrier for a multi-channel wire with the same choice of
parameters as in Fig. 4.2. With increasing disorder, Γ increases on average
(red and green curve) due to subband mixing. For L� lAnderson localiza-
tion reduces the overall transparency of the junction, causing Γ to decrease
again in the case of very strong disorder (blue curve). (b) Ensemble average
of the contribution Γ1 from disorder-induced subband mixing to the width
Γ of the zero-bias peak as a function of disorder strength in the segment
−L < x < 0. The peak width is normalized by the normal state conduc-
tance GB ≡ (2e2/h)NTB to focus on the effects of subband mixing and to
eliminate changes in the overall transparency by Anderson localization. In-
set: Contribution Γ2 to the peak width from lateral spin-orbit coupling for a
rectangular barrier (red crosses) and a Gaussian barrier (blue dashed line).
In both figures the parameters of the barrier potential have been chosen such
that only T1 differs appreciably from zero.

other channels. (For the N th subband to be topological, it is important that its band
bottom be close to the chemical potential.) At finite temperature, the conductance peak
is thermally broadened,

G(V, T ) =

∫ ∞
−∞

dεG(ε, 0)
df

dε
(eV − ε, T ), (4.4)

where f(ε, T ) is the Fermi distribution function at temperature T . Thermal broadening
preserves the weight of the zero-bias peak. For kBT � Γ, the peak width is of order
kBT , whereas the height (2e2/h)(πΓ/4kBT ) is inversely proportional to temperature.
Both regimes are illustrated in Fig. 4.2.

4.3. Effect of disorder

If the disorder is limited to the segment of the semiconductor wire that is not in contact
with the superconductor, i.e., to−L < x < 0 (cf. Fig. 4.1), it has no effect on the existence
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of the topological phase [Brou 11a]. However, impurity scattering in the “normal” part
of the wire has profound consequences for the weight of the zero bias peak associated
with the existence of the topological phase. The underlying reason is the large disparity
in the transparencies of the different subbands, with the topological subband having
the smallest transparency TN . Mixing of subbands by impurity scattering allows for the
coupling of the topological subband to the normal lead via the lower subbands with
higher transparency.

The effect is illustrated in Fig. 4.2, where we show the shape of the zero-bias peak for
various disorder configurations, such that the distance L between gate-induced tunnel
barrier and the superconducting contact equals one tenth of the characteristic scattering
length

l = l2dvF,1vF,N/v
2
F . (4.5)

A systematic dependence on disorder strength can be seen in Fig. 4.3. Panel (a) shows
the probability distribution of the zero-temperature peak width for different values of
the ratio L/l. We conclude that already a moderate amount of disorder causes subband
mixing and an increase in the peak width. At very strong disorder, L � l, Ander-
son localization suppresses the overall coupling to the normal lead, leading to a de-
crease of the weight of the zero-bias peak. This effect is not related to subband mixing
and can be removed by normalizing the peak weight to the normal-state conductance
GB ≡ (2e2/h)NTB of the device; see Fig. 4.3(b). The average peak width from disorder-
induced subband mixing saturates for L/l� 1 to 〈Γ1〉 = β1TB∆N , where β1 is a numer-
ical factor of the order of 0.1, the exact value depending on the barrier transparencies
for different subbands and spin mixing due to the magnetic field.

4.4. Other causes of subband mixing

The lateral spin-orbit term proportional to αy in Eq. (4.1) may be an additional source
of subband mixing. For small αy its contribution to the width of the zero-bias peak is

Γ2 = β2Cmα
2
y, C =

∆NTB
W 2k3

F vF,N
(4.6)

proportional to α2
y, with a numerical prefactor β2 that depends on the precise shape of

the barrier. In the inset of Fig. 4.3(a) we show its effect on the conductance of a clean
wire for a long and low tunnel barrier, so that only the lowest subband n = 1 has an ap-
preciable transmission. For a rectangular barrier, the subband mixing caused by lateral
spin-orbit coupling is maximal, but still weak in comparison to the maximal subband
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Figure 4.4.: (a) Differential conductance vs bias voltage in a clean multichannel nanowire
for increasing B from 0 to 0.5 meV (750 mT in InSb) in steps of 0.02 meV
with the realistic parameters [Mour 12] αy = 0, T = 60 mK (kBT = 5 µeV),
L = 10 nm, and TN = 0.01. The B > 0 traces are offset vertically for clarity.
The formation of a Majorana bound states is reflected in the emergence of a
zero-bias peak. The corresponding closing of the topological gap is hardly
discernible due to the low transparency of the topological channel. ForB =
0 there are coherence peaks at the proximity induced gap ∆ = 0.25 meV.
For larger Zeeman fields the bulk gap of the lower channels is decreased
consistently with expectations. (b) Same as (a) but with weak disorder in
the region −L < x < 0 adjacent to the barrier. All traces are calculated for
the same disorder configuration with a scattering length l = 10L. The zero-
bias peak and the signature of the topological gap closing are considerably
enhanced.

mixing obtained from disorder, since forB = 0.5 meV we obtainC ≈ 10−4. For a smooth
barrier, which is the experimentally relevant limit, the numerical prefactor β2 becomes
vanishingly small and lateral spin-orbit coupling does not give any appreciable subband
mixing. Subbands may also be mixed by a gate-defined barrier that is not perpendicular
to the direction of the wire. The mixing effect is maximal if the barrier is rectangular,
and effectively absent for smooth barriers.

4.5. Current-voltage characteristic and topological gap

Unlike in single-channel models for spinless p-wave superconductors, multi-subband
models are characterized by the coexistence of multiple superconducting gaps in differ-
ent sections of the Fermi surface. Specifically, the proximity-induced gaps in the lower
subbands are only weakly affected by the applied magnetic field. In contrast, the highest
occupied subband should have a gap closing when it enters into the topological super-
conducting phase at the critical magnetic field. Thus, it is interesting to investigate to
which degree the differential conductance contains signatures of the gap closing at the
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4 Zero-bias Majorana peak in disordered multi-subband quantum wires

topological phase transition and how disorder near the barrier affects these signatures.

In Fig. 4.4(a), we show the differential conductance versus bias voltage for a clean
multichannel quantum wire at T = 60 mK. At the critical Zeeman field of the topmost
channel Bc = 0.27 meV a peak appears at zero bias voltage. Since the topological chan-
nel is only weakly transmitted through the barrier, its contribution to the conductance
is weaker than that of the other channels. In conjunction with density of states effects
[Stan 12], this explains the very weak signature of the topological gap closing in trans-
port in Fig. 4.4(a), consistent with the absence of the topological gap in the experimental
measurements of Ref. [Mour 12]. As for the zero-bias peak, the gap-closing feature in
the differential conductance will also be significantly enhanced by disorder in the bar-
rier region. This is shown in Fig. 4.4(b) where both the zero-bias peak and the peaks
associated with the topological gap for B < Bc are much more pronounced than in
Fig. 4.4(a). Indeed, the topological gap originates from the same subband as the zero-
bias peak and its visibility is thus enhanced by the same mechanism. Given that the
predictions of the multiband model (4.1) are consistent with the experimental data of
Ref. [Mour 12], the deliberate introduction of subband mixing would be an instructive
probe of Majorana bound states.
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5. Signatures of topological phase transitions in

mesoscopic superconducting rings

The 4π-periodic Josephson effect can provide strong evidence for the presence of Ma-
jorana bound states in a Josephson junction. The 4π periodicity in the superconduct-
ing phase difference arises as a consequence of single-particle tunneling mediated by
the Majorana bound states—a process forbidden in conventional Josephson junctions.
As discussed in Sec. 3.3.2, this signature of Majorana bound states is masked by re-
laxation processes that change fermion parity. In this chapter (previously published as
[Pien 13c]) we investigate Josephson currents in mesoscopic superconducting rings with
a weak link which are in or near a topological phase. Such a systems may, for instance,
be realized in proximity-coupled semiconductor rings as have been fabricated and char-
acterized in [Forn 13]. We show that even when fermion parity is not a good quantum
number the periodicity of the Josephson current in such rings provides signatures of
the topological phase transition and the emergence of Majorana bound states situated
on both sides of the weak link.

We furthermore show that weak disorder can drive a trivial p-wave superconductor
close to the phase transition into the topological phase in stark contrast to the detrimen-
tal effect of disorder deep inside the topological phase. We use these results on dis-
ordered superconductors close to the topological phase transition to demonstrate the
robustness of the Josephson signature in mesoscopic rings.

5.1. Introduction

The current flowing through a weak link in a ring made of a conventional superconduc-
tor is a periodic function of flux with period h/2e (corresponding to 2π periodicity in
the phase difference), associated with the transfer of Cooper pairs across the junction.
In a ring made of a topological superconductor, there is a MBS on each side of the junc-
tion and the tunneling current obtains a component that is h/e periodic (corresponding
to 4π periodicity in the phase difference). This doubling of the flux period with re-
spect to the ordinary Josephson effect due to the MBS is dubbed fractional Josephson
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5 Signatures of topological phase transitions in mesoscopic superconducting rings

effect. The h/e-periodic Josephson current is observed as long as the fermion number
parity of the system is conserved. Once the system is in strict thermodynamic equilib-
rium, including relaxation processes which change fermion parity, the Josephson cur-
rent reverts to the conventional h/2e periodicity. Indeed, the h/e-periodic Josephson
current has equal magnitude but opposite signs for even and odd fermion parities, so
that it averages to zero in the presence of fermion-parity changing processes. Possi-
ble workarounds that do not require strict parity conservation rely on the ac Josephson
effect [Kwon 04, Jian 11b], or finite-frequency current noise [Badi 11]. Experimental sig-
natures of a fractional Josephson effect in Shapiro step measurements have been claimed
recently [Rokh 12].

Here we show that in mesoscopic rings with a weak link, the presence of Majorana
bound states can lead to an h/e-periodic Josephson current even in thermodynamic
equilibrium and in the presence of fermion-parity-breaking relaxation processes. This
h/e-periodic contribution exists in the topological superconducting phase and peaks in
magnitude near the topological phase transition, providing an experimental signature
of the phase transition. We investigate this signature for a spinless p-wave superconduc-
tor wire, the Kitaev chain [Motr 01, Kita 01], which is a paradigmatic model exhibiting a
topological phase transition. This model also arises as an effective low-energy theory in
more realistic situations such as the quantum-wire proposals of [Lutc 10] and [Oreg 10].
In a ring geometry, the Majorana bound states hybridize not only due to the tunneling
across the weak link but also through the superconducting interior of the ring. The latter
overlap is exponentially small in the ratio of the ring circumference and the supercon-
ducting coherence length governing the spatial extent of the Majorana bound states. As
one approaches the topological phase transition, the superconducting coherence length
diverges and the interior overlap between the Majorana bound states becomes signif-
icant. This causes a peak of the h/e-periodic Josephson current near the topological
phase transition 1.

After discussing this effect in clean rings, we extend our considerations to disordered
rings. We show that the signature of the topological phase transition is robust and sur-
vives under more realistic conditions. This issue also leads us to study the influence of
disorder in the vicinity of the topological phase transition of the Kitaev chain which had
not been discussed previously. Previous work [Motr 01, Pott 10, Brou 11b, Brou 11a] on
disorder effects in the Kitaev chain or models of quantum wires focused on the regime
of large chemical potential (measured from the lower band edge), µ� m∆′2, where ∆′

denotes the effective p-wave order parameter of the Kitaev chain in the continuum limit.

1This peak in the h/e-periodic current should not be confused with the peak in the h/e-periodic mag-
netoconductance discussed in [Akhm 11]. The former originates from the MBS whereas the latter is a
bulk effect.
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In this regime, the topological region in the phase diagram shrinks with increasing dis-
order [Brou 11b]. In contrast, the topological phase transition in the Kitaev chain occurs
for µ = 0 and thus in the opposite regime of µ � m∆′2. Remarkably, we find that in
this regime disorder increases the topological region in the phase diagram.

This chapter is organized as follows. In Section 5.2 we review the Kitaev model for
a one-dimensional spinless p-wave superconductor and its various regimes. We also
discuss how this model is related to quantum-wire based realizations, focusing on the
modeling of the magnetic flux through a quantum wire ring in proximity to a bulk su-
perconductor. Section 5.3 is dedicated to the flux-periodic Josephson currents in clean
rings, focusing on the flux-periodicity as a signature of the topological phase transition.
The basic effect is discussed in Sec. 5.3.2, analytical considerations on the magnitude of
the effect are given in Sec. 5.3.3, and a comparison with numerical results is given in
Sec. 5.3.4. Sec. 5.4 extends the considerations to disordered rings. Besides a discussion
of the effects of disorder on the Josephson currents, we also study the phase diagram of
the disordered wire near the topological phase transition.

5.2. Model

5.2.1. Kitaev model of a one-dimensional spinless p-wave superconductor

Our analysis starts with the Kitaev model of a one-dimensional spinless p-wave super-
conductor [Kita 01, Motr 01]

HTB = −µTB

N∑
j=1

c†jcj −
N−1∑
j=1

(tc†jcj+1 + ∆TBcjcj+1 + h.c.), (5.1)

which describes a wire ofN sites. Electrons on site j are annihilated by cj , hop between
neighboring sites with hopping amplitude t, and have chemical potential µTB. For all
numerical calculations in this chapter we choose t = 1. The p-wave pairing strength is
given by ∆TB. Here, we label both the chemical potential and the pairing strength by
the subscript TB to distinguish these parameters of the tight-binding model (5.1) from
their analogs in the continuum model introduced below. The wire can be closed into a
ring with a weak link by an additional hopping term between sites 1 and N ,

HT = −t′c†Nc1 + h.c., (5.2)

with hopping amplitude t′. We assume that charging effects are weak and can be ne-
glected (see Refs. [Heck 11, Zoch 12] for consequences of charging in ring-like struc-
tures).
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5 Signatures of topological phase transitions in mesoscopic superconducting rings

For an infinite and uniform wire, the Kitaev Hamiltonian (5.1) exhibits a phase tran-
sition when the chemical potential µTB crosses one of the band edges. The system is
in a topological (nontopological) superconducting phase when the chemical potential is
within (outside) the interval [−2t, 2t], i.e., within (outside) the band at vanishing pairing
∆TB = 0. The spectrum exhibits a superconducting gap on both sides of the topological
phase transition while the gap closes at the topological critical points |µTB| = 2t. It is
thus natural to introduce the chemical potential measured from the lower band edge,
i.e., µ = µTB + 2t.

In the vicinity of the band edges (say the lower band edge) and thus of the topological
phase transition, we can make a continuum approximation to the tight-binding model
(5.1). We will mostly employ the tight-binding model in the first part of the manuscript,
while we partially find it more convenient to rely on the continuum approximation in
dealing with effects of disorder in Sec. 5.4. The continuum model is formulated in terms
of the corresponding Bogoliubov–de Gennes Hamiltonian [Motr 01, Kita 01]

H =

 p2

2m + V (x)− µ 1
2 {∆′(x), p}

1
2 {∆′(x), p} −

(
p2

2m + V (x)− µ
) , (5.3)

where ∆′(x) is the p-wave pairing strength and the curly brackets denote the anticom-
mutator. Here, we have included a disorder potential V (x) which we will return to in
more detail in Sec. 5.4. For V (x) = 0 the bulk spectrum of the continuum model is given
by

εp = ±
[(

p2

2m
− µ

)2

+ |∆′|2p2

]1/2

, (5.4)

which becomes gapless for µ = 0. This indicates the above-mentioned topological phase
transition between a topological phase with µ > 0 and a nontopological phase for µ < 0.

In a semi-infinite wire, the topological phase is characterized by a Majorana bound
state localized near its end point. The Majorana bound state has zero energy and a wave
function that decays exponentially into the wire on the scale of the superconducting
coherence length ξ. In a finite wire, the Majorana bound states localized at the two ends
of the wire hybridize and form a conventional Dirac fermion whose energy ε0 scales like
the overlap of the two Majorana end states which is exponentially small in the length L
of the wire. The wavefunction of the Majorana bound state depends on the parameter
regime (see, e.g., [Halp 12]). This is easily seen by determining the allowed wavevectors
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Figure 5.1.: Bulk spectrum Eq. (5.4) of Kitaev’s model for a spinless p-wave supercon-
ductor in the regimes (a) µ� m∆′2 and (b) 0 < µ� m∆′2.

at zero energy from Eq. (5.4), which yields

p0 = ±im|∆′| ±
√

2mµ−m2|∆′|2. (5.5)

(i)µ� m∆′2: Deep in the topological phase, the bulk excitation spectrum Eq. (5.4) has
two minima around ±pF = ±√2mµ with a gap ∆

(i)
eff ≈ pF∆′ (see Fig. 5.1a). According

to Eq. (5.5), the Majorana wavefunctions decay on the scale ξ = 1/m∆′ and oscillate
with a much shorter period 1/pF . In a finite wire the hybridization energy is given by
(cf. appendix A) ε0 = 2∆′pF | sin(pFL)| exp(−L/ξ), which has accidental degeneracies at
integer values of pFL/π.

(ii) µ� m∆′2: Near the topological phase transition at µ = 0, the excitation spectrum
has only a single minimum at p = 0 with a gap of order µ (see Fig. 5.1b). At low energies,
we can neglect the kinetic energy in Eq. (5.3) and the spinless p-wave superconductor
can be approximately described by the Dirac Hamiltonian

H ' −µτz + ∆′pτx. (5.6)

Equation (5.5) gives p0 ≈ ±iµ/∆′, so that the spatial extent of the Majorana wavefunc-
tion is governed by the coherence length ξ = ∆′/µ, which diverges at the topological
phase transition. In contrast to the previous regime, the end-state energy does not ex-
hibit oscillations, ε0 ∝ exp(−L/ξ).

5.2.2. Magnetic flux

In the presence of a magnetic flux threading the ring, both the tunneling amplitude and
the pairing strength become complex and acquire a phase. The precise nature of these
phases depends on the physical realization of the Kitaev chain. We illustrate this point
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superconducting ring

semiconducting wire

insulator

(a) (b)

Figure 5.2.: Two possible setups for a quantum wire with a tunneling junction in proxim-
ity to an s-wave superconductor. (a) The bulk superconductor is interrupted
by an insulating region underneath the weak link in the wire. (b) The bulk
superconductor forms a continuous ring and only the wire contains a weak
link.

by discussing two possible setups based on the proposal to realize the Kitaev chain in a
semiconductor wire proximity coupled to an s-wave superconductor [Lutc 10, Oreg 10],
as illustrated in Fig. 5.2:

(a) The s-wave superconductor is interrupted underneath the weak link in the quan-
tum wire. Current can flow around the loop only through the semiconductor weak
link.

(b) The s-wave superconductor forms a closed ring and a weak link exists only in
the semiconductor wire. The current through the weak link of the semiconductor
will in general be only a small perturbation of the current flowing through the
superconductor.

We assume that the thickness of the superconducting ring is small compared to both
its London penetration depth and its superconducting coherence length ξSC. The su-
percurrent flowing in the superconductor is given by [Tink 75]

Js =
2e

m∗
|ψ|2 (~∇ϕ− 2eA) , (5.7)

where m∗ and |ψ|2 are the effective mass and density of the superconducting electrons
and ϕ denotes the phase of the s-wave order parameter. The p-wave pairing potential
in the quantum wire inherits its phase ϕ from the s-wave superconductor underneath
via the proximity effect. (The effective p-wave order parameter may have an additional
phase shift that depends on geometric details such as the direction of the Zeeman field
and the spin-orbit coupling; however, these contributions lead to constant offsets of the
phase which are unaffected by the magnetic flux.) The vector potentialA oriented along
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the wire is related to the Aharonov–Bohm flux φ through

φ =

∮
dxA(x), (5.8)

where the integral is taken around the ring of circumference L.

The phase of the order parameterϕ is different for the two setups illustrated in Fig. 5.2.
In setup (a), no supercurrent is able to flow since the loop is interrupted, Js = 0. If we
choose a gauge in which the vector potential is uniform around the ring, A(x) = φ/L,
the phase ϕ of the order parameter becomes ϕ(x) = 4π(φ/φ0)(x/L) in terms of the
normal-metal flux quantum φ0 = h/e. In setup (b), the supercurrent around the ring is
governed by fluxoid quantization ϕ(x+L) = ϕ(x)+2πn, with the integer n labeling the
fluxoid states. In a gauge in whichA(x) = φ/L, this implies that∇ϕ = 2πn/L, yielding a
supercurrent of Js = (2e/m∗)|ψ|2[2π~n/L−2eA]. Here, [x] denotes the integer closest to
x. In thermodynamic equilibrium, the system realizes the fluxoid state of lowest energy
and thus of lowest supercurrent, i.e., n = [φ/(φ0/2)].

Within the chosen gauge, in setup (a) the hopping amplitude and the pair poten-
tial in the tight binding Hamiltonian in Eq. (5.1) take the form t → tei2πφ/Nφ0 and
∆TB → ∆TBe

i4π(φ/φ0)(j/N). Alternatively one can perform the gauge transformation
cj → cje

−i(j−1/2)2πφ/Nφ0 which eliminates the phase from the pair potential. In this new
gauge, both the pair potential and the hopping amplitude t in the interior of the ring
are real while the hopping amplitude across the weak link acquires a phase factor, t′ →
t′ei2πφ/φ0 . Our numerical results will be obtained for this representation of the tight-
binding model. In contrast, in setup (b), we find ∆TB → ∆TBe

i2π[φ/(φ0/2)](j/N) for the
pair potential (notice the closest integer symbol [.] in the exponent), while t→ tei2πφ/Nφ0

as well as t′ → t′ei2πφ/Nφ0 . As in the previous case (a), we can eliminate the phase of the
pair potential by a gauge transformation. However, this no longer eliminates the phase
of the hopping matrix element t. Instead, one finds t → tei(π/N){φ/(φ0/2)−[φ/(φ0/2)]} and
t′ → t′ei(π/N){φ/(φ0/2)+(N−1)[φ/(φ0/2)]}. The fact that we can no longer eliminate the mag-
netic flux from the bulk of the wire is a manifestation of the fact that supercurrents in
the s-wave superconductor modify the spectrum of the quantum wire [Romi 12].

Clearly, the effective Kitaev chain is quite different for setups (a) and (b). In the re-
mainder of this chapter, we will focus on setup (a) where the flux enters only into the
tunneling Hamiltonian representing the weak link. In this setting, the current in the
semiconductor wire of interest here is experimentally more accessible since there is no
background current in the bulk s-wave superconductor unlike in setup (b).
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5.3. Clean rings

5.3.1. Infinite wire

We first briefly review the Josephson effect of two semi-infinite wires connected at their
ends through a weak link (or equivalently, a ring of infinite circumference), as originally
considered by Kitaev [Kita 01]. The corresponding low-energy excitation spectrum as
a function of flux is sketched in Fig. 5.3a. Due to the Majorana end states, there are
two subgap states whose energies are governed by the tunneling amplitude across the
weak link. While each individual level is periodic in flux with period h/e, the overall
spectrum is h/2e periodic. As a result, the thermodynamic ground state energy of the
system – and thus the Josephson current in strict thermodynamic equilibrium – are h/2e
periodic.

At the same time, the h/e periodicity of the individual subgap states is a direct con-
sequence of the Majorana nature of the end states. This signature of Majorana bound
states can be brought out in measurements of the Josephson current if the fermion parity
of the system is a good quantum number. The level crossing of the two Majorana sub-
gap states in Fig. 5.3a is then protected by fermion parity conservation. As a result, since
there is only a single level crossing per superconducting flux quantum, the system nec-
essarily goes from the ground state to an excited state (or vice versa) when changing the
flux by h/2e. During this process, the excited state is unable to relax to the ground state
since this would require a change in fermion parity. Thus, the system only returns to its
initial state after a change in flux of h/e, which corresponds to the fractional Josephson
effect.

5.3.2. Finite size ring

For rings with finite circumference, the two Majorana bound states localized at the two
banks of the weak link hybridize not only through the tunnel coupling across the weak
link but also because of the overlap of their wavefunctions in the topological supercon-
ductor. In the previous subsection, we considered the situation in which this interior
hybridization is vanishingly small compared to tunneling across the weak link. Con-
versely, when tunneling across the weak link is negligible compared to the interior hy-
bridization, the splitting of the Majoranas due to the interior overlap does not depend
on flux. Weak tunneling across the junction will then cause a small h/e-periodic modu-
lation of the split Majorana levels with flux. In this situation, even the thermodynamic
ground state energy becomes h/e periodic, regardless of the presence or absence of
fermion parity violating processes. In fact, of the two h/e-periodic levels, the negative-
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Figure 5.3.: (a) Typical Bogoliubov–de Gennes spectrum as a function of phase differ-
ence across the junction between two semi-infinite wires in the topologi-
cal phase with the tunneling amplitude Γ and the gap ∆eff . The two low-
energy Majorana states represented by the dashed and solid lines are re-
lated by particle-hole symmetry. The continuum of states outside the gap
is displayed in gray. The thermodynamic ground state has period h/2e. (b)
Numerical results for the subgap spectrum of a mesoscopic ring with finite
circumference for ∆ = 1, µ = −1.8, t′ = 0.01. We set t = 1 for all numeri-
cal calculations in this chapter. The parameters correspond to ξ = 9.5 and
the different curves display data for ring circumferences L = 95, 52, 38 all
in units of the lattice spacing. As the circumference of the wire decreases
the overlap through the topological superconductor in Eq. (5.12) increases.
Note that the equilibrium ground state always has h/e periodicity in rings
of finite circumference.

energy level (which is occupied in equilibrium) corresponds to an even-parity ground
state while the positive-energy level is occupied in the odd-parity first excited state.
Weak fermion parity violating processes will not destroy the h/e-periodic Josephson
current as the two levels no longer cross as function of flux.

The full crossover of the Bogoliubov–de Gennes spectrum as the interior overlap of
the Majorana bound states increases is illustrated with numerical results in Fig. 5.3b (see
Sec. 5.3.4 for details on the numerical calculations). They confirm the above picture for
the limit of strong overlap. But they also show that an h/e-periodic contribution to the
equilibrium Josephson current exists even when the interior splitting is of the order of
or smaller than the tunnel coupling across the weak link. Indeed, the interior overlap
essentially pushes one of the two states (dashed line) up in energy, while it pushes its
particle-hole conjugate state (solid line) down. At small interior overlaps, this shifts the
two level crossings (initially at φ0/4 and 3φ0/4) outwards towards a flux of zero and one
flux quantumφ0. Note that the level crossings remain intact, protected by fermion parity
conservation. However, once the level crossings reach a flux of zero and φ0, respectively,
the levels merely touch at these points. Thus, fermion parity no longer protects the
levels from splitting, and indeed one state remains at finite and negative energies at all
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values of flux while, symmetrically, its particle-hole conjugate state remains at finite and
positive energies.

Consider now the Josephson current as function of flux in the presence of weak but fi-
nite fermion parity violating processes. Specifically, we assume that the flux is varied by
h/e on a time scale which is large compared to the relaxation time of the fermion parity
while at the same time, the fermion parity violating processes are weak compared to the
hybridization of the Majorana bound states so that the Bogoliubov-de Gennes spectra in
Fig. 5.3 are relevant. In this case, the Josephson current is essentially h/2e periodic deep
in the topological phase, where L � ξ. However, as the system approaches the topo-
logical phase transition, ξ grows and hence, the hybridization of the Majorana bound
states through the interior of the ring increases. As a result, the h/e-periodic contribu-
tion to the current increases. Conversely, the Majorana bound states disappear on the
nontopological side of the phase transition where the Josephson current thus reverts to
h/2e periodicity. As a result, we expect a peak in the h/e-periodic Josephson current near
the topological phase transition, whose measurement would constitute a clear signature
of the topological phase transition and the formation of Majorana bound states.

This expectation is confirmed by the numerical results shown in Fig. 5.4a, where the
corresponding Fourier coefficient Ah/e = (2e/h)

∫ h/e
0 dφI(φ) sin(2πeφ/h) of the equilib-

rium Josephson current I(φ) is plotted as a function of chemical potential. Ah/e(µ) ex-
hibits a peak in the topological phase (µ > 0), which moves closer to the topological
phase transition at µ = 0 as the ring circumference increases (see Fig. 5.4b).

Deep in the topological phase the Majorana bound states are localized at the weak
link. Approaching the phase transition at µ = 0, the MBS delocalize. On the one hand,
this causes an increase in the overlap of the MBS in the interior of the topological super-
conductor. As discussed above, this leads to an increase of the h/e-periodic Josephson
current. On the other hand, however, the probability density of the Majorana bound
state near the weak link decreases, causing a suppression of the hybridization of the
Majorana bound states across the weak link and hence of the h/e-periodic Josephson
current. Thus, the peak occurs for the value of µ where the interior overlap splitting is
equal to the tunnel coupling. Since the interior overlap is exponentially small in L/ξ

while the hybridization across the weak link is roughly independent of the ring’s cir-
cumference L, the peak position shifts towards the phase transition point at µ = 0 with
increasing L (cf. Fig. 5.4c). Since at the same time the h/e-periodic Josephson current
becomes suppressed when the systems is approaching the phase transition, the peak is
more pronounced in shorter rings.
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5.3.3. Low-energy Hamiltonian

A more quantitative description can be developed by restricting the Hamiltonian to the
low-energy subspace spanned by the two Majorana bound states. The projection of the
tunneling Hamiltonian across the weak link onto this subspace yields

HT = −Γ cos(2πφ/φ0)(d†MdM − 1/2), (5.9)

where dM is the Dirac fermion constructed from the two Majorana bound states. The
parameter Γ measures the tunnel coupling of the Majorana bound states across the weak
link and is given by (cf. Eq. (A.3) in appendix A)

Γ =
t′µ(4t− µ)∆TB

t(t+ ∆TB)2
. (5.10)

Here the factor of µ accounts for the probability density of the Majorana wavefunction
at the junction, which vanishes at the phase transition.

The overlap of the Majorana end-states in the interior of the wire leads to an additional
coupling (cf. appendix A)

Hoverlap = ε0

(
d†MdM − 1/2

)
,

where
ε0 = 2µ exp(−L/ξ) (5.11)

measures the strength of the overlap.

Combining these two contributions for a mesoscopic ring near the topological phase
transition (µ� m∆′2), the effective low-energy Hamiltonian reads as

Heff =

[
ε0 − Γ cos

(
2πφ

φ0

)](
d†MdM − 1/2

)
. (5.12)

The Bogoliubov–de Gennes spectrum of this Hamiltonian reproduces the numerically
calculated subgap spectra depicted in Fig. 5.3b.

In principle, both the negative energy continuum states as well as the negative energy
subgap state contribute to the equilibrium Josephson current. If we denote the sum over
all negative excitation energies byE0(φ), we can write the equilibrium Josephson current
as I(φ) = −∂φE0(φ). However, it is natural to expect and will be corroborated by our
numerical results that the Josephson current is dominated by the contribution of the
subgap state I(φ) ' ∂φ|ε0 − Γ cos(2πφ/φ0)|/2. Thus, it is straight-forward to compute
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Figure 5.4.: (a) Numerical results for the h/e-periodic Fourier component of the Joseph-
son current, Ah/e, as a function of chemical potential in a ring with ∆TB = 1
and L = 200 (blue dots) together with analytical expression Eqs. (5.13) (red
solid line). Inset: numerical results for ε0 (blue squares) and Γ (red circles)
together with the corresponding analytical expressions (gray dashed curves)
Eqs. (5.11) and (5.10). (b) h/e-periodic Fourier component (solid), h/2e-
periodic Fourier component (dashed), and the maximum tunneling current
of the MBS, eΓ/h. (c) Ah/e for different ring circumferences L.

the h/e-periodic Fourier component of the Josephson current,

Ah/e =

 eΓ
π~

[
ε0
Γ

√
1− ε20

Γ2 + arcsin
(
ε0
Γ

)]
, ε0 < Γ

eΓ
2~ , ε0 > Γ

. (5.13)

In the next section, we compare this analytical result with numerics and find nice agree-
ment.

5.3.4. Numerical Results

To obtain numerical results for the Josephson current, we solve the Hamiltonian de-
fined in Eqs. (5.1) and (5.2) by exact diagonalization. Fig. 5.4a compares the amplitude
of the h/e-periodic component as a function of chemical potential with the analytical
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result in Eq. (5.13). The numerical results agree well with the behavior predicted by the
low-energy model, except for small deviations in the immediate vicinity of the phase
transition at µ = 0. In the inset of Fig. 5.4a we compare the analytical and numerical
results for the quantities Γ and ε0 appearing in the low-energy Hamiltonian. While the
model correctly captures ε0 in the regime of interest, there are deviations of Γ near µ = 0.
These discrepancies are readily understood as a consequence of the finite circumference
of the ring. Although the coherence length diverges at the phase transition, the Majo-
rana bound states can delocalize at most throughout the entire length of the ring there
remains a finite probability density of the Majorana bound state wavefunction at the
weak link.

Figure 5.4b shows that the left flank of the peak of Ah/e and eΓ/h deviate slightly.
This deviation is a measure of the size of the bulk contribution to the h/e-periodic cur-
rent. The latter can thus be seen to be small, justifying our focus on the low-energy
Hamiltonian (12) describing the Majorana bound states only. In the same figure, the
h/2e component is plotted, showing that the h/e-periodic Josephson current exceeds
the h/2e component. This is a consequence of the tunneling regime that favors single-
electron tunneling over the tunneling of Cooper pairs.

In Fig. 5.4c, we show how the position of the peak in Ah/e depends on the circumfer-
ence of the ring. We find that the value of µ where the peak occurs scales as 1/L. This
result can be understood as follows. Γ is essentially independent of the length of the
ring, while ε0 scales as ∼ exp(−L/ξ). As we have seen above the peak occurs at ε0 = Γ.
For given t, ∆TB, and t′, Γ is fixed and the peak occurs at a constant value of the ratio
L/ξ. Since ξ ∼ 1/µ, the value of µ where the peak occurs scales as 1/L. Also note that
the above-mentioned tail of the peak at µ ≤ 0 originating from finite-size corrections is
more pronounced in shorter rings.

5.4. Effects of disorder

5.4.1. h/e-periodic Josephson current in disordered rings

In this section we investigate the fate of the peak in the equilibrium h/e-periodic Joseph-
son current in the presence of disorder. Our main results are:

(i) The typical peak height is not affected by disorder as long as the mean free path
is longer than the circumference of the ring. Thus the signature persists in the
presence of moderate disorder.

(ii) For stronger disorder the peak height decreases and the peak position is shifted
to lower chemical potentials.
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Figure 5.5.: (a) Numerical results for the h/e-periodic Fourier component of the Joseph-
son current, Ah/e, as function of chemical potential for a clean ring (black
solid line) and disordered rings with four disorder configurations (green
dashed lines) corresponding to l = 5. (b) Ah/e for a clean wire (black solid
line) together with the histogram of the peak position in the presence of dis-
order for l = 75 as a color code (green (gray) area). (c) Same as (b) with l = 5.
For all plots we chose L = 20 and ∆TB = 1.

To study the effect of disorder we add a random onsite potential
∑

i Vic
†
ici to the tight-

binding Hamiltonian (5.1) and (5.2), where the Vi are taken from a uniform distribution
over the interval [−W,+W ]. The mean free path is then related to the disorder strength
as l ∝ 1/W 2.2 To obtain numerical results we compute the spectrum by exact diago-
nalization. Disorder affects the h/e-periodic Josephson current by introducing fluctua-
tions in the quantities ε0 and Γ. While Γ is mainly affected by local fluctuations of the
probability density of the Majorana wavefunction at the junction, ε0 fluctuates due to
the disorder potential in the entire ring. The interior overlap in disordered wires has
been investigated previously for the continuum model (5.3) in regime (i), i.e., µ� m∆′2

[Brou 11a], where disorder leads to an increase of ε0 and subsequently to a disorder-
induced phase transition to the nontopological phase.

2For the numerical results for the tight-binding model we extract the mean free path from the variance of
the normal distribution of ln(ε0) according to Eq. (5.21).
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Figure 5.6.: Histogram of Γ for the same parameters as in Figs. 5.5b and c at µ = 0.4. The
dashed line denotes the value of Γ for the clean ring.

Fig. 5.5a shows numerical results for the h/e-periodic Josephson current for a few
disorder configurations. The peaks in the presence of disorder (green dashed curves)
are of comparable height as the peak in the clean ring (black solid curve). The peak
shifts as a function of chemical potential which indicates fluctuations of the coherence
length due to disorder.

Surprisingly, the peak shifts to lower chemical potentials, corresponding to a decrease
in ε0 with disorder in stark contrast to the known case of large µ. This implies that the
topological phase is stabilized by disorder if the system is close to the phase transition.
To investigate this further we plot the height and position of the peak maxima of many
disorder configurations as a color code histogram for l > L in Fig. 5.5b and l < L in
Fig. 5.5c. Indeed the average peak height is comparable to the one in the clean case for
l > L. When l . L the average peak height starts to decrease. The histogram in Fig. 5.5c
confirms that the peak is shifted to lower chemical potentials on average.

To understand this behavior we analyze the probability distributions of ε0 and Γ over
the disorder ensemble. In Fig. 5.6 we show numerical results for the histogram of Γ

corresponding to the two ensembles in Figs. 5.5b and c at µ = 0.4. For weak disorder
the distribution is symmetric with a mean near the zero-disorder tunnel coupling. For
larger disorder when l < L the distribution becomes wider and asymmetric and the
average decreases.

In order to determine the probability distribution for ε0 we now turn to the continuum
Hamiltonian (5.3) for a wire of length L without tunnel junction. To model short-range
correlated disorder in the continuum model, we include a disorder potential with zero
average 〈V (x)〉 = 0 and correlation function 〈V (x)V (x′)〉 = γδ(x−x′). For this model we
employ a numerical method based on a scattering matrix approach [Brou 03, Bard 07,
Brou 11b]. From the scattering matrix S we obtain the lowest energy eigenstate ε0 by
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and (5.15) with λ = 1/2 (solid line). Inset: numerical data (red crosses) and
linear fit (solid) of the average of ln ε0 as a function ofL for different disorder
strengths.

finding the roots of det(1 − S(ε)). In this model, the probability distribution of the
hybridization energy ε0 has been shown to be log-normal in [Brou 11a]. Specifically, it
was shown that the log-normal distribution is governed by

〈ln (ε0/2∆eff)〉 = −L
(

1

ξ
− 1

2l

)
,

var ln (ε0/2∆eff) =
L

2l

(5.14)

for regime (i). The distribution function reflects the disorder-induced phase transition
to the nontopological state at ξ = 2l.

The numerical results are presented in Fig. 5.7. In the inset, we show that the mean of
ln(ε0/2∆eff) is indeed linear in L with the slope depending on disorder strength. This
slope is plotted as a function of inverse mean free path in Fig. 5.7. The data for µ =

300m∆′2 (blue dots) agrees well with the prediction Eq. (5.14) with the definitions l =

v2
F /γ and ξ = 1/m∆′.

The same plot also shows data corresponding to regime (ii), i.e., µ� m∆′2, marked by
red crosses. Here, we have l = ∆′2/γ and ξ = ∆′/µ. Clearly, the behavior is qualitatively
different from regime (i), since disorder decreases ε0 rather than increasing it. This is
consistent with the shift of the peak of Ah/e to lower µ.
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In order to gain analytical insight we now derive the probability distribution of ε0 in
regime (ii) extending the results of [Brou 11a]. The relevant momenta at low energies in
this regime are near p = 0 (cf. Fig. 5.1b). Linearizing the dispersion around this point
yields the Dirac Hamiltonian Eq. (5.6), where the disorder potential enters as a random
mass term. Since the disorder potential is short-range correlated it couples high- and
low-momentum degrees of freedom in the original Hamiltonian. Thus a proper lin-
earization of the Hamiltonian requires one to project out the high-momentum states,
which renormalizes the gap.

For a strictly linear model with a random mass term, the overlap ε0 has a log-normal
distribution [Brou 11a],

〈ln (ε0/2∆eff)〉 = −L
ξ
,

var ln (ε0/2∆eff) =
L

l
.

(5.15)

Thus for the Dirac Hamiltonian the mean of ln (ε0/2∆eff) does not depend on disorder. A
systematic linearization of the disordered spinless p-wave superconductor in the vicin-
ity of the topological phase transition effectively renormalizes the chemical potential µ
and hence the coherence length ξ = ∆′/µ.

We start by defining the projection operators P =
∑
|p|<p1 |ψp〉 〈ψp| onto the low mo-

mentum subspace andQ = 1−P , where {|ψp〉}p is a complete set of momentum eigen-
states of the clean Hamiltonian. The relevant momentum scale for this projection is
given by p1 = m∆′, since for p� p1, the term p2/2m constitutes the lowest energy scale
of the Kitaev Hamiltonian. Furthermore, we assume that the disorder potential does
not affect high momenta p1 � 1/l. We can now project the clean Kitaev HamiltonianH
to the low- and high-energy subspaces,

PHP ' P
[
(−µ+ V (x))τz + ∆′pτx

]
P, (5.16)

QHQ ' Q
(
p2/2m

)
τzQ. (5.17)

Both subspaces are exclusively mixed by the disorder potential PHQ = PV (x)τzQ. To
second order in V , the correction to the low-energy Hamiltonian is then given by

δH(p) '
〈
ψp

∣∣∣PHQ (εp −QHQ)−1QHP
∣∣∣ψp〉

'
∑
|p′|>p1

Vpp′
1

εp − p′2/2mτz
Vp′p. (5.18)
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5 Signatures of topological phase transitions in mesoscopic superconducting rings

Here we used the short notation Vpp′ =
〈
ψp
∣∣V (x)

∣∣ψp′〉. Averaging over disorder, we
obtain

〈δH(p)〉 ' −
∑
|p′|>p1

2mγ

p′2
τz ∼ −

γ

∆′
τz. (5.19)

Thus the renormalization produces a contribution to the low-energy Hamiltonian
which has the same structure as the chemical potential term. Hence we find a renor-
malized chemical potential µ′ = µ + λγ/∆′ with a numerical factor λ > 0 that cannot
be determined from this argument. Thus disorder enters the final result through the
renormalized coherence length

1

ξ
→ 1

ξ
+
λ

l
. (5.20)

The data in Fig. 5.7 confirm Eqs. (5.15) and (5.20) and determine the unknown numerical
prefactor to be λ = 1/2. Thus for µ� m∆′2, ε0 has a log-normal distribution with mean
and variance given by

〈ln (ε0/2∆eff)〉 = −L
(

1

ξ
+

1

2l

)
,

var ln (ε0/2∆eff) =
L

l
.

(5.21)

This result is very similar to Eq. (5.14) where, however, the disorder correction to the
decay length enters with opposite sign. This underlines the contrast between the two
regimes, i.e., that disorder drives the system further into the topological phase when it is
close to the phase transition, but away from it for larger chemical potentials. Specifically
a spinless p-wave superconducting wire with negative chemical potential may exhibit
edge states with an energy exponentially small inL as long as disorder is strong enough.

Combining the disorder-induced fluctuations of Γ and ε0 we can understand the sup-
pression of the peak in the h/e-periodic Josephson current in Fig. 5.5c for l < L. While
ε0 is decreased on average for a given µ with increasing disorder, Γ does not increase at
the same time and thus the average peak height decreases. However the fluctuations of
Γ and ε0 become larger as disorder increases such that for single disorder configurations
significant peaks are still possible even if the average peak height decreases.

5.4.2. Phase diagram of a disordered wire

Motivated by the contrasting probability distributions of ε0 in the regimes of large and
small µ we numerically calculate the phase diagram of the continuum model (5.3) as a
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Figure 5.8.: Phase diagram of the continuum model (5.3) as function of disorder strength
γ and chemical potential µ in the regime µ � m∆′2. The data has been
averaged over 100 disorder configurations. For µ < 0 disorder gives rise
to a trivial-to-topological phase transition with a reentrant nontopological
phase for stronger disorder. The dashed line denotes the phase transition
line γ(ii)

c (µ) valid for small |µ| given in Eq. (5.22). Inset: Phase diagram for a
larger range of µ and γ. The solid line represents the predicted phase bound-
ary γ(i)

c (µ) for large µ. (The analytical phase boundary is only accurate at
large µ up to sublinear corrections.)

function ofµ and γ, particularly paying attention to the region near the topological phase
transition of the clean model. By means of the scattering matrix approach also used in
the last section we compute the determinant of the reflection matrix of a wire of length
L at ε = 0 which approaches the values +1 and−1 as L→∞ in the nontopological and
topological phase, respectively [Merz 02, Akhm 11].

The resulting phase diagram is plotted in Fig. 5.8. From Eq. (5.14) we infer that the
topological phase transition occurs for ξ = 2l in the regime µ � m∆′2. Using the
definitions of l and ξ in this regime, we obtain the phase boundary γ

(i)
c (µ) = 4∆′µ.

This is compared with the numerical results in the inset of Fig. 5.8. The numerically
calculated phase boundary γnum

c (µ) has only sublinear deviations from the predicted
line, so that the ratio γnum

c (µ)/2µ∆′ = ξ/l approaches the value 2 for µ→∞ as expected.

However, near µ = 0 the behavior is qualitatively different. Here, disorder can in-
duce a topological phase for µ < 0 as well as a reentrant nontopological phase at larger
disorder. From Eq. (5.21) we find the condition ξ = −2l for the phase boundary. This
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5 Signatures of topological phase transitions in mesoscopic superconducting rings

corresponds to

γ(ii)
c (µ) = −2∆′µ, (5.22)

which we find to agree well with the numerical results for the phase diagram (see
dashed line in Fig. 5.8). Thus the phase diagram confirms that weak disorder leads
to an enhancement of the chemical potential range of the topological phase, while for
stronger disorder the range decreases again.

5.5. Conclusion

Even for conventional superconducting phases, the flux periodic currents have been
widely studied for mesoscopic rings [Butt 86, Oppe 92, Schw 10, Kosh 07]. Here, we
studied the Josephson currents across a weak link in a mesoscopic ring in a topological
superconducting phase. As a paradigmatic model system, we studied Kitaev’s model of
a one-dimensional spinless p-wave superconductor, focusing on the parameter regime
near the topological phase transition. We found that in mesoscopic rings, there is an
h/e-periodic contribution to the tunneling current even if electron number parity is not
conserved. This h/e-periodic contribution emerges due to the hybridization of the Ma-
jorana bound states localized on the two sides of the weak link through the interior of
the ring and exhibits a pronounced peak just on the topological side of the topologi-
cal phase transition. This peak provides an interesting signature for the existence of a
topological phase transition and the formation of Majorana bound states at the junction.

We found that this effect remains robust in the presence of disorder in the wire. In fact,
near the topological phase transition disorder can even stabilize the topological phase.
When tuning, say, the chemical potential of the system to the nontopological side of the
phase transition, there is a disorder-induced topological phase for moderate amounts
of disorder, with a reentrant nontopological phase at even stronger disorder. This is in
stark contrast to the behavior of the system far in the topological phase where disorder
weakens and eventually destabilizes the topological phase.
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6. Magneto-Josephson effects and Majorana bound

states in quantum wires

Recent work established that topological insulator edges support a novel ‘magneto-
Josephson effect’, whereby a dissipationless current exhibits 4π-periodic dependence
on the relative orientation of the Zeeman fields in the two banks of the junction. In
this chapter, we explore the magneto-Josephson effect in junctions based on spin-orbit-
coupled quantum wires. In contrast to the topological insulator case, the periodici-
ties of the magneto-Josephson effect no longer follow from an exact superconductor-
magnetism duality of the Hamiltonian. To provide guidance to experiments, we also
estimate the magnitude of the magneto-Josephson effects in realistic parameter regimes,
and compare the Majorana-related contribution to the coexisting 2π-periodic effects
emerging from non-Majorana states. This chapter has been previously published as
[Pien 13b].

6.1. Introduction

One of the most direct but also challenging experimental confirmations of the existence
of Majorana bound states is based on the periodicity of the Josephson effect. For junc-
tions of topological superconductors, the Josephson effect is predicted to be 4π periodic
in the phase difference of the order parameter, in sharp contrast to the conventional 2π

periodicity (see Sec. 3.3.2). Recently it has been noticed that a topological-insulator edge,
proximity coupled to an s-wave superconductor, exhibits an exact superconductivity-
magnetism duality [Nils 08, Jian 13]. The duality transformation maps the phase of the
superconducting order parameter to the direction of the applied magnetic field in the
plane perpendicular to the spin–orbit field. As a consequence, the duality predicts a
magneto-Josephson effect by which a rotation of the magnetic field across a junction
induces a Josephson current even in the absence of a phase gradient [Jian 13, Meng 12,
Kote 13].

Explicitly, proximity-coupled topological-insulator edges are described by the Bogo-
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liubov-de Gennes Hamiltonian [Fu 08]

HTI = vp̂τ zσz − µτ z + ∆ (cosφ τx − sinφ τy)

− bσz +B (cos θ σx − sin θ σy) . (6.1)

Here we have employed the Nambu spinor basis ΨT = (ψ↑, ψ↓, ψ
†
↓,−ψ

†
↑) and intro-

duced Pauli matrices σa and τa that act in the spin and particle-hole sectors, respec-
tively. The edge-state velocity is given by v, p̂ is the momentum, and the σz-direction
represents the spin–orbit-coupling axis. We allow the chemical potential µ, supercon-
ducting pairing ∆eiφ, longitudinal magnetic field strength b, transverse magnetic field
strength B, and the transverse-field orientation angle θ to vary spatially. This Hamil-
tonian takes the same form upon interchanging the magnetic terms {b, B, θ, σa} with
the superconducting terms {µ,∆, φ, τa}. An important aspect of this duality is that it
maps the two topologically distinct phases of the model into each other, mapping the
‘∆-phase’ (occurring for ∆2 − b2 > max{B2 − µ2, 0}) into the ‘B-phase’ (occurring for
B2 − µ2 > max{∆2 − b2, 0}) and vice versa.

For topological-insulator edges, the duality immediately allows one to derive the pe-
riodicity of the magneto-Josephson effect from the known periodicities of the Majorana
Josephson effect [Jian 13, Meng 12, Kote 13]. To this end, we consider three-leg junctions
[Jian 11b] with the phase arrangementsB−∆−B (with a 2π-periodic Majorana Joseph-
son effect) and ∆−B −∆ (with a 4π-periodic Majorana Josephson effect). The duality
implies that the periodicities are reversed for the magneto-Josephson effect, which is 4π

periodic in the magnetic-field orientation for B − ∆ − B junctions but 2π periodic for
a ∆−B −∆ setup. Strictly speaking, the duality also maps charge Josephson currents
into spin Josephson currents. At first sight, this may suggest that a change in direction
of the magnetic field across a junction only drives a spin Josephson current. However, it
was shown in Ref. [Jian 13] that as a result of the spin-momentum locking, there is also
a conventional (and experimentally more accessible) charge current across the junction
in addition to the spin current.

While the magneto-Josephson effect has been studied in some detail for topological
insulator edges [Jian 13, Meng 12, Kote 13], much less is known about it for junctions
based on semiconductor quantum wires. There are several reasons why this poses
an interesting problem. Many of the ongoing searches for Majorana bound states are
based on quantum-wire based structures. There are also several distinct differences
between topological superconducting phases based on proximity-coupled topological
insulators and semiconductor quantum wires. First, the kinetic energy of the quantum-
wire Hamiltonian explicitly violates the duality, making the duality only of suggestive
value for the quantum-wire situation. Second, the two topologically distinct phases of
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Figure 6.1.: Upper panels: Color scale plots of the low-energy Bogoliubov-de Gennes
spectra (only ε > 0) of a B − ∆ − B junction vs. (a) the superconducting
phases φl and φr and (b) the magnetic-field directions θl and θr. Lower pan-
els: Corresponding line cuts along φr = 0 and θr = 0, respectively. Both line
cuts exhibit cusps at zero energy, reflecting protected zero-energy crossings
and thus, the Josephson current is 4π periodic in both φ and θ. The param-
eters for the three segments are ∆l/r = 1.6, ∆m = 2, Bl/r = 2, Bm = 0.9,
µl/m/r = 0, and Lj = 2 (length of the junction). We also set θl = θr = π/2,
θm = 0 in (a) and φl = φr = π/2, φm = 0 in (b). Note that the parameters of
the three segments are labeled by subscripts l, m, and r.

the topological insulator effectively trade places in the quantum wire. For instance, a 4π-
periodic Majorana Josephson effect occurs in the ∆−B−∆ arrangement in topological
insulators, but in the B −∆−B arrangement in quantum wires.

This motivates us to explore the magneto-Josephson effects in semiconductor quan-
tum wires in more detail in this chapter. In Sec. 6.2, we present numerical results based
on a recursive scattering-matrix approach and establish the periodicities of the magneto-
Josephson effects. In Sec. 6.3, we provide further insight into the periodicities by ana-
lytical arguments and the analysis of limiting cases. Finally, Sec. 6.4 is concerned with
numerical estimates of the magnitude of the effect and Sec. 6.5 collects our conclusions.
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6 Magneto-Josephson effects and Majorana bound states in quantum wires

6.2. Numerical results

We now turn to semiconductor quantum wires proximity coupled to s-wave super-
conductors. The Hamiltonian for a clean, single-channel semiconductor quantum wire
(QW) in the presence of a Zeeman field B, Rashba spin–orbit coupling u, and induced
superconductivity ∆ is [Lutc 10, Oreg 10]

HQW =

(
p̂2

2m
− µ

)
τz + up̂σzτz +B

(
eiθσ+ + e−iθσ−

)
+ ∆

(
eiφτ+ + e−iφτ−

)
(6.2)

Other than dropping the longitudinal magnetic field term for lack of relevance in the
following, this Hamiltonian differs from that of the topological insulator edge in Eq.
(6.1) by the kinetic term p̂2/2m. This term explicitly breaks the duality present for the
topological insulator edge and is responsible for key differences between the topolog-
ical insulator edge and the quantum wire. Most importantly, the phases are in some
sense effectively reversed in the two systems. Explicitly, in quantum wires, the topo-
logical (or B) phase occurs for B2 > ∆2 + µ2, while the nontopological (or ∆) phase
requires B2 < ∆2 + µ2. In the quantum wire model, the identification of topological
and nontopological phases is unique since the ∆-phase is continuously connected to the
vacuum. The corresponding identification is less defined for the topological insulator as
the model does not connect naturally to the vacuum due to the linear spectrum. Indeed,
the duality of the model maps the two phases into each other, suggesting that they are
topologically distinct but cannot be labeled as topological and nontopological. However,
if we take the presence or absence of the fractional (4π-periodic) Majorana Josephson ef-
fect as the defining feature of a topological superconducting phase, we would crudely
label the ∆ phase as topological and the B phase as nontopological, which just reverses
the assignments for the quantum wire model.

We consider quantum-wire junctions consisting of three segments, with phase ar-
rangements B −∆−B and ∆−B −∆. It is well established that the periodicity in the
superconducting phase difference across the junction is 4π in theB−∆−B arrangement,
but 2π for the ∆ − B −∆ setup [Lutc 10, Oreg 10]. These periodicities are reproduced
in our numerical calculations of the low-energy Bogoliubov-de Gennes spectra shown
in Figs. 6.1(a) and 6.2(a). Here, we restrict ourselves to µ = 0 for simplicity. The calcula-
tions are based on a scattering-matrix approach which has been employed previously in
the context of topological superconducting phases and Majorana bound states in quan-
tum wires (see, e.g., [Brou 11b] and [Pien 12b]). In short, it is based on concatenating
small slices of quantum wire to obtain the scattering matrix S(ε) of the entire wire. The
spectrum can then be determined by solving the equation det[1 − S(ε)] = 0. A more
detailed description of the method can be found in [Brou 11b].
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Figure 6.2.: Upper panels: Color scale plots of the low-energy Bogoliubov-de Gennes
spectra (only ε > 0) of a ∆−B−∆ junction as a function of (a) superconduct-
ing phases and (b) magnetic field directions. Lower panels: Corresponding
line cuts along φr = 0 and θr = 0, respectively. There are no zero-energy
crossings and the current is 2π periodic. The parameters for the three seg-
ments are ∆l/r = 2, ∆m = 1.6, Bl/r = 0.9, Bm = 2, µl/m/r = 0, and Lj = 5.
We also set θl = θr = π/2, θm = 0 in (a) and φl = φr = π/2, φm = 0 in (b).

Fig. 6.1(a) shows the low-energy spectrum of a B − ∆ − B junction as a function of
the phases of the superconducting order parameters of the outer segments. The left and
right segments are chosen much longer than the coherence length so that the Majorana
bound states at the outer ends do not couple to the Majoranas at the junction and can
be safely ignored. The low-energy spectrum shows protected zero-energy crossings,
which makes the current 4π periodic as a function of φ. The corresponding spectrum
of a ∆ − B − ∆ junction is shown in Fig. 6.2(a). In contrast to the B − ∆ − B case,
the current is always 2π periodic. For both types of junctions, there are two Majorana
bound states at the interfaces between the B and ∆ regions. However, in the latter case
the hybridization of the Majoranas does not generate a protected crossing at zero.

Representative results for the dependence of the low-energy Bogoliubov-de Gennes
spectra of the junctions on the directions θ of the magnetic fields are shown in Figs. 6.1(b)
and 6.2(b). We find that also the dependence on θ is 4π periodic forB−∆−B junctions
and 2π periodic for ∆ − B − ∆ junctions, with the spectra exhibiting protected zero-
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6 Magneto-Josephson effects and Majorana bound states in quantum wires

B −∆−B ∆−B −∆
φ θ φ θ

periodicity for QW 4π 4π 2π 2π
periodicity for TI edge 2π 4π 4π 2π

Table 6.1.: Periodicities of the Josephson energy as a function of the phase difference of
the superconducting gap and the relative magnetic-field orientation θ. We
list results forB−∆−B and ∆−B−∆ junctions realized in quantum wires
(QW) and topological insulator edges (TI). The latter results are taken from
[Jian 13].

energy crossings in the first case, but not in the second. We summarize the periodicities
for the two types of junctions in quantum wires in Table 6.1. Remarkably, the magneto-
Josephson effect has the same periodicity for the quantum wire and the topological-
insulator edge. This is in stark contrast with the ordinary Josephson current which has
different periodicities in the two models reflecting the reversed roles of topological and
nontopological phases.

6.3. Limiting cases and analytical considerations

To gain more insight into the periodicities of the Josephson effects summarized in Table
6.1 and their relations, we now combine analytical arguments and an analysis of limit-
ing cases. First, we use analytical arguments to derive the Josephson periodicities for
quantum wires which are based on the well-established result that the dependence on
the superconducting phase is 4π periodic for aB−∆−B junction (fractional Josephson
effect). This complements the arguments based on the magnetism-superconductivity
duality for the topological insulator edge.

To gain a better understanding of the similarities of and differences between the topo-
logical insulator and quantum wire cases, we then study the limit of large spin–orbit
coupling εSO = mu2 for the quantum wire model (or equivalently large mass m), i.e.
εSO � ∆� |B −∆|. In this limit, there are strong similarities between the low-energy
spectra of the topological-insulator edge and the quantum wire.

6.3.1. Analytical argument

In this section, we derive the periodicities in both φ and θ for the quantum-wire case by
analytical arguments. Our arguments assume the well-established fractional Josephson
effect (i.e. a 4π-periodic φ dependence) for a B − ∆ − B junction and reproduce the
numerically obtained periodicities summarized in Table 6.1. To this end, it suffices to
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derive the number of protected zero-energy crossings considering particular limiting
cases of the two types of junctions. By adiabatic continuity, these periodicities must
then hold for junctions of the same kind with arbitrary parameters.

Consider first a quantum-wire junction in the ∆−B−∆ configuration. The ∆ phase
of the quantum wire is adiabatically connected to the vacuum by making the chemical
potential large and negative. At the same time, theB phase is adiabatically connected to
a spinless p-wave superconductor by taking the limit of large Zeeman field B [Alic 11].
Consequently, a ∆ − B − ∆ junction can be adiabatically deformed into an essentially
finite segment of a p-wave superconducting wire with hard-wall boundary conditions.
In this limit, the two Majorana bound states localized at the domain walls hybridize and
split by some finite energy. Clearly, the two Majorana bound states will penetrate only
very little into the ∆ sections of the junctions, and consequently, they will be only weakly
dependent on φ and θ as long as |B|, |∆| � |µ|, where µ < 0 is the chemical potential
in the outer ∆ segments of the wire. Thus, while there will be a variation of the energy
splitting with φ and θ, it will be small compared to the magnitude of the splitting itself.
Thus, there are no zero-energy crossings in this case and the Josephson current is 2π

periodic both in θ and φ. These considerations are only valid for the quantum wire
because the decay length of the Majorana states into the insulating segments on the
outside is controlled by |µ|. In a TI-edge junction the gap in the ∆ segments is controlled
by the pairing strength ∆ and not by µ. Therefore, the effect of ∆ in TI edges is never
perturbative and the above argument does not hold for φ.

We now turn to the B−∆−B junction for which the Majorana energy is 4π periodic
both in φ and θ. The 4π periodicity as a function of φ represents the well-known frac-
tional Josephson effect [Kita 01, Kwon 04, Fu 09a]. In the remainder of this section, we
demonstrate that the parities of the number of protected zero-energy crossings of the
Majorana energy dispersion as a function of φ and θ are equal for aB−∆−B quantum
wire junction. The basic observation is that we can again consider the limit in which the
middle ∆ section has a large and negative µ. In this insulating limit, the gap does not
close when we take B and ∆ equal to zero. In effect, we can thus replace the B−∆−B
junction by a B − I − B junction, where the middle section is a conventional insulator
(I).

We start by considering aB− I interface between a B dominated phase with φ, θ = 0

and a normal insulator withB,∆ = 0 and µ < 0. This interface harbors one zero-energy
Majorana bound state with wavefunction ψ. We can tune the left region to the phase φ
and the angle θ by performing the unitary transformationU(φ, θ) = exp(iφτz/2+iθσz/2)

on the Majorana wavefunction, i.e., ψ(φ, θ) = U(φ, θ)ψ. It is crucial for our argument
that we can effect the variation of φ and θ in the left region by a global transformation
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6 Magneto-Josephson effects and Majorana bound states in quantum wires

U(φ, θ), which is possible because the rotation of B and ∆ does not affect the normal
insulator on the right. We note that U(2π, 0) = U(0, 2π) = −1, which guarantees that
the Majorana wavefunction evolves to the same final state, when either φ or θ advance
by 2π.

We now consider weak coupling of two such interfaces in a B − I −B junction. This
coupling leads to a symmetric splitting of the two Majorana states about zero energy.
When the coupling across the junction is sufficiently weak, we can obtain this subgap
spectrum emerging from the Majorana modes localized at the junction accurately from
first-order perturbation theory. Starting at φ = θ = 0 and tuning either φ or θ to 2π the
initial wavefunction evolves to the same final state. Consequently, the initial and final
subgap-energy spectra emerging from the hybridized Majorana modes will be identi-
cal for both processes. We know from the fractional Josephson effect that the positive-
energy excitation at φ = 0 becomes negative (and vice versa) when φ advances by 2π,
and hence the associated Bogoliubov-de Gennes eigenenergy must cross zero energy
an odd number of times in the process. Given that U(2π, 0) = U(0, 2π) = −1, this im-
mediately implies that the positive- and negative-energy excitations also exhibit an odd
number of zero-energy crossings when tuning θ from 0 to 2π instead, which proves the
4π periodicity as a function of θ.

It is worth noting that this argument fails for the TI edge model (6.1), as it should
according to Table 6.1. The reason is that irrespective of µ, the corresponding spectrum
is never gapped when setting B,∆ = 0.

6.3.2. Strong spin–orbit coupling (εSO � B > ∆)

The arguments in the previous subsection explain the periodicities of the magneto-
Josephson effects for semiconductor quantum wires. When combined with the dual-
ity arguments for topological insulator edges, this explains the full set of periodicities
collected in Table 6.1. How the periodicities of these two systems are related, however,
remains an open question. This is particularly interesting in the limit εSO � B > ∆,
when the low-energy bulk spectrum of the quantum wire is nearly identical to the spec-
trum of a topological insulator edge.

When the spin–orbit energy is much larger than the Zeeman energy, the bulk spec-
trum of Eq. (6.2) depicted in Fig. 6.3 has three minima located at p = 0 and p = ±pF ,
where pF = 2mu when µ = 0. Since pF is large in the limit of strong spin–orbit cou-
pling, the subspaces at p = 0 and at p = ±pF effectively decouple for sufficiently smooth
domain walls and the low-energy spectrum can be understood as arising from a super-
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Figure 6.3.: Bulk spectrum of the quantum-wire Hamiltonian (6.2) in the limit of strong
spin–orbit coupling.

position of two subspectra.1 Near p = 0, the Hamiltonian (6.2) can be linearized and re-
duces to the Hamiltonian of the topological insulator edge (i.e., Eq. (6.1) with µ = b = 0).
Near p = ±pF , the Hamiltonian can be linearized, as well, and reduces to that of a spin-
less p-wave superconductor (cf. App. B). This describes a topological superconductor
by itself. Since the topologically distinct phases are labeled by a Z2 index, this provides
an explanation for the effective reversal of phases between the quantum-wire and the
topological-insulator Hamiltonian.

The high-momentum subspace near p = ±pF has a gap of size ∆. In contrast, the
low-momentum subspace near p = 0 has a gap equal to |B −∆|, which is controlled by
the competition of Zeeman and pairing energies and which is much smaller when the
system is close to the topological phase transition, |B − ∆| � ∆. Zeros of the gap in
the low-momentum subspace trigger the topological phase transition and thus, the Ma-
jorana bound states, localized at domain walls between B- and ∆-dominated regions,
predominantly reside in this subspace. Consequently, in this subspace the relevant sub-
gap spectrum of a short junction is determined by the hybridization of the Majorana
bound states and the periodicities as a function of φ and θ are those for the topological-
insulator edge. This seems consistent with Table 6.1 for the dependences on θ, but not
for those on φ.

To understand the full set of periodicities in Table 6.1, we thus need to also consider
the high-momentum subspace at±pF . In this subspace where the Hamiltonian reduces
to that of a spinless p-wave superconductor, the effective spin–orbit field is large and
hence, the magnetic field is only a small perturbation. The corresponding spectrum
should thus depend only weakly on θ. At the same time, variations in φ can result in a

1Note that the superconducting pairing couples the states near +pF with those near −pF so that these
momenta cannot be considered separately.
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Figure 6.4.: Low-energy spectrum of a B − ∆ − B junction as a function of φr for dif-
ferent masses m (and hence spin–orbit energies εSO = mu2). For large εSO,
the dispersion of the hybridized Majorana bound states becomes 2π peri-
odic while additional Andreev bound states cross zero energy at φr = π, 3π.
The avoided crossings between the Andreev and Majorana bound state ex-
citations vanish in the limit εSO � B. The inset shows that the zero-energy
crossing at φ = π persists for all values of m. Parameters: Bl/r = ∆m = 2,
∆l/r = Bm = 1, u = 1, µl/m/r = 0, Lj = 2, and θl/m/r = φl/m = 0.

considerable Josephson current. In fact, as the high-momentum subspace by itself con-
stitutes a model of a topological superconductor, theφdependence of the corresponding
Bogoliubov-de Gennes spectrum exhibits protected zero-energy crossings.

We now use these insights to understand the similarities and differences of the Joseph-
son periodicities in topological insulators and quantum wires in more detail. First con-
sider a quantum wire in aB−∆−B configuration. Such junctions exhibit a 4π-periodic
Josephson current in the superconducting phase, with a protected zero-energy crossing
of the Bogoliubov-de Gennes spectra. This contrasts with the 2π periodicity for the same
junction made of topological-insulator edges. To understand this difference in period-
icity, Fig. 6.4 shows how the low-energy spectrum changes with increasing spin–orbit
energy. As expected based on the general arguments above, the spectrum develops two
distinct types of subgap states as the spin–orbit energy increases, εSO � B (seen most
clearly in the traces form = 1000 in Fig. 6.4). The first type of state has an approximately
sinusoidal φ dependence, an offset from zero energy, and 2π periodicity. This state can

78



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 π 2π 3π 4π

ε

φ
r

m=1.5

m=5

m=50

 0

 0.02

π

ε

φ
r

Figure 6.5.: Low-energy spectrum of a ∆ − B − ∆ junction as a function of φr for dif-
ferent masses m (and hence spin–orbit energies εSO = mu2). As indicated
by Table 6.1, the spectrum approaches 4π periodicity for εSO → ∞. For
strong spin–orbit coupling, Andreev bound states appear. Their energy has
a phase dependence εA ∼ ∆ cos(φ/2). Inset: Close-up near φ = π showing
the avoided crossing at ε = 0. Parameters: Bl/r = ∆m = 1, ∆l/r = Bm = 2,
u = 1, µl/m/r = 0, Lj = 2, and θl/m/r = φl/m = 0.

be identified with the hybridized Majorana bound states in the low-momentum sub-
space. The second type of state crosses zero energy at φ = π, 3π with a ±E0 cos(φ/2)

dispersion, where E0 is of the order of ∆. This excitation corresponds to an Andreev
bound state at p = ±pF . As seen in Fig. 6.4, there is an avoided crossing between these
states which disappears as the spin–orbit energy and, with it, the momentum mismatch
diverge.

This now allows one to understand the periodicities of Table 6.1 for the case ofB−∆−
B junctions. In the quantum wire, only the low-momentum subspace has an interest-
ing θ dependence. Thus, the θ dependence remains the same between quantum wires
and topological-insulator edges. At the same time, both subspaces contribute to the de-
pendence on φ. Indeed, the above considerations show that the protected zero-energy
crossing in the quantum-wire spectrum is associated with states which converge en-
tirely on the high-momentum subspace as the spin–orbit energy increases. These states
do not exist for the topological-insulator edge whose φ dependence is thus 2π periodic.

In a ∆ − B − ∆ junction, the change of periodicities is opposite. While the quan-
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tum wire is 2π periodic in φ, the topological-insulator edge is 4π periodic. The evo-
lution of the low-energy spectrum for the quantum wire with increasing spin–orbit
energy is shown in Fig. 6.5. The sinusoidal 2π-periodic dependence of the Majorana
states present for εSO ' B becomes a ± cos(φ/2) dispersion with avoided crossings at
π and 3π for εSO � B. In the limit of large spin–orbit energy, these states reside in
the low-momentum subspace and reflect that the topological insulator model displays
a topological Josephson effect in this subspace. Similarly, there are also Andreev states
in the high-momentum subspace, similar to the ones in B −∆ − B junctions with the
same ±E0 cos(φ/2) dispersion. At large but finite values of the spin–orbit energy, the
levels in the low- and high-momentum subspaces mix, resulting in avoided crossings
at φ = π, 3π and a 2π-periodic spectrum. The avoided crossings close as the spin–orbit
energy diverges, explaining the difference in φ periodicities of the quantum wire and
topological insulator. Finally, the absence of change in the θ dependence between quan-
tum wire and topological insulator has the same explanation as forB−∆−B junctions.

6.4. Magnitude of the magneto-Josephson effect

In experiments aimed at detecting the 4π-periodic Josephson effect, a 2π-periodic back-
ground current originating from the conventional Josephson effect of the continuum
states may mask the signature of the unconventional Josephson current. In the follow-
ing, we provide quantitative estimates for the 4π- and 2π-periodic contributions to the
current and show that the magneto-Josephson effect may be favorable over the conven-
tional Josephson effect with regard to the relative magnitude of 2π- and 4π-periodic
currents.

In order to obtain quantitative estimates, we consider a junction with a conventional
insulating barrier between two semi-infinite quantum wires in theB-dominated phase.
In the barrier, we set B = ∆ = 0 and µ = −V0 < 0, so that there are no unconventional
4π-periodic Josephson currents originating from splitting Cooper pairs in the barrier
into the two topological superconducting phases on the left and right [Jian 11b]. Thus,
the Josephson currents in this setup are only due to the phase difference φ = φl − φr or
the difference θ = θl − θr in magnetic-field orientations of the left and right bank. The
total energyE (and hence the Josephson current) includes contributions from the above-
gap continuum and the Andreev bound states with a 2π-periodic dispersion (jointly
referred to below as continuum contribution for brevity) as well as Majorana bound
states whose energy is 4π periodic.

For junctions with a low transmission probability D � 1, we find the energy of the
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Figure 6.6.: Maximum Majorana Josephson current JM for a B − I − B junction nor-
malized by the normal-state transmission coefficient

√
D of the junction as a

functionB and ∆. We set µ = 0 in the superconductor, which thus supports
a topological phase for B > ∆. Inset: cuts along the dashed and solid lines
in the color scale plot. The parameters are εSO = 0.05meV, m = 0.015me,
V0 = 250meV, Lj = 3.2nm.

Majorana states to be

EMajorana(φ, θ) = EM cos(φ/2) cos[θ/2 + θ0(φ)]. (6.3)

The θ dependence of the energy involves a phase shift, whereas the φ dependence is
always symmetric with respect to φ = 0 (cf. the lower panels of Figs. 6.1 and 6.2). The
largest energy splitting is given by EM ∼

√
DEgap, where Egap denotes the magnitude

of the gap in the two banks of the junction. The size of the splitting is determined by
the single-electron tunneling amplitude ∝

√
D.

The critical current of the junction depends on θ with a maximum critical current of
JM = (e/~)EM . In Fig. 6.6, we show numerical results for JM , normalized by

√
D to

make the results insensitive to detailed properties of the tunnel junction, as a color scale
plot. This normalized Majorana current roughly corresponds to (e/~)Egap. Thus for a
fixed ∆, there is an optimal value of B for which the ratio JM/

√
D is maximized.

In Fig. 6.7, we compare the amplitudes of the 4π- and 2π-periodic currents originat-
ing from the Majorana and continuum states, respectively. We distinguish between the
modulation of the continuum current with φ and θ. According to our numerical results,
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Figure 6.7.: Numerical results for the Majorana (JM ) and continuum (Jφ, Jθ) current os-
cillation amplitudes as a function of B. For presentation the continuum cur-
rent has been multiplied by 30. The calculations have been performed with
the same parameters as in Fig. 6.6 with ∆ = 5µeV. Transmission probabil-
ities range from 0.1% to 0.4%. The vertical dashed line denotes the critical
magnetic field.

the phase dependence of the continuum energy can be well described by

Econt(φ, θ) =E0 cos(φ) {α+ (1− α) cos [θ + θ1(φ)]}
+ const., (6.4)

where α ∈ [0, 1] is a parameter-dependent constant. Hence for α > 0, the amplitude of
the oscillations as a function of θ is smaller than the amplitude of the φ-oscillations. We
numerically calculate the largest amplitudes of the Josephson current oscillations as a
function of φ and θ,

Jφ = eE0/~

Jθ = (eE0/~)(1− α) (6.5)

and plot them in Fig. 6.7 as a function of B along with the amplitude of the 4π-periodic
Majorana current JM . The latter is much larger than the continuum contribution for a
large range of parameters. For a p-wave-superconductor junction the 2π-periodic cur-
rent involves tunneling of Cooper pairs with amplitude ∝ D [Alic 11], in contrast to
single-electron tunneling ∝

√
D responsible for the 4π-periodic current. Hence in the

largeB limit, we expect JM to exceed the 2π-periodic current by a factor of 1/
√
D, which

is ∼ 20 for the parameters used in Fig. 6.7.
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Figure 6.8.: Numerical results for the continuum contribution to the Josephson current
as a function of φ (red crosses) and θ (green dots). The solid lines are fits
to the φ-derivative of Eq. (4), ∂φEcont(φ, θ). All parameters are the same as
in Fig. 6.7. The fixed angle is chosen such that the current is maximized. In
this way, the oscillation amplitudes can be used to obtain Jφ and Jθ plotted
in Fig. 6.7. The φ dependence is simply J(φ) = Jφ sin(φ). In contrast J(θ)
has a large offset and only a weak θ dependence for B ∼ ∆ [panel (a)].
This corresponds to α ∼ 1. For B � ∆ [panel (b)], the amplitude of Jθ
approaches that of Jφ and α decreases.

Only very close to the phase transition, when |B −∆| � ∆, can the continuum cur-
rent exceed the Majorana contribution. This is consistent with numerical estimates for
continuum and Majorana Josephson currents for the topological insulator edge (6.1) in
[Jian 11b], which corresponds to the limit |B − ∆| � ∆ for the quantum wire model
(6.2).

Comparing the Josephson and magneto-Josephson effects, we find in accordance with
Eq. (6.5) that Jφ is larger than Jθ, in particular in the regime of small B. On the other
hand, the amplitude JM of the Majorana current oscillation is the same forφ and θ. Thus,
near the critical magnetic field, the 4π-periodic magneto-Josephson current appears on
top of a constant current background with a small 2π-periodic modulation from the
continuum states (see Fig. 6.8a). This is favorable in experiments to discriminate the 4π-
periodic Majorana current from the conventional Josephson current of the continuum,
e.g., in the Shapiro-step-like pattern due to the interference of a rotating magnetic field
and an ac voltage as described in [Jian 13].

6.5. Conclusions

The dedicated experiments [Mour 12, Das 12, Chur 13, Rokh 12, Deng 12a, Finc 13] to
detect Majorana bound states in spin–orbit-coupled quantum wires raise the question
of how the exotic signatures of Majorana zero modes manifest themselves in such wires.
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6 Magneto-Josephson effects and Majorana bound states in quantum wires

In this work, we explored the magneto-Josephson effect which complements the remark-
able Josephson physics that Majorana bound states entail.

Our principal goal was to determine the periodicities of the magneto-Josephson effect
for the various domain configuration of the Josephson junction. For junctions made of
topological insulator edge states, the 4π-periodic effects emerge in mutually exclusive
configurations: the conventional Josephson effect (involving a phase difference of the
superconducting order parameter across the junction) appears in the ∆−B−∆ domain
sequence, while the magneto-Josephson effect requires the complementary structure,
B − ∆ − B. This indicates that, in a sense, both domain types are topological for a
topological-insulator edge. In contrast, for spin–orbit-coupled wires, we found for both
types of Josephson effects that a 4π periodicity requires the B −∆−B configuration.

While we invoked both analytical arguments and numerical analysis to establish this
result, it has a natural interpretation. We expect that 4π periodicity with a parameter
which is normally defined between 0 and 2π (up to trivial shifts) can only emerge if
the parameter pertains to a topological phase. In a spin–orbit-coupled wire, there is no
ambiguity as to which phase is topological. The ∆-dominated phase is continuously
connected to the vacuum by taking the limit of a large and negative chemical potential.
The B-dominated phase, on the other hand, is a topological phase continuously con-
nected to a spinless p-wave superconductor. In Sec. 6.3.1, this argumentation is made
explicit using analytical arguments.

Despite these characteristic differences of the magneto-Josephson (as well as Joseph-
son) periodicities between topological insulator edge and semiconductor quantum wire,
both models can be connected explicitly in the limit of large spin–orbit coupling. We ex-
ploited this connection in Sec. 6.3.2 to understand the relation between the Josephson
periodicities of the two models.

With a view towards experiments on Majorana Josephson phenomena, we also com-
puted the 4π-periodic magneto-Josephson effect for typical parameters, and compared
its magnitude to that of the more conventional 2π-periodic background. The above-
gap continuum of states in the wire contributes to both the phase-controlled and the
magneto-Josephson effect. In the low-transmission regime (D � 1), we found that both
4π-periodic Josephson effects yield currents of the order of e~

√
DEgap, withEgap the gap

in the two banks of the Josephson junction. In contrast, the conventional effects are sup-
pressed by an additional factor of

√
D. In order to measure a sizable 4π-periodic current

in experiment, however, it may be necessary to work at large transmission probabili-
ties. In this regime, the exotic and conventional current contributions are of the same
magnitude, although the 4π periodicity is relatively more pronounced for the magneto-
Josephson effect.
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Josephson-related phenomena in spin–orbit-coupled wires can become more com-
plex when considering, e.g., ac modulations and Shapiro steps. These may require one
to take accurate account of the complicated spectrum of the quantum wires. More-
over, when the energy gap in the middle domain is not too large, additional Andreev
bound states could be present, which contribute to the Josephson effect. In this work we
refrain from discussing these topics as well as more complicated setups such as three-
leg Josephson effects to keep the presentation concise. Nonetheless, these aspects may
prove important (and maybe even beneficial) in experiments, and present interesting
avenues for future research.
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7. Topological superconducting phase in helical

Shiba chains

Recently a third proposal to realize Majorana bound states besides proximity-coupled
quantum wires and topological insulator edges has received considerable attention. As
discussed in Sec. 3.2.3 a topological superconducting phase can form in a chain of mag-
netic impurities on the surface of an s-wave superconductor. Such an impurity chain
forms a band in the gap of the substrate superconductor. There are, in principle, two
ways to open a superconducting gap, when the particle and hole branches of the im-
purity band overlap at the Fermi level: either the impurity chain has a noncollinear
spin configuration or spin-rotation symmetry is broken by the superconductor. The for-
mer possibility has been originally suggested in [Choy 11] (see also [Mart 12, Kjae 12]),
while the latter is closely related to a halfmetallic wire on top of a spin-orbit-coupled
superconductor studied in [Duck 11]. As mentioned in Sec. 3.2.3, these two realizations
are intimately connected since a ferromagnetic chain on the surface of a superconduc-
tor with Rashba spin-orbit coupling can potentially be mapped onto a helical spin chain
without spin-orbit coupling in the substrate. Recently, such spin helices have been stud-
ied by a number of authors [Nadj 13, Nako 13b, Klin 13, Brau 13, Vazi 13, Kim 14] with
claims of self-tuned topological phases. A spin helix can form, for instance, as a result
of the RKKY interaction mediated by the superconducting substrate. Ongoing exper-
iments on impurity chains on superconductors in the group of A. Yazdani, Princeton
University, are claimed to exhibit signatures of Majorana bound states although the spin
configuration of the impurity chain in the experiment is not fully settled.

In this chapter we investigate a helical impurity chain theoretically by developing a
tight-binding Bogoliubov-de Gennes description starting from the Shiba bound states
induced by the individual magnetic impurities. While the resulting model Hamiltonian
has similarities with the Kitaev model for one-dimensional spinless p-wave supercon-
ductors, there are also important differences, most notably the long-range nature of hop-
ping and pairing as well as complex hopping amplitudes. We use both analytical and
numerical approaches to explore the consequences of these differences for the phase di-
agram and the localization properties of the Majorana end states when the Shiba chain
is in a topological superconducting phase.
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7 Topological superconducting phase in helical Shiba chains

Furthermore, we explore an unconventional topological critical point that occurs as a
consequence of the long-range couplings and has no analogue in the case of the Kitaev
chain. At the critical point, we find exponentially localized Majorana bound states with
a short localization length unrelated to a topological gap. Away from the critical point,
this exponential decay develops a power-law tail. Our analytical results have encourag-
ing implications for experiment. This chapter is based on two separate articles. Sections
7.1-7.5 have been published as [Pien 13a] and Sec. 7.6 appeared as [Pien 14].

7.1. Introduction

Magnetic impurities placed in a conventional superconductor create localized, sub-gap
Shiba states [Yu 65, Shib 68, Rusi 69, Bala 06]. When the magnetic impurities are brought
close to one another, the individual localized Shiba states hybridize and may form a
band. Electrons in such a band, in turn, may hybridize with the condensate of the bulk
superconductor by Andreev reflection. The properties of the band and the strength of
Andreev processes depend on the magnetic structure of the impurity chain. Assuming
that the impurity spins form a helix, it is argued that the Shiba bands will effectively
realize a topological superconducting phase, akin to one-dimensional spinless p-wave
superconductors [Kita 01]. Indeed, the Shiba states are effectively spin polarized and
the (spin-singlet) s-wave Cooper pairs of the superconducting substrate can induce p-
wave superconducting correlations in the Shiba band since neighboring impurity spins
are misaligned due to the helical spin order. A particularly attractive feature of this pro-
posal is that the presence of Majorana end states could be probed directly by scanning
tunneling spectroscopy [Yazd 97, Yazd 99].

Following the original suggestion [Nadj 13], some aspects of this proposal have been
investigated by a number of authors [Nako 13b, Klin 13, Brau 13, Vazi 13, Kim 14]. How-
ever, a theory making the connection to the formation and hybridization of Shiba states
explicit has not yet been given. It is the purpose of this chapter to provide such a the-
oretical description. We show that for the case of deep Shiba states, one can derive an
effective tight-binding Bogoliubov-de Gennes Hamiltonian. While this tight-binding
Hamiltonian shares important features with the paradigmatic Kitaev model for one-
dimensional spinless p-wave superconductors [Kita 01], there are also several substan-
tial differences: (i) Both the hopping and the pairing terms are long range, having a
1/r-power-law decay with distance as long as r remains small compared to the coher-
ence length ξ0 of the host superconductor. (ii) The hopping terms generally involve
complex phase factors which lead to dispersions which are asymmetric under momen-
tum reversal k → −k. We explore the consequences of these differences both for the
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phase diagram and for the localization properties of Majorana end states present when
the system is in a topological phase.

Our approach is based on the following physical picture. We start with a given static
texture of the impurity spins along the chain. This texture is ultimately the result of
the RKKY interaction between the impurity states as mediated by the superconduct-
ing host1 [Nadj 13, Klin 13, Brau 13, Vazi 13]. It seems likely that the precise nature of
the spin texture is sensitive to system-specific details such as the ratio of the impurity
spacing to the Fermi wavelength of the superconductor or anisotropies of the exchange
interaction at the surface of the superconductor. Hence, we consider general periodic
and helical spin textures which need not be commensurate with the underlying impu-
rity chain. As long as the magnetic impurities are sufficiently dilute, each of them binds
a pair of Shiba states with energies in the superconducting gap which are symmetric
about the chemical potential pinned to the center of the gap. Overlaps between the Shiba
bound states lead to hybridization and the formation of bands whose bandwidth grows
with decreasing spacing between the impurities. If the impurity states are shallow, i.e.,
their energies are close to the superconducting gap edges, the impurity band will in
general merge with the quasiparticle continuum and simply smear the gap edge. Topo-
logical superconducting states can possibly still be realized when the impurity bands at
positive and negative energies become wide enough to overlap around the center of the
gap, i.e., when the bandwidth becomes comparable with the superconducting gap.

Here, we focus on the opposite limit in which the Shiba bound states are deep with en-
ergies near the center of the gap. In this case, the bands emerging from the positive- and
negative-energy Shiba states start to overlap already for weak hybridization. Thus, the
Shiba bands remain well separated from the quasiparticle continuum and we can derive
an effective Hamiltonian within the subspace of Shiba states. As long as the bandwidth
of the Shiba states remains smaller than the energy of the bare Shiba states, there are two
well-separated Shiba bands and the system is in a nontopological superconducting state.
Topological superconducting phases can occur when the Shiba bands overlap around
the center of the gap. Since the Shiba states are spin polarized, the induced pairing am-
plitude within the subspace of Shiba states is necessarily odd in momentum and hence
of p-wave nature. If the system enters such a topological phase, there will be a p-wave
gap at the chemical potential within the overlapping Shiba bands, in addition to the
original s-wave gap of the host superconductor. However, such a p-wave gap does not
necessarily form for arbitrary parameters despite the presence of a finite p-wave pairing
amplitude and overlapping Shiba bands. Elucidating this nontrivial phase diagram is

1 In three dimensions, the formation of helical spin order as a consequence of the RKKY interaction be-
tween localized spins was originally investigated in the context of rare-earth metals, see, e.g., [Elli 61]
and [Yosi 96]; for a consideration of fluctuation effects in one and two dimensions, see [Loss 11] and
[Klin 13].
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7 Topological superconducting phase in helical Shiba chains

one of the central goals of this chapter.

For typical Shiba chains, the coherence length ξ0 of the host superconductor is much
larger than the impurity spacing awhich is comparable to the lattice spacing of the host
superconductor. In numbers, one has ξ0/a ∼ 102 − 103 making a model with a pure
1/r decay of hopping and pairing an excellent starting point. In the context of topolog-
ical phases, this long-range coupling poses interesting questions. Most importantly, it
is usually assumed [Hasa 10] that the boundary modes of topological phases, such as
Majorana end states, fall off exponentially into the bulk which seems incompatible with
long-range coupling.

In the last part of this chapter we provide an analytical theory for the surprising local-
ization properties of the Majorana end states in the presence of long-range couplings,
with important implications for experiment. We show that helical Shiba chains dis-
play an unconventional topological critical point as a function of the helix and Fermi
wavevectors kh and kF as a consequence of the long-range coupling. The critical point
is located exactly at kh = kF in the limit ξ0 → ∞ and remains close to it for finite ξ0.
Thus right at or near the critical point, the spin helix satisfies the condition for Bragg
reflection which induces a strong tendency towards localizing the Majorana end states,
competing with the delocalizing tendency of the long-range coupling. This may result
in a localization length of the order of a few impurity sites, making isolated Majoranas
accessible in experimentally feasible chains containing only a few dozen atoms.

This chapter is organized as follows. In Sec. 7.2, we introduce the model and discuss
the formation of the spin helix. In Sec. 7.3.1, we review the formation of Shiba states
for a single magnetic impurity in an s-wave superconductor, employing a technique
which readily generalizes to chains of magnetic impurities. The latter are discussed in
Sec. 7.3.2, culminating in a tight-binding Bogoliubov-de Gennes equation for deep Shiba
states. The tight-binding model is employed to analyze the phase diagram in Sec. 7.4
and the localization properties of the Majorana modes in Sec. 7.5. In Sec. 7.6 we discuss
the unconventional topological phase transitions and the localization properties of the
Majorana states in the vicinity of the critical point. We conclude in Sec. 7.7 and defer
some technical details and derivations to Appendix C.

7.2. Model

Our starting point is the Bogoliubov-de Gennes Hamiltonian (BdG) of an s-wave super-
conductor. We assume that the superconductor is in the clean limit but hosts a chain of
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magnetic impurities placed at locations rj ,

H = ξpτz − J
∑
j

Si · σδ(r− rj) + ∆τx. (7.1)

Here, p and r denote the electron’s momentum and position, ξp = p2/2m − µ with
the chemical potential µ, ∆ is the superconducting gap, and J denotes the strength of
the exchange coupling between the magnetic impurity with spin S and the electrons
in the superconductor. The Pauli matrices σi (τi) operate in spin (particle-hole) space.
The BdG Hamiltonian is written in a basis which corresponds to the four-component
Nambu operator Ψ = [ψ↑, ψ↓, ψ

†
↓,−ψ

†
↑] in terms of the electronic field operator ψσ(r).

In this basis, the time-reversal operator takes the form T = iσyK, where K denotes
complex conjugation. The BdG Hamiltonian (7.4) obeys the symmetry {H, CT} = 0,
with C = −iτy. Thus, if ψ is an eigenspinor ofHwith energy E, CTψ is an eigenspinor
of energy (−E).

We assume that the magnetic moments are classical and arranged along a linear chain
with lattice spacing a. We can parametrize the impurity spins Sj through spherical
coordinates, using the angles θj and φj in addition to S,

Sj = S(sin θj cosφj , sin θj sinφj , cos θj). (7.2)

In the BdG equation (7.1), we take the spins as frozen into a given spin texture Sj . We
also assume the impurity spacings a� 1/kF so that the bandwidth of the Shiba bands
is small compared to the gap of the host superconductor.

The spin texture will in general be governed by the RKKY interaction between the
impurity spins, as mediated by the superconducting host [Nadj 13, Klin 13, Brau 13,
Vazi 13]. Magnetic impurities interact with each other via exchange by virtual electron-
hole excitations in the host metal. If the host is in the normal state, this exchange leads
to the familiar RKKY interaction between the impurities [Abri 88] whose sign alter-
nates as a function of inter-impurity distance rij and which is of magnitude J(i− j) ∼
(Jν0)2vF /(k

2
F r

3
ij). Here, J denotes the exchange coupling between magnetic impurity

and electrons, ν0 is the electronic density of states at the Fermi energy, and vF and kF de-
note the Fermi velocity and wavevector, respectively. There is some evidence for normal-
metal substrates [Menz 12] that the RKKY interaction between impurity spins can lead
to the formation of a spin helix when the impurities form an ordered chain.2

In a clean system, the RKKY interaction between two magnetic impurities a distance

2The chirality of the helix is probably determined by the Dzyaloshinskii-Moriya component of the inter-
action. This component breaks the degeneracy between the two helicities and may be much smaller
than the isotropic part J(i− j) of the RKKY interaction.
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7 Topological superconducting phase in helical Shiba chains

rij apart involves virtual electron-hole pairs with characteristic energy ~vF /rij . On the
other hand, superconductivity prohibits pairs with energy less than the gap ∆. As a
result, J(i − j) is substantially affected by superconductivity if rij & ξ0, where ξ0 is
the coherence length of the host superconductor. A perturbative treatment of the ex-
change interaction indicates [Abri 88, Gali 02] that the correction to the normal-state
value of J(i − j) caused by superconductivity is antiferromagnetic. The magnitude
of the correction is of order δJ(i − j) ∼ ∆/(kF rij)

2 and thus small at any rij . ξ0.
The presence of deep Shiba states enhances the correction [Yao 13]; in the limit α → 1,
its absolute value reaches a maximum of the order of ∆/(kF rij). [This estimate may
be obtained from a consideration of the total energy of a superconductor containing a
pair of impurities which create Shiba states according to Eqs. (23), (32), and (33) below.]
Still, the “normal-state” RKKY wins over the correction at kF rij . (kF vF /∆)1/2. For
a typical superconductor, the right-hand side gives a relatively mild limitation ∼ 102

which is compatible with the assumption kFa � 1. Note that at the border of that re-
gion, kF rij ∼ (kF vF /∆)1/2, the energy scale important for the observation of Majorana
states, ∆eff , is already small, ∆eff ∼ ∆3/2/(kF vF )1/2. Placing the magnetic impurities
closer to each other makes both, the band of Shiba states and the induced gap wider. At
the same time, superconductivity of the host will hardly affect the mutual orientation
of the magnetic moments.

In general, one would expect that the specifics of the spin helix such as the overall
spin orientation or the pitch depend sensitively on the details of the system. Important
parameters are the ratio of the impurity spacing and the Fermi wavelength of the host
superconductor, the single-ion magnetic anisotropy, as well as the spatial structure and
isotropy of the exchange interaction between the magnetic moments. For this reason,
we consider a general class of helical spin textures of the form

θj = θ ; φj = 2khxj (7.3)

with a constant opening angle θ and pitch π/kh; here xj = ja denotes the position of
the j-th impurity along the chain.

The possible values of kh are determined by the maxima of the Fourier transform of
J(i − j) [Klin 13, Brau 13, Vazi 13]. Thus, for a simple isotropic model of the super-
conductor and at kFa � 1, the RKKY interaction J(i − j) results in a helix wavevector
2kh = (2kFa− 2πn)/awith a single value of n such that |kha| ≤ π. While we investigate
this simple case in some detail below, we will first discuss the phase diagram and the
Majorana bound states for arbitrary spin helices as defined in Eq. (7.3). The reason is
that the details of the band structure of the superconductor as well as possible spin-orbit
coupling may allow for other relations between the Fermi wavevector kF and the helix
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wavevector kh. Note also that if the Hamiltonian of the magnetic system is dominated
by the exchange interaction with an isotropic exchange integral J(i − j) [Gali 02], the
spin helix is planar with θ = π/2. In general, the value of the single-ion anisotropy de-
pends strongly on the orbital moment of the magnetic ion and the coordination of the
host lattice3 [Fert 80, Gamb 03].

7.3. Shiba states

7.3.1. Single magnetic impurity

To provide necessary background and to fix notation, we briefly derive the Shiba states
for a single magnetic impurity in a form which can be generalized to a chain of impu-
rities. For a single impurity placed at the origin, the BdG Hamiltonian (7.1) simplifies
to

H = ξpτz − JS · σδ(r) + ∆τx. (7.4)

We can choose the impurity spin S to point along the z direction. In this case, the 4× 4

Hamiltonian in Eq. (7.4) separates into independent 2× 2 HamiltoniansH± for spin-up
(+) and spin-down (−) electrons,

H± = ξpτz ∓ JSδ(r) + ∆τx. (7.5)

To solve for the bound-state spectrum of these Hamiltonians, we write the BdG equa-
tions in a way which isolates the impurity term on the right-hand side,

[E − ξpτz −∆τx]ψ(r) = ∓JSδ(r)ψ(0), (7.6)

and pass to momentum space using ψ(r) =
∫

[dp/(2π)3]eip·rψp,

[E − ξpτz −∆τx]ψp = ∓JSψ(0). (7.7)

Multiplying by [E − ξpτz −∆τx]−1 from the left, we obtain

ψp =
∓JS

E2 − ξ2
p −∆2

[E + ξpτz + ∆τx]ψ(0). (7.8)

3The anisotropy energy extracted from various experiments ranges from . 1µeV for Mn (orbital moment
L = 0) in bulk Cu [Fert 80] to ∼ 9meV for Co atoms (L = 1) on the surface of Pt.[Gamb 03]
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7 Topological superconducting phase in helical Shiba chains

We can now turn this into an equation for the spinor ψ(0) evaluated at the position of
the impurity only,

ψ(0) =

∫
dp

(2π)3

∓JS
E2 − ξ2

p −∆2
[E + ξpτz + ∆τx]ψ(0). (7.9)

The integral is readily evaluated (see Appendix C.1) and we obtain a linear set of equa-
tions for the BdG spinor at the position of the impurity,{

1∓ α√
∆2 − E2

[E + ∆τx]

}
ψ(0) = 0. (7.10)

Here we introduced the dimensionless impurity strength α = πν0JS in terms of the
normal-phase density of states ν0.

One readily finds from Eq. (7.10) that H± has a subgap solution at energy ±E0 with
[Yu 65, Shib 68, Rusi 69, Bala 06]

E0 = ∆
1− α2

1 + α2
. (7.11)

The energies of the two Shiba states cross at α = 1 where the ground state changes from
even to odd electron number.

The corresponding eigenspinors (written in the four-spinor form of the original 4× 4

BdG Hamiltonian)

ψ+(0) =
1√
N


1

0

1

0

 ; ψ−(0) =
1√
N


0

1

0

−1

 . (7.12)

Here, the normalization factor N = (1 + α2)2/2πν0∆α follows from the normalization
condition 1 =

∫
dr
∑

n |ψn(r)|2 =
∫

[dp/(2π)3]
∑

n |(ψp)n|2. Note that the solution start-
ing out at positive energies for small exchange coupling corresponds to quasiparticles
made up from spin-up electrons and spin-down holes, while the one which starts at
negative energies consists of spin-down electrons and spin-up holes.

For later reference, it is useful to generalize these spinors to impurity spins pointing
in arbitrary directions. Parameterizing the impurity spin in spherical coordinates, S =

S(sin θ cosφ, sin θ sinφ, cos θ), the corresponding spin-up and spin-down Pauli spinors
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are

| ↑〉 =

(
cos(θ/2)

sin(θ/2)eiφ

)
; | ↓〉 =

(
sin(θ/2)e−iφ

− cos(θ/2)

)
. (7.13)

In terms of these Pauli spinors, the BdG spinors in Eq. (7.12) generalize to

ψ+(0) =
1√
N

(
| ↑〉
| ↑〉

)
; ψ−(0) =

1√
N

(
| ↓〉
−| ↓〉

)
. (7.14)

Note that the Pauli spinors are related by time reversal symmetry, | ↓〉 = T | ↑〉, so that
the BdG spinors satisfy the relation ψ−(0) = CTψ+(0) in accordance with the general
symmetries of the BdG Hamiltonian.

7.3.2. Chain of magnetic impurities

General formulation

We now generalize the approach of the previous section to a chain of magnetic impuri-
ties Sj at sites rj as described by the Hamiltonian in Eq. (7.1). As for a single impurity,
we start by isolating the impurity terms on one side of the BdG equation and passing to
momentum space. This yields

[E − ξpτz −∆τx]ψp = −J
∑
j

Sj · σe−ip·rjψ(rj). (7.15)

Multiplying from the left by [E− ξpτz −∆τx]−1 and evaluating ψ(ri) yields a closed set
of equations for the BdG spinors at the positions of the impurities,

ψ(ri) = −J
∑
j

∫
dp

(2π)3

eip(ri−rj)

E − ξpτz −∆τx
Sj · σψ(rj). (7.16)

We are searching for subgap states so that we need to evaluate the momentum integral
on the RHS for energiesE < ∆. This integral is performed in Appendix C.1 and we find

ψ(ri) = −
∑
j

JE(ri − rj)Ŝj · σψ(rj), (7.17)
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where we defined the unit vector Ŝj = Sj/S and

JE(r) = − α√
∆2 − E2

e−r/ξE

kF r

×
(
E sin kF r +

√
∆2 − E2 cos kF r ∆ sin kF r

∆ sin kF r E sin kF r −
√

∆2 − E2 cos kF r

)
(7.18)

in terms of ξE = vF /
√

∆2 − E2.

Tight-binding model for deep impurities

We now specify to deep impurities with impurity strength α close to unity so that the
energy ε0 ' ∆(1 − α) of the individual Shiba states is close to the center of the gap.
Moreover, we assume that the impurities are sufficiently dilute that the resulting impu-
rity band remains well within the superconducting gap. In this limit, we can expand
to linear order in E [and hence in (1 − α)] as well as in the coupling between impurity
sites.

We start by writing Eq. (7.17) as

ψ(ri) + JE(0)Ŝi · σψ(ri) = −
∑
j 6=i

JE(rij)Ŝj · σψ(rj), (7.19)

with the shorthand rij = ri−rj . The RHS is already linear in the coupling between Shiba
states so that we can evaluate it forE = 0 and α = 1. The LHS is readily expanded using
Eq. (7.18), so that we obtain

{1− [E/∆ + ατx]Ŝi · σ}ψ(ri) =
∑
j 6=i

e−rij/ξ0

kF rij
[τz cos kF rij + τx sin kF rij ]Ŝj · σψ(rj),

(7.20)

Multiplying by Ŝi · σ and using the identity (Ŝi · σ)(Ŝi · σ) = 1 yields

{Ŝi · σ − [E/∆ + ατx]}ψ(ri)

=
∑
j 6=i

e−rij/ξ0

kF rij
[τz cos kF rij + τx sin kF rij ](Ŝi · σ)(Ŝj · σ)ψ(rj), (7.21)

We can now project this equation to the set of Shiba states in Eq. (7.14) localized at the
impurities. If there are N impurities, the resulting equation is a tight-binding model
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with a 2N × 2N Hamiltonian which takes the form of a BdG equation,

H̃effφ = Eφ, (7.22)

with an effective Hamiltonian

H̃eff =

(
h̃eff ∆̃eff

∆̃†eff −h̃Teff

)
. (7.23)

Here, h̃Teff denotes the time reverse of h̃eff . Taking matrix elements of Eq. (7.21), the
entries of the effective Hamiltonian H̃eff take the form

(h̃eff)ij =

{
ε0 i = j

−∆
sin kF rij
kF rij

e−rij/ξ0〈↑, i| ↑, j〉 i 6= j.
(7.24)

and

(∆̃eff)ij =

{
0 i = j

∆
cos kF rij
kF rij

e−rij/ξ0〈↑, i| ↓, j〉 i 6= j.
(7.25)

In these expressions, the electronic spin states |σ, i〉 correspond to spin σ =↑, ↓ with
respect to the direction of the ith impurity spin. Parameterizing these impurity spin
directions through angles θi and φi, we have

〈↑, i| ↑, j〉 = cos
θi
2

cos
θj
2

+ sin
θi
2

sin
θj
2
ei(φj−φi) (7.26)

〈↑, i| ↓, j〉 = e−i(φi+φj)/2
[
cos

θi
2

sin
θj
2
e−i(φj−φi)/2 − sin

θi
2

cos
θj
2
e−i(φi−φj)/2

]
(7.27)

Note that the pairing terms involve a site-dependent phase factor exp{−i(φi + φj)/2}.
It is convenient to eliminate this phase factor by a gauge transformation

U =

(
eiφ/2 0

0 e−iφ/2

)
, (7.28)

where φ denotes a matrix in site space with matrix elements φij = δijφj . Performing
this unitary transformation, we find the effective Hamiltonian

H = UH̃U† =

(
heff ∆eff

∆†eff −hTeff

)
(7.29)
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7 Topological superconducting phase in helical Shiba chains

with

(heff)ij

=

 ε0 i = j

−∆
sin kF rij
kF rij

e−rij/ξ0
[
cos θi2 cos

θj
2 e

i(φi−φj)/2 + sin θi
2 sin

θj
2 e
−i(φi−φj)/2

]
i 6= j.

(7.30)

and

(∆eff)ij

=

 0 i = j

∆
cos kF rij
kF rij

e−rij/ξ0
[
cos θi2 sin

θj
2 e

i(φi−φj)/2 − sin θi
2 cos

θj
2 e
−i(φi−φj)/2

]
i 6= j.

.

(7.31)

Finally, we specify the Hamiltonian to a spin helix as defined in Eq. (7.3) and find

(heff)ij =

{
ε0 i = j

−∆
sin kF rij
kF rij

e−rij/ξ0
[
eikhxij cos2 θ

2 + e−ikhxij sin2 θ
2

]
i 6= j

(7.32)

as well as

(∆eff)ij =

{
0 i = j

i∆
cos kF rij
kF rij

e−rij/ξ0 sin θ sin khxij i 6= j,
(7.33)

where we use the notation xij = xi−xj . Note that in this form, the Hamiltonian is trans-
lationally invariant. Conveniently, ε0 only enters the onsite terms and −ε0 effectively
acts as a chemical potential for the band of Shiba states. While this BdG Hamiltonian is
reminiscent of the Kitaev chain [Kita 01], there are several characteristic differences:

• The Hamiltonian involves long-range hopping terms. This is a consequence of the
fact that the wavefunctions of the Shiba states fall off as 1/r with distance from the
magnetic impurity as long as r is small compared to the superconducting coher-
ence length.

• In general, the hopping terms involve complex phase factors. This reflects that
there are (spin) supercurrents flowing in response to the spatially varying Zeeman
field of the magnetic impurities, similar to the magneto-Josephson effect [Jian 13,
Pien 13b]. These supercurrents induce a spatially varying phase of the effective
p-wave paring strength which we then eliminated by the unitary transformation
at the expense of introducing complex phase factors into the hopping terms (cf.
[Romi 12]).
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• The hopping amplitudes are real for a strictly planar spin helix with θ = π/2 due
to the additional reflection symmetry present in this case. This simplifies the site-
off-diagonal hopping and pairing terms of the tight-binding Hamiltonian in Eqs.
(7.32) and (7.33), which become

(heff)ij = −∆
sin kF rij
kF rij

e−rij/ξ0 cos khxij (7.34)

as well as

(∆eff)ij = i∆
cos kF rij
kF rij

e−rij/ξ0 sin khxij (7.35)

• While the pairing is odd and hence p-wave, it also involves long-range contribu-
tions which fall off as 1/r as long as r is small compared to the superconducting
coherence length.

In the following, we explore the consequences of these differences for the phase diagram
and the splitting of Majorana end states using both analytical and numerical approaches.

7.4. Phase diagram

We first consider an infinite chain of Shiba states and qualitatively explore the phase
diagram of the effective tight-binding model. For an infinite chain, the Hamiltonian
defined by Eqs. (7.32) and (7.33) is translationally invariant and can be solved by passing
to momentum states. This yields the 2× 2 BdG Hamiltonian

H =

(
hk ∆k

∆∗k −h∗−k

)
. (7.36)

Here, we introduced the Fourier transforms

hk =
∑
j

(heff)ije
ikxij (7.37)

and

∆k =
∑
j

(∆eff)ije
ikxij . (7.38)
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7 Topological superconducting phase in helical Shiba chains

As detailed in Appendix C.2, the Fourier transforms can be performed explicitly and we
find

hk = ε0 +
∆

kFa

[
F (k + kh) cos2 θ

2
+ F (k − kh) sin2 θ

2

]
(7.39)

in terms of the function

F (k) =−
[

arctan
e−a/ξ0 sin(kF + k)a

1− ea/ξ0 cos(kF + k)a
+ arctan

e−a/ξ0 sin(kF − k)a

1− ea/ξ0 cos(kF − k)a

]
(7.40)

as well as

∆k =
∆ sin θ

4kFa
[f(kF + kh + k)− f(kF + kh − k) −f(kF − kh + k) + f(kF − kh − k)]

(7.41)

in terms of

f(k) = − ln
[
1 + e−2a/ξ0 − 2e−a/ξ0 cos ka

]
. (7.42)

Both hk and ∆k depend sensitively on the superconducting coherence length. For ξ0

small or of order a, the hopping and pairing amplitudes are essentially local. In contrast,
the slow power-law decay with rij becomes relevant for large ξ0 � a. In the following,
we discuss these two limits separately.

7.4.1. Small coherence length

We first specify the problem to the limit of small coherence lengths ξ0/a � 1. While
this limit is presumably not very relevant experimentally, it is helpful in understanding
the more realistic case ξ0/a � 1 discussed in Sec. 7.4.2. For simplicity, we also assume
kha � 1 which allows us to expand both hk and ∆k to linear order in this parameter.4

This yields

hk ' ε0 −
2∆

kFa
e−a/ξ0 sin kFa [cos ka− kha cos θ sin ka] (7.43)

as well as

∆k =
2∆

kFa
e−a/ξ0(kha) sin θ cos kFa sin ka. (7.44)

4However, our conclusions remain qualitatively valid even without this assumption as illustrated by the
numerical results in Fig. 7.1.
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Figure 7.1.: Numerical results for hk and ∆k vs. momentum k (upper panels) and the
corresponding quasiparticle excitation spectra Ek (lower panels) for a short
coherence length ξ0/a = 0.2, ε0 = 0, θ = π/4, kha = π/8. The plots are for
kFa = 4π+π/8 in (a) and kFa = 4π+ 3π/8 in (b), illustrating the transitions
between topological and gapless phases as a function of kF . All energies are
measured in units of ∆.

There are several noteworthy features of hk and ∆k: The scale of the effective bandwidth
of the band of Shiba states is set by t = (∆/kFa)e−a/ξ0 . By comparison, the correspond-
ing scale δ = 2t(kha) for the pairing strength is parametrically smaller by a factor of
kha. It is important to note that hk is asymmetric under k → −k unless θ = π/2 and
that the magnitude of the antisymmetric term is of the same order as the pairing. This
asymmetry breaks the resonance between k and−k states and hence suppresses Cooper
pairing.

Diagonalizing the BdG equation (7.36), we thus find the subgap spectrum,

Ek,± = δ sin kFa cos θ sin ka±
√

(ε0 − 2t sin kFa cos ka)2 + (δ cos kFa sin θ sin ka)2.

(7.45)

As the energy ε0 of the Shiba states is reduced, the Shiba bands start to overlap and
undergo a phase transition into a topological superconducting phase for appropriate
parameters. Specifically, the Shiba bands cross the chemical potential at ±k0 deter-
mined by ε0 = 2t sin kFa cos k0a. The pairing term opens p-wave gaps at ±k0 of mag-
nitude δ| cos kFa sin θ sin k0a|. However, these gaps are shifted in energy by the shift
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Figure 7.2.: Numerical results for the energy minimum of the upper band (color scale)
vs. kFa and ε0 for a short coherence length ξ0 = a/5, kha = π/8, ∆ = 1, and
(a) θ = π/2, (b) θ = π/5. The color scale has been chosen to highlight ze-
ros of the band minimum (black regions), which indicate topological phase
transitions. The light blue regions correspond to gapped phases, while yel-
low regions mark the gapless phase (G). We have identified the topological
(T) and nontopological (N) gapped phases using the arguments in the main
text as well as by checking that a single Majorana bound state exists at both
ends of the wire. In (a) the band is symmetric under k → −k and the band
minimum is always nonnegative. The topological phase is centered around
ε0 = 0 and the transition to the nontopological phase is approximately de-
scribed by ε0 = ±2 sin kFa e

−a/ξ0 cos kha/kFa. The topological phase is split
in half by a vertical metallic line (∆k = 0) at kFa ' nπ + π/2. At kFa = nπ
all hopping terms vanish and there can be no topological phase. In (b), the
asymmetry of the spectrum expands the metallic line into a gapless phase.

term δ sin kFa cos θ sin ka arising from the asymmetry of the dispersion hk. The shifts
are equal to ±δ| sin kFa cos θ sin k0a| at the two Fermi points. The system enters a topo-
logical superconducting phase only as long as these shifts do not close the gap:

• At θ = 0, i.e., a ferromagnetic arrangement of the impurity spins, the p-wave gap
vanishes and the system is gapless and nontopological.

• At θ = π/2, i.e., when the spin helix of the impurity spins has zero average magne-
tization, the shift vanishes and the system always enters a topological supercon-
ducting phase as the Shiba bands start to overlap at the chemical potential.

• For intermediate θ ∈ (0, π/2), the system becomes gapless when the shift term be-
comes larger than the pairing term, i.e., when | sin kFa cos θ| − | cos kFa sin θ| > 0.
This happens for θ < kFa < π − θ (mod 2π). Thus there are alternating topolog-
ical and nontopological phases as a function of the Fermi momentum kF of the
superconductor.

This scenario is illustrated by the numerical results for the dispersion, the gap function,
and the excitation spectrum in Fig. 7.1 and for the phase diagram in Fig. 7.2.
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7.4.2. Large coherence length

The general Eqs. (7.39) and (7.41) for hk and ∆k can also be specified to the limit of large
ξ0 � a. The dispersion hk follows from Eq. (7.39) with

F (k) = −
[
arctan

(
cot

(kF + k)a

2

)
+ arctan

(
cot

(kF − k)a

2

)]
(7.46)

Thus, the dispersion becomes steplike, reflecting the 1/r dependence of the hopping
amplitudes, with bandwidths of order ∆/kFa. Depending on the Fermi wavevector
kF and the helix wavevector kh, there are two cases which need to be distinguished.
Representative dispersions hk (referred to as type 1 and type 2 in the following) are shown
in Fig. 7.3. Note that the sharp steps appear only in the limit ξ0 →∞. For large but finite
ξ0, the steps are smoothened on the scale of 1/ξ0. In addition to the dispersions shown
in Fig. 7.3, dispersions of type 1 and type 2 also include the case in which the dispersion
differs by an overall minus sign. Then, the dispersion is of type 1 when nπ+kha < kFa <

(n+ 1)π − kha for some integer n and of type 2 when nπ − kha < kFa < nπ + kha.

The pairing strength follows from Eq. (7.41), where f(k) simplifies to

f(k) = − ln

[
4 sin2 ka

2

]
(7.47)

in the limit ξ0 →∞. Thus, the paring strength develops logarithmic singularities which
occur at those positions where the dispersion hk develops steps as shown in Fig. 7.3.
Specifically, the pairing strength becomes large and positive near the jumps in hk which
are associated with the cos2 θ/2 term in Eq. (7.39) (shown as large jumps in Fig. 7.3), and
large and negative near the jumps which are associated with the sin2 θ/2 term in Eq.
(7.39). Note that also for the pairing strength, the strict logarithmic divergences are cut
off for large but finite ξ0 on a scale of 1/ξ0.

In the following, we discuss the phase diagram separately for dispersions of type 1
and type 2. To start with, whenever the positive- and negative-energy Shiba bands are
nonoverlapping and the chemical potential falls in between the Shiba bands, the sys-
tem is nontopological, with a large s-wave band gap of the host superconductor and
a trivial gap between the positive- and negative-energy Shiba bands. The specifics of
the dispersion become relevant once the positive- and negative-energy Shiba bands are
overlapping (though still well separated from the continuum excitations).

Type 1.—As indicated in Fig. 7.3(c), the dispersion has three characteristic regions. De-
pending on the energy ε0 of the Shiba states of the individual impurities, the chemical
potential (center of the gap of the host superconductor) can be located in any of these re-
gions. In regions I and III, the dispersion hk is symmetric under k → −k, with one pair
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Figure 7.3.: (a,b) Schematic plot of the two representative classes of dispersions hk in the
limit of large coherence length ξ0 � a as given by the analytical expression
in Eqs. (7.39) and (7.46). In the main text, the two classes are referred to as
(a) type 1 and (b) type 2. The form of the dispersion depends qualitatively on
the value of the Fermi and the helix wavevector kF and kh. (All wavevectors
labeling the arrows in (a) and (b) should be understood within the reduced-
zone scheme.) The dispersion is fully symmetric under k → −k only for
θ = π/2. (c,d) Dispersions hk and pairing strengths ∆k of both classes for
ε0 = 0, kFa = 4.25π, θ = 3π/8, and (c) kha = π/8, (d) kha = 3π/8 (en-
ergies are measured in units of ∆). A nonzero ε0 would lead to an overall
shift of the dispersion in energy which causes the chemical potential to pass
through various regions as follows: In (c) (type-1 dispersion), there are two
regions (I and III, green area) with a symmetric dispersion, for which a topo-
logical phase forms. In contrast, in region II (yellow area) hk is asymmetric
and the excitation spectrum Ek becomes gapless. In (d) (type-2 dispersion),
hk has two pairs of symmetric Fermi points in region I (grey area) and the
system effectively behaves like a (nontopological) p-wave superconducting
chain with two channels. In region II, the spectrum may be gapless or triv-
ially gapped. Both classes are shown in the limit of ξ0 → ∞. A large but
finite ξ0 would smoothen the jumps in the dispersion and cut off the loga-
rithmic divergences in the pairing strength on the scale of 1/ξ0.
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Figure 7.4.: Type-1 dispersions hk and gap functions ∆k together with the correspond-
ing excitation spectra [cf. Fig. 7.3(c)]. (a) Chemical potential lies outside the
bands of Shiba states (ε0 = 0.1, gapped nontopological phase). (b) Chemical
potential is inside region I (ε0 = 0.02, gapped topological phase). Analo-
gous results are obtained when the chemical potential is located in region
III. (c) Chemical potential is in region II (ε0 = −0.04, gapless nontopological
phase). For all panels, the remaining parameters are ξ0 =∞, kFa = 4π+π/4,
θ = 3π/8, and kha = π/8. Energies are measured in units of ∆.

of Fermi points. Thus, when the chemical potential falls into these regions, the effective
p-wave pairing ∆k will open a gap at the chemical potential and the Shiba chain enters
into a topological superconducting phase. In contrast, when the chemical potential falls
into region II, pairing is suppressed by the fact that the dispersion (and hence the two
Fermi points) are asymmetric under k → −k. Thus, the overlapping Shiba bands will
remain gapless despite the effective p-wave pairing ∆k. In fact, dispersions of type 1 are
always gapless in region II. To see this, we again compare the gap to the asymmetric en-
ergy shift. Since invariably, there are additional zeros of ∆k for some pair±k 6= 0, π [see
Fig. 7.3(c)], the shift term always exceeds pairing for particular wavevectors, yielding a
gapless spectrum at these points. These findings are illustrated by numerical results for
the excitation spectra for various values of ε0, as shown in Fig. 7.4.

Type 2.—In this case, the dispersion has two characteristic regions as indicated in Fig.
7.3(d). When the chemical potential falls into region I, there are two symmetric pairs
of Fermi points. This is effectively analogous to a two-channel spinless p-wave super-
conducting wire and hence, the system is in a gapped nontopological phase. When the
chemical potential falls into region II, the dispersion becomes strongly asymmetric un-
der k → −k. Correspondingly, pairing is suppressed and the system can enter a gapless
nontopological phase. In contrast to type-1 dispersions, a dispersion of type 2 can still
lead to a gapped (but nontopological) excitation spectrum in region II with asymmet-
ric Fermi points, since ∆k has no additional zeros. These conclusions are illustrated by
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Figure 7.5.: Dispersions hk, gap functions ∆k, and excitation spectra for dispersions of
the form shown in Fig. 7.3(d) (type 2). (a) Chemical potential lies inside re-
gion I in the band of Shiba states (gapped nontopological phase). (b) Chem-
ical potential is in region II (gapless nontopological phase). The parameters
are chosen as ξ0 = ∞, kFa = 4π + π/4, θ = 3π/10, kha = 3π/8, and (a)
ε0 = −0.04, (b) ε0 = 0.04. Energies are measured in units of ∆.

numerical results in Fig. 7.5.

Thus, we find a topological superconducting phase only for dispersions of type 1. The
range of parameters over which the gapped topological phase extends becomes maximal
for θ = π/2 for which the hopping amplitudes (heff)ij are real, resulting in a dispersion
which is symmetric under k → −k. The resulting phase diagram is plotted in Fig. 7.6
showing the alternation of topological and gapless phases as well as topological phase
transitions as the dispersion changes between type 1 and type 2. This alternation between
topological and nontopological phases is similar to the case of small ξ0.

7.5. Majorana bound states

Whenever the chain of Shiba states is in the topological phase, one expects localized
Majorana bound states to form at the ends of finite chains. In a semi-infinite chain, the
Majorana bound state has strictly zero energy. In a finite wire segment, Majorana bound
states form at both ends and overlap in the interior of the wire, thereby acquiring a finite
energy splitting. The overlap and hence the energy splitting is controlled by the decay
of the Majorana wavefunctions.
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Figure 7.6.: Numerical results for the energy minimum of the upper band (color scale)
vs. kFa and ε0 for a long coherence length ξ0 = 50a, kha = π/8, ∆ = 1,
and (a) θ = π/2, (b) θ = π/5. Color scale and labels are as in Fig. 7.2.
The topological phase transitions at the boundaries of regions I and III in
Fig. 7.3(c) appear as diagonal black lines ε0 = −(kFa mod 2π)∆/kFa in the
phase diagram. The almost vertical transition lines between T and N in (a)
are associated with the transition between type-1 and type-2 dispersions at
kFa = 4π+ kha = 4.125π (white dashed line) and kFa = 5π− kha = 4.875π.
As discussed in Sec. 7.5, this transition becomes infinitely sharp for ξ0 →∞.
For this reason the gap closing is hardly visible at this numerical resolution
in some regions of parameter space. As in the short-ξ0 limit, the topological
phase for the symmetric spectrum in (a) is split in half by a metallic line. At
this line, the chemical potential meets the middle plateaux in the dispersion
hk which are at the same height for θ = π/2 [see Fig. 7.3(a)]. The excita-
tion spectrum has two simultaneous gap closings at ±k0. For θ < π/2 the
spectrum becomes asymmetric and the energy at these two points is shifted
in opposite directions. Thus, the metallic line is expanded into the gapless
region marked by G in panel (b).
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7 Topological superconducting phase in helical Shiba chains

We now turn to a numerical analysis of the decay of the Majorana wavefunction and
the corresponding energy splitting for the model given in Eqs. (7.32) and (7.33). In con-
ventional models of 1d topological superconductors such as the Kitaev chain, the Majo-
rana states decay exponentially into the bulk as controlled by the gap of the topological
phase. This leads to an energy splitting which is exponentially small in the length of
the chain. The Shiba chain differs in that hopping and pairing is long range, exhibiting
a power-law decay for distances which are small compared to the coherence length ξ0

of the underlying superconductor. This raises the question of the nature of the decay of
the Majorana wavefunctions on scales short compared to ξ0.

This issue is mute in the case of a short coherence length ξ0 � a in which the Shiba
chain reduces to a Kitaev chain (with an additional phase gradient for general opening
angles θ of the spin helix). Thus, one expects the conventional behavior in this case and
indeed, in the topological phase, this model supports exponentially localized Majorana
states whose decay length is determined by the parameters of the Kitaev chain in the
usual way.

7.5.1. Type-1 dispersions

We now turn to the more interesting (and more realistic) case of large coherence lengths,
ξ0 � a, and parameters such that the dispersion is of type 1. Also in this case, the
Majorana bound state decays exponentially on scales large compared to ξ0. Indeed,
given the effective bandwidth of the Shiba bands of order ∆/kFa [cf. Eqs. (7.32)] and
the smoothing of the steps in hk of order 1/ξ0, we have an effective Fermi velocity of
order ∆ξ0/kFa. Combining this with the effective strength of the p-wave pairing of
order ∆/kFa [cf. Eqs. (7.33)], we find that the characteristic length scale (analogous to
the relation ξ0 = ~vF /∆) is indeed of order ξ0. Note that this is only a rough order-of-
magnitude estimate which neglects the dependence on the opening angle θ, the energy
ε0 of the Shiba bound states, etc.

The decay of the Majorana bound states on length scales shorter than ξ0 can be read-
ily investigated numerically. To do so, we take the model defined by Eqs. (7.32) and
(7.33) and formally set ξ0 =∞. As one readily checks numerically, the resulting model
correctly reproduces the behavior of the Majorana bound states of the more complete
model with finite ξ0 on scales smaller than ξ0. Numerical results for the ξ0 = ∞model
and for parameters such that the system is in the topological phase are shown in Fig.
7.7. We find that asymptotically, the Majorana bound state decays approximately as a
power law with logarithmic corrections. Indeed, the envelope of the Majorana wave-
function can be fit quite accurately by a decay of the type 1/[x ln2(x/x0)] for a variety of
parameter sets, cf. Fig. 7.7. While similar, this decay is faster than the decay of the hop-
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Figure 7.7.: (a) Spatial profile of the lowest-energy wavefunction |ψ1| = (φ2
1 + χ2

1)1/2,
where φ1 and χ1 are the electron and hole components of the Nambu spinor
ψ1. All curves are for a chain length L = 70 and we have set ξ0 = ∞,
∆ = 1, and θ = π/2. The remaining parameters are kha/π = 0.25; 0.1; 0.26,
ε0 = −0.01;−0.13; 0, and kFa/π = 4.5; 4.8; 4.3 for the green, blue and red
curve, respectively. Inset: Semi-log plot of the first 100 sites of |ψ1| in chain
of length L = 10000. The parameters are the same as for the green curve in
the main panel. The wavefunction initially decays exponentially and then
crosses over to a much slower decay. The crossover point depends sensi-
tively on the point in parameter space. (b) Log-log plot of the left Majorana
wavefunction |γL| for a chain of length L = 10000. (The first 100 sites are not
shown.) The three curves are for the same set of parameters as in (a) and
shifted vertically for clarity. The black solid lines represent 1/[x ln2(x/x0)]
fits to the envelopes of the curves. The dashed lines shows a 1/x power law
for comparison. The Majorana wavefunctions can be obtained from the low-
est energy wavefunction by a rotation in Nambu space5γL/R = χ1± iφ1. The
obtained fit parameters are x0/a ∼ 0.17, 0.30, 0.55 for the three curves. (c)
Log-log plot of the Majorana energy splitting vs chain length for the same
parameters as the green curve in (a) and (b). Similar to the wavefunction
decay, the envelope of the energy splitting fits a 1/[x(ln(x/x0))2] law (black
line) with x0/a ∼ 0.22.
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Figure 7.8.: Spatial wavefunction profile |ψ| of the first three positive-energy states of a
chain with 70 sites with a type-2 dispersion in region I [see Fig. 7.3(d)]. There
are two states localized at the ends of the chain. Inset: excitation spectrum
of a finite chain as a function of chain length L. The plot shows that the
two end states remain at a nonzero subgap energy for large L. This is the
expected behavior of a two-channel p-wave superconducting chain with two
coupled Majorana bound states at each end. The third state is a bulk state
which defines the edge of the quasiparticle continuum. The parameters are:
∆ = 1, ε0 = 0.05, θ = π/2, kha = π/8, kFa = 4.08π.

ping and pairing amplitudes. Interestingly, this implies that in a finite wire of length
L � ξ0 (as may well be the case in an experiment) the energy splitting of the two Ma-
jorana bound states is not exponentially but merely power-law suppressed in L (with
logarithmic corrections). This is illustrated numerically in Fig. 7.7(c).

7.5.2. Type-2 dispersions

In the discussion of the phase diagram for a large coherence length in Sec. 7.4.2, we
showed that there is no topological phase for dispersions of type 2. Nevertheless, when
the chemical potential is in region I [see Fig. 7.3(d)], the spectrum is analogous to that
of a two-channel p-wave superconductor. Each of the channels individually supports
one Majorana bound state at each end. The hard-wall boundary introduces scattering
between the two channels and the Majoranas acquire a finite energy splitting, which
is usually of the order of but smaller than the gap. Numerically, we indeed find two
positive-energy subgap states in this regime, one for each end of the chain, as seen in

5One can only write the wavefunction ψ1 in terms of real Majorana wavefunctions, which are located
at only one end, in the case of θ = π/2. For arbitrary θ the phase of ψ1 varies spatially due to the
complex long-range hopping terms and one cannot transform to a Majorana basis by a global rotation.
We checked numerically that the decay of the wavefunction also obeys a 1/[x ln2(x/x0)] law for θ < π/2.

110



 0

 0.02

 0.04

 0.06

 4.06  4.08  4.1  4.12

e
n

e
rg

y

kFa/π

type 2 type 1

L=100
L=300

L=1000

Figure 7.9.: Spectrum of subgap states (limited to positive energies in units of ∆) vs
Fermi wavevector kF near the phase transition from type 2 to type 1 at
kFa = 4.1π (dashed line). The plot is for ξ0 → ∞ and chemical potential
in region I so that at the transition, the system changes from a two-channel
to a single-channel p-wave superconductor. The parameters are chosen as
kha = 0.1π, ξ0 =∞, and ε0 = 0.03. The colored lines represent the two sub-
gap states for various chain lengths (see legend) and the black line marks
the lowest continuum excitation (which is indistinguishable for the differ-
ent chain lengths). Just before the phase transition on the type-2 side, the
two subgap states split. While one state is absorbed into the continuum at
the transition, the second state drops to near-zero energies and becomes a
Majorana bound state.

Fig. 7.8. Their energy as a function of length is shown in the inset. The two states are
clearly separated from the continuum, but they remain at a finite energy even at very
large chain lengths. The energy depends on the boundary-induced coupling of the two
channels. For long chains, the two subgap states become degenerate as the two ends of
the chain are decoupled.

7.6. Unconventional topological phase transition at the Bragg point

kh = kF

We now turn to a closer look at the transition point between dispersion of type-1 and type-
2 and its immediate vicinity restricting the discussion to a planar helix. For ξ0 →∞ the
transition occurs at the Bragg point kF = kh,6 where the spin helix satisfies the condition

6Additional Bragg points exist for 2kF = ±2kh + 2πn.
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Figure 7.10.: (a) Phase diagram for kh = 0.1π/a and ξ0 =∞ (black phase boundaries) or
ξ0 = 15a (gray lines), with topological (T) and nontopological (N) phases.
(Energies are given in units of ∆0.) The yellow dashed line indicates the
Bragg point kF = kh with exponentially localized Majorana states [|β| < 1
in Eq. (7.50)]. For ξ0 =∞, this coincides with the phase transition between
the two- and single-channel phases. (b+c) Winding of the unit vector B̂k =
Bk/Bk as k is tuned across the Brillouin zone for (b) the single-channel and
(c) the two-channel phase (partially shifted radially for visibility). While in
the single-channel phase B̂k winds once around the origin; the winding is
trivial in the two-channel phase, reflecting the topological phase transition.
Insets: Dispersion hk and pairing ∆k in the two phases. The two-channel
dispersion has a second pair of Fermi points.
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for Bragg reflection.7 We will see below that an effect similar to Bragg reflection indeed
leads to strong localization of the Majorana state at this point. Figure 7.10(a) displays the
phase diagram for ξ0 =∞. As discussed in Sec. 7.4.2 the topological phase boundaries
which appear in the phase diagram as diagonal lines occur when the chemical potential
leaves the Shiba bands. These transitions are equivalent to those of the Kitaev chain and
reflect a continuous gap closing and reopening. A different type of topological phase
transition which emerges from the long-range coupling and has no analog in the Kitaev
chain, occurs at the Bragg point kh = kF (vertical lines). For ξ0 = ∞, this transition is
abrupt and the bulk gap does not approach zero on either side of the transition as can be
seen from Fig. 7.9. For finite ξ0, the bulk gap closes smoothly as |kFa−(kha+nπ)| → 0 on
a scale of 1/ξ0. This is a discontinuous transition associated with the (dis)appearance
of an additional pair of Fermi points near k = 0 [see region I in Fig. 7.3(c) and (d)]
modifying the system between effective single-channel and two-channel phases. In the
nontopological two-channel phase, the cumulative hopping strength is finite across an
even number of sites but vanishes across an odd number so that one can roughly think
of the even and odd sites as two channels (see App. C.3 for details). This happens for
kF < kh, while even and odd sites are strongly coupled in the topological single-channel
phase kF > kh. In some specific implementations, the RKKY interaction between the
impurities is maximal at the wavevector 2kF , so that the helix wavevector realizes the
Bragg point kh = kF [Klin 13, Brau 09, Simo 08]. This would put the Shiba chain right at
(for ξ0 →∞) or near (for large but finite ξ0) an unconventional topological critical point.

For a planar spin helix, the Shiba chain obeys chiral symmetry, {H, τy} = 0, which
puts it in class BDI and in principle allows for a topologicalZ-index [Ryu 10]. To explore
the discontinuous transition at the Bragg point more closely, we analyze the topological
index of the two adjacent phases. To this end, we rewrite the Hamiltonian in momentum
space, Hk = hkτz + ∆kτx, and determine the winding number of the two-component
vector Bk = (∆k, hk) in the xz-plane as k traverses the Brillouin zone from −π/a to π/a
[see Figs. 7.10(b) and 7.10(c)]. This confirms the identification of the topologically trivial
(kF < kh) and nontrivial (kF > kh) phases.8

The transition between these phases at the Bragg point is reflected in the subgap states
of long but finite chains. Their energies near kF = kh are shown in Fig. 7.11(a). In the
two-channel phase, one finds two subgap states for each end. These can be thought of
as the hybridized Majorana states of the two channels. As kF → kh, one subgap state
merges with the quasiparticle continuum due to coupling with the opposite end of the
chain, while the other approaches zero energy and connects smoothly with the Majorana

7Note that without the factor of two in the helix wavevector we introduced for notational convenience the
condition would read 2kF = kh which is precisely the condition for Bragg reflection.

8Incidentally, the two topological phases in Fig. 7.10(a) differ by the winding direction and have topolog-
ical indices ±1. Thus, the intermediate phase transition involves two simultaneous gap closings.
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7 Topological superconducting phase in helical Shiba chains

end state in the topological phase. Thus, right at the Bragg point, there is exactly one
zero-energy state for each end of the chain. We now turn to an analytical theory of the
Majorana bound state and the subgap spectrum both at and near the Bragg point.

7.6.1. Majorana bound state at the Bragg point

We exploit the chiral symmetry of the Hamiltonian and rotate it into the Majorana ba-
sis in which H becomes purely off-diagonal in particle-hole space [Adag 99]. This is
effected by a π/2-rotation about the x-axis which transforms τz → −τy and keeps τx
unchanged so that H = −heffτy + ∆effτx with heff and ∆eff specified in Eqs. (7.34) and
(7.35). Now, the equations for the zero-energy Majorana states with BdG spinor (u, v)

take the simple form

u = 0 and (iheff + ∆eff)v = 0 (7.48)

for the Majorana localized at the left end of the chain, and v = 0 and (−iheff +∆eff)u = 0

for the Majorana localized at the right end. (Note that this consistently neglects finite-
size effects). Specifying to the left-end states for definiteness, one readily finds forH12 =

iheff + ∆eff , from Eqs. (7.34) and (7.35), that (H12)jj = iε0 and

(H12)ij = − i∆

kF rij
e−rij/ξ0 sin(kF rij − khxij) (7.49)

for i 6= j. Since rij = |xij |, the Bragg point kh = kF has the remarkable property that
H12 is a triangular matrix. This property immediately allows us to solve Eq. (7.48) by
the ansatz vj = βj . Here, j enumerates the sites starting with the left end of the chain.
Indeed, with this ansatz, all components of the equation H12v = 0 reduce to the same
condition for β. Solving this condition (see App. C.4), we find

β =
ea/ξ0 sin(kFaε0/∆)

sin[2kFa+ kFaε0/∆]
. (7.50)

Obviously, this provides an exponentially localized Majorana solution as long as |β| < 1.
One can convince oneself that this condition is satisfied wherever the line kF = kh is
inside the topological phase for finite ξ0. This region is marked by a yellow dashed
line in Fig. 7.10(a). As shown in Fig. 7.11(b), this exact analytical result is in excellent
agreement with numerical simulations.

This constitutes a major result of this chapter with remarkable implications: (i) Helical
Shiba chains display an unconventional topological critical point at or in the immediate
vicinity of the Bragg point kF = kh. (ii) At the Bragg point, they have Majorana end

114



 0

 0.01

 0.02

−0.02 −0.01  0

ε 

kF−kh=δk

L=300

1000

5000

(a)

ρ√|δk|

10
−6

10
−4

10
−2

 1

 0  20  40  60  80

v

j

(b)

 0

 10

−0.02 0  0.05  0.1

ξeff/a

ε0

ξ
0
=∞

ξ
0
=10a

 0

2x10
−3

 0  2500

v

j

5000

(c)

numerical solution
v0+δkδv

10
−4

10
−2

 1

 10  20

|v
|

Figure 7.11.: (a) Energy of the two positive-energy subgap states (in units of ∆0) in
the nontopological two-channel phase (δk < 0) near the Bragg point, for
ξ0 = ∞ and various chain lengths L. As L → ∞, the two states become
degenerate with energy ∼

√
|δk| near the phase transition. At the criti-

cal point, one subgap state merges discontinuously with the quasiparticle
continuum. For finite L, the discontinuity is smeared and the degener-
acy is lifted on the scale 1/L. (b) Majorana wavefunction vj at the Bragg
point kF = kh. The exact numerical solution of the BdG Hamiltonian
(green crosses) agrees with the analytical solution (black line) in Eq. (7.50).
Inset: Localization length ξeff = a/ ln |β−1| along the yellow line in the
phase diagram in Fig. 7.10(a). The localization length is of order a and
decreases with increasing coherence length ξ0. (c) Majorana wavefunc-
tion vj for kF = kh + δk with δk = 0.003/a. The numerical solution of
the BdG Hamiltonian (orange crosses) agrees with the analytical solution
(blue line) as obtained by numerical evaluation of the inverse Laplace trans-
form in Eq. (7.53). Inset: Blowup near the end of the chain emphasizing
the initial exponential decay. Parameters: ε0 = 0.03∆0, kh = 0.1π/a, and
kF = 4.1π/a+ δk.
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7 Topological superconducting phase in helical Shiba chains

states which are exponentially localized even though the Hamiltonian allows for long-
range hopping and pairing along the chain. (iii) The localization length ξeff = a/ ln |β−1|
of the Majorana states is set by the spacing a between the magnetic impurities and thus
much shorter than the coherence length ξ0 of the superconducting host. (iv) The Majo-
rana end states at the Bragg point remain well-defined and exponentially localized even
in the limit ξ0 →∞where the Bragg point coincides with the topological critical point.
(v) We will see below that away from the Bragg point, the Majorana wavefunctions de-
velop a power-law tail in addition to the initial exponential decay.

Physically, the strong localization for kh = kF can be traced back to Bragg reflection.
Similar to a Bragg mirror, the resonance between the oscillations of the Shiba states and
the spin helix leads to destructive interference in one direction which neutralizes the
long-range coupling. This explains that the localization length becomes of the order of
the lattice spacing. More explicitly, the hopping and pairing terms are generically of
the same order, but their relative magnitude depends sensitively on the wavevectors kF
and kh. At the resonance kF = kh, hopping and pairing between two arbitrary sites have
equal magnitude but differ in parity. Hopping to left and right has the same sign and is
thus even, whereas pairing is odd with opposite signs for the two directions.

7.6.2. Topological phase

When tuning away from the Bragg point, Bragg reflection is no longer perfect and the
long-range character of the model is partially recovered. As a result, the wavefunction
acquires a tail with a slow power-law decay as we will now show for the immediate
vicinity of the Bragg point (in agreement with earlier numerical results in Sec. 7.5). Here
we first focus on the topological phase (kF = kh + δk with δk small and positive) and
return to the nontopological phase (kF = kh + δk with δk small and negative) further
below.

For δk small and positive, the matrices H12 and H21 are no longer triangular, but we
still expect a localized Majorana state in a semi-infinite chain. We expand the eigen-
value problem to linear order in δk and show that it reduces to an integral equation in a
suitably taken limit when setting ξ0 → ∞. The integral equation can then be solved by
standard methods. To first order in δk, we rewriteH12v = 0 as

(M + δM)(v0 + δkδv) = 0 (7.51)

(see App. C.5 for numerical support of this expansion). Here,M is the upper triangular
part ofH12 withMii = iε0,Mij = (−i∆/kF ) sin(Krij)/rij for i < j in terms ofK = kF +

kh, and δM is the lower triangular part with δMij = (−i∆/kF ) sin(δkrij)/rij for i > j.
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To zeroth order in δk, we obtain Mv0 = 0 and thus v0 coincides with the exponentially
decaying solution at the Bragg point.

Next, we rewrite δM as δMi+j,i = (−i∆/kF )δk sin yj/yj with yj = δkaj. Thus δMij

varies only on large scales rij ∼ 1/δk and we can take a continuum limit by considering
δk → 0 while keeping yj fixed. In this limit, δM converges to a continuous matrix as a
function of yj → y and correspondingly, δv should also have a well-defined continuum
limit δv → δv(y) as a function of the scaled variable yj . The existence of this continuum
limit is readily confirmed by numerics and to linear order in δk, Eq. (7.51) yields an
integral equation for δv(y) (see App. C.5 for the derivation),

Aδv(y) +

∫ y

0
dz

sin(y − z)
y − z δv(z) = −B sin y

y
. (7.52)

Here we defined A = F (kF + kh) − kF aε0
∆ , B = a sgnβ[(1 + β)/(1− β)]1/2, and F (x) =

arctan cot(x/2). This integral equation can be solved in a standard manner by Laplace
transform Lwhich yields (see App. C.5)

δv(y) = −L−1

[
B arccot s

A+ arccot s

]
∼

y→∞
−4AB

sin y

y ln2 y
. (7.53)

Corrections to the asymptote are suppressed by factors of 1/ ln y. Although our analyti-
cal analysis focuses on the vicinity of the Bragg point, the asymptotic decay is character-
istic of the Majorana states in the entire topological phase when ξ0 = ∞ as previously
established numerically in Sec. 7.5. Figure 7.11(c) shows that the analytical solution
(7.53) is in excellent agreement with numerical results.

7.6.3. Nontopological phase

When the Bragg point kF = kh falls into the topological phase for finite ξ0 [i.e., along the
yellow line in Fig. 7.10(a)], the nontopological side of the phase transition (δk < 0) can
be understood as an effective two-channel wire (cf. Sec. 7.5.2). Thus, this phase exhibits
two subgap states for each end. In long chains, L→∞, their wavefunction and energy
can be obtained analytically by an extension of the technique used for δk > 0. Here, we
sketch the results and defer details to the Appendix C.5.

The two positive-energy subgap states become degenerate for large L and to leading
order in |δk|, we find that their energy scales as ε ∼ |δk|1/2, consistent with the numerical
results in Fig. 7.11(a). Similarly, the Nambu wavefunction (u, v) for the state at the left
end9 has ui ∼ |δk|1/2 exp(− cotA|δk|ai) and v ∼ v0 + |δk|δv, with v0 the exponential

9The second positive-energy subgap state is localized at the right end with electron and hole components
exchanged. The two negative-energy states are related to the positive ones by chiral symmetry.
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7 Topological superconducting phase in helical Shiba chains

solution at the critical point and δv a power-law tail ∼ 1/y ln2 y as for δk > 0. The
electron component u decays exponentially with a decay length which diverges for δk =

0, reflecting the phase transition and the disappearance of one subgap state. The hole
component v smoothly evolves into the Majorana bound state on the topological side.

7.7. Conclusions

Chains of magnetic impurities placed on a conventional s-wave superconductor consti-
tute a promising venue for Majorana physics. Assuming that the magnetic impurities
form a spin helix, the bands of Shiba states formed in the host superconductor can en-
ter into a topological superconducting phase. In this chapter, we considered the limit
of dilute impurities inducing deep Shiba states in which the bands of Shiba states do
not overlap with the quasiparticle continuum. Starting with the individual Shiba states,
we derived an effective tight-binding Bogoliubov–de Gennes Hamiltonian. While this
Hamiltonian has close similarities with the Kitaev model, it differs in important ways:
(i) Both hopping and pairing are long range, falling off as 1/r for distances small com-
pared to the superconducting coherence length ξ0. (ii) For generic spin helices, the hop-
ping amplitudes are complex (or, equivalently, the pairing amplitude involves a spatially
varying phase). These differences have significant consequences, both for the phase dia-
gram and for the decay (and hence the energy splitting) of Majorana bound states. Most
importantly, the long-range nature of hopping and pairing implies that over a wide
range of length scales, the spatial decay of the Majorana bound states is well fit by a
power law with logarithmic corrections rather than an exponential dependence. More-
over, the complex hopping amplitudes tend to suppress topological superconductiv-
ity; they result in asymmetric dispersions under momentum reversal which suppresses
Cooper pairing. As a result, fully planar spin helices whose additional reflection sym-
metry results in purely real hopping amplitudes, are optimal for realizing topological
superconductivity.

As a consequence of the long-range coupling, helical Shiba chains display an uncon-
ventional topological critical point at the Bragg point kF = kh. We show that for fi-
nite chains, the Majorana end states persist at the critical point and display remarkable
localization properties. By the competition between Bragg reflection and long-range
coupling, the Majorana end states are exponentially localized at the critical point but
develop a power-law tail in the topological phase. This contrasts in an interesting way
with the decay of correlations around conventional critical points.

This is also an encouraging prediction for experiment, as the exponential localization
at the critical point is on the scale of the lattice spacing and entirely unrelated to a topo-

118



logical gap. Thus, the Majorana end states may remain well localized even in chains
whose length is comparable to the coherence length of the host superconductor. At the
same time, the power-law localization within the topological phase raises interesting
questions with regard to its stability against perturbations such as disorder.

Our approach can be extended in several directions. For instance, it might be relevant
for experiment to include spin-orbit coupling within the superconducting host, since
this also allows ferromagnetic chains to enter a topological phase. This is particularly
interesting as ferromagnetic chains are presumably easier to realize than spin helices.
Furthermore it would be interesting to extend our approach based on Shiba states to the
limit of shallow impurities with narrow spacing in order to describe continuous chains.
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8. Tunneling processes into localized subgap states

in superconductors1

Tunneling spectroscopy has become an indispensable tool for the characterization of
bound states in superconductors like Andreev or Shiba states [Baur 81, Yazd 97, Yazd 99,
Pan 00, Huds 01, Ji 08, Deac 10, Pill 10, Fran 11, Pill 13, Lee 14]. As discussed in Sec. 3.3.1
and Ch. 4 tunneling conductance measurements are also a valuable technique in the
search for Majorana bound states. In particular, ongoing experimental investigations on
possible Majorana bound states in chains of magnetic impurities on top of superconduc-
tors forming a band of Shiba states [see Sec. 3.2.3 and Ch. 7] heavily rely on scanning
tunneling microscopy and spectroscopy as diagnostic tools.

In general, tunneling into a localized state in a superconductor gives rise to resonances
in the differential tunneling conductance. Typically the amplitude of the tunneling con-
ductance is viewed as a measure of the local density of states. In this chapter, we per-
form a detailed study of the relevant mechanisms for tunneling into subgap states in a
superconductor including quasiparticle relaxation mechanisms present at finite temper-
ature. We combine our analysis with scanning tunneling microscopy and spectroscopy
(STM/STS) experiments on single adatom Shiba states – employing superconducting
tips for improved resolution. Interestingly, the experimental findings are inconsistent
with a simple understanding of the conductance peaks in terms of the local density of
states. We can explain the central features of the experimental data by analyzing the
competition between single-particle and Andreev processes. Our results enable us to
correctly determine the local density of states and yield information on the relaxation
dynamics of the Shiba state.

8.1. Introduction

Impurity-induced subgap states provide a fruitful window into conventional and un-
conventional superconductors [Bala 06, Yazd 97, Yazd 99]. The Yu-Shiba-Rusinov states

1This chapter is based on a collaboration of M. Ruby, B. Heinrich, and K. Franke, who designed and
performed the experiments and analyzed the experimental data, and Y. Peng, F. von Oppen, and the
author of this thesis, who carried out the calculations. All collaborators interpreted the results.
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8 Tunneling processes into localized subgap states in superconductors

[Yu 65, Shib 68, Rusi 69] bound by magnetic impurities in conventional s-wave super-
conductors are a simple model system for nonmagnetic impurity resonances in un-
conventional superconductors, probe the competition between superconducting and
Kondo correlations [Fran 11, Baue 13, Yao 14], and might provide a platform for en-
gineering topological superconducting phases with Majorana bound states [Nadj 13,
Pien 13a, Pien 14].

Experimentally, Shiba states manifest themselves in scanning tunneling microscopy as
resonances at positive and negative bias voltages [Yazd 97, Yazd 99, Ji 08]. Theoretically,
these experiments have been interpreted in terms of single-electron tunneling into the
localized subgap states [Bala 06], where the tunneling conductance represents a mea-
sure of the local density of states, with the electron (hole) component of the Shiba wave-
function governing the strength of the resonance at positive (negative) bias [Bala 06].
Recently, Martin and Mozyrsky [Mart 13] pointed out that this interpretation may be
incomplete. They argue that an isolated subgap state cannot support a continuous cur-
rent based on single-electron tunneling alone as current flow would stop once this state
is occupied. They suggest Andreev reflections as alternative current-carrying processes
which resonantly transfer Cooper pairs into the condensate. Importantly, these two pro-
cesses can be distinguished experimentally for a normal-metal tip: Unlike the single-
electron process, the Andreev process is symmetric under sign reversal of the bias volt-
age.

Here we shed light on this controversy for the case of a superconducting tip. We
provide evidence that in general, both processes are required to understand the experi-
mental differential conductance traces, with consequences for the interpretation of past
and future experiments.

8.2. Basic processes

Consider a magnetic impurity which induces a single subgap Shiba state in the super-
conducting substrate. When probed by a superconducting tip (with the same gap ∆

as the substrate), the following tunneling processes contribute to the current: (i) Single
electrons can tunnel when the negative-energy quasiparticle continuum of the tip over-
laps with the positive-energy continuum of the substrate (or vice versa). This requires a
threshold bias eV = ±2∆. (ii) At finite temperature, there is a finite density of thermal
quasiparticles (holes) in the positive (negative) energy quasiparticle continuum. Thus,
a finite single-particle current can flow even near zero bias. When a Shiba state of en-
ergy ε0 is present, a single-particle current can also flow when the negative- or positive-
energy continuum of the tip overlaps with the Shiba state. This results in thresholds of
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Figure 8.1.: (a) Principal tunneling and relaxation processes governing the occupation
of the Shiba state. (b-e) Processes contributing to the threshold (b) at eV =
∆+ε0 via Γe and Γ1 (single-particle process) or Γe and Γh (Andreev process),
(c) at eV = −∆+ ε0 via Γe and Γ2, (d) at eV = −∆− ε0 via Γh and Γ1 (single-
particle process) or Γh and Γe (Andreev process), and (e) at eV = ∆− ε0 via
Γh and Γ2.

the bias voltage at eV = ±∆+ε0. Similar processes involving an additional Andreev re-
flection are possible when the continuum of the tip overlaps with the symmetric energy
−ε0. These processes give rise to additional thresholds eV = ±∆ − ε0. For continu-
ous current flow, all of these processes necessarily require relaxation processes which
empty the Shiba state after it is occupied from the tip (or occupy the empty Shiba state)
[Mart 13]. At finite temperatures a quasiparticle in the Shiba state can be excited to con-
tinuum by absorption of a phonon. Conversely, a thermally excited quasiparticle can
relax into the Shiba state emitting a phonon. The relaxation-induced current carrying
processes for all four thresholds are depicted by the red and green arrows in Fig. 8.1(b-
e). (iii) At e|V | < 2∆, an electron incident from, say, the tip can be reflected as a hole,
transferring a Cooper pair to the substrate in the process. As both the electron and the
hole gain an energy eV in this process, Andreev processes between the quasiparticle
continua have thresholds eV = ±∆. Additional processes involving multiple Andreev
reflections lead to thresholds eV = ±2∆/n. These Andreev processes require two or
more particles to cross the tunnel barrier and are therefore only relevant for strong tun-
neling. In the presence of Shiba states, an electron from the negative-energy contin-
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8 Tunneling processes into localized subgap states in superconductors

uum of the tip can virtually tunnel into the Shiba state, reflect as a hole, and resonantly
transfer a Cooper pair into the condensate of the substrate. Together with a similar pro-
cess for reverse bias [see blue arrows in Figs. 8.1(b) and (d)], this leads to thresholds at
eV = ±(∆ + ε0) which coincide with two thresholds for the single-electron processes.
Such Andreev processes mediated by Shiba states can occur at significantly lower tun-
neling rates compared to the nonresonant multiple Andreev reflections. The Andreev
processes allow for continuous current flow even in the absence of relaxation processes
as they do not change the occupation of the Shiba states but merely transfer electron
pairs into the condensate.

8.3. Experiment

The thresholds at e|V | = ∆ ± ε0 can be observed in experiment, confirming this ba-
sic picture. Specifically, we have performed STM experiments probing Mn adatoms
on a Pb(111) single crystal surface. The experiments were carried out in a Specs JT-
STM at the base temperature of 1.2 K as well as at 4.8 K. Spectra of the differential con-
ductance dI/dV were recorded using a conventional lock-in technique with a mod-
ulation amplitude of 15µV at a frequency of 912 Hz. The lead single crystal surface
was cleaned by repeated sputter/anneal cycles until a clean, atomically flat and super-
conducting surface was obtained (critical temperature Tc = 7.2 K). Mn adatoms were
evaporated onto the clean sample at a temperature below 10 K resulting in a density
of 30 atoms per 100 × 100 nm2. Importantly, our STM experiments are carried out
with a lead-covered, superconducting tip (see Ref. [Fran 11] for the preparation pro-
cedure). This results in an experimental resolution far beyond the Fermi-Dirac limit
(≈ 400µV at 1.2 K [Hein 13, Ruby]), and contributes the additional thermal thresholds
eV = ±(∆− ε0) in the spectra which strongly facilitate the analysis.

Figure 8.2 shows dI/dV traces (normalized to the normal state conductance) as a
function of V , acquired at different tip–sample distances and thus different tunneling
strengths. Accounting for the improved energy resolution, our spectra at large distances
compare well with earlier experiments [Ji 08]. The thresholds for the basic processes
contributing to the tunneling current manifest themselves as peaks in dI/dV . The peaks
at e|V | = 2∆ ' 2.7 meV are the coherence peaks associated with the gap edges and
coincide with the peaks observed on a clean surface (top grey trace in Fig. 8.2). For weak
tunneling, there are several subgap peaks which originate from Shiba states induced
by the adatom. The most pronounced peaks are due to the deepest Shiba state with
ε0 ' 0.2 meV. This state leads to the two main peaks at eV = ±(∆ + ε0) (with peak
height α±) and the two thermal peaks at eV = ±(∆ − ε0) (with peak height β±). In the
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Figure 8.2.: dI/dV spectra measured on an isolated Mn adatom on Pb(111) for increas-
ing tunneling strength from top to bottom. Spectra are normalized to the
normal-state conductance (noted in the graph in units of 2 e2/h = G0),
curves are offset for clarity, top curves divided by 5 to increase visibility. The
distance to the closest neighboring Mn atom was larger than 5 nm. As Guide
for the eye a spectrum acquired above the clean Pb(111) surface is overlaid
in the case of smallest conductance (top curve). The four peaks originating
from the deepest Shiba level are marked by dashed lines at e|V | = ±(∆± ε).
With increasing tunnel coupling the asymmetry of the peak height changes.
The lowest curve shows signatures of multiple Andreev reflections and a
Josephson peak at zero bias.

following, we focus on this Shiba state as the associated peaks are most pronounced
experimentally and their theoretical interpretation turns out to be least affected by the
presence of the other Shiba states.

The heights of the peaks associated with this Shiba state are plotted vs normal-state
conductance in Fig. 8.3 over several orders of magnitude in tunneling strength. We first
draw attention to two important features of these data. First, the peak heights are linear
over a wide range in tunneling strength before turning sublinear at stronger tunneling.
Second, the asymmetry in the peak heights α± between positive and negative biases
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Figure 8.3.: Measured peak heights α± and β± of the four resonances associated with
the deepest Shiba level (marked by dashed lines in Fig. 8.2) vs normal state
conductance at T = 1.2 K (main panel) and T = 4.8 K (inset).

inverts as a function of tunneling strength: At small tunneling rates, α+ < α−, while at
large tunneling rates, α+ > α−. It is also evident that the inversion of the peak heights
occurs at the crossover between the linear and sublinear regimes.

8.4. Theoretical results for the tunneling current

The inversion of peak heights implies that the peak heights cannot generally be a direct
measure of the electron and hole components u and v of the Shiba wavefunction. To
gain further insight into these observations, we have derived the differential conduc-
tance theoretically within the Keldysh Green’s function formalism. A detailed deriva-
tion is included in App. D. Here, we focus on the physics underlying the results. Our
calculation includes single-electron and Andreev processes involving the Shiba state as
well as a phenomenological description of relaxation processes between the Shiba state
and the quasiparticle continuum. We neglect Andreev reflections at the superconduct-
ing tip (and thus multiple Andreev reflections), which is justified except in the regime
of very strong tunneling. With this approximation, we can write the tunneling current
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as a sum of single-particle and Andreev currents, I = IR + IA, where

IR =
2e

h

∫
dω

{
2Γ1[ΓenF (ω−)− ΓhnF (ω+)]

(ω − ε0)2 + Γ2

−2Γ2[Γe(1− nF (ω−))− Γh(1− nF (ω+))]

(ω − ε0)2 + Γ2

}
, (8.1)

IA =
2e

h

∫
dω

4ΓhΓe[nF (ω−)− nF (ω+)]

(ω − ε0)2 + Γ2
. (8.2)

Here, ω± = ω ± eV and Γ = Γe + Γh + Γ1 + Γ2.

The expressions for IR and IA can be understood in terms of the basic processes dis-
cussed above. The Andreev current IA involves tunneling of an electron, described by
Γe(ω) = π|u|2ρ(ω − eV )|t|2, and a hole, described by Γh(ω) = π|v|2ρ(ω + eV )|t|2. Here,
t is the amplitude for tunneling between tip and substrate. The rates Γe and Γh are
strongly ω-dependent through the tip’s BCS density of states ρ(ω). The denominator
in Eq. (8.2) describes the intermediate virtual occupation of the Shiba state. It includes
the rates Γ1 for depopulating the Shiba state by excitation to the continuum and Γ2 for
occupying the Shiba state by a thermally excited quasiparticle. The latter processes are
possible, e.g., via phonon or photon emission and can be assumed ω-independent to a
good approximation. The four contributions to the single-particle current IR directly
correspond to the peaks α+ [term ∝ Γ1Γe, see Fig. 8.1(b)], α− [term ∝ Γ1Γh, see Fig.
8.1(d)], β− [term ∝ Γ2Γe, see Fig. 8.1(c)], and β+ [term ∝ Γ2Γh, see Fig. 8.1(e)].

Eqs. (8.1) and (8.2) provide the following basic picture consistent with the data in Fig.
8.3: At weak tunneling, the relaxation rates Γ1 and Γ2 are faster than the tip-substrate
tunneling. Once an electron tunnels into the Shiba state from the lead, it is rapidly
excited to the quasiparticle continuum. In this regime, the tunnel current is dominated
by the single-electron current IR which is proportional to |t|2 and thus to the normal-
state conductance. The Andreev current IA is merely a small correction scaling as |t|4.
This explains the wide linear regime in Fig. 8.3. At stronger tunneling, the tunneling
rates become comparable to and eventually larger than the relaxation rates Γ1 and Γ2.
Here, the t-dependence of the broadening Γ leads to a sublinear or even a decreasing
dependence of the peak heights on the normal state conductance (i.e., on |t|2).
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8 Tunneling processes into localized subgap states in superconductors

8.5. Linear regime

This picture is substantiated by a quantitative analysis of the linear regime. For weak
tunneling and Γ1 � Γ2, the ω-integral in Eq. (8.1) yields (see App. D)

α+ ∼ (2e2/h)(|u|2|t|2ν0)(
√

∆/Γ
3/2
1 ), (8.3)

β− ∼ (2e2/h)(|u|2|t|2ν0)(
√

∆/Γ
3/2
1 )(Γ2/Γ1) (8.4)

for the peak heights. The expressions for α− and β+ simply differ by the substitution
u ↔ v. Thus, in this regime, the peak height is indeed a measure of the Shiba wave-
function at the tip position. From the data in Fig. 8.3, we extract |u/v|2 ≈ 0.13. This
asymmetry between u and v implies that the impurity is associated with a scalar poten-
tial in addition to the exchange coupling [Bala 06].

All four peaks are related by the relation α+β+ = α−β−. This is readily checked
against the data in Fig. 8.3 and indeed, we find that this identity is well satisfied in
the linear regime. Moreover, the thermal and main peaks in Eqs. (8.3) and (8.4) differ
only through a ratio of relaxation rates, α+/β− = Γ1/Γ2 = exp(ε0/kBT ). Here, the last
equality follows when assuming detailed balance. This is in perfect agreement for the
data at T = 4.8 K. For the data at T = 1.2 K, we back out a slightly higher temperature of
T = 1.6 K from the ratio of peak heights. Still, these considerations point to a relaxation
process involving thermal activation rather than the quasiparticle bath suggested in Ref.
[Mart 13].

As Γ1 increases with temperature, Eqs. (8.3) and (8.4) also predict the peak heights in
the linear regime to decrease with T . This is consistent with the data by comparing the
data in the main panel and the inset in Fig. 8.3.

8.6. Regime of strong tunneling

α+ ∼ (2e2/h)
|v|2
|u|4/3

|t|2/3ρ(∆ + 2ε0)

(ν0

√
∆)2/3

, (8.5)

β− ∼ (2e2/h)Γ2/(|u|2|t|2ν0

√
∆)2/3, (8.6)

as well as α− and β+ which differ again by u ↔ v. Note that indeed, in the strong-
tunneling regime the main peaks α± increase sublinearly as a function of normal state
conductance.

First focus on the asymmetry of the main peaks α±. Unlike for normal-metal tips
[Mart 13], the Andreev contribution remains asymmetric and inverts for a supercon-

128



ducting tip. While we have α+/α− = |u/v|2 in the linear regime, Eq. (8.5) predicts
α+/α− = |v/u|10/3 in the Andreev-dominated regime. Indeed, an inversion of the peak
heights α± is seen in Fig. 8.3, as pointed out above.

Eq. (8.6) also predicts that the thermal peaks invert, from β−/β+ = |u/v|2 in the linear
regime to β−/β+ = |v/u|4/3 in the sublinear regime. This is also consistent with the
data. However, the theory predicts that both β+ and β− exhibit a peak as a function
of normal-state conductance, while we observe such a peak only for β+. For β−, the
peak is expected to occur only at a rather large normal-state conductance. First, our
approximation of neglecting Andreev reflections at the tip presumably starts to break
down in this regime. Second, it becomes difficult to reliably extract the peak height
in this regime due to the substantial background conductance which we attribute to
multiple Andreev reflections.

We can also estimate the crossover points between the linear and sublinear regimes. In
the linear regime, α− > α+ and β+ > β−. Thus, the tunneling rates reach the relaxation
rates already at smaller normal-state conductance for α− and β+ than for α+ and β−.
This is consistent with the data in Fig. 8.3 where the crossovers for α− and β+ occur at
smaller normal-state conductance than those for α+ and β−. More quantitatively, the
crossover points for α+ and β− can be obtained by equating Eqs. (8.4) and (8.6) which
yields the estimate |u|2|t|2ν0

√
∆ ∼ Γ

3/2
1 . The crossover condition for α− and β+ follows

by the replacement u ↔ v. This predicts the ratio of the crossover conductances to be
of order |u/v|2. We previously deduced |u/v|2 ≈ 0.13 from the ratio of the main peaks
which is consistent with the ratio of crossover conductances in Fig. 8.3. As Γ1 grows
with temperature, we also expect the crossover points to move to larger normal-state
conductances for higher temperatures. This is consistent with experiment, as seen from
a comparison of the main panel and the inset of Fig. 8.3.

Relaxation mechanism.—Our analysis implies that STM experiments on subgap states
in superconductors can not only image the wavefunctions of the subgap states but also
provide access to relevant relaxation processes. Here, we illustrate this capability by
comparing the data at the two experimental temperatures in Fig. 8.3. The peak heights
depend on Γ1 which one expects to obey an Arrhenius law for a thermally activated re-
laxation process. If the relaxation process relied on directly exciting a quasiparticle from
the Shiba state to the continuum, we would predict a ratio of the peak heights at the two
temperatures of order∼ 106. This differs from the experimentally observed suppression
of order 10 by several orders of magnitudes. We can account for a substantial part of
this apparent discrepancy by recalling that there are additional Shiba states associated
with the magnetic impurities. Assuming that relaxation to the continuum proceeds via
a multistep process which first excites to the second Shiba state dramatically reduces
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8 Tunneling processes into localized subgap states in superconductors

the discrepancy to little more than an order of magnitude, which is presumably within
the accuracy of our model considerations.

8.7. Conclusions

STM experiments on subgap states in superconductors are typically assumed to mea-
sure the local density of states, as in the normal state. Here, we show that for supercon-
ducting tips, this is true only at sufficiently weak tunneling where we find single-particle
tunneling to dominate. We provide evidence that there is a considerable Andreev con-
tribution to the tunneling current at larger tunneling strengths which becomes increas-
ingly important as the temperature is reduced. This clarifies the physical processes un-
derlying STM experiments on superconductors and has important ramifications for in-
terpreting corresponding experiments.

Our conclusions are based on a comprehensive comparison between experimental
data and a theoretical analysis of the single-particle and Andreev currents. There are
several interesting directions for future work. First and foremost, it would be highly de-
sirable to gain a better understanding of the underlying relaxation processes. A reason-
able phenomenological description would even be necessary for an analogous analysis
of the higher Shiba states present for Mn on Pb. In addition, it should be rewarding
to include Andreev processes at the tip in the theoretical description to investigate the
importance of multiple Andreev processes in STM measurements.
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9. Conclusions

In this thesis we investigate signatures of Majorana bound states in topological super-
conductors. Recent theoretical advances have put the realization of topological super-
conductors within the range of state-of-the-art experiments. For manifold reasons dis-
cussed at length in Sec. 3.3 a feasible way to obtain bullet-proof evidence for Majorana
bound states remains an open issue. Signatures of Majoranas may be obscured by non-
ideal conditions. Additionally other effects may produce similar features in experiments
impairing the unambiguous identification of Majorana states.

We specifically address this lack of unique signatures by examining a variety of ex-
periments in different systems following two different strategies. On the one hand this
work (Chs. 4, 7, and 8) aims to improve the theoretical understanding of recent exper-
iments searching for Majorana bound states with a particular focus on the specific ex-
perimental conditions. Employing realistic model Hamiltonians we are able to predict
several intriguing phenomena which differ qualitatively from existing theories. On the
other hand we propose novel measurement schemes exhibiting distinct signatures of
Majorana bound states and the topological superconducting phase in Chs. 4, 5 and 6.
We discuss the viability of these experiments and give estimates for the expected out-
come. In the following we summarize the various projects pursued in this thesis before
commenting on possible future research avenues.

In Ch. 4 we investigate the zero-bias peak as a signature of Majorana bound states
in the tunneling conductance. We show that in multisubband quantum wires the Ma-
jorana peak can be significantly suppressed compared to the strictly one-dimensional
case. This finding provides a simple and realistic explanation for the small peak height
found in experiments such as [Mour 12]. Furthermore we propose to deliberately intro-
duce disorder into a certain part of the system introducing scattering between subbands
and thereby enhancing the peak height significantly. We determine the optimal condi-
tions for this effect and also discuss other mechanisms for subband mixing.

Chapter 5 predicts signatures of the topological phase transition in the Josephson cur-
rent through a weak link in a mesoscopic superconducting ring. Inevitable quasiparticle
transitions that violate fermion parity conservation in the superconductor typically con-
ceal signatures of the topological phase in the dc Josephson effect. Nevertheless, they
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can lead to a peak in the Majorana-specific 4π-periodic supercurrent as the system is
tuned through the topological phase transition. This signature is shown to be robust
in the presence of disorder. As a byproduct of these considerations we find that weak
disorder surprisingly drives a p-wave superconductor further into the topological phase
contrary to the effect of strong disorder.

The 4π Josephson effect is revisited in Ch. 6, which explores the so-called magneto-
Josephson effect, a supercurrent induced by twisting the magnetic field directions in the
two banks of the junction. This work extends previous results for proximity-coupled
topological insulator edges to the quantum-wire realization of topological supercon-
ductors. We derive the periodicities of the Josephson and magneto-Josephson effect for
all possible Josephson junctions showing that the signatures of Majorana states occur
in different domain configurations for the quantum wire and TI edge realizations. This
difference between the two closely related models can be explained in terms of the effec-
tive low-energy theories. We can describe the quantum wire model at low energies by
a superposition of a TI edge and a p-wave superconductor, which explains the reversal
of the topological and trivial phases between the quantum wire and TI edge model. We
close the chapter by evaluating the magnitude of the ordinary and magneto-Josephson
effects under realistic conditions. While the Majorana states carry equal current in both
cases the background contribution from the bulk states maybe considerably lower for
the magneto-Josephson effect.

The last two chapters of this thesis investigate Shiba bound states in superconductors.
In Ch. 7 we develop an effective description of helical chains of magnetic impurities in
superconductors possibly hosting Majorana bound states. This realization of a topo-
logical superconductor has only recently been predicted [Choy 11, Nadj 13] and is the
subject of ongoing experimental efforts. Our model describes the topological super-
conductor as an impurity band in the superconductor formed by Shiba states bound to
the individual impurities. The long-range tails of the Shiba wavefunctions give rise to a
series of unusual phenomena unique to this system such as power-law rather than expo-
nential localization of Majorana bound states and an unconventional topological phase
transition without smooth closing of the gap. We furthermore identify a possible de-
structive interference akin to Bragg reflection leading to extremely strong (exponential)
localization of the Majorana bound states near or at a topological critical point.

Finally we part from Majorana-specific investigations in Ch. 8 and consider the tun-
neling spectroscopy of arbitrary bound states in superconductors with a focus on Shiba
states but applicable also to Majorana and Andreev states. A general theoretical analy-
sis of the competition between different resonant tunneling processes and the resulting
peaks in the differential tunneling conductance is supported by actual measurements
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for Shiba states carried out by experimental collaborators. The theory is compared to
the experimental data, which allows us to determine central properties of the bound
states and the nature of quasiparticle relaxation mechanisms present in the system. Al-
though this chapter does not directly address Majorana bound states it fits well within
the scope of this thesis. On the one hand it is motivated by the helical Shiba chains host-
ing Majorana bound states as discussed in Ch. 7, since tunneling spectroscopy is the
most important diagnostic tool for such systems. On the other hand the study applies
to generic bound states in superconductors and may therefore provide useful informa-
tion about spectroscopic signatures of Majorana bound states.

In conclusion we would like to point out an interesting feature of the results summa-
rized above. In various situations we find that deviations from ideal experimental condi-
tions can lead to new interesting physics and may even be beneficial for the desired out-
come. Although imperfections are generally regarded as a nuisance necessarily present
in experiment they can also be used as an additional tool to manipulate the system. For
instance, we show that the presence of disorder can enhance signatures of Majoranas
in conductance experiments (Ch. 4) or even extend the range of the topological super-
conducting phase (Ch. 5). Furthermore, typically unwanted quasiparticle relaxation of
subgap states in superconductors present at finite temperature may greatly facilitate
the determination of the density of states when measuring the differential tunneling
conductance (Ch. 8) and give rise to a compelling signature of the topological phase
transition in topological superconductor rings (Ch. 5). Finally, we argue that, counter-
intuitively, long-range power-law couplings in helical Shiba chains (Ch. 7) can lead to a
very strong exponential localization of Majorana bound states on short scales. Thus by
taking into account realistic experimental conditions, which at first glance appear to be
detrimental to the desired outcome, we have been able to predict novel phenomena with
important implications for experiment.

The unequivocal observation of Majorana bound states in topological superconduc-
tor would represent a milestone in condensed matter physics and beyond. On the one
hand, topological superconductors with protected zero-energy Majorana bound states
constitute a novel flavor of topological phases, which have fascinated condensed-matter
physicist for the past three decades. In particular, the nonlocal nature of the topologi-
cal phase promises interesting applications such as a Cooper pair splitter [Nils 08] or a
Thouless pump [Thou 83], i.e., pumping of quantized charge, in one dimension. Even
more remarkable, on the other hand, are the phenomenal nonabelian exchange statistics
of Majorana bound states which could revolutionize many-body physics and quantum
information alike. Majorana bound states in superconductors can be manipulated by
gates, magnetic fields, and supercurrents among others and are therefore much easier
to control that nonabelian anyons in exotic fractional quantum Hall systems.
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These special properties set the two major challenges in this field of research: to
identify realistic measurement schemes sensitive to the nonlocal character of Majorana
bound states and as a second step to design experimentally feasible protocols for braid-
ing Majoranas. Several proposals addressing these problems have been put forward,
however, mostly on an abstract level. We have mentioned some of the proposals in
Sec. 3.4. Clear estimates on parasitic mechanisms such as the quasiparticle poisoning
time or the influence of impurities or nonadiabatic manipulations on a braiding cycle
in specific realization are often unavailable (notable exceptions are [DeGo 11, Chen 11,
Tsve 12, Perf 13, Karz 13]).

Until now, the existing experiments have addressed neither nonlocal signatures nor
braiding of Majoranas, but instead focused on spectral signatures of single Majoranas or
the Josephson current through a pair of Majoranas in a narrow junction. The topological
character of these bound states can at best be probed indirectly in such measurements.
Nevertheless, the detection of local properties provides a valuable tool even in more
sophisticated experiments. While local signatures of Majoranas are typically more ac-
cessible in experiments than, for instance, nonlocal correlations or interference patterns,
such detection schemes are impaired by other effects. As we have discussed in Sec. 3.3,
distinct physical phenomena unrelated to topology can mask or mimic local Majorana
signatures. Thus neither the pure presence nor absence of a signal can yield a definite
answer on the existence of Majorana states.

A promising strategy to circumvent this problem is to combine different measure-
ments and methods in a single experiment. This allows one to rule out artifacts plaguing
a particular experimental approach. An inspiring realization of this paradigm has been
reported in [Bret 13], where the Andreev spectrum of a conventional Josephson junc-
tion has been measured by a combination of microwave absorption and supercurrent
spectroscopy. This technique could be equally useful in the quest for Majorana bound
states. As another example, one could measure the tunneling conductance simultane-
ously at both ends of a long superconducting wire, thus combining two copies of the
same experiment at different locations. True Majorana signatures must appear and van-
ish in conjunction at both ends, whereas signals of trivial origin should be susceptible
to manipulations of local parameters at one end.

Finally, we comment on several more concrete future research topics motivated by the
individual projects presented in the main part. The most recently predicted platform for
Majorana bound states currently investigated in experiments are chains of impurities on
a superconductor. Here the fundamental question about the conditions for a topological
phase persists. In Ch. 7 we have investigated a helical chain of impurities, but, for in-
stance, a ferromagnetic chain in conjunction with spin-orbit interaction in the substrate
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can also lead to a nontrivial topology (this is similar to a halfmetal wire in proximity to a
spin-orbit-coupled superconductor [Duck 11, Chun 11]). Furthermore the role of disor-
der and inhomogeneities in such a chain as well as the robustness of braiding operations
remains unclear due to the long-range couplings. An interesting proposal for braiding
in impurity rings has been made in [Li 14], which could provide a good starting point
for such investigations.

Another focus of this work has been the 4π Josephson effect considered in Chs. 5 and
6. A broad range of theoretical work has investigated the dc and the voltage-biased ac
Josephson effect as well as Shapiro step measurements. Recent experiments aiming to
detect signatures of Majoranas in the Josephson effect, however, are performed under
current bias [Rokh 12], which has received only little attention in theoretical work (see,
e.g., [Domi 12]). The dynamics of current-biased junctions are complex due to nonlinear
effects possibly leading to different results than the voltage bias case. Indeed, there is a
discrepancy between experimental findings and theoretical prediction on the odd-even
effect in Shapiro step measurements [Houz 13], which motivate revisiting the current-
biased 4π Josephson effect.

The Josephson effect on the edge of a two-dimensional topological insulator has been
observed in [Hart 13, Prib 14]. In these beautiful experiments two opposite edges of a
rectangular topological insulator have been contacted by superconductors and the su-
percurrent has been used to prove the pure edge transport in the topological phase by
analyzing the Fraunhofer pattern. At the same time this constitutes the first demonstra-
tion of induced superconductivity in helical edge channels. Intriguingly, the Josephson
current may also carry information about Majorana states in the junction, for instance
in the current–phase relationship, although further investigation are needed to clarify
the role of the two parallel junctions present in the experiments. We note in passing
that a proximity-coupled topological insulator edge naturally has a ring shape. This
system may therefore provide an appropriate setting for the signature of Majoranas in
mesoscopic superconducting rings discussed in Ch. 5.

Triggered by realistic theoretical proposals and recent experimental advances, Ma-
jorana states have received considerable attention over the past few years. On the one
hand, topological superconductors promise manifold applications associated with e-
merging Majorana bound states. Interesting physical phenomena arise due to the un-
derlying topology such as quantized transport properties (e.g, conductance or charge
pumping) or due to the nonlocal nature of the zero-energy fermion formed by two dis-
tant Majoranas such as teleportation [Fu 09a] or splitting of Cooper-pairs [Nils 08]. This
line of thought that topology gives rise to quantization and nonlocality has been initi-
ated with the quantum Hall effect more than thirty years ago. It has regained impor-
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tance with the discovery of topological insulators and recently the prediction of topo-
logical superconductors and it is likely to continue with the discovery of exciting new
facets such as topological phases protected by crystalline symmetries [Fu 11], induced
by external driving [Lind 11], or in interacting topological systems [Fidk 10, Gura 11,
Turn 11, Fidk 11, Manm 12].

On the other hand, topological superconductors host Majorana bound states, a mani-
festation of nonabelian anyons. Miraculously, these exotic particles predicted more than
twenty years ago in strongly correlated 2d fractional quantum Hall systems [Moor 91]
might finally be realized in weakly correlated 1d superconductors described by a mean
field theory. Given this surprising similarity between two very different physical sys-
tems first pointed out by Read and Green [Read 00], one may wonder whether even
more sophisticated nonabelian anyons realized in other exotic quantum Hall states may
also be realized in more mundane systems. Another example for nonabelian anyons
in hybrid structures are parafermions occurring on the edge of conventional fractional
quantum Hall systems (or equivalently fractional topological insulators) in proximity
to an s-wave superconductor [Lind 12, Chen 12, Clar 13, Vaez 13]. Regarding the sub-
stantial progress on topological hybrid systems in only a few years and the enormous
power of designing hybrid systems that combine all desired properties one may hope
for many new and exciting phenomena awaiting discovery.

136



A. Effective energy splitting and Josephson

coupling of Majorana end-states in p-wave

superconductor rings

We present here the analytical estimation of the Majorana energy splitting, ε0, and the
effective Josephson coupling, Γ, in the Hamiltonian (5.12). For sake of simplicity we
will first present our calculation for the effective Josephson coupling Γ, obtained by
working in the tight-binding model. We will then describe the calculation of ε0 through
an alternative approach working directly in the continuum limit both in both regimes
µ� m∆′2 and µ� m∆′2 discussed in Sec. 5.2.

Effective Josephson coupling. In order to compute the effective Josephson coupling
we neglect the effect of the overlap of the two Majorana wavefunctions in the topological
part of the ring. We therefore consider the limit of a junction between two half-infinite
topological sectors of the wire, the right one on sites j ∈ [1,∞) and the left one on
j ∈ (∞,−1). They are both described by the Hamiltonian (5.1) with paring strength
∆TBe

iφa with a = L,R for the left and right sector, respectively. The hopping between
the two sectors from Eq. (5.2) now simply reads HT = −t′(c†−1c1 + c†1c−1)—cf. Fig. A.1.

We include the effect of the tunneling between the two wires perturbatively. The low
energy excitations of this model for t′ = 0 are represented by left and right zero energy
Majorana operators [Kita 01]

bR = A
∞∑
j=1

(xj+ − xj−)γ
(R)
B,j (A.1)

bL = A

−∞∑
j=−1

(x−j+ − x−j− )γ
(L)
A,j (A.2)

where x± = (−µTB ±
√
µ2

TB − 4t2 + 4∆2
TB)/(2t + 2∆TB), A = (

∑
j |x

j
+ − xj−|2)−1/2 is a

normalization constant, and the operators γA(B),j are defined via cJ = (γ
(R)
B,j e

−iφR/2 +

iγ
(R)
A,j e

iφR/2)/2. The projection of HT onto the subspace spanned by the operators bR,
bL leads to the effective coupling between the Majorana states. The Hamiltonian can
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A Effective energy splitting and Josephson coupling of Majorana end-states in p-wave
superconductor rings

be rewritten in terms of ordinary fermion operators dM = (bR + ibL)/2 to take the
form presented in Eq. (5.9) with Γ = t′A2|x+ − x−|2. For simplicity, we consider µ <

2t
(

1−
√

1−∆2
TB/t

2
)

which corresponds to the condition µ < m∆′2 in the continuum
model (5.3) and ensures that x± are real (see discussion of the continuum model in
Sec. 5.2.1). Explicitly one obtains

Γ =
t′µ(4t− µ)∆TB

t(t+ ∆TB)2
(A.3)

In the continuum limit, when µ� ∆TB � t the expressions simplifies to

Γ ≈ 4t′µ∆TB/t
2 . (A.4)

Majorana energy splitting. In order to compute the energy splitting ε0 we employ
an alternative method working directly in the continuum limit. Similar to before, we
neglect here the Majoranas interaction through the Josephson junction. The problem is
then completely equivalent to calculating the energy splitting of two Majorana at the end
of a wire of length L. We start considering the regime (ii) described by the Hamiltonian
in Eq. (5.6), H = µ(x)τz + ∆′(x)pτx, with the specific choice of parameters (cf. Fig. A.1)

µ(x) = −V0[Θ(−x) + Θ(x− L)] + µΘ(x)Θ(L− x) ,

∆′(x) = ∆′ , (A.5)

where V0 > 0 and µ > 0 guarantee that the wire is in a topological phase in [0, L] and in
a nontopological phase otherwise.

φL φR

H HL

HR
VL

VR

0 L

µ

−V0 −V0 − µ−V0 − µ

µ
µ

0 0L Lx x x

1 2−1−2

(a)

(b)

Figure A.1.: (a) Sketch of the Josephson junction between two topological segments of
the wire and spatial dependence of the gate potential in the corresponding
continuum realization. (b) Spatial dependence of the chemical potential,
µ(x), in the Hamiltonian of the finite length wire and for the approximate
Hamiltonians, HL and HR, used in the perturbative calculations

We determine the Majorana wavefunctions by a perturbative approach. We first find
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the wavefunctions of the Majorana bound state localized at one of the interfaces between
the topological and the insulating region, thus fully ignoring the existence of the other
Majorana state. We label the corresponding states at the interfaces at x = 0 and x = L as
|L〉 and |R〉 respectively. We then project the Hamiltonian onto the Majorana subspace,
to obtain their effective interaction, Hoverlap =

∑
α,β=L,R〈α|H|β〉 |α〉 〈β|. Eventually we

will be interested in the limit V0 →∞ corresponding to a high insulating barrier outside
the wire.

The Majorana state at x = 0 is the zero-energy eigenstate of the Hamiltonian HL,
defined again by the same Hamiltonian as in Eq. (5.6), but with the choice of parameters

µ(x) = −V0Θ(−x) + µΘ(x) ,

∆′(x) = ∆′ , (A.6)

as depicted in Fig. A.1. Solving this equation separately for x > 0 and x < 0 leads to
zero energy states with imaginary momenta. Namely we can write

|L〉 = v−,Le
α0xΘ(−x) + v+,Le

−αxΘ(x) (A.7)

where α = µ/|∆′| is the inverse coherence length in the wire, and α0 = V0/|∆′|. The
two-dimensional vectors v±,L are determined by the continuity of the wavefunction and
its derivative at the interface and by the wavefunction normalization. They are given by:

v+,L = v−,L =

√
αα0

α+ α0

(
1

−i

)
. (A.8)

In the limit V0 →∞we are interested in, they reduce to

v+,L = v−,L =
√
α

(
1

−i

)
. (A.9)

In a completely analogous way we can calculate the zero-energy eigenstate of the Hamil-
tonian HR defined once more by the Hamiltonian in Eq. (5.6), now with (cf. Fig. A.1)

µ(x) = −V0Θ(x− L) + µΘ(L− x) , (A.10)

∆′(x) = ∆′ . (A.11)

In this case the zero-energy eigenstate reads

|R〉 =

√
αα0

α+ α0

(
1

i

)[
e−α0(x−L)Θ(x− L) + eα(x−L)Θ(L− x)

]
. (A.12)
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In the limit V0 →∞ the prefactor reduces to
√
α. Note that the particle-hole superposi-

tion has different phases in |L〉 and |R〉.

We can then project the full Hamiltonian onto the low-energy subspace spanned by
the two Majorana states. In doing so, we conveniently rewrite H = HL + VR = HR +

VL, where VR = −(V0 + µ)Θ(x − L)τz and VL = −(V0 + µ)Θ(−x)τz , and the spatial
dependence of the various terms is presented in Fig. A.1 We can then compute, e.g.,
〈L|H|L〉 = 〈L|HL|L〉 + 〈L|VR|L〉 = 〈L|VR|L〉, and all the other matrix elements in a
similar way, to get

Hoverlap =

(
〈L|VR|L〉 〈L|VL|R〉
〈R|VL|L〉 〈R|VL|R〉

)
=

(
0 −2µe−αL

−2µe−αL 0

)
. (A.13)

This leads to the energy splitting ε0 = 2µe−αL, as reported in Section 5.3.3.

In complete analogy, one can perform the calculation of the energy splitting in the
regime µ � m∆′2. In this case the appropriate Hamiltonian, H , is that in Eq. (5.3),
with the same choice of parameters as in Eq. (A.5). Again we start considering the left
interface, looking for zero-energy solutions of the HL, i.e., the Hamiltonian in Eq. (5.3)
with the choice of parameters as in Eq. (A.6). We introduce a0 = V0/(m∆′2) > 0 and
a = µ/(m∆′2) > 0. We can write the solutions as

|L〉 =
√
m∆′

√
a

1 + 2a

(
1

−i

)[
(1 + η)eiκ−xΘ(−x) +

(
eik+x + ηeik−x

)
Θ(x)

]
, (A.14)

|R〉 =
√
m∆′

√
a

1 + 2a

(
1

i

)[(
e−ik+(x−L) + ηe−ik−(x−L)

)
Θ(L− x) (A.15)

+ (1 + η)e−iκ−xΘ(x− L)
]
, (A.16)

where κ− = −im|∆′|(√2a0), k± = m|∆′|(±
√

2a + i) and η = (κ− − k+)/(k− − κ−). In
all the expressions we are neglecting O(

√
a/
√
a0, 1/

√
a0), consistent with the condition

a0 � a � 1, reflecting the limit V0 → ∞ and the regime under consideration. The
matrix elements of the effective Hamiltonian are, in this case, 〈L|H|L〉 = 〈R|H|R〉 = 0

and 〈L|H|R〉 = 〈R|H|L〉 ≡ −ε0 , with

ε0 = ∆′
√

2mµ
[
sin(

√
2mµL)−

√
a/a0(

√
2− 1) cos(

√
2mµ)L+O(

√
a/a2

0)
]
. (A.17)
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B. Proximity-coupled quantum wire in the limit of

large spin–orbit coupling

In Sec. 6.3.2, we relied strongly on the statement that in the limit of strong spin–orbit
coupling, the quantum-wire model (6.2) reduces at low energies to a combination of
the topological-insulator-like low-momentum subspace and a spinless-p-wave-super-
conductor-like high-momentum subspace. In this appendix, we provide an explicit jus-
tification for this statement.

The statement is evident for the low-momentum subspace, so we will not consider it
further. For µ = 0, the Fermi points are located at p = 0 (low momentum) as well as
p = ±pF with pF = 2mu (high momentum). As the spin–orbit coupling (or equivalently,
m) increases, pF becomes large and so does the effective spin–orbit field in the high-
momentum subspace. Thus, in this limit, we can first diagonalize the Hamiltonian in
the absence of the induced pairing ∆ and then treat the latter perturbatively. To do so,
we perform the unitary transformation

U = exp{iασyτz/2} exp{iθσz/2} (B.1)

on the wire Hamiltonian (6.2) with ∆ = 0. If we choose α such that tanα = B/up, the
rotated Hamiltonian takes the form

H0 =

(
p̂2

2m
+
√

(up)2 +B2σz

)
τz. (B.2)

The low-energy subspace at p = ±pF is formed by the bands for which σz takes the
value −1. We now reintroduce the pairing term ∆τx and apply the transformation U to
it. The projection ofH0 onto the lower bands yields

Heff =

(
p̂2

2m
−
√

(up)2 +B2

)
τz +

up∆√
(up)2 +B2

τx. (B.3)

The condition εSO � ∆ guarantees that we can neglect the coupling to high-energy
degrees of freedom near±pF . Linearizing around the Fermi momenta and using |up| ∼
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B Proximity-coupled quantum wire in the limit of large spin–orbit coupling

εSO � B the effective Hamiltonian takes the form

Heff = u (|p| − pF ) τz + sign(p)∆τx. (B.4)

This describes a spinless p-wave superconductor.
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C. Appendix for Chapter 7

C.1. Some integrals

In the following we evaluate and discuss the integral

I =

∫
dp

(2π)3

eipr

E − ξpτz −∆τx
, (C.1)

which is used in Secs. 7.3.1 and 7.3.2. Note that we are interested in subgap energies
E < ∆. Explicitly inverting the matrix and changing integration variables to ξp and
x = cos θp with the polar angle θp measured relative to r, we have

I =
ν0

2

∫
dξp

∫ 1

−1
dxeiprx

E + ξpτz + ∆τx
E2 − ξ2

p −∆2
. (C.2)

Here, ν0 denotes the normal-state density of states per spin direction of the supercon-
ductor. Thus, we need to evaluate the integrals

I0 =
ν0

2

∫
dξp

∫ 1

−1
dx

eiprx

E2 − ξ2
p −∆2

, (C.3)

I1 =
ν0

2

∫
dξp

∫ 1

−1
dx

ξpe
iprx

E2 − ξ2
p −∆2

ω2
D

ξ2
p + ω2

D

. (C.4)

Note that we introduced a convergence factor ω2
D/(ξ

2
p + ω2

D) into I1. While the integral
I0 is automatically dominated by the vicinity of the Fermi surface, this is not the case for
I1 in the absence of the convergence factor. In that case, we need to account for the fact
that the BCS model underlying the calculations is restricted to energies smaller than the
Debye frequency ωD. We will ultimately restrict attention to r � vF /ωD. In this limit,
we can formally eliminate the cutoff from the result by taking the limit EF , ωD → ∞
while keeping ωD/EF � 1. Note that an accurate theory for r � vF /ωD would require
one to develop a more microscopic theory of the underlying superconductor.

To evaluate the integrals, we first perform the integral over ξp and subsequently the
x-integration. Writing p = pF + ξp/vF , this can be done straightforwardly for I0 and we
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C Appendix for Chapter 7

obtain
I0 = − πν0√

∆2 − E2

sin kF r

kF r
e−
√

∆2−E2r/vF . (C.5)

Similarly, we can evaluate the integral for I1. Taking the limit described above, we find

I1 = −πν0
cos kF r

kF r
e−
√

∆2−E2r/vF . (C.6)

More explicitly, the corrections to this result either decay exponentially with r on the
scale vF /ωD or are suppressed as powers of ωD/EF , and thus vanish after taking the
limit.

C.2. Momentum-space Bogoliubov-de Gennes Hamiltonian of helical

Shiba chains

Here, we sketch the derivation of Eqs. (7.39) and (7.41). Inserting Eq. (7.32) into Eq.
(7.37), we readily find Eq. (7.39) with

F (k) = −∆Im
∞∑
j=1

1

kFaj
e−aj/ξ0 [ei(kF+k)aj + ei(kF−k)aj ]. (C.7)

Here, we have dropped the trivial term involving the Shiba energy ε0 of the individual
impurities. The sum over j can be readily performed by the identity

− ln(1− x) =
∑
j=1

xj

j
, (C.8)

which yields

F (k) =
∆

kFa
Im
[
ln(1− e−a/ξ0+i(kF+k)a)

+ ln(1− e−a/ξ0+i(kF−k)a)
]
. (C.9)

Finally, we use the identity Im ln z = i arctan(Imz/Rez) to obtain the result given above
in Eq. (7.40).

Similarly, inserting Eq. (7.33) into Eq. (7.38), we find Eq. (7.41) for ∆k with

f(k) =
∞∑
j=1

e−ja/ξ0

j
[eikaj + e−ikaj ]. (C.10)

Performing the sum over j using Eq. (C.8) yields Eq. (7.42) of the main text.
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Figure C.1.: Phase diagram from Fig. 7.10(a) of the main text and corresponding cumu-
lative hopping amplitudes across an odd and even number of lattice sites
(ξ0 =∞, kh = 0.1π/a): sodd =

∑
n sin[kFa(2n+1)] cos[kha(2n+1)]/(2n+1)

and seven =
∑

n sin(2kFan) cos(2khan)/2n. While seven is always nonzero
except for special points, sodd changes from zero to π/4 at the transition be-
tween two-channel (kF < kh) and single-channel phase (kF > kh).

C.3. Origin of the two-channel phase

Roughly speaking, the two-channel phases arises because the even and odd sites of the
chain form two independent channels. This can be traced back to the fact that for some
ranges of the wavevectors kF and kh, hopping across an even number of lattice sites be-
comes stronger than across an odd number. To make this intuitive understanding more
plausible, we consider the lattice Fourier transform hk=0 =

∑
n hi,i+n for the wavevec-

tor k = 0, at which the dispersion changes abruptly when kF = kh. The contribution to
hk=0 from hopping an odd number of sites is

∑
n sin kFa(2n+1) cos kha(2n+1)/(2n+1).

This vanishes in the two-channel phase kF < kh and equals π/4 in the single-channel
phase kF > kh. The sum over all even hopping terms, on the other hand, varies be-
tween −π/4 and π/4. The cumulative hopping amplitudes for even and odd sites are
illustrated in Fig. C.1. Thus, the phase transition occurs because hopping between even
and odd sites becomes ineffective for kF < kh and the chain effectively decomposes into
two channels. This two-channel phase arises as a consequence of the long-range nature
of the model. For finite ξ0, the long-range hopping is cut off by the coherence length
and the two-channel phase is restricted to a smaller region of parameter space.

C.4. Exponentially localized Majorana bound state at the Bragg point

We now provide further details of the derivation of Eq. (7.50) of the main text. At
the Bragg point kF = kh, the off-diagonal block of the rotated Hamiltonian given in
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Figure C.2.: Scaling behavior of the Majorana wavefunction for δk > 0. In the limit
δk → 0 the slowly decaying tail δkδv only depends on the scaled position
variable yj = δkaj. Due to the scaled axes all curves collapse. Note that the
exponentially decaying zeroth-order term v0 only dominates on the first few
sites, which cannot be resolved in this graph. Similar results are obtained
for δk < 0. The parameters used for numerical calculations in this appendix
are all chosen as in Fig. 7.11 of the main text.

Eq. (7.49) reads

(H12)ij =


− i∆
kF a

e−(j−i)a/ξ0 sin[2kF a(j−i)]
j−i j > i,

iε0 j = i,

0 j < i.

(C.11)

ThusH12 is triangular and constant along the diagonals. In order to find Majorana end
states we seek a solution ofH12v = 0 which gives the set of equations

0 =

∞∑
j=1

(H12)ijvj (C.12)

= iε0vi −
i∆

kFa

∞∑
j=i

e−(j−i)a/ξ0 sin 2kFa(j − i)
j − i vj . (C.13)

Using the ansatz vj = βj all of these equations reduce to the same condition

iε0 =
i∆

kFa

∞∑
j=1

e−ja/ξ0
sin(2kFaj)

j
βj . (C.14)
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We can rewrite this as

iε0 =
∆

2kFa

∞∑
j=1

[
(βe−a/ξ0+i2kF a)j

j
− c.c.

]
(C.15)

and using the identity
∑∞

j=1 x
j/j = − ln(1− x) we obtain

iε0 =
∆

2kFa
ln

[
1− βe−a/ξ0+i2kF a

1− βe−a/ξ0−i2kF a

]
(C.16)

=
i∆

kFa
arctan

βe−a/ξ0 sin(2kFa)

1− βe−a/ξ0 cos(2kFa)
. (C.17)

Rearranging this as

βe−a/ξ0 [sin(2kFa) cos
kFaε0

∆
+ cos(2kFa) sin

kFaε0
∆

]

= sin
kFaε0

∆
, (C.18)

and solving for β finally yields Eq. (7.50).

C.5. Analytical solution near the Bragg point for ξ0 →∞

Here we derive the corrections to the exponential Majorana wavefunction in the limit
ξ0 →∞ when tuning slightly away from the phase transition at δk = 0. To this end we
expand the eigenproblem in |δk| and construct a continuum limit in which the matrix
equations for the wavefunction transform into integral equations that can be solved by
standard methods. We present the solution for the more involved case δk < 0 (non-
topological side). The calculation for the topological side δk > 0 is contained in the
derivation presented here and can be obtained by simply setting u and ε in Eq. (C.19) to
zero. On the nontopological side, there are two degenerate subgap states which exist at
a finite energy. The eigenproblem reads(

0 M + δM

M † + δM † 0

)(
u

v

)
= ε

(
u

v

)
(C.19)
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with

Mi,j =


−i∆
kF a

sin[Ka(j−i)]
j−i j > i

iε0 j = i

0 j < i

(C.20)

δMi,j =

0 j ≥ i
−i∆
kF a

sin[δka(i−j)]
i−j j < i

. (C.21)

and K = 2kF + δk. The two degenerate subgap states are localized at opposite ends
of the chain by an appropriate choice of basis. For definiteness we consider the Nambu
spinor (u, v) to be localized at the left end and solve the eigenproblem for a semi-infinite
chain. We start by expanding v to first order in |δk|,

v = v0 + |δk|δv. (C.22)

As detailed in Sec. 7.6.2 we find that in the limit δk → 0 with yj = const, the correction
δv depends only on the scaled position variable yj = |δk|aj. In this limit, the position
variable becomes continuous yj → y and the matrix equations (C.19) transforms into
integral equations. The expansion and the scaling behavior of δv is corroborated by
numerical results in Fig. C.2.

We can now obtain the scaling of the energy εwith δk by eliminating u from Eq. (C.19),

(M † + δM †)(M + δM)v = ε2v. (C.23)

As ε→ 0 with δk → 0− (which is supported by numerics in Fig. 7.11(a) of the main text),
we obtain Mv0 = 0 in zeroth order, which is the eigenproblem at the Bragg point, i.e.,

v0,j = N1β
j , (C.24)

with a normalization constantN1 andβ given by Eq. (7.50). Normalization readily yields
N1 = (1−β2)1/2/|β| for δk > 0. When δk < 0, the hole component u also enters into the
normalization condition and we will determine N1 later.

From the next order in Eq. (C.23), we find that the energy scales as ε = ρ
√
|δk| with

some constant ρ. This result is consistent with the numerical results in Fig. 7.11(a) of
the main text. Since v0 corresponds to the single solution at the Bragg point, u cannot
have a zero-order term. In fact, due the

√
|δk|-dependence of ε, we have to expand

u = |δk|1/2u0 + O(|δk|3/2). Also u0 is a function of yi if we ignore terms at the very
end of the chain where v0 is dominating. The scaling |δk|1/2u(|δk|ai) is confirmed by
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Figure C.3.: Nambu component u for various δk < 0. In the limit δk → 0 the dominating
contribution near the end of the chain is an exponential function which is
well-described by our analytical solution (dashed line) given in Eq. (C.31).
The results also show the scaling |δk|1/2u0(|δk|aj). Further inside the chain
u has a slowly decaying tail of order |δk|3/2, which can be described by a
similar power-law decay as δv. Since the tail of u is higher-order term we
do not consider it further.

numerics as shown in Fig. C.3.

The next order ∼ |δk|1/2 of Eq. (C.19) is given by

|δk|1/2
(
M †u0 + δM †u0 − ρv0

)
= 0. (C.25)

As mentioned above we ignore boundary terms of u0 since they are of subleading order
in |δk|. Hence we omit the last term ∼ v0 in the previous equation and take the limit
|δk| → 0 with yi = const. of the remaining terms by introducing the continuous position
variable yi → y. This yields

[(M † + δM †)u0]i = − i∆

kFa

i−1∑
j=1

sin[Ka(i− j)]
i− j u0(yj)

+iε0u0(yi)−
i∆

kFa

∞∑
j=i+1

sin[δka(j − i)]
j − i u0(yj) = 0. (C.26)

The first sum can be rewritten as

i−1∑
j=1

sin(Kaj)

j
u0(yi − yj). (C.27)
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Figure C.4.: Branch cuts (dashed lines) and poles (dots) of the inverse Laplace transform
for (a) positive δk and (b) negative δk. By writing arccot s = (1/2i) ln(1 +
s)/(1− s) we have chosen the branch cuts along s = ±i−σ with σ ∈ [0,∞).
With this choice there are no poles for δk > 0 (and ρ = 0). In the case
δk < 0 there is a pole at− cotA < 0. The pole in the positive real half plane
at + cotA is regularized by a suitable choice of coefficients N1/2. The red
lines with arrows denote the contour of integration in the inverse Laplace
transform (C.39).

When |δk| is small, u0(yi − yj) becomes a slowly varying function and the sum is dom-
inated by the decay sin(Kj)/j, i.e., only terms with j . O(1/K) are relevant. Thus in
the limit δk → 0, i→∞with yi = const. we can set yj → 0 and obtain

i−1∑
j=1

sin[Ka(i− j)]
i− j u0(yj)→ u0(y)

∞∑
j=1

sin(Kj)

j
(C.28)

= u0(y) arctan cot(K/2). (C.29)

The other terms have a straightforward continuum limit and we obtain

Au0(y) + sgn(δk)

∫ ∞
y

dz
sin(z − y)

z − y u0(z) = 0, (C.30)

whereA = arctan cot(K/2)−kFaε0/∆ as in Sec. 7.6.2. The solution of this homogeneous
integral equation for δk < 0 is given by [Poly 12]

u0(y) = N2e
− cot(A)y, (C.31)

where the normalization factor N2 will be determined below. This result agrees well
with a numerical solution of the tight-binding BdG Hamiltonian in the limit δk → 0, as
shown in Fig. C.3.

Finally we consider all terms in Eq. (C.19) which are linear in δk. This yields

δMv + |δk|Mδv + |δk|δMδv = |δk|ρu0, (C.32)
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for which we evaluate each term separately. The first term becomes

(δMv)i =
i∆

kFa

i−1∑
j=1

sin[δk(i− j)]
i− j N1β

j . (C.33)

The sum is dominated by the first few terms due to the exponential decay βj and since
i→∞, we can safely set i− j → i. Thus, the continuum limit yields

(δMv)i → δk
i∆

kF
N1

β

1− β
sin y

y
. (C.34)

The continuum limit of the second and third term can be obtained in a similar manner
as for Eq. (C.26),

(Mδv)i →
i∆

kFa
Aδv(y) (C.35)

(δMδv)i → sgn δk
i∆

kFa

∫ y

0
dz

sin(y − z)
y − z δv(z). (C.36)

Thus, we ultimately obtain the integral equation

Aδv(y) + sgn(δk)

∫ y

0
dz

sin(y − z)
y − z δv(z)

= − iN2ρkFa

∆
e− cot(A)y − sgn δkN1a

β

1− β
sin y

y
. (C.37)

For the case δk > 0 and with ρ = 0, this equation reduces to Eq. (7.52) of the main
text. For both signs of δk, this integral equation (C.37) can be solved by Laplace trans-
formation. Using L[e−λy] = 1/(s + λ) and L[sin y/y] = arccot s we find the solution of
the integral equation to be

δv(y) = L−1

[ −1

A+ sgn δk arccot s(
sgn δk

N1aβ

1− β arccot s+
iN2ρkFa

∆

1

s+ cotA

)]
. (C.38)

The inverse Laplace transform is defined as

L−1f(s) =
1

2πi

∫ λ+i∞

λ−i∞
esydsf(s), (C.39)

where λ is a real number exceeding the real part of all singularities of f . For δk > 0, all
branch cuts and poles of the Laplace transform in Eq. (C.38) can be chosen to lie in the
negative real half plane (see Fig. C.4) and thus the weight esy is decaying for all y > 0.
In contrast for δk < 0 the Laplace transform has a pole in the positive real half plane at
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Figure C.5.: Wavefunction modulus (|u|2 + |v|2)1/2 in the nontopological phase (δk < 0)
exhibiting a two-exponential decay with a power-law tail. The numerical
results from exact diagonalization of the tight-binding BdG Hamiltonian
(orange crosses) agree well with the analytical solution

(∣∣v0 +|δk|δv
∣∣2 +|δk|·

|u0|2
)1/2 (blue line), where we obtained δv from the inverse Laplace trans-

form (C.38) by numerically integrating along the branch cuts in Fig. C.4(b).
For the plot we have chosen δk = −5× 10−4π.

sp = cotA, which gives rise to an exponentially growing solution in δv(y). In order for
the wavefunction to be localized at the left end of the chain, we thus have to fix the ratio
N1/N2 in a way that regularizes the Laplace transform at sp, i.e.,

N2

N1
= −2iA cotA

∆

ρkF

β

1− β (C.40)

for which the numerator in (C.38) vanishes at sp. Thus by choosing a proper basis in
the degenerate subspace, we have ensured that the wavefunction is localized at the left
end. The coefficients N1/2 are now readily determined in terms of ρ from the overall
normalization of the wavefunction

∑
i(|v0,i|2 + |u0,i|2) = 1 which is true in the limit

δk → 0.

Finally we obtain δv(x) from the inverse Laplace transform by integrating along the
contour shown in Fig. C.4. The integral can be solved by expanding in y � 1,

δv(y)→


4aA sgnβ

√
1 + β

1− β
sin y

y ln2 y
, δk > 0

4aAN1
β

1− β
sin(y + 2A)

y ln2 y
, δk < 0

(C.41)

and neglecting terms of order 1/y ln3 y.
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In summary, we have found analytical expressions for the Nambu wavefunction of
the subgap states close to the phase transition. For δk < 0, the bound state at one end
of the chain has the form

ψi =

( √
|δk|u0 (i|δk|)

v0,i + |δk|δv(i|δk|)

)
(C.42)

which comprises the leading order terms in |δk| for all sites. On the first few sites, ψ
decays exponentially, then crosses over to a much slower exponential decay with ampli-
tude O(

√
|δk|) and a decay length O(1/|δk|). Further inside the chain the wavefunction

decays as a power law with logarithmic corrections. For δk > 0, the wavefunction has a
similar form with u0 = 0.

In Fig. C.5 we compare the analytical solution to the tight-binding wavefunction ob-
tained by exact diagonalization and find excellent agreement.

C.6. Localization of Majorana bound states for finite ξ0

In this section, we briefly discuss in general how the localization of Majorana bound
states is affected by a large but finite coherence length ξ0 that limits the range of the
hopping and pairing terms. In this case, the topological phase transition is shifted away
from the Bragg point [see gray line in Fig. 7.10(a) of the main text], but Majorana bound
states that are exponentially localized on short scales persist as long the Bragg point is
inside the topological phase. In the dispersions hk shown in the insets of Fig. 7.10(b)
and (c) of the main text, a finite ξ0 smoothens the steps on the scale 1/ξ0. As a con-
sequence the gap closes continuously as a function of kF in the immediate vicinity of
the critical point and we can define an induced coherence length ξind that diverges at
the phase transition. Deep in the topological phase ξind ∼ ξ0 (see Sec. 7.5.1 for details).
Thus a finite coherence length does not change the decay properties of Majorana bound
states on scales shorter than ξ0, i.e., both the exponential decay with a localization length
comparable to the lattice spacing and the power-law tail persist. However, at larger
distances the decay becomes exponential again on the scale of the induced coherence
length, ∼ exp(−ja/ξind).

Right at the Bragg point, the tail is always eliminated by destructive Bragg interfer-
ence and only the short exponential decay survives. Since finite ξ0 reduces the extent
of the Shiba wavefunction, this interference becomes less effective and the localization
length increases compared to ξ0 = ∞ [cf. inset of Fig. 7.11(b) of the main text]. In the
vicinity of the Bragg point, the wavefunction acquires a small-amplitude tail as dis-
cussed in the previous paragraph, independent of the sign of δk. Since the power-law
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tail ∼ 1/y ln2 y sets in only at rather large y, the tail is often completely dominated by
the slow exponential ∼ exp(−ja/ξind).
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D. Derivation of the Shiba peak height in the

differential tunneling conductance for a

superconducting tip

D.1. Derivation of the current formula

In this appendix we derive the formula for the tunneling current between a supercon-
ducting tip and a superconducting sample with a magnetic impurity given in Eqs. (8.1)
an (8.2). We apply the nonequilibrium Green’s function method used in [Cuev 96]. The
system is described by the Hamiltonian Ĥ = ĤL + ĤR + ĤT , where the three parts
describe the tip, the substrate and the tunnel coupling. The superconducting tip is de-
scribed by the BCS Hamiltonian

ĤL =

∫
dk

(2π)3

[∑
σ

ξk ĉ
†
L,kσ ĉL,kσ + (∆ĉ†L,k↑ĉ

†
L,−k↓ + h.c.)

]
, (D.1)

where ξk = k2/2m−µ, µ is the chemical potential, ∆ the superconducting gap, and cL,kσ
annihilates an electron with momentum k and spin σ. The Hamiltonian of the sample
additionally contains a magnetic impurity at the origin with spin vector S and exchange
coupling J

ĤR = ĤL − JS(ĉ†R,↑, ĉ
†
R,↓)σ

(
ĉR,↑
ĉR,↓

)
, (D.2)

where the operator ĉR,σ =
∫
dkĉR,kσ/(2π)3 annihilates an electron with spin σ at the

origin of the sample and σ is the vector of Pauli matrices. One can always choose a
gauge such that the superconducting order parameters in tip and sample are real. The
superconducting phase difference φ(τ) then enters the tunneling Hamiltonian

ĤT (τ) =
∑
σ

[
teiφ(τ)/2ĉ†Lσ(τ)ĉRσ(τ) + t∗e−iφ(τ)/2ĉ†Rσ(τ)ĉLσ(τ)

]
, (D.3)

where τ is the time argument and t the hopping strength. Note that we have assumed
that the sample is contacted at the impurity location. The time-dependent phase dif-
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superconducting tip

ference between the tip and the sample φ(τ) = φ0 + 2eV τ depends on the voltage V
applied to the junction. The current operator is obtained from the Heisenberg equation
of motion Î = −e ˙̂

NL = ie[N̂L, ĤT ], where N̂L is the density operator in the tip. Then
the current operator can be written as

Î(τ) = ie
∑
σ

[
teiφ(τ)/2ĉ†Lσ(τ)ĉRσ(τ)− t∗e−iφ(τ)/2ĉ†Rσ(τ)ĉLσ(τ)

]
. (D.4)

Taking the expectation value yields the current

I(τ) = eTr
{
τz

[
t̂(τ)G<RL(τ, τ)−G<LR(τ, τ)t̂†(τ)

]}
(D.5)

where we introduced the lesser Green’s function G<αβ(τ1, τ2) = i 〈Ψ†β(τ2)Ψα(τ1)〉, in
which Ψα(τ) with α = L,R are the Nambu spinors in the two superconductors and
τz is a Pauli matrix acting in Nambu space. The hopping matrix is defined by

t̂(τ) =

(
teiφ(τ)/2 0

0 −t∗e−iφ(τ)/2

)
. (D.6)

Since φ(τ) = φ(τ + π
eV ), Î and Ĥ are periodic functions of τ with period 2π/ω0, where

we introduced ω0 = eV . Thus the current can be expanded in a Fourier series

I(τ) =
∑
m

Ime
imω0τ . (D.7)

The nonequilibrium Green’s functions have a generalized Fourier expansion

G(τ1, τ2) =
1

2π

∑
n

∫
dω e−iωτ1ei(ω+nω0)τ2G(ω, ω + nω0). (D.8)

introducing Floquet indices n. We adopt the notation Gnm(ω) = G(ω + nω0, ω + mω0)

for which the relation Gnm(ω) = Gn−m,0(ω + mω0) holds. The hopping matrix can be
expanded as

t̂(τ) = t̂01e
iω0τ + t̂10e

−iω0τ =

(
1 0

0 0

)
teiω0τ −

(
0 0

0 1

)
t∗e−iω0τ (D.9)

Hence the dc current

I0 =
e

h

∫
dω Tr

[
τ̂z

(
t̂01G

<
RL,10 + t̂0,−1G

<
RL,−1,0 −G<LR,01t̂

†
10 −GLR,0,−1t̂

†
−1,0

)]
(D.10)

=
e

h

∫
dω
[
tG<,eeRL,10 + t∗G<,hhRL,−1,0 − t∗G

<,ee
LR,01 − tG

<,hh
LR,0,−1

]
, (D.11)
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where the trace is taken in both Nambu space and Floquet space. Using the Langreth
rule [Haug 08] yields

G<RL = GrRt̂
†g<L +G<R t̂

†gaL, (D.12)

G<LR = grLt̂G
<
R + g<L t̂G

a
R. (D.13)

We do not consider multiple Andreev reflection processes and therefore neglect An-
dreev reflection in the superconducting tip, i.e. gehL = gheL = 0. Importantly, we retain
Andreev reflections in the sample as they may be resonantly enhanced due to the pres-
ence of Shiba bound states in the gap. We can now write the offdiagonal components of
the Green’s functions in Floquet space in terms of the diagonal components

G<,eeRL,10 ' G
r,ee
R,11t̂

†
10g

<ee
L,00 +G<,eeR,11t̂

†
10g

a,ee
L,00, (D.14)

G<,hhRL,−1,0 ' G
r,hh
R,−1,−1t̂

†
−1,0g

<,hh
L,00 +G<,hhR,−1,−1t̂

†
−1,0g

a,hh
L,00 , (D.15)

G<,eeLR,01 ' g
r,ee
L,00t̂01G

<,ee
R,11 + ĝ<,eeL,00 t̂01G

a,ee
R,11, (D.16)

G<,hhLR,0,−1 ' g
r,hh
L,00t̂0,−1G

<,hh
R,−1,−1 + g<,hhL,00 t̂0,−1G

a,hh
R,−1,−1. (D.17)

Writing G(ω + neV ) ≡ Gnn(ω), and gL ≡ geeL = ghhL , we obtain for the current

I =
e

h

∫
dω
[
tG<,eeRL,10 + t∗G<,hhRL,−1,0 − t∗G

<,ee
LR,01 − tG

<,hh
LR,0,−1

]
(D.18)

=
e

h
|t|2
∫
dω{[

Gr,eeR (ω + eV )−Ga,eeR (ω + eV )
]
g<L (ω) +G<,eeR (ω + eV ) [gaL(ω)− grL(ω)] (D.19)

−
[
Gr,hhR (ω − eV )−Ga,hhR (ω − eV )

]
g<L (ω)−G<,hhR (ω − eV ) [gaL(ω)− grL(ω)]

}
.

(D.20)

By using the relation G< −G> = Ga −Gr, we arrive at the current

I =
e

h
|t|2
∫
dω
{
G>eeR (ω)g<L (ω − eV )−G<eeR (ω)g>L (ω − eV )

}
− e

h
|t| 2

∫
dω
{
G>hhR (ω)g<L (ω + eV )−G<hhR (ω)g>L (ω + eV )

}
. (D.21)

To determine the Green’s function of the sample GR we first neglect the tunnel cou-
pling to the tip. Without the magnetic impurity, the Green’s function of a BCS super-
conductor in Nambu space evaluated at the origin is

gR0(ω) = − πν0√
∆2 − ω2

(
ω ∆

∆ ω

)
. (D.22)
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D Derivation of the Shiba peak height in the differential tunneling conductance for a
superconducting tip

We can include coupling to the impurity spin in Eq. (D.2) by means of the Dyson equa-
tion g−1

R = g−1
R0 + JS, and obtain for the Green’s function of the superconductor with

impurity

gR(ω) =
πν0

√
∆2 − ω2

(ω + α
√

∆2 − ω2)2 −∆2

(
ω + α

√
∆2 − ω2 ∆

∆ ω + α
√

∆2 − ω2

)
(D.23)

where α = JSπν0 > 0. The pole of the gR gives the energy of the Shiba state ε0/∆ =

(1− α2)/(1 + α2). To calculate the tunneling into Shiba state, we only need to consider
ω close to ε0, where the Green’s function has approximately the form

gR(ω) ≡ gs(ω) =
1

ω − ε0

(
u2 uv

uv v2

)
(D.24)

where u and v are electron and hole component of the Shiba state. Note that in general
u 6= v when potential scattering at the impurity is included. Coupling the Shiba state
to the tip gives rise to the self energy ΣR = t̂†gLt̂. We write the retarded and advanced
Shiba Green’s function as

Gr,as =
1

(ω − ε0)∓ iΓ

(
u2 uv

uv v2

)
(D.25)

where 2iΓ = Σ<−Σ> = Σa−Σr defines the relaxation rate of the Shiba state (we neglect
the shift of the resonance energy due to the self-energy). For a steady state, we obtain
the relation [Haug 08]

G<,>s = GrsΣ
<,>Gas =

−iΣ<,>

2Γ
(Gas −Grs) =

Σ<,>

(ω − ε0)2 + Γ2
(D.26)

and the Keldysh self energies are given by

Σ< = 2i(ΓenF (ω−) + ΓhnF (ω+) + Γ2) (D.27)

Σ> = −2i(Γe(1− nF (ω−)) + Γh(1− nF (ω+)) + Γ1) (D.28)

where ω± = ω ± eV , nF (ω) = [1 + exp(ω/T )]−1 is the Fermi distribution, and Γ =

Γe + Γh + Γ1 + Γ2. The tunneling rates Γe and Γh of electron and hole components are
obtained from the self energy Σs in our model

Γe(ω) = πt2u2ρ(ω − eV ) (D.29)

Γh(ω) = πt2v2ρ(ω + eV ) (D.30)

where ρ(ω) is the density of state of the superconducting tip. Γ1 and Γ2 are rates for
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quasiparticle transitions in the substrate that empty or occupy the Shiba state.

In fact, Σ< and Σ> can be interpreted as the self energies due to particles being scat-
tered into the state and out of the state respectively. Denote f = −iΣ</2Γ, then we can
write

G<s = (Gas −Grs)f (D.31)

G>s = −(Gas −Grs)(1− f). (D.32)

Note that at equilibrium, the above equations are just the fundamental relations be-
tween Green’s functions in which f is reduced to the Fermi distribution. Whereas in
our nonequilibrium case, f can be interpreted as the nonequilibrium distribution, ful-
fills the steady state rate equation

0 =
df

dt

= (1− f) [ΓenF (ω−) + ΓhnF (ω+) + Γ2]− f [Γe(1− nF (ω−)) + Γh(1− nF (ω+)) + Γ1] .

(D.33)

Use the relation g<L (ω) = 2πiρ(ω)nF (ω) and g>L (ω) = −2πiρ(ω)(1 − nF (ω)), put them
together into the current formula, we obtain the current I = IR + IA, where

IR(ω) =
2e

h

∫
dω

{
2Γ1[Γe(ω)nF (ω−)− Γh(ω)nF (ω+)]

(ω − ε0)2 + Γ(ω)2

− 2Γ2[Γe(ω)(1− nF (ω−))− Γh(ω)(1− nF (ω+))]

(ω − ε0)2 + Γ(ω)2

}
, (D.34)

IA(ω) =
2e

h

∫
dω

4Γe(ω)Γh(ω)

(ω − ε0)2 + Γ(ω)2
[nF (ω−)− nF (ω+)] . (D.35)

The current IA originates from resonant Andreev reflection, whereas IR describes single-
particle tunneling and subsequent relaxation of quasiparticles in the Shiba state. These
two equations are given in the main text as Eqs. (8.1) and (8.2).

Quasiparticle relaxation mechanisms can occur due to phonon scattering. This was
studied in Ref. [Kozo 08] and it was shown that the two relaxation processes are given
by

Γ1 ∼
√
T

∆
e−∆/T

[
(∆− ε0)eε0/T + (∆ + ε0)

]
Γ2 ∼

√
T

∆
e−∆/T

[
(∆− ε0) + (∆ + ε0)e−ε0/T

]
.

The relaxation rate Γ1 for leaving the Shiba state has a thermal factor exp[(∆ − ε0)/T ]

involving the required phonon energy of the transition to the continuum ∆−ε0, whereas
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Γ2 is limited by the thermal occupation exp(∆/T ) of the excited quasiparticles in the
continuum. The ratio of the two rate yields the thermal occupation of the Shiba state

Γ2/Γ1 = e−ε0/T . (D.36)

D.2. Calculation of the Shiba peak heights

In the following we calculate the differential conductance at the Shiba resonances at
e|V | = ∆± ε0 from Eqs. (D.34) and (D.35). We first focus on the positive-bias main peak
α+ at eV = ∆ + ε0. In the limit of weak tunneling and relaxation t2ν0,Γ1/2 � ε0 the
integral over ω is dominated by a narrow interval around ε0. For α+ the only sizable
contribution to the differential conductance comes from the terms containing Γe(ω) ∝
ρ(ω − eV ) with a square-root singularity at ω = ε0. Using nF (ω+) = 0 and nF (ω−) = 1

in this region we obtain

α+ ∼
2e

h

d

dV

[∫
dω

4Γe(ω)Γh(ω) + 2Γ1Γe(ω)

(ω − ε0)2 + Γ(ω)2

]
eV=∆+ε0

. (D.37)

To perform the derivative it is convenient to set eV = ε0 + ∆ + δx. We furthermore shift
the domain of integration introducing a new variable z = ε0 + δx− ω. The BCS density
of states ρ can be approximated in the region of interest as

ρ(ω − eV )→ ρ(−z −∆) ∼ ν0

√
∆

2z
Θ(z),

ρ(ω + eV ) ∼ ρ(∆ + 2ε0 + 2δx) = ν0
∆ + 2ε0

2
√
ε0(∆ + ε0)

+O(δx/ε0).

Upon replacing all rates by their definitions the integral reads

α+ ∼
2e2

h

d

dδx

[∫ ∞
0

dz
(4πt2v2ρ(∆ + 2ε0 + 2δx) + 2Γ1)πt2u2ν0

√
∆/2z

(δx− z)2 + [Γ1 + Γ2 + πt2u2ν0

√
∆/2z + πt2v2ρ(∆ + 2ε0 + 2δx)]2

]
δx=0

.

(D.38)

The function ρ(∆ + 2ε0 + 2δx) depends only weakly on δx and to lowest order in z/ε0
only the first term in the denominator ∼ (δx − z)2 contributes to the derivative with
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respect to δx. Introducing Γh,eff = πv2t2ρ(∆ + 2ε0) we find

α+ ∼
2e2

h

∫ ∞
0

dz
(4Γh,eff + 2Γ1)πt2u2ν0

√
2z∆[

z2 +
(

Γ1 + Γ2 + πt2u2ν0

√
∆/2z + Γh,eff

)2
]2 . (D.39)

The integrand has the form of a resonance as a function of z and exhibits a peak at zmax.
The integral can be solved in two limiting cases:

(a) For Γ1 +Γ2 +Γh,eff � πt2u2ν0

√
∆/2zmax the second term in the denominator does

not depend on z and we can use the relation∫ ∞
0

dz

√
z

(z2 + Γ2)2
=

π

(2Γ)5/2

to find

α+ ∼
2e2

h

(4Γh,eff + 2Γ1)π2t2u2ν0

√
2∆

[2(Γ1 + Γ2 + Γh,eff)]5/2
. (D.40)

(b) For Γ1 + Γ2 + Γh,eff � πt2u2ν0

√
∆/2zmax the relation∫ ∞

0
dz

√
z

(z2 + a2/z)2
=

π

9a5/3

yields

α+ ∼
2e2

h

(4Γh,eff + 2Γ1)π2t2u2ν0

√
2∆

9(πt2u2ν0

√
∆/2)5/3

. (D.41)

We combine these two results and obtain

α+ ∼
2e2

h

4π(2Γh,eff + Γ1)Γ
3/2
e,eff

Γ
5/2
max

, (D.42)

where Γmax = max{2(Γ1 + Γ2), 92/5Γe,eff , 2Γh,eff} and we have introduced the effective
tunneling rate Γe,eff = (πt2u2ν0

√
∆/2)2/3. This expression where one of the three terms

in Γmax dominates. It gives rise to three regimes as a function of normal state conduc-
tance. In Fig. D.1 the asymptotic expression (D.42) is compared to numerical evaluation
of Eqs. (D.34) and (D.35).

The integral expression for β− differs from Eq. (D.37) by Γ1 → Γ2 and Γh → 0, which
can be understood from the comparison of Figs. 8.1(b) and (c) of the main text. Applying
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D Derivation of the Shiba peak height in the differential tunneling conductance for a
superconducting tip
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Figure D.1.: Relaxation (red) and Andreev current (blue) contribution to the differential
conductance peak α+ vs normal state conductance. The curves are obtained
numerically from the derivatives of Eqs. (8.1) and (8.2). Both contributions
have maxima at distinct values of normal state dI/dV . The maxima separate
three regimes with dominating relaxation mechanisms Γ1, Γe,eff , and Γh,eff

from low to high normal state conductances. The asymptotes in the three
regimes (gray dashed lines) are given by Eq. (D.42). The system parameters
are chosen such that all three regimes are visible. We have set Γ1 = 10−9,
Γ2 = 0, u = 0.002, v = 0.7, ε0 = 0.3, ∆ = 1, and ν0 = 1.

these substitutions to Eq. (D.42) yields

β− ∼
2e2

h

4πΓ2Γ
3/2
e,eff

Γ̃
5/2
max

, (D.43)

where Γ̃max = max{2(Γ1 + Γ2), 92/5Γe,eff}. The peaks α− and β+ can be obtained from
α+ and β− by exchanging u and v. In the weak tunneling limit, where Γmax = Γ̃max =

Γ1 + Γ2 we find

α
(i)
+ ∼

2e2

h

π2u2t2ν0

√
∆Γ1

2(Γ1 + Γ2)5/2
, (D.44)

β
(i)
− ∼

2e2

h

π2u2t2ν0

√
∆Γ2

2(Γ1 + Γ2)5/2
. (D.45)

For stronger tunneling the broadening becomes dominated by tunneling to the BCS sin-
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gularity of the tip Γmax = Γ̃max = 92/5Γe,eff and we find

α
(ii)
+ ∼ 2e2

h

[
v2

u4/3

4(2π)4/3t2/3ρ(∆ + 2ε0)

9(ν0

√
∆)2/3

+
4(2π)1/3Γ1

9(t2u2ν0

√
∆)2/3

]
, (D.46)

β
(ii)
− ∼ 2e2

h

4πΓ2

9(πt2u2ν0

√
∆/2)2/3

. (D.47)

These four equations are given with out numerical prefactors as Eqs. (8.3-8.6) in the
main text. A third regime could exists for even higher normal state conductances where
Γh,eff dominates Γ. This requires a very large asymmetry of u and v, i.e. u � v for α+.
There is no signature of this regime in the experimental data shown in Fig. 8.3 of the
main text as all peak heights should decrease in this regime (see Fig. D.1).
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