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Preface

Quo vadis

This famous Latin verse goes back to the Bible1 and can be translated as “Where
are you going?”. It perfectly reflects the subject of this thesis: Given is a ge-
ometric construction possibly done with a geometry software on a computer.
In general, a geometric construction consists of independent objects, which are
placed at arbitrary positions at the beginning, and constructed elements like a
line connecting two given points. If an independent object from the construc-
tion is moved, then an important question is what happens with the remaining
geometric objects? Where are they going? This problem is essential to make
geometry dynamic: After making a geometric construction with a geometry soft-
ware, we can move the construction by dragging independent objects with the
mouse, expecting that the whole construction adjusts automatically. As usual,
the devil is in the details: The two words “adjusts automatically” make the field
of Dynamic Geometry difficult and thus interesting. If angular bisectors, circles
or even conics are involved, then ambiguities arise. “Adjust automatically” now
means to choose the “right” possibility among a certain number of choices at each
time of the motion. But which choice is the “right” one? This answer is easy:
The right choice is the one the user of a Dynamic Geometry Software expects.
But the user could be grabby and could expect

Continuity: In the motion of the construction, no jumps occur;

Conservatism: Reversing moves leads back to the initial configuration;

Determinism: For each placement of the free objects there is at most one config-
uration of the construction; and

Consistency: Degenerate situations are treated consistently and, thus, the be-
havior at degeneracies is somehow predictable.

1e.g. Genesis 16:8: dixit ad eam Agar ancilla Sarai unde venis et quo vadis quae respondit
a facie Sarai dominae meae ego fugio; He said, “Hagar, servant of Sarai, where have you come
from, and where are you going?” She replied, “I’m running away from my mistress, Sarai.”,
Judges 19:17, or John 13:36.
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These are four wishes, and unfortunately it is not possible to satisfy all of them
simultaneously. In my opinion, the first wish is the most important one since un-
motivated and unpredictable jumps are difficult to handle. The last wish “Consis-
tency” is related to “Continuity”. In this thesis, I consider the beautiful model for
Dynamic Geometry that has been developed by Kortenkamp and Richter-Gebert
as the foundation of the interactive Geometry Software Cinderella. The continu-
ity of the induced motions is the natural center of the mathematical model. The
consistent treatment of critical points is achieved by the creative idea to allow
complex coordinates for the geometric objects. In my thesis, I investigate an
algebraic variant of this model for Dynamic Geometry. I greatly enjoyed to see
that this nice model perfectly fits into the areas of pure and applied mathematics!
Based on this knowledge, we (Ulli and myself) found a reliable algorithm for a
continuous realization of the drag mode. Ulli told me about Dynamic Geometry
at a party at Stefan Felsner’s, and I am really glad that Stefan invited both of us!
This party was the beginning of my research in the field of Dynamic Geometry.

I would like to thank Ulli and Helmut for their friendly, persistent and very con-
structive support! I would like to say a special thank you to Ulli for all the
interesting, motivating and helpful discussions, he always took time for me when
I needed some help! He directed my attention to the area of Dynamic Geome-
try and proposed the subject of my thesis together with Helmut. I would like
to give sincere thanks to Helmut for the fruitful discussions, he suggested to
consider Tarski-formulas. This idea led to our proof of the decidability of the
Tracing Problem and the Reachability Problem by considering semi-algebraic
sets. This result was an important step of my thesis. Helmut and Ulli always
encouraged and supported me to run my family and to write my thesis! Their
attitude and support was and is very helpful for my whole family! I would like
to thank all members of the research group “Theoretical Computer Science” of
FU-Berlin for the very nice research atmosphere, special thanks to Géraldine,
Tobias and Jens who shared and share the office with me! Particular thanks to
Domique Michelucci (Université de Bourgogne) and Martin Weiser (Zuse Insti-
tut Berlin), who proposed independently to use interval arithmetic for solving the
Tracing Problem! I greatly appreciate Hanfried Lenz (born 1916), he immedi-
ately answered my e-mail and recommended to look at Bieberbach’s book about
geometric constructions. I would like to thank the members of the Department
of Mathematics and Computer Science of FU-Berlin. I had the opportunity to
borrow a large number of famous old books from the library of our department.

At this point, I would particularly like to thank Elmar Vogt and Karin Gater-
mann, my mathematical knowledge is based on their lectures, seminars, and my
master’s thesis (Diplomarbeit)! I am very sad that Karin died on the first of
January 2005. I would like to thank Dirk and Elke for very helpful proofreading !
I also would like to say a special thank you to Marco, Stephan and Beni for their
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friendship and for all the lectures and seminars we attended together! Grit gives
me whenever necessary a chance to escape the stressful everyday life, thanks a
lot! I would like to thank Dirk for very careful proofreading!

Special thanks to my whole family, who supported me all the time. My par-
ents abandoned one week of their holidays to enable me to finish this thesis.
My grandmother (born 1921) took care of Lisa when she was ill, my parents in
law always walk the dog with Lisa and Svenja when the girls feel too sick for
visiting preschool. My sister Tanja supports me with her amazing educational
background, she found the Bible verses for this preface. Similar to our situation,
my brother Matthias and his friend Felissa manage their (PhD-) studies and a
family, as well. This common background is very helpful! At this point, I would
like to commemorate my three grandparents, who have passed away. Opa Walde-
mar would have been very happy to witness the success of my PhD-studies at
FU-Berlin.

In particular, I would like to thank my husband Philip and our children Lisa and
Svenja, they had to put a lot of effort in my thesis, as well. During the last
months, Philip had to combine his full-time position in a pharmaceutical com-
pany with two children and a wife, who was always busy with her thesis. Lisa
and Svenja had to abandon a lot of time2 with me and had a very impatient
mother in the last months! To compensate this lack of attention, Lisa visited us
almost every night.

2Lisa: “Mama, ich fahre jetzt ganz langsam, weil ich noch ein bisschen bei Dir sein möchte.
Heute ist doch der letzte Tag, an dem Du nicht nach Hause kommst!”; Svenja: “Mama Uni!”
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Zusammenfassung

Unter dynamischer Geometrie versteht man das interaktive Erstellen von ge-
ometrischen Konstruktionen am Computer. Ein Dynamisches Geometrie System
ist ein Geometriesystem, in dem es möglich ist, geometrische Konstruktionen
durchzuführen, und das einen Zugmodus hat. Im Zugmodus können geometrische
Objekte, die mindesten einen Freiheitsgrad haben, mit der Maus bewegt werden.
Dabei paßt sich die gesamte geometrische Konstruktion der Bewegung an, in-
dem der Computer das entstehende Pfadverfolgungsproblem löst. In dem von
uns verwendeten Modell für dynamische Geometrie steht die Stetigkeit der resul-
tierenden Bewegungen im Vordergrund, es wurde von Kortenkamp und Richter-
Gebert entwickelt und ist die Grundlage für die Geometriesoftware Cinderella.
Wir arbeiten den Zusammenhang dieses Modells zu Riemannschen Flächen alge-
braischer Funktionen heraus.

Im Rahmen dieser Doktorarbeit zeigen wir, wie sich eine algebraische Variante
des Modells für Dynamische Geometrie von Kortenkamp und Richter-Gebert
sowohl in die angewandte als auch in die reine Mathematik einfügt. Daraus
resultiert ein numerisches Verfahren für das Tracing Problem, das auf einer all-
gemeinen Prediktor-Korrektor-Methode aufbaut. Wie bei den meisten numeri-
schen Verfahren gibt es hierbei keine Garantie dafür, dass die Schrittweite klein
genug gewählt ist, um auf dem richtigen Lösungsweg zu bleiben. Das bedeutet,
dass ein korrekter Umgang mit Mehrdeutigkeiten nicht garantiert werden kann.
Wir haben einen weiteren Algorithmus entwickelt, bei dem die Schrittweite mit
Hilfe von Intervallrechnung so gewählt wird, dass die Korrektheit der Lösung
garantiert ist. Kritische Punkte werden durch Umwege umgangen, bei denen die
geometrischen Objekte bzw. die entsprechenden Variablen in einem algebraischen
Modell komplexe Koordinaten haben können. Dabei hängt die erreichte Konfigu-
ration wesentlich von dem gewählten Umweg ab. Diese Idee von Kortenkamp und
Richter-Gebert führt zu einer konsistenten Behandlung von kritischen Punkten
und kommt in der interaktiven Geometriesoftware Cinderella zum Einsatz.

v
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Abstract

Dynamic Geometry is the field of interactively doing geometric constructions
using a computer. Usually, the classical ruler-and-compass constructions are
considered. The available tools are simulated by the computer. A Dynamic Ge-
ometry System is a system to do geometric constructions that has a drag mode.
In the drag mode, geometric elements with at least one degree of freedom can
be moved, and the remaining part of the geometric construction adjusts auto-
matically. Thus, the computer has to trace the paths of the involved geometric
objects during the motion.

In this thesis, we focus on the beautiful model by Kortenkamp and Richter-Gebert
that is the foundation of the geometry software Cinderella. We embed an alge-
braic variant of this model into different fields of pure and applied mathematics,
which leads to different approaches for realizing the drag mode practically. We
develop a numerical method to solve the Tracing Problem that is based on a
generic Predictor-Corrector method. Like most numerical methods, this method
cannot guarantee the correctness of the computed solution curve, hence ambi-
guities are not treated satisfactorily. To overcome this problem, we develope
a second algorithm that uses interval analysis. This algorithm is robust, and
the computed step length is small enough to break up all ambiguities. Critical
points are bypassed by detours, where the geometric objects or the corresponding
variables in the algebraic model can have complex coordinates. Here, the final
configuration depends essentially on the chosen detour, but this procedure due to
Kortenkamp and Richter-Gebert leads to a consistent treatment of degeneracies.

We investigate the connection of the used model for Dynamic Geometry to Rie-
mann surfaces of algebraic functions.
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Chapter 1

Introduction

1.1 What is Dynamic Geometry?

Dynamic Geometry is the field of interactively doing geometric constructions
using a computer. Usually, the classical ruler-and-compass constructions are
considered. The available tools are simulated by the computer. A Dynamic
Geometry System (DGS) is a system to do geometric constructions that has
a “drag mode” (German: Zugmodus). In the drag mode, geometric elements
with at least one degree of freedom can be moved, and the remaining part of the
geometric construction adjusts automatically; see Figure 1.1. Thus, the computer
has to trace the paths of the geometric objects involved during the motion.

The main application of Dynamic Geometry is in math education. Doing geomet-
ric constructions with a computer avoids inaccuracies due to an imprecise usage
of the construction tools like ruler, compass and the used pen. The drag mode
allows to develop a better intuition for geometric coherences and helps to under-
stand whether a conjectured theorem is true or false. If you start a geometric
construction with an arbitrary quadrilateral, then most people draw an “almost”
square. Without noticing it, the drawn shape has some kind of symmetry. This
phenomenon makes it difficult to decide whether an observed property of a geo-
metric construction that is based on this particular shape is a universal property
of the shape or not. If we consider the two diagonals of the drawn quadrilateral,
we could observe that they bisect each other. This is a property of parallelograms
that does not hold for general quadrilaterals; see Figure 1.2.

Dynamic Geometry is an important tool for scientists, as well. One application
is the investigation of rigid motions of mechanisms [24, 42]. The enhancements
of the Dynamic Geometry Systems enlarge the range of use. The additional
functionality includes the treatment of conics, plotting loci of constructed points,

1
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Q

g

l

γ2

S

P

M1

γ1

M2

P

Figure 1.1: The left figure shows a geometric construction. The line g connects
the two points P and Q. The intersection point M2 of g and the line l is the
center of the circle γ2. The point S is the upper intersection point of the two
circles. The right figure visualizes the drag mode: If the point P is moved, then
the entire construction follows the motion of P .

dealing with transformations, doing (simple) simulations of physical laws, the
connection to computer-algebra, or the possibility to switch to other geome-
tries [42, 41].

To implement the drag mode in a Dynamic Geometry System is a challenging
task. The main problem is to deal with the ambiguities due to the involvement
of circles or angular bisectors. For example, a circle and a line intersect in two,
one or no points, two intersecting lines have two angular bisectors, which are
orthogonal. These ambiguities lead to the necessity to choose one of the two
possible intersection points or angular bisectors. In the initial drawing, the user
of the Dynamic Geometry Software makes these choices. In the drag mode, the
computer has to make these decisions autonomously. At each time of the motion,
the computer should come to the same decision as the user of the software would
come to in the current configuration. Thus, we expect that there are no “jumps”
in the motions of the geometric objects, and we prefer a continuous behavior of
the Dynamic Geometry System.

In fact, to realize the drag mode, we have to solve a path tracking problem.
This problem is called the Tracing Problem from Dynamic Geometry. We are
given a starting configuration that was fixed by the user. Additionally, we are
given an abstract description of the geometric construction and paths of the free
objects; they implicitly define the resulting motion of the dependent elements.
The starting configuration acts as an initial value.
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Figure 1.2: Different quadrilaterals with their diagonals are shown.

The field of Dynamic Geometry has been founded in the late eighties and the
beginning of the nineties of the twentieth century. At this time, the first geometry
softwares Cabri Géomètre and Geometer’s Sketchpad were developed that realize
the drag mode. Up to now, several software packages for Dynamic Geometry have
been designed. They all have the functionality to do geometric constructions and
provide a drag mode. Additionally, they have different features as described
above. However, their drag modes are implemented in different ways and have
different properties that arise from the underlying mathematical models.

In this thesis, we focus on the beautiful model by Kortenkamp and Richter-
Gebert [40, 43] that is the foundation of the geometry software Cinderella [42, 41]
and that leads to a continuous behavior of the drag mode. We embed this model
into different fields of pure and applied mathematics, which leads to different
approaches for realizing the drag mode practically.

1.2 A Model for Dynamic Geometry

The results of this thesis are based on the model for Dynamic Geometry developed
by Kortenkamp and Richter-Gebert [40, 43], which is the theoretical foundation
of the geometry software Cinderella [42, 41]. We explain this model and some
resulting problems in this section. A detailed description is given in Chapter 3.

In Dynamic Geometry, the step-by-step-procedure of doing geometric construc-
tions can be represented by Geometric Straight-Line Programs (GSP). A GSP is
a sequence of instructions that describe the single construction steps or introduce
new, independent points; see Figure 1.3. These independent points are called free
points. The remaining geometric objects are called dependent elements, they are
defined by instructions that belong to a construction step like the computation
of a line connecting two points, the intersection point of two lines, or one of the
at most two intersection points of a line and a circle. Throughout this thesis,
let k be the number of free points in the GSP and n the number of dependent
elements.

An instance of a GSP is an assignment of fixed values to all free parameters and
choices; see [43, 44]. Thus, instances of a GSP correspond to concrete drawings
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of the underlying geometric construction. To deal with singularities like the
intersection of two identical circles or of a circle and a tangent is important, as
well. The corresponding point in the configuration space is called a critical point.

Since we work on Dynamic Geometry, we have to formalize movements of con-
structions. This is done via continuous evaluations [43]: Continuous paths pl(t),
t ∈ [0, 1] and l = −k + 1, . . . , 0, of the free points are given. A continuous
evaluation under the movement {pl} is an assignment of continuous paths vi,
i = 1, . . . , n, to all the dependent elements, such that the objects

(p−k+1(t), . . . , p0(t), v1(t), . . . , vn(t))

form an instance of the GSP for all times t ∈ [0, 1]. Thus a Dynamic Geometry
System that is based on the notion of continuous evaluations supports continuous
motions of constructions.

There are two problems arising naturally from this setup:

Problem 1. (Reachability Problem)
Two instances A and B of a GSP are given, where A is called a starting instance
and B a final instance.
Decide whether there are paths {pl} of the free points for which a continuous
evaluation from A to B exists.

Problem 2. (Tracing Problem)
As in the Reachability Problem, we are given a starting instance A and a final
instance B. Let pA be the position of the free points at instance A, and pB their
position at B. Furthermore, a movement {pl} of the free points from pA to pB is
given. We assume that the resulting continuous evaluation starting at A exists.
Decide: Does this continuous evaluation end at the given instance B?

In [43], Kortenkamp and Richter-Gebert show by a reduction of 3-SAT that these
two problems are NP-hard (in R). In [13], decidability aspects are discussed. In
this work, we focus on the Tracing Problem and develop different approaches. We
give an algorithmic solution with interval analysis [14]; see [1, 50] for standard
references for interval arithmetic.

We have to solve the Tracing Problem to realize the drag mode. Assume that a
user of a Dynamic Geometry software has done a geometric construction. Then
what is seen on the screen is an instance A of the GSP describing the underlying
construction. Now the user drags a free point with his mouse. This describes a
continuous path of the free points: The path of the dragged point is piecewise
linear whereas the paths of the other free points are constant. The Dynamic
Geometry software has to decide which instance B should be drawn after the
motion (and at all intermediate positions).
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l

(0, 1)

C2C1

P

M

Q0

ly

(−1, 0)
lx

P ← FREE

lx ← JOIN((0, 0), (−1, 0))

ly ← JOIN((0, 0), (0, 1))

l ← JOIN((0, 1), P )

Q ← MEET(l, lx)

C1 ← CIRCLE((0, 0), 1
2
)

C2 ← CIRCLE(Q, 1
2
)

M ← MEET(C1, C2)

Figure 1.3: A GSP Γ and an instance of Γ are shown. By construction, Q has to
stay on the line lx.

A solution to the Reachability Problem could help in automated theorem prov-
ing [62, 45]. Here a geometric problem is given as an instance A of a certain GSP.
If a probabilistic approach is used as in [40], we have to create instances B of
the geometric problem at random. For generating an instance, we have to assign
fixed values to all free parameters and to the choices; e.g. we have to specify
which intersection point of a line and a circle is chosen. If we can reach the in-
stance B with a continuous evaluation starting at A, then we either have found a
counterexample and know that the conjecture is wrong or a “positive example”,
which increases the probability that the conjecture holds; see [40].

Allowing Complex Coordinates. In some situations, considering complex
coordinates of the objects is useful as well. The complex Tracing Problem occurs
when we are dealing with singularities like the intersection of two identical circles
or of a circle and a tangent: Depending on the path p of the free variables, tracing
along p might force us to consider such degenerate situations; see Figures 1.3
and 1.4: Let the free point P move on the linear path p(t) =

(
1.5
−1

)
+ t ·

(−3
0

)
. Then

at time t0 = 1
2

the point P lies on the y-axis ly. Hence, Q reaches the origin,
and the two circles are identical. Thus we have a degenerate situation and the
intersection point M is not defined.

To avoid a singularity S = p(t0), we might bypass it with a detour by modifying p
in a neighborhood of t0. Unfortunately, this might be impossible as our example
shows; see Figures 1.3 and 1.4: By construction, the dependent point Q is always
incident to the line lx, and the singularity occurs when Q is moved to the origin.
Since Q has to stay on lx by construction, the singularity S cannot be avoided by
modifying the path p of the free point P . A way out of this problem is to consider
detours for that the coordinates of the free points may have non-real coordinates.



6 CHAPTER 1. INTRODUCTION

P

Q

P

Q
MM

p(t)

Figure 1.4: A singularity occurs if the free point P moves on the path p(t) across
the y-axis.

Now the line lx of our example becomes a two-dimensional object, and the point Q
might bypass S without leaving lx. Additionally, if the singularity is removable,
the instance being reached after finishing the detour does not depend on the
detour itself (as long as the detour does not “catch” other singularities). This
is an application of the complex Tracing Problem since we have to trace the
complex detour instead of the original real path p of the free point P .

The complex Reachability Problem seems to be useful for automated theorem
proving. This is due to the fact that if a theorem holds over C then it also holds
over R.

Concerning the Tracing Problem, switching to complex coordinates does not
cause many changes since we are tracing given paths. In contrast to this, the
Reachability Problem over R and the complex Reachability Problem are some-
how different problems; see Figure 1.4: In the real situation, the right instance
in Figure 1.4 cannot be reached from the left one, whereas it can be reached
via a complex path as described previously. The consequences of using complex
coordinates are discussed in Section 2.6.

Switching to an Algebraic Model. The geometric situation translates easily
into an algebraic model where the objects are numbers (real or complex) and the
operations are addition, subtraction, multiplication, division, and taking square
roots; see Chapter 2. In this thesis, we discuss algorithms for the Tracing Problem
and the Reachability Problem in this algebraic model. We focus on the Tracing
Problem.

Model of Computation. In our algorithms, we assume that each arithmetic
operation and each interval operation is executed exactly and in constant time.
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1.3 Properties and Advantages of the Chosen

Model for Dynamic Geometry

In the chosen model for Dynamic Geometry, the focus lies on a continuous be-
havior of the Dynamic Geometry System (DGS) and on a consistent treatment
of degeneracies. A DGS is a system to do geometric constructions that has a
“drag mode” (German: Zugmodus).

The drag mode allows the user of a Dynamic Geometry Software to move geo-
metric objects with at least one degree of freedom. The resulting path of the
picked object induces a motion of the entire construction. In fact, the motion of
the entire construction is composed by several paths: For every geometric object,
we have exactly one path that describes the motion of the corresponding object.
Non-moving elements belong to constant paths. At each time of the motion,
the constraints of the geometric construction must be fulfilled. Additionally, we
prefer a continuous behavior of the DGS: If the picked object is moved on a con-
tinuous path, then the induced motion of the construction should be continuous
as well. The concept of continuity avoids “jumps” of the construction.

In our model for Dynamic Geometry that has been developed by Kortenkamp and
Richter-Gebert [40, 43], the movements of geometric constructions are modeled
via continuous evaluations. This notion formalizes and combines the concepts
explained above and guarantees a continuous behavior of the DGS. If a “free”
object is moved on a continuous path, then the remaining objects have to move
on continuous paths as well, and at each time the given constraints are fulfilled;
see page 4 and Section 3.3. The only constraints that are fixed in our model are
the relations between the geometric objects. We neither bound nor cut the ranges
of the geometric objects. In particular, we consider the configuration space as
a whole and do not split it up into regions that are for example separated by
degeneracies. These cuts conflict with a global continuous behavior of the DGS,
since we might be in trouble if the given motion crosses some of these cuts.

The idea of detouring around critical points as introduced by Kortenkamp [40]
leads to a consistent treatment of degeneracies; see Section 7.2. Consistency is
achieved since all degeneracies that occur at a certain time in the motion are
treated simultaneously in the same manner. The idea behind this concept is
that the path p(t) of the driving free element is changed by replacing the time
parameter t with

t(s) : [0, 1] → C resp. t(s) : [t1, t2] → C
s 7→ 1−eiπs

2
s 7→ t1 + 1−eiπs

2
(t2 − t1) (∗)

We describe the concept of detouring around critical points in Example 1.3.1.
Note that here only a single degeneracy occurs.
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x
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y l
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γ
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1x

Figure 1.5: The line l intersects the circle γ in two points P+ and P− if −1 <
x < 1.

Example 1.3.1. We consider the following geometric construction shown in Fig-
ure 1.5. Let γ be the circle with radius 1 having the origin (0, 0) as midpoint. Let l
be the line that is parallel to the y-axis and that passes through the point (x, 0).
For −1 < x < 1, the line l and the circle γ have two intersection points P+

and P−. Let P+ be the intersection point that lies above the x-axis. Thus,
P+ = (x, +

√
1− x2) and P− = (x,−

√
1− x2). At the beginning, we set x = −1/2

and consider the path p1 : [0, 1] → R, t 7→ −1/2 + t. If x moves on p1, then the
intersection point P+ moves on the path t 7→ (p1(t), +

√
1 + (p1(t))2 ) = (−1/2 +

t, +
√

3/4 + t− t2 ), and P− moves on the path t 7→ (−1/2 + t,−
√

3/4 + t− t2 ).
Note that the paths of P+ and P− only differ in the sign of the y-coordinate.

Now let p2[0, 1] → R, t 7→ 1/2 + t. If x moves on p2, then at time t = 1/2 the
line l is tangent to γ and we have P+ = P−. Instead of p2(t) we consider the
path p̂2(s) := p2(t(s)) : [0, 1]→ C, s 7→ p2(t(s)) = 1/2 + (1− eiπs)/2 = 1− eiπs/2
describing a semi-circle in the complex plane C. Note that in most applications,
we choose much smaller detours around critical points; this example is used to
illustrate the ideas. Following the path p2(t(s)), the point P+ moves on the
path t 7→ (p2(t(s)), +

√
1− (p2(t(s)))2 ) = (1− eiπs/2, +

√
eiπs − e2iπs/4 ), and P−

moves on the path t 7→ (1 − eiπs/2,−
√

eiπs − e2iπs/4 ). These new paths do not

pass through the degeneracy x0 = 1; they end up in the points (2/3, i
√

5/2) ∈
R× C and (2/3,−i

√
5/2), respectively. Since the degeneracy x0 = 1 is avoided,

we can always distinguish the two points P+ and P−; see Figure 1.6.

What happens if we reverse the two moves induced by p1 and p2? Reversing
the moves means to first traverse p2 and then p1 in converse direction. Thus we
consider the paths −p2 : [0, 1]→ R, t 7→ p2(1− t) = 3/2− t, and −p1 : [0, 1]→ R,
t 7→ p1(1− t) = 1/2− t. Since the path −p2 passes through the critical point, we
switch to the path p̃2(s) := (−p2)(t(s)) : → C, s 7→ (−p2)(t(s)) = 1+eiπs/2. The
starting position of P+ in the backward move is the final position (2/3, i

√
5/2) of

the forward move of P+. Altogether, we have the composed path p1 +p2−p2−p1.
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√
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Figure 1.6: The left figure shows the path p̂2(s) := p2(t(s)), the right figure
displays the paths ±

√
1− p̂2(s)2 = y(p̂2(s)) with y(x) =

√
1− x2 that describe

the paths of the y-coordinates of the intersections points P+ and P−. At each
time s, the two paths and consequently the two points P+ and P− are separated.

Since we replaced p2(t) by p2(t(s)) and (−p2)(t) by (−p2)(t(s)), we have the
path p1 + p̂2 + p̃2 − p1. We observe that the path p̂2 + p̃2 winds around the
singularity at x = p2(1/2) = 1 once; see Figure 1.7. This singularity is a branch
point of the algebraic function y = y(x) = ±

√
1− x2. Thus, the branch of the

root function of 1− x2 is changed during the motion, and the points P+ and P−
are swapped; see Figure 1.7. Consequently, following the path p1 + p2 − p2 − p1

in the DGS interchanges the two intersection points P+ and P− as well.

We have seen in Example 1.3.1 that reversing motions does not always lead back
to the initial position, hence our model does not show a conservative behavior [40,
Sect. 5.2]. However, this is a overhasty conclusion. A closer look shows that
applying our rule for surrounding critical points to the paths p2 and −p2 leads
to the paths p̂2 and p̃2 with p̂2 6= −p̃2; see Figure 1.7. Thus, we do not go back
and forth but follow paths that have different traces. This leads to a paradox: If
a user of a Dynamic Geometry Software that is based on our model for Dynamic
Geometry moves a construction and reverses the move afterward, then the final
position can differ from the initial position. Macroscopically, the DGS does not
show a continuous behavior. Since continuous evaluations are unique as long as
no critical points are hit, the system must be conservative, microscopically: If we
reverse the paths that have been traced in reality, then the system returns to the
initial configuration [40].

The advantage of this fixed rule for detouring is the consistent treatment of
degeneracies. We illustrate this important property with Example 1.3.2 shown
in Figure 1.8 that is taken from [40].

Example 1.3.2. Let M1 and M2 be two distinct points on the x-axis lx. Let γ1
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Figure 1.7: The left figure shows the paths p̂2(s) = p2(t(s)) and p̃2(s) =
(−p2)(t(s)). The right figure shows the path of the y-coordinate of the point P+

in the motion induced by p̂2 + p̃2 (upper dome) and the corresponding path of P−
(lower dome). Observe that the intersection points P+ and P− are swapped by
this motion.

and γ2 be two circles with radius 1 having M1 and M2 as centers, respectively.
Let l be the line that is parallel to the x-axis and that passes through the
point Y = (0, y). For −1 < y < 1, each of the two circles γ1 and γ2 has
two intersection points with l. Let P1 be the rightmost intersection point of γ1

and l and P2 the rightmost intersection point of γ2 and l. For y = ±1, the line l
is tangent to the two circles and we have a degenerate situation. Starting at a
position of Y with −1 < y < 1 , we move the line l up beyond the degeneracy
at y = 1 and down again. After this concatenated motion, the two points P1

and P2 are the leftmost intersection points of the circles γ1 and γ2 with the line l.
This happens, since both points P1 and P2 have a degenerate position at the same
time and since both degeneracies are treated in the same way. The behavior of
the intersection points of a line and a single circle is described in Example 1.3.1.

We have seen that formula (∗) from page 7 leads to local and global consistency:
First, similar situations are always treated similarly. Second, at each time we
treat all degeneracies of the entire construction in the same way as demonstrated
with Example 1.3.2.

Consistency is strongly related with continuity. To see this, we consider the dis-
tance between P1 and P2, which is the difference x2 − x1 of the x-coordinates x1

and x2 of P1 and P2 if γ2 is the rightmost circle. This distance equals the dis-
tance m2 −m1 of the two midpoints M1 = (m1, 0) and M2 = (m2, 0). Note that
we have P1 = (m1 +

√
1− y2, y) and P2 = (m2 +

√
1− y2, y). We observe that

even if we follow the complex detour around the degeneracy as described above,
this distance remains constant since the “choice” for the square root operation
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1

Y = (0, y)

Figure 1.8: The line l is parallel to the x-axis and passes through the point Y =
(0, y); l intersects the two circles γ1 and γ2 with radius 1 in the points P1 and P2.
After moving l above the point (0, 1) and back again, the points P1 and P2 have
changed due to detouring around the degeneracy at y = 1.

must be the same for both points P1 and P2 at each time of the motion. The used
branch of the square root function changes simultaneously. In contrast to this, a
non-consistent treatment of the degeneracy at y = 1 would lead to a change of
the distance function: After the motion, the distance between P1 and P2 would
be changed, and it would no longer describe a constant function. This dramatic
change of the structure due to a non-consistent treatment of singularities could
lead to a non-continuous behavior of the Dynamic Geometry System.

Another property of DGSs is determinism, where we require that for every given
position of the geometric objects with at least one degree of freedom, there is
at most one configuration of the corresponding construction. This property con-
tradicts the concept of continuity if angular bisectors, circles or conics are in-
volved [40, Sect. 6.2]. Figure 1.9 shows a concise example using iterated angular
bisectors taken from [40, Sect. 6.2]. Since our model induces a continuous behav-
ior, the resulting DGS cannot be determined.

To sum up, our model for Dynamic Geometry leads to Dynamic Geometry Sys-
tems with a continuous behavior, where degeneracies are treated consistently.
The price for the continuity is that we cannot achieve determinism. The treat-
ment of degeneracies prohibits a conservative behavior close to critical points.
Note that point-line constructions are continuous, determined and conservative
because no ambiguities occur [40, Sect. 5.2].

1.4 Scientific Contribution of this Thesis

Our results are based on the model for Dynamic Geometry that has been de-
veloped by Kortenkamp and Richter-Gebert [40, 43]. We show how the basic
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g

b1
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PP

Q Q

Figure 1.9: The lines l and g intersect in the point Q; the line b1 is an angular
bisector of l and g, and b2 is an angular bisector of l and b1. After moving P once
around the point Q, all geometric objects but the line b2 return to their initial
positions; the bisector b2 is flipped.

notions like Geometric Straight-Line Programs, continuous evaluations and crit-
ical points integrate into different fields of pure and applied mathematics. These
reformulations illuminate the field of Dynamic Geometry from different points
of view and lead to several instruments for solving the Tracing Problem and the
Reachability Problem. We define the new notions of the derivative of a GSP
with respect to time (Section 3.5) and of the interval-GSP of a given Geomet-
ric Straight-Line Program (Section 3.6). Interval-GSPs serve as a link between
Geometric Straight-Line Programs and interval arithmetic.

We give an algorithm for the Tracing Problem based on the notion of interval-
GSPs that uses interval arithmetic (Chapter 6). We refine this algorithm by
an improved step length control that uses the derivative GSP of the underlying
Geometric Straight-Line Program. Due to the application of interval arithmetic
we achieve that the correctness of the computed solution is guaranteed. Since
the given algorithm is reliable and robust (Section 6.5), it might be a useful tool
for automated theorem proving and could be used for path-tracking in homotopy
methods for solving algebraic systems of equations [18]. In Chapter 7, we extend
the algorithm so that it can detect and treat (possible) critical points as well.
For the treatment of critical points, we use Kortenkamp’s approach of detouring
critical points by following a detour in the complex plane [40]. Using a buffer
zone might improve the practical results.

The interpretation of continuous evaluations as implicitly defined curves enables
us to use numerical continuation methods; see Chapter 5. We adapt these meth-
ods to get a numerical algorithm for the Tracing Problem. Since the resulting
method is efficient, it might be a good choice although the correctness of the so-
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lution is not guaranteed. This method was a significant step for the development
of our algorithm for the Tracing Problem from Chapter 6.

Moreover, we show that the Tracing Problem for polynomial paths and the Reach-
ability Problem are decidable. We obtain this result by defining suitable semi-
algebraic sets. To solve the Reachability Problem and the Tracing Problem,
we have to check whether the given starting and final instances lie in the same
connected component of the corresponding semi-algebraic set. This result is im-
portant for determining the complexity class of the two problems since it was
only known that these problems are NP-hard.

We point out the connection to algebraic functions and their Riemann surfaces as
they are studied in complex analysis. We show that continuous evaluations of a
Geometric Straight-Line Program Γ with one free variable correspond to liftings
to the Riemann Surfaces of the algebraic functions that come from the dependent
variables of Γ. We prove that a GSP Γ with one free variable z either has finitely
many critical points or every position of z can be extended to a critical point.

An implementation of the algorithms from Chapters 6 and 7 is planned to verify
the practical performance and to solve further problems with our methods.

1.5 Organization of the Thesis

In Chapter 2, we show how to translate the geometric situation into an algebraic
setup and discuss the consequences of allowing complex coordinates. We under-
line the step-by-step procedure of doing geometric constructions that suggests
to model geometric constructions via Geometric Straight-Line Programs. The
basic notions from Dynamic Geometry that are used in our model are explained
in Chapter 3. We introduce the new concepts of the derivative of a GSP and of
using intervals in GSPs. In Chapter 4, we describe decision algorithms for the
Tracing Problem and the Reachability Problem in the algebraic context. Here,
for the Tracing Problem we only allow (piecewise) polynomial paths of the free
variables. In Chapter 5, numerical solutions are applied to the Tracing Prob-
lem. The most important result are the algorithms for the Tracing Problem from
Chapter 6. Since they are based on interval arithmetic, we introduce interval
arithmetic in Appendix A.

The aim of Chapter 6 is to give an algorithm for the Tracing Problem from
Dynamic Geometry in the algebraic context. We have to deal with two main
problems occurring in this setup:

1. Critical points: Division by 0 and square roots of 0;

2. Ambiguity of the root function
√

: C→ C, z 7→ ±√z , e.g.
√

4 = ±2).
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The idea of our algorithm is to avoid these problems in advance using inter-
val arithmetic. We achieve this by regarding the radicands of the square root
operations and the divisors of the division operations. Our algorithm for the
Tracing Problem proceeds stepwise. In each step, the chosen step length guaran-
tees that the problems 1 and 2 can be handled. It turns out that our algorithm
is robust. The treatment of critical points is discussed in Chapter 7. In Chap-
ter 8, we point out the relationship between Geometric Straight-Line Programs
and algebraic functions. We discuss the uniqueness and existence of continuous
evaluations using covering maps.



Chapter 2

Geometry versus Algebra

In this thesis, we are dealing with Dynamic Geometry, and we need a model
for geometric constructions and its movements. In this chapter, we focus on the
geometric part. We show, how we can translate geometric constructions into an
algebraic model. The dynamic aspect is treated in Chapter 3.

We compare the geometric and the algebraic situation that are explained in Sec-
tions 2.1 and 2.2. We investigate linear, quadratic and cubic constructions in
Sections 2.3, 2.4 and 2.5. In Section 2.6, we discuss the change to complex coor-
dinates and the consequences for the Tracing Problem, the Reachability Problem
and automated theorem proving. The usage of complex coordinates has been
motivated in the introduction, they are important for dealing with degeneracies;
see Chapter 7.

2.1 The Geometric Situation

We describe different tools like ruler and compass to obtain geometric construc-
tions. First, we give a definition for geometric constructions taken from the
Encyclopaedia [34].

Definition 2.1.1. [34, p. 588, Vol. 1] Geometric Construction Problem
A geometric construction problem is a problem of drawing a figure satisfying given
conditions using certain prescribed tools only a finite number of times.

Bieberbach [6] gives a beautiful scientific treatise on the theory of geometric
constructions. We cite the first sentences of his introduction:

Die Theorie der geometrischen Konstruktionen lehrt,

welche Konstruktionsaufgaben mit gegebenen Konstruktions-

15
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mitteln lösbar sind oder auch welche Konstruktionsmittel

zur Lösung gegebener Konstruktionsaufgaben herangezogen

werden muüssen. Unter einer Konstruktionsaufgabe

versteht man die Aufgabe, auf dem Zeichenblatt mit

gegebenen Hilfsmitteln aus gegebenen Punkten und Linien

gesuchte Punkte und Linien zu finden. ...

In other words, to make a geometric construction, we have a finite number of tools
and start with a given finite configuration of geometric objects. In each step, we
can make a single construction step using a tool from the given finite set. In the
step, a new geometric object is constructed based on the objects from the initial
configuration and on the objects that have already been constructed. After a
finite number of these steps, the construction is finished. This stepwise procedure
makes it possible to describe geometric constructions with Geometric Straight-
Line Programs (GSPs) as described by Kortenkamp [40]; see Definition 3.1.1 for
GSPs in an algebraic context.

We classify geometric constructions according to the used classes of geometric
objects with the common operations; see Figure 2.1.

Geometric Objects Geometric Operations

1. points, lines
a) line connecting two points,
b) intersection point of two lines

2. points, lines, circles

c) circle passing through three points,
d) intersection point of a circle and a line,
e) intersection of two circles,

...

3. points, lines, conics

f) conic passing through five points,
g) intersection of a line and a conic,
h) intersection of two conics,

...

Bieberbach [6] considers a wider range of construction tools. An interesting
tool is to extend the point-line constructions by an operation to compute an
angular bisector of two intersecting lines. This operation isolates the problem
of ambiguities and is used by Kortenkamp and Richter-Gebert [43] to show the
NP-hardness of the Tracing Problem and the Reachability Problem. Note that
two intersecting lines lead to two possible angular bisectors; see Figure 2.2.

In all three mentioned classes of geometric constructions, we have to deal with
degenerate situations like the intersection of two identical lines or circles or the
intersection of a circle and a tangent line. Point-Line constructions are determin-
istic, since for every given initial configuration, there is at most one possibility to
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Figure 2.1: The three figures show geometric construction using points and lines;
points, lines and circles; and points, lines, and conics. The left figure shows
Pappus’ theorem; the figure in the middle shows a construction of an angular
bisector that depends on the choices for the intersection points.

Figure 2.2: The two angular bisectors of two intersecting lines are shown.
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make the wanted construction. In contrast to this, constructions involving circles
or conics are not deterministic since here we can choose between two possible
intersection points of a line and a circle, for example.

2.2 The Algebraic Situation

We translate the geometric situation to an algebraic context. Here, instead of
geometric objects we consider real or complex numbers. A construction step is
replaced by one of the algebraic operations addition, subtraction, multiplication,
division, or square root. Instead of doing geometric constructions, we now build
up algebraic expressions, and instead of given geometric objects we now have vari-
ables and constants. An algebraic expression in the given variables and constants
is obtained by performing a finite number of the mentioned algebraic operations.

We classify algebraic expressions according to the allowed algebraic operations.

Object Set Algebraic Operations

1. R or C +, −, ·, /

2. R or C +, −, ·, /,
√

3. R or C +, −, ·, /,
√

, 3
√

4. R or C +, −, ·, /, n
√

for n = 2, 3, 4, . . .

An algebraic expression without variables represents an algebraic number, an
algebraic expression with variables defines an algebraic function. Note that even if
we allow taking roots of arbitrary order, we cannot describe all algebraic numbers
or functions as algebraic expressions. This is a consequence of the Abel-Ruffini
theorem. All of the algebraic numbers or functions that cannot be written as an
algebraic expression are solutions to polynomials of degree ≥ 5.

In all four mentioned classes of algebraic expressions, we have to deal with degen-
eracies. A division by zero is not defined and leads to a “definition gap” (German:
Definitionslücke). If the object set is R, then the square root and more generally
the roots of even order are not defined for negative radicands. Although the nth
root of zero is defined to be zero, taking the root of zero leads to a degeneracy
since here the n distinct solutions meet in a single point.

Algebraic expressions involving the four basic arithmetic operations addition,
subtraction, multiplication, and division, only, are deterministic since each of
these operations allows at most one output on a given input. In contrast to this,
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Figure 2.3: Construction of the line at infinity l∞ and of parallel lines in projective
geometry.

algebraic expressions that contain radicals are not deterministic. Here we have
to choose one of the n solutions for the nth root.

2.3 Linear Constructions

We can model geometric constructions of points and lines with algebraic expres-
sions using the four arithmetic operations addition, subtraction, multiplication,
and division and vice versa. For this correspondence, the vertices of a parallel-
ogram must be constructible from the initial geometric configuration. This par-
allelogram P induces a coordinate system that builds the base of the promised
analogy. Instead of Euclidean geometry, we use projective geometry and describe
all points and lines by their homogeneous coordinates.

To describe a translation from the geometric setting to the algebraic one, we
observe that for computing the line connecting two points and the intersection
point of two lines, we have to solve linear equations. Thus, the coordinates of all
constructed points and lines can be derived from the coordinates of the initially
given points and lines using the four basic arithmetic operations.

For dealing with the converse direction, we need the von-Staudt constructions.
These constructions allow to perform the four basic arithmetic operations geo-
metrically. They are shown in Figures 2.4 and 2.5. The addition and subtraction
operations are based on a parallel translation of two congruent triangles, and the
multiplication, and division operations are based on the theorem on intersecting
lines. Hence, to make these constructions we must be able to construct parallel
lines that pass through a given point. In projective geometry, parallel lines can
be constructed using the two pairs of parallel lines given by the parallelogram P
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Figure 2.4: Von-Staudt constructions for geometric addition and subtraction

that defines the coordinate system. Here, two parallel lines intersect in a point
on the line at infinity l∞.

Let A, B, C and D be the four vertices of P in counterclockwise order. Let

a be the line connecting A and B;

b be the line connecting B and C;

c be the line connecting C and D;

d be the line connecting D and A;

Ph be the intersection point of a and c;

Pv be the intersection point of b and d; and

l∞ be the line connecting Ph and Pv.

Since a and c are distinct parallel lines, the point Ph is a point at infinity; and
since b and d are distinct parallel lines, the point Pv is a point at infinity with Pv 6=
Ph. Thus the line l∞ is indeed the line at infinity; see Figure 2.3. Let l be a given
line and P be a point not incident to l. Let Pl,∞ be the intersection point of l
and l∞, and let lP be the line connecting P and Pl,∞. Since l and lP meet in the
point Pl,∞ at infinity, they must be parallel lines; see Figure 2.3.

We remark that if the given parallelogram P is a square, then it is even possible
to drop a perpendicular to a given line l through a given point P , to bisect a
right angle, and to rotate a line segment by 90◦; see [6, §4].

Addition and Subtraction (von-Staudt Construction). We focus on the
geometrical addition of two real numbers a and b. The difference b − a of a
and b can be computed similarly as shown in Figure 2.4. Let O = (0, 0, 1) be the
origin of the given coordinate system given in homogeneous coordinates. Let A =
(a, 0, 1) and B = (b, 0, 1). The aim is to construct the point C = (a + b, 0, 1).
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Figure 2.5: Von-Staudt constructions for geometric multiplication and division

Let P be a point that does not lie on the x-axis lx, and let l be the parallel line
to the x-axis that passes through the point P . Let

l1 be the line connecting O and P ;

g1 be the line connecting P and A = (a, 0, 1);

l2 be the parallel line to l1 through the point B = (b, 0, 1);

Q be the intersection point of l2 and l;

g2 be the parallel line to g1 through the point Q;

C be the intersection point of g2 and the x-axis lx.

Hence, the two triangles OAP and BCQ are congruent, and the line segments OA
and BC have the same (directed) length, which equals a. Thus we have C =
(a + b, 0, 1). The construction even works for a = 0 or b = 0.

Multiplication and Division (von-Staudt Construction). We explain the
geometrical multiplication of two real numbers a and b; the division a/b can be
computed by reversing the construction for the multiplication; see Figure 2.5. As
for the addition, let O = (0, 0, 1) be the origin of the given coordinate system in
homogeneous coordinates, and let A = (a, 0, 1) and B = (b, 0, 1). Furthermore,
let E = (1, 0, 1) be the point that represents the neutral element 1 of the multi-
plication. The aim is to construct the point C = (a · b, 0, 1). Let P be a point
that does not lie on the x-axis lx, and let l be the line connecting P and O. Let

l1 be the line connecting E and P ;

g1 be the line connecting P and A = (a, 0, 1);

l2 be the parallel line to l1 through the point B = (b, 0, 1);

Q be the intersection point of l2 and l;

g2 be the parallel line to g1 through the point Q;

C be the intersection point of g2 and the x-axis lx.
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First, we assume a 6= 0 and b 6= 0. By construction, the triangles EAP and BCQ
are similar. The theorem of intersecting lines implies

|OC|
|OA|

=
|OQ|
|OP |

=
|OB|
|OE|

.

Hence we have
|c|
|b| =

|OC|
|OB|

=
|OA|
|OE|

=
|a|
1

,

and |c| = |a| · |b|. Let l+ be the half-line of the x-axis lx containing E and l− the
other one. We observe that the point C lies on l+ if and only if both points A
and B either lie on l+ or on l−, and C lies on l− if and only if one of the points A
and B lies on l+ and the other one on l−. Thus the sign of the product a · b is
determined by the half-line that contains the point C. Note that the construction
even works if a = 0 or b = 0. In this case we get C = O. If the divisor b in the
geometric division is zero, then we have l1 = l, and the lines l and l2 are parallel.
Thus the intersection point Q of l and l2 is a point at infinity, g2 is the line at
infinity and the resulting point C is a point at infinity as expected.

2.4 Quadratic Constructions

To deal with circles as well, we have to allow square root operations in the alge-
braic model. We show that ruler-and-compass constructions can be transformed
to algebraic expressions using addition, subtraction, multiplication, division, and
square roots and vice versa.

To compute the coordinates of all points, lines and circles in a geometric con-
struction, we have to solve quadratic equations. Thus, the coordinates of the
constructed elements can be computed from the coordinates of the initially given
points, lines and circles using the five mentioned algebraic operations.

To investigate the converse direction, we have to compute square roots of non-
negative real numbers geometrically; see Figure 2.6. This can be done using the
altitude theorem in right triangles. Let a ≥ 0 be a given real number. As before,
let O = (0, 0, 1) be the origin given in homogeneous coordinates, let E = (1, 0, 1)
be the point representing 1 and A = (a, 0, 1). The aim is construct the two
points C+ = (+

√
a, 0, 1) and C− = (−√a, 0, 1). To simplify the notation, we

assume that we are given a Cartesian coordinate system. Let ly be the y-axis
and F = (0, 1, 1).

1. Construct the point M = (a−1
2

, 0, 1) with the methods from Section 2.3.

2. Let γ be the circle having M as midpoint that passes through the point A.
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Figure 2.6: Geometric construction of square roots using the altitude theorem.

3. Let Q+ and Q− be the intersection points of the circle γ and the line ly; we
choose Q+ to be the intersection point that lies on the same half-line of ly
as the point F . Note that if and only if a = 0, we have A = O and the
line ly is tangent to the circle γ. In this situation, we have Q+ = Q− = O.

4. Let d be the line connecting E and F .

5. Let g+ be the parallel line to d that passes through the point Q+, and let g−
be the parallel line to d that passes through the point Q−.

6. Let C+ be the intersection point of g+ and the x-axis lx, and let C− be the
intersection point of g− and lx.

If a = 0, then we have C+ = C− = O = (0, 0, 1) = (
√

0, 0, 1). Now, we look
at the case a > 0. Let B = (−1, 0, 1) be the second intersection point of the
circle γ and the x-axis lx. The triangles BAQ+ and BAQ− are right triangles
with height h = |OQ+| = |OQ−|. The altitude theorem implies h2 = |BO| ·
|OA| = 1 · a = a. Thus we have h = ±√a. The theorem of intersecting lines
implies |h| = |OC+| = |OC−|.
If we interpret the Euclidean plane as complex plane C, we can also compute
square roots of complex numbers geometrically. Let z = reiφ be a complex
number given by its polar coordinates. To determine the two square roots of z,
we have to compute

√
r and to bisect the angle φ. We have just seen, how to

determine
√

r using the circle γ. We can bisect an angle using ruler and compass
as shown in Figure 2.1.
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x
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0
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M

3
√

a1

Figure 2.7: The geometric construction of cubic roots is shown. The cubic
root 3

√
a is the x-coordinate of the intersection point of the unit parabola P

and the circle γ with midpoint M = (a/2, 1/2, 1).

Bieberbach [6, §5] shows that ruler-and-compass constructions are as powerful as
constructions with a ruler if only one circle and its midpoint are given. These
constructions are called Poncelet-Steiner constructions. In fact, only an arc of
the given circle is needed.

2.5 Cubic Constructions

Now we add conics to the set of geometric objects and consider geometric con-
structions, where points, lines, and conics are involved. Note, that circles are a
special case of conics. We show that geometric constructions with points, lines,
and conics can be described by algebraic expressions using the operations addi-
tion, subtraction, multiplication, division, square root, and cubic root and vice
versa.

The coordinates of the constructed points, lines, and conics can be obtained by
solving polynomial equations of degree at most 3. Kortenkamp [40] gives a beau-
tiful and practice-related transformation from geometric constructions involving
points, lines, and conics to algebraic expressions using the mentioned six algebraic
operations.

For the transformation from algebra to geometry, we have to compute cubic roots
of real numbers geometrically; see Figure 2.7. To simplify the notation, we assume
that we are given a Cartesian coordinate system. Let a ∈ R.
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1. Let P be the parabola defined by the equation y = x2. Thus, P is
the unique conic that passes through the five points (−2, 4, 1), (−1, 1, 1),
(0, 0, 1), (1, 1, 1) and (2, 4, 1) given in homogeneous coordinates. These five
points can be constructed using ruler and compass, only.

2. Let M = (a/2, 1/2, 1), and let γ be the circle that has M as midpoint and
that passes through the origin O = (0, 0, 1). The circle γ is described by
the equation

0 =
(
x− a

2

)2

+

(
y − 1

2

)2

−
((a

2

)2

+

(
1

2

)2
)

= x2 − ax + y2 − y.

3. Let Pi = (xi, yi, zi), i = 1, . . . , 4, be the (at most) four intersection points
of the conic P and the circle γ. The values for the x-coordinates x1, x2, x3

and x4 are obtained by plugging in the formula y = x2 of the parabola P
into the formula for the circle γ:

0 = x2 − ax + y2 − y = x2 − ax + x4 − x2 = x4 − ax = x(x3 − a)

Solving this equation leads to the wanted values for xi, i = 1, . . . , 4. Note
that two solutions are complex.

If we interpret the Euclidean plane as complex plane C, we can also compute
cubic roots of complex numbers geometrically. Let z = reiφ be a complex number
given by its polar coordinates. To determine the three cubic roots of z, we have to
compute 3

√
r and to trisect the angle φ. We have just seen, how to determine 3

√
r

using a parabola. In [26, Chap. XLI (author: Otto Böklen), p. 436] is shown, how
to trisect a given angle using an ellipse. Bieberbach [6] discusses how to solve
arbitrary equations of degree 3 and 4 geometrically using related arguments.
Solving equations of degree 4 can be reduced to solving equations of degree at
most 3 using the cubic resolvent.

2.6 Using Complex Coordinates

We have seen in the previous sections that we can translate the geometric sit-
uation to an algebraic model, where the geometric operations are described by
a finite number of additions, subtractions, multiplications, divisions, square and
cubic roots. Thus, using complex coordinates for the geometric objects implies
that the algebraic operations are performed in the field of complex numbers C
instead in R.

First, we observe that solutions of the used algebraic operations over R are so-
lutions over C as well. At first view, we are interested in geometric objects
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γ1

b

A

B

γ2

A = B

γ1 γ2

b b

γ1 γ2

Figure 2.8: The line b connects the two intersection points A and B of the
circles γ1 and γ2 with identical radii. In the degenerate situation, we have A = B
and the line b is a tangent. In the right figure, the circles γ1 and γ2 do not intersect.
In fact, they have two intersection points, which have complex coordinates. The
line connecting these two points has real coordinates again.

that correspond to solutions over R since in a Dynamic Geometry System, we
only display these solutions. However, switching to complex coordinates has
several advantages. Since we do not need to distinguish between positive and
negative radicands in roots over C, several special cases are omitted, which sim-
plifies the computations. Even if intermediate results are complex numbers with
a non-vanishing imaginary part, later results could be real numbers again. Fig-
ure 2.8 shows an example for this phenomenon taken from [40]. Kortenkamp [40,
Chap. 6] uses the field of complex numbers C for the algebraic modeling of cir-
cles and conics. In projective geometry, circles are conics that pass through the
points I = (i, 1, 0) and J = (i,−1, 0) given in homogeneous coordinates. More-
over, using complex coordinates enables us to use the theory of complex analysis,
which turns out to be quite helpful.

Allowing complex coordinates influences the properties and the behavior of the
underlying Dynamic Geometry system. The consequences of the change to com-
plex coordinates depend on the investigated problem.

Consequences for the Tracing Problem. As long as no degeneracies are hit
in the tracing process, the change to complex coordinates has no consequences.
In this case, the coordinates of the geometric objects remain real numbers at each
time t. If the given paths in the Tracing Problem are paths in R, then we only
might switch to complex coordinates at degenerate positions. This holds since
we consider continuous paths. The only operations that might lead to complex
results for a real input are the root operations. Due to the intermediate value
theorem, before the radicand of a square root operation becomes negative, it
must have been zero, and we must have passed through a degeneracy. The same
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holds for cubic roots: Before we switch from a real cubic root to one of the two
conjugate complex roots, we must have passed through zero where we have hit a
degeneracy.

By contrast, we exploit the change to complex coordinates to deal with de-
generacies. Instead of running into a degenerate situation, we follow a detour
around the critical point in the complex plane C. This concept was developed by
Kortenkamp [40] and is implemented in the Dynamic Geometry Software Cin-
derella [42, 41]. We gave a motivation in Chapter 1, and we can integrate this
beautiful concept into our algorithms as shown in Chapter 7.

Consequences for the Reachability Problem. Allowing complex coordi-
nates extensively extends the configuration space of a given geometric construc-
tion or algebraic expression. In some situations, a given configuration of a con-
struction can be transformed into another one by following a continuous path in
the complex plane C without hitting degeneracies whereas there are no continu-
ous paths in R that could be used for the transformation. This fact is explained
on page 6 of Chapter 1 and illustrated by Figure 1.4.

Consequences for Automated Theorem Proving. Most of the geomet-
ric theorems considered in automated theorem proving so far are closure theo-
rems [16, p. 363]. For a certain configuration of points, lines or circles is claimed
that some of these points lie on a line or a circle or that some the lines intersect
in a common point. Since R ⊂ C, all of these theorems that hold over C also
hold over R. The converse direction of this claim is the difficult part as stated
by Dolzmann, Sturm, and Weispfenning [16, p. 358]:

It is an amazing fact, which does not appear to have a

sufficient theoretical explanation up to now, that for

the overwhelming majority of theorems in the plane

geometry of points, lines, circles, and cones the

algebraic translation φ - if done ‘‘properly’’ - does

hold in the field of complex numbers. Trivial exceptions

may occur if the theorem asserts properties of points

that do not exist in the real plane but exist in the

complex plane; ...

In [16], several examples of geometric theorems are considered including a theo-
rem that holds over R but not over C:

Theorem 2.6.1. [16, Ex. 7, p. 372] Consider eight points A, B, C, D, E, F ,
G and H such that the eight triples ABD, BCE, CDF , DEG, EFH, FGA,
GHB and HAC are collinear. Then all eight points lie on a line.
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g1 g2 g3 g4 g5 g6 g7 g8 g1 g2 g3 g4 g5 g6 g7 g8

P1 × × × → P1 × × ×
P2 × × × P2 × × ×
P3 × × × → P3 × × ×
P4 × × × P4 × × ×
P5 × × × P5 × × ×
P6 × × no ⊗ × P6 × × ×
P7 × × × no ⊗ → P7 × × ×
P8 × × ⊗ × no → P8 × × ×

Table 2.3: Incidence tables for point-line configurations with eight points and
lines such that every points lies on three lines and every line is incident to three
points.

Tracing back the references given in [16] shows that this theorem goes back to
Levi [49, Chap. III]. In his book [49], Levi investigates point-line configurations.
In Theorem 2.6.1, we are given eight points and eight lines and require that every
line is incident to exactly three of the given eight points and that every point lies
on exactly three of the given eight lines.

Proof. We follow Levi’s approach [49]. For each configuration point P1 there is
exactly one configuration point P2 which is not connected with P1 since the three
lines that are incident to P1 contain exactly 6 configuration points in addition
to P1. Let P3, . . . , P8 be these six points. Every point Pi ∈ {P3, . . . , P8} is
connected with P1 and with P2. Additionally, Pi lies on a line that neither
contains P1 nor P2. There are exactly two lines g1 and g2 that neither contain P1

nor P2. The left of Table 2.3 summarizes the previous observations. Levi [49,
p. 3] calls this table “Inzidenztafel” (incidence table). Note that the position
filled by “no” cannot be used for incidences. If for example the point P6 lies on
the line g6, then the lines g3 and g6 would both contain the points P3 and P6

and either the two lines or the two points would be identical. If the points P3

and P6 are identical, then the line g1 would contain the four points P3, P4, P5

and P6, which is not allowed. If the lines g3 and g6 are identical, then the line g6

would contain the four points P1, P2, P3 and P6, which is not allowed. The
two remaining possibilities for the lower right submatrix lead to equivalent tables
since they can be transformed into each other by renaming points and lines.

Thus we have shown that there is just one incidence table up to renaming points
and lines. For simplicity of notation, we rename the eight points and lines such
that the incidence table has the form shown in the right of Table 2.3. This can
be done since every point lies on exactly three lines and every line is incident to
exactly three points, again.
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To compute a realization of this particular point-line configuration, we observe
that the four points P1, P3, P7 and P8 must be the vertices of a non-degenerate
quadrilateral since each line contains at most two of these four points. We choose
a projective coordinate system such that

P1 =




1
0
0



 ; P3 =




0
1
0



 ; P7 =




1
1
1



 ; P8 =




0
0
1



 .

Using the incidences given by the eight lines, we can compute the coordinates of
the remaining points and get

P5 =




1
1
−ε



 ; P2 =




0
1
1



 ; P4 =




1

1 + ε
0



 ; P6 =




1
0
−ε



 .

Finally, we have to choose ε such that the points P4, P6 and P7 are colinear as
required by column 7. Hence, we have to solve the equation

0 = det




1 1 + ε 0
1 0 −ε
1 1 1



 = −ε2 − ε− 1,

which has the two complex solutions ε1/2 = −1/2 ± i
√

3/2. Plugging in the
solutions for ε into the coordinates of the points P1, . . . , P8 gives a realization of
this point-line configuration over C. Simultaneously, we have shown that there
is no realization over R.

The previous observation shows that Theorem 2.6.1 does not hold over C: The
computed realizations of the configuration are counter-examples. Now, we con-
sider the field of real numbers R. At the beginning of the proof, we considered
the quadrilateral defined by the points P1, P3, P7 and P8. Since there is no re-
alization of the configuration over R, this quadrilateral must degenerate. Using
the given incidences, we can show that all points P1, . . . , P8 must be collinear. If
for example the points P1, P3 and P7 are collinear, then they lie on the line g4

like the point P4; thus these four points lie on the line g7 like the point P6; and
so on.

To sum up, the consequences of the change to complex coordinates are not known,
yet. It seems that we do not need to count many problems although we have
explained a theorem from projective geometry that holds over R but not over C.
The Reachability Problem over C could be a useful tool for automated theorem
proving. We have seen above that the Reachability Problem depends on the
underlying field K ∈ {R, C}. We do not focus on automated theorem proving in
this thesis.
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Chapter 3

Some Basic Concepts from
Dynamic Geometry

We explain basic notions from Dynamic Geometry introduced by Kortenkamp
and Richter-Gebert [40, 43] like Geometric Straight-Line Programs (Section 3.1),
critical points (Section 3.2), and continuous evaluations (Section 3.3). In Sec-
tion 3.4, we define the Tracing Problem and the Reachability Problem which
have been introduced by Kortenkamp and Richter-Gebert in [43], the main ideas
can already be found in [40]. In Section 3.5, we define the derivative GSP Γ̇ of a
GSP Γ with respect to time [14]. This new concept is crucial for the Cone Algo-
rithm given in Section 6.3. In Section 3.6, we show how we could use intervals in
GSPs. We define the interval-GSP Γint that results from a GSP Γ by replacing
all operations of Γ by the corresponding interval operations. The variables of Γint

take intervals as values. This new notion is important for our algorithms for the
Tracing Problem in Chapter 6.

3.1 Geometric Straight-Line Programs

As mentioned in the introduction, geometric constructions can be described by
Geometric Straight-Line Programs (GSP); see [43, 44]. The objects are points,
lines and circles (or more generally conics) with the standard geometric operations
like computing the line connecting two points, the intersection point of two lines,
or one of the at most two intersection points of a circle and a line. Here, we
consider an algebraic situation: Our objects are real or complex numbers with
the operations addition, subtraction, multiplication, division, and square root.
In this context, Geometric Straight-Line Programs describe algebraic expressions
like
√

z2 − 1 instead of geometric constructions.

31
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Definition 3.1.1. Geometric Straight-Line Program Γ over R or C.
Let K ∈ {R, C} be either the field of real numbers or the field of complex numbers.
A GSP Γ over K is a finite sequence of instructions γj of the form

γj : vj ← FREE
γj : vj ← va + vb (+)
γj : vj ← va − vb (−)
γj : vj ← va · vb ( · )
γj : vj ← va/vb ( / )
γj : vj ←

√
va. (

√
)

We say that the instruction γj defines the variable vj and require that the vari-
ables va and vb are defined before the variable vj, i.e., the variables va and vb in
the definition of γj are defined by instructions γa and γb with a < j and b < j.

The instruction vj ← FREE is used to generate free variables; it has no input and
allows the output to be any element of K. Variables that are created by one of the
instructions +,−, ·, /, or

√
are called dependent variables. For given values of

the variables va and vb, the instructions +,−, ·, or / compute the corresponding
sum, difference, product, or quotient, respectively. For a given value of va, the
instruction

√
describes one of the at most two solutions of the equation v2

j = va,
the “sign” of va is not fixed. Zero is defined not to be a valid input for the√

-operation. For K = R, only positive numbers are valid inputs for the
√

-
operation. The divisor of a division operation must not be zero.

Definition 3.1.1 is a practical description of the notion of Geometric Straight-Line
Programs, a formal and detailed definition is given by Kortenkamp and Richter-
Gebert and can be found in [40, 43]. Their definition allows the treatment of
different object types. For simplicity of notation, we assume that the first k
variables v−k+1 = z−k+1, . . . , v0 = z0 of a GSP Γ are free variables and the
following n variables v1, . . . , vn are dependent variables. Example 3.1.3 below is
a running example of this thesis.

The operations +, −, ·, / and
√

of a GSP Γ can be formulated by relations
using addition and multiplication, only.

Operation of Γ Corr. Relation
vc ← va + vb vc = va + vb

vc ← va − vb va = vc + vb

vc ← va · vb vc = va · vb

vc ← va/vb va = vc · vb

vc ←
√

va va = vc · vc

This formulation by relations is important for the
√

-operation. For a complex
number z 6= 0 or a real number z > 0 the operation w ← √z is defined by
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the relation w2 = z, and the two values “+
√

z” and “−√z” are candidates for
the output. The sign of the output is not specified by the GSP Γ. Thus, the√

-operation is non-deterministic in contrast to the operations +, −, ·, and /.

Definition 3.1.2. [40, 43] Instance of a GSP Γ
An instance of a GSP Γ is an assignment of valid values to the variables of Γ
that fulfill all relations of the GSP Γ. The configuration space of a GSP Γ is the
set of all instances of Γ. If Γ is a GSP with k free variables and n dependent
ones, then the set of all instances A = (a−k+1, . . . , a0, a1, . . . , an) with a−k+1 =
ã−k+1, . . . , a0 = ã0 is called the fiber of the point (ã−k+1, . . . , ã0). The instance A
lies above the position (a−k+1, . . . , a0) = (ã−k+1, . . . , ã0) of the free variables.

In an instance, the “signs” for the square root operations are fixed in contrast
to the underlying GSP Γ. Definitions 3.1.1 and 3.1.2 imply that, in an instance,
the values of the divisor variables of the division operations and the values of
the radicand variables of the root operations are non-zero, and for K = R, the
values of the radicands are positive. Due to square root instructions, the fiber of
a point might contain more than one instance. Thus, we might have more than
one instance that lies above a fixed position of the free variables.

Example 3.1.3. The expression
√

z2 − 1 can be described by the GSP Γ:

Γ: z ← FREE
v1 ← z · z
v2 ← v1 − 1
v3 ←

√
v2 ; described by v2

3 = v2 and v2
>
6= 0.

If K = C then (0, 0,−1, i) and (0, 0,−1,−i) are instances of this GSP, whereas
(1, 1, 0, 0) is not an instance since 0 is not a valid input for the square root
operation. The two instances (0, 0,−1, i) and (0, 0,−1,−i) lie above the point z =
0. For K = R, none of the three tuples is an instance.

The notion of Geometric Straight-Line Programs is derived from the notion of
Straight-Line Programs described by Bürgisser et al. in [9, Chapter 4]. The main
difference is that the concept of Geometric Straight-Line Programs allows non-
deterministic operations like the square root operation. Straight-Line Programs
are not designed for dealing with non-determinism.

Every dependent variable of a GSP Γ describes an algebraic function in the free
variables z−k+1, . . . , z0 of Γ. Formally, this fact can be shown by induction using
Theorem 8.2.6 from page 127; see Section 8.4.
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3.2 Critical Points

We discuss the notion of critical points. In the geometric setting, a critical point
occurs if the intersection of a circle and a tangent line is considered, for example.
Here, the two intersection points of a line and a circle in the non-degenerate
situation merge to a single point, and we cannot distinguish these two points
anymore. This causes problems since we consider dynamic constructions, where
we keep track of the motions of all geometric objects. At a critical point, one of
the two intersection points of a line and a circle “disappears”. In the algebraic
model, a critical point occurs if we take the square root of zero or if we divide by
zero in the computation of an instance of a GSP. For the square root operation,
we have the same situation as with the intersection of a line and a circle in the
geometric situation. If the radicand is not zero, we always have two possible
values for the output. Only if the radicand is zero, the two solutions merge. A
division by zero cannot be executed. It corresponds to the intersection of two
parallel lines, for example. If we use homogeneous coordinates as in the Dynamic
Geometry Software Cinderella [42, 41], divisions are omitted.

We use a less restrictive definition of a critical point than in [13]. Before we give
the definition, we introduce the notion of an m-head of a GSP Γ. As before, let K
be one of the fields R or C.

Definition 3.2.1. m-Head Γ(m) of a GSP Γ
Let Γ be a GSP with k free variables z−k+1, . . . , z0 and n dependent ones v1, . . . , vn,
let m ∈ {1, 2, . . . , n}. We call the GSP that arises from Γ by cutting off the
variables vm+1, vm+2, . . . , vn the m-head Γ(m) of Γ.

If A = (a−k+1, . . . , a0, a1, . . . , am, . . . , an) is an instance of Γ, then A(m) :=
(a−k+1, . . . , a0, a1, . . . , am) is an instance of Γ(m), and we call A(m) the m-head
of the instance A.

Definition 3.2.1 implies that Γ(m) has k free variables z+k−1, . . . , z0 like Γ, and m
dependent variables v1, v2, . . . , vm. Each dependent variable of Γ(m) is defined by
the same operation as the corresponding dependent variable of Γ.

Definition 3.2.2. m-Critical Point of a GSP Γ
Let Γ be a GSP over {K, +,−, ·, /,√ } with k free variables z−k+1, . . . , z0, and
n dependent ones v1, . . . , vn. Let m ∈ {1, 2, . . . , n}, and let C̃ = (c−k+1, . . . ,
c0, c1, c2, . . . , cm−1) ∈ Kk+m−1 be an instance of Γ(m−1) that cannot be extended to
an instance of Γ(m). That is, there is no cm ∈ K such that (c−k+1, . . . , cm−1, cm)
is an instance of Γ(m). Then, C̃ is called an m-critical point of Γ, and the
variable vm causes the m-critical point C̃.

Definition 3.2.3. Critical Point of Γ
A point C = (c−k+1, . . . , c0, c1, c2, . . . , cn) is a critical point of a GSP Γ with k
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free variables and n dependent ones if there is an m ∈ {1, 2, . . . , n} such that the
m − 1-head C(m−1) of C is an m-critical point of Γ. All critical points with the
same (m− 1)-head are identified, because the values cm, . . . , cn are arbitrary.

Definition 3.2.4. Critical Value of Γ
Let Γ be a GSP with k free variables z−k+1, . . . , z0 and n dependent ones. Let
c−k+1, . . . , c0 ∈ K be values of the free variables z−k+1, . . . , z0. If (c−k+1, . . . , c0) ∈
Kk can be extended to a critical point of Γ, then (c−k+1, . . . , c0) is called a critical
value of Γ. Otherwise, (c−k+1, . . . , c0) is called a regular value of Γ.

We have chosen the term critical value of a GSP according to the notion of
critical values of algebraic functions. In the theory of algebraic functions, the
critical values are called exception points, as well; see page 131 in Section 8.3.
The critical values of a GSP Γ are related to the critical values of the algebraic
functions that correspond to the dependent variables of Γ; see Section 8.4.

Lemma 3.2.5. The set of critical points of a GSP Γ is finite if and only if the
set of critical values of Γ is finite.

Proof. Let Γ be a GSP with k free variables and n dependent ones. The set of
critical values of Γ is obtained by projecting the set of critical points to the k
coordinates of the free variables. Thus, if the set of critical points is finite, then
the set of critical values is finite as well. To prove the converse direction, we
observe that for every square root operation, the number of instances lying above
a fixed position of the free variables is at most doubled. A square root operation
doubles the number of instances if and only if its radicand variable is not zero.
For the four elementary arithmetic operations, the number of instances remains
unchanged. Hence, the number of instances lying above a regular value of Γ
is 2s where s is the number of square root operations of Γ. Furthermore, the
number of instances lying above a critical value of Γ is smaller or equal to 2s.
Consequently, if the set of critical values is finite, then the set of critical points
is finite as well.

Example 3.2.6. We consider the GSP Γ that describes the algebraic expression
f(z) = z√

z−2
:

Γ : z ← FREE
v1 ←

√
z // v1 =

√
z

v2 ← v1 − 2 // v2 =
√

z − 2
v3 ← z

v2
// v3 = z√

z−2

The value z = 0 is a 1-critical point. Since 0 is a forbidden input for the
√

-
operation, it cannot be extended to an instance of Γ(1). The point (4, 2, 0) is
a 3-critical point, since it causes a division by 0 for the variable v3. Hence, for
K = C, the critical points of Γ are (0, 0, 0, 0) and (4, 2, 0, 0), and the critical values
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are 0 and 4. For K = R, all points (r, 0, 0, 0) with r < 0 are 1-critical points,
additionally. Hence, the notion of critical points depends on the underlying field.

Example 3.2.7. We describe the expression
√

z −
√

z2 by the GSP Γ1.

Γ1 : z ← FREE
v1 ← z · z // v1 = z2

v2 ←
√

v1 // v2 =
√

z2 = ±z

v3 ← z − v2 // v3 = z −
√

z2

v4 ←
√

v3 // v4 =
√

z −
√

z2

Here, every value for z can be extended to a critical point: (z, z2, z, 0) ∈ C4 is

an instance of the 3-head Γ
(3)
1 of Γ1 for every z ∈ C. It cannot be extended to

an instance of Γ
(4)
1 = Γ1. Thus, the set of critical values is the complex plane C.

However, if we choose v2 = −z, then (z, z2, z,±
√

2z) are instances of Γ1 for
all z ∈ C with z 6= 0.

Example 3.2.8. We consider
√

z−1 + z0 and the GSP Γ2.

Γ2 : z−1 ← FREE
z0 ← FREE
v1 ← z−1 + z0 // v1 = z−1 + z0

v2 ←
√

v1 // v2 =
√

z−1 + z0

Let z−1 and z0 move on the paths p−1, p0 : [0, 1]→ C, i.e., we consider the values
(p−1(t), p0(t)) for (z−1, z0) with t ∈ [0, 1]. We assume that the paths p−1 and p0

can be extended to analytic functions that are defined on a connected neighbor-
hood of [0, 1]. A critical point occurs at time t if and only if p−1(t) = −p0(t).
By a well known theorem from complex analysis (German: “Identitätssatz”),
p−1(t) = −p0(t) holds either for all t ∈ [0, 1] or for at most finitely many t ∈ [0, 1].

We formalize the situations from the previous examples. If the GSP Γ has just
one free variable z and if K = C, then the set of critical points is either finite or
each point can be extended to a critical point.

Lemma 3.2.9. If Γ is a GSP with just one free variable z and if K = C, then
the set of critical points is either finite or every value for z can be extended to a
critical point.

Proof. Induction on the length of the GSP Γ.
If Γ only consists of the free variable z, then Γ has no critical points. We assume
that Lemma 3.2.9 holds for GSPs with n dependent and one free variable. Now,
let Γ be a GSP with n + 1 dependent variables and one free variable z. Then the
n-head Γ(n) of Γ is a GSP with one free variable z and n dependent ones. By the
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induction hypothesis, Γ(n) has either finitely many critical points, or every value
of z can be extended to a critical point of Γ(n). We observe that every critical
point of Γ(n) induces a critical point of the original GSP Γ. Thus, if every value
of z can be extended to a critical point of Γ(n), then every value of z can be
extended to a critical point of Γ as well.

It remains to investigate the situation where Γ(n) has finitely many critical points.
If the n + 1st variable vn+1 of Γ is defined by an addition, subtraction, or mul-
tiplication, then vn+1 does not cause critical points. Hence, Γ has finitely many
critical points. If vn+1 is defined by a division or square root operation, we re-
gard the divisor or radicand variable vc of vn+1. The variable vc is either the free
variable z or a dependent variable vj of Γ with j ∈ {1, 2, . . . , n}. The n + 1st
variable vn+1 of Γ causes a critical point if vc = 0. For vc = z, this only occurs
if z = 0, and the number of critical points remains finite. For vc = vj with
j ∈ {1, 2, . . . , n}, the variable vc in combination with the j-head GSP Γ(j) of Γ
defines an algebraic function vc(z) in z on C. We consider the corresponding Rie-
mann surface (Xc, ηc, fc) of vc(z) (German: “Riemannsches Gebilde” of vc(z)),
where Xc is a Riemann Surface, ηc : Xc → C a covering, and fc : Xc → C a
meromorphic function with vc(z) = fc(η

−1
c (z)). By construction of (Xc, ηc, fc) we

have

vc(z) = {w ∈ C |w = vc for a sign choice in Γ(j)} = fc

(
η−1

c (z)
)
;

see Section 8.3. The Riemann surface (Xc, ηc, fc) might decompose into m ≥
1 components (Xc,i, ηc,i, fc,i). Each component (Xc,i, ηc,i, fc,i) is the Riemann
surface of an algebraic function vc,i(z), and we have

vc(z) = fc

(
η−1

c (z)
)

=
m⋃

i=1

fc,i

(
η−1

c,i (z)
)

=
m⋃

i=1

vc,i(z).

Each algebraic function vc,i(z) has either finitely many zeros or is constantly zero;
see Theorem 8.1.6. If all functions vc,i(z) have a finite number of zeros, then vc(t)
has a finite number of zeros. Since the zeros of vc(z) are responsible for the
additional critical points which are caused by the variable vn+1, the set of critical
points remains finite.

If at least one of the functions vc,i(z) is constantly zero, then 0 ≡ vc,i(z) ∈ vc(z)
for all z ∈ C. This implies that for every z ∈ C there is a sign choice for the
square root operations of Γ(j) with vc = 0, and every point z ∈ C can either be
extended to a critical point of Γ(n) or to a zero of vc in Γ(j). Thus, all values z ∈ C
are critical values of Γ.

Lemma 3.2.10. Let Γ be a GSP over C with k free variables z−k+1, . . . , z0.
Let U[0,1] ⊂ C be a connected neighborhood of the time interval [0, 1], and let
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p−k+1, . . . , p0 : U[0,1] → C be polynomial functions in t. We assign the values
p−k+1(t), . . . , p0(t) to the free variables z−k+1, . . . , z0 for t ∈ [0, 1]. Then either
each time t ∈ [0, 1] induces a critical point or there are only finitely many values
for t inducing a critical point.

Proof. Since the functions pl(t) are polynomials in t, they can be described by
GSPs Γl with only one free variable t. In Γ, we replace the operations zl ← FREE
by the operations of Γl. Since all functions pl(t) are polynomials in the variable t,
we only need one operation t← FREE. The resulting GSP Γ̃ is a complex GSP
with one free variable t. By construction of Γ̃, a point t ∈ U[0,1] induces a critical

point of Γ̃ if and only if (p−k+1(t), . . . , p0(t)) induces a critical point of Γ. By
Lemma 3.2.9, Γ̃ has either finitely many critical points or every value for t can
be extended to a critical point.

Note that Lemma 3.2.10 even holds for functions pl(t) in one variable t that can
be described by a GSP.

Corollary 3.2.11. Let Γ be a GSP over C with k free variables z−k+1, . . . , z0

together with k linear paths p−k+1, . . . , p0 for the free variables. Then, either
every point (p−k+1(t), . . . , p0(t)) with t ∈ [0, 1] can be extended to a critical point
of Γ, or there are only finitely many times tc for which (p−k+1(tc), . . . , p0(tc)) can
be extended to a critical point.

Proof. Corollary 3.2.11 is a consequence of Lemma 3.2.10.

We can get rid of the critical points that are caused by a division operation if
we switch from C to the Riemann Sphere Ĉ [32]. The basic idea of the Riemann
Sphere is to add a point∞ to the set of complex numbers C such that a division
by zero can be defined. Hence, a division operation on the Riemann Sphere does
not cause a critical point.

3.3 Continuity

In Dynamic Geometry, we are dealing with dynamic constructions: If a free point
is moved in a continuous way, the whole construction should follow continuously.
Whenever the free points move on continuous paths, the dependent elements
have to move on continuous paths as well (as long as no critical points lie on the
paths). This concept is formalized in the notion of continuous evaluations defined
by Kortenkamp and Richter-Gebert in [43]. As before, we consider the algebraic
situation.
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Definition 3.3.1. Continuous Evaluation
Let Γ be a GSP having k free variables and n dependent elements; w.l.o.g. let the
first k variables z−k+1, . . . , z0 be the free variables and v1, . . . , vn be the dependent
ones. Furthermore, for each free variable zl we are given a continuous path pl(t) :
[0, 1] → K. A continuous evaluation of the GSP Γ under the movement {pl(t)}
is an assignment of continuous functions

vi(t) : [0, 1]→ K

to the dependent variables, i.e. for each dependent variable vi there is a func-
tion vi(t) such that for all t ∈ [0, 1]

(
p−k+1(t), . . . , p0(t), v1(t), . . . , vn(t)

)

is an instance of the GSP Γ.

If the GSP Γ does not contain
√

-operations, then the values of the dependent
variables are determined by the values of the free variables. Since +, −, · and /
are continuous functions (unless there is a division by zero), there is exactly one
continuous evaluation for a given continuous motion of the free variables (avoiding
a division by zero).

If the GSP Γ contains
√

-operations, the values of the dependent variables are
determined by the values of the free variables up to a number of binary choices
that correspond to the two branches of the

√
-function. The definition of con-

tinuous evaluation ensures that we always choose the “right” branch and do not
jump from one branch to the other one.

Continuous evaluations are unique as discussed in Section 8.6 and in [13]. If a
starting instance is fixed (i.e. values for v1(0), . . . , vn(0)) and if we do not hit a
critical point, then there is exactly one continuous evaluation for the given motion
starting at this starting instance. Note that the notion of critical points in [13]
differs slightly from ours.

At a critical point, the radicand or divisor variable of a root or division operation,
respectively, becomes zero. Thus we are interested in the zeros of the correspond-
ing paths in a continuous evaluation. Lemma 3.3.2 is a consequence of a famous
theorem from complex analysis (German: “Identitätssatz”).

Lemma 3.3.2. Let Γ be a GSP over C with k free variables and n dependent
variables v1, . . . , vn. Let A be an instance of Γ, and let p−k+1, . . . , p0 : [0, 1] → C
be paths of the free variables of Γ that can be extended to analytic functions on
a connected neighborhood U[0,1] ⊂ C of the time interval [0, 1] and for which the
corresponding continuous evaluation along p−k+1, . . . , p0 starting at A exists. Let
vi(t) be the path of the dependent variable vi in the continuous evaluation. Then
vi(t) : [0, 1] → C either has at most a finite number of zeros, or this path is
constantly zero.



40 CHAPTER 3. CONCEPTS FROM DYNAMIC GEOMETRY

Proof. Since the paths p−k+1(t), . . . , p0(t) can be extended to analytic functions
on U[0,1] and since the corresponding continuous evaluation exists, the path vi(t) of
the dependent variable vi can be extended to an analytic function v̂i on a (possibly
smaller) neighborhood Û[0,1] of [0, 1] as well; see Lemma 8.6.13 of Appendix 8.6.1.
A famous result from complex analysis implies that either the zeros of v̂i form a
discrete set in Û[0,1] or v̂i is the zero function. If v̂i is the zero function, then vi =

v̂i|[0,1]
is the zero function as well. If the zeros of v̂i form a discrete set in Û[0,1],

then only a finite number of them is contained in the compact interval [0, 1]:
Since v̂i is continuous, the zero set v̂−1

i (0) and hence v̂−1
i (0) ∩ [0, 1] are closed

sets, and [0, 1] \ v̂−1
i (0) is an open subset of [0, 1] . Since the zeros of v̂i form

a discrete set in Û[0,1], every zero ξ has an open neighborhood Uξ that does not
contain another zero of v̂i. Thus, the set U := {Uξ ∩ [0, 1] | ξ ∈ [0, 1] with v̂i(ξ) =
0}∪{[0, 1]\ v̂−1

i (0)} is an open cover of [0, 1]. Every zero ξ of v̂i in [0, 1] is covered
by exactly one element of U . Since [0, 1] is compact, U has a finite subcover. This
finite subcover can cover at most a finite number of zeros ξ ∈ [0, 1] of v̂i.

3.4 The Tracing Problem and the Reachability

Problem

We define the Tracing Problem and the Reachability Problem [43, 13]. Recall
that we are considering GSPs using the operations addition, subtraction, multi-
plication, division, and square root, and the object set is K ∈ {R, C}. Let Γ be
a GSP with k free and n dependent variables.

Problem 1. Tracing Problem

Given: A GSP Γ with k free and n dependent variables, a starting instance A =
(zA, vA) ∈ Kk × Kn, a final instance B = (zB, vB) ∈ Kk × Kn of Γ, and
continuous paths p−k+1, . . . p0 : [0, 1] → K of the free variables of Γ with
(p−k+1(0), . . . , p0(0)) = zA and (p−k+1(1), . . . , p0(1)) = zB are given. We
assume that the resulting continuous evaluation starting at A exists.

Decide: Does this continuous evaluation end at the given instance B?

Recall that critical points of a GSP Γ cannot be instances of Γ and that, in
a continuous evaluation, we have an instance at each time t ∈ [0, 1]. Thus,
critical points on the motion are excluded in advance by the requirement that
the corresponding continuous evaluation exists.

Here, we have formulated the Tracing Problem as a decision problem. To solve
this problem, we “just” have to decide whether the unique continuous evaluation
under the given movement p−k+1, . . . , p0 and the starting instance A ends at B.
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free var.

dep. var.

in demand

Reachability Problem

dep. var.

free var.

in demand

given

Tracing Problem

instance A instance B instance A instance B

Figure 3.1: Exemplification of the difference between the Tracing and the Reacha-
bility Problem. As usual, A denotes the starting instance and B the final instance.

In many applications like the drag mode in a Dynamic Geometry Software, we
are interested in the entire continuous evaluation, as well. In addition to the final
instance, we also want to determine the values of the dependent variables at some
intermediate times t ∈ (0, 1).

Problem 2. The Reachability Problem

Given: A GSP Γ with k free and n dependent variables, a starting instance A =
(zA, vA) ∈ Kk ×Kn and a final instance B = (zB, vB) ∈ Kk ×Kn of Γ are
given.

Decide: Are there continuous paths pl : [0, 1]→ K of the free variables for which
there is a corresponding continuous evaluation from A to B?

The difference between both problems is that for the Tracing Problem, the paths
of the free variables are given, whereas for the Reachability Problem they are not
given (see Figure 3.1).

Both problems are NP-hard as shown in [43]. The Reachability Problem is de-
cidable, and the Tracing Problem is decidable for piecewise polynomial paths;
see [13] and Chapter 4. The algorithms for the Tracing Problem from Chapter 6
deal with linear paths p−k+1, . . . , p0 of the free variables of Γ. There is indicated
how the algorithms can be adapted to a more general situation. In Chapter 7,
we investigate the usage of semi circular paths p−k+1, . . . , p0 to bypass a critical
point.
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3.5 The Derivative of a GSP with Respect to

Time

For the Tracing Problem, we are given a GSP Γ, paths p−k+1, . . . , p0 of the free
variables, and a starting instance A. They define the corresponding continuous
evaluation (v1(t), . . . , vn(t)) implicitly if it exists. The aim of this section is to
define the derivative Γ̇ of the GSP Γ, which implicitly describes the derivative
(v̇1(t), . . . , v̇n(t)) of the continuous evaluation (v1(t), . . . , vn(t)) with respect to
time. We assume that the paths p−k+1, . . . , p0 of the free variables of Γ are
continuously differentiable. Before explaining the general case, we look at an
example.

Example 3.5.1. We consider the GSP Γ describing
√

z2 − 1 from Example 3.1.3.
The GSP Γ has one free variable z and three dependent ones v1, v2, v3. We choose
the path p : [0, 1] → C, t 7→ 2t + 3, for the free variable z and the starting
instance A = (3, 9, 8, +

√
8).

GSP Γ : z ← FREE // p(t) = 2t + 3
v1 ← z · z // v1 = z2, v1(t) = 4t2 + 12t + 9
v2 ← v1 − 1 // v2 = z2 − 1, v2(t) = 4t2 + 12t + 8

v3 ←
√

v2 // v3 = ±
√

z2 − 1, v3(t) = +
√

4t2 + 12t + 8

We are interested in the derivatives v̇1(t), v̇2(t) and v̇3(t). By the chain rule,

ṗ(t) = 2
v̇1(t) = 2p(t)ṗ(t) = 8t + 12
v̇2(t) = v̇1(t) = 8t + 12

v̇3(t) = v̇2(t)
2v3(t)

= 8t+12
+2

√
4t2+12t+8

.

In a GSP-like notation we get

ż ← FREE
v̇1 ← 2 · z · ż
v̇2 ← v̇1

v̇3 ← v̇2

2v3
.

Hence, the derivative (ṗ(t), v̇1(t), v̇2(t), v̇3(t)) with respect to time of the continu-
ous evaluation (p(t), v1(t), v2(t), v3(t)) is implicitly defined by Γ, p(t), the starting
instance A, and the variables ż, v̇1, v̇2, v̇3. For the definition of the variables v̇1

and v̇3, the variables z and v3 of the GSP Γ are needed. These observations
immediately lead to Definition 3.5.2 and Lemma 3.5.3.

Definition 3.5.2. Derivative GSP Γ̇ of a GSP Γ with respect to time
Let Γ be a GSP over {R, +,−, ·, /,√ } or {C, +,−, ·, /,√ } with k free variables
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z−k+1, . . . , z0 and n dependent variables v1, . . . , vn. Then the derivative GSP Γ̇
consists of 2k free variables ż−k+1, . . . , ż0, z−k+1, . . . , z0 and at most 6n dependent
ones including v̇1, . . . , v̇n and v1, . . . , vn according to the operations of Γ. The
operations of Γ̇ are defined as follows:

Operation of Γ Derivative v̇a(t) of va(t) Operations of Γ̇

va ← vb + vc v̇a(t) = v̇b(t) + v̇c(t)
va ← vb + vc

v̇a ← v̇b + v̇c

va ← vb − vc v̇a(t) = v̇b(t)− v̇c(t)
va ← vb − vc

v̇a ← v̇b − v̇c

va ← vb · vc v̇a(t) = v̇b(t)vc(t) + vb(t)v̇c(t)

va ← vb · vc

v
(1)
a ← v̇b · vc

v
(2)
a ← vb · v̇c

v̇a ← v
(1)
a + v

(2)
a

va ← vb/vc v̇a(t) = v̇b(t)vc(t)−vb(t)v̇c(t)
(vc(t))2

va ← vb/vc

v
(1)
a ← v̇b · vc

v
(2)
a ← vb · v̇c

v
(3)
a ← v

(1)
a − v

(2)
a

v
(4)
a ← vc · vc

v̇a ← v
(3)
a /v

(4)
a

va ← √
vc v̇a(t) = v̇c(t)

2va(t)

va ←
√

vc

v
(1)
a ← 2 · va

v̇a ← v̇c/v
(1)
a

We observe that the derivative GSP Γ̇ contains all variables of the GSP Γ. The
variables v̇a describe the “derivatives” of the variables va of Γ. The variables
v

(1)
a , . . . , v

(4)
a are auxiliary variables, they are needed for translating the differen-

tiation rules to a GSP. They are not important for our applications and will be
omitted.

Lemma 3.5.3. Let A be an instance of the GSP Γ and ȧ−k+1, . . . , ȧ0 values for
the free variables żk+1, . . . , ż0 of Γ̇. Then A and ȧ−k+1, . . . , ȧ0 define a unique
instance Ȧ of Γ̇.

Let Γ̇ be the derivative GSP of Γ. Let p−k+1, . . . , p0 be continuously differentiable
paths of the free variables z−k+1, . . . , z0 of Γ, and let

A =
(
p−k+1(0), . . . , p0(0), a1, . . . , an

)

be an instance of Γ. There is a continuous evaluation of Γ along the paths
p−k+1, . . . , p0 starting at A if and only if there is a continuous evaluation of Γ̇
along the paths ṗ−k+1, . . . , ṗ0, p−k+1, . . . , p0 starting at Ȧ with ȧl = ṗ(0); l =
−k + 1, . . . , 0.
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Let v̇i(t) be the path of the variable v̇i in a continuous evaluation of Γ̇. Then the
path v̇i(t) is the derivative of vi(t) with respect to time, i = 1, . . . , n.

Proof. Lemma 3.5.3 holds by construction and can be proved by induction on n.
Note that the divisor or radicand variables of Γ̇ are exactly the divisor or radicand
variables of the original GSP Γ.

3.6 GSPs and Interval Arithmetic

Formally, we can use interval arithmetic in GSPs. We define the interval-GSP Γint

induced by a GSP Γ. Here, the variables take intervals as values and the oper-
ations are performed in interval arithmetic. As before, let K ∈ {R, C}, and let
I(K) ∈ {I(R), R(C), K(C)} be the set of real closed intervals, rectangular complex
intervals, or circular complex intervals, respectively. We give an introduction to
interval arithmetic in Appendix A.

Definition 3.6.1. Interval-GSP Γint

Let Γ be a GSP over {K, +,−, ·, /,√ } having the free variables z−k+1, . . . , z0

and the dependent variables v1, . . . , vn. Then, Γint is a GSP-like structure over
{I(K), +,−, ·, /,√ } with k free variables Z−k+1, . . . , Z0 and n dependent variables
V1, . . . , Vn. Every dependent variable Vi of Γint, i ∈ {1, . . . , n}, is defined by the
interval operation that corresponds to the operation defining the variable vi of Γ:

Operation of Γ Operation of Γint

va ← vb + vc Va ← Vb + Vc

va ← vb − vc Va ← Vb − Vc

va ← vb · vc Va ← Vb · Vc

va ← vb/vc Va ← Vb/Vc

va ←
√

vc Va ←
√

Vc

We also use the notion of an instance in the context of interval arithmetic: An
instance of Γint is an assignment of (real or complex) intervals to all variables
of Γint such that all relations given by Γint are fulfilled. We assume that the
divisor intervals of the division operations and the radicand intervals of the root
operations do not contain 0.

Remark 3.6.2. For a GSP Γ over {R, +,−, ·, /,√ } or {C, +,−, ·, /,√ } the
operations are defined by relations. This definition is important for the square
root operation since it is the only operation that is not determined: The GSP Γ
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does not fix the sign of the output of the root operation. The subtraction, division,
and square root operations are defined as follows; see page 32:

Operation of Γ Corresp. Relation
vc ← va − vb va = vc + vb

vc ← va/vb va = vc · vb

vc ←
√

va va = v2
c

For the interval-GSP Γint, this description does not lead to the expected results.
For real interval arithmetic, we have for example

[1, 2]− [0, 3] = [−2, 2], but

[−2, 2] + [0, 3] = [−2, 5] 6= [1, 2].

Hence, it does not make sense to reduce the operations addition, subtraction,
multiplication, division, and square root to the two operations addition and mul-
tiplication, only. Instead, we use the original operations themselves. Again, the
square root operation is not determined. As with GSPs over {R, +,−, ·, /,√ } or
{C, +,−, ·, /,√ }, the root operation of Γint does not “fix” the sign of the result
of a root operation as indicated below. Let I(C) ∈ {R(C), K(C)} be the set of
either rectangular or circular complex intervals. As before, I(R) is the set of real
intervals.

I(R): Let I = [a, b] be an interval with a > 0. Then
√

I =
[√

a,
√

b
]

or
√

I =
[
−
√

b,−√a
]

= −
[√

a,
√

b
]
.

I(C): Let I ∈ I(C) with 0 /∈ I. Let +
√

and −
√

be the two branches of the root
function that are defined on I. Then

√
I = +

√
I or

√
I = −

√
I = − +

√
I.

We can estimate the range of a continuous evaluation with an instance of Γint as
the following lemmas for K ∈ {R, C} show.

Lemma 3.6.3. Let va be a dependent variable of a GSP Γ that is defined by the
variables vb and vc of Γ. Let vb and vc be composed by one of the operations
+, −, ·, / or

√
. Let A = (a−k+1, . . . , a0, a1, . . . , an) be an instance of Γ, and

let p−k+1, . . . , p0 be paths of the free variables of Γ such that the corresponding
continuous evaluation v1(t), . . . , vn(t) exists. Let Ib and Ic be intervals in K with
vb([t1, t2]) ⊂ Ib and vc([t1, t2]) ⊂ Ic. Then, an interval Ia with va([t1, t2]) ⊂ Ia can
be computed in the following way:

Operation of Γ Interval Ia

va ← vb + vc Ia = Ib + Ic

va ← vb − vc Ia = Ib − Ic

va ← vb · vc Ia = Ib · Ic

va ← vb/vc Ia = Ib/Ic, if 0 /∈ Ic

va ←
√

vc Ia =
√

Ic ∋ va(t1), if 0 /∈ Ic
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Proof. Let t ∈ [t1, t2]. By the assumptions of Lemma 3.6.3, we have vb(t) ∈ Ib

and vc(t) ∈ Ic. Hence va(t) = vb(t) ◦ vc(t) ∈ Ib ◦ Ic = Ia holds for ◦ ∈ {+,−, ·, /}.
If va is defined by a root operation, then va(t) =

√
vc(t) ∈

√
Ic = Ia. Since 0 /∈ Ic,

we have
√

Ic ∩ −
√

Ic = ∅, and the condition va(t1) ∈
√

Ic uniquely defines the
“sign” of Ia =

√
Ic.

Lemma 3.6.4. Let Γ be a GSP, p−k+1, . . . , p0 : [0, 1] → K be paths of the free
variables of Γ, and let A = (a−k+1, . . . , a0, a1, . . . , an) be a starting instance such
that the corresponding continuous evaluation (v1(t), . . . , vn(t)) exists. Let Γint be
the interval-GSP induced by Γ, and let (I−k+1, . . . , I0, I1, . . . , In) be an instance
of Γint with ai ∈ Ii for i = −k +1, . . . , n and pl([0, 1]) ⊂ Il for l = −k +1, . . . , 0.
Then vi([0, 1]) ⊂ Ii holds for i = 1, . . . , n.

Proof. Lemma 3.6.4 can be proved by induction on n using Lemma 3.6.3.

By reparametrization, Lemma 3.6.4 holds for arbitrary time intervals [t1, t2]
as well. Let J−k+1, . . . , J0, J1, . . . , Jn be intervals with Im ⊂ Jm for all m ∈
{−k + 1, . . . , 0, 1, . . . , n}. Then Lemma 3.6.4 still holds if the interval-instance
(I−k+1, . . . , I0, I1, . . . , In) is replaced by (J−k+1, . . . , J0, J1, . . . , Jn).

For interval-GSPs, we take interval dependency [35, p. 4] into account as shown
in Example 3.6.5.

Example 3.6.5. We look at the polynomial f(x) = x2 − x = x(x − 1) from
Example A.1.4 on page 153 and describe f by two GSPs Γ and Γ̃:

Γ : z ← FREE Γ̃ : z̃ ← FREE
v1 ← z − 1 ṽ1 ← z̃ · z̃
v2 ← z · v1 // v2 = z(z − 1) ṽ2 ← ṽ1 − z̃ // ṽ2 = z̃2 − z̃

Let A = (a0, a1, a2) be an instance of Γ, and let Ã = (ã0, ã1, ã2) be an instance of
Γ̃. Then a0 = ã0 implies a2 = ã2. Now, let Aint = (I0, I1, I2) be an instance of the
interval-GSP Γint of Γ, and let Ãint = (Ĩ0, Ĩ1, Ĩ2) be an instance of the interval-
GSP Γ̃int of Γ̃. We show that I0 = Ĩ0 does not imply I2 = Ĩ2. We consider the
real interval [0, 1] and the corresponding instances of Γint and of Γ̃int:

Γint : I0 = [0, 1]
I1 = I0 − 1 = [0, 1]− 1 = [−1, 0]
I2 = I0 · I1 = [0, 1] · [−1, 0] = [−1, 0]

Γ̃int : Ĩ0 = [0, 1]

Ĩ1 = Ĩ0 · Ĩ0 = [0, 1] · [0, 1] = [0, 1]

Ĩ2 = Ĩ1 − Ĩ0 = [0, 1]− [0, 1] = [−1, 1]

Although I0 = Ĩ0 = [0, 1], we have I2 6= Ĩ2.



Chapter 4

Decidability Aspects in Dynamic
Geometry

Investigating the decidability of the Reachability Problem and the Tracing Prob-
lem is an important step to determine the complexity class of the two prob-
lems. Kortenkamp and Richter-Gebert have shown that both problems are NP-
hard [43]. The Reachability Problem and the Tracing Problem for polynomial
paths of the free variables can be decided in the following way [13]: In a first
step, the connected components of a suitable semi-algebraic set are computed.
In a second step, we check whether the starting instance A and the final instance
B lie in the same connected component. A semi-algebraic set is a set of points in
an Rn satisfying a boolean combination of polynomial equalities and inequalities.
In [4], Basu, Pollack and Roy give an algorithm for computing the connected
components of semi-algebraic sets.

4.1 The Reachability Problem

First, we focus on the real situation K = R. Afterwards, we describe how the
algorithm can be extended to the case K = C. A GSP Γ defines in a natural way
a semi-algebraic set RR(Γ), as we first explain with Example 3.1.3 from page 33.

Example 4.1.1. We recall the GSP Γ from Example 3.1.3, which describes the
algebraic expression

√
z2 − 1.

Γ: z ← FREE
v1 ← z · z
v2 ← v1 − 1
v3 ←

√
v2 ; described by v2

3 = v2 and v2 > 0.

47
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The corresponding semi-algebraic set is

RR(Γ) := {(z, v1, v2, v3) ∈ C4 | v1 = z2 ∧ v2 = v1 − 1 ∧ v2
3 = v2 ∧ v2 > 0}.

Now we consider the general case, where we are given an arbitrary GSP Γ. For
each operation γ of Γ describing a dependent variable we define a term τ(γ) as
follows:

Operation γ Term τ(γ)
a← b + c a = b + c
a← b− c a = b− c
a← b · c a = b · c
a← b/c b = a · c ∧ c 6= 0

a←
√

b a2 = b ∧ b > 0

Furthermore, let Γ have k free variables and n dependent ones defined by the
operations γ1, . . . , γn. Then we set

RR(Γ) := {(z−k+1, . . . , z0, v1, . . . , vn) ∈ Rk+n | τ(γ1) ∧ τ(γ2) ∧ · · · ∧ τ(γn)}.

To decide the Reachability Problem, we have to check whether the starting in-
stance A and the final instance B lie in the same connected component of RR(Γ).
This fact is stated in the following lemma.

Lemma 4.1.2. Let K = R, and let A and B two instances of a GSP Γ. Then
there is a continuous evaluation connecting A and B if and only if A and B lie
in the same connected component of RR(Γ).

Proof. Let A and B be instances of Γ. Then by definition, the coordinates of A
and of B fulfill the relations of Γ, hence A, B ∈ RR(Γ). The same argument
shows that a continuous evaluation is a continuous path in RR(Γ), and each path
in RR(Γ) is a continuous evaluation. This implies that there is a continuous eval-
uation connecting A and B if and only if A and B lie in the same path-connected
component of RR(Γ). Since RR(Γ) is a semi-algebraic set, the path-connected
components of RR(Γ) coincide with the connected components of RR(Γ); see [4,
Sect. 3.2 and Sect. 5.2].

The connected components ofRR(Γ) can be computed with the algorithm of Basu
et al. [4, Sect. 16.4]. For each connected component, this algorithm outputs a
boolean combination of polynomial equalities and inequalities that describes the
connected component. A connected component contains the instances A and B
if and only if the coordinates of A and of B fulfill this boolean combination
of polynomial equalities and inequalities. Thus, we have proven the following
theorem.

Theorem 4.1.3. The Reachability Problem is decidable for K = R.
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If we are dealing with the complex Reachability Problem (K = C), we can use the
same approach. Then the term τ(γ) of a

√
-operation γ = (a ←

√
b) is defined

by τ(γ) := (a2 = b ∧ b 6= 0). Additionally, each complex variable v of the GSP Γ
is split into two variables vr and vi representing the real and the imaginary part
of v. We call the corresponding semi-algebraic set RC(Γ).

Corollary 4.1.4. The Reachability Problem is decidable for K = C.

4.2 The Tracing Problem

We restrict on polynomial paths for the free variables. As for the Reachability
Problem, we start with the real situation, and we use the GSP Γ from Exam-
ple 3.1.3 describing

√
z2 − 1 to explain the algorithm; see Example 4.1.1. In

addition to the GSP Γ, we are given a polynomial path p(t) : [0, 1] → R of the
free variable z. This defines the following semi-algebraic set:

TR(Γ0) := { (t, z, v1, v2, v2) ∈ R× R4 |0 ≤ t ≤ 1 ∧ z = p(t) ∧ v1 = z2 ∧
v2 = v1 − 1 ∧ v2

3 = v2 ∧ v2 > 0}

More generally, let Γ be an arbitrary GSP having the k free variables z−k+1, . . . , z0

and the n dependent ones v1, . . . , vn. Let p(t) = (p−k+1(t), . . . , p0(t)) : [0, 1]→ Rk

be a polynomial path of the free variables. Using the same notation as in the
definition of RR(Γ), we define

TR(Γ) := { (t, z−k+1, . . . , z0, v1, . . . , vn) ∈ R× Rk+n | 0 ≤ t ≤ 1
∧ z−k+1 = p−k+1(t) ∧ · · · ∧ z0 = p0(t) ∧ τ(γ1) ∧ τ(γ2) ∧ · · · ∧ τ(γn)}.

To decide the Tracing Problem, we have to determine whether A and B lie in
the same connected component of TR(Γ). Additionally, at A we must have t = 0,
and at B we must have t = 1.

Lemma 4.2.1. Let A = (zA, vA) ∈ Rk × Rn and B = (zB, vB) ∈ Rk × Rn be
instances of a GSP Γ and p(t) be a polynomial path of the free variables of Γ
with p(0) = zA and p(1) = zB. There exists a continuous evaluation along p(t)
starting at the instance A, and this continuous evaluation ends at B, if and only
if A and B lie in the same connected component of TR(Γ), at A we have t = 0,
and at B we have t = 1.

Proof. The proof is similar to the proof of Lemma 4.1.2. Two continuous evalua-
tions only could meet at an instance where the radicand of a

√
-operation is zero.

Since these are excluded in TR(Γ), a continuous evaluation along the path p(t) is
a connected component of TR(Γ).
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We can adapt this algorithm for the Tracing Problem to piecewise polynomial
paths p(t) = (p−k+1(t), . . . , p0(t)) : [0, 1] → Rk in a straight forward way. A
path p(t) = (p−k+1(t), . . . , p0(t)) : [0, 1] → Rk is a piecewise polynomial path, if
there is a subdivision of the time interval [0, 1] into finitely many intervals [ti, ti+1]
such that the restriction p|[ti,ti+1] is a polynomial path. Thus, in the definition of
the semi-algebraic set TR(Γ), we have to replace the term

0 ≤ t ≤ 1 ∧ z−k+1 = p−k+1(t) ∧ · · · ∧ z0 = p0(t)

by

((
0 ≤ t ≤ t1 ∧ z−k+1 = p−k+1|[0,t1]

(t) ∧ · · · ∧ z0 = p0|[0,t1]
(t)
)
∨ · · · ∨

(
tm ≤ t ≤ 1 ∧ z−k+1 = p−k+1|[0,t1]

(t) ∧ · · · ∧ z0 = p0|[0,t1]
(t)
))

.

For the complex Tracing Problem, we choose the same approach as for the com-
plex Reachability Problem and define the semi-algebraic set TC(Γ).

Combined with the algorithm of Basu et al. [4, Sect. 16.4] for the computation of
the connected components of semi-algebraic sets, the previous observations lead
to the following theorem:

Theorem 4.2.2. The Tracing Problem is decidable for piecewise polynomial paths
of the free variables.

4.3 An Algorithm for the Reachability Problem

for Complex GSPs with one Free Variable

and a Finite Number of Critical Points

The Reachability Problem for complex GSPs with one free variable and at most
finitely many critical points can be reduced to the Tracing Problem. Since this
approach gives information about the structure of the Reachability Problem, we
discuss this quite restrictive situation separately. We begin with an overview of
the algorithm.

Algorithm 1. Reachability Problem with one free variable over C and a finite
number of critical points.

1. We check whether the number of critical values is finite. If this is true, we
compute the critical values and a bounding box D = [−C,C] × [−iC, iC]
containing all of them in its interior.
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critical points

B

p1

A Voronoi-Edges

bounding box

Figure 4.1: The left figure shows the Voronoi diagram of three points in a bound-
ing box; in the right figure, a path p1 from A to B is drawn that is essentially
composed of edges of the Voronoi diagram.

2. We compute a finite set of paths that suffices to decide the Reachability
Problem. For this purpose, we compute the Voronoi diagram [5, 58] of
the critical values in the bounding box D. The considered paths basically
consist of edges of this Voronoi diagram; see Figure 4.1.

3. To decide the Reachability problem, we trace every path computed in step 2.

Details of Algorithm 1. We discuss the details of each step of Algorithm 1.
We begin with step 2, since this step is the quintessence of the algorithm.

Ad 2: We construct a finite set of paths with the following property: After
tracing along these paths, we can easily decide the Reachability Problem. This
construction is based on three concepts:

i) The Voronoi Diagram:

First, we recall the common notion of the Voronoi diagram of a finite set S =
{c1, . . . , cf} of points in the plane R2=̂ C; see Figure 4.1. In our situation, these
points are the critical values of the GSP Γ. The Voronoi region of a point ci

contains all points of R2=̂ C that are closer to ci than to all other points of S.
The line segments (or rays) separating two Voronoi regions are called Voronoi
edges, their endpoints are the Voronoi vertices. A formal definition can be found
in [58]. The Voronoi Diagram is a planar graph having the following properties:

(a) The diagram has finitely many edges, and the edges are line segments or
rays,

(b) no critical point lies on an edge of the diagram, and

(c) each facet (Voronoi region) contains exactly one critical point.

We place the computed Voronoi diagram into the bounding box D computed in
step 1 of Algorithm 1. At the intersection points of the Voronoi edges with the
boundary of D, we introduce new vertices and cut off the (old) Voronoi edges.
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p2
Voronoi-Edges

critical points

bounding box
B B

AA

wiB

p1

wiA

Figure 4.2: Two paths p1 and p2 from A to B are drawn that we have to consider
in our algorithm. In the left figure the construction of the Voronoi vertices wiA

and wiB is indicated.

ii) Homotopy Classes of Paths:

The next aim is to define a discrete set of paths of the free variable z of Γ such
that we can decide the Reachability Problem by tracing along these paths. We
will see that these paths basically consist of Voronoi edges from (i).

Here, the main observation is that “similar” paths (i.e. homotopic paths) of the
free variable z lead to “similar” continuous evaluations; i.e., if the continuous
evaluations have the same starting instance, then they also have the same final
instance. Roughly speaking, two paths with the same endpoints are called ho-
motopic, if one of them can be continuously transformed into the other one, and
the transformation leaves the endpoints of the curves fixed; see Definition 8.6.10.
This defines an equivalence relation on the set of continuous paths, the equiva-
lence classes are called homotopy classes.

Let c1, . . . , cf be the critical values of the GSP Γ. Lemma 4.3.1 is a consequence
of Corollary 8.6.12.

Lemma 4.3.1. Let Γ be a GSP over C with one free variable z and n dependent
variables v1, . . . , vn. Let S = {c1, . . . , cf} ⊂ C be the set of critical values of Γ.
Let p : [0, 1]→ C \ S and p′ : [0, 1]→ C \ S be homotopic continuous paths of the
free variable z of Γ, and let A = (a0, . . . , an) ∈ Cn+1 be an instance of Γ with
a0 = p(0) = p′(0). Then the continuous evaluations of p and of p′ starting at A
end at the same instance of Γ.

Hence, to decide the Reachability Problem, it suffices to take one path p : [0, 1]→
C \ {c1, . . . , cf} per homotopy class of paths [0, 1]→ C \ {c1, . . . , cf} starting and
ending at the corresponding instances. The two paths p1 and p2 in Figure 4.2 are
not homotopic and represent different homotopy classes.

Since each Voronoi cell contains exactly one critical value, every homotopy class
of paths connecting two Voronoi vertices has a representative that is composed
by a finite number of Voronoi edges of the Voronoi diagram of the critical points
c1, . . . , cf ; see Figure 4.2 for an example.
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If the starting instance A = (zA, vA) or the final instance B = (zB, vB) does not
lie above a Voronoi vertex, we choose a vertex wiA or wiB of the diagram and
consider the linear path γA or γB connecting zA and wiA , or zB and wiB . The
vertices wiA and wiB can be chosen such that the linear paths γA and γB do not
hit critical values; see Remark 4.3.2 and Figure 4.2.

Remark 4.3.2. The Voronoi vertices wiA (or wiB) can be chosen as follows: If zA

lies outside the bounding box, then wiA is the nearest vertex on the bounding box
such that the line segment |zAwiA | does not intersect the interior of the bounding
box. Otherwise, zA is contained in a Voronoi cell. We triangulate this cell by
adding all edges connecting a vertex of this cell with the critical value defining
the cell. Then, wiA is the nearest Voronoi vertex of the triangle containing zA.
If in the first step of Algorithm 1 the critical values have been approximated, we
have to choose wiA and wiB more carefully.

As long as there is no critical value on the linear paths γA and γB, it does not
matter which Voronoi vertices are chosen for wiA and wiB : For another choice
of wi′

A
or wi′

B
, the linear path connecting zA and wi′

A
, or zB and wi′

B
is homotopic

to a concatenation of γA or γB and some paths that follow edges of the Voronoi
diagram.

iii) A Graph G = (V,E) on a Riemann Surface:

Finally, we find a finite subset of paths from (ii) of the free variable z of Γ
such that we can decide the Reachability Problem by tracing along these paths.
Our construction combines the idea of Voronoi diagrams and covering spaces or
Riemann Surfaces of algebraic functions, respectively.

Let l = 2s be the number of instances lying above a regular point, where s is
the number of square root operations of the GSP Γ; see page 35. Let VD be the
Voronoi diagram in the bounding box D of the critical values of the GSP Γ having
the Voronoi vertices w1, . . . , wg ∈ C = R2. We define the graph G = (V,E) as
follows: The vertex set V consists of l copies wi,1, . . . , wi,l of each Voronoi vertex
wi. Two vertices wi,j and wi′,j′ are connected by an edge if the following holds:
There is a Voronoi edge in the Voronoi diagram between the Voronoi vertices
wi and wi′ , and the continuous evaluation of this Voronoi edge starting at the
instance wi,j ends at wi′,j′ .

Using the graph G from above, the Reachability Problem can be decided as
follows:

(a) We consider a linear path γA : [0, 1] → C from the starting instance A (or
more precisely zA) to a Voronoi vertex wiA and another path γB : [0, 1]→ C
from the final instance B to a Voronoi vertex wiB . The corresponding con-
tinuous evaluations starting at A or B end at the instances of the GSP that
correspond to the vertices wiA,j or wiB ,j′ of our graph G; see Remark 4.3.2.
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(b) Check whether the vertices wiA,j and wiB ,j′ are in the same connected com-
ponent of the graph G.

Ad 3 The tracing process is included into the construction of the graph G =
(V,E) defined in (iii) of step 2.

Ad 1 Lemma 3.2.9 implies that the set of critical values of Γ is either finite or
every point z ∈ C is a critical value of Γ. Thus, Γ has finitely many critical values
if and only if the set of critical values is bounded. Recall that the set of critical
values is finite if and only if the set of critical points is finite; see Lemma 3.2.5.

The critical values are solutions of polynomial systems of equations in one vari-
able. Unfortunately, there seem to be no algorithms to compute the solutions of
such a system, exactly. However, in step 1 of Algorithm 1 , it suffices to approx-
imate the critical values up to the precision 1

6
ǫ, where ǫ is the minimum distance

between two critical values. Then, the Voronoi diagram of the approximated
points still has the properties required in step 2 of Algorithm 1.

Let S = {c1, . . . , cf} ⊂ C be the set of critical values of Γ. The distance of two
points ci 6= cj ∈ S is at least ǫ. For every point ci ∈ S we choose a point c′i that
is contained in the disc with center ci and radius 1

6
ǫ. Let S ′ := {c′1, . . . , c′f}. By

construction of the points c′i ∈ S ′, the distance of two points c′i 6= c′j ∈ S ′ is at
least 2

3
ǫ. We consider the Voronoi diagram VD(S ′) of S ′. Since the distance of

two different points of S ′ is at least 2
3
ǫ, the Voronoi edges that are incident to

the Voronoi region of the approximated critical value c′j have at least distance 1
3
ǫ

to c′j. Thus, the Voronoi region of a point c′i contains the disc with center c′i and
radius 1

6
ǫ. Hence, ci ∈ S is the only point of S that is contained in the Voronoi

Region of c′i in VD(S ′). We choose the bounding box D large enough.

We can determine ǫ or at least a lower bound for the minimum distance of two
critical values using the decidability of Tarski formulas [4, Sect. 14.1] and binary
search; see Example 4.3.3. For the approximation of the critical values, we could
use an Interval Newton Method; see Section 7.4 and Appendix A.5.

Example 4.3.3. Again, we use the GSP Γ describing the expression
√

z2 − 1
from Example 3.1.3. The minimum distance of two critical values is at least ǫ if
and only if the following formula is true:

∀z0, v01, v02, v03, z, v1, v2, v3 :(
v01 = z2

0 ∧ v02 = v01 − 1 ∧ v2
03 = v02 ∧ v02 = 0 ∧ z0 6= z ∧

v1 = z2 ∧ v2 = v1 − 1 ∧ v2
3 = v2 ∧ v2 = 0

)

=⇒ ‖z0 − z‖ ≥ ǫ

Using this Tarski formula, we can determine a lower bound for the minimum
distance: We start with an initial guess for ǫ and halve this value until the Tarski
formula is fulfilled.
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The previous observations prove the following corollary:

Corollary 4.3.4. Let Γ be a GSP with just one free variable and at most finitely
many critical points. Then Algorithm 1 solves the Reachability Problem for every
given pair of instances A and B.

We finish this section with two interesting examples.

Example 4.3.5. We give a GSP Γ, whose configuration space is not path-

connected. This GSP describes the expression
√

z2

z
. Recall that the configuration

space of Γ is the set of all instances.

Γ: z ← FREE
v1 ← z · z
v2 ←

√
v1

v3 ← v2/z

If z 6= 0 we have v3 = ±1, and the projection to the coordinate v3 of the configu-
ration space consists of the two points +1 and −1. The critical value of Γ is z = 0.
It induces the 2-critical point (0,0). Additionally, z = 0 causes a division by zero.

There might be exponentially many critical values of a GSP Γ on a path p of the
free variables of Γ as the following example shows.

Example 4.3.6. The expression
√

z2m − 1 can be described by a GSP Γ of
length m + 2 in the following way:

Γ: z ← FREE
v1 ← z · z // v1 = z2

v2 ← v1 · v1 // v2 = z4

...
vm ← vm−1 · vm−1 // vm = z2m

vm+1 ← vm − 1 // vm+1 = z2m − 1

vm+2 ← √
vm+1 // vm+2 =

√
z2m − 1

The critical values are the 2m roots of unity given by the radicand z2m − 1. All

critical values lie on the path p : [0,
√

1
2
]→ C, t 7→ (+

√
1− t2 + it)8 whose graph

is the unit circle.

We can extend Γ by m − 1 iterated square root operations, such that the last
variable v2m+1 describes the expression 2m√

z2m − 1. Then, we have 2m instances
that lie above a regular value of Γ.
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Chapter 5

The Tracing Problem and
Continuation Methods

We can solve the Tracing Problem numerically using continuation methods. Con-
tinuation Methods are a well-established and useful field of modern mathematics;
in [2], Allgower and Georg give an overview. These methods are used to solve sys-
tems of nonlinear equations. We describe a typical application. Let F : RN → RN

be a smooth function, and we want to solve the equation F (x) = 0. Let us as-
sume that we know the solutions of another, possibly simpler system G(x) = 0
where G : RN → RN is a smooth function as well. We consider the func-
tion H : RN × R → RN , (x, λ) 7→ λG(x) + (1 − λ)F (x), which is called convex
homotopy [2, p. 2]. To solve the equation F (x) = 0, we have to solve G(x) = 0
and to trace the solutions from λ = 1 to λ = 0. Tracing these implicitly defined
solution curves numerically is the aim of numerical continuation methods. A
geometric application for homotopy methods is given in [48].

Homotopy methods have successfully been applied to solve polynomial systems of
equations and have lead to the new area Numerical Algebraic Geometry [59]. Here,
the homotopies are chosen such that no singularities occur along the solution
curves and every isolated solution of multiplicity m is reached by exactly m
paths. As already mentioned, these paths are traced using numerical methods.
In [19], a robust algorithm to trace curves that are implicitly defined by algebraic
equations is given. The algorithm is based on interval analysis.

To solve the Tracing Problem, we consider polynomial systems, as well. The
underlying Geometric Straight-Line Program Γ together with the given paths of
the free variables of Γ lead to a polynomial function H : RN+1 → RN . We will
see in Section 5.1 that the continuous evaluation is an implicit curve defined by
the function H. In Section 5.2, we develop a numerical solution that captures
the particular structure of the Tracing Problem. In the Tracing Problem, the

57
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wanted continuous evaluation is a parametrized curve in contrast to the situation
considered in [19].

5.1 Continuous Evaluations as Implicit Curves

We discuss how a continuous evaluation along paths p−k+1(t), . . . , p0(t) of the k
free variables z−k+1, . . . , z0 of a GSP Γ over a field K ∈ {R, C} is given as an
implicit curve of a function H : Kk+n × [0, 1] → Kk+n where n is the number of
dependent variables. Hence we assume that the paths pl(t) of the free variables zl

are continuously differentiable. To define the function H, we assign to every
dependent variable a = vj of Γ a multivariate polynomial Pa = Pvj

:

Dependent Variable a Polynomial Pa

a ← b + c a− (b + c)
a ← b− c a− (b− c)
a ← b · c a− b · c
a ← b/c a · c− b

a ←
√

b a2 − b

The polynomials Pa are polynomials in at most three variables; we have Pa = 0
if and only if the relation that defines the dependent variable a is fulfilled. Using
the polynomials Pa = Pvj

, we define the functions

F = F (Γ) : Kk+n → Kk+n

(z−k+1, . . . , z0, v1, . . . , vn) 7→ (z−k+1, . . . , z0,Pv1 , . . . ,Pvn
)

and H = H(Γ, p−k+1(t), . . . , p0(t)) : Kk+n × [0, 1]→ Kk+n,

(z−k+1, . . . , z0, v1, . . . , vn, t) 7→(z−k+1 − p−k+1(t), . . . , z0 − p0(t),Pv1 , . . . ,Pvn
)

=F (z−k+1, . . . , z0, v1, . . . , vn)
−(p−k+1(t), . . . , p0(t), 0 . . . , 0),

where pl(t) is the path of the free variable zl; l = −k + 1, . . . , 0. We observe that
a point (a−k+1, . . . , a0, a1, . . . , an) ∈ Kk+n fulfills the relations of Γ if and only if

F (a−k+1, . . . , a0, a1, . . . , an)− (a−k+1, . . . , a0, 0, . . . , 0) = (0, . . . , 0).

Similarly, if a tuple of paths (v1(t), . . . , vn(t)) is a continuous evaluation along
the given paths p−k+1(t), . . . , p0(t) of the free variables z−k+1, . . . , z0, then

H(p−k+1(t), . . . , p0(t), v1(t), . . . , vn(t), t) = (0, . . . , 0).

For formal reasons, we identify C=̂R2. If Γ is a GSP over K = C, then we split all
variables in their real and imaginary parts and consider the space R2(k+n)=̂Ck+n.
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Lemma 5.1.1. Let Γ be a GSP over K ∈ {R, C} with k free variables and n
dependent ones.

1. A point (a−k+1, . . . , an) ∈ Kk+n is an instance of the GSP Γ if and only if
F (a−k+1, . . . , an)−(a−k+1, . . . , a0, 0, . . . , 0) = 0 and det F ′(a−k+1, . . . , an) 6=
0 hold.

2. If a point (a−k+1, . . . , an) ∈ Kk+n is a critical point of the GSP Γ, then
det F ′(a−k+1, . . . , an) = 0 holds. A point (a−k+1, . . . , an) ∈ Kk+n is an m-
critical point of the GSP Γ if and only if det F (Γ(m))′(a−k+1, . . . , am) =
0, det F (Γ(m−1))′(a−k+1, . . . , am−1) 6= 0 and F (Γ(m−1))(a−k+1, . . . , am−1) −
(a−k+1, . . . , a0, 0, . . . , 0) = 0 hold where Γ(m) and Γ(m−1) are the m-head
and the (m− 1)-head of Γ.

3. Let p−k+1(t), . . . , p0(t) be continuously differentiable paths of the free vari-
ables z−k+1, . . . , z0 of the GSP Γ, and let A = (a−k+1 = p−k+1(0), . . . , a0 =
p0(0), a1, . . . , an) be an instance of Γ. If det F ′(A) = det ∂H

∂A
6= 0, then

the corresponding continuous evaluation (v1(t), . . . , vn(t)) exists locally, i.e.,
there is an ε > 0 such that the paths vj(t) are defined for t ∈ (−ǫ, ǫ).
Moreover, the paths vj(t) are continuously differentiable over (−ǫ, ǫ); j =
1, . . . , n.

Proof. To prove Lemma 5.1.1, we consider the Jacobian F ′(a−k+1, . . . , an) of F
in the point (a−k+1, . . . , an). Since a GSP only uses variables defined before,
this (k + n)× (k + n)-matrix is a lower triangular matrix. The rows that belong
to a dependent variable have at most three nonzero entries. The entries of the
diagonal are 1 for the free variables zl, the entries of the diagonal for the dependent

variables a = vj are the partial derivatives
∂Pvj

∂vj
= Pa

∂a
, they are listed in the

following table:

Dependent Variable a Polynomial Pa
∂Pa

∂a

a← b + c a− (b + c) 1
a← b− c a− (b− c) 1
a← b · c a− b · c 1
a← b/c a · c− b c

a←
√

b a2 − b 2a

We have

det F ′(a−k+1, . . . , a0, a1, . . . , an) = det





1
. . .

1

∗ · · · ∗ Pv1

∂v1
...

. . . . . .

∗ · · · · · · · · · ∗ Pvn

∂vn




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=
Pv1

∂v1

· · · · · Pvn

∂vn

.

Hence, det F ′(a−k+1, . . . , an) = 0 holds if and only if a root variable or the divisor
variable of a division variable is zero. By construction of F , a tuple (a−k+1, . . . , an)
fulfills all relations of Γ if and only if F (a−k+1, . . . , an)−(a−k+1, . . . , a0, 0, . . . , 0) =
0 holds. Since a tuple (a−k+1, . . . , an) is an instance of Γ if and only if all relations
given by Γ are fulfilled and no division by zero and no root of zero occur, part 1
is proven.

Part 2 can be shown using the same arguments. Part 3 is a consequence of the
implicit function theorem. Since A is an instance at t = 0, we have H(A, 0) =
0.

To apply the implicit function theorem properly, we have to assume that the
paths pl(t) of the free variables zl are continuously differentiable in a neighbor-
hood U[0,1] of the time interval [0, 1].

We summarize the consequences of the implicit function theorem: There is an
open interval J ⊂ U[0,1] with 0 ∈ J and a continuously differentiable curve α : J →
Kk+n with the following properties:

1. α(0) = A, i.e., α(0) is the given starting instance A.

2. H(α(t), t) = 0 holds for all t ∈ J , hence α(t) fulfills all relations of the
GSP Γ.

3. det F ′(α(t)) = det
(

∂H
∂A

(α(t), t)
)
6= 0 holds for all t ∈ J ; this implies that

the (k +n)× (k +n+1)-matrix H ′(α(t), t) has full rank k +n for all t ∈ J .

Combining Properties 1-3 shows that the curve α(t) is the wanted continuous eval-
uation (p−k+1(t), . . . , p0(t), v1(t), . . . , vn(t)). Deriving the equation H(α(t), t) = 0
from 2 leads to

H ′(α(t), t) · (α̇(t), 1)t = 0,

and (α̇(t), 1) is a nonzero vector of the kernel of H ′(α(t), t). Since the rank
of H ′(α(t), t) is k + n, the vector (α̇(t), 1) spans this kernel. Using these ob-
servations, we can describe the curve α(t) and hence the continuous evaluation
(v1(t), . . . , vn(t)) by the following initial value problem: Let (u(t), 1) = (u, 1) ∈
ker H ′(α(t), t), then α is described by

• α̇ = u, ṫ = 1;

• α(0) = A, t(0) = 0.
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It remains to show that u(t) is a continuous function. To see this, we con-
sider the tangent vector τ(M) ∈ Rk+n+1 of an (k + n) × (k + n + 1)-matrix M
with rank(M) = k + n; see [2, Def. 2.1.7, p. 9]. The vector τ(M) is the unique

vector satisfying the conditions Mτ = 0, ‖τ‖ = 1, and det
(

M
τ t

)
> 0. By [2,

Lem. 2.1.8], the function M 7→ τ(M) is smooth. Thus, the function u(t) can
be described by (u(t), 1) = τ(H ′(α(t), t))/τk+n+1 where τk+n+1 is the last en-
try of the vector τ(H ′(α(t), t)). Since ker(H ′(α(t), t) is spanned by (α̇, 1), we
have τk+n+1 6= 0, and u(t) is a continuous function.

The previous observation shows that the Tracing Problem can be interpreted
as an initial value problem that has the corresponding continuous evaluation as
solution curve. Additionally, this fact implies the existence and uniqueness of
continuous evaluations. The approach via initial value problems illuminates the
Tracing Problem from the viewpoint of Dynamical Systems. Two interesting
structural properties are given in [2, Lem. 2.1.13 and Thm. 2.1.14].

5.2 About Numerical Solutions for the Tracing

Problem

Various numerical methods have been developed to trace implicitly defined
curves [2, 59, 19, 15] and to solve initial value problems [15] that could be used
to solve the Tracing Problem from Dynamic Geometry. We adapt a generic
Predictor-Corrector method to the Tracing Problem. The resulting method
is an increment-and-fix path following method since the continuation parame-
ter t remains fixed in the corrector step [59, p. 10]. Allgower and Georg give
a well-founded introduction to Predictor-Corrector methods in [2]. They in-
vestigate a general situation where H : RN+1 → RN is a smooth function and
the starting point u0 is a regular value [2, Sect. 2.2]. The aim is to trace the
curve β : R ⊃ J → RN+1 with β(0) = u0 and H(β(s)) = 0 for all s ∈ J
as long as we have rank(H ′(β(s)) = N and β′(s) 6= 0. In their general con-
text, the function H does not give rise to a parametrization of the solution
curve β; Allgower and Georg choose the parametrization with respect to the
arclength. In our situation explained in Section 5.1, the paths pl(t) of the free
variables zl are part of the definition of the function H : Rk+n × [0, 1] → Rk+n.
The paths pl(t) are parametrized curves with respect to the time t, and their
parametrization induces a parametrization of the solution curve β(t) = (α(t), t)
as seen in Section 5.1. Recall that the curve α(t) is the desired continuous
evaluation (p−k+1(t), . . . , p0(t), v1(t), . . . , vn(t)). To harmonize the notations, we
set N := k + n.
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Wi+1

hτ(H ′(Ui))
Ui

Vi+1

Ui+1βi

β

Figure 5.1: The predictor point Vi+1 and the corrector point Ui+1 are shown.

Let A0 := A = (a−k+1 = p−k+1(0), . . . , a0 = p0(0), a1 . . . , an) be the starting
instance that is specified in the Tracing Problem. We set U0 := (A0, 0) ∈ RN+1.
The aim of Predictor-Corrector methods is to determine iteratively a sequence of
points U1, U2, U3, · · · ∈ RN+1 alongside the curve β that fulfill a certain tolerance
criterion like H(Ui) ≤ ǫ for some ǫ > 0. If ǫ is chosen small enough, we can
expect that the points Ui are close to the solution curve β. We assume that the
points Ui are regular points of the function H. For every Ui, we have a unique
maximal solution curve βi : R ⊃ J → Rk+n+1 = RN+1 of the initial value problem

β̇ = τ(H ′(β));

β(0) = Ui.

To obtain a new point Ui+1, we first make a predictor step; see Figure 5.1. Like
Allgower and Georg in [2], we choose an Euler predictor

Vi+1 := Ui + hτ(H ′(Ui)),

where h > 0 represents a step length and τ(H ′(Ui)) is the tangent vector [2,
Def. 2.1.7] defined on page 61. The vector τ(H ′(Ui)) has unit length and is
tangent to the curve βi in the point Ui.

The second step is called corrector step. Starting with the predictor point Vi+1,
the closest point Wi+1 on the solution curve β is approximated. This process leads
to the point Ui+1. Since we have H(β) = 0, we could use Newton-like methods
for this purpose, and we expect a rapid convergence [2, Sect. 2.2]; see Figure 5.1.
The Predictor-Corrector continuation method for approximating β consists of
repeatedly performing predictor and corrector steps. As pointed out by Allgower
and Georg in [2], to construct an efficient and robust Predictor-Corrector method,
we have to consider the following problems:

1. Develop an effective step length adaptation;

2. Select an efficient implementation of the corrector step;
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3. Include higher order predictors efficiently;

4. Handle or approximate special points on the solution curve like turning
points or bifurcation points.

We adapt the general predictor and corrector steps to the Tracing Problem
from Dynamic Geometry and to the function H from page 58. As indicated
on page 61 and on page 60, we interpret the last coordinate of a computed
point Ui ∈ RN+1 as time and get Ui = (Ai, ti) with Ai ∈ RN = Rk+n. If a
computed point Ui lies on the solution curve β, then we have H(Ui) = 0. By
construction of the function H, we have H(Ai, ti) = H(Ui) = 0 if and only
if Ai = (ai,−k+1, . . . , ai,0, ai,1, . . . , ai,n) is an instance of the underlying GSP Γ
with ai,−k+1 = p−k+1(ti), . . . , ai,0 = p0(ti). Since this observation holds for all
points in RN+1 = Rk+n × R, the last coordinate of the solution curve β repre-
sents the time and we have shown β(t) = (α(t), t). Additionally, we have α(t) =
(p−k+1(t), . . . , p0(t), v1(t), . . . , vn(t)), where (v1(t), . . . , vn(t)) is the wanted con-
tinuous evaluation.

If H(Ui) = 0, then the vector τ(H ′(Ui)) used in the predictor step is the tangent
to the solution curve β(t) = (α(t), t) in the point Ui with length 1 pointing in
forward direction. To keep track of the parametrization induced by the paths pl(t)
of the free variables of the underlying GSP Γ, we choose the derivative β̇(t) =
(α̇(t), 1) of β(t) = (α(t), t) at time ti as tangent vector in the predictor step.
To determine α̇(ti), we recall α(t) = (p−k+1(t), . . . , p0(t), v1(t), . . . , vn(t)), where
(v1(t), . . . , vn(t)) is the wanted continuous evaluation. Thus, to determine α̇(ti)
we have to compute the derivatives ṗl(ti) of the paths pl and the derivative
(v̇1(ti), . . . , v̇n(ti)) of the continuous evaluation (v1(t), . . . , vn(t)) at time ti. We
assume that the derivatives ṗl(t) of the paths pl of the free variables zl are known.
Since Ai is an instance at time ti, we can efficiently determine (v̇1(ti), . . . , v̇n(ti))
using the derivative GSP Γ̇ defined in Section 3.5.

We consider the resulting predictor point Vi+1 = (Ai, ti) + hβ̇(ti) =: (Ãi+1, ti+1)
with ti+1 := ti +h. If the step length h is chosen sufficiently small, we can expect
that the predictor point Vi+1 = (Ãi+1, ti+1) is sufficiently close to the point β(ti+1)
on the solution curve β. This implies that the point Ãi+1 is sufficiently close
to the instance Ai+1 = (p−k+1(ti+1), . . . , p0(ti+1), v1(ti+1), . . . , vn(ti+1)) = α(ti+1)
lying on the wanted continuous evaluation (p−k+1(t), . . . , p0(t), v1(t), . . . , vn(t)).

Now, we treat the corrector step. A first possibility is to approximate the in-
stance Ai+1 using the Newton method for the function F defined on page 58 with
the point Ãi+1 as initial guess. Using this approach, we can only expect that the
computed points lie close to the solution curve α(t). The Newton method uses
the inverse matrix of the derivative F ′ of F . Similar to the derivative GSP Γ̇, we
could compute F ′ symbolically. If Γ has only one root operation, and this root
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operation defines the last dependent variable vn of Γ, then the Newton method
is in fact the Babylonian method for computing square roots. Since the correc-
tor point Ui+1 might not lie on the solution curve β(t) = (α(t), t), we cannot
use the efficient method via the derivative GSP Γ̇ to determine the tangent vec-
tor τ(H ′(Ui+1)) in the next predictor step.

In the second approach, we present a discrete corrector step that uses the spe-
cial structure of GSPs. After the predictor step, we consider the time ti+1 =
ti + h, where h is the step length. The positions of the free variables zl of
the GSP Γ at time ti+1 are given by their paths pl; we have zl = pl(ti+1)
for l = −k + 1, . . . , 0. Following the operations of Γ, we can determine all in-
stances at the position (p−k+1(ti+1), . . . , p0(ti+1)). For the corrector point Ui+1 =
(Ai+1, ti+1), we choose the instance Ai+1, which is “closest” to the point Ãi+1

of the predictor point Vi+1 = (Ãi+1, ti+1). We determine the instance Ai+1 =
(ai+1,−k+1 = p−k+1(ti+1), . . . , ai+1,0 = p0(ti+1), ai+1,1, . . . , ai+1,n) closest to Ãi+1 =
(ãi+1,−k+1, . . . , ãi+1,0, ãi+1,1, . . . , ãi+1,n) coordinatewise starting with the depen-
dent variable v1: The coordinate ai+1,1 is the output of v1 that is closest to ãi+1,1.
Using the position (ai+1,−k+1 = p−k+1(ti+1), . . . , ai+1,0 = p0(ti+1)) and the coordi-
nate ai+1,1, we can compute the output ai+1,2 of the dependent variable v2 that
is closest to ãi+1,2. We give the general formula of this iterative procedure: As-
sume the coordinates ãi+1,1, . . . , ãi+1,j−1 of the dependent variables v1, . . . , vj−1

are already determined. Using the position (ai+1,−k+1 = p−k+1(ti+1), . . . , ai+1,0 =
p0(ti+1)) and the coordinates ai+1,1, . . . , ai+1,j−1, we can compute the output ai+1,j

of the dependent variable vj that is closest to ãi+1,j. This algorithm runs in O(n)
time in the real RAM-model, where n is the number of dependent variables of Γ,
if the position (ai+1,−k+1 = p−k+1(ti+1), . . . , ai+1,0 = p0(ti+1)) is known. If we do
not assume exact computation, we have to take rounding errors into account even
in the predictor step.

The main disadvantage of the presented Predictor-Corrector methods is that
there is no guarantee for the correctness of the computed solutions. If the chosen
step length h in the predictor step is too large, the corrector point might jump to a
wrong path of the dependent variables. To overcome this problem, we developed
the algorithms presented in Chapter 6. These algorithms are based on a step
length adaptation that guarantees the correctness of the solution curve. Critical
points are surrounded by a detour; see Chapter 7.

Experimental Results We give some experimental results for the Predictor-
Corrector method. We used the discrete corrector step presented in the second
approach. Unfortunately, we did not use the derivative GSP Γ̇ to determine the
tangent vector. Instead, we computed the kernel of the matrix H ′(Ui). For the
implementation, we used the computer algebra software Maple [30].
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Example 5.2.1. We consider the GSP

Γ1 : z ← FREE
v1 ←

√
z,

the starting instance A = (−1 + 0.1i, +
√
−1 + 0.1i ≈ 0.05 + i), and the path

p1 : [0, 1] → C, t 7→ 2t − 1 + 0.1i. The wanted final instance is B = (1 +
0.1i, +

√
1 + 0.1i ≈ 1 + 0.05i). The step length h and the resulting predictor and

corrector points are shown in Figures 5.3(a)-5.3(c).

Example 5.2.2. The GSP Γ2 describes the algebraic expression
√

(1− z2)3:

Γ2 : z ← FREE
v1 ← z · z
v2 ← 1− v1

v3 ← v2 · v2

v4 ← v3 · v2

v5 ←
√

v4

The starting instance A = (0, 0, 1, 1, 1, 1) and the path p2 : [0, 1] → C, t 7→
1−cos(tπ)−sin(tπ) are given. The resulting final instance in the Tracing Problem
is B = (2, 4,−3, 9,−27,−

√
−27 ≈ −5.2i). The step length h and the resulting

predictor and corrector points are shown in Figures 5.3(d)-5.3(f).

Example 5.2.3. We consider the GSP Γ3:

Γ3 : z ← FREE
v1 ← z · z
v2 ← v1 − 1 //v2 = z2 − 1
v3 ← v1 − 0.01 //v3 = z2 − 0.01
v4 ← v2 · v3 //v4 = (z2 − 1)(z2 − 0.01)
v5 ← 10iv4 //v5 = 10i(z2 − 1)(z2 − 0.01)
v6 ← z + v5 //v6 = z + 10i(z2 − 1)(z2 − 0.01)
v7 ←

√
v6

If we assume that z takes values in R, then the dependent variables vj de-
scribe functions vj(z) : R → C. The image of the function v6(z) is the set
{(z, i 10(z2 − 1)(z2 − 0.01)) ∈ C | z ∈ R}, which can be interpreted as the graph
of the function f : R → R, z 7→ 10(z2 − 1)(z2 − 0.01). The graph of f is shown
in Figure 5.2.

For the Tracing Problem, we are given the path p3 : [0, 1]→ C, t 7→ 2.2t− 1.1, of
the free variable z and the starting instance

A = (−1.1, 1.21, 0.21, 1.2, 0.252, 2.52i,−1.1+2.52i, +
√
−1.1 + 2.52i ≈ 0.9+1.4i).
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Figure 5.2: The graph of the function f is shown.

The resulting final instance is

B = (1.1, 1.21, 0.21, 1.2, 0.252, 2.52i, 1.1 + 2.52i, +
√

1.1 + 2.52i ≈ 1.4 + 0.9i).

The step length h and the resulting predictor and corrector points are shown in
Figures 5.3(g)-5.3(i).

The experiments show that, for a further development of Predictor Corrector
methods for the Tracing Problem from Dynamic Geometry, we could consider
the curvature or the “speed” of the solution curve to work out an improved step
length adaptation.

Related Methods Kearfott and Xing [36] give a continuation method that is
based on interval arithmetic and guarantees the correctness of the solution. They
use a so-called Gauss-Seidel-Sweep and consider boxes containing the solution
curve. Their aim is to shrink the boxes in order to achieve that a box only
contains one solution. This approach seems not to be efficient for solving the
Tracing Problem from Dynamic Geometry: Here, we first determine a box that
contains at least one solution curve. Afterwards, we decrease the step length and
separate the solution curve from the other solution candidates; see Chapter 6.

Blum, Cucker, Shub and Smale [7, Sect. 14.3] investigate the complexity of ho-
motopy continuation methods. They consider functions over C and combine the
predictor and the corrector step in one single step. They estimate the number of
Newton steps needed to follow the correct solution curve. As in [2], the solution
curve is parametrized by arc length. The discussed estimates are based on a con-
dition number, which might be difficult to determine. However, we do not know
how to use this method to solve the Tracing Problem from Dynamic Geometry.
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(f) GSP Γ2, h = 0.1
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(g) GSP Γ3, h = 0.0125
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Figure 5.3: The predictor points (boxes) and corrector points (crosses) for Ex-
amples 5.2.1, 5.2.2 and 5.2.3 are shown for different step lengths. The values for
the last dependent variable of the GSPs Γ1, Γ2 and Γ3 are drawn in the complex
plane C.
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Chapter 6

Reliable Algorithms for the
Tracing Problem

We describe a reliable algorithm for the Tracing Problem for GSPs over R or C
that is based on interval arithmetic [14]. We assume that there are no critical
points on the paths p−k+1, . . . , p0 of the free variables z−k+1, . . . , z0, the treatment
of critical points is discussed in Chapter 7. Furthermore, we restrict to linear
paths p−k+1, . . . , p0 which simplifies step 2 of Algorithm 2. The used interval
arithmetic has to fulfill the inclusion monotonicity property.

We give the main ideas in Section 6.1. Algorithm 3 from Section 6.2 traces
the continuous evaluation v1(t), . . . , vn(t) stepwise. For each step, a proper step
length h0 is determined in advance. To achieve this aim, we assign to each
variable of Γ an interval that contains the range of the corresponding coordinate-
path of the continuous evaluation. Algorithm 2 performs a single tracing step,
Algorithm 3 uses Algorithm 2 and traces the whole continuous evaluation as
long as there occurs no critical point. Algorithm 4 from Section 6.3 extends
Algorithm 2 by an improved step length adaptation. It uses the derivative GSP Γ̇.

In Section 6.4, we discuss the problem of overestimation due to the usage of
interval arithmetic. In Section 6.5, we show that small modifications to the given
algorithm combined with the treatment of critical points from Chapter 7 lead
to a robust method for solving the Tracing Problem. Due to the robustness,
this reliable method could be a useful tool in automated theorem proving and
for path-tracking problems in homotopy methods for solving algebraic systems of
equations. The extension of the algorithms to GSPs with cubic and higher roots
is addressed in Section 6.6. At the end of this chapter, we deliberate about using
affine arithmetic instead of interval arithmetic.

69
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Figure 6.1: The path d2(t) of the divisor variable d2, the point d2(t2), and the
interval I are shown for rectangular and for circular arithmetic.

6.1 Main Idea

We describe the main idea of our reliable algorithms for the Tracing Problem.
Recall that we have to deal with the ambiguity due to the root function and with
critical points, which are caused by a division by zero or a root of zero. Thus,
the operations division and root need a special treatment. We explain how to
determine the step length of a single tracing step.

Division: Let vm = d1/d2, d1, d2 ∈ {z−k+1, . . . , z0, v1, . . . , vm−1}, be a division
operation, and let d1(t), d2(t) : [0, 1]→ K be the corresponding paths of the vari-
ables d1 and d2 in the continuous evaluation. In order to simplify the description,
we assume that the paths d1(t) and d2(t) do not contain critical points, i.e., there
is no t ∈ [0, 1] for that

√
0 or /0 occurs during the computation of d1(t) and d2(t).

For further details concerning the treatment of critical points see Chapter 7.

For executing the division vm = d1/d2 properly over a time interval [t1, t2] ⊂ [0, 1],
we have to ensure that the path d2(t) does not pass through 0 ∈ C. If the
image d2([t1, t2]) of d2(t) is contained in an interval I with 0 /∈ I, then the
path d2(t) has no zeros in [t1, t2]. We choose t2 small enough; see Figure 6.1.

Root: Let vm =
√

r with r ∈ {z−k+1, . . . , z0, v1, . . . , vm−1} be a root instruction.
Let r(t) : [0, 1]→ C, and let vm(t) : [0, 1]→ C be the corresponding paths of the
radicand variable r and of vm in the continuous evaluation. For pointing out the
main ideas, we assume that v := vm is defined by the first root-instruction of the
GSP Γ and that the path r(t) does not contain critical points itself, i.e., there is
no t ∈ [0, 1] such that

√
0 or /0 occurs in the computation of r(t). We describe

the first step and determine a step length h for this step.
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Figure 6.2: The left figure shows the path v(t) := vm(t), the bisector of am = v(0)
and −am as well as the point v(t0). On the right hand side the path r(t) of the
radicand and the ray l is shown.

The main challenge is to break up the ambiguity of the root-function.

Observation: We can “walk” on the paths r(t) and v(t) = vm(t) as long as
we can “determine the right final instance”. The difficulty is that we do not
know these paths since they are implicitly given by the GSP Γ and the starting
instance A. Instead, we can compute all possible instances at a fixed time t̃,
i.e., all instances C = (p−k+1(t̃), . . . , p0(t̃), c1, . . . , cm) having p−k+1(t̃), . . . , p0(t̃)
as values for the free variables z−k+1, . . . , z0. From these instances, we have to
detect the one that lies on the continuous evaluation at time t̃, which is

(p−k+1(t̃), . . . , p0(t̃), v1(t̃), . . . , vm(t̃)).

We achieve this by choosing t0 ∈ [0, 1] with the property

∀t ∈ [0, t0] : |vm(t)− am| < |vm(t)− (−am)|. (6.1)

Here, am is the value of the variable vm in the starting instance A. The unique
value bm ∈ {±

√
r(t0)} with |bm − am| < |bm + am| is the m-th coordinate of the

continuous evaluation at time t0, and h = t0 is a proper step length for the first
root-instruction of the first step.

Condition (6.1) means that vm(t) has to stay in the half plane of C that is defined
by the bisector of am and −am and that contains am; see left of Figure 6.2. This
is equivalent to the requirement that the path r|[0,t0]

(t) does not intersect the

ray l starting in 0 ∈ C and passing through the point −r(0) = −a2
m; see right of

Figure 6.2.



72 CHAPTER 6. ALGORITHMS FOR THE TRACING PROBLEM

Re(z)

Im(z)

l

Re(z)

Im(z)

lr(t) r(t)

r(0)
r(0)

−r(0)

r(1)

r(t0)

r(t0)

r(1)

−r(0)

Figure 6.3: The path r(t), the ray l, and the rectangular or circular interval,
respectively, are shown.

If we choose t0 ∈ [0, 1] such that the path r(t) : [0, t0]→ K stays in a rectangular
or circular complex interval that does not contain 0 ∈ C, then the path r|[0,t0]

(t)
cannot intersect the ray l; see Figure 6.3. Consequently, it does not pass through
0 ∈ C, and hence, it does not cause a critical point. By reparametrization, we
can deal with arbitrary time intervals [t1, t2] as well. The same construction
can also be done over the field of real numbers R. We summarize the previous
observations:

Lemma 6.1.1. Radicand Lemma
Let r : [0, 1] → C∗ = C \ {0} be a continuous path and r0 := r(0) its starting
point. Let v : [0, 1]→ C∗ be the unique continuous path with (v(t))2 = r(t) for all
t ∈ [0, 1] and v(0) = v0 for v0 ∈ {±

√
r0}. Let l be the ray that starts in 0 ∈ C

and passes through −r0. If r does not intersect the ray l, then we have

|v(t)− v0| < |v(t) + v0|.
at any time t ∈ [0, 1]. Hence, the path v stays in the Voronoi region of v0 in
the Voronoi diagram of the point set {v0,−v0}. The endpoint v(1) is the unique
point v1 ∈ {±

√
r(1)} with |v1 − v0| < |v1 + v0|.

Proof. (Indirect) Assume that there is a t̃ ∈ [0, 1] with |v(t̃) − v0| ≥ |v(t̃) + v0|.
Then v(t̃) lies in the half plane that is defined by the bisector b of v0 and −v0 and
that contains −v0. The bisector b is the line passing through the points 0 ∈ C
and iv0. Since v is a continuous path starting at v0 and containing a point on
the other side of the line b, there must be an intersection point v(t̃0) of v and b.
We have v(t̃0) = isv0 for an s ∈ R, hence

r(t̃0) = (v(t̃0))
2 = (isv0)

2 = −s2v2
0 = −s2r0
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lies on the ray l. This is a contradiction to the assumption of Lemma 6.1.1.

Corollary 6.1.2. Radicand Corollary
If the path r stays in a rectangle or circle that does not contain 0 ∈ C, then
|v(t)− v0| < |v(t) + v0| holds for all t ∈ [0, 1].

Proof. Since both the rectangle and the circle are convex, contain r(0), and ex-
clude 0 ∈ C, they cannot intersect the ray l that starts at 0 ∈ C and passes
through −r(0), see Figure 6.3. Hence, the path r cannot intersect the ray l
either, and we can apply Lemma 6.1.1.

By reparametrization, Lemma 6.1.1 and Corollary 6.1.2 hold for arbitrary time
intervals [t1, t2], as well.

6.2 An Algorithm for the Tracing Problem

If there is no critical point on the paths p−k+1, . . . , p0, then we have exactly one
continuous evaluation v1(t), . . . , vn(t) starting at a given instance A. We trace
this continuous evaluation stepwise. The considerations of Section 6.1 lead to an
algorithm for a single tracing step; see Figure 6.4 for an example.

Algorithm 2.

Input: GSP Γ, linear paths p−k+1, . . . , p0, starting time t0 ∈ [0, 1),
starting instance A = (p−k+1(t0), . . . , p0(t0), a1, . . . , an).

Output: Step Length h,
final instance B = (p−k+1(t0 + h), . . . , p0(t0 + h), b1, . . . , bn).

1. Choose a step length h > 0 with t0 + h ≤ 1, and consider the time interval
[t0, t0 + h].

2. Compute intervals Il with pl([t0, t0 + h]) = {pl(t)|t ∈ [t0, t0 + h]} ⊂ Il for
l = −k + 1, . . . , 0. Since p−k+1, . . . , p0 are linear paths, the interval Il can
be chosen as the smallest interval containing the line segment pl([t0, t0 +h])
in the used interval arithmetic.

3. Compute the interval-GSP Γint.
Set the free variables Zl of Γint to the intervals computed in step 2, i.e., set
Zl := Il for l ∈ {−k + 1, . . . , 0}.
Set the free variables zl of Γ to their positions after the step of length h,
i.e., set zl := bl := pl(t0 + h) for l ∈ {−k + 1, . . . , 0}.
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Figure 6.4: Algorithm 2 is visualized with an example. The paths of the free
variables z−1 and z0 are p−1(t) = 4t + 9 and p0(t) = (−2 + i)t, t0 = 0. If
the interval of a radicand or divisor variable contains zero, then the algorithm is
restarted with a smaller step length. Here, we use circular interval arithmetic.

4. Follow the operations of Γint and Γ until the next division- or root-variable
vd is reached. Here, for each variable vi the interval Ii and the i-th coordi-
nate bi of the final instance B is computed:

Operation of Γ bi Ii

vi ← va + vb bi := ba + bb Ii := Ia + Ib

vi ← va − vb bi := ba − bb Ii := Ia − Ib

vi ← va · vb bi := ba · bb Ii := Ia · Ib

We consider the interval Ic of the divisor or radicand vc of vd.

5. If 0 ∈ Ic

then // Ic might contain a critical point.
Restart from step 2 with step length h/2.

else // Ic does not contain a critical point for vd.
if vd = vj/vc is a division variable then

bd := bj/bc, Id := Ij/Ic.
if vd =

√
vc is a root variable then

choose bd ∈ {±
√

bc} with |bd − ad| < |bd + ad|.
Id :=

√
Ic ∋ bd

GoTo step 4

6. Return h, B = (b−k+1, . . . , b0, b1, . . . , bn).
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This algorithm is based on the Radicand Corollary 6.1.2. If 0 /∈ Ic and vd =
√

vc

in step 5, then we have |vd(t)− ad| < |vd(t)+ ad| for all t ∈ [t0, t0 +h]. Since bd =
vd(t0 + h), the coordinate bd is uniquely defined by the corresponding condition
in step 5. The inequality |bd − ad| < |bd + ad| could be checked using separation
bounds [10].

Unfortunately, Algorithm 2 does not give an indication for a “good” choice for the
step length h. Algorithm 4 from Section 6.3 extends Algorithm 2 by an improved
step length adaptation.

We use the inclusion monotonicity property of the chosen interval arithmetic to
show that Algorithm 2 terminates. For this reason, the intervals Il in step 2 must
be constructed in such a way that the inclusion monotonicity property holds:
Let Il be the interval of a free variable zl with step length h in Algorithm 2, and
let Ilnew be the interval of zl with step length hnew. Thus, we consider the time
intervals [t0, t0+h] and [t0, t0+hnew]. We require that hnew ≤ h implies Ilnew ⊂ Il.
If pl is a linear path and if Il is chosen as the smallest interval containing the line
segment pl([t0, t0+h]) as in step 2, then this property is fulfilled. Algorithm 2 also
works for nonlinear paths pl. Then the intervals Il in step 2 have to be constructed
such that the inclusion monotonicity property holds; see e.g. [1, Abschnitt 3] for
the real case and [57, Chap. 2] for circular arithmetic.

In step 5, the square root Id =
√

Ic is uniquely determined by the condition bd ∈√
Ic. This fact holds since

√
Ic∩−

√
Ic = ∅ if 0 /∈ Ic; see Lemma A.2.10 resp. A.2.23

for complex interval arithmetic. Equivalently, we could require ad ∈
√

Ic.

Close to a critical point, the step length computed by Algorithm 2 becomes
arbitrary small. At a critical point, 0 = vc ∈ Ic holds. Only if 0 /∈ Ic the
algorithm continues with the next variable in step 5. In Chapter 7, we discuss
how critical points can be treated.

Lemma 6.2.1. Algorithm 2 terminates, and the correct final instance B after
the step of length h is computed.

Proof. Since A is an instance of the GSP Γ, the continuous evaluation v1(t),
. . . , vn(t) along the paths p−k+1, . . . , p0 starting at A exists at least locally over a
time interval [t0, t0 + h] for an h ∈ (0, 1 − t0]. First, we prove that Algorithm 2
terminates. We show by induction that for every division or square root oper-
ation there are finitely many restarts in step 5. The proof uses the estimates
from Lemma A.1.10, Lemma A.2.12, or Lemma A.2.25, depending on the chosen
interval arithmetic. These three lemmas are based on the continuity of the five
operations addition, subtraction, mulitplication, division, and square root.
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We consider the first critical variable vd and its radicand or divisor variable vc.
Since A is an instance of Γ, we have ac 6= 0. As before, ac is the coordinate
of the variable vc in the starting instance A. Let ǫ := |ac|

2
. The estimates of

Lemma A.1.10, Lemma A.2.12, and Lemma A.2.25 combined with an inductive
argument imply that there is a step length h1 > 0 with the following property:
If Algorithm 2 is executed with h1 as step length until the critical variable vd

is reached, then Ic ⊂ ac + Eǫ, where Eǫ is the interval with 0 as midpoint and
diameter 2ǫ in the corresponding interval arithmetic. Hence, 0 /∈ Ic, and we have
found a suitable step length for the first critical operation. We can determine
such a step length h1 by a binary search in finitely many steps. This is done in
step 5.

Now, we assume that we have constructed a suitable step length hj > 0 such that
for the jth critical variable vd,j and its divisor or radicand variable vc,j we have
0 /∈ Ic,j. We consider the j+1st division or root variable vd,j+1 and its radicand or
divisor variable vc,j+1. If 0 /∈ Ic,j+1, we are done. Otherwise there is –similar to the
construction of h1– a step length hj+1 > 0 for which 0 /∈ Ic,j+1 holds. Again, this
can be shown by induction using the estimates of Lemma A.1.10, Lemma A.2.12,
or Lemma A.2.25. Since we have chosen an interval arithmetic with the inclusion
monotonicity property, we still have 0 /∈ Ic, 0 /∈ Ic,2, . . . , 0 /∈ Ic,j since these
intervals do not become larger if the step length is decreased.

At last, we show that the computed final instance B is the correct final instance
of the step of length h, i.e., we show

B = (p−k+1(t0 + h), . . . , p0(t0 + h), b1, . . . , bn)

=
(
p−k+1(t0 + h), . . . , p0(t0 + h), v1(t0 + h), . . . , vn(t0 + h)

)
.

Thus, we have to prove that the choices for the square root operations in step 5
are correct. Lemma 3.6.4 on page 46 implies that the range of the continuous
evaluation v1(t), . . . , vn(t) over the time interval [t0, t0 + h] is contained in the
instance (I−k+1, . . . , I0, I1, . . . , In) of Γint. Step 5 ensures 0 /∈ Ic for every radicand
variable vc of Γ. The Radicand Corollary 6.1.2 from page 73 implies that the
choice in step 5 for bd for every root variable vd is correct. By Corollary 6.1.2,
we have |vd(t) − ad| < |vd(t) + ad| for all t ∈ [t0, t0 + h] since 0 /∈ Ic. In step 5,
bd is defined by bd ∈ {±

√
bc} with |bd − ad| < |bd + ad|. Hence bd = vd(t0 + h)

holds.

As long as there is no critical point on the paths p−k+1, . . . , p0 there exists exactly
one continuous evaluation v1(t), . . . , vn(t) starting at a given starting instance A.
Algorithm 3 traces this continuous evaluation stepwise using Algorithm 2. In the
process, the final instance of a previous step is the starting instance of the next
step.



6.2. AN ALGORITHM FOR THE TRACING PROBLEM 77

Algorithm 3.

Input: GSP Γ, linear paths p−k+1, . . . , p0,
starting instance A = (p−k+1(0), . . . , p0(0), a1, . . . , an).

Output: final instance B = (p−k+1(1), . . . , p0(1), b1, . . . , bn).

1. Ã := A // starting instance
t := 0 // starting time

2. while t < 1 do
Run Algorithm 2 with starting time t0 := t and starting instance

A := Ã, the given GSP Γ and the given paths p−k+1, . . . , p0

// the step length h and the final instance B are returned.

Ã := B // B is the starting instance for the next step
t := t + h

3. return Ã.

Remark 6.2.2. 1. If there occurs a critical point along at least one of the
paths, then Algorithm 3 does not terminate. The step length computed
by Algorithm 2 in step 2 of Algorithm 3 becomes arbitrary small before
the critical point is reached. This happens since the interval Ic in step 4
and step 5 of Algorithm 2 has to be arbitrary small in a neighborhood of a
critical point. At a critical point, we have 0 = vc ∈ Ic. However, in step 5
is supposed that 0 /∈ Ic in order to continue with the next variable. We
discuss in Chapter 7, how critical points can be treated.

2. If the GSP Γ has real variables and if we know in advance that no critical
point occurs, then no curve of a radicand or divisor variable in the contin-
uous evaluation passes through 0 ∈ R. Thus, each curve is strictly positive
or strictly negative, and the Tracing Problem could be solved easier. The
problem with this approach is that we would have to guarantee in advance
that there is no critical point on the continuous evaluation. Unfortunately,
we do not know how to do this yet. For this reason, we propose to use Al-
gorithm 3 combined with the treatment of critical points from Chapter 7.

Theorem 6.2.3. Algorithm 3 terminates and computes the correct final in-
stance B as long as no critical point occurs.

Proof. Induction on the number j of root and division operations of Γ:
Since critical points are excluded, there exists a unique continuous evaluation
along the paths p−k+1, . . . , p0 starting at the instance A. We prove by induction
on j that each step has at least step length h for a fixed h > 0. Furthermore, h
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can be chosen such that it is a minimum step length for every starting time t0.
This proof is based on the uniform continuity of the five operations addition,
subtraction, multiplication, division, and square root on compact sets S; for the
division and for the square root, we must require that the divisor and the radicand
is non-zero to obtain uniform continuity. Note that this uniform continuity is the
base of the supplements of Lemmas A.1.10, A.2.12 and A.2.25.

Basic Step: Let vd1 be defined by the first root or division operation of Γ, i.e.,
vd1 = vj/vc or vd1 =

√
vc, and let vd1(t) be its path in the continuous evaluation.

Let vc(t) be the path of vc in the continuous evaluation. We consider the entire
time interval [0, 1] and follow Algorithm 2 through step 4. We get the compact
intervals I−k+1, . . . , I0, I1, . . . , Id1−1. Since critical points are excluded, the path
vc(t) does not pass through 0. Additionally, [0, 1] is a compact interval, and
the mapping t 7→ |vc(t)| is continuous. Thus δ := mint∈[0,1] |vc(t)| > 0 holds.
The supplements of Lemma A.1.10, Lemma A.2.12 or Lemma A.2.25 combined
with an inductive argument lead to a step length h1 > 0 for a tracing step
for the first d1 − 1 dependent variables of Γ that only depends on δ and on
I−k+1, . . . , I0, I1, . . . , Id1−1. It neither depends on the starting time t0 nor on a
concrete instance. In the last step the step length is at least min{h1, 1− t0}.
Inductive Step: Let Γ be a GSP with j + 1 root or division operations. Let
us consider the j + 1st root or division operation of Γ and its corresponding
variable vdj+1

. Let Γ̃ = Γ(dj+1−1) be the (dj+1−1)-head GSP of Γ. In other words,

Γ̃ is the GSP after cutting Γ before the variable vdj+1
; see Definition 3.2.1. Since Γ̃

has j root or division operations, we can apply the induction hypothesis. Let hj

be a minimum step length for Γ̃ that is independent of the starting time t0.

We partition the interval [0, 1] into ⌈ 1
hj
⌉ intervals of length hj at most. Since hj is

independent of the starting time t0, we know that, for each of these subintervals,
Algorithm 3 does not reduce the size of these time intervals for the first j root or
division operations. This observation holds since we have chosen an interval arith-
metic with the inclusion monotonicity property. Hence, for each of the subinter-
vals we have the same situation as for the first root or division operation and the
entire time interval [0, 1]. Consequently, the inductive conclusion can be shown
in the same way as the basic step. For each subinterval [lhj, (l + 1)hj] ⊂ [0, 1]
we get a step length hj,l. Finally, hj+1 := min{hj,l | l = 1, 2, 3, . . . , ⌈ 1

hj
⌉} is the

wanted step length. In the last step the step length is at least min{hj+1, 1− t0}.
Lemma 6.2.1 implies that the correct final instance is computed.
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Figure 6.5: Illustration of the Cone Lemma: The left figure shows the situation
over R with J = [mmin,mmax], the right one shows the situation over C for circular
intervals.

6.3 An Algorithm for the Tracing Problem Us-

ing Γ̇

We extend Algorithm 2 from Section 6.2 by an improved step length adaptation.
The resulting Cone Algorithm (Algorithm 4) uses the derivative GSP Γ̇. Like
Algorithm 3 from Section 6.2, Algorithm 4 works for GSPs with complex variables
as well as with GSPs having real variables. Again, we restrict to linear paths
p−k+1, . . . , p0 of the free variables z−k+1, . . . , z0 and we assume that there are
no critical points on the paths p−k+1, . . . , p0 of the free variables z−k+1, . . . , z0.
A generalization to arbitrary continuously differentiable paths p−k+1, . . . , p0 is
indicated. The treatment of critical points is discussed in Chapter 7.

6.3.1 The Cone Algorithm

The Cone Algorithm (Algorithm 4) is based on the Cone Lemma 6.3.1 and on
the Radicand Corollary 6.1.2 from page 73 . The Cone Lemma is a reformulation
of the mean value theorem, see Lemma 6.3.1 and Figure 6.5. Like Algorithm 2,
Algorithm 4 uses an interval arithmetic that must fulfill the inclusion monotonic-
ity property. The advantage over Algorithm 3 and Algorithm 2 is that for each
step the step length is computed directly. The Cone Lemma is related to the
Interval Newton Method in one dimension, since the same cone is considered; see
Appendix A.5. A similar idea is used in [36, p. 900] for the real case.
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Lemma 6.3.1. Cone Lemma; see Figure 6.5.

R : Let p : [0, 1] → R be a differentiable path and p0 := p(0). Furthermore, let
mmin ≤ ṗ(t) ≤ mmax for all t ∈ [0, 1]. Let

gmin(t) = t mmin + p0 and

gmax(t) = t mmax + p0

be the lines passing through the point (0, p0) and having mmin and mmax as
slopes. Then, gmin(t) ≤ p(t) ≤ gmax(t) holds for all t ∈ [0, 1].

If the time interval [0, 1] is replaced by an arbitrary interval [h1, h2], then
we have p0 := p(h1), mmin ≤ ṗ(t) ≤ mmax for all t ∈ [h1, h2], gmin(t) =
t mmin + p0 − h1mmin, and gmax(t) = t mmax + p0 − h1mmax. Thus p(t) ∈
(t− h1)[mmin,mmax] + p0 holds.

C : Let p : [0, 1] → C be a continuously differentiable path and p0 := p(0). Let
J ⊂ C be a complex interval with ṗ(t) ∈ J for all t ∈ [0, 1]. Then, p(t) ∈
tJ + p0 = {tz + p0|z ∈ J} holds for all t ∈ [0, 1] .

If the time interval [0, 1] is replaced by an arbitrary interval [h1, h2], then
we have p0 := p(h1), and p(t) ∈ (t− h1)J + p0.

Proof. The real and the complex case are treated separately.

R: Let t ∈ (0, 1]. By the mean value theorem there is a t̃ ∈ (0, t) with ṗ(t̃) =
p(t)−p(0)

t−0
= p(t)−p0

t
, i.e.,

p(t) = tṗ(t̃) + p0

{
≤ t mmax + p0 = gmax(t)
≥ t mmin + p0 = gmin(t).

For t = 0 we have gmin(t) = p0 = p(0) = gmax(t).

C: Let t ∈ (0, 1]. By the mean value theorem,

p(t)− p0 = t

(∫ 1

0

Re(ṗ(ts))ds + i

∫ 1

0

Im(ṗ(ts))ds

)
= t

∫ 1

0

ṗ(ts)ds.

It remains to show
∫ 1

0
ṗ(ts)ds ∈ J . This is done by considering the Riemann

sum of a subdivision of the interval [0, 1]. For any subdivision 0 = s0 <
s1 < · · · < sm = 1 of the interval [0, 1], the Riemann sum

m∑

j=1

Re(ṗ(tsj)(sj − sj−1) + i

m∑

j=1

Im(ṗ(tsj)(sj − sj−1) (6.2)

=
m∑

j=1

ṗ(tsj)︸ ︷︷ ︸
∈J

(sj − sj−1) (6.3)
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is a convex combination of points of J . Since J is convex, the Riemann
sum (6.3) is an element of J as well. The integral

∫ 1

0
ṗ(ts)ds is the limit

of these Riemann sums as maxj=1,...,m(sj − sj−1) → 0. Since J is a closed

subset of C, this limit is contained in J , and
∫ 1

0
ṗ(ts)ds ∈ J . For t = 0 we

have p(t) = p0 ∈ {p0} = 0 · J + p0.

If instead of [0, 1] the time interval [h1, h2] is considered, the mean value
theorem implies

p(t)− p(h1) = (t− h1)

∫ 1

0

ṗ
(
h1 + s(t− h1)

)
ds,

and the claimed formula follows.

We have exactly one continuous evaluation v1(t), . . . , vn(t) along the paths p−k+1,
. . . , p0 that starts at the instance A as long as we do not hit a critical point. As in
Section 6.2, we trace this continuous evaluation stepwise. Algorithm 4 describes a
single tracing step, Algorithm 5 uses Algorithm 4 and traces the whole continuous
evaluation as long as no critical points occur.

Algorithm 4. Cone Algorithm

Input: GSP Γ, linear paths p−k+1, . . . , p0, starting time t0 ∈ [0, 1]
starting instance A = (p−k+1(t0), . . . , p0(t0), a1, . . . , an).

Output: Step Length h,
final instance B = (p−k+1(t0 + h), . . . , p0(t0 + h), b1, . . . , bn).

1. Choose a step length h > 0 with t0 + h ≤ 1 and consider the time interval
[t0, t0 + h]. Let Th be the smallest interval containing [0, h] in the used
interval arithmetic.

2. Compute intervals Il with pl([t0, t0 + h]) = {pl(t)|t ∈ [t0, t0 + h]} ⊂ Il for
l = −k + 1, . . . , 0. Since p−k+1, . . . , p0 are linear paths, Il can be chosen as
the smallest interval containing the line segment pl([t0, t0 + h]).

Compute the derivative GSP Γ̇ of the GSP Γ.

Compute intervals İl with ṗl([t0, t0 + h]) = {ṗl(t)|t ∈ [t0, t0 + h]} ⊂ İl for
l = −k + 1, . . . , 0, where ṗl is the derivative of p. Since pl is a linear path,
İl can be chosen as İl = {ṗl(t0)}.

3. Compute the interval-GSP Γ̇int of the derivative GSP Γ̇.
Set the free variables Zl and Żl of Γ̇int to the intervals computed in step 2,
i.e., set Zl := Il and Żl := İl for l ∈ {−k + 1, . . . , 0}.
Set the free variables zl of Γ to their positions after the step of length h,
i.e., set zl := bl := pl(t0 + h) for l ∈ {−k + 1, . . . , 0}.
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4. Follow the operations of Γ̇int and Γ until the next division or root variable vd

is reached. Here, for each variable vi the interval İi and the i-th coordinate
bi of the final instance B is computed:

Operation of Γ bi İi Ii

vi ← va + vb bi := ba + bb İi := İa + İb Ii := ai + Thİi

vi ← va − vb bi := ba − bb İi := İa − İb Ii := ai + Thİi

vi ← va · vb bi := ba · bb İi := İaIb + Iaİb Ii := ai + Thİi

Consider the variable vc of the divisor or radicand of vd, its coordinate ac of
A, the interval Ic = ac+Thİc, and the cone C in [t0, t0+h]×R or [t0, t0+h]×C
with apex (t0, ac) and base (t0 +h, Ic) = {(t0 +h, z)| z ∈ Ic}; see Figure 6.6.

5. If the cone C intersects the t-axis

then // We might have 0 ∈ ac + (t− t0)İc for a t ∈ [t0, t0 + h].
Compute the smallest time t′ ∈ [t0, t0 + h] for that (t′, 0)
lies on the surface of the cone C.
Restart from step 2 with the step length h := 2

3
(t′ − t0).

// There is at most one restart per root or division
// operation (see Theorem 6.3.3)!

else // 0 /∈ Ic holds and vc(t) does not pass through 0.
if vd = vj/vc is a division variable then

bd := bj/bc

İd :=
İjIc−Ij İc

I2
c

Id := ad + Thİd

if vd =
√

vc is a root variable then
choose bd ∈ {±

√
bc} with |bd − ad| < |bd + ad|.

Id :=
√

Ic ∋ bd

İd := İc

2Id

GoTo step 4

6. Return h, B = (b−k+1, . . . , b0, b1, . . . , bn).

The choice of t′ in step 5 of the algorithm above is shown in Figure 6.6 and
treated in Section 6.3.2. Since we have 0 ∈ Th, we have ac ∈ Ic, and the cone C
intersects the t-axis if and only if 0 ∈ Ic = ac + Thİc.

Remark 6.3.2. 1. As with Algorithm 2, we notice that the intervals Ii and İi

in step 2 must be constructed in such a way that the inclusion monotonicity
property holds. This is crucial for the algorithm, otherwise it might not ter-
minate. If they are defined as proposed in step 2, the inclusion monotonicity
property holds.



6.3. AN ALGORITHM FOR THE TRACING PROBLEM USING Γ̇ 83

Ic

R

gmax

vc(t)

R C

gmin

Im(z)

t

Ic

Re(z)

t

ac ac vc(t)

t′ t′t0
t0 + h t0 + ht0

Figure 6.6: The cone C from step 4 and the definition of t′ from step 5 of
Algorithm 4 are shown. The left Figure shows the situation over R, the right
one the situation over C for circular intervals.

2. In step 5, the square root Id =
√

Ic is uniquely determined by the condition
bd ∈

√
Ic. This fact holds since

√
Ic ∩ −

√
Ic = ∅; see Lemma A.2.10,

and A.2.23 for complex interval arithmetic.

3. In step 1, we define the interval Th as the smallest interval containing the
time interval [t0, t0 + h] in the used interval arithmetic. For real inter-
val arithmetic (I(R)) and for rectangular complex arithmetic (R(C)), we
have Th = [t0, t0 + h], i.e., Th is the time interval itself. In circular arith-
metic (K(C)), we have Th = {t0 + h

2
; h

2
}, which is the circle having the time

interval [t0, t0 + h] as diameter. This overestimation is a disadvantage of
circular interval arithmetic. In Improvement 6.3.8 from page 92 we discuss
that Th can be replaced by h in the definition of Ii if and only if 0 ∈ İi.

Theorem 6.3.3. For each division or root operation there is at most one restart
in step 5 of Algorithm 4.

Proof. Let vd be a division or root variable and C be the corresponding cone
defined in step 4. The variable vd only causes a restart if its cone C intersects the
t-axis. Hence, we have to show that the cone C of vd intersects the t-axis in at
most one run of Algorithm 4. If C intersects the t-axis, Algorithm 4 is restarted
with a smaller step length in step 5, which we denote by hnew. Similarly, we denote
the new values of all variables and intervals of the next run of Algorithm 4 by
their old names and add “new” as index.

By construction of hnew, we ensure that in this next run of Algorithm 4 the new
cone Cnew does not intersect the t-axis since we use an interval arithmetic with the
inclusion monotonicity property. For the new time interval [t0, t0 +hnew], we have
[t0, t0 + hnew] ⊂ [t0, t0 + h] and Thnew ⊂ Th. This implies Il,new ⊂ Il and İl,new ⊂ İl
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Figure 6.7: The cone C with apex (t0, ac) and base (t0 + h, Ic) and its section
(t0 + hnew, ac + hnew

h
Thİc) at time t0 + hnew are shown.

for the intervals defined in step 2 of Algorithm 4; see Remark 6.3.2. Hence, for
every new interval Inew of an interval I that is computed by Algorithm 4 we have
Inew ⊂ I. This implies that the base (t0 +hnew, ac +Thnew İc,new) of Cnew is a subset
of the section

(t0 + hnew, ac +
hnew

h
Thİc) = (t0 + hnew, ac + Thnew İc)

of the old cone C at time t0 +hnew; see Figure 6.7. Since by construction of hnew,
the cone with base (t0 + hnew, ac + hnew

h
Thİc) and apex (t0, 0) does not contain 0,

we have 0 /∈ Cnew.

Theorem 6.3.4. Algorithm 4 terminates in O ((n + k)n0) time where n0 is the
total number of root and division operations of Γ. It computes a step length h > 0
and the correct final instance B of the step of length h.

Proof. This proof has a similar structure as the proof of Lemma 6.2.1 from
page 75. Theorem 6.3.3 implies that Algorithm 4 terminates. Let B be the
final instance computed by Algorithm 4 and h the step length. We show that B
is the correct final instance for the step of length h.

Since A is an instance, there is a time interval [t0, t1] for that a continuous eval-
uation v1(t), . . . , vn(t) along the given paths p−k+1, . . . , p0 starting at A exists.
Hence it is also unique. We have to prove

B =
(
p−k+1(t0 + h), . . . , p0(t0 + h), v1(t0 + h), . . . , vn(t0 + h)

)
. (6.4)

Additionally, we prove v̇i([t0.t0 + h]) ⊂ İi and vi([t0, t0 + h]) ⊂ Ii for i = 1, . . . , n.
This is done via induction on the number j of root or division operations of Γ.
For the variables that are defined by addition, subtraction, or multiplication the
correct value in the final instance B is computed in step 4 of Algorithm 4.
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Let Γ be a GSP with one variable vd that is defined by a root or division operation.
Following the notation of Algorithm 4, we denote the radicand or divisor variable
by vc. Let İc and Ic be the intervals computed in step 4. Firstly, we show
v̇c([t0, t0 + h]) ⊂ İc and vc([t0, t0 + h]) ⊂ Ic via Claim 6.3.5. Since Γ is a GSP,
either c ∈ {1, . . . , d− 1} holds, or vc is a free variable.

Claim 6.3.5. The inclusions v̇i0([t0, t0 + h]) ⊂ İi0 and vi0([t0, t0 + h]) ⊂ Ii0 hold
for i0 ∈ {1, . . . , d− 1}.

Proof. For the free variables zl, l ∈ {−k + 1, . . . , 0}, the intervals İl and Il are
defined in step 2 of Algorithm 4 such that ṗl([t0, t0+h]) ⊂ İl and pl([t0, t0+h]) ⊂ Il

hold; see Remark 6.3.2.

Now, we assume v̇i([t0, t0 + h]) ⊂ İi and vi([t0, t0 + h]) ⊂ Ii for i < i0, and
we consider the dependent variable vi0 . Since i0 ∈ {1, . . . , d − 1} and Γ is a
GSP, the variable vi0 is defined as vi0 = va ± vb or vi0 = va · vb with a, b ∈
{−k + 1, . . . , 0, 1, . . . , i0 − 1}. By induction, we have

va([t0, t0 + h]) ⊂ Ia, v̇a([t0, t0 + h]) ⊂ İa,

vb([t0, t0 + h]) ⊂ Ib, v̇b([t0, t0 + h]) ⊂ İb.

Thus, Lemma 3.6.3 applied to Γ̇ implies v̇i0([t0, t0 + h]) ⊂ İi0 . We consider the
interval Ii0 = ai0 +Thİi0 . As in Algorithm 4, Th is the smallest interval containing
[0, h] in the used interval arithmetic. We have ai0 + h̃İi0 ⊂ ai0 + Thİi0 = Ii0 for
every h̃ ∈ [0, h]. The Cone Lemma 6.3.1 implies vi0(t0 + h̃) ∈ ai0 + h̃İi0 . Hence
vi0([t0, t0 + h]) ⊂ Ii0 holds.

To sum up, the variable vc is the radicand or divisor of the variable vd. By
Claim 6.3.5, we know vc([t0, t0 + h]) ⊂ Ic. In step 5 of Algorithm 4, the root or
division instruction is only executed if 0 /∈ Ic. Recall that 0 /∈ Ic if and only if
the cone C does not intersect the t-axis. Thus, we can assume 0 /∈ Ic when we
consider the division or root operation that defines the variable vd.

Let vd be defined by the division operation (vd = vj/vc). Since 0 /∈ Ic, the division
in step 5 can be executed in interval arithmetic properly. Since v̇j([t0, t0+h]) ⊂ İj,
vj([t0, t0 + h]) ⊂ Ij, v̇c([t0, t0 + h]) ⊂ İc, and vc([t0, t0 + h]) ⊂ Ic 6∋ 0 we have
v̇d([t0, t0 + h]) ⊂ İd by Lemma 3.6.3 and vd([t0, t0 + h]) ⊂ Id = ad + Thİd by
Lemma 6.3.1 (Cone Lemma).

Now, we investigate the case when vd is defined by a root-operation, i.e., vd =
√

vc

in our notation. As in step 5 of Algorithm 4, let bd ∈ {±
√

bc} with |bd − ad| <
|bd + ad| where ad is the coordinate of vd in the starting instance A. Since 0 /∈ Ic,
we have |vd(t)−ad| < |vd(t)+ad| for all t ∈ [t0, t0+h] by Corollary 6.1.2 (Radicand
Corollary). Thus we get bd = vd(t0 + h). The inclusions vd([t0, t0 + h]) ⊂ Id and
v̇d([t0, t0 + h]) ⊂ İd hold by Lemma 3.6.3.
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After the computation of bd in step 5, the values bd+1, . . . , bn of the coordinates
of B of the remaining variables are computed correctly in step 4.

Inductive Step: We assume that (6.4) holds for GSPs Γ with j root- or division
operations. Now, let Γ have j + 1 root or division operations. Let vd = vd,j+1 be
the variable of Γ that is defined by the j +1st of these operations. Let Γ̃ = Γ(d−1)

be the (d−1)-head GSP of Γ. In other words, Γ̃ is the GSP after cutting Γ before
the variable vd; see Definition 3.2.1. Then, by induction, Algorithm 4 computes
a step length h, and the correct final instance B = (p−k+1(t0 + h), . . . , p0(t0 +
h), v1(t0 + h), . . . , vd−1(t0 + h)).

Let vc = vc,j+1 be the radicand or divisor variable of vd = vd,j+1 and Ic = Ic,j+1

the corresponding interval from Algorithm 4. If 0 /∈ Ic in step 5, then bd = bd,j+1

is computed correctly following the arguments from above. If 0 ∈ Ic, then in
step 5 the algorithm is restarted with a smaller step length h. Here, h is chosen,
such that in the next run is guaranteed in step 5 that 0 /∈ Ic; see Theorem 6.3.3.
This also remains true for the preceding root or division variables since their cor-
responding intervals of their radicands or divisors at most become smaller since
we use an interval arithmetic with the inclusion monotonicity property. Thus,
all intervals İi and Ii are computed correctly by Lemma 3.6.3 and Lemma 6.3.1.
Additionally, the coordinates b1, . . . , bd of B are correct since we can apply Corol-
lary 6.1.2 for all root variables. The remaining coordinates of B are correctly
computed in step 4.

Hence, Algorithm 4 computes for Γ a step length h and the correct final instance
B for the step of length h.

Finally, we investigate the runtime of Algorithm 4. The restart in step 5 of
Algorithm 4 is executed at most once for each root or division operation of Γ; see
Theorem 6.3.3. Step 1 and step 6 need constant time, whereas step 2 and step 3
need O(n+k) time if we assume that an interval operation has constant cost; see
page 6, Chapter 1. The costs of step 4 are linear for each restart and the costs
of step 5 except the costs for the restart and goto are constant. Hence, the total
costs are in O((n + k)n0) as claimed.

Algorithm 4 performs a single tracing step. Algorithm 5 traces the whole continu-
ous evaluation along the paths p−k+1, . . . , p0 starting at A if it exists. Algorithm 5
is similar to Algorithm 3 from page 76, but it uses Algorithm 4 (Cone Algorithm)
instead of Algorithm 2 for the tracing steps. Again, the final instance of a pre-
ceding step is the starting instance of the next step.
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Algorithm 5.

Input: GSP Γ, linear paths p−k+1, . . . , p0,
starting instance A = (p−k+1(0), . . . , p0(0), a1, . . . , an).

Output: final instance B = (p−k+1(1), . . . , p0(1), b1, . . . , bn).

1. Ã := A // starting instance
t := 0 // starting time

2. while t < 1 do
Run Alg. 4 with starting time t0 := t and starting instance

A := Ã, the given GSP Γ and the given paths p−k+1, . . . , p0

// the step length h and the final instance B are returned.

Ã := B // B is the starting instance for the next step
t := t + h

3. return Ã.

Remark 6.3.6. (Compare with Remark 6.2.2 from page 77.)
If we have a critical point along the paths, then Algorithm 5 does not terminate.
The step length computed by Algorithm 4 in step 2 of Algorithm 5 becomes
arbitrary small before the critical point is reached. This happens since the interval
Ic in step 4 and step 5 of Algorithm 4 has to be arbitrary small in a neighborhood
of a critical point. At a critical point, we have 0 = vc ∈ Ic. However, in step 5 is
supposed that 0 /∈ Ic in order to continue with the next variable. We discuss in
Chapter 7 how critical points can be treated.

Theorem 6.3.7. Algorithm 5 terminates and computes the correct final in-
stance B as long as no critical point occurs.

Proof. Induction on the number j of root-and division-operations of Γ:
This proof has a similar structure as the proof of Theorem 6.2.3 on page 77. Since
critical points are excluded, there exists a unique continuous evaluation along the
paths p−k+1, . . . , p0 starting at the instance A. We prove by induction on j that
each step has at least step length h for a fixed h > 0. Furthermore, h can be
chosen such that it is a minimum step length for every starting time t0 ∈ [0, 1).

Basic Step: Let vd1 be defined by the first root or division operation of Γ, i.e.,
vd1 = vj/vc or vd1 =

√
vc, and let vd1(t) be its path in the continuous evaluation.

Let vc(t) be the path of vc in the continuous evaluation. We consider the entire
time interval [0, 1] and follow Algorithm 4 through step 4. We get the intervals
İc and Ic = ac + Thİc of the radicand or divisor variable vc. Both intervals are
bounded since the variable vd1 is the first variable that is defined by a root or
division operation, and hence, no division by zero occurs.
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Figure 6.8: The construction of t1 and h1 = 2
3
(t2 − t1) from the proof of The-

orem 6.3.7 is illustrated: The left figure shows the real situation, and the right
one shows the complex situation with the circle K and a cone Cw.

Since critical points are excluded, the path vc(t) does not pass through 0. Ad-
ditionally, the time interval [0, 1] is compact, and the mapping t 7→ |vc(t)| is
continuous. Hence δ := mint∈[0,1] |vc(t)| > 0. Let t1 ∈ [0, 1] with |vc(t1)| = δ. We
treat the real and the complex case separately:

R : Since vc(t) does not pass through 0 ∈ R, either vc(t) ≥ δ for all t ∈ [0, 1] = T1,
or vc(t) ≤ −δ holds for all t ∈ [0, 1]. W.l.o.g. we assume vc(t) ≥ δ and look
at the line gmin(t) = mmint + δ −mmint1 with mmin = min T1İc. This line
passes through the point (t1, δ) on the graph of vc(t) and has mmin as slope;
compare with Lemma 6.3.1 and see Figure 6.8. According to Algorithm 4,
let C be the cone with apex (t1, δ) and base (t1 + 1, δ + T1İc). Hence, C is
the triangle with the vertices (t1, δ), (t1 +1, δ+mmin), and (t1 +1, δ+mmax)
with mmax := max T1İc. The lower edge of this triangle lies on the line gmin.

If 0 /∈ Ic we can choose h := 1 and we are done. In the other case, we
observe that the interval İc from our proof has to contain every interval
İc =: İcA

that is computed while Algorithm 5 runs. This inclusion holds
due to the inclusion monotonicity property of the real interval arithmetic
since [t0, t0 + h] ⊂ [0, 1] holds for 0 ≤ t0, h ≤ 1 with t0 + h ≤ 1; see proof
of Theorem 6.3.4 for a more detailed argumentation in a similar situation.
Denote by CA the cone of the divisor- or radicand-variable vc from step 4
of a run of Algorithm 4 with the time interval [t0, t0 + h].

Let (t2, 0) be the intersection point of gmin and the t-axis with t2 ∈ (t1, t1+1].
Hence, t2 is the earliest time such that (t2, 0) lies on the lateral surface of
the cone C. We set h1 := 2

3
(t2 − t1). Let t′ be the smallest time such that
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Figure 6.9: The proof of t2 − t1 ≤ t′ − t0 is illustrated. In the left figure we have
İcA

= İc, in the right one İcA
$ İc holds.

(t′, 0) lies on the lateral surface of the cone CA as in step 5 of Algorithm 5.
Since vc(t0) ≥ δ and İcA

⊂ İc, we have t2− t1 ≤ t′− t0. Hence, h ≥ h1 holds
by construction of δ, t1 and h1; see Figure 6.9. In the last step, the step
length is at least min{h1, 1− t0}.

C : Here, the situation and the construction of h1 is slightly more complicated
since the graph of vc(t) might wind around the t-axis.

We consider the circle K with center (t1, 0) ∈ [0, 1] × C and radius δ =
|vc(t1)| lying in the plane that is orthogonal to the t-axis and that contains
the point (t1, 0). Let w be a point of the boundary of K, and let Cw be the
cone having w as apex and (t1 + 1, T1İc + w) = {(t1 + 1, z)|z ∈ T1İc + w}
as base; see right of Figure 6.8. Recall that T1 is the smallest interval
containing [0, 1] in the used interval arithmetic. We define the set of cones
CK := {cone Cw| w is on the boundary of K}.
If none of the cones Cw ∈ CK intersects the t-axis, then 0 /∈ Ic always holds
for the variable vd1 in step 5 of Algorithm 4, and we can choose h := 1. Now,
we investigate the situation where at least one of the cones Cw intersects
the t-axis. The subset K̃ := {w ∈ K| Cw intersects the t-axis} is compact,
and for w ∈ K̃ let tw be the time of the first intersection point of Cw and the
t-axis. Since the mapping K̃ ∋ w 7→ tw is continuous, it takes its minimum
t2 ∈ [0, 1]. The construction of t2 ensures that t2 is independent of the
winding of vc(t) around the t-axis.

As in the real case (R), we set h1 := 2
3
(t2 − t1) and claim that the step

length h computed in step 5 of Algorithm 4 is at least h1. We can show in
the same way as for the real case that h ≥ h1 holds by construction of δ, t1
and h1. In the last step, the step length is at least min{h1, 1− t0}.
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Inductive Step: The inductive step can be done with the same arguments as the
inductive step of the proof of Theorem 6.2.3. Nevertheless, we state it again.

Let Γ be a GSP with j+1 root or division operations and consider the j+1st root
or division operation of Γ and its corresponding variable vdj+1

. Let Γ̃ = Γ(dj+1−1)

be the (dj+1− 1)-head GSP of Γ. That is, Γ̃ is the GSP after cutting Γ before
the variable vdj+1

; see Definition 3.2.1. Since Γ̃ has j root or division operations,

we can apply the induction hypothesis. Let hj be a minimum step length for Γ̃
that is independent of the starting time t0.

We partition the interval [0, 1] into ⌈ 1
hj
⌉ intervals of length hj at most. Since hj

is independent of the starting time t0, we know that for each of these subintervals
Algorithm 5 does not reduce the size of these time intervals for the first j root or
division operations. This holds since we have chosen an interval arithmetic with
the inclusion monotonicity property. Hence, for each of the subintervals, we have
the same situation as for the first root or division operation and the entire time
interval [0, 1]. Consequently, the inductive conclusion can be shown in the same
way as the basic step: For each subinterval [lhj, (l + 1)hj] ⊂ [0, 1] we get a step
length hj,l. Finally, hj+1 := min{hj,l | l = 1, 2, 3, . . . , ⌈ 1

hj
⌉} is the wanted step

length. In the last step, the step length is at least min{hj+1, 1− t0}.

6.3.2 Computation of the First Intersection of the Cone C

with the t-Axis

In step 5 of Algorithm 4, the first intersection point (t′, 0) of the cone C and the
t-axis is needed. Recall that the cone C has the point (t0, ac) as apex and the set
(t0 + h, Ic) as base. We give an outline of the computation steps. Recall that the
variable vc is the divisor or radicand of vd.

If Γ is a real GSP, then Ic = [a, b] for some a ≤ b ∈ R, and C is bounded by
the lines gmin(t) = ac + t−t0

h
(a − ac) and gmax(t) = ac + t−t0

h
(b − ac). If ac > 0,

then the first intersection point of C and the t-axis is the intersection point of the
line gmin and the t-axis -as far as the corresponding time lies in the time interval
[t0, t0 + h]. If ac < 0 we consider the intersection point of gmax and the t-axis.
The case ac = 0 does not occur, since this would cause a d-critical point for the
variable vd, and A could not be an instance.

If Γ is a complex GSP, we distinguish between rectangular and circular interval
arithmetic. For rectangular arithmetic, the situation is similar to the real one
since we can treat the real and imaginary parts separately. Here, Ic = ac +
([a1, b1] + i[a2, b2]). The cone C intersects the t-axis if and only if one of the
four triangular surfaces of the boundary intersects the t-axis. Thus, the wanted
intersection occurs at the earliest time t′ ∈ [t0, t0+h] with 0 ∈ Re(ac)+

t′−t0
h

[a1, b1]
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and 0 ∈ Im(ac) + t′−t0
h

[a2, b2]. Hence, the time t′ can be computed as in the real
situation.

For circular interval arithmetic, the situation is slightly more complicated. For
simplicity of notation, we assume that the time interval is [0, 1]. Let Ic = {mc; rc},
and let q = mc + rce

iφ be a point on the boundary of I = {mc; rc}. Then
(t, ac +t(q−ac)) = (t, ac +t(mc−ac)+treiφ) is a point on the lateral surface of C.
Hence, for fixed t ∈ [0, 1], the corresponding points of the surface of C lie on the
boundary of the circle Ct := {ac + t(mc−ac) ; trc}. We remark that the midpoint
ac + t(mc− ac) of Ct is the corresponding point on the line l(t) = ac + t(mc− ac)
connecting the points (0, ac) and (1,mc). The circle Ct is uniquely determined
by the three points

q1 = x1 + iy1 := ac + t(mc − ac) + trce
i0 = ac + t(mc − ac) + trc;

q2 = x2 + iy2 := ac + t(mc − ac) + trce
i π
2 = ac + t(mc − ac) + trci; and

q3 = x3 + iy3 := ac + t(mc − ac) + trce
iπ = ac + t(mc − ac)− trc.

A point q = x + iy lies on the boundary of the circle Ct if and only if

f(x, y, t) := det





x1 x2 x3 x
y1 y2 y3 y

x2
1 + y2

1 x2
2 + y2

2 x2
3 + y2

3 x2 + y2

1 1 1 1



 = 0. (6.5)

Since we are looking for an intersection point with the t-axis, we consider the
point q = 0 = 0 + 0i. Equation (6.5), applied to the points q1, q2, q3 and q, leads
to the following equation with mc = c1 + ic2.

0 = f(0, 0, t) = −2t2r2
c

(
t2
((

Re(ac)− c1

)2
+
(
Im(ac)− c2

)2 − r2
c

)

+ t 2
(
Im(ac) c2 − (Re(ac))

2 − (Im(ac))
2 + Re(ac) c1

)

+ (Re(ac))
2 + (Im(ac))

2
)

The cone C intersects the t-axis if and only if the quadratic equation f(t) :=
f(0, 0, t) = 0 has a solution t′ ∈ [0, 1]. In this case, the smallest solution t′ ∈ [0, 1]
leads to the wanted intersection point (t′, 0) of the t-axis with the cone C.

6.3.3 Improvements of the Cone Algorithm

We describe some improvements of the Cone Algorithm (Algorithm 4) from
page 81. The aim of these improvements is to reduce the size of the intervals
Ii for i ∈ {1, . . . , n}. This reduction might lead to less restarts in step 5 of
Algorithm 4 and could improve the runtime.
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Improvement 6.3.8. The usage of Th is not always necessary.
The definition Ii := ai+Thİi for i ∈ {1, . . . , n} in step 4 and step 5 of Algorithm 4
for the operations +, −, ·, and : ensures that the range of the path vi(t) : [t0, t0 +
h] → K is contained in Ii. By the Cone Lemma 6.3.1 from page 79, we have
vi(t) ∈ ai + (t− t0)İi ⊂ ai + Thİi = Ii for t ∈ [t0, t0 + h] ⊂ Th.

To choose Ii := ai + hİi is not sufficient. In this case, the range of the path
vi(t) : [t0, t0+h]→ K is contained in the cone with apex (t0, ai) and base (t0+h, Ii)
by the Cone Lemma 6.3.1. Unfortunately, the range of vi(t) is not contained in
ai + hİi, in general. But, we have vi(t) ∈ ai + hİi for all t ∈ [t0, t0 + h], if
ai + h̃İi ⊂ ai +hİi = Ii holds for all h̃ ∈ (0, h). The second assertion is equivalent
to 0 ∈ İi as Lemma 6.3.9 states.

Lemma 6.3.9. We have ai + h̃İi ⊂ ai +hİi for all h̃ ∈ (0, h) if and only if 0 ∈ İi.

Proof. We consider the cases K = R and K = C separately:

R: If 0 ∈ İi = [mmin,mmax], then mmin ≤ 0 ≤ mmax holds, and 0 < h̃ < h implies
hmmin ≤ h̃mmin ≤ h̃mmax ≤ hmmax. Hence h̃İi ⊂ hİi and consequently
ai + h̃İi ⊂ ai + hİi.
If conversely ai + h̃İi ⊂ ai + hİi with 0 < h̃ < h holds, then hmmin ≤
h̃mmin ≤ h̃mmax ≤ hmmax. This chain of inequalities only holds if mmin ≤ 0
and mmax ≥ 0.

C: The proof for rectangular arithmetic can directly be reduced to the real case
since 0 ∈ A = A1 + iA2 if and only if 0 ∈ A1 and 0 ∈ A2.
For circular arithmetic, let İi = {ci; ri}. Then we have h̃İi = {h̃ci; h̃ri} and
hİi = {hci; hri} for 0 < h̃ < h.
We have 0 ∈ İi if and only if |ci| − ri ≤ 0. Since 0 < h̃ < h, we have

h(|ci| − ri) ≤ h̃(|ci| − ri)

⇔ (h− h̃) |ci|+ h̃ri ≤ hri

⇔ |hci − h̃ci|+ h̃ri ≤ hri

⇔ h̃İi ⊂ hİi; see Figure 6.10.

Improvement 6.3.10. Use the Information of Γint as well.
We reduce the size of the intervals Ii and of the cone C by using the information
of Γint as well. This improvement can only be used for real GSPs, or for complex
GSPs in combination with rectangular interval arithmetic. Here, the intersection
of two intervals is again an interval in contrast to circular interval arithmetic.



6.3. AN ALGORITHM FOR THE TRACING PROBLEM USING Γ̇ 93

a
b

rb

a
b

rb

|a− b|
rb

|a− b|
rb

ra

rara
BB A A

ra

Figure 6.10: Two circles A = {a; ra} and B = {b; rb} are considered. We have
B ⊂ A if and only if |a− b|+ rb ≤ ra holds.
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Figure 6.11: The circle C1 is the smallest circle containing A ∩ B1, C2 is the
smallest circle containing A ∩B2. We have B2 ⊂ B1 but not C2 ⊂ C1.

In step 4 and step 5 of Algorithm 4, we set

Ii := Ii ∩
(
ai + Thİi

)
(6.6)

for the operations +, −, ·, : and
√

. The interval Ii of the right hand side of (6.6)
is the one that is computed by Γint. The interval Ii of the left hand side of (6.6)
is used by Algorithm 4 for further computations. The resulting algorithm is
somehow a combination of Algorithm 2 and Algorithm 4.

Remark 6.3.11. Improvement 6.3.10 does not work for circular interval arith-
metic since here, the intersection of two intervals is not an interval, in general.
Alternatively, we could choose the smallest circle containing the intersection of
two intervals, but then, the inclusion monotonicity property gets lost (see Fig-
ure 6.11). This property is crucial for the correctness proofs of Algorithm 2 and
Algorithm 4.

Improvement 6.3.12. Use the Backward Cone as well.
Like Improvement 6.3.10, Improvement 6.3.12 only works for real GSPs, and for
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complex GSPs in combination with rectangular interval arithmetic. Here, the
intersection of two intervals is again an interval.
The key idea of Improvement 6.3.12 is to apply the Cone Lemma 6.3.1 from
page 79 to the paths vi(−t). This gives additional information that reduces the
size of the interval Ii in the Cone Algorithm (Algorithm 4). We formulate the
idea using the notation from the Cone Lemma.

Corollary 6.3.13. R : Let p : [0, 1]→ R be a differentiable path and p1 := p(1).
Furthermore, let mmin ≤ ṗ(t) ≤ mmax for all t ∈ [0, 1]. Let

fmin(t) = t mmax + p1 −mmax; and

fmax(t) = t mmin + p1 −mmin

be the lines passing through the point (1, p1) and having mmax and mmin as
slopes. Then, fmin(t) ≤ p(1− t) ≤ fmax(t) holds for all t ∈ [0, 1].

If the time interval [0, 1] is replaced by an arbitrary interval [h1, h2], then
we get p1 := p(h2), mmin ≤ ṗ(t) ≤ mmax for all t ∈ [h1, h2], fmin(t) =
t mmax + p1 − h2mmax, and fmax(t) = t mmin + p1 − h2mmin. Thus p(t) ∈
(t− h2)[mmin,mmax] + p1.

C : Let p : [0, 1] → C be a continuously differentiable path and p1 := p(1). Fur-
thermore, let J ⊂ C be a complex interval with ṗ(t) ∈ J for all t ∈ [0, 1].
Then, p(t) ∈ (t− 1)J + p1 = {(t− 1)z + p1|z ∈ J} holds for all t ∈ [0, 1].

If the time interval [0, 1] is replaced by an arbitrary interval [h1, h2], then
we get p1 := p(h2), and p(t) ∈ (t− h2)J + p1.

Proof. Let J be a (real or complex) interval with ṗ([0, 1]) ⊂ J , and let p1 := p(1).
Furthermore, let q(t) := p(1− t) for t ∈ [0, 1]. Hence q̇(t) = −ṗ(1− t) ∈ −J for
t ∈ [0, 1]. By the Cone Lemma, we get p(1− t) = q(t) ∈ −tJ + q(0) = −tJ + p1,
and consequently, p(t) ∈ (t− 1)J + p1.

If we consider the time interval [h1, h2], we set q(t) := p(h2− t) for t ∈ [0, h2−h1].
Then q̇(t) = −ṗ(h2− t) for t ∈ [0, h2− h1] and p(h2− t) = q(t) ∈ t(−J) + q(0) =
−tJ+p(h2) = −tJ+p1 hold by the Cone Lemma. Hence p(t) ∈ (h2−t)(−J)+p1 =
(t− h2)J + p1.

If J = [mmin,mmax] in the real situation, we get the corresponding formulas for
the lines fmin and fmax.

If we combine the Cone Lemma 6.3.1 with Corollary 6.3.13, we get p(t) ∈
((t− h1)J + p0) ∩ ((t− h2)J + p1). This directly leads to an improvement of the
Cone Algorithm (Algorithm 4). In step 4 and step 5, we consider the intervals
Ii := (ai +Thİi) ∩ (bc−Thİc) instead of ai +Thİi, which might reduce the number
of restarts in step 5. Alternatively, we can consider the two cones C = Cl and Cr
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with apex (t0, ai) and (t0 + h, bi) and base (t0 + h, ai + Thİi) and (t0, bi + Thİi),
respectively. By Lemma 6.3.1 and Corollary 6.3.13, we have vi(t) ∈ Cr ∩ Cl for
all t ∈ [t0, t0 + h]. As before, vi(t) is the path of the considered variable vi in
the continuous evaluation. We can chose Ii as the smallest interval containing
the projection of Cr ∩ Cl along the t-axis to the second coordinate, which is an
element of K.

Since this improvement uses the intersection of intervals, it does not work with
circular complex interval arithmetic; see Remark 6.3.11.

6.4 The Problem of Overestimation

We discuss the problem of overestimation in Algorithm 2 and Algorithm 4. We
have seen in Example 3.6.5 that interval dependency leads to an overestimation of
the exact range of the algebraic function described by a GSP Γ. This overestima-
tion depends heavily on the structure of the underlying GSP. An overestimation
of the ranges of the algebraic functions that correspond to the dependent variables
of Γ may lead to an underestimation of the step length computed in Algorithm 2
and Algorithm 4.

We compare the intervals Ii of the dependent variables vi, i = 1, . . . , n, computed
by Algorithm 2 or Algorithm 4 with the image vi([t0, t0 +h]) of the corresponding
paths in the continuous evaluation. We focus on the real situation (K = R).
At the end of this section, we indicate how the complex case (K = C) could be
treated, and we point out some difficulties for measuring the overestimation in
complex interval arithmetic.

The Real Situation (K = R). As in the specifications of Algorithms 2 and 4,
let A be a starting instance of a GSP Γ at time t0, and let p−k+1, . . . , p0 : [0, 1]→ R
be linear paths of the free variables of Γ. We assume that the corresponding con-
tinuous evaluation (v1(t), . . . , vn(t)) exists. By definition, every path vi(t) can be
described as an expression involving the four elementary arithmetic operations
and square roots by following the operations of Γ. Algorithm 2 does the same
computations in real interval arithmetic in which for every square root operation
the exact range is computed. Thus, the interval Ii in step 4 or step 5 of Algo-
rithm 2 describes a natural interval extension vi of the function t 7→ vi(t); we
have Ii = vi([t0, t0 + h]).

Theorem A.4.3 from Appendix A.4 implies that the interval extensions vi of the
functions t 7→ vi(t) computed by Algorithm 2 are of first order, i = 1, . . . , n. Thus,
for every dependent variable vi there is a constant Ki with w(Ii)− w(vi([t0, t0 +
h])) = w(vi([t0, t0 + h])) − w(vi([t0, t0 + h])) ≤ Kiw([t0, t0 + h]) = hKi. Note
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that the constant K = Ki coming from the definition of the order of an interval
extension (Definition A.4.2) depends on i ≤ n and the structure of the GSP Γ.

Now, we consider the Cone Algorithm (Algorithm 4). We observe that the in-
tervals Ii computed by Algorithm 4 are mean value extensions vi,2 of the paths
t 7→ vi(t) from the continuous evaluation; see Definition A.4.4. These mean value
extensions are centered at t0. The intervals İi are natural interval extensions v̇i

of the derivatives v̇i(t), and we have vi,2([t0, t0 + h]) = vi(t0) + v̇i([t0, t0 + h]) ·
([t0, t0 + h] − t0) = ai + İi · [0, h] = ai + Thİi. By Theorem A.4.5, the interval
extensions vi,2 have order 2. Thus, for every dependent variable vi there is a
constant Ki,2 with w(Ii)− w(vi([t0, t0 + h])) ≤ h2Ki,2. As with Algorithm 2, the
constant K2 = Ki,2 from Definition A.4.2 of the interval extension computed by
Algorithm 4 depends on i ≤ n, the number k of free variables, and the structure
of the GSP Γ.

Our observations show that the overestimation of the ranges of the paths vi(t) by
the enclosing intervals Ii computed by Algorithm 2 or Algorithm 4 decreases if the
step length h decreases and if h is small enough. The overestimation caused by
Algorithm 4 should be smaller than the overestimation caused by Algorithm 2 if
h is small. Thus, we expect that the step length computed by Algorithm 4 could
be larger than the step length computed by Algorithm 2. This is an advantage
of Algorithm 4 over Algorithm 2 in addition to the more efficient step length
adaptation.

The Complex Situation (K = C): The complex situation is more compli-
cated than the real situation. First, the range of the square root operation cannot
be computed exactly since the square root of a complex interval is not an interval,
in general. But, the exact computation of the interval square root operation is
a requirement in the definition of natural interval extensions in Definition A.4.1.
Thus in this case, we cannot reduce rectangular complex arithmetic to real inter-
val arithmetic by treating the real and the imaginary part separately.

Interval extensions for circular interval arithmetic are treated in [57]. Here,
Petković and Petković remark that it is not possible to show that the circu-
lar interval extension F(A) of a function F always includes the smallest disc
containing the image F (A); see [57, p. 41]. The results of [57, Sect. 2] imply that
the interval extensions computed by Algorithm 2 or Algorithm 4 are of order two
as long as no square root operations occur and if circular arithmetic is used. Ad-
ditionally, Petković and Petković mention in [57, p. 47] that higher order forms
improve the interval extensions. Thus we expect that Algorithm 4 gives better
results for a small step length h than Algorithm 2 as in the real situation K = R.
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6.5 Robustness

We have seen that Algorithms 3 and 5 compute the correct final instance if we
assume exact computation and if no critical points lie on the traced continuous
evaluation. Critical points are investigated in Chapter 7, but what happens if
we use floating point arithmetic instead of exact computation? For the inter-
val computations we can use rounded interval arithmetic, which is explained in
Appendix A.3. If we use floating point arithmetic for all computations, then we
have to deal with the following problems in Algorithms 2 and 4:

1. The coordinates a−k+1, . . . , an of the starting instance A are represented as
floating point numbers, as well. Thus the point A = (a−k+1, . . . , an) is not
an instance in general, but we can assume that A is close to an instance.

2. The coordinates b−k+1, . . . , bn are computed with floating point arithmetic,
thus the resulting point B = (b−k+1, . . . , bn) will only be close to the desired
final instance.

3. We have to show that, despite the rounding and truncation errors, we still
have ai, bi ∈ Ii. In particular, we have to ensure that the choices from
step 5 remain correct.

We denote a point A = (a−k+1, . . . , an) a floating point instance of the GSP Γ, if
the coordinates a1, . . . , an are obtained from the values a−k+1, . . . , a0 of the free
variables of Γ by following the instructions of Γ using floating point arithmetic.

First, we have to define a correct starting instance Ã = (ã−k+1, . . . , ã0, ã1, . . . , ãn).
We observe that ãl = pl(t0) is a natural choice for l = −k + 1, . . . , 0 since we
want to trace along the paths p−k+1, . . . , p0 and since t0 is the start time. We
choose ã1, . . . , ãn such that Ã is the instance of the GSP Γ that is “close” to the
point A. In the following paragraphs, we state the meaning of “close” precisely.

We evaluate the functions pl at time t0 with rounded interval arithmetic leading
to the intervals Pl with al, ãl ∈ Pl; l = −k + 1, . . . , 0. Note that we can interpret
a number as the interval that only contains this number. Following the instruc-
tions of Γint using rounded interval arithmetic, we compute intervals P1, . . . , Pn

with ai, ãi ∈ Pi; i = 1, . . . , n. Thus the resulting vector P = (P−k+1, . . . , Pn)
of intervals is an interval-instance of Γint that contains an instance Ã and the
floating point instance A. We assume that the intervals that belong to radicand
variables of square root operations do not contain zero. Otherwise we should
increase the precision of the floating point numbers. Note that in this situation
the point A might be close to a critical point and we could return to the previous
step in the tracing process and continue with the methods from Chapter 7.
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Figure 6.12: The intervals Pd =
√

Ic are visualized. The smaller intervals are
computed using exact arithmetic for determining the interval bounds, the bigger
intervals are computed with rounded interval arithmetic. In rounded circular
arithmetic, the intervals +Pd and −Pd can overlap. Here the radius of an interval
computed by a square root operation must be chosen large enough to compensate
the rounding errors of the midpoint calculation.

If another floating point instance A′ = (a−k+1, . . . , a0, a
′
1, . . . , a

′
n) lies above the

point (a−k+1, . . . , a0), then we follow the instructions of Γint and compute inter-
vals P ′

1, . . . , P
′
n with a′

i ∈ P ′
i . If A = A′, then we have ai = a′

i for all i = 1, . . . , n,
and the intervals Pi and P ′

i are computed by the same sequence of interval-
operations, hence Pi = P ′

i holds for all i = 1, . . . , n. The converse direction is
also true: Let A 6= A′, then there is a smallest index i0 ∈ {1, . . . , n} with ai0 6= a′

i0
.

The only operation that might lead to different results on the same input is the
square root operation. Thus the dependent variable vi0 of Γ is defined by a square
root operation vi0 = vd ←

√
vc, and we have ai0 = ad = −a′

d 6= 0 and Pd = −P ′
d.

Since we assume 0 /∈ Pc, we have 0 /∈ √Pc computed using exact computation;
see Appendix A. Hence there must be a point xd ∈ Pd with xd /∈ P ′

d, and Pd 6= P ′
d;

see Fig 6.12. Note that the intervals Pd and P ′
d need not be disjoint due to the

usage of rounded interval arithmetic.

If A 6= A′, then the vector P′ = (P−k+1, . . . , P0, P
′
1, . . . , P

′
n) of intervals must con-

tain an instance Ã′ = (ã−k+1 = p−k+1(t0), . . . , ã0 = p0(t0), ã
′
1, . . . , ã

′
n) with ã′

d =
−ãd 6= 0. If Pd ∩ P ′

d = ∅ for the first index d with Pd 6= P ′
d, then the instances Ã

and Ã′ are separated by the interval vectors P and P′. If P separates Ã from
all other instances Ã′ from the fiber of the point (ã−k+1 = p−k+1(t0), . . . , ã0 =
p0(t0)), then we say that the instance Ã is close to A. In this situation, the
instance Ã is unique. If Pd 6= P ′

d and Pd ∩ P ′
d 6= ∅, then the interval vector P =

(P−k+1, . . . , P0, P1, . . . , Pn) might contain another instance Ã′ = (ã−k+1, . . . , ã0,
ã′

1, . . . , ã
′
n) from the fiber of the point (ã−k+1, . . . , ã0); see Figure 6.13. In this

situation, the point A could be close to a critical point, and we might use the
methods from Chapter 7. Another possibility to overcome this problem would be
to increase the precision of the floating point numbers.
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Figure 6.13: We consider the GSP Γ from Example 3.1.3. The intervals Pd = P3

and P ′
d = P ′

3 are shown in a “bad” situation (Pd ∩ P ′
d 6= ∅) and in a “good”

situation (Pd ∩P ′
d = ∅). In the bad situation, the two solutions ã3 and ã′

3 are not
separated by the intervals P3 and P ′

3.

Similar considerations apply to the computed final instance B. Let B̃ be the
correct final instance for a tracing step of length h if as starting instance Ã was
chosen. Then we have bl = pl(t0 + h) computed in floating point arithmetic
and b̃l = pl(t0 + h) computed in exact arithmetic; l = −k + 1, . . . , 0. Then B
should be the floating point instance that is closest to B̃, and the second problem
is treated. Similar to the intervals Pi we define the intervals Qi.

To address 1., we observe that, in Algorithm 2, the numbers ai are only used to
determine the right sign for the square root operation in step 5. We treat this
problem below. Additionally, the points ai are used to determine the intervals Ii

in Algorithm 4. Here we have to use the intervals Pi instead of the values ai.
This might decrease the computed step length h.

Now, we discuss the third problem. The intervals Il are the smallest intervals
containing the line segments pl([t0, t0+h]) with the endpoints ãl = pl(t0) and b̃l =
pl(t0+h); l = −k+1, . . . , 0. To be on the safe side, we have to ensure al, ãl, bl, b̃l ∈
Il. This is obtained if we set Il := pl(t0 + Th) computed with rounded interval
arithmetic. As in Algorithm 4, Th is the smallest interval containing the time
interval [0, h] in the used interval arithmetic. We assume that t0 and h are chosen
such that t0 + h is computed correctly. If the step length h becomes too small,
we might be close to a critical point and should apply the methods explained in
Chapter 7.
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Concerning Algorithms 2 and 4, the only problem might occur with the square
root operations in step 5. We consider the inequality from step 5, which deter-
mines the sign choice for the square root operation:

|bd + ad| > |bd − ad|
⇐⇒ (bd + ad)(bd + ad) > (bd − ad)(bd − ad)
⇐⇒ bdād + adb̄d > 0
⇐⇒ Re(bd)Re(ad) + Im(bd)Im(ad) > 0

In addition to the correct sign choice for the floating point number bd we have
to ensure that this inequality leads to the correct choice for the exact value b̃d,
as well. We consider the intervals Pd and Qd that are defined above and ob-
serve ad, ãd ∈ Pd and bd, b̃d ∈ Qd. We replace the condition Re(bd)Re(ad) +
Im(bd)Im(ad) > 0 by

[xd, yd] := Re(Qd)Re(Pd) + Im(Qd)Im(Pd) > 0. (6.7)

If we use circular arithmetic, the real part Re({c; r}) of a circular interval {c; r}
is the closed interval [Re(c) − r, Re(c) + r], where the lower bound is rounded
down and the upper bound is rounded up. Similarly, we have Im({c; r}) =
[Im(c) − r, Im(c) + r]. The imaginary part of a real interval is zero. We define
that [xd, yd] > 0 if and only if xd > 0. If Inequality 6.7 does not hold for both
choices for Qd, then we should either increase the precision of the floating point
computations or we are close to a critical point and should apply the methods
from Chapter 7.

Using an inductive argument, we know bc, b̃c ∈ Ic. Since the value bd and the
interval Id are computed by the same branch of the square root function, we
have bd ∈ Id. Since {√z| z ∈ Ic} ⊂

√
Ic ⊂ Id for a fixed branch

√
of the root

function, we have b̃d ∈ Id.

To sum up, simple modifications to Algorithms 2 and 4 combined with the ideas
from Chapter 7 concerning the treatment of (possible) critical points lead to a
robust method for solving the Tracing Problem. We have seen that close to
a critical point we could benefit from a higher precision of the floating point
numbers. In [25], different packages for multiple precision interval arithmetic are
compared.

6.6 Cubic and Higher Order Roots

We describe how the given algorithms for the Tracing Problem can be modified
such that they can deal with GSPs with cubic and higher order roots, as well.
The ideas given in Section 6.1 generalize directly to higher order roots, and we
revisit the Radicand Lemma; see Figure 6.14.
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Figure 6.14: Illustration of the proof of the Radicand Lemma 6.6.1 for n = 5.

Lemma 6.6.1. Radicand Lemma for nth Roots
Let n ∈ N with n ≥ 2. Let ξ0, . . . , ξn−1 be the n nth roots of unity. Let r : [0, 1]→
C∗ = C\{0} be a continuous path and r0 := r(0) its starting point. Let v : [0, 1]→
C∗ be the unique continuous path with (v(t))n = r(t) for all t ∈ [0, 1] and v(0) = v0

for a fixed v0 = ξj0
n
√

r0 with ξj0 ∈ {ξ0, . . . , ξn−1}. Let l be the ray that starts
in 0 ∈ C and passes through −r0. If r does not intersect the ray l, then at any
time t ∈ [0, 1] we have

|v(t)− v0| < |v(t)− ξjv0| for ξj 6= 1.

Lemma 6.6.1 states that the path v stays in the Voronoi region of v0 in the
Voronoi diagram of the point set {ξj

n
√

r0 | j = 0, . . . , n − 1}. The endpoint v(1)

is the unique point v1 ∈ {ξj
n
√

r(1) | j = 0, . . . , n− 1} with |v1 − v0| < |v1 − ξjv0|
for all nth roots of unity ξj with ξj 6= 0.

Proof. (Indirect) We consider the Voronoi diagram of the point set {ξj
n
√

r0 | j =
0, . . . , n− 1}. To obtain a contradiction, we assume that there is a t̃ ∈ [0, 1] and
a root of unity ξj 6= 1 with |v(t̃)− v0| ≥ |v(t̃)− ξjv0|. Thus, v(t̃) is contained in
the Voronoi region of ξjv0 6= v0. Since v is continuous, there must be an inter-
section point v(t̃0) of v and one of the two Voronoi edges bounding the Voronoi
region of v0. These two Voronoi edges are the rays starting in the origin 0 ∈ C
and passing through the points e2πi/(2n)v0 or e−2πi/(2n)v0, respectively. Thus we
have v(t̃0) = se2πi/(2n)v0 or v(t̃0) = se−2πi/(2n)v0 for an s > 0, and we observe

r(t̃0) = (v(t̃0))
n = (se±2πi/(2n)v0)

n = sne±πivn
0 = −snr0.

Hence, the point r(t̃0) lies on the ray l, and we have a contradiction to the
assumption of Lemma 6.6.1.
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Corollary 6.6.2. Radicand Corollary
If the path r stays in a rectangle or circle that does not contain 0 ∈ C, then
|v(t) − v0| < |v(t) − ξjv0| holds for all t ∈ [0, 1] and the n − 1 nth roots of
unity ξ1, . . . , ξn−1.

Proof. Corollary 6.6.2 can be proved in the same way as Corollary 6.1.2.

The Radicand Lemma is the fundament of step 5 in Algorithm 2 and 4. In order
to adapt these algorithms to higher order roots, we have to replace the line

choose bd ∈ {±
√

bc} with |bd − ad| < |bd + ad|

by

choose bd ∈ {ξj

√
bc | j = 0, . . . , n− 1} with |bd − ad| < |bd − ξjad| for all

nth roots of unity ξj with ξj 6= 1

if we consider nth roots. Obviously, the assignment Id :=
√

Ic ∋ bd in the next
line must be replaced by Id := n

√
Ic ∋ bd, so that we have to compute nth roots

in interval arithmetic.

In real interval arithmetic, nth roots can be computed using Definition A.1.8. If n
is even, then the nth root of an interval [a, b] with a > 0 is either [+ n

√
a, + n
√

b]
or [− n

√
b,− n
√

a]. If n is odd, then the nth root of an interval [a, b] is [ n
√

a, n
√

b].

In rectangular complex interval arithmetic, the computation of nth roots seems
to be more difficult; see page 162. Petković and Petković [56, 57] investigated the
computation of nth roots in circular arithmetic; see page 168. If we have n > 2
and if the radius of the considered circular interval Ic is too large, then the n
intervals n

√
Ic might overlap; see [56, Thm. 1, p. 30]. Thus, we must choose Id =

n
√

Ic in step 5 of Algorithms 2 and 4 more carefully. If the point bd is contained
in more than one disc n

√
Ic, then we could replace the requirement bd ∈ n

√
Ic

by ad ∈ n
√

Ic. If both points ad and bd are contained in more than one disc n
√

Ic,
then we have to decrease the step length and to restart the algorithm.

6.7 Is Affine Arithmetic a Better Choice?

In our context of Dynamic Geometry, affine arithmetic captures the structure of
GSPs more directly than interval arithmetic: In affine arithmetic, the difficult
operations are the non-affine operations multiplication, division, and root. These
operations also cause the main problems for the Tracing Problem: A square root
operation doubles the number of instances that lie above a given point. In the
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language of Riemann surfaces of algebraic functions, a square root operation
doubles the number of sheets of the covering space. A multiplication might
enlarge the number or the multiplicity of critical points that are caused by a
future division or square root operation. A division operation can be responsible
for many critical points and seems to be difficult to handle.

An other advantage of affine arithmetic is the treatment of dependencies. In
many GSPs, the number of free variables is much smaller than the number of
dependent variables leading to many dependencies between the variables of the
GSP. Thus, using affine arithmetic could reduce the overestimation of the ranges
and, consequently, the underestimation of the step length.

However, affine arithmetic does not fulfill the inclusion monotonicity property, in
general. Thus, replacing interval arithmetic by affine arithmetic should be done
carefully. Maybe we achieve inclusion monotonicity in our particular situation
since the dependencies remain similar if the step length is reduced.

The inclusion monotonicity property implies that if Algorithm 2 or Algorithm 4
treat a division or root variable vi, then only variables vj with j ≥ i can cause a
restart of the algorithm. This property is fundamental for the termination proofs.
Without the inclusion monotonicity property, there might be restarts for variables
vj with j < i. This fact complicates the correctness proofs of Algorithm 2 and
Algorithm 4.

There are only few approaches for complex affine arithmetic. In [38], complex
affine arithmetic is defined by treating the real and imaginary part of complex
quantities separately similar to rectangular complex interval arithmetic. This
approach leads to a straight forward definition of the four basic arithmetic oper-
ations addition, subtraction, multiplication, and division; a definition of a square
root operation is missing. The square root operation for rectangular arithmetic
from Definition A.2.8 does not consider dependencies and would not be a good
choice for affine arithmetic.

An other possibility to define complex affine arithmetic would be to assume that
the noise symbols ǫi are complex variables taking values in the unit circle {0; 1}.
In this case, the challenge is to define the division, and the square root opera-
tion. We remark that assuming that the noise symbols take values in the square
[−1, 1] + i[−1, 1] is not a promising approach: A term xiǫi with xi ∈ C does
not describe an axisparallel square so that the geometric interpretation is diffi-
cult. Elaborating complex affine arithmetic for solving the Tracing Problem is
an interesting future project.
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Chapter 7

Detection and Treatment of
Critical Points

The detection and treatment of critical points in the tracing process described
in Chapter 6 is discussed; see Sections 7.1 and 7.2. A division or root variable
causes a critical point if the path vc(t) of its divisor or radicand passes through
zero1. After detecting a zero of vc(t) in the time interval [t0, t0+h], we omit the
critical point by a detour in the complex plane [40]. We remark that a similar idea
is used for solving polynomial systems of equations via homotopy methods [59].
Here a randomly chosen complex parameter is used in the homotopy to avoid
singularities along the solution paths. A crucial observation is that the instance
reached after a detour around a critical point depends on the detour itself. We
discuss consequences of detouring in Section 7.3. In Section 7.4, we indicate
how all critical points of a Geometric Straight-Line Program with only one free
variable that are contained in a box could be approximated using methods from
interval analysis.

7.1 Detection of Critical Points

We describe how a critical point can be detected. For the Tracing Problem, we
are given a starting instance A of a GSP Γ and paths p−k+1, . . . , p0 of the free
variables. Our Algorithms (Algorithm 3 and Algorithm 5) trace the correspond-
ing continuous evaluation stepwise. The final instance of each step is determined
coordinate-wise by Algorithm 2 or Algorithm 4. Here, for each (critical) vari-

1This fact also holds for root operations over K = R. Here, we can neglect the case vc(t) < 0:
At the starting instance A, the radicand variable is positive, otherwise A would not be an
instance. Before the path vc(t) of the radicand variable vc takes a negative real number as
value, it must have passed through zero since vc(t) is a continuous function.

105
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able vm is ensured that no m-critical point is hit: Let vc be the radicand or
divisor variable of vm, let [t0.t0 +h] ⊂ [0, 1] be the time interval of the considered
step. An m-critical point occurs at time t̃ ∈ [t0, t0 + h] if vc(t̃) = 0. In this situ-
ation we have 0 = vc(t̃) ∈ vc([t0, t0 + h]) ⊂ Ic. The inclusion vc([t0, t0 + h]) ⊂ Ic

holds by construction of the interval Ic. Algorithm 2 and Algorithm 4 only pro-
ceed if 0 /∈ Ic. In this way is guaranteed that no m-critical point occurs in the
step of length h at starting time t0. Otherwise, Algorithm 2 and Algorithm 4 are
restarted with a smaller step length. Thus, a first indication of a critical point
is that the step length computed by Algorithm 2 in Algorithm 3 or Algorithm 4
in Algorithm 5 becomes arbitrarily small; see Remark 6.2.2 from page 77 and
Remark 6.3.6 from page 87. Hence, we should stop Algorithm 3 and Algorithm 5
if a suitable lower bound for the step length is reached.

Observation 1. Let hl be a lower bound for the step length.
If the step length h, computed while Algorithm 3 or Algorithm 5 run, reaches the
lower bound hl at some time t0, then there might be a critical point close to the
instance (p−k+1(t0), . . . , p0(t0), v1(t0), . . . , vn(t0)).

Since the performance of the algorithms depends on the lower bound hl of the step
length h, the value of hl should be chosen carefully. How to chose hl properly
is still an open problem. In practice, hl could depend on the computational
accuracy.

We investigate the zeros of the path vc(t) of a radicand or divisor variable vc

in a continuous evaluation of Γ. The variable vc can only induce an m-critical
point if its path vc(t) in the continuous evaluation (v1(t), . . . , vc(t), . . . , vm−1(t))
of the m− 1-head Γ(m−1) of Γ exists and has a zero in the time interval [0, 1]. We
assume that the paths pl : [0, 1]→ K ∈ {R, C} of the free variables zl of Γ can be
extended to analytic functions p̂l : U[0,1] → C on a neighborhood U[0,1] ⊂ C of the
time interval [0, 1] ⊂ R. In particular, this property holds for linear or circular
paths pl. Let (v1(t), . . . , vn(t)) be a continuous evaluation of Γ along the paths pl.
If the neighborhood U[0,1] is chosen small enough, then the paths vj(t) : [0, 1]→ K
can be extended to analytic functions v̂j : U[0,1] → C, as well; see Section 8.6.1. A
famous theorem from complex analysis (German: “Identitätssatz”) implies that
the functions v̂j are either constantly zero or their zeros form a discrete subset
of U[0,1]. Since the time interval [0, 1] is compact, a path vj(t) in a continuous
evaluation is either constantly zero or has a finite number of zeros if the paths pl

of the free variables can be extended to analytic functions on U[0,1].

If Γ is a complex GSP and if the paths pl of the free variables of Γ can be extended
to analytic functions p̂l on U[0,1], then the paths vj(t) : [0, 1] → C are paths in
the complex plane that can be extended to analytic functions v̂j : U[0,1] → C.
Lemma 7.1.1 implies that the real part Re(vj(t)) and the imaginary part Im(vj(t))
of vj(t) are either constantly zero on the interval [0, 1] ⊂ R or have a finite number
of zeros in [0, 1].
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Lemma 7.1.1. Let U[0,1] ⊂ C be a neighborhood of the real interval [0, 1] ⊂
R. Let f : U[0,1] → C, z 7→ f(z), be an analytic function. Then the real
part Re(f) : U[0,1] → R either has a constant number of zeros in the real in-
terval [0, 1] or Re(f(z)) = 0 holds for all points z ∈ [0, 1].

Proof. Let t0 ∈ [0, 1], and let

f(z) =
∞∑

n=0

an(z − t0)
n

be the power series of f in a neighborhood U(t0) ⊂ C of t0. For t ∈ [0, 1]∩U(t0)
we have

f(t) =
∞∑

n=0

an︸︷︷︸
∈C

(t− t0︸ ︷︷ ︸
∈R

) =
∞∑

n=0

(
Re(an)(t− t0)︸ ︷︷ ︸

∈R

+ iIm(an)(t− t0)︸ ︷︷ ︸
∈iR

)

=
∞∑

n=0

Re(an)(t− t0)

︸ ︷︷ ︸
∈R

+ i

∞∑

n=0

Im(an)(t− t0)

︸ ︷︷ ︸
∈R

.

This implies

Re(f(t)) =
∞∑

n=0

Re(an)(t− t0),

and Re(f) can locally be expressed as a power series. Hence the function Re(f)
extends to an analytic function defined on a neighborhood U ⊂ C of [0, 1]. A
famous result from complex analysis implies that this analytic function is ei-
ther constantly zero, or it has at most a finite number of zeros in the compact
interval [0, 1] ⊂ R.

The previous study leads to observation 2.

Observation 2. We assume that the paths pl : [0, 1] → K ∈ {R, C} of the free
variables zl of Γ can be extended to analytic functions p̂l : U[0,1] → C on a neigh-
borhood U[0,1] ⊂ C of the time interval [0, 1] ⊂ R. As mentioned above, this
property holds for linear or circular paths pl. Let (v1(t), . . . , vn(t)) be a contin-
uous evaluation of Γ along the paths pl. If K = R, then the paths vj(t) either
have a finite number of zeros in the time interval [0, 1] or they are constantly
zero; j = 1, . . . , n. If K = C, then the real part Re(vj(t)) and the imaginary
part Im(vj(t)) of the paths vj(t) either have a finite number of zeros in the time
interval [0, 1] ⊂ R, or they are constantly zero on the interval [0, 1]; j = 1, . . . , n.

As mentioned above, it suffices to consider the case K = R since in the complex
situation vc(t) = 0 holds if and only if Re(vc(t)) = 0 and Im(vc(t)) = 0. At
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Figure 7.1: The local situation of vc(t) close to a zero is illustrated for K = R.
The left figure shows the situation from observation 3, and the middle and the
right one visualize observation 4.

the starting instance A at time t0 ∈ [0, 1] we have vc(t0) 6= 0 for every radicand
or divisor variable. Otherwise, A would be a critical point and not an instance.
Thus, for K = R we can exclude the case vc(t) ≡ 0. For K = C, at least one of
the two functions Re(vc(t)) or Im(vc(t)) has at most a finite number of zeros in
the time interval [0, 1] and we can apply the same case distinction as in the real
situation. Figure 7.1 shows the local situation of vc(t) close to a zero for K = R.

The intermediate value theorem leads to the following observation.

Observation 3. Let vc(t) : [t0, t0 +h]→ R with vc(t0) ·vc(t0 +h) < 0. Since vc(t)
is a continuous real function, it has a zero in the time interval [t0, t0 + h].

In Algorithm 2 and Algorithm 4, the condition acbc = vc(t0)vc(t0 + h) < 0 can
be easily verified. Recall that bc is the coordinate of vc in the final instance B of
the current step.

The path vc(t) might have a zero although vc(t0)vc(t0 +h) > 0 holds. Then, vc(t)
has a local extremum at a time t̃ ∈ [t0, t0 + h], and v̇c(t̃) = 0 and 0 ∈ {v̇c(t) | t ∈
[t0, t0 + h]} ⊂ İc hold.

Observation 4. If 0 ∈ İc, then the function vc(t) might have a local extremum
in the time interval [t0, t0 + h]. In this situation, the path vc(t) could have a zero
in the time interval [t0, t0 + h] although the condition vc(t0)vc(t0 + h) < 0 from
observation 3 fails.

Depending on the step length h, which is the length of the time interval [t0, t0+h],
it might be important to approximate the zero of vc(t) causing the critical point.
A first possibility is to use Algorithm 2 or Algorithm 4. Both algorithms could
also be used backwards; see Improvement 6.3.12 from page 93. As usual, let ac be
the coordinate of vc in the starting instance A, and bc the coordinate of vc in the
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final instance B of the current step. The coordinate bc has already been computed
since vc is the radicand or divisor variable of the current (critical) variable vm.
We apply Algorithm 2 or Algorithm 4 to the path vc(1− t) at starting time t0 +h
and starting point bc. A second possibility for the approximation of the zero of
vc(t) is to use a Newton-Iteration. This is possible since we can determine the
first derivative v̇c(t) of vc(t) by differentiating the GSP Γ as in Section 3.5 and by
considering the corresponding coordinate of v̇c(t) in the instance of Γ̇ at a fixed
time t.

In the situation of observation 4, we propose to bisect the time interval [t0, t0 +h]
into the two subintervals [t0, t0 + h

2
] and [t0 + h

2
, t0 + h] and to proceed with each

subinterval separately.

If an m-critical point is found, we can determine the multiplicity of the zero of
its radicand or divisor vc. For this purpose, we have to compute higher order
derivatives of the GSP Γ; see Section 3.5. This computation is possible since
the derivative Γ̇ of a GSP Γ is again a GSP. The corresponding instance of the
GSP Γ̇ can be determined using Lemma 3.5.3. Hence, we have to derive the
GSP Γ and to determine the corresponding instances (so far as possible, i.e. the
m− 1-head) at this point until the corresponding coordinate of vc that describes
its µth derivative differs from zero. Then, µ− 1 is the multiplicity of the zero of
vc that causes the m-critical point.

7.2 Treatment of Critical Points

After the detection of a critical point, we have to deal with it. We choose Ko-
rtenkamp’s approach [40] of detouring around degeneracies in the complex plane,
which is used in the Dynamic Geometry Software Cinderella [42, 41]. This ap-
proach leads to a locally and globally consistent treatment of critical points;
see [40, Sect. 6.3], Section 1.3 and Section 7.3.

As in our algorithms (Algorithm 2-5) we assume that the given paths of the
free variables of the GSP Γ are linear paths p = pl with range C, for exam-
ple p : [0, 1] → C, t 7→ a + t(b − a) for fixed a, b ∈ C. Hence, p describes the
line segment between a and b. Clearly, if and only if a, b ∈ R, then the range
of p is contained in R. For simplicity, we use the time interval [0, 1]; we can
transfer all observations to arbitrary time intervals [t0, t0 + h] with h > 0 by
reparametrization.

If a (possible) critical point is detected in the time interval [0, 1], we replace the
line segment ab between a and b by the right semi circle having the line segment ab
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t(s)

Re(z)
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2
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Re(z)
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b

pt(s)

p(t)
s 7→ eiπs

Figure 7.2: The left figure shows the function t(s) = 1−eiπs

2
, and the right one

shows the function pt(s) = a + t(s)(b− a) = a+b
2
− b−a

2
eiπs.

as diameter. For this purpose, we define the functions

t(s) : [0, 1] → C
s 7→ 1−eiπs

2

and
pt : [0, 1] → C

s 7→ a + t(s)(b− a)

as in [40] and on page 7. Hence, pt(s) moves once around the right semi circle
with diameter ab; see Figure 7.2.

Instead of tracing along the linear path p(t) = pl(t), we now have to trace along
the circular path pt(s) = pl,t(s). For this purpose, we can use Algorithm 3 or
Algorithm 5. Note that the intervals Il and İl in step 2 of Algorithm 2, or step 2 of
Algorithm 4 have to be determined, such that the inclusion monotonicity property
is fulfilled. Recall that Il contains the range pl([t0, t0+h]) of the path pl of the free
variable zl of the GSP Γ. The interval İl contains the range ṗl([t0, t0+h]) of ṗl over
the time interval [t0, t0 + h]. For the paths pl,t(s) we require pl,t([s0, s0 + h]) ⊂ Il

and ṗl,t([s0, s0 + h]) ⊂ İl. To fulfill the inclusion monotonicity property, we must
define the intervals Il and İl such that h′ < h implies I ′

l ⊂ Il and İ ′
l ⊂ İl for

l = −k + 1, . . . , 0. Here, the intervals I ′
l and İ ′

l are the corresponding intervals to
Il and İl for the step length h′.

First, we describe the construction of the intervals Il for l = −k + 1, . . . , 0. If
rectangular interval arithmetic is used, we can choose the interval I = Il as the
smallest axis-parallel rectangle containing the set {pt(s) | s ∈ [s0, s0 + h]}. For
circular interval arithmetic, the situation is slightly more complicated. Here, we
chose the interval I as the smallest circle {c; rc} with the following properties;
see Figure 7.3:
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pt(s)

a
Re(z)

b l1

l2

c

I = {c; rc}

a+b
2

pt(s0)

Im(z) pt(s0 + h)

Figure 7.3: The construction of the interval I = {c; rc} is shown.

1. The circle {c; rc} contains the set {pt(s) | s ∈ [s0, s0 + h]}; and

2. the midpoint c is the intersection point of the two lines l1 and l2. Here,
l1 is the line that passes through pt(s0) and that is orthogonal to the line
connecting the points pt(s0) and a+b

2
. The point a+b

2
is the midpoint of the

semi circle of pt. The line l2 passes through the point pt(s0 + h) and is
orthogonal to the line that connects the points pt(s0 + h) and a+b

2
.

To compute the intervals İl for Algorithm 4 (Cone Algorithm), we determine

the derivative ṗt of pt: We have ṗt(s) = (b − a)ṫ(s) = − iπ(b−a)
2

eiπs, which again

describes a semi circle. Hence, the intervals İl can be computed in the same way
as the intervals Il.

Since our algorithms Algorithm 2, Algorithm 3, Algorithm 4 and Algorithm 5
become quite inefficient if the starting instance is chosen close to a critical point,
we propose to use a buffer zone around a critical point; see Figure 7.4. We define
the intervals I = Il and I = İl such that they do not hit this buffer zone. This
approach ensures that the intervals Il and İl have a larger distance to the critical
point. For this reason, we expect that 0 ∈ Ic in step 4 and 5 of Algorithm 2 and
Algorithm 4 occurs more rarely. Hence, we expect that the number of restarts in
step 5 of Algorithm 4 or step 5 of Algorithm 4 is reduced that way. To sum up,
the buffer zone enlarges the detour pl around the critical point, but therefor the
step length h might become larger as well.

Remark 7.2.1. An open problem is to determine whether a path pt “catches” a
singularity. One possibility for this could be to determine whether a complex time
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Figure 7.4: The construction of the buffer zone is illustrated. The dotted circles
are candidates for the interval I: They do not intersect the buffer zone.

interval contains a critical point. This could be done with an Interval Newton
Method; see Section 7.4 and Appendix A.5.

7.3 Consequences of Detouring

If we trace a detour around a (possible) critical point, then the final instance
depends in many situations on the detour. Thus, the choice of the detour heavily
influences the properties of the Dynamic Geometry system. We discuss the differ-
ent situations and describe Kortenkamp’s approach [40] used in the Dynamic Ge-
ometry Software Cinderella [42, 41] that leads to local and global consistency [40,
Sect. 6.3]. In the following discussion, we assume that the given GSP only has
one free variable.

In most applications in Dynamic Geometry, the restriction to GSPs with only one
free variable is not a serious constraint for solving the Tracing Problem. Here,
the paths pl of the free variables zl of a GSP Γ are usually linear paths and can be
described by a GSP Γl having the time t as single free variable; l = −k+1, . . . , 0.
We replace the operations zl ← FREE of Γ by the operations of Γl. The resulting
GSP is a GSP with only one free variable t. The same argument is used in the
proof of Lemma 3.2.10 on page 37.

Let Γ be a GSP with only one free variable. Since we consider complex detours,
we assume that Γ is a GSP over C. At a critical point, a division by zero
or a root of zero occurs; see Definition 3.2.3 from page 34. We have seen in
Section 3.2 that critical points of Γ are either isolated or an entire connected
component of the configuration space consists of critical points. An isolated
critical point might lead to a removable singularity, a pole, or a branch point.
Since the dependent variables of a GSP Γ describe algebraic functions, we can
exclude essential singularities: If the free variable z of Γ moves on a polynomial
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path p(t), then the dependent variables vj of Γ are algebraic functions v̂j(t) in t.
These algebraic functions can be seen as meromorphic functions that are defined
on the covering space of a branched covering; see Section 8.3, Theorem 8.3.3, and
Section 8.4 for a detailed discussion of examples.

Algorithms 3 and 5 proceed stepwise. In each step, Algorithms 2 and 4, respec-
tively, compute the final instance coordinate by coordinate. Thus, we consider
the paths vj(t) of the dependent variables vj separately. Doing this, we have to
keep in mind that the described effects might accumulate: At a certain time t̃, two
(or even more) dependent variables could cause a critical point simultaneously;
see example 7.3.1 and Section 1.3.

Example 7.3.1. We consider the path p(t) : [0, 1] → C, t 7→ 1 − 2t, and the
GSP Γ:

Γ: z ← FREE
v1 ←

√
z

v2 ← 1
z

v3 ← z · v2

The dependent variable v1 describes the function z 7→ √z, which has a branch
point at z = 0. The dependent variable v2 describes the reciprocal z 7→ 1/z,
which has a pole of order 1 at z = 0. Finally, the dependent variable v3 describes
the function z 7→ z/z, which has a removable singularity at z = 0. By Defini-
tion 3.2.2, the point z = 0 is a 1-critical point, the other dependent variables
are not considered. However, detouring around the origin influences all coordi-
nates of the final instance. A detour around the origin is obtained by leaving
the path p(t) of the free variable z in a neighborhood of the time t̃ = 1/2 and
bypasses the singularities of all dependent variables simultaneously.

In Kortenkamp’s approach [40] described in Section 7.2, critical points are avoided
by modifying the path pj of the free variables. This change of the paths pl induces
a simultaneous modification of all paths vj(t) of the dependent variables vj in the
continuous evaluation.

Example 7.3.2. We consider the algebraic expression
√

z +
√

z, which is de-
scribed by the following GSP Γ:

Γ: z ← FREE
v1 ←

√
z

v2 ←
√

z
v3 ← v1 + v2

The point z0 = 0 is the only critical value of Γ. We observe

v3 = v1 + v2 =
√

z +
√

z =

{
2
√

z, if v1 = v2 (1)
0, if v1 = −v2. (2)
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At a given instance A = [a0, a1, a2, a3], we either have a1 = a2 or a1 = −a2 leading
to v3 = 2a1 = 2

√
a0 (case 1) or v3 = 0 (case 2), respectively. Thus, the starting

instance A fixes the case in the definition of the function of v3. Tracing along a
path p(t) of the free variable without hitting the point z0 = 0 does not change
the case in the definition of the function of v3.

If we trace along the path p(t) = 2t−1 of the free variable z, then both dependent
variables v1 and v2 induce a critical point. Here, the critical point is the branch
point of the covering map z 7→ z2. To avoid the critical point, we consider the
path pt(s) = −eiπs as in Section 7.2. Since this change of the path p affects both
dependent variables v1 and v2 in the same way, we still remain in the starting
case of the variable v3, hence we observe a consistent behavior. In contrast to
this, an independent treatment of the variables v1 and v2 can lead to a change of
the case for the variable v3.

Formally, this observation can be treated using the theory of Riemann surfaces
of algebraic function as described in Chapter 8. Switching from the path p(t) to
the path pt(s) of the free variable z enforces that the variables v1 and v2 stay on
their sheets of the covering z 7→ z2. An independent treatment of v1 and v2 may
lead to a change of the sheets of only one of the two variables v1 and v2.

To investigate the influences of detouring around critical points, we explain when
a modified path “catches” a critical point; see Figure 7.5. We assume that vj

is a dependent variable that is defined by a root or division operation. Let vc

be the radicand or divisor variable of vj. Let vc(t) be the path of vc in the
continuous evaluation induced by the (polynomial) path p(t) of the free variable,
let ac = vc(0) and bc = vc(1) be the coordinates of vc in the starting and final
instances. As above, let v̂c(z) and v̂j(z) be the algebraic functions of vc and vj,
respectively, induced by the (polynomial) path p(t) of the free variable. The
zeros z0, . . . , zkc

of v̂c are the critical points caused by the variable vj. Let ṽc(t)
be another path with ṽc(0) = ac and ṽc(1) = bc. Let U ⊂ C be a simply connected
open subset that contains the images of the paths vc(t) and ṽc(t). We say that the
path ṽc(t) catches a critical point if the closed path vc(t)− ṽc(t) obtained by first
following vc(t) and afterwards following ṽc(t) backwards is not null-homotopic in
the set U \{z0, . . . , zkc

}; see Fig 7.5 and Definition 8.6.10 of Section 8.6. A closed
path is null-homotopic if it is homotopic to a constant path.

If we surround a critical point that leads to a removable singularity of a dependent
variable vj without catching other singularities of this variable, then the final
position bj of vj does not depend on the chosen path. This fact is a consequence
of Cauchy’s integral theorem.

If we surround a critical point that leads to a pole z0 of the function v̂j, then the
final point bj depends on the chosen detour. Let two paths ṽc and ˜̃vc from ac to bc
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z2

p1(t)
p3(t)

a

b

p2(t)

z0z1

p(t)

Figure 7.5: The path p(t) together with the path p1(t) does not catch one of the
points z0, z1, z2; the path p(t) together with the path p2(t) catches the points z1

and z2; the path p(t) together with the path p3(t) catches the points z0 and z1.

lead to the final points b̃j and ˜̃bj of the variable vj. Then the difference b̃j − ˜̃bj

of the two final positions depends on the winding number of the concatenated
path −˜̃vc + ṽc around the point z0 and on the residue of the function v̂′

j in the
point z0. This is a consequence of the residue theorem.

If we surround a critical point that leads to a branch point, then following a
detour results in a change of the sheets of the corresponding Riemann Surface.
This change of the sheets depends on the choice of the modified path. Thus, the
final point bj of the variable vj depends on the chosen detour.

7.4 How to Approximate all Critical Points of a

GSP with one free variable in a Box Using

Interval Analysis

We indicate how all critical points of a GSP with only one free variable that
are contained in a given box can be approximated using methods from interval
analysis. In Appendix A, we give an introduction to interval analysis including
the solution of square systems of equations in Section A.5. We remark that
this idea is not worked out completely, yet. At this moment, we have neither
experiences concerning the quality of the method nor on the efficiency. Since it
could be a promising approach, we sketch this work in progress. As explained in
Section 7.3, the restriction to GSPs with only one free variable is not a serious
constraint for solving the Tracing Problem.

Let Γ be a GSP over K with one free variable z and n dependent ones v1, . . . , vn;
K ∈ {R, C}. Let vj1 , vj2 , . . . , vjd

be the dependent variables that are defined
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by a division or square root operation. Only these variables can cause critical
points. Let vc1 , vc2 , . . . , vcm

be the corresponding divisor or radicand variables.
The aim is to describe the set of critical points as the union of the zero sets
of certain functions Fm : K × Kcm → Kcm × K; m = 1, 2, . . . , d. To define the
functions Fm, we assign to every dependent variable a = vj of Γ a multivariate
polynomial Pa = Pvj

as in Section 5.1:

Dependent Variable a Polynomial Pa

a ← b + c a− (b + c)
a ← b− c a− (b− c)
a ← b · c a− b · c
a ← b/c a · c− b

a ←
√

b a2 − b

The polynomials Pa are polynomials in at most three variables; we have Pa = 0
if and only if the relation given by the dependent variable a is fulfilled. Using the
polynomials Pa = Pvj

, we define the functions

Fm = Fm(Γ) : K × Kcm → Kcm × K
(z, v1, . . . , vcm

) 7→ (Pv1 , . . . ,Pvcm
, vcm

)

for m = 1, . . . , d. A point (a0, a1, . . . , acm
) ∈ K × Kcm fulfills the relations of

the cm-head Γ(cm) of Γ and vcm
= acm

= 0 if and only of Fm(a0, a1, . . . , acm
) =

(0, . . . , 0, 0) holds. We remark that (a0, a1, . . . , acm
) could be a critical point

of Γ(cm). Then formally, the variable vdm
does not cause the critical point although

its radicand or divisor variable vcm
is zero; compare with Example 7.3.1.

Now we assume that Γ is a GSP over K = R and show how the interval methods
for solving square systems of equations explained in Appendix A.5 could be ap-
plied to approximate all critical points of Γ that are contained in a given box A =
(A0, A1, . . . , An) ∈ (I(R))n+1. We refer to the complex situation (K = C) at the
end of this section.

The idea is to apply the Krawczyk method, which is treated in Appendix A.5,
to the functions F1, . . . , Fd. The Krawczyk method applied to a function Fm

outputs a list of boxes X with small widths that are contained in the initial box,
where each box contains exactly one root of Fm or has an unknown status; every
root of Fm is contained in one of these boxes. As mentioned in [35, Chap. 4],
a box of unknown status usually occurs if it contains a zero that is a singular
point of the function. To apply the Krawczyk method, we have to ensure that
every box A = (A0, A1, . . . , Acm

) with w(Ai) > 0 for all i = 0, 1, . . . , cm contains
a regular point (a0, a1, . . . , acm

) ∈ A. Here, w(Ai) = [min Ai, max Ai] is the width
of the interval Ai. We recall that (a0, a1, . . . , acm

) is a regular point of Fm if and
only if the Jacobian F ′

m of Fm in the point (a0, a1, . . . , acm
) has full rank. We

have to compute or to approximate the inverse of F ′
m(a0, a1, . . . , acm

).
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Claim 7.4.1. Let A = (A0, A1, . . . , Acm
) be a box with w(Ai) > 0 for all i =

0, 1, . . . , cm. Then A contains a point (a0, a1, . . . , acm
) such that the Jacobian F ′

m

of Fm in the point (a0, a1, . . . , acm
) has full rank.

Proof. We give an outline, the elaboration of a detailed proof will be subject to
future work.

The Jacobian F ′
m of Fm in an arbitrary point (z, v1, . . . , vn) is a square matrix

whose entries are the partial derivatives of the coordinate functions of Fm. For
the dependent variables vi, the coordinate functions are the polynomials Pvi

,
which are polynomials in vi and in at most two other variables of Γ. Thus, the
Jacobian F ′

m of Fm has the following structure

F ′
m(z, v1, . . . , vcm

) =





∗ ∗ 0 · · · · · · · · · 0

∗ ∗ ∗ 0 · · · · · · 0

...
. . . . . . . . .

...

∗ · · · · · · · · · ∗ ∗ 0

∗ · · · · · · · · · · · · ∗ ∗
0 0 · · · · · · 0 0 1





,

where ∗ denotes a possibly nonzero entry. The entries on the upper right sec-
ondary diagonal are either 1, the divisor variable vcm

of a division variable vi =
vdm

, or 2vdm
if vi = vdm

is a square root variable. We have to show that there
are values for z, v1, . . . , vn in the given box A such that F ′

m is a regular matrix.
Furthermore, it should be possible to determine these values easily.

Now, we consider complex GSPs with one free variable. To use the Krawczyk
method in this situation, we split every variable of Γ into its real and imaginary
part. In the functions Fm, we split every coordinate function into its real and
imaginary part, as well. Let F̃m = F̃m(Γ) : R2×R2cm → R2cm×R2 be the resulting
function. By switching to the complex situation in this way, we lose a lot of the
simplicity of the functions Fm. However, K = C is the more interesting case,
since we would like to use this method for the treatment of critical points. Here,
it would be nice to have a method to determine whether a modified path of the
free variable catches further singularities; see Sections 7.2 and 7.3.
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Chapter 8

Algebraic Functions

Geometric Straight-Line Programs are closely related to algebraic functions. The
dependent variables of a GSP Γ are algebraic functions in the free variables
of Γ. Formally, this correlation can be shown using resultants. The paths of the
dependent variables in a continuous evaluation are basically liftings of the paths
of the free variables to the corresponding Riemann surfaces.

In this chapter, we give an introduction to algebraic functions in one variable
and its Riemann surfaces; see Sections 8.1-8.3. We point out the connection
of Geometric Straight-Line Programs and continuous evaluations to algebraic
functions in Sections 8.4 and 8.5. Finally, we recall the notion of covering maps
in Section 8.6 and show the uniqueness and existence of continuous evaluations.
Here, we only require that the paths of the free variables are continuous paths,
we do not assume differentiability.

8.1 A Brief Introduction

We give a brief introduction to algebraic functions in one variable. A detailed
description can be found in [32, 22, 47]. We only give a sketch of many beautiful
old theorems and constructions. The aim is to explain the structure of algebraic
functions in one complex variable without using too many formal concepts.

Definition 8.1.1. An algebraic function w = w(z) is a multivalued analytic
function that fulfills a polynomial equation P (z, w) = 0 with degw(P ) ≥ 1. The
coefficients of P are complex numbers.

We rewrite the polynomial equation P (z, w) = 0 as

P (z, w) = an(z)wn + an−1(z)wn−1 + · · ·+ a1(z)w + a0(z) = 0

119
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where the coefficients ai(z) are complex polynomials in the variable z. If P is
irreducible and if an(z) 6≡ 0, then n is the degree of the algebraic function [61,
p. 91]. If we allow rational functions as coefficients, we can assume an(z) =
1. We remark that using polynomials or rational functions as coefficients is
equivalent, since we can multiply the equation P (z, w) = 0 with the least common
denominator of the coefficients ai(z). Moreover, the rational functions on C
are the meromorphic functions on the Riemann sphere Ĉ = C ∪ {∞}; see [47,
Sect. 1.6.5]. If P (z, w) has polynomials as coefficients and if an(z) ≡ 1, then the
corresponding algebraic function is called an entire algebraic function.

Example 8.1.2. 1. The square root function w(z) =
√

z is algebraic since it
fulfills the polynomial equation P (z, w) = w2 − z = 0. This function is
multivalued since it takes two different values for z 6= 0:

√
z or −√z.

2. Rational functions are algebraic since a rational function w(z) = f(z)
g(z)

with

f(z), g(z) ∈ C[z] and g(z) 6= 0 fulfills the polynomial equation P (z, w) =
g(z)w − f(z) = 0.

If z = z0 is fixed with an(z0) 6= 0, then P (z0, w) is a polynomial in w with
degree n and coefficients in C. Thus, P (z0, w) has at most n distinct zeros.
We are interested in the set of all solutions of the equation P (z, w), z ∈ C. In
Section 8.3, we describe how these solutions form the Riemann surface of the
algebraic function defined by P (z, w) = 0. Using this Riemann surface, the
algebraic function can be defined globally without ambiguities.

Locally, an algebraic function defined by an irreducible polynomial P (z, w) =
an(z)wn + an−1(z)wn−1 + · · · + a1(z)w + a0(z) = 0 can be described via the
implicit function theorem [51, Sect. 1]: Let a ∈ C with an(a) 6= 0 such that there
is no b ∈ C with P (a, b) = 0 = ∂P

∂w
(a, b). Hence, the polynomial P (a, w) has

exactly n distinct roots b1, . . . , bn. By the implicit function theorem, there is a
neighborhood Ua ⊂ C of a such that there is a holomorphic function wi(z) on Ua

with wi(a) = bi and P (z, wi(z)) = 0 for all z ∈ Ua; i = 1, . . . , n. If Ua is chosen
small enough, then wi(z) 6= wj(z

′) holds for all z, z′ ∈ Ua and i 6= j. Since the
equation P (z, w) = 0 has at most n solutions, all solutions (z, w) with z ∈ Ua lie
on the graph of one of the functions wi. In other words, if (z, w) ∈ Ua × C with
P (z, w) = 0, then w = wi(z) holds for an i = 1, . . . , n; see Figure 8.1.

A point a ∈ C with an(a) 6= 0 and P (a, w) = 0 = ∂P
∂w

(a, w) for w ∈ C might
lead to a branch point of the algebraic function; see page 122. The condi-
tion P (a, w) = 0 = ∂P

∂w
(a, w) implies that the equation P (a, w) = 0 has multiple

roots. Let w1, , w2, . . . , wl be the roots of P (a, w) = 0, let λi be the multiplicity
of the root wi. Thus λi ≥ 2 holds for an i = 1, . . . , l. Since an(a) 6= 0, the polyno-
mial P (a, w) ∈ C[w] has degree n and λ1 + . . . , λl = n. Thus at the point z = a,
λi solution functions wj(z) meet in the solution wi, in other words, wj(a) = wi

for λi solutions wj(z); i = 1, . . . , l.
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Ua

w1(Ua)

w2(Ua)

w3(Ua)

wn(Ua)

b1

b2

b3

bn

a

(a) All roots of P (a,w)
are simple roots.

Ua

w1(Ua)

w2(Ua)

w3(Ua)

wn(Ua)

b1

b2

b3

bn

a

The points b3, . . . , bn are

are not separated anymore.
They could form a spiral.

glued together; the
sheets w3(Ua), . . . , wn(Ua)

(b) P (a,w) has a multiple root b3 = · · · = bn.

Figure 8.1: The local situation of the algebraic function defined by the polyno-
mial P (z, w) is shown.

If the polynomial P (z, w) = an(z)wn + an−1(z)wn−1 + · · · + a1(z)w + a0(z) = 0
is irreducible, then there are only finitely many z ∈ C such that the equa-
tions P (z, w) = 0 and ∂P

∂w
(z, w) = 0 have a simultaneous solution w ∈ C; see [51,

Prop. 1, p. 4]. This claim also holds for reduced polynomials P (z, w) ∈ C[z][w];
a reduced polynomial is a polynomial without multiple roots (over an extension
field). This generalization can be proved using the discriminant of P ; see [47,
p. 119], Definition 8.2.3 and Lemma 8.2.4.

The functions wi(z) are called branches of the algebraic function defined by P .
If their domains are chosen properly and as large as possible, then the branches
can be glued together at so-called branch cuts. This process forms an n-fold
covering space called Riemann surface of the algebraic function defined by P ;
in [32, 7. Vorlesung], Hensel and Landsberg give a beautiful and descriptive
deduction of the construction. The images of the functions wi in the Riemann
surface are called sheets. The Riemann surface of an algebraic function defined by
a polynomial P (z, w) is connected if and only if P is irreducible [32, p. 110]. More
generally, the following holds [32, p. 110]: The number of irreducible factors of a
polynomial P (z, w) equals the number of connected components of the Riemann
surface of the corresponding algebraic function. The number of sheets of each
component equals the w-degree of the corresponding irreducible factor of P . This
theorem enables us to investigate the irreducible factors of a polynomial P and
the corresponding Riemann surfaces, separately.
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upper edge

lower edge

0

C \ {x ∈ R|x < 0}

Glueing

2 copies

0

Figure 8.2: Construction of the Riemann surface of the square root function z 7→√
z with “scissors and glue”.

Example 8.1.3. We consider the square root function, which is defined by
P (z, w) = w2 − z; see Example 8.1.2. On the simply connected region G :=
C \ {x ∈ R | x ≤ 0} we have two different branches of the root function,
which can be defined using the branches of the complex logarithm function [63,
Sect. II.3]. These two branches reflect the two possible choices for the root func-
tion, for example

√
4 = ±2. More generally, if z = reiφ ∈ C \ {0} is a com-

plex number written in polar coordinates, then we either have
√

z =
√

reiφ/2

or
√

z = −√reiφ/2 =
√

reiφeiπ =
√

rei(φ/2+π). The two branches do not match at
the negative real line. Instead, cycling once around the unit circle from −1 to −1
enforces a change of the branch. If a point z = reiφ moves once around the unit
circle, then its argument φ increases (or decreases) by 2π. This implies that the
argument of ”

√
z ” changes by π, and the final point of the motion differs from

the starting point.

This observation leads to a descriptive construction of the Riemann surface of
the square root function. We take two copies of G = C \ {x ∈ R | x ≤ 0}, one
copy for each branch. We glue these copies along the negative real line in the
following way: We cut both copies of G along the negative real line. Each cut
leads to a double edge; see Figure 8.2. One of these two edges of G delimits the
upper left quadrant of C, the other one delimits the lower left quadrant of C.
These edges are called upper and lower edge, respectively. The lower edge of the
first copy of G is glued with the upper edge of the second copy of G, and the
lower edge of the second copy of G is glued with the upper edge of the first copy
of G. The resulting surface is shown in Figure 8.2, it is the Riemann surface of
the square root function. The self-intersection is due to the embedding into R3.
We observe that cycling once around the unit circle results in a change of the
sheets of the surface; compare with Figure 8.8 and Figure 8.9 from Example 8.6.2
from page 142. On this Riemann surface, the square root function can be defined
uniquely; see Section 8.3.

Having the intuition of Riemann surfaces in mind as explained in Example 8.1.3,
we come back to the notion of branch points. Let z0 be a point with an(z0) 6= 0
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and P (z0, w) = 0 = ∂P
∂w

(z0, w) for some w ∈ C. In a neighborhood of z0, the
Riemann surface looks like stacked “spirals”. Let s be the number of spirals, and
let a1, . . . , as be the numbers of their sheets. Clearly we have a1 + · · ·+as = n. If
at least one of the numbers ai is greater than one, then z0 is an (algebraic) branch
point of the algebraic function defined by P . This descriptive approach can be
formalized using the notion of analytic continuation. The Encyclopaedia [61,
p. 91] gives an overview of common notions from the area of algebraic functions.

We remark that, locally, algebraic functions can be described by Puiseux expan-
sions; see [47, Sect. 6.3] and [32, 4. Vorlesung]. In [32, 5. Vorlesung], some impor-
tant basic properties of algebraic functions are summarized. The results are based
on the notion of an “Ordnungszahl” (order) of a rational function f(z) = g(z)

h(z)

in a point α ∈ C ∪ {∞}, which is the multiplicity m of the root z = α or the
negative of the multiplicity of the pole z = α of f(z), respectively. Here, we
only consider finite points α ∈ C. This simplifies the presentation. Moreover,
we assume that the coefficient polynomials ai(z) of P have no common zeros.
Otherwise, we divide the equation P (z, w) = 0 by the corresponding factor.

We fix a point α ∈ C, and consider the equation P (α,w) = 0. Since the polyno-
mials ai(z) do not have a common zero, there must be an index i ∈ {1, . . . , n}
with ai(α) 6= 0. Let g ∈ {0, . . . , n} be the smallest index with ag(α) 6= 0, and
let k ∈ {0, . . . , n} be the largest index with ak(α) 6= 0. A generalization of
Theorem 8.1.4 can be found in [32, p. 74].

Theorem 8.1.4. Let w1(z), . . . , wn(z) be the n solutions of the equation P (z, w) =
0 taking values in the Riemann sphere Ĉ = C ∪ {∞}, and let z = α ∈ C. Then,
with the notation from above,

• for n− k solutions wi(z) we have wi(α) =∞,

• for g solutions wi(z) we have wi(α) = 0, and

• the remaining k−g solutions take nonzero and finite values at the point z =
α. Moreover, these values are the solutions w of the equation

ak(α)wk−g + · · ·+ ag(α) = 0.

Proof. Since we investigate the solutions at infinity as well, we compute the
homogenization P̃ (α,w, w̃) of the polynomial P (α,w) = an(α)wn+an−1(α)wn−1+
· · ·+ a1(α)w + a0(α) ∈ C[w] in the variable w:

P̃ (α,w, w̃) = an(α)wn + an−1(α)wn−1w̃ + · · ·+ a1(α)ww̃n−1 + a0(α)w̃n

Thus, instead of considering solutions w ∈ C of P (α,w) = 0, we consider so-
lutions (w, w̃) ∈ CP1 of the homogeneous equation P̃ (α,w, w̃) = 0, where CP1
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is the complex projective line. We can apply this approach since the complex
projective line CP1 is in fact the Riemann sphere Ĉ.

By construction of g and k, we have a0(α) = ... = ag−1(α) = 0 and ak+1(α) =
· · · = an(α) = 0, hence

0 = P̃ (α,w, w̃)

= an(α)wn + . . .︸ ︷︷ ︸
=0

+ak(α)wkw̃n−k + · · ·+ ag(α)wgw̃n−g + · · ·+ a0(α)w̃n

︸ ︷︷ ︸
=0

= ak(α)wkw̃n−k + · · ·+ ag(α)wgw̃n−g

= wgw̃n−k
(
ak(α)wk−g + · · ·+ ag(α)w̃k−g

)
.

We can read off that g solutions are 0, n− k solutions are ∞, and the remaining
solutions are the zeros of the polynomial Q̃(w, w̃) := ak(α)wk−g +· · ·+ag(α)w̃k−g.
The finite solutions of Q̃(w, w̃) = 0 are the k−g solution of the non-homogeneous
equation ak(α)wk−g + · · ·+ ag(α) = 0. Since ag(α) 6= 0, these solutions are non-
zero. Moreover, the equation Q̃(w, w̃) = 0 has no solutions at infinity since
ak(α) 6= 0.

Example 8.1.5. We consider the polynomial P (z, w) = w2 − 2zw + (z2 − z)
describing the function w(z) = z ± √z. Thus we have n = degw(P ) = 2, and
a0(z) = z2 − z, a1(z) = −2z, and a2(z) = 1. We investigate the following points:

z = 0: We have a2(0) = 1 6= 0, a1(0) = 0 and a0(0) = 0, hence we get g = k = 2.
Theorem 8.1.4 implies that both solutions w1(z) and w2(z) are zero at the
point z = 0.

z = 1: Here, we observe a1(1) = −2, a2(1) = 1, and a0(1) = 0, thus g = 1
and k = 2. By Theorem 8.1.4, one function wi(z) is zero for z = 1. The
other function wi(z) takes a nonzero finite value. To compute this value,
we consider the equation

0 = ak(1)wk−g + · · ·+ ag(1)

= a2(1)w + a1(1)

= w − 2

having the solution w = 2. Indeed, the functions w1(z) and w2(z) take the
values 0 and 2 for z = 1.

z = 2: We compute a0(2) = 2, a1(2) = −4 and a2(2) = 1 and get g = 0 and k = 2.
Thus the two solutions w1(z) and w2(z) take non-zero finite values. These
values are the solutions of

0 = ak(2)wk−g + · · ·+ ag(2)

= a2(2)w2 + a1(2)w + a0(2)

= w2 − 4w + 2,

hence w1/2 = 2±
√

2 as expected.
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By Theorem 8.1.4, the algebraic function defined by P (z, w) = 0 has a zero
if and only if g > 0. Since g > 0 is equivalent to a0(α) = 0, the zeros of the
algebraic function occur at the zeros of the coefficient polynomial a0(z). Similarly,
the algebraic function defined by P (z, w) = 0 has a pole at z = α if and only
if k < n. Since k < n is equivalent to an(α) = 0, the algebraic function defined
by P (z, w) = 0 has a pole at z = α if and only if z = α is a zero of the coefficient
polynomial an(z). We summarize these observations:

Corollary 8.1.6. Let w1(z), . . . , wn(z) be the n solutions of P (z, w) = 0. There
is only a finite number of points α ∈ C where one of the n solutions wi(z) is zero
or infinite. These points are the zeros of a0(z) or an(z), respectively, or we have
α =∞.

8.2 Resultants, Discriminants, and their Appli-

cations to Algebraic Functions

We briefly introduce the resultant of two polynomials and the discriminant of a
polynomial. A detailed introduction to this well known topic of mathematics can
be found in [66, 12]. We use the discriminant to determine the branch points of
the algebraic function defined by P (z, w) = 0. Via the resultant, we examine the
basic arithmetic operations on the field of algebraic functions over C.

Definition 8.2.1. Resultant of two Polynomials
Let f(x) = amxm + · · ·+ aix+ a0 and g(x) = bnxn + · · ·+ b1x+ b0 be polynomials
of degree m and n. Then the resultant Res(f, g) = Resx(f, g) is the determinant
of the (m + n)× (m + n) Sylvester matrix of f and g:

Res(f, g) = det





am am−1 . . . . . . a0

am am−1 . . . . . . a0

. . . . . . . . . . . . . . .

am am−1 . . . . . . a0

bn bn−1 . . . . . . b0

bn an−1 . . . . . . b0

. . . . . . . . . . . . . . .

bn bn−1 . . . . . . b0





The missing entries in the matrix are 0. If both polynomials are constants (m =
n = 0), then the resultant can be defined as follows [12, p. 156]:

Res(f, g) = Res(a0, b0) =

{
0 if either a0 = 0 or b0 = 0
1 if a0 6= 0 and b0 6= 0.
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By definition, the resultant of two non-constant polynomials f and g is an integer
polynomial in the coefficients ai and bj of f and g; i = 0, . . . ,m, j = 0, . . . , n.
Plugging in the values for ai and bj defined by the concrete polynomials f and g
leads to Res(f, g) ∈ k, if k is the underlying field. In our situation, we have k = C,
k = C(z), the field of rational functions on C, or we choose k to be the field of
algebraic functions in one variable, which is the algebraic closure of C(z). The
resultant has several nice properties and applications, for example in elimination
theory. Via the resultant of two polynomials f and g, we can determine whether f
and g have a common root [66, 12]:

Lemma 8.2.2. [12, Prop. 8, p. 151] Let k be a field, and let f, g ∈ k[x] be
polynomials of positive degree. Then f and g have a common factor in k[x] if
and only if Res(f, g) = 0.

We mentioned on page 121 that the discriminant of a polynomial is useful to
investigate the branch points of the Riemann surface of the algebraic function
defined by a polynomial equation P (z, w) = 0.

Definition 8.2.3. [66, Sect. 6.6] Discriminant of a Polynomial
Let k be a field and k̄ its algebraic closure. Let f(x) = amxm+· · ·+aix+a0 ∈ k[x]
be a polynomial with m := deg f ≥ 1. The discriminant of f(x) is defined as

disc(f) := a2m−2
m Π1≤i<j≤m(αi − αj)

2

where α1, . . . , αm ∈ k̄ are the (not necessarily distinct) roots of f .

We observe that disc(f) = 0 holds if and only if f has a multiple root. Yap [66]
shows disc(f) ∈ k using the theory of symmetric functions. We recall that the
discriminant of f equals the resultant of f and its derivative f ′ up to a constant
factor:

Lemma 8.2.4. Discriminant and Resultant
Let f(x) = amxm + · · ·+ a1x + a0 ∈ k[x] be a polynomial of degree m ≥ 1. Then
the following relation holds:

am · disc(f) = −1(m
2 )Res(f, f ′).

If P (z, w) ∈ C[z][w] is irreducible, then the branch points of the algebraic function
defined by P (z, w) = 0 are zeros of the discriminant of the polynomial P (z, w) ∈
C[z][w] ⊂ C(z)[w]. This is a necessary condition for the existence of branch
points, only; see page 122. The point at infinity might be a branch point, as
well. Let wi(z), . . . , wn(z) be the n solution functions of P (z, w) = 0. Then the
discriminant discw(P ) of P is the polynomial

discw(P ) := an(z)2n−2Π1≤i<j≤n (wi(z)− wj(z))2 ∈ C[z].
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By definition, the discriminant of P vanishes if and only if two solutions wi(z)
and wj(z) with i 6= j coincide. To compute the discriminant we use Lemma 8.2.4:

an(z)discw(P ) = (−1)(
n
2)Resw

(
P (z, w),

∂P (z, w)

∂w

)
.

The discriminant discw(P (z, w)) of P is a polynomial in the coefficients ai(z)
of P (z, w) = an(z)wn + · · · + a1(z)w + a0(z). Thus, discw(P ) is a polynomial
in the variable z, itself. At the zeros of the polynomial discw(P ), two or more
solutions wi(z) of P (z, w) meet.

Example 8.2.5. We consider our favorite example w = ±
√

z2 − 1. This alge-
braic function is the solution of the polynomial equation P (z, w) = w2−z2+1 = 0.
To examine the branch points, we compute the discriminant of P via the resul-
tant. Note that m = degw P = 2, am(z) = a2(z) = 1, and

(
m
2

)
= 1.

discw(P ) = −Resw

(
P (z, w),

∂P (z, w)

∂w

)
= −Resw(w2 − z2 + 1, 2w)

= det




1 0 −z2 + 1
2 0 0
0 2 0





= 4(−z2 + 1) = 4(1− z)(1 + z)

As expected, the branch points can occur at z = ±1, only.

Now we use the resultant to examine the basic arithmetic operations of algebraic
functions. In [66], this approach is used to investigate algebraic numbers. Yap’s
description [66] is quite general and can be applied to algebraic functions as well.

Theorem 8.2.6. Let P (z, w) and Q(z, w) be polynomials with degw(P ) = m and
degw(Q) = n defining the algebraic functions p(z) and q(z). Then the following
holds:

1. The function (q±p)(z) is algebraic; it is a zero of the polynomial R(z, w) :=
Resy (P (z, y), Q(z, w ∓ y)), and degw(R) ≤ mn.

2. The function (pq)(z) is algebraic; it is a zero of the polynomial

R(z, w) := Resy

(
P (z, y), ynQ(z,

w

y
)

)
,

and degw(R) ≤ mn.

3. The function 1/p(z) is algebraic; it is a zero of the polynomial R(z, w) :=
wmP (z, 1

w
), and degw R ≤ m.
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4. The function k
√

p(z) is algebraic; it is a zero of the polynomial R(z, w) :=
P (z, wk), and degw R = mk.

5. The inverse function of an algebraic function is an algebraic function.

Proof. To see (1), we observe that y = p(z) is a common zero of the polynomi-
als P (z, y) and Q (z, (q(z) + p(z))− y). Hence, q(z) + p(z) is a zero of R(z, w).
We can treat (2) in a similar way. To consider the reciprocal of an algebraic
function as in (3), we replace the second variable w by 1

w
. Multiplying the re-

sulting equation by wm leads to an equivalent polynomial equation. (4) follows
immediately. To prove (5), we interchange the roles of z and w. The resulting
polynomial equation P̃ (z, w) = 0 defines the inverse of the function of p(z).

Note that Theorem 8.2.6 holds for multivariate algebraic functions, as well. Mul-
tivariate algebraic functions are algebraic functions in more than one variable
and fulfill a polynomial equation P (z1, . . . , zk, w) = 0; see [61, p. 91].

8.3 Formal Definition of the Riemann Surface

of an Algebraic Function

The previous treatment of algebraic functions was based on Hensel’s and Lands-
berg’s descriptive approach [32]. Now, we give a formal definition of the Riemann
surface of an algebraic function and try to explain it. A detailed description is
given by Lamotke in [47]. Again, we consider an equation P (z, w) = 0. We
assume that P (z, w) = wn + an−1(z)wn−1 + · · · + a1(z)w + a0(z) is a monic
polynomial (i.e., an(z) = 1) where the coefficients ai(z) are meromorphic func-
tions on the Riemann sphere Ĉ = C ∪ {∞}. We denote the field of mero-
morphic functions on Ĉ by M(Ĉ). Thus P (z, w) can be regarded as a polyno-
mial P ∈ M(Ĉ)[w]. The polynomial P decomposes into linear factors over an
extension field L, and we have P = (w−λ1)

n1 · · · · ·(w−λr)
nr with λ1, . . . , λr ∈ L

and n1+· · ·+nr = n = deg P = degw P (z, w). If P has multiple roots, we consider
its reduced polynomial Q = (w − λ1) · · · · · (w − λr). The reduced polynomial Q
has the same roots as P , and all roots of Q are simple roots. Again, Q is a
polynomial with coefficients in Q ∈M(Ĉ)[w]; see [12, pp. 178-179].

The main idea of the Riemann surface of an algebraic function is to transform the
multivalued function f̃ : Ĉ→ Ĉ (or f̃ : C→ C), z 7→ {w ∈ Ĉ |P (z, w) = 0}, into
an “ordinary” function f : X → Ĉ by fanning out the domain. To achieve this, all
points in the image set f̃(z) = {w ∈ C |P (z, w) = 0} need a separate preimage
in X. First, we give an informal overview of the construction. We define X :=
{(z, w) ∈ Ĉ × Ĉ |P (z, w) = 0}. The projection η : X → Ĉ, (z, w) 7→ z to the
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η
f

f̃
z0

X

Ĉ Ĉw3

w1 w2

(z0, w3)

(z0, w2)

(z0, w1)

f(z0, w1) = w1

f(z0, w2) = w2

f(z0, w3) = w3

f̃(z0) = {w1, w2, w3}

Figure 8.3: Illustration of the construction of X, η, and f .

first coordinate maps all points (z, w) with w ∈ f̃(z) to z, and we have η−1(z) =
{(z, w) |w ∈ Ĉ and P (z, w) = 0} = {(z, w) |w ∈ f̃(z)} = {z} × f̃(z). The
projection η is used to fan out the domain of f̃ . The map f : X → Ĉ, (z, w) 7→ w,
is the projection to the second coordinate and we have f̃(z) = f(η−1(z)) as
desired; see Figure 8.3.

We will see that the solution set X is a Riemann surface, the projection η is a
covering map of Riemann surfaces, and the function f is a meromorphic func-
tion on X. The triple (X, η, f) is called the Riemann surface of f̃ . In German
textbooks, the terms Riemannsches Gebilde or algebraisches Gebilde are used, as
well. These notions distinguish the generic definition of Riemann surfaces and
the Riemann surfaces of algebraic functions more clearly. A Riemann surface
is a Hausdorff space X together with a holomorphic structure on X; see [47,
Sect. 1.1]. Due to the holomorphic structure, a Riemann surface is a twodi-
mensional topological manifold. The aim of this section is to understand that
every reduced, monic polynomial P ∈ M(Ĉ)[w] of degree n ≥ 1 defines a “Rie-
mannsches Gebilde”; see Theorem 8.3.3.

Let X be a Riemann surface and η : X → Ĉ be an nfold covering of Riemann
surfaces. This implies that η is an open and holomorphic function. Since Ĉ is
compact, η only has a finite number of branch points [47, p. 17]. Let f : X → Ĉ
be a meromorphic function. The projection B of the poles of f along η is finite.
We cite the following theorem, which traces back to Riemann.

Theorem 8.3.1. [47, Sect. 6.1.2] Characteristic Polynomial
There is exactly one polynomial

χ(z, w) = wn − s1(z)wn−1 + · · ·+ (−1)nsn(z) ∈M(Ĉ)[w]

with
χ(z, w) = Πx∈η−1(z) (w − f(x))v(η,x)



130 CHAPTER 8. ALGEBRAIC FUNCTIONS

X1

X2

X3

X

Ĉ

η

Ĉ

x2

x3

z
f(x1,1)

f

f(x1,2)
f(x2) = f(x3)

0

x1,2

x1,1

Figure 8.4: Illustration of Example 8.3.2; f maps the components X2 and X3

of X in the same way to Ĉ.

for every point z ∈ Ĉ \B. Here, the function v(η, x) denotes the winding number
of η in the point x. The polynomial χ is called the characteristic polynomial of f
with respect to the covering map η.

Definition 8.3.1 implies χ(η(x), f(x)) = 0. The polynomials inM(Ĉ)[w] that can-
cel f form a principal ideal. This ideal is generated by a unique monic and reduced
polynomial P . The polynomial P is called minimal polynomial [47, Sect. 6.1.5].
If X is connected, then P is irreducible. The characteristic polynomial χ is a
multiple of P . Hence deg P ≤ n, and we have deg P = n if and only if P is
the characteristic polynomial. It can be shown that the reduction of the char-
acteristic polynomial of f is the minimal polynomial [47, p. 132]. Moreover, the
minimal polynomial P has degree n if and only if the meromorphic function f
takes n different finite values in C along at least one fiber of the nfold covering η.
In this case, f maps every fiber of a point in Ĉ \ E to n different finite complex
values [47, Sect. 6.1.5], where E is the set of exception points; see page 131.

Example 8.3.2. Let η : X → Ĉ be the covering from Figure 8.4. The Riemann
surface X consists of the connected components X1, X2 and X3. Let f : X → Ĉ
be a meromorphic function that is defined on X2 in the same way as on X3:
If x2 ∈ X2 and x3 ∈ X3 with η(x2) = η(x3), then we have f(x2) = f(x3). The
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characteristic polynomial of f is

χ(z, w) = (w − f(x1,1)) · (w − f(x1,2)) · (w − f(x2)) · (w − f(x3))

= (w − f(x1,1)) · (w − f(x1,2)) · (w − f(x2))
2 ,

and the minimal polynomial is

P (w) = (w − f(x1,1)) · (w − f(x1,2)) · (w − f(x2)) .

Since the components X2 and X3 of X are treated in the same way, they can
be “collapsed” to a new component X̃ without losing information concerning the
meromorphic function f . In many applications, the two components X2 and X3

result from the fact that zeros of multiplicity r are considered as r distinct zeros.
Then, X2 and X3 can be seen as one component having multiplicity 2.

The described situation occurs if we consider the polynomial equation w2(w2 −
2z) = 0. The polynomial χ(z, w) = w2(w2 + 2z) is the characteristic polynomial

of the function f(z) = ±
√
±
√

z2 − z . If the inner root
√

z2 is chosen to be +z,
then the outer root is constantly zero. Thus f is defined on the corresponding two
sheets (resp. one sheet with “multiplicity” 2) to be zero. If we choose

√
z2 = −z,

then the outer root can take two different values. Hence, we have the same
situation as above shown in Figure 8.4. The minimal polynomial of f is P (z, w) =
w(w2 + 2z).

Let P (z, w) = wn + an−1(z)wn−1 + · · · + a1(z)w + a0(z) ∈ M(Ĉ) be a reduced
monic polynomial. The set E of exception points of P consists of the poles of the
meromorphic coefficient functions ai(z) ∈ M(Ĉ) and the zeros of the discrimi-
nant of P ∈ M(Ĉ)[w]. Since the functions ai(z) : Ĉ→ Ĉ are meromorphic, they
have a finite number of poles. Since the polynomial P is reduced, the discrimi-
nant disc(P ) : Ĉ→ Ĉ only has a finite number of zeros, and the set of exception
points E is finite. The exception points are called critical values of the algebraic
function defined by P , as well [61, p. 91].

Now, we have all ingredients to formulate and understand the promised theorem.

Theorem 8.3.3. [47, Sect. 6.2.5] Existence of “Riemannsche Gebilde”
Every reduced, monic polynomial P ∈ M(Ĉ)[w] of degree n ≥ 1 is the minimal
polynomial of a “Riemannsches Gebilde” (X, η, f) over Ĉ.

Proof. We follow the proof of [47] and explain the intermediate steps. Let P ∈
M(Ĉ)[w] be a reduced monic polynomial of degree n ≥ 1.

1. Let E be the finite set of exception points of P . We consider the solution
set

M := {(z, w) ∈ (Ĉ \ E)× C | P (z, w) = 0}
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and the projection π : M → Ĉ \ E, (z, w) 7→ z. Let (a, b) ∈ M ; thus
we have P (a, b) = 0 and discwP (a, b) 6= 0 implying ∂P

∂w
(a, b) 6= 0. As

described on page 120, we apply the implicit function theorem and get a
neighborhood Ua of a and Wb of b with:

• For all z ∈ Ua, the function P (z, w) has exactly one zero g(z) in Wb.

• The function g : Ua → Wb, z 7→ g(z), is holomorphic.

The set (Ua ×Wb) ∩M is a neighborhood of the point (a, b). The projec-
tion π|(Ua×Wb)∩M

: (Ua ×Wb) ∩M → Ua, (z, g(z)) 7→ z, is continuous. By
construction, it is bijective. Since the function g is continuous, the inverse
function z 7→ (z, g(z)) of π|(Ua×Wb)∩M

is continuous as well. Thus, π|(Ua×Wb)∩M

is a homeomorphism, and the projection π : M → Ĉ \ E, (z, w) 7→ z, is a
locally topological function between the Hausdorff space M and the Rie-
mann surface Ĉ \ E. This observation shows that M is a two-dimensional
topological manifold. Gluing all neighborhoods Wb to the entire surface M
corresponds to the descriptive approach of [32, 7. Vorlesung]. This process
leads to the common geometric intuition concerning Riemann surfaces of
algebraic functions.

2. The holomorphic structure of the Riemann surface Ĉ \E is lifted uniquely
to M by the local homeomorphisms from step (1); see [47, Sect. 1.2.1].
This lifting process uniquely transforms M into a Riemann surface and the
projection π : M → Ĉ\E, (z, w) 7→ z into a locally biholomorphic function.
Since the preimage π−1(z) of a point z ∈ Ĉ\E consists of n = degw P points,
π is an unbranched nfold covering of Riemann surfaces.

3. We consider the function f : M → C, (z, w) 7→ w. By (1), we have (z, w) =
(z, g(z)) at least locally. Thus f(z, w) = w = g(z) = g (π(z, w)) = g ◦
π(z, w). Since g and π are holomorphic functions, f is holomorphic as
well. By construction, f maps every fiber π−1(z) one-to-one onto the zeros
of P (z, w).

4. Let X := {(z, w) ∈ Ĉ × Ĉ | P (z, w) = 0} be the set of all solutions. The
covering π : M → Ĉ \ E can be extended to a covering η : X → Ĉ, such
that the branch points of η are contained in the set E. In this process, the
branch points are “bent up”. The function f : M → C can be extended to
a meromorphic function f : X → Ĉ; see [47].

5. By construction, we have

P (η(z, w), f(z, w)) = P (π(z, w), f(z, w)) = P (z, w) = 0

for all points (z, w) ∈M . Since the set E of exception points of P is finite,
the set X \M is finite as well. Thus the equation P (η(z, w), f(z, w)) = 0
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holds for all points (z, w) ∈ X, and P is a multiple of the minimal poly-
nomial of f with respect to the covering η. We have seen in (3) that f is
injective on the fibers π−1(z); z ∈ Ĉ \ E. Hence the minimal polynomial
of f has degree n, and P must be the minimal polynomial of f .

Example 8.3.4. We consider the square root function that is defined by the
polynomial equation w2 − z = 0. The polynomial P (z, w) = w2 − z, seen as a
polynomial in M(Ĉ)[w], has leading coefficient 1, hence it is monic. In the field
of algebraic functions, P (z, w) = (w+

√
z)(w−√z) decomposes into two different

linear factors, hence P is reduced. The discriminant is disc(P ) = −Resw(w2 −
z, 2w) = 4z and has a zero at z = 0. The coefficient polynomial a0(z) = −z has
a pole at ∞. Thus the set E of exception points is E = {0,∞}. The solution
set M is

M = {(z, w) ∈ (C \ 0)× C | w2 = z} = {(w2, w) | w ∈ C \ 0} ≈ C \ 0.

The projection π : M → C \ 0, (z, w) 7→ z is in fact the map w 7→ w2. The
function f : M → C, (z, w) 7→ w can be seen as the identity on C \ 0. For every
point z ∈ C \ 0 we have f (π−1(z)) = f({±√z}) = {±√z}.

8.4 Algebraic Functions and GSPs

We investigate the connection of algebraic functions and Geometric Straight-Line
Programs. Theorem 8.2.6 combined with an inductive argument shows that every
dependent variable vj of a GSP Γ describes an algebraic function v̂j in the free
variables of Γ. As before, we consider the unary situation and investigate GSPs
with one free variable. These GSPs correspond to unary algebraic functions. We
give two detailed examples and relate some notions from Dynamic Geometry like
critical points and instances to the language of algebraic functions. From these
two examples, we arise more general observations and conjectures.

Example 8.4.1. We consider the GSP Γ describing the algebraic expression
√√

z2 − z
from Example 8.3.2:

Γ : z ← FREE
v1 ← z2 // v1 = z2

v2 ←
√

v1 // v2 =
√

z2

v3 ← v2 − z // v3 =
√

z2 − z

v4 ←
√

v3 // v4 =
√√

z2 − z

Every dependent variable vi of Γ describes an algebraic function v̂i(z).
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v̂1(z): We have v̂1(z) = z2, this is the solution of the polynomial equation w−z2 =
0. The polynomial P1(z, w) = w−z2 is the characteristic polynomial and the
minimal polynomial of the algebraic function v̂i(z) = z2. The polynomial P1

can also be obtained by Theorem 8.2.6(2), since the free variable z is the
algebraic function defined by P0(z, w) = w − z = 0. In this situation we
have

v̂1(z) = Resy

(
P0(z, y), y P0

(
z,

w

y

))
= Resy(y − z, w − yz)

= det

(
1 −z
−z w

)
= w − z2.

The algebraic function v̂1(z) = z2 is single valued with the zero z0 = 0 of
multiplicity 2. It does not have a pole in C. Since we have discw(P1(z, w)) =
Resw(w − z2, 1) = 1, v̂1(z) does not have branch points, as expected.

v̂2(z): The dependent variable v2 describes the algebraic expression ±
√

z2 = ±z.
The corresponding algebraic function is described by the polynomial equa-
tion P2(z, w) = P1(z, w

2) = w2 − z2 = 0. We observe, that the polyno-
mial P2(z, w) = w2 − z2 = (w − z)(w + z) decomposes into the irreducible
factors w− z and w + z representing the choice

√
z2 = z or

√
z2 = −z. The

polynomial P2 is the characteristic and the minimal polynomial of v̂2(z).
The Riemann surface (X2, η2, f2) of v̂2(z) decomposes into two Riemann sur-
faces (X2,1, η2,1, f2,1) and (X2,2, η2,2, f2,2) of the algebraic functions v̂2,1(z) =
z and v̂2,2(z) = −z; see [47, Sect. 6.2.2]:

X2,1 = {(z, w)|w = z} ≈ C

η2,1 : (z,w) 7→z
f2,1 : (z,w) 7→w=z

X2,2 = {(z, w)|w = −z} ≈ C

η2,2 : (z,w) 7→z
f2,2 : (z,w) 7→w=−z

C C C C

The functions f2,1 and f−2,2 have a zero at z0 = 0 and no poles in C. Both
coverings η2,1 and η2,2 are unbranched onefold coverings. In contrast to
this observation, the point z0 = 0 is a critical value of Γ, since the rad-
icand v1 = z2 of the dependent variable v2 vanishes at z0 = 0. This is
important in connection with GSPs and the Tracing Problem, since close
to the point z0 = 0, the corresponding instances are arbitrary close (in the
Euclidean metric). This fact must be carefully treated by algorithms for
the Tracing Problem. Note that discw(P2(z, w)) = 4z2 has z0 = 0 as zero.

If A(2) = (a0, a1, a2) with a0 6= 0 is an instance of the 2-head of the GSP Γ,
then (a0, a2) is contained in exactly one of the two covering spaces X2,1

and X2,2. Starting from A(2), we can only reach instances B(2) = (b0, b1, b2),
where (b0, b2) lies in the same connected component as (a0, a2).
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v̂3(z): The dependent variable v3 describes the algebraic expression

±
√

z2 − z = ±z − z =

{
0
−2z.

We compute the characteristic polynomial P3(z, w) of v̂3(z) using Theo-
rem 8.2.6:

P3(z, w) = Resy(P0(z, y), yP2(z, w + y))

= Resy

(
y − z, (w + y)2 − z2

)

= det




1 −z 0
0 1 −z
1 2w w2 − z2



 = w2 + 2wz = w(w + 2z)

The two irreducible factors w and w + 2z correspond to the two possible
choices

√
z2 − z = 0 or

√
z2 − z = −2z. The Riemann surface (X3, η3, f3)

decomposes into two Riemann surfaces (X3,1, η3,1, f3,1) and (X3,2, η3,2, f3,2)
of the algebraic functions v̂3,1(z) = 0 and v̂3,2(z) = −2z.

X3,1 = {(z, w)|w = 0} ≈ C

η3,1 : (z,w)=(z,0) 7→z
f3,1 : (z,w) 7→w=0

X3,2 = {(z, w)|w = −2z} ≈ C

η3,2 : (z,w)=(z,−2z) 7→z
f3,2 : (z,w) 7→w=−2z

C C C C

If A(3) = (a0, a1, a2, a3) is an instance of the 3-head of Γ, then (a0, a3) is
contained either in the covering space X3,1 or in X3,2. This choice is already
determined by a2.

v̂4(z): The dependent variable v4 describes the algebraic expression

√√
z2 − z =

{
± 0
±
√
−2z.

The characteristic polynomial of v̂4(z) is P4(z, w) = P3(z, w
2) = w2(w2 +

2z). This polynomial is not reduced, its reduction is Q4(z, w) = w(w2+2z);
compare with Example 8.3.2. Let (X4; η4, f4) be the Riemann surface
of v̂4(z). Since P4 is composed by three irreducible factors, the Riemann
surface (X4; η4, f4) decomposes into three Riemann surfaces (X4,1; η4,1, f4,1),
(X4,2; η4,2, f4,2), and (X4,3; η4,3, f4,3), which belong to the three factors w, w
and w2+2z. Since the factor w has “multiplicity” 2, we have (X4,1; η4,1, f4,1)
= (X4,2; η4,2, f4,2).
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X4,1 = X4,2 = {(z, w)|w = 0} ≈ C

η4,1=η4,2 : (z,w)=(z,0) 7→z
f4,1=f4,2 : (z,w) 7→w=0

C C

X4,3 = {(z, w)|w2 + 2z = 0} = {(−w2

2 , w)|w ∈ C} ≈ C

η4,3 : (z,w) 7→z=−
w

2

2

f4,3 : (z,w) 7→w

C C

The covering η4,1 = η4,2 is unbranched, the function f4,1 = f4,2 is the zero
function. Instead, the covering η4,3 has a branch point at z0 = 0. To
determine the branch point, we compute the discriminant of the polyno-
mial P4,3(z, w) = w2 + 2z ∈ C[z][w]:

disc(P4,3) = −Resw

(
P4,3(z, w),

∂P4,3(z, w)

∂w

)
= −Resw(w2 + 2z, 2w)

= − det




1 0 2z
2 0 0
0 2 0



 = −8z

The zero z0 = 0 of disc(P4,3) determines the branch point of the algebraic
function defined by P4,3(z, w) = w2 + 2z = 0. The function f4,3 has a zero
at z0 = 0, and it does not have poles in C.

The discriminant of P4 mirrors the fact (X4,1; η4,1, f4,1) = (X4,2; η4,2, f4,2).
Since w ≡ 0 is a zero of P4(z, w) of multiplicity two, the discriminant of P4

is the zero polynomial.

The square root operation that defines v4 transforms all points of C \ {0}
to critical values since every position z0 ∈ C \ {0} of the free variable z
can be extended to a critical point (z0, z

2
0 , z0, 0, 0); see Definition 3.2.2,

Definition 3.2.3, and Definition 3.2.4. The point z0 = 0 is a critical point
caused by the dependent variable v2. Unfortunately, there does not seem
to be an algorithm to decide whether a square root operation erases a
component of the Riemann surface, yet.

Example 8.4.2. We consider the algebraic expression
√

1−√z · (3 +
√

z). We
describe this expression with two GSPs Γ1 and Γ2. They differ in the treatment
of the term

√
z that occurs twice. In Γ1, there is only one dependent variable

that represents both terms
√

z, whereas in Γ2, we have two dependent variables
for
√

z, so that the two terms
√

z are treated independently. We use Theo-
rem 8.2.6 to compute polynomials Pi(z, w) that nullify the algebraic functions of
the dependent variables vi.
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Γ1 : z ← FREE // ⇒ P0(z, w) = w − z
v1 ←

√
z // v1 =

√
z ⇒ P1(z, w) = P0(z, w2) = w2 − z

v2 ← 3 + v1 // v2 = 3 +
√

z ⇒ P2(z, w) = Resy(P1(z, y), (w − y)− 3)
= (w − 3)2 − z

v3 ← 1− v1 // v3 = 1−√z ⇒ P3(z, w) = Resy(P1(z, y), (w + y)− 1)
= (w − 1)2 − z

v4 ←
√

v3 // v4 =
√

1−√z ⇒ P4(z, w) = P3(z, w2) = (w2 − 1)2 − z
v5 ← v4 · v2 // ⇒ P5(z, w) = Resy(P4(z, y), y2P2(z, w

y
))

Γ2 : z ← FREE // ⇒ P0(z, w) = w − z
v1,1 ←

√
z // v1,1 =

√
z ⇒ P1,1(z, w) = P0(z, w2) = w2 − z

v1,2 ←
√

z // v1,2 =
√

z ⇒ P1,2(z, w) = P0(z, w2) = w2 − z
v2 ← 3 + v1,1 // v2 = 3 +

√
z ⇒ P2(z, w) = Resy(P1,1(z, y), (w − y)− 3)

= (w − 3)2 − z
v3 ← 1− v1,2 // v3 = 1−√z ⇒ P3(z, w) = Resy(P1,2(z, y), (w + y)− 1)

= (w − 1)2 − z

v4 ←
√

v3 // v4 =
√

1−√z ⇒ P4(z, w) = P3(z, w2) = (w2 − 1)2 − z
v5 ← v4 · v2 // ⇒ P5(z, w) = Resy(P4(z, y), y2P2(z, w

y
))

In Γ2, the dependent variable v1 is replaced by two dependent variables v1,1

and v1,2. The rest, even the polynomials Pi, remains unchanged. We com-
pute P5(z, w) with the computer algebra software Maple [30]:

P5(z, w) = Resy(P4(z, y), y2P2(z,
w
y
))

= (−w4 − 10zw2 + 18w2 − 81 + z3 − 19z2 + 99z)
· (−w4 + 14zw2 + 18w2 − 81 + z3 − 19z2 + 99z)

The polynomial P5 decomposes into two irreducible factors. The Riemann surface
of the algebraic function that is defined by the entire polynomial P5 decomposes
into two Riemann surfaces (X5,1, η5,1, f5,1) and (X5,2, η5,2, f5,2) that belong to the
two irreducible factors. The covering spaces X5,1 and X5,2 are connected, and the
covering maps η5,1 and η5,2 are fourfold coverings.

We rearrange the expression
√

1−√z · (3 +
√

z). We distinguish the two situ-
ations, where both occurrences of

√
z are identical as in Γ1 or where they are

different as in Γ2 if v1,1 6= v1,2.

(=) We assume that both terms
√

z are equal, hence
√

v1 = v1,1 = v1,2 and v2
1 =

z. This leads to
√

1−√z ·
(
3 +
√

z
)

=
√

1− v1(3 + v1) =
√

(1− v1)(3 + v1)2

=
√

(1− v1)(9 + 6v1 + z)

=
√

9 + 6v1 + z − 9v1 − 6 v2
1︸︷︷︸

=z

−zv1
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=
√

9− 3v1 − 5z − zv1

=

√
9− 3

√
z − 5z − z

√
z

Since

w =
√

1−√z · (3 +
√

z)

=
√

9− 3
√

z − 5z − z
√

z =
√

9− 5z −√z(3 + z)
⇒ w2 − 9 + 5z = −√z(3 + z)
⇒ (w2 − 9 + 5z)2 = z(3 + z)2

⇒ z3 + 6z2 + 9z = w4 + 81 + 25z2 − 18w2 + 10w2z − 90z
⇒ 0 = −w4 − 10w2z + 18w2 + z3 − 19z2 + 99z − 81,

the case v1,1 =v1,2 =
√

z belongs to the first factor of the polynomial P5(z, w).
The Riemann surface of the function v5(z) for Γ1 is defined by the first factor
of P5. More precisely, the first factor is the minimal polynomial (and the
characteristic polynomial) of the function v5(z) in the GSP Γ1. The second
factor of P5 can be neglected, since the dependent variable v5 of the GSP Γ1

cannot reach the corresponding connected component. The polynomial P5

that has been determined by Theorem 8.2.6, is not the minimal polynomial
of the function v̂5(z) from Γ1.

(6=) We assume that both terms
√

z = v1,1 6= v1,2 =
√

z differ. This implies v1,1 =
−v1,2 and v1,1v1,2 = −z.
√

1−√z ·
(
3 +
√

z
)

=
√

1− v1,2(3 + v1,1)

=
√

(1− v1,2)(9 + 6v1,1 + z)

=
√

9 + 6v1,1 + z − 9 v1,2︸︷︷︸
=−v1,1

−6 v1,1v1,2︸ ︷︷ ︸
=−z

−z v1,2︸︷︷︸
=−v1,1

=
√

9 + 15v1,1 + 7z + zv1,1

=

√
9 + 15

√
z + 7z + z

√
z

Since

w =
√

1−√z · (3 +
√

z)

=
√

9 + 15
√

z + 7z + z
√

z

=
√

9 + 7z +
√

z(15 + z)
⇒ w2 − 9− 7z = z(15 + z)2 = z(225 + 30z + z2)
⇒ z3 + 30z2 + 225z = w4 + 81 + 49z2 − 18w2 − 14w2z + 126z
⇒ 0 = −w4 + 14w2z + 18w2 + z3 − 19z2 + 99z − 81,

the second factor of P5(z, w) belongs to the case v1,1 = −v1,2. If we have a
starting instance = (a0, a1,1, a1,2, . . . , a5) that lies in the second connected
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Figure 8.5: A triangle and its angular bisectors are considered. In the four
configurations of the first row, the three angular bisectors meet in a common
point; these “good” configurations are connected via the line at infinity. In the
configurations of the second row, the angular bisectors do not meet; again, all
“bad” configurations form a connected component of the configuration space
(over R).

component (i.e. a1,1 = −a1,2 6= 0), then we cannot reach an instance B from
the first connected component. This observation shows that the complex
Reachability Problem is an interesting problem.

We remark that for the function v̂5(z) of the second GSP Γ2 the entire
polynomial P5(z, w) is the minimal polynomial, since both situations v1,1 =
v1,2 and v1,1 = −v1,2 can occur. For both GSPs Γ1 and Γ2, the number m
of instances that lie over a regular value, equals the degree of the minimal
polynomial of the variable v5, and the corresponding covering is an mfold
covering. For Γ1, we have m = 4, and for Γ2, we have m = 8.

A similar situation occurs in the geometric setting if we consider a triangle and the
angular bisectors of the edges. At every vertex, we can choose either the bisector
of the internal angle or of the external angle. If we restrict to real coordinates
of the objects, then the corresponding covering decomposes into two connected
components; see Figure 8.5.

The examples 8.4.1 and 8.4.2 seem to describe coherences that hold for general
GSPs as well. Intuitively, we conjecture a correlation like “The number of in-
stances of a GSP Γ equals the degree of the characteristic polynomial of the
corresponding algebraic function”. This correlation is difficult to formulate since
there might be variables of Γ that are not involved in the definition of the alge-
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braic function. Methods from Algebraic Geometry might help to get this problem
under control.

We have seen in Example 8.4.1 that a connected component “disappears” if the
characteristic polynomial is reducible. In this case, the discriminant is zero.

Theorem 8.2.6 suggests, that division free GSPs lead to entire algebraic functions.
If the leading coefficients of P and Q are 1, then in 8.2.6 (1), (2) and (4), the
polynomial R has leading coefficient 1 as well. In division free GSPs, all critical
values are caused by square root operations. We expect that the set of critical
values of a division free GSP with only one free variable is the union of the zeros
of the discriminants of the characteristic polynomials of the algebraic functions
that belong to the dependent variables of the GSP; compare with page 127 and
page 136.

The polynomial Pi computed according to Theorem 8.2.6 might not be the char-
acteristic polynomial as seen in Example 8.4.2.

In Theorem 8.1.4 we have seen, that for the roots and poles of an algebraic
function is sufficient to know the coefficient polynomials a0(z) and an(z). Unfor-
tunately, it seems that these two coefficient polynomials cannot be determined
easily from the GSP Γ using Theorem 8.2.6.

A detailed treatment of these observations could be the subject of future work
and might establish another point of view to the Tracing Problem and the Reach-
ability Problem from Dynamic Geometry.

8.5 Algebraic Functions and Continuous Evalu-

ations

We relate the notion of continuous evaluations of a complex GSP Γ with one
free variable to the Riemann surfaces of the algebraic functions of the dependent
variables of Γ. For simplicity of notation, we only consider the last dependent
variable vn of Γ. To treat an arbitrary dependent variable vj with j ∈ {1, . . . , n},
we switch to the j-head Γ(j) of Γ.

Let p(t) : [0, 1]→ C be a continuous path of the free variable z of Γ, and let A =
(a0 = p(0), a1, . . . , an) be an instance of Γ. We assume that the continuous
evaluation (v1(t), . . . , vn(t)) along p(t) starting at A does not pass through a
critical point.

We consider the Riemann surface (Xn, ηn, fn) of the algebraic function v̂n(z) of
the dependent variable vn of Γ. In Section 8.3, we have seen v̂n(z) = fn(η−1

n (z)).
Let ãn ∈ Xn be the point in the fiber η−1

n (p(0)) = η−1
n (a0) with fn(ãn) = an.
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Xn

ηn

C p(t) a0

ãn

fn

vn(t)
vn(t)

an

C

p̃n(t)

v̂n(z)

Figure 8.6: The Riemann surface (Xn, ηn, fn) of the dependent variable vn, the
path vn(t) of the continuous evaluation, and the lifting p̃n(t) are shown.

Since the function fn : Xn → C is injective on the fiber η−1
n (a0) and an ∈ v̂n(a0) =

fn(η−1
n (a0)), the point ãn is unique. Let p̃n(t) be the lifting of the path p(t) of the

free variable z with respect to the covering map ηn : Xn → C with p̃n(0) = ãn;
see Figure 8.6. A lifting of the path p(t) with respect to ηn is a path p̃n(t) with
ηn(p̃n(t)) = p(t); see Definition 8.6.4 of Section 8.6.

Lemma 8.5.1. Let p̃n(t) be the lifting of p(t) with p̃n(0) = ãn. Then we have

vn(t) = fn(p̃n(t))

for all t ∈ [0, 1].

Proof. Since p̃n(t) is the lifting of p(t) with p̃n(0) = ãn, we have an = vn(0) =
fn(p̃n(0)). The path fn(p̃n(t)) : [0, 1] → C is continuous since p̃n is continuous
and fn is holomorphic and hence continuous as well. By definition of fn, the
point (p(t), fn(p̃n(t))) is a zero of the characteristic polynomial P of the algebraic
function v̂n(z); see Section 8.3. Since the polynomial P and the GSP Γ describe
the same algebraic function, there is an instance (zt, v1,t, . . . , vn,t) of Γ with zt =
p(t) and vn,t = fn(p̃n(t)). Like vn,t = fn(p̃n(t)), the coordinates vj,t can be chosen
as continuous functions of t with vj,0 = aj as well. Thus, fn(p̃n(t)) is the path
of the variable vn in a continuous evaluation of Γ along p starting at A. The
uniqueness of continuous evaluations implies vn(t) = fn(p̃n(t)) for all t ∈ [0, 1];
see Corollary 8.6.7 of Section 8.6.

We observe that the path vn(t) in a continuous evaluation (v1(t), . . . , vn(t)) is
essentially the lifting p̃n(t) of the path p(t) of the free variable z to the covering



142 CHAPTER 8. ALGEBRAIC FUNCTIONS

space Xn of the Riemann surface (Xn, ηn, fn) of the algebraic function v̂n(z) of
the dependent variable vn with p̃n(0) = ãn.

8.6 Continuous Evaluations and Coverings

We briefly explain the notion of coverings as they are used in the theory of
Riemann surfaces [22, 17]. They are a useful tool for proving the uniqueness and
existence of continuous evaluations for K = C.

Definition 8.6.1. [22, Def. 4.1] Covering
Let X be a topological space. A topological space Y together with a map π : Y → X
is called covering of X, if π is continuous and open and if for every point x ∈ X
the inverse image π−1(x) is empty or discrete in Y . The set π−1(x) is called
fiber over x; see [17, p. 18]. The function π is called covering map, and Y is the
covering space.

A point y ∈ Y is called branch point of the covering π, if there is no neighbor-
hood V of y such that π|V is injective [22, Def. 4.3]. A covering that has branch
points is called a branched covering. Similarly, a covering without branch points
is called an unbranched covering.

A function π : Y → X of topological spaces X and Y is an unbranched covering
if and only if π is a local homeomorphism [22, Thm. 4.4]; see Figure 8.7. Per
definition, π : Y → X is a local homeomorphism, if every point y ∈ Y has an
open neighborhood V such that π(V ) ⊂ X is an open set and π|V : V → π(V )
is a homeomorphism. We remark that Definition 8.6.1 is more general than the
notion of coverings from topology; see e.g. [8, Def. 3.1] or [47, Sect. 3.2.2].

Example 8.6.2. The function π : Y = C→ X = C, z 7→ z2, is a covering map.
Indeed, π is continuous and open, and π−1(x) = {±√x} consists of two elements
if x 6= 0, and π−1(0) = {0} contains one element. The point 0 ∈ Y = C is
a branch point of the covering (Y, π) since for every neighborhood V ⊂ Y of 0
the restriction π|V of π to V is not injective; ǫ and −ǫ are both mapped to ǫ2.
Figure 8.8 shows the common visualization of this covering, which is the Riemann
surface of the function

√
: C → C. Note that this surface does not have self-

intersections. The “dashed line” is due to the embedding into R3. Observe that
the map π is drawn as a projection.

The following lemma helps to understand the definition of coverings.

Lemma 8.6.3. [22, Thm. 4.2] Let X, Y be Riemann surfaces and p : Y → X a
non-constant holomorphic map. Then p is a covering.



8.6. CONTINUOUS EVALUATIONS AND COVERINGS 143

Y

X

π

π(V )

V ∋ y

Figure 8.7: Visualization of an unbranched covering π : Y → X.

Proof. Since p is a non-constant holomorphic function, it is continuous and open
(i.e. the images of open sets are again open sets). A famous result from complex
analysis implies that for every point a ∈ X, its inverse image p−1(a) is a discrete
set. If p−1(a) were not discrete for an a ∈ X, then p would be the constant
function p(y) ≡ a.

We give some more standard definitions and properties of coverings [22] and apply
them to the notion of continuous evaluations.

Definition 8.6.4. [22, Def. 4.7] Lifting of a Continuous Map
Let X, Y and Z be topological spaces, π : Y → X a covering and f : Z → X a
continuous map. A lifting of f (with respect to π) is a continuous map g : Z → Y
with f = π ◦ g, i.e., the following diagram commutes.

Y

π

Z

g

f
X

Example 8.6.5. Again, we consider the covering π : C → C, z 7→ z2. In Fig-
ure 8.8, all liftings of the curves γ(t) = 1

2
e2πit and δ(t) = 1

2
e2πi(t− 1

2
) + 1, t ∈ [0, 1],

are shown. The curve γ cycles once around the point 0 ∈ X = C, which is the
basepoint of the branch point 0 ∈ Y = C. The liftings γ̃1 and γ̃2 of γ change
the sheets of the covering π whereas the liftings δ̃1 and δ̃2 of δ don’t. Figure 8.9
shows the liftings γ̃1, γ̃2, δ̃1 and δ̃2 drawn in the complex plane C.
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0
Y = C

γ̃2
δ̃2

π

X = C
δ

1
2

γ

0

δ̃1

γ̃1

Figure 8.8: Two-fold covering of C defined by Y = C and π(z) = z2 with the
liftings γ̃1, γ̃2, δ̃1 and δ̃2 of the closed curves γ and δ.

Theorem 8.6.6. [22, Thm. 4.8] Uniqueness of Liftings
Let X, Y be Hausdorff spaces and π : Y → X a covering without branch points.
Let Z be a connected topological space and f : Z → X a continuous map. If g1,
g2 : Z → Y are two liftings of f and if g1(z0) = g2(z0) holds for one point z0 ∈ Z,
then g1 = g2.

To lift curves, we consider the time interval [0, 1] =: Z. We assume that no
basepoint of a branch point of the covering π lies on the curves we want to lift.
Then Theorem 8.6.6 implies that liftings of curves are unique if the starting point
is specified, for example. Corollary 8.6.7 of Theorem 8.6.6 is the exact statement
of an obvious fact.

Corollary 8.6.7. Uniqueness of Continuous Evaluations
Let Γ be a complex GSP with k free variables z−k+1, . . . , z0 and n dependent
ones v1, . . . , vn. Let p−k+1, . . . , p0 : [0, 1] → C be continuous paths of the free
variables of Γ, and let A = (a−k+1 = p−k+1(0), . . . , a0 = p0(0), a1, . . . , an) be an
instance of Γ. If (v1(t), . . . , vn(t)) and (ṽ1(t), . . . , ṽn(t)) are continuous eval-
uations along the paths p−k+1, . . . , p0 starting at A, then (v1(t), . . . , vn(t)) =
(ṽ1(t), . . . , ṽn(t)).

Proof. (Induction on the number of dependent variables of Γ)
W.l.o.g. let the free variables z−k+1, . . . , z0 be the first k variables of Γ. If n = 0,
then Γ consists of free variables, only, and the claim of Corollary 8.6.7 is fulfilled.



8.6. CONTINUOUS EVALUATIONS AND COVERINGS 145

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

–1 –0.5 0.5 1

γ̃1

δ̃1
δ̃2

γ̃2

Figure 8.9: The curves γ̃1, γ̃2, δ̃1 and δ̃2 drawn in the complex plane C = Y .

We assume that the claim of Corollary 8.6.7 holds for GSPs with n − 1 depen-
dent variables. Let Γ be a GSP with n dependent variables v1, . . . , vn, let A =
(a−k+1, . . . , a0, a1, . . . , an) be an instance of Γ, and let p−k+1, . . . , p0 be contin-
uous paths of the free variables of Γ with pl(0) = al; l = −k + 1, . . . , 0. Let
(v1(t), . . . , vn−1(t), vn(t)) and (ṽ1(t), . . . , ṽn−1(t), ṽn(t)) be continuous evaluations
of Γ along the paths p−k+1, . . . , p0 starting at A. We consider the n−1-head Γ(n−1)

of Γ. By definition, Γ(n−1) is a GSP with n−1 dependent variables, and the paths
(v1(t), . . . , vn−1(t)) and (ṽ1(t), . . . , ṽn−1(t)) are continuous evaluations of Γ(n−1)

along the paths p−k+1, . . . , p0 starting at A(n−1) = (a−k+1, . . . , a0, a1, . . . , an−1).
By induction, we have vi(t) = ṽi(t) for all t ∈ [0, 1]; i = 1, . . . , n − 1. It remains
to show vn(t) = ṽn(t) for all t ∈ [0, 1].

If the dependent variable vn is defined by one of the deterministic operations
addition, subtraction, multiplication, or division, then vn(t) = ṽn(t) holds for
all t ∈ [0, 1], since these operations are determined by their input variables.

If vn ←
√

vc is defined to be a square root of a free or dependent variable vc,
then we consider the path vc(t) = ṽc(t) in the continuous evaluation of Γ(n−1).
Since (v1(t), . . . , vn(t)) and (ṽ1(t), . . . , ṽn(t)) are continuous evaluations of the
original GSP Γ, the path vc(t) = ṽc(t) : [0, 1] → C does not pass through 0 ∈ C.
Hence, the paths vn(t) and ṽn(t) are liftings of the path vc(t) = ṽc(t) with vn(0) =
ṽn(0) = an with respect to the covering π : C \ {0} → C \ {0}, z 7→ z2, and
Theorem 8.6.6 implies vn(t) = ṽn(t) for all t ∈ [0, 1].

Now we discuss the existence of continuous evaluations. We need the following
lemma that is a consequence of Definition 4.11 and Theorem 4.14 from [22].

Lemma 8.6.8. The covering

π : C \ {0} → C \ {0}
z 7→ z2
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has the curve-lifting-property, i.e.: For each continuous function u : [0, 1] → C \
{0} and each point y0 ∈ C \ {0} with π(y0) = u(0) there is a lifting ũ : [0, 1] →
C \ {0} of u with ũ(0) = y0.

Corollary 8.6.9. Existence of Continuous Evaluations
Let S ⊂ Ck be the set of critical values of a GSP Γ having k free variables
z−k+1, . . . , z0 and n dependent ones v1, . . . , vn. Let p = (p−k+1, . . . , p0) : [0, 1] →
Ck \ S be a continuous path of the free variables z−k+1, . . . , z0 of the GSP Γ,
and let A = (a−k+1, . . . a0, a1, . . . , an) ∈ Ck+n be an instance of Γ with a−k+1 =
p−k+1(0), . . . , a0 = p0(0). Then there is a continuous evaluation of Γ along the
paths p−k+1, . . . , p0 starting at A.

Proof. Corollary 8.6.9 can be proven by induction on the number of dependent
variables like Corollary 8.6.7 using Lemma 8.6.8.

For n = 0, the GSP Γ does not have dependent variables and the claim of
Corollary 8.6.9 holds. We assume, that Corollary 8.6.9 holds for GSPs with n−
1 dependent variables. To prove the inductive step, let Γ be a GSP with n
dependent variables v1, . . . , vn−1, vn. Then, the n− 1-head Γ(n−1) is a GSP with
the n − 1 dependent variables v1, . . . , vn−1. By induction, there is a continuous
evaluation (v1(t), . . . , vn−1(t)) of Γ(n−1) along the paths p−k+1, . . . , p0 starting at
the instance A(n−1) = (a−k+1, . . . , a0, a1, . . . , an−1). We consider the dependent
variable vn. If vn ← vi◦vj, ◦ ∈ {+,−, ·, /}, is defined by one of the four elementary
arithmetic operations, then (v1(t), . . . , vn−1(t), vn(t) = vi(t)◦vj(t)) is a continuous
evaluation of Γ along the paths p−k+1, . . . , p0 starting at the instance A. Since
critical values are excluded, divisions by zero cannot occur.

If vn ←
√

vc is defined by a square root operation, we consider the path vc(t) in the
continuous evaluation of Γ(n−1) of the radicand variable vc. Since critical values
of Γ are excluded for the paths p−k+1, . . . , p0, the path vc(t) does not pass through
zero. By Lemma 8.6.8, there is a lifting vn(t) := ṽc(t) of the path vc(t) : [0, 1]→
C with vn(0) = an with respect to the covering π : C \ {0} → C \ {0}. By
construction, (v1(t), . . . , vn−1(t), vn(t) = ṽc(t)) is a continuous evaluation of Γ
along the paths p−k+1, . . . , p0 starting at the instance A.

A closer look at the proof of Corollary 8.6.9 shows that Corollary 8.6.9 holds in
a more general situation: A continuous evaluation exists if and only if the paths
of the radicand or divisor variables of the root or division operations do not pass
through zero. In this case, we can find the continuous evaluation along given
paths p−k+1, . . . , p0 starting at a given instance A, inductively. This approach is
used in the algorithms for the Tracing Problem from Chapter 6.

In addition to the lifting of curves, we can lift continuous functions f : Z → X
defined on a simply connected, path-connected and locally path-connected topo-
logical space Z with respect to unbranched coverings π : Y → X that have the
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curve lifting property; see [22, Section 1, pp. 22-26]. We need this generalization
to lift analytic functions in Section 8.6.1.

To investigate the Reachability Problem, the notion of homotopic paths is helpful
as seen in 4.3. Roughly speaking, two paths with the same endpoints a and b are
called homotopic, if one of them can be continuously transformed into the other
one, and the transformation leaves the endpoints a and b of the curves fixed.

Definition 8.6.10. [22, Def. 3.1] Homotopic Paths
Let X be a topological space and a, b ∈ X. Let c1, c2 : [0, 1] → X be continuous
paths from a to b. The two curves c1 and c2 are called homotopic if there is a
map H : [0, 1]× [0, 1]→ X, called homotopy, with the following properties:

1. ∀t ∈ [0, 1] : H(t, 0) = c1(t), i.e., for s = 0 we get the path c1.

2. ∀t ∈ [0, 1] : H(t, 1) = c2(t), i.e., for s = 1 we get the path c2.

3. ∀s ∈ [0, 1] : H(0, s) = a and H(1, s) = b, i.e., the endpoints a and b of c1

and c2 are fixed.

This defines an equivalence relation on the set of continuous paths [0, 1] → X;
two paths c1, c2 : [0, 1] → X are equivalent if and only if they have the same
endpoints and are homotopic [22, Thm. 3.2]. The equivalence classes are called
homotopy classes. Theorem 8.6.11 implies that the continuous evaluations of
homotopic paths starting at the same instance have the same final instance.

Theorem 8.6.11. [22, Thm. 4.10] Lifting of Homotopic Curves
Let X and Y be Hausdorff spaces and π : Y → X an unbranched covering. Let
a, b ∈ X and â ∈ Y with π(â) = a. Let H : [0, 1] × [0, 1] → X be a continuous
map with H(0, s) = a and H(1, s) = b for all s ∈ [0, 1]. We define

us(t) := H(t, s)

and assume that each curve us can be lifted to a curve ûs with starting point â.
Then û0 and û1 have the same endpoint, and they are homotopic.

Corollary 8.6.12. Let S ⊂ Ck be the set of critical values of a GSP Γ hav-
ing k free variables z−k+1, . . . , z0 and n dependent variables v1, . . . , vn. Let p =
(p−k+1, . . . , p0) : [0, 1] → Ck \ S and p′ = (p′−k+1, . . . , p

′
0) : [0, 1] → Ck \ S be ho-

motopic continuous paths of the free variables z−k+1, . . . , z0 of the GSP Γ, and
let A = (a−k+1, . . . , a0, a1, . . . , an) ∈ Ck+n be an instance of Γ with a−k+1 =
p−k+1(0) = p′−k+1(0), . . . , a0 = p0(0) = p′0(0). Then the continuous evaluations of
p and p′ starting at A end at the same instance.
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Proof. Corollary 8.6.12 can be proven in a similar way as Corollary 8.6.9 using
Theorem 8.6.11. Since the paths p and p′ are homotopic in the set Ck \ S,
the functions us(t) are paths in Ck \ S. By Corollary 8.6.9, these paths can be
extended to continuous evaluations starting at A.

8.6.1 Coverings of Riemann Surfaces

We consider coverings of Riemann surfaces [22, 47]. As mentioned in Section 8.3,
a Riemann surface is a Hausdorff space X together with a holomorphic structure
on X [47, Sect. 1.1]. Let η : X → Y be a covering, where X and Y are Riemann
surfaces. If η is holomorphic, then η is locally biholomorphic [22, p. 20]. In [47],
branched coverings of Riemann surfaces are defined using winding maps [47,
Sect. 1.4.1]. This definition is stronger than Definition 8.6.1 and adapts to the
special strucure of Riemann surfaces. In [47, 1.4.5] is shown that every finite
holomorphic function η : X → Y of Riemann surfaces is a covering of Riemann
surfaces. The function η is called finite if every fiber η−1(y), y ∈ Y , is finite.

If η : X → Y is a holomorphic unbranched covering of Riemann surfaces, then the
lifting of a holomorphic function is again holomorphic [22, p. 21, Thm. 4.9]. Since
continuous evaluations do not pass through branch points, this fact implies that
the paths in a continuous evaluation are smooth if the paths of the free variables
are smooth. This observation is fundamental for defining the derivative of a GSP
in Section 3.5 and for considering the derivatives of the paths in a continuous
evaluation. Compare Lemma 8.6.13 with Corollary 8.6.9.

Lemma 8.6.13. Let Γ be a GSP over C with k free variables and n dependent
variables v1, . . . , vn. Let A be an instance of Γ, and let p−k+1, . . . , p0 : [0, 1]→ C
be paths of the free variables of Γ that can be extended to analytic functions
on a connected neighborhood U[0,1] ⊂ C of the time interval [0, 1] and for which
the corresponding continuous evaluation along p−k+1, . . . , p0 starting at A exists.
Then there is a connected neighborhood Û[0,1] ⊂ C of the time interval [0, 1] such
that the paths of the dependent variables vi(t) in the continuous evaluation of Γ
can be extended to analytic functions v̂i on Û[0,1], and at each point t ∈ Û[0,1] the
relations of Γ are fulfilled.

Proof. Induction on the number of dependent variables of Γ.
For n = 0, we choose Û[0,1] := U[0,1]. Now we assume that the claim is shown
for GSPs with n dependent variables, and let Γ be a GSP with n + 1 depen-
dent variables. The n-head Γ(n) of Γ is a GSP with n dependent variables.
Let U[0,1],n := Û[0,1] ⊂ C be a connected neighborhood of the time interval [0, 1]
for that all paths vi(t) in the continuous evaluation of Γ(n) can be extended to
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analytic functions v̂i such that at each point t ∈ U[0,1],n the relations of Γ(n) are
fulfilled.

If vn+1 ← vi ◦ vj, ◦ ∈ {+,−, ·}, is defined by an addition, subtraction or multi-
plication, then the path vn+1(t) in the continuous evaluation can be extended to
an analytic function on Û[0,1] := U[0,1],n since the functions v̂i and v̂j of the input
variables vi and vj are analytic functions on U[0,1],n by the induction hypothesis.

If vn+1 ← vi/vc is defined by a division, then we consider the divisor variable vc

and its analytic function v̂c : U[0,1],n → C. We set Û[0,1] := U[0,1],n+1 := v̂−1
c (C \

{0}). Since v̂c is an analytic function on U[0,1],n, the set of zeros v̂−1
c ({0}) of v̂c is

a discrete set, and Û[0,1] remains a connected neighborhood of [0, 1].

If vn+1 ←
√

vc is defined by a square root operation, we consider the radicand vc

and choose Û[0,1] := U[0,1],n+1 := v̂−1
c (C \ {0}) as for the division operation. The

analytic function v̂c : Û[0,1] → C can be lifted to the covering space of the cover-
ing η : C \ {0} → C \ {0}; see page 148 and [22, p. 21, Thm. 4.9]. This process
leads to the analytic function v̂n+1 : Û[0,1] → C that extends the path vn+1(t) in the
continuous evaluation. Clearly, the relations of the GSP Γ remain fulfilled.
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Appendix A

Interval Arithmetic

Interval arithmetic is a computation model for self-validated numerics and uses
intervals as approximate values. The “correct” value is contained in the corre-
sponding interval. In self-validated numerics, computation models are discussed,
in which approximate results are automatically provided with guaranteed error
bounds [60, Chap. 1].

We give a brief introduction to interval analysis that is based on the descrip-
tion of Alefeld and Herzberger [1]. In Section A.1 we consider Interval Analysis
over R, whereas in Section A.2 complex interval analysis is discussed. As com-
plex intervals, we choose axis-parallel rectangles or circles. We state the inclusion
monotonicity property [1], which is crucial for the correctness of our algorithms.
Additionally, we give some estimates that are needed for showing that Algo-
rithm 2 and Algorithm 3 from Chapter 6 terminate. These estimates are based
on the continuity of the four elementary arithmetic operations and the sqaure
root function. We mention the problem of interval dependency [35]. In Sec-
tion A.5, we introduce the interval Newton method [53], which is a variant of the
usual Newton method using interval arithmetic. This method might be useful
for the treatment of critical points in Chapter 7. Finally, we discuss affine arith-
metic in Section A.6, which is like interval arithmetic a range based model for
self-validated computing. Here, quantities are represented by affine forms.

There are many other range based models that seem to be useful for our algo-
rithms from Chapter 6, as well. The investigation of these models is an interesting
future project. In Taylor models, the quantities are represented by higher order
polynomials; see [54]. The Hermite-Obreschkoff method can deal with algebraic
functions as explained in [52].
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A.1 Real Interval Arithmetic

We briefly introduce real interval analysis. The main idea is that we do all compu-
tations with real closed intervals instead of real numbers. We define the arithmetic
interval operations and mention the computation rules as in [1]. Lemma A.1.10
contains some estimates that are based on the continuity of the considered func-
tions and that we use in Chapter 6 as mentioned in the introduction of this
chapter.

As usual, a real closed interval A = [a1, a2] with a1 ≤ a2, a1, a2 ∈ R, is the set of
all real numbers t with a1 ≤ t ≤ a2. We denote the set of all real closed intervals
by I(R). A real number x ∈ R can be regarded as the interval [x, x]. We omit
the addition of real and closed since we only consider real closed intervals. Let
A = [a1, a2] and B = [b1, b2] be intervals. The intervals A and B are equal if and
only if a1 = b1 and a2 = b2; see [1, Def. 1, p. 1].

We define the arithmetic operations on I(R) as in [1, Abschnitt 1]:

Definition A.1.1. [1, Def. 2, p. 2] Arithmetic Operations on I(R)
Let ◦ be one of the arithmetic operations +, −, · and : on R. Let A, B ∈ I(R).
We set

A ◦B := {a ◦ b | a ∈ A, b ∈ B}.
The division A : B is only defined if 0 /∈ B.

For every operation ◦ ∈ {+,−, ·, :}, the set {a ◦ b | a ∈ A, b ∈ B} is an interval:
The function ◦ : A×B → R is a continuous function on the compact set A×B.
Hence, it takes its minimum and maximum and all intermediate values. The
intervals A◦B can be calculated explicitly using the interval bounds of A and B.
The formulas are listed in Lemma A.1.2 below.

Lemma A.1.2. [1, p. 2] Explicit Computation of A ◦B
Let A, B ∈ I(R). Then we have

A + B = [a1 + b1, a2 + b2];

A−B = [a1 − b2, a2 − b1];

A ·B = [min{a1b1, a1b2, a2b1, a2, b2}, max{a1b1, a1b2, a2b1, a2, b2}];

A : B = [a1, a2] ·
[

1

b2

,
1

b1

]
if 0 /∈ B.

Remark A.1.3. We can also define a division A : B if 0 ∈ B = [b1, b2]; see for
example [35]. One possibility is to define

1

[b1, 0]
:=

[
−∞,

1

b1

]
,

1

[0, b2]
:=

[
1

b2

,∞
]

,
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and for b1 < 0 < b2

1

[b1, b2]
:=

[
−∞,

1

b1

]
∪
[

1

b2

,∞
]

.

A division A : B with 0 ∈ B can be defined as A · 1
B

. If a division by an interval B
with 0 ∈ B occurs in a sequence of computations, then the two resulting inter-

vals
[
−∞, 1

b1

]
and

[
1
b2

,∞
]

are usually treated separately in further computation

steps.

The following example is taken from [35, p. 4]. It motivates the problem of
interval dependency.

Example A.1.4. [35, p. 4] We consider the expression f(x) = x2 − x over
the interval [0, 1]. The range of f over [0, 1] is f([0, 1]) = {f(x) |x ∈ [0, 1]} =
[−1/4, 0]. Evaluating f with interval arithmetic leads to

[0, 1]2 − [0, 1] = [0, 1] · [0, 1]− [0, 1] = [0, 1]− [0, 1] = [−1, 1].

We observe an overestimation of the range of f since f([0, 1]) = [−1/4, 0] $
[−1, 1]. The intervals of the term x2 and of the term −x both depend on x, but
by performing the operations in interval arithmetic, we neglect this dependency.
The resulting interval [−1, 1] includes e.g. numbers like 12 − 0 = 1 and 02 − 1 =
−1 in addition to 12 − 1 = 0 and 02 − 0 = 0. This phenomenon is called
interval dependency. Expressions that are equivalent in real arithmetic may lead
to different results in interval arithmetic: We rewrite f(x) = x2 − x = x(x − 1)
and evaluate the expression x(x− 1) in interval arithmetic over the interval [0, 1]
and observe

[0, 1] · ([0, 1]− 1) = [0, 1] · ([0, 1]− [1, 1]) = [0, 1] · [−1, 0] = [−1, 0] $ [−1, 1].

Example A.1.4 shows that the distributive law does not hold in interval arith-
metic. We give an overview of calculation rules in I(R). They are proved in [1,
Abschnitt 1].

Lemma A.1.5. [1, Thm. 4, p. 3] Calculation Rules in I(R)
Let A, B, C ∈ I(R). Then the following calculation rules hold:

1. Commutativity: A + B = B + A, and A ·B = B · A;

2. Associativity: (A + B) + C = A + (B + C), and (A ·B) · C = A · (B · C);

3. Neutral Elements:
X = [0, 0] is the unique neutral element for the addition, i.e.,

A = X + A = A + X for all A ∈ I(R) ⇐⇒ X = [0, 0];

Y = [1, 1] is the unique neutral element for the multiplication, i.e.,

A = Y · A = A · Y for all A ∈ I(R) ⇐⇒ Y = [1, 1];
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4. Subdistributivity: A · (B + C) ⊂ A ·B + A · C,
but a · (B + C) = a ·B + a · C holds for a ∈ R;

5. I(R) has no zero divisors;

6. An interval A = [a1, a2] ∈ I(R) with a1 6= a2 has no inverse for addition
and multiplication. However, we have 0 ∈ A− A and 1 ∈ A : A.

A very important property of real interval arithmetic is the inclusion monotonic-
ity property, which is proved in [1]. It is also denoted as inclusion isotonicity
property; see [35, 57]. It states that if we combine two intervals B(1) and B(2) by
an operation ◦ ∈ {+,−, ·, /} and if we shrink the input intervals B(1) and B(2),
then the new result must be contained in B(1) ◦ B(2). This natural property
is important for many algorithms that use interval analysis. However, there are
(complex) interval arithmetics that do not fulfill the inclusion monotonicity prop-
erty; see [2, 57] and Section A.2.

Theorem A.1.6. [1, Thm. 5, p. 7] Inclusion Monotonicity Property
Let A(1), A(2), B(1) and B(2) ∈ I(R) with A(1) ⊂ B(1) and A(2) ⊂ B(2). Then

A(1) ◦ A(2) ⊂ B(1) ◦B(2)

holds for all operations ◦ ∈ {+,−, ·, :}.
Corollary A.1.7. [1, Cor. 6, p. 8] Let A, B ∈ I(R) and a ∈ A, b ∈ B. Then

a ◦ b ∈ A ◦B

holds for all operations ◦ ∈ {+,−, ·, :}.

In addition to the arithmetic operations, we consider continuous monadic func-
tions like x 7→ xk or 0 < x 7→ k

√
x.

Definition A.1.8. [1, Def. 3, p. 3] Let r : R ⊃ X → R, x 7→ r(x), be a
continuous function, let A ∈ I(R). We define by

r(A) := [min
x∈A

r(x) , max
x∈A

r(x)]

the corresponding operation on I(R).

If the function r is monotonic like the functions x 7→ xk or x 7→ k
√

x over the
positive real numbers, then the corresponding interval operation can be computed
explicitly using the interval bounds of the argument A ∈ I(R). Let A = [a1, a2]
be an interval with 0 < a1. Then we have A2 = [a2

1, a
2
2], and

√
A =

[√
a1,
√

a2

]

or
√

A = −
[√

a1,
√

a2

]
=
[
−√a2,−

√
a1

]
. The inclusion monotonicity property

also holds for the monadic operations from Definition A.1.8.
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Lemma A.1.9. [1, p. 8] Let r be a function as in Definition A.1.8 and A,
B ∈ I(R) with A ⊂ B. Then we have r(A) ⊂ r(B). Consequently, r(a) ∈ r(A)
holds for a ∈ A.

The estimates of Lemma A.1.10 are a consequence of the continuity of the func-
tions +,−, ·, / : R2 → R and ±√ : R>0 → R. We use Lemma A.1.10 to show
that Algorithm 2 and Algorithm 3 from Chapter 6 terminate.

Lemma A.1.10. Let ◦ ∈ {+,−, ·, :} and ǫ > 0. Let a, b ∈ R and c := a ◦ b.
Then there exist δa > 0 and δb > 0 such that

[a− δa, a + δa] ◦ [b− δb, b + δb] ⊂ [c− ǫ, c + ǫ] = c + [−ǫ, ǫ],

and for c = ±√a we have

√
[a− δa, a + δa] ⊂ [c− ǫ, c + ǫ].

For the division operation we assume b 6= 0, and for the square root operation
we assume a > 0. If a ∈ [mina, maxa] and b ∈ [minb, maxb] hold, then δa

and δb can be chosen, such that they only depend on ǫ and on the interval bounds
mina, maxa, minb, and maxb.

Proof. Lemma A.1.10 is a consequence of the continuity of the functions

+, −, ·, / : R2 → R

and of the functions ±√ : R>0 → R. On R2 we choose the metric which is
induced by the maximum norm on R2. The supplement of Lemma A.1.10 holds
since the considered functions are uniformly continuous on the compact sets
[mina, maxa]× [minb, maxb] and [mina, maxa].

A.2 Complex Interval Arithmetic

This introduction to complex interval analysis summarizes [1, Abschnitt 5].
Additionally, the computation of square roots in complex interval arithmetic is
treated; see [56] for roots in circular arithmetic. We reformulate Lemma A.1.10
for complex intervals in Lemma A.2.12 and Lemma A.2.25.

As complex intervals, axis-parallel rectangles or circles are used. We can transfer
the computation rules from real interval arithmetic to complex intervals, but
here, overestimation becomes worse: In real interval arithmetic, the range of a
single interval operation is computed correctly. Overestimation can only occur if
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interval operations are combined, or if the represented quantities depend on each
other. In complex interval arithmetic, we have to deal with overestimation in a
single multiplication or division operation. In the sequel, we denote by I(C) the
set of either rectangular or circular intervals [1].

Petković and Petković mention in [57, p. 25] that circular sectors and circular rings
(annuli) are used as complex intervals as well. This kind of complex intervals only
has a little practical importance.

A.2.1 Rectangular Interval Arithmetic

First, we define complex rectangular intervals:

Definition A.2.1. [1, Def. 1, p. 55] Complex Rectangular Interval
Let A1 and A2 ∈ I(R). Then the set

A := A1 + iA2 := {a1 + ia2 | a1 ∈ A1, a2 ∈ A2}

is termed complex rectangular interval. We denote the set of all rectangles A =
A1 + iA2 with A1, A2 ∈ I(R) by R(C).

A complex interval A = A1+iA2 ∈ R(C) describes an axis parallel rectangle in the
complex plane. The interval A1 is the real part, the interval A2 the imaginary
part. A complex number a1 + ia2 can be considered as the complex interval
[a1, a1] + i[a2, a2]. The set I(R) is embedded in R(C) in the same way as R is
embedded in C: An interval A1 ∈ I(R) can be treated as the interval A1+i[0, 0] ∈
R(C). Let A = A1 + iA2 and B1 + iB2 complex intervals. Then A and B are
equal if and only if A1 = B1 and A2 = B2 hold.

We define the arithmetic operations on R(C) as in [1, Abschnitt 5]. They are de-
fined in a similar way as the arithmetic operations on C. Instead of real numbers
for the real part and the imaginary part we have real intervals.

Definition A.2.2. [1, Def. 3, p. 56] Arithmetic Operations on R(C)
Let A = A1 + iA2 and B = B1 + iB2 ∈ R(C), and ◦ one of the operations +, −, ·
and :. Then A ◦B is defined as follows:

A + B := A1 + B1 + i(A2 + B2)

A−B := A1 −B1 + i(A2 −B2)

A ·B := A1 ·B1 − A2 ·B2 + i(A1 ·B2 + A2 ·B1)

A : B :=
A1 ·B1 + A2 ·B2

B2
1 + B2

2

+ i
A2 ·B1 − A1 ·B2

B2
1 + B2

2

The division A : B is only defined if 0 /∈ B. The denominator B2
1 + B2

2 must be
computed as B2

1 + B2
2 = {b2

1| b1 ∈ B1}+ {b2
2| b2 ∈ B2}.
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Remark A.2.3. If B2
1 + B2

2 is computed as B2
1 + B2

2 = B1 · B1 + B2 · B2, it
might be 0 /∈ B = B1 + iB2 and 0 ∈ B2

1 +B2
2 as the example taken from [1, p. 56]

shows: For B = [−1, 1] + i[1, 3] we have 0 /∈ B and

B1 ·B1 + B2 ·B2 = [−1, 1] + [1, 9] = [0, 10] ∋ 0.

In contrast to this, we have

B2
1 + B2

2 = [0, 1] + [1, 9] = [1, 10] 6∋ 0;

see Definition A.1.8.

The following lemma states that there is an overestimation of the range of a single
multiplication or division in R(C). Compare Lemma A.2.4 with Definition A.1.1
and Lemma A.1.2.

Lemma A.2.4. Let A, B ∈ R(C). Then the following holds for the arithmetic
operations in R(C); see [1, Abschnitt 5]:

1. A±B = {a± b| a ∈ A, b ∈ B};

2. A ·B ⊃ {a · b| a ∈ A, b ∈ B},
indeed, A·B is the smallest rectangle in R(C) that contains the set {a·b| a ∈
A, b ∈ B};

3. A : B ⊃ {a : b| a ∈ A, b ∈ B}, if 0 /∈ B.

As mentioned in [1, p. 59], we might achieve an improvement for the division if
we define A : B := A · 1

B
and if 1

B
is chosen as the smallest rectangle in R(C)

containing the set {a : b| a ∈ A, b ∈ B}. This has larger computational costs.

In the set R(C), we have almost the same computation rules as in I(R); see
Lemma A.1.5 and [1, Thm. 8, p. 62]. The differences are stated in Lemma A.2.5
below.

Lemma A.2.5. Calculation Rules in R(C)
In R(C), we have almost the same calculation rules as in I(R). We formulate
the differences to Lemma A.1.5:

Associativity: The associative law holds for the addition in R(C), only.

Neutral Elements: The unique neutral element for addition is X = [0, 0]+ i[0, 0],
the unique neutral element for multiplication is Y = [1, 1] + i[0, 0].

The inclusion monotonicity property holds on R(C) as well. We state it as a
theorem since this property is crucial for our algorithms.
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Theorem A.2.6. [1, Thm. 9, p. 64] Inclusion Monotonicity Property for R(C)
Let A(1), A(2), B(1) and B(2) ∈ R(C) with A(1) ⊂ B(1) and A(2) ⊂ B(2).
Then

A(1) ◦ A(2) ⊂ B(1) ◦B(2)

holds for all interval operations ◦ ∈ {+,−, ·, :}.

Corollary A.2.7. [1, Cor. 10, p. 66] Let A, B ∈ R(C) and a ∈ A, b ∈ B.
Then

a ◦ b ∈ A ◦B

holds for all operations ◦ ∈ {+,−, ·, :}.

We define a square root operation on R(C). It assigns to each rectangle A ∈ R(C)
with 0 /∈ A the smallest rectangle in R(C) containing {√a | a ∈ A}. Here,

√
is

a branch of the square root function that is defined on A.

Definition A.2.8. Square Roots in Rectangular Interval Arithmetic
Let A ∈ R(C) with 0 /∈ A. Let

√
be a branch of the square root function that is

defined on A. Then
√

A is defined as the smallest rectangle in R(C) containing
the set {√a | a ∈ A}:

√
A :=

⋂{
B ∈ R(C) | {√a | a ∈ A} ⊂ B

}

Lemma A.2.9 shows how
√

A can be computed.

Lemma A.2.9. Computation of Square Roots in Rectangular Arithmetic
Let A = [a1, a2] + i[b1, b2] ∈ R(C) with 0 /∈ A, and let x ∈ A be the point that is
closest to 0 ∈ C. Then,

√
A is the smallest rectangle in R(C) that contains the

square roots of the four vertices of A and of the point x:

√
A =

⋂{
B ∈ R(C)

∣∣∣
√

x,
√

a1 + ib1,
√

a1 + ib2,
√

a2 + ib1,
√

a2 + ib2 ∈ B
}

.

Furthermore, we have 0 /∈
√

A .

Proof. We have to show that the functions Re
√

z and Im
√

z : A→ R take there
minimum and there maximum at one of the four vertices of the rectangle A or
the point x ∈ A that is closest to 0 ∈ C. For this purpose, we consider the
four lines lh1, lh2, lv1 and lv2 containing the four edges of the rectangle A. We
extend the branch

√
of the square root function such that it is also defined on

these four lines. The two vertical lines lv1 and lv2 have the structure lv : R→ C,
t 7→ a+ti, and the horizontal lines lh1 and lh2 have the form lh : R→ C, t 7→ t+ib.
We investigate the functions

√
lv(t) and

√
lh(t) by analyzing the real functions

Im(
√

lv(t) ), Re(
√

lv(t) ), Im(
√

lh(t) ), and Re(
√

lh(t) ); see Figure A.1.
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Figure A.1: The functions
√

lv(t) and
√

lh(t) are plotted for lv(t) = 4 + it
and lh(t) = t + 4i; see Figure A.1(a). In Figure A.1(b)-A.1(e), the graphs of the
functions Im(

√
lv(t) ), Re(

√
lv(t) ), Im(

√
lh(t) ), and Re(

√
lh(t) ) are shown. The

horizontal axis is the t-axis.



160 APPENDIX A. INTERVAL ARITHMETIC

First, we consider the vertical line lv(t) and the function
√

lv(t). The derivative

of
√

lv(t) is
(√

lv(t)
)′

=
i

2
√

lv(t)
=

i ·
√

lv(t)

2|lv(t)|
.

We consider the case a > 0 and show that the function Im(
√

lv(t) ) : R →
R is strictly monotonic as well as the functions Re(

√
lv(t) ) : R>0 → R and

Re(
√

lv(t) ) : R<0 → R. The Cauchy-Riemann differential equations imply
(
Im
(√

lv(t)
))′

= Im
(√

lv(t)
)′

=
1

2|lv(t)|︸ ︷︷ ︸
>0

Re
(√

lv(t)
)

and (
Re
(√

lv(t)
))′

= Re
(√

lv(t)
)′

=
1

2|lv(t)|︸ ︷︷ ︸
>0

Im
(√

lv(t)
)

.

We consider the function Im(
√

lv(t) ) and its derivative (Im(
√

lv(t) ))′. For this

purpose, we examine Re(
√

lv(t) ). Let t0 ∈ R with Re(
√

lv(t0) ) = 0, and let r, φ

with
√

lv(t0) = reiφ. We have Re(
√

lv(t0) ) = 0 if and only if φ = π
2

+ kπ holds
for an integer k ∈ Z. Hence, we have lv(t0) = r2ei2φ = r2ei(π+2kπ) = −r2, and
lv intersects the negative real line which is not true; we assumed a > 0. Hence,
(Im(

√
lv(t) ))′ is a continuous real function without zeros. Consequently, this

derivative does not change its sign, and Im(
√

lv(t) ) is strictly monotonic.

We analyze the function Re(
√

lv(t) ). We have already shown that Re(
√

lv(t) )

does not change its sign. We consider the derivative (Re(
√

lv(t) ))′ and examine

Im(
√

lv(t) ). Let t0 ∈ R with Im(
√

lv(t0) ) = 0, and let r, φ with
√

lv(t0) = reiφ.

We have Im(
√

lv(t0) ) = 0 if and only if φ = kπ holds for a k ∈ Z. This notation
implies lv(t0) = r2ei2φ = r2ei2kπ = r2, and (t0, r

2) is an intersection point of
lv and the positive real line. Therefore, we have t0 = 0, and (Re(

√
lv(t) ))′ is

a continuous real function having the unique zero t0 = 0. Consequently, this
derivative does neither change its sign on R<0 nor on R>0, and Re(

√
lv(t)) is

strictly monotonic on R<0 and on R>0.

The case a < 0 can be reduced to the case a > 0 by converting
√

lv(t) =√
a + ti =

√
−1
√
−a + i(−t). For a = 0, the functions Im(

√
lv(t) ), Re(

√
lv(t) ) :

R>0 → R and Im(
√

lv(t) ), Re(
√

lv(t) ) : R<0 → R are monotonic as well.

Second, we treat the horizontal line lh(t) = t + ib and the function
√

lh(t). The

derivative of
√

lh(t) is

(√
lh(t)

)′
=

1

2
√

lh(t)
=

√
lh(t)

2|lh(t)|
.
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We show by similar arguments as above that the functions Im(
√

lh(t) ) and

Re(
√

lh(t) ) : R → R are strictly monotonic for b 6= 0. The Cauchy-Riemann
differential equations imply

(
Im
(√

lh(t)
))′

= Im
(√

lh(t)
)′

= − 1

2|lh(t)|︸ ︷︷ ︸
>0

Im
(√

lh(t)
)

and (
Re
(√

lh(t)
))′

= Re
(√

lh(t)
)′

=
1

2|lh(t)|︸ ︷︷ ︸
>0

Re
(√

lh(t)
)

.

To investigate the monotonicity of the functions Im(
√

lh(t) ) and Re(
√

lh(t) ), we

consider their derivatives (Im(
√

lh(t) ))′ and (Re(
√

lh(t) ))′. Thus, we examine

Im(
√

lh(t) ) and Re(
√

lh(t) ): Let t0 ∈ R with Im(
√

lh(t0) ) = 0 or Re(
√

lh(t0) ) =

0. Let r, φ such that
√

lh(t0) = reiφ. We have Im(
√

lh(t0) ) = 0 if and only if

φ = kπ for an integer k ∈ Z holds, and we have Re(
√

lh(t0) ) = 0 if and only

if φ = π
2

+ k̃π for an integer k̃ ∈ Z holds. So, lh(t0) = r2ei2φ = ±r2, and the
horizontal line lh intersects the real line which is not true; we have b 6= 0. Thus,
both real functions (Im(

√
lh(t) ))′ and (Re(

√
lh(t) ))′ are continuous functions

without zeros. Hence they cannot change there signs. Consequently, Im(
√

lh(t) )

and Re(
√

lh(t) ) are strictly monotonic functions. Each of these functions is either
positive or negative.
For b = 0, the functions Im(

√
lh(t) ), Re(

√
lh(t) ) : R>0 → R and Im(

√
lh(t) ),

Re(
√

lh(t) ) : R<0 → R are monotonic as well.

These observations combined with the injectivity of the root function
√

: C6=0 →
C imply that the functions Re

√
z and Im

√
z : A → R take there minimum and

there maximum at one of the four vertices of the rectangle A or at the point x ∈ A
that is closest to 0 ∈ C.

The observations also imply 0 /∈
√

A: Since 0 /∈ A, either the two horizontal
lines lh1 and lh2 or the two vertical lines lv1 and lv2 are contained in one of the
coordinate half planes. If the two horizontal lines lh1 and lh2 lie on the same side
of the real axis, then

√
A is contained in one open quadrant of the coordinate

system. This fact holds since both functions Im(
√

lh(t)) and Re(
√

lh(t)) do not
change the sign. For both horizontal lines lh1 and lh2, these signs are identical,
since they lie on the same side of the real axis. If the two vertical lines lv1 and lv2

lie on the same side of the imaginary axis, then
√

A is contained in an open half
plane of the coordinate system. This holds since either the function Re(

√
lv(t))

or the function Im(
√

lv(t)) does not change the sign. For both vertical lines lv1

and lv2 this sign of Re(
√

lv(t)) or of Im(
√

lv(t)) is the same, since they lie on the
same side of the imaginary axis.
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Corollary A.2.10. Let A = [a1, a2] + i[b1, b2] ∈ R(C) with 0 /∈ A, and let +
√

and −
√

be the two branches of the root function that are defined on A. Then we
have

1. −
√

A = − +
√

A; and

2. +
√

A ∩ −
√

A = ∅.

Proof. We observe that +
√

A and −
√

A are symmetric axis-parallel rectangles.
Since 0 /∈ +

√
A, we have +

√
A ∩ −

√
A = ∅.

The inclusion monotonicity property also holds for the square root operation in
rectangular interval arithmetic.

Lemma A.2.11. Inclusion Monotonicity of
√

in R(C)
Let A, B ∈ R(C) with A ⊂ B, 0 /∈ B, and let

√
be a branch of the square root

function defined on B. Then
√

A ⊂
√

B holds.

Proof. The intervals
√

A and
√

B are the smallest axis parallel rectangles con-
taining the sets {√a | a ∈ A} and {

√
b | b ∈ B}. Clearly, A ⊂ B implies

{√a | a ∈ A} ⊂ {
√

b | b ∈ B}. Since rectangular complex intervals are axis
parallel rectangles in the complex plane, we have

√
A ⊂

√
B.

According to Definition A.2.8, we could also define higher order roots in rectan-
gular arithmetic. If n

√
is a branch of the nth root function and if A ∈ R(C)

with 0 /∈ A, then n
√

A is defined as the smallest rectangle in R(C) containing the
set { n

√
a | a ∈ A}:

n
√

A :=
⋂{

B ∈ R(C) | { n
√

a | a ∈ A} ⊂ B
}

Then, the nth root function fulfills the inclusion monotonicity property. This
fact can be proven like Lemma A.2.11. Unfortunately, we cannot compute n

√
A

in the simple way described in Lemma A.2.9; see Figure A.2 for an example with
cubic roots.

We transfer Lemma A.1.10 to complex rectangular interval arithmetic.

Lemma A.2.12. Let ◦ ∈ {+,−, ·, :} and ǫ1, ǫ2 > 0. Let a = a1 + ia2, b =
b1 + ib2 ∈ R, and c = c1 + ic2 := a ◦ b. Then there exist δa1, δa2 > 0 and δb1,
δb2 > 0 with

(a + [−δa1, δa1] + i[−δa2, δa2]) ◦ (b + [−δb1, δb1] + i[−δb2, δb2])

⊂ c + [−ǫ1, ǫ1] + i[−ǫ2, ǫ2].
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–2

–1

1

2

3

–1 1 2 3 4

Im(z) A

Re(z)

3
√

1 ≈ −0.5 + 0.866i

{ 3
√

a | a ∈ A}

Figure A.2: An example of a cubic root of a rectangular interval A is shown.
The circle is the unit circle, it passes through the point 3

√
1 = 1/2 + i/2

√
3. The

set { 3
√

a | a ∈ A} is not contained in the smallest rectangle containing the cubic
roots of the vertices of the rectangle and the cubic root of the closest point to
the origin, which is 1 in this example; compare with Lemma A.2.9.

For c = ±√a, we have

√
a + [−δa1, δa1] + i[−δa2, δa2] ⊂ c + [−ǫ1, ǫ1] + i[−ǫ2, ǫ2].

For the division operation we assume b 6= 0, and for the square root operation
we assume a 6= 0. If is known in advance that the points a and b stay in fixed
intervals A, B ∈ R(C), then δa1, δa2 > 0 and δb1, δb2 > 0 can be chosen such that
they only depend on ǫ1, ǫ2, A and B.

Proof. The arithmetic operations on R(C) are defined by the operations of I(R).
Hence we can apply Lemma A.1.10, and it remains to show the bounds of
Lemma A.2.12 for the denominator of the division operation and for the root
function. For the denominator we observe that the function x 7→ x2 is continuous
on R. Taking square roots is a continuous operation as well. The claimed bounds
follow by considering the metric induced by the maximum norm on C ∼= R2. The
supplement of Lemma A.2.12 holds since the considered functions are uniformly
continuous on the compact sets A×B and A.
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A.2.2 Circular Interval Arithmetic

We define circular complex intervals. Again, we follow the presentation of [1,
Abschnitt 5]. The notation for circular intervals is taken from [57].

Definition A.2.13. [1, Def. 5, p. 59], [57, p. 20] Circular Complex Interval
Let a ∈ C and 0 ≤ r ∈ R. We define

Z := {a; r} := {z ∈ C | |z − a| ≤ r}

and term Z = {a; r} a circular complex interval. We denote the set of all circular
intervals {a; r} with a ∈ C and r ≥ 0 by K(C).

The letter “K” in K(C) comes from “Kreis”, which is the German word for circle.
The set A = {a; r} is a closed circle in the complex plane. A complex number
a ∈ C can be considered as the circular interval {a; 0}. Hence C ⊂ K(C). In
contrast to rectangular complex intervals, a real interval [a1, a2] ∈ I(R) cannot be
regarded as a circular interval, unless it consists of a single point. Hence we have
I(R) 6⊂ K(C). In general, the intersection of two circular intervals is not a circular
interval. This fact is a disadvantage of circular arithmetic over rectangular or real
arithmetic. Let A = {a; ra} and B = {b; rb} be complex intervals. Then A = B
holds if and only if a = b and ra = rb; see [1, p. 60].

We define the arithmetic operations on K(C) as a generalization of the corre-
sponding arithmetic operations on C as in [1, Def. 7, p. 60]:

Definition A.2.14. [1, Def. 7, p. 60] Arithmetic Operations on K(C)
Let A = {a; ra} and B = {b; rb} ∈ K(C), and let ◦ be one of the operations +,
−, · and :. Then A ◦B is defined as follows:

A + B := {a + b ; ra + rb};
A−B := {a− b ; ra + rb};
A ·B := {a · b ; |a|rb + |b|ra + rarb};

1

B
:=

{
b̄

bb̄− r2
b

;
rb

bb̄− r2
b

}
;

A : B := A · 1

B
.

The inversion 1
B

and hence the division A : B is only defined if 0 /∈ B. As usual,

|b| =
√

b2
1 + b2

2 is the modulus of b = b1 + ib2 ∈ C and b̄ = b1− ib2 is the complex
conjugate of b.

If 0 /∈ B, then rb < |b| holds and vice versa. This fact implies bb̄−r2
b = |b|2−r2

b > 0
if and only if 0 /∈ B. Hence, the inversion and the division operation is defined for
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all B = {b; rb} ∈ K(C) with 0 /∈ B. As in R(C), there is an overestimation of the
range of each multiplication and hence of each division in K(C). We remark in
advance that there is no overestimation for an inversion. Compare Lemma A.2.15
with Definition A.1.1, Lemma A.1.2, and Lemma A.2.4.

Lemma A.2.15. Let A, B ∈ K(C). Then the following holds for the arithmetic
operations in K(C); see [1, Abschnitt 5].

1. A±B = {a± b| a ∈ A, b ∈ B};

2. 1
B

=
{

1
b
| b ∈ B

}
if 0 /∈ B;

3. A ·B ⊃ {a · b| a ∈ A, b ∈ B},
and A · B is the smallest circle in R(C) with a · b as center that contains
the set {a · b| a ∈ A, b ∈ B};

4. A : B ⊃ {a : b| a ∈ A, b ∈ B} if 0 /∈ B.

Proof. The proof of Lemma A.2.15 can be found in [1, Abschnitt 5]. We give the
proofs of 2 and 3, since here surprising facts are stated.

ad (2): The inversion z 7→ 1
z

is a Möbius transform [55, Abschnitt 2, Sect. 6.10].
Since 0 /∈ B = {b; rb}, the image of the circle B under the inversion is the

circle
{

b̄
bb̄−r2

b

; rb

bb̄−r2
b

}
. Differing from [1], we present the calculations of this

fact from complex analysis.

We are given the circle B = {b; rb} with b = b1 + ib2. Since 0 /∈ B, we have
|b| > rb. We are interested in the set

{
1

z

∣∣∣∣ z ∈ {b; rb}
}

=

{
1

z

∣∣∣∣ |z − b| ≤ rb

}

=

{
1

z

∣∣∣∣ (b1 − z1)
2 + (b2 − z2)

2 − r2
b ≤ 0, z = z1 + iz2 ∈ C

}

=

{
1

z

∣∣∣∣ z2
1 + z2

2 − 2b1z1 − 2b2z2 + b2
1 + b2

2 − r2
b ≤ 0

}

=
{1

z

∣∣∣ zz̄︸︷︷︸
z2
1+z2

2

+ (−b̄)z︸ ︷︷ ︸
−b1z1−b2z2

+i(−b1z2+b2z1)

+ (−b)z̄︸ ︷︷ ︸
−b1z1−b2z2

+i(b1z2−b2z1)

+ bb̄︸︷︷︸
b21+b22

−r2
b ≤ 0

}

=

{
z

∣∣∣∣
1

zz̄
+ (−b̄)

1

z
− b

1

z̄
+ bb̄− r2

b ≤ 0

}
(Inversion z 7→ 1

z
)

=
{
z | 1− b̄z̄ − bz + (bb̄− r2

b )zz̄ ≤ 0
}

(Multiplication with zz̄)
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=
{

z
∣∣∣ zz̄ +

−bz

bb̄− r2
b︸ ︷︷ ︸

1
bb̄−r2

b

(−b1z1+b2z2

+i(−b1z2−b2z1))

+
−b̄z̄

bb̄− r2
b︸ ︷︷ ︸

1
bb̄−r2

b

(−b1z1+b2z2

+i(b1z2+b2z1))

+
1

bb̄− r2
b

≤ 0
}

(Division by bb̄− r2
b > 0)

=

{
z

∣∣∣∣ (z1 −
b1

bb̄− r2
b

)2 + (z2 −
−b2

bb̄− r2
b

)2 − r2
b

(bb̄− r2
b )

2
≤ 0

}

=

{
b̄

bb̄− r2
b

;
rb

bb̄− r2
b

}
.

ad (3): Let A = {a; ra}, B = {b; rb} ∈ K(C), let za ∈ A and zb ∈ B. Claim 3
follows by the inequalities (see [1, p. 61])

|zazb − ab| = | a(zb − b)︸ ︷︷ ︸
azb−ab

+ b(za − a)︸ ︷︷ ︸
bza−ab

+ (za − a)(zb − b)︸ ︷︷ ︸
zazb−bza−azb+ab

|

≤ |a||zb − b|+ |b||za − a|+ |za − a||zb − b|
≤ |a|rb + |b|ra + rarb.

In the set K(C), we have almost the same calculation rules as in I(R) and in
R(C); see Lemma A.1.5, Lemma A.2.5, and [1, Thm. 8, p. 62]. The differences
are stated in Lemma A.2.16 below.

Lemma A.2.16. Calculation Rules in K(C)
In K(C), we have almost the same calculation rules as in I(R) and in R(C). We
formulate the differences to Lemma A.1.5 and to Lemma A.2.5:

Associativity: The associative law holds for addition and multiplication in K(C).

Neutral Elements: X = {0; 0} is the unique neutral element for the addition,
Y = {1; 0} is the unique neutral element for the multiplication.

The inclusion monotonicity property holds on K(C) as well. We state it as a
theorem since this property is crucial for our algorithms.

Theorem A.2.17. [1, Thm. 9, p. 64] Inclusion Monotonicity Property for K(C)
Let A(1), A(2), B(1) and B(2) ∈ K(C) with A(1) ⊂ B(1) and A(2) ⊂ B(2). Then

A(1) ◦ A(2) ⊂ B(1) ◦B(2)

holds for all operations ◦ ∈ {+,−, ·, :}.
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Corollary A.2.18. [1, Cor. 10, p. 66] Let A, B ∈ K(C) and a ∈ A, b ∈ B.
Then

a ◦ b ∈ A ◦B

holds for all operations ◦ ∈ {+,−, ·, :}.

Remark A.2.19. Some effort has been made to decrease the overestimation of
the multiplication in K(C). One possibility is to define {a; ra} · {b; rb} as the
smallest disc containing the set {zazb | za ∈ {a; ra}, zb ∈ {b; rb}}. The decrease
of the radius is achieved by moving the midpoint apart from the point ab. This
multiplication is called minimal circular arithmetic; it is e.g. mentioned in [1, 57].
Unfortunately, it does not have the inclusion monotonicity property, and we
cannot use it for our algorithms.

In [29], Hauenschild discusses an alternative circular arithmetic, which is called
optimal circular arithmetic. Here, {a; ra} · {b; rb} is defined as the circle with the
smallest radius that contains the set {zazb | za ∈ {a; ra}, zb ∈ {b; rb}} and that
is contained in the circle {0; sup {|zazb| | za ∈ {a; ra}, zb ∈ {b; rb}}. The product
circle in this arithmetic has in general a smaller radius than the product circle
defined in Definition A.2.14. Additionally, it fulfills the inclusion monotonicity
property. Thus, this arithmetic could be a good choice for our algorithms.

Now, we define a square root operation on K(C) like Petković and Petković in [56].
We are only interested in square roots of circular intervals A = {a; ra} with 0 /∈ A.
In [56], the case 0 ∈ A is discussed as well.

Definition A.2.20. (see [56]) Square Roots in Circular Interval Arithmetic
Let A = {a; ra} ∈ K(C) with 0 /∈ A. Let

√
be a branch of the square root

function that is defined on A. We define

√
A := {√a ;

√
|a| −

√
|a| − ra }.

Lemma A.2.21. (see [56]) Let A = {a; ra} ∈ K(C) with 0 /∈ A as in Defini-
tion A.2.20. Then {√z | z ∈ A} ⊂

√
A holds.

The square root operation on K(C) from Definition A.2.20 fulfills the inclusion
monotonicity property; see [57, Chap. 2]:

Lemma A.2.22. Inclusion Monotonicity of
√

in K(C)
Let A, B ∈ K(C) with A ⊂ B, 0 /∈ B, and let

√
be a branch of the square root

function defined on B. Then
√

A ⊂
√

B holds.

Proof. Lemma A.2.22 can be proved by combining Claim 6 from [57, p. 32] and
Theorem 2.8 from [57, p. 48].
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For Algorithm 2, step 5, and Algorithm 4, step 5, is important that
√

A∩−
√

A =
∅ holds. According to Lemma A.2.10, we formulate Lemma A.2.23.

Lemma A.2.23. Let A = {a; ra} ∈ K(C) with 0 /∈ A and let
√

be a branch of
the root function that is defined on A. Then 0 /∈

√
A holds.

Let −
√

be the other branch of the root function defined on A. Then we have

1. −
√

A = −
√

A ; and

2.
√

A ∩ −
√

A = ∅.

Proof. To proof the first claim of Lemma A.2.23, we remark that 0 /∈ A implies
|a| > ra. Hence

√
|a| − ra > 0 holds. Consequently, we have

|√a | =
√
|a| >

√
|a| −

√
|a| − ra,

which implies 0 /∈
√

A. For the proof of the second claim, we observe that −
√

A
is the reflection of

√
A at the point 0 ∈ C. Since 0 /∈

√
A by the first claim,√

A ∩ −
√

A = ∅ holds.

Remark A.2.24. The presented form of the computation of square roots in
circular arithmetic is called centered form. As shown in [56, p. 31], the disc√

A contacts the set {√z | z ∈ A} only in a single point. Thus, the diameter
of {√z | z ∈ A} is smaller than the diameter of

√
A. For this reason, in [57,

56] the diametrical inclusive disc of the set {√z | z ∈ A} is considered. This
disc is the smallest disc containing the set {√z | z ∈ A}. Unfortunately, this
definition might not fulfill the inclusion monotonicity property; compare with
Remark A.2.19, see [57, p. 52]. An other improvement might be achieved by
transferring Hauenschild’s ideas [29] for the optimal circular arithmetic to the
square root operation; see Remark A.2.19.

More generally, Petković and Petković [56, 57] investigated the computation of
nth roots in circular arithmetic. If A := {c; r} ∈ K(C) with 0 /∈ {c; r}, and if n

√
is a branch of the nth root function defined on {c; r}, then we set

n
√
{c; r} :=

{
n
√

c; n
√
|c|
(

1−
(

1− r

|c|

)1/n
)}

.

Note that 0 /∈ {c; r} implies r/|c| < 1. As mentioned in [56, p. 30], the in-
clusion { n

√
a | a ∈ A = {c; r}} ⊂ n

√
{c; r} holds. Furthermore, the inclusion

monotonicity property is fulfilled. This fact can be proved like Lemma A.2.22.
If + n
√

and − n
√

are two branches of the nth root, then the discs + n
√
{c; r}

and − n
√
{c; r} might overlap if the radius r is too large and if n > 2; see [56,

Thm. 1, p. 30].

We adapt Lemma A.1.10 and Lemma A.2.12 to circular interval arithmetic.
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Lemma A.2.25. Let ◦ ∈ {+,−, ·, :} and ǫ > 0. Let a, b ∈ C and c := a ◦ b.
Then there are δa > 0 and δb > 0 with

{a; δa} ◦ {b; δb} ⊂ {c; ǫ}.

For c = ±√a, we have √
{a; δa} ⊂ {c; ǫ}.

For the division operation we assume b 6= 0, and for the square root operation we
assume a 6= 0. If is known in advance that a ∈ A and that b ∈ B ∈ K(C), then δa

and δb can be chosen such that they only depend on ǫ, A, and B.

Proof. We consider the space C2 ∼= R4 with the metric d(a + ib, c + id) :=
max{|a − c| , |b − d|}. On C ∼= R2 we choose the Euclidean metric. The func-
tions +, −, · : C2 → C and 1/ ,

√
: C6=0 → C are continuous, which implies

the bounds of Lemma A.2.25. Note that {a; δa} · {b; δb} is the smallest disc
with ab as midpoint that contains the set {zazb | za ∈ {a; δa}, zb ∈ {b; δb}}. Sim-
ilarly,

√
{a; δa} is the smallest disc with

√
a as midpoint that contains the set

{√z | z ∈ {a; δa}}. The supplement of Lemma A.2.25 holds since the considered
functions are uniformly continuous on the compact sets A×B, A and B.

A.3 Rounded Interval Arithmetic

In Sections A.1 and A.2.1, we assumed exact computation for the interval bounds,
and in Section A.2.2, we assumed exact computation for the centers and the radii
of the circular intervals. This is a very powerful assumption since exact compu-
tation is time and space consuming; see [64, 65]. In real interval arithmetic, we
can use outward rounding instead of exact computation. This leads to a slight
overestimation that usually does not cause problems in applications. In outward
rounding, the lower bound of an interval is rounded downwards and the upper
bound is rounded upwards; see [1, Abschnitt 4]. Rounded real interval arith-
metic still has the inclusion monotonicity property; see [1, Thm. 2, p. 50]. Since
rectangular complex interval arithmetic is reduced to real interval arithmetic by
treating the real and imaginary part separately, outward rounding preserves the
inclusion monotonicity property for rectangular arithmetic, as well.

In circular complex arithmetic, the radius of the resulting circular interval has to
be chosen large enough to compensate the rounding errors for the computation
of the center, as well; see [46, p. 32]. In [46], aspects of inclusion monotonicity
are not discussed for rounded circular arithmetic.
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A.4 Interval Extensions of Real Functions

Interval arithmetic can be used to obtain bounds for the range of a real function
that is defined by a sequence of elementary operations. We recall the notion of
interval extensions of functions and follow the description from [35, Sect. 1.1].
We use interval extensions in Section A.5 for solving systems of equations and
in Section 6.4 to discuss the overestimation of the algorithm for the Tracing
Problem given in Chapter 6. Definition A.4.1 is taken from [35], a more detailed
description can be found in [1].

Definition A.4.1. [35, Defs. 1.3 and 1.5] Interval Extension of a Function
A function f : I(R)→ I(R) is said to be an interval extension of f : R→ R if

{f(x)|x ∈ A} ⊂ f(A)

holds for all intervals A ∈ I(R). In higher dimensions, a function F : (I(R))n →
(I(R))m is said to be an interval extension of F : Rn → Rm if

{f(x1, . . . , xn)|xi ∈ Ai for i = 1, . . . , n} ⊂ F(A1, . . . , An)

holds for all intervals A1, . . . , An ∈ I(R).

Let F : Rn → Rm, (x1, . . . , xn) 7→ f(x1, . . . , xn) be a function computable as an
expression, algorithm or computer program involving the four elementary arith-
metic operations interspersed with evaluations of standard functions like e.g. the
root functions. Then, a natural interval extension of F , whose value over a vector
A = (A1, . . . , An) of intervals is denoted by F(A), is obtained by replacing each
occurrence of the variable xi by the corresponding interval Ai for i = 1, . . . , n.
Additionally, all operations are executed in real interval arithmetic, and the exact
ranges of the standard functions are used as in Definition A.1.8.

We define the order of an interval extension as in [35], which somehow de-
scribes the quality of the interval extension for intervals with a small width.
The width w(A) of an interval A = [a, b] ∈ I(R) is defined as w(A) := b− a. The
width of a vector A = (A1, . . . , An) ∈ (I(R))n of intervals A1, . . . , An is defined
as w(A) := max{w(A1), . . . , w(An)} = ‖(w(A1), . . . , w(An))‖∞.

Definition A.4.2. [35, Def. 1.4] Order of an Interval Extension
Let F be an interval extension of a function F : Rn → Rm. We assume that the
image F (A1, . . . , An) of F is again a vector of real intervals for all A1, . . . , An ∈
I(R). The function F is an interval extension of order α if there is a con-
stant K with the following property: For all vectors A = (A1, . . . , An) of intervals
A1, . . . , An ∈ I(R) having a sufficiently small width w(A) we have

w(F(A))− w(F (A)) ≤ K(w(A))α.
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When α is 1 or 2, we call the interval extension first order or second order,
respectively.

Theorem A.4.3. [35, Thm. 1.5] Natural interval extensions are first order.

Depending on the particular application, second order extensions seem to be more
desirable than first order extensions. One way to get a second order interval ex-
tension is to consider series expansions and to bound the range of the derivatives.
The mean value extension is based on the mean value theorem.

Definition A.4.4. [35, Def. 1.6] Mean Value Extension
Let F : D ⊂ Rn → R be a continuously differentiable real valued function. Let
A = (A1, . . . , An) ⊂ D be a vector of real intervals, and let (a1, . . . , an) ∈
A. Let F′(A) be a componentwise interval enclosure for the range F ′(A) =
{F ′(x1, . . . , xn)|xi ∈ Ai for i = 1, . . . , n} of the derivative F ′ of F over A, i.e.,
(F ′(A))i ⊂ (F′(A))i for i = 1, . . . , n. Then the mean value extension for F
centered at (a1, . . . , an) is defined by

F2(A, (a1, . . . , an)) := F (a1, . . . , an) + F′(A)(A− (a1, . . . , an)).

Theorem A.4.5. [35, Thm. 1.6] Suppose that the components of F′ are inter-
val extensions of F ′ of order at least one. Then F2 is a second order interval
extension of F .

A.5 About Solving Square Systems of Equations

Using Interval Analysis

Solving square systems of linear and nonlinear equations is an important topic in
interval analysis [1, 35, 53, 28]. We give a brief introduction since these methods
might be useful for the approximation of critical points; see Section 7.4. Through-
out this section, the considered functions are assumed to be differentiable. We
begin with the unary situation and investigate Newton’s method, which is a
common numerical method to approximate zeros of continuously differentiable
functions [27].

We consider a continuously differentiable function f : R → R. The aim of New-
ton’s method is to approximate a zero ξ of f starting with an initial guess x0.
The next approximate value to ξ is the zero x1 of the tangent to the graph of f
in the point (x0, f(x0)); see Figure A.3. This approach leads to the iteration

xn+1 := xn −
f(xn)

f ′(xn)
= xn − (f ′(xn))−1f(xn). (A.1)
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Figure A.3: Geometric interpretation of the first Newton step.

Now we consider the function f over an interval [a, b] ∈ I(R). Let [c, d] be
an interval that contains the set of all derivatives {f ′(x)|x ∈ [a, b]} over [a, b].
Plugging [c, d] into equation A.1 leads to

xn+1 := xn −
f(xn)

f ′(xn)
∈ xn −

f(xn)

[c, d]
;

see Figure A.4. The mean value theorem implies that the graph of f over the
interval [a, b] is contained in the cone that is bounded by the two lines passing
through the point (xn, f(xn)) and having c and d as slopes, respectively; compare
with Lemma 6.3.1. Hence, the zeros of f from the interval [a, b] are contained

in the interval xn − f(xn)
[c,d]

. In particular, if [a, b] ∩
(
xn − f(xn)

[c,d]

)
= ∅, then the

function f does not have a zero in the interval [a, b]; see Figure A.4.

The previous observations lead to the interval Newton methods for unary func-
tions. For a proper description, we use the common notion of interval extensions
of functions that are defined in Section A.4. Let f ′(X) be an interval extension
of the derivative f ′ of the given function f over an interval X ∈ I(R). If ξ ∈ X
is a zero of f , then

ξ ∈ x− f(x)

f ′(X)
=: N(f ; X, x)

holds for all x ∈ X. This leads to an iterative method called univariate interval
Newton method [35]. Starting with an initial interval X0 = [a, b], we compute a set
of intervals using the iteration step Xn+1 = Xn∩N(f ; Xn, xn) for an xn ∈ Xn. De-
pending on the chosen interval arithmetic, the set Xn∩N(f ; Xn, xn) might be dis-
connected and could consist of more than one intervals if for example 0 ∈ f ′(Xn)
holds; see Remark A.1.3 from page 152. If the interval Xn contains two distinct ze-
ros ξ1 < ξ2, then there is a point ξ̃ ∈ [ξ1, ξ2] ⊂ Xn with 0 = f ′(ξ̃) ∈ f ′(Xn), and ξ1

and ξ2 are contained in different connected components of Xn+1. In this way,
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Figure A.4: Illustration of the univariate interval Newton method.

interval Newton methods can separate distinct zeros. If Xn ∩ N(f ; Xn, xn) = ∅,
then the interval Xn does not contain a zero of f .

Example A.5.1. We consider the function f(x) = x2− 4 and the interval X0 =
[−4, 4]. The function f has the zeros ±2 ∈ X0, and we have f ′(x) = 2x
and f ′(X0) = 2[−4, 4] = [−8, 8]. We choose x0 = 0 ∈ X0. By the first inter-
val Newton step, we obtain

X1 = X0 ∩ N(f ; X0, x0) = X0 ∩
(

x0 −
f(x0)

f ′(X0)

)

= [−4, 4] ∩
(

0− −4

[−8, 8]

)
= [−4, 4] ∩ 1

[−2, 2]

= [−4, 4] ∩
([
−∞,−1

2

]
∪
[
1

2
,∞
])

=

[
−4,−1

2

]
∪
[
1

2
, 4

]
.

This result implies that all zeros of f in the interval X0 = [−4, 4] are contained
in
[
−4,−1

2

]
∪
[

1
2
, 4
]
. More interval Newton steps are used separately on the

two intervals
[
−4,−1

2

]
and

[
1
2
, 4
]
. The intervals obtained by the interval Newton

method converge to arbitrary small intervals around the solutions ±2; see [35,
Thm. 1.14, p. 52].

In the multivariate situation, the interval Newton methods have more variety.
As in the univariate case, the basepoints xn ∈ Xn and the interval extension F′

of the derivative of the function F : Rm → Rm can be chosen. But, there are
more possibilities to bound the solution set of the resulting linear systems than
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in the univariate case. Since F′(X) with X ∈ (I(R))m is a vector of intervals,
it describes a convex set, and the mean value theorem for multivariate vectorial
functions implies that for all x, y ∈ X we have

F (z)− F (x) = A(z − x) for an A ∈ F′(X).

Thus we have

F (z)− F (x) ∈ F′(X)(z − x) = {A(z − x)| A ∈ F′(X)};
see [35] or [53, Sect. 3.1] for an introduction to interval arithmetic in matrices.
If z ∈ X is a zero of F , we have to determine the solution set of the interval
system −F (x) ∈ F′(X)(z − x).

One possibility is to choose the Krawczyk method [35, 53]. The aim is to approxi-
mate all solutions of F in a given interval vector X. Let x ∈ X, and let A := F ′(x)
be the Jacobi matrix of F at x. We assume that A is a regular matrix. Let Y be
an approximation to A−1. Let

P (z) := z − Y F (z), (A.2)

and consider a mean value extension of P over X:

P(X) = P (x) + P′(X)(X− x). (A.3)

Since P ′(z) = I − Y F ′(x), where I is the m × m identity matrix, we can
choose P′(X) = I − Y F′(X), where F′(X) is an interval extension of F ′ over X.
Combined with equations A.2 and A.3, this leads to

K(F ;X, x) := P(X) = P (x) + P′(X)(X− x)

= x− Y F (x)︸ ︷︷ ︸
=P (x)

+ I − Y F′(X)︸ ︷︷ ︸
=P′(X)

(X− x).

We show that all roots of F from the interval X are contained in K(F ;X, x).
Let ξ ∈ X be a root of F . This implies

ξ = ξ − Y F (ξ)︸︷︷︸
=0

= P (ξ) ∈ P(X) = K(F ;X, x).

In the next iteration step, we consider the set X∩K(F ;X, x). As in the univariate
interval Newton method, the set X ∩K(F ;X, x) could consist of more than one
intervals.

Since we only need the inverse of the Jacobian of F at a properly chosen point x ∈
X, the Krawczyk method could be used to determine all critical points a GSP Γ
in a given box X; see Section 7.4. Unfortunately, there is no straightforward
analogue to the interval Newton method for complex interval arithmetic, since
here the mean value theorem does not hold in the used form. One possibility
to deal with complex systems of equations is to split all variables into their real
and imaginary part. This doubles the number of variables and the number of
equations, and the system becomes more complicated.
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A.6 Affine Arithmetic

We give a brief introduction to affine arithmetic based on de Figueiredo’s and
Stolfi’s presentation in [60, 20]. The advantage over interval arithmetic is that
linear dependencies between quantities can be handled, and the computed ranges
are usually smaller than in interval arithmetic. However, affine arithmetic has
higher computational costs, is more complicated and needs more space in memory.
Primarily, affine arithmetic is defined for real quantities (K = R), in [38] complex
affine arithmetic is defined for rectangular ranges by deviding a complex quantity
into its real and imaginary part.

In affine arithmetic, a partially unknown quantity x is represented by an affine
form x̂.

Definition A.6.1. [60] Affine Form
An affine form is a first-degree polynomial

x̂ = x0 + x1ǫ1 + x2ǫ2 + · · ·+ xnǫn

in the variables ǫ1, ǫ2, . . . , ǫn that are called noise symbols. A noise symbol is
a real variable that is allowed to take values in the closed interval [−1, 1]. The
coefficients x0, x1, x2, . . . , xn are real (or floating point) numbers. The constant
term x0 is called central value, the coefficients of the linear part are called partial
deviations.

Different noise symbols ǫi represent different kinds of errors like measurement er-
rors, rounding errors, or approximation errors. The corresponding coefficients xi

determine the magnitude with which the noise symbols ǫi contribute to the orig-
inal quantity x. The reader should be aware of the fact that the noise symbols ǫi

are variables and that the coefficients xi are fixed constants. In many applications,
the partial deviations x1, . . . , xn are nonnegative numbers at the beginning of a
computation. During the computation, the quantities are combined by arithmetic
operations, and the partial deviations of the (intermediate) results can become
negative, as well.

Two affine forms x̂ and ŷ can share noise symbols. This indicates a partial
dependency between the underlying quantities x and y.

Example A.6.2. We are given two quantities x and y that are represented by
the affine forms x̂ and ŷ.

x̂ = 5 + 2 ǫ1 − ǫ2

ŷ = 4 − ǫ1 + 3 ǫ2 − ǫ3

A first observation is that 5 − 2 − 1 = 2 is the smallest value x can take and
5 + 2 + 1 = 8 is the largest value corresponding to the assignments ǫ1 = −1,
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x
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Figure A.5: The rectangle [2, 8]× [−1, 9] and the image A([−1, 1]3) are shown for
the affine forms x̂ = 5 + 2ǫ1 − ǫ2 and ŷ = 4− ǫ1 + 3ǫ2 − ǫ3. The crosses mark the
images of the vertices of the cube [−1, 1]3 under the affine mapping A, the circle
marks the point (x0, y0) = (5, 4).

ǫ2 = +1, and ǫ1 = +1, ǫ2 = −1. Thus we know x ∈ [2, 8]. The same argument
shows y ∈ [4−1−3−1, 4+1+3+1] = [−1, 9]. Hence the pair (x, y) is contained
in the rectangle [2, 8] × [−1, 9]; see Figure A.5. This information corresponds
to an independent treatment of the quantities x and y as it would be given by
interval arithmetic.

The affine forms x̂ and ŷ provide even more information about x and y. Recall
that every noise symbol ǫi stands for a certain uncertainty. To get the correct
values for x and y, there is exactly one assignment of the variables ǫ1, ǫ2, and ǫ3

with values from the interval [−1, 1]. This assignment gives the correct values
for x and y, simultaneously. This observation implies that the pair (x, y) lies in
the image A([−1, 1]3) of the cube [−1, 1]3 under the affine mapping

A : R3 → R2

(ǫ1, ǫ2, ǫ3) 7→
(

5
4

)
+ ǫ1

(
2
−1

)
+ ǫ2

(
−1

3

)
+ ǫ3

(
0
−1

)
.

The image A([−1, 1]3) is the convex hull of the images of the 23 = 8 vertices of the
cube [−1, 1]3; see Figure A.5. Thus, A([−1, 1]3) is a polygon that is symmetric
to the point

(
x0

y0

)
=
(
5
4

)
, and A([−1, 1]3) ⊂ [2, 8]× [−1, 9].

In arbitrary dimensions, k affine forms having n noise symbols define an affine



A.6. AFFINE ARITHMETIC 177

mapping A : Rn → Rk and the image A([−1, 1]n) is a k-dimensional convex poly-
tope that restricts the values of the k underlying quantities.

A.6.1 Affine Forms versus Intervals

In Example A.6.2, we have seen how to convert an affine form to the interval that
contains the range of the affine form. If x̂ = x0 + x1ǫ1 + · · · + xnǫn is an affine
form that belongs to a quantity x, then X := [x0 −

∑n
i=1 |xi| , x0 +

∑n
i=1 |xi| ]

is the corresponding interval; see [11, 60, 20]. The sum rad(x̂) :=
∑n

i=1 |xi| of
the moduli of the partial deviations is the total deviation of x̂; see [20]. Note
that X is the smallest interval that contains all possible values of x̂ since the
noise symbols ǫ1, . . . , ǫn take values in [−1, 1].

If we are given an interval X = [a, b] describing a quantity x, then we can
translate X to an equivalent affine form x̂; see [11, 60, 20]. The central value x0

is the midpoint of X, and we introduce a new noise symbol ǫk that represents the
uncertainty of the value of x given by the fact x ∈ X = [a, b]. Thus the partial
deviation xk is half of the width of the given interval X, and we have

x̂ = x0 + xkǫk =
a + b

2
+

b− a

2
ǫk.

The noise symbol ǫk must be distinct from all other noise symbols that have
been used so far. This choice is important since the only information about the
quantity x is x ∈ X. There is nothing known about dependencies between x and
other quantities in the computation.

The correspondence between affine forms and intervals permits to replace interval
arithmetic by affine arithmetic in many applications. Note that the properties of
affine arithmetic and of interval arithmetic differ; compare with Section A.6.3.

A.6.2 Computing with Affine Arithmetic

In affine arithmetic, the operations are divided into affine and non-affine oper-
ations. Affine operations like addition and subtraction can be done exactly, if
we assume exact computation. Non-affine operations are approximated by affine
functions. An upper bound of the resulting approximation error is the partial
deviation of a newly introduced noise symbol; see [11, 60, 20].

Affine Operations Let x̂ = x0 +x1ǫ1 + · · ·+xnǫn and ŷ = y0 +y1ǫ1 + · · ·+ynǫn

be affine forms describing the two quantities x and y. The considerations can
be generalized to an arbitrary number of operands in a straightforward way.
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Let α, β, and γ ∈ R be real numbers. Then the affine combination ẑ = αx̂+βŷ+γ
defines the affine form

ẑ = αx̂ + βŷ + γ = αx0 + βy0 + γ︸ ︷︷ ︸
z0

+ (αx1 + βy1)︸ ︷︷ ︸
z1

ǫ1 + · · ·+ (αxn + βyn)︸ ︷︷ ︸
zn

ǫn.

This formula assumes exact computation. For dealing with rounding errors, we
introduce a new noise symbol ǫk /∈ {ǫ1, . . . , ǫn} that models the rounding error
of the single operation ẑ = αx̂ + βŷ + γ. The partial deviation zk must be an
upper bound of the total rounding error; see [60, Sect. 3.6]. Note that the noise
symbol ǫk models the rounding error of this particular affine operation, only. For
other affine operations, we have to introduce other new noise symbols.

Non-Affine Operations Again, let x̂ = x0 + x1ǫ1 + · · · + xnǫn and ŷ = y0 +
y1ǫ1 + · · ·+ ynǫn be affine forms describing the two quantities x and y. The ideas
easily generalize to an arbitrary number of operands. We consider the operation
z ← f(x, y), where f is a non-affine function. Plugging in the formulas for x̂
and ŷ leads to

z = f(x, y)

= f(x0 + x1ǫ1 + · · ·+ xnǫn, y0 + y1ǫ1 + · · ·+ ynǫn)

=: f ∗(ǫ1, . . . , ǫn),

where f ∗ is a real valued function defined on the n-dimensional cube [−1, 1]n. The
task is to approximate f ∗ by an affine function fa with an error bound δ. For sim-
plicity and efficiency, we choose fa as an affine combination of the affine forms x̂
and ŷ, in other words we choose fa(ǫ1, . . . , ǫn) = αx̂ + βŷ + γ with α, β, γ ∈ R;
see [60, Sect. 3.7]. Thus we get

ẑ = fa(ǫ1, . . . , ǫn) + δǫk,

where ǫk is a new noise symbol. The partial deviation δ must be an upper bound
of the approximation error, i.e.

δ ≥ max
ǫi∈[−1,1]

|f ∗(ǫ1, . . . , ǫn)− fa(ǫ1, . . . , ǫn)|.

Possible rounding errors can be included in the term δǫk. Then the noise sym-
bol ǫk represents both, the approximation error and the rounding error of the
operation z ← f(x, y). Additionally, we have to add an upper bound of the total
rounding error to the partial deviation δ; see [60, Sect. 3.7].

We discuss the operations z ← x · y, z ← 1
x
, and z ← √z separately.
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Multiplication. We consider the non-affine operation z ← f(x, y) = x ·y. The
quantities x and y are given by the affine forms x̂ = x0 + x1ǫ1 + · · · + xnǫn and
ŷ = y0 + y1ǫ1 + · · ·+ ynǫn. Plugging in the formulas for x̂ and ŷ leads to

z = x · y

=

(
x0 +

n∑

i=1

xiǫi

)
·
(

y0 +
n∑

i=1

yiǫi

)

= x0y0 +
n∑

i=0

(x0yi + y0xi)ǫi

︸ ︷︷ ︸
affine term

+

(
n∑

i=1

xiǫi

)
·
(

n∑

i=1

yiǫi

)

︸ ︷︷ ︸
quadratic term

.

Thus we need an affine approximation for the quadratic term q(ǫ1, . . . , ǫn) =
(
∑n

i=1 xiǫi) · (
∑n

i=1 yiǫi) =
∑n

i=1

∑n
j=1 xiyjǫiǫj. Since we have q(−ǫ1, . . . ,−ǫn) =

q(ǫ1, . . . , ǫn), and (−ǫ1, . . . ,−ǫn) ∈ [−1, 1]n iff (ǫ1, . . . , ǫn) ∈ [−1, 1]n, we observe
that the best affine approximation to q is constant. A simple but not best solution
for the multiplication is

ẑ = x̂ŷ = x0y0︸︷︷︸
z0

+
n∑

i=0

(x0yi + y0xi︸ ︷︷ ︸
zi

)ǫi + δǫk,

where ǫk is a new noise symbol and δ is chosen as

δ :=

(
n∑

i=1

|xi|
)
·
(

n∑

i=1

|yi|
)
≥
∣∣∣∣∣

(
n∑

i=1

xiǫi

)
·
(

n∑

i=1

yiǫi

)∣∣∣∣∣ ∀ǫi ∈ [−1, 1]

Here, we have chosen q(ǫ1, . . . , ǫn) = 0 as affine approximation of the quadratic
term. A more detailed description including the treatment of rounding errors can
be found in [60, Sect. 3.13].

Example A.6.3. We consider the polynomial f(x) = x2−x from Example A.1.4
from page 153 over the interval [0, 1]. We assign to the interval [0, 1] the affine
form x̂ = 1

2
+ 1

2
ǫ1 as described in Section A.6.1. In affine arithmetic, plugging x̂

into f leads to

x̂ · x̂− x̂ =

(
1

2
+

1

2
ǫ1

)2

−
(

1

2
+

1

2
ǫ1

)

=

(
1

4
+

1

2
ǫ1 +

1

4
ǫ2

)
−
(

1

2
+

1

2
ǫ1

)

= −1

4
+

1

4
ǫ2

∈
[
−1

2
, 0

]
.



180 APPENDIX A. INTERVAL ARITHMETIC

We observe that the noise symbol ǫ1 cancels out. This fact shows how affine
arithmetic deals with dependencies.

As in Example A.1.4, we rewrite f(x) = x2 − x = x(x− 1) and evaluate the new
expression with affine arithmetic.

x̂(x̂− 1) =

(
1

2
+

1

2
ǫ1

)
·
(

1

2
+

1

2
ǫ1 − 1

)

=

(
1

2
+

1

2
ǫ1

)
·
(
−1

2
+

1

2
ǫ1

)

= −1

4
+

1

4
ǫ3

∈
[
−1

2
, 0

]
.

In both cases, the resulting range is much smaller than the ranges obtained
with interval arithmetic. Recall that the exact range is [−1

4
, 0]. At first view,

both expressions lead to the same affine form, but the meaning of the noise
symbols ǫ2 and ǫ3 differs: The noise symbol ǫ2 models the approximation error of
the quadratic term of the first multiplication, whereas the noise symbol ǫ3 models
the approximation error of the multiplication in the second case.

Due to the approximation of the quadratic terms, the associative law does not
hold for multiplication. By the same reason, the distributive law does not hold,
either.

Division. Divisions can be reduced to the multiplication with the reciprocal.
The reciprocal defines a univariate non-affine function. In [60, Sect 3.12] two
possibilities for defining the reciprocal in affine arithmetic are defined: The min-
range and the Chebyshev approximation. We only give a very brief overview.
Following the approach for non-affine operations, we have to determine an affine
approximation fa(ǫ1, . . . , ǫn) = αx̂ + γ to the function f ∗(ǫ1, . . . , ǫn) = f(x) = 1

x
.

Since the range corresponding to x̂ is the interval X = [a, b] = [x0−
∑n

i=1 |xi|, x0+∑n
i=1 |xi| ], we have to approximate f(x) = 1

x
by a line over the interval X. In

Figure A.6, we indicate how the function f(x) = 1
x

could be approximated by an
affine function.

From the approximations from Figure A.6 we can derive an affine form ẑ of z = 1
x

when x is given by the affine form x̂ = x0 + x1ǫ1 + · · ·+ xnǫn. Let g(x) = mx + c
be the equation defining a line that approximates f(x) = 1

x
. This is the middle

line in Figures A.6(a) and A.6(b). The approximation error δ is half of the length
of the vertical edges of the parallelogram. Then ẑ = z0 + z1ǫ1 + · · ·+ znǫn + zkǫk
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1/a

1/b

z_0
z

a x_0 bx

(a) Min-range approximation

1/a 

1/b 

z

a u bx

(b) Chebyshew approximation

Figure A.6: The min-range and the Chebyshew approximation of the function
f(x) = 1

x
over the interval [a, b] are shown. For the min-range approximation,

the central value x0 of the affine form x̂ and the central value z0 of the resulting
affine form ẑ are marked.

is defined by

z0 = mx0 + c;

zi = mxi (i = 1, . . . , n);

zk = δ,

where ǫk is a new noise symbol. Note that the parallelograms of Figure A.6
describe all possible positions for the pair (x, z); see also Example A.6.2.

We observe that the area of the parallelogram from Figure A.6(a) is larger than
the area of the parallelogram from Figure A.6(b). On the other hand, the cor-
responding range for ẑ in the min-range approximation is the exact range of the
function f(x) over the interval X. In the Chebyshew approximation, the range
of ẑ is larger. Although the function f(x) = 1

x
is strictly positive for x > 0, the

range of ẑ could contain zero or even negative numbers. Thus, it depends on the
application whether the min-range approximation or the Chebyshew approxima-
tion is the better choice.

Square Root Operation The square root operation can be treated like the
reciprocal. The interested reader is referred to [60, Sect. 3.9].
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A.6.3 Problem: Inclusion Monotonicity

The construction of the operations in affine arithmetic ensures that if an input
quantity x lies in the range described by an affine form x̂, then the output z lies in
the range of the computed affine form ẑ. This property is called the fundamental
invariant of range analysis [60, Sect.1.2.2] and is equivalent to Corollary A.1.7
from page 154. However, it seems to be difficult to translate the inclusion mono-
tonicity property stated in Theorem A.1.6 to affine arithmetic.

Example A.6.4. We consider the affine forms x̂ = ŷ = â = 2 + ǫ1 + ǫ2 and b̂ =
2 − ǫ1 − ǫ2 with the corresponding intervals X = Y = A = B = [0, 4]. Thus we
have X ⊂ A and Y ⊂ B. Let ẑ := x̂ + ŷ = 4 + 2ǫ1 + 2ǫ2 and ĉ := â + b̂ = 4.
We observe Z = [0, 8] 6⊂ [4, 4] = C for the corresponding intervals Z and C of
the affine forms ẑ and ĉ, and the inclusion monotonicity property does not hold
for the corresponding ranges. A closer look to the given affine forms shows that
they are dependent: They all share the noise symbols ǫ1 and ǫ2. Additionally, x̂,
ŷ and â have the same partial deviations. Hence, considering dependencies as in
affine arithmetic contradicts the inclusion monotonicity property for the ranges.
These observations indicate the difficulties for formulating a suitable inclusion
monotonicity property for affine arithmetic.
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[1] G. Alefeld and J. Herzberger. Einführung in die Intervallrechnung, volume 12
of Reihe Informatik. Bibliographisches Institut, 1974. an English translation
appeared in 1983, Academic Press New York.

[2] E. L. Allgower and K. Georg. Numerical Continuation Methods. Springer-
Verlag, 1990.

[3] S. Basu, R. Pollack, and M.-F. Roy. On the combinatorial and algebraic
complexity of quantifier elimination. Journal of the ACM, 43(6):1002–1045,
1996.

[4] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry.
Springer-Verlag, 2003.

[5] M. d. Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computa-
tional Geometry. Springer-Verlag, 2000.

[6] L. Bieberbach. Theorie der Geometrischen Konstruktionen. Birkhäuser-
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[63] D. Werner. Einführung in die Höhere Analysis. Springer-Verlag, 2006.
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Ĉ Riemann sphere, 120

M(Ĉ) meromorphic functions on Ĉ, 128

x̂ affine form, 175

A(m) m-head of the instance A, 34

χ characteristic polynomial of an algebraic
function, 129

disc(f) discriminant of f , 126

η, π covering maps, 129

Γ Geometric Straight-Line Program, 32

Γint interval-GSP of Γ, 44

Γ(m) m-head of the GSP Γ, 34

Γ̇ derivative GSP of Γ, 42

[a1, a2] real interval, 152

A1 + iA2 rectangular interval, 156

{a; r} circular interval, 164

I(R) set of real intervals, 152

I(C) set of complex intervals, 156

R(C) set of rectangular intervals, 156

K(C) set of circular intervals, 164

pl, pl(t) path of a free variable, 39

Res(f, g) resultant of f and g, 125

RC(Γ) semi-algebraic set for the Reacha-
bility Problem, 49

RR(Γ) semi-algebraic set for the Reacha-
bility Problem, 48

τ(M) tangent vector induced by a matrix,
61

TC(Γ) semi-algebraic set for the Tracing
Problem, 50

TR(Γ) semi-algebraic set for the Tracing
Problem, 49

vi, vj dependent variable of a GSP, 32

v̂j , v̂j(z) algebraic function of the depen-
dent variable vj , 133

vi(t), vj(t) path of a dependent variable in
a continuous evaluation, 39

(v1(t), . . . , vn(t)) continuous evaluation, 39

w(A) width of an interval, 170
w(A) width of a vector of intervals, 170
(X, η, f) Riemann surface of an algebraic

function f̃ , 129
zl free variable of a GSP, 32

affine arithmetic, 102–103, 175–182
affine form, 175
central value, 175

noise symbol, 175
partial deviation, 175
total deviation, 177

affine form, see affine arithmetic
algebraic

algebraic expression, 18
algebraic function, 18

algebraic number, 18
algebraic function, 13, 37, 112, 119–142

arithmetic operation, 127

branch of an algebraic function, 121
characteristic polynomial, see charac-

teristic polynomial

entire algebraic function, 120
minimal polynomial, see min. polyno-

mial
Riemann surface, see Riemann surface

algorithm

for the Reachability Problem, 47–55
for the Tracing Problem, 49–50, 73,

81, 69–103

Cone Algorithm, 81
ambiguity, 16, 70, 120

ambiguity of
√

, 13, 71

angular bisector, 16, 139
automated theorem proving, 12, 27

bisector, 71

branch point, 112, 115, 119–142, 142
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buffer zone, 12, 111

characteristic polynomial, 129, 133–140
Cinderella, 1, 34, 109, 112
circular arithmetic, see interval arithmetic
complex coordinates, 25
computation model, 6
Cone Algorithm, see algorithm
cone lemma, 80, 172
configuration space of a GSP, 33
consistency, 7–11
consistent behavior, 114
construction

cubic construction, 24
geometric construction, 15
linear construction, 19
quadratic construction, 22
von Staudt

addition, 20
division, 21
multiplication, 21
subtraction, 20

continuation method, 57–66
corrector step, 62
discrete corrector step, 64
predictor step, 62
Predictor-Corrector method, 61

continuity, 7–11
continuous behavior, 38
continuous evaluation, 4, 7, 39, 38–45, 48,

49, 58–61, 69–103, 105–115, 140–
148

existence, 146
uniqueness, 144

covering, 53, 142, 128–149
branched covering, 113, 142
covering map, 142

of Riemann surfaces, 129
covering space, 121, 142
fiber, see fiber of a point
lifting, see lifting of a function
unbranched covering, 142

critical point, 4, 12, 13, 34, 34–39, 41, 50,
59, 69, 70, 105–117, 133, 140–149

m-critical point, 34, 59
critical value, 35, 55, 133, 142–149

cubic root, 100
geometric computation, 24

Derivative
of a GSP, see derivative GSP

determinism, 11, 16, 18
discriminant, 126, 119–142
division, 13, 70
drag mode, 1, 7
dynamic construction, 4, 38
Dynamic Geometry, 1, 3, 11, 15, 31, 38,

133
Dynamic Geometry System, 1

fiber of a point, 142
fiber of a point of a GSP, 33

geometric construction, 15, see construc-
tion

Geometric Straight-Line Program, 3, 16,
32, 31–44, 69–103, 133, 136, 139

complex Geometric Straight-Line Pro-
gram, 37, 50, 90, 106, 140, 144

with one free variable, 50, 140
critical point, see critical point
dependent variable, 32, 61–66
derivative GSP, 12, 42–79
division free GSP, 38, 140
fiber of a point, 33
free variable, 32
instance of a GSP, see instance of a

GSP
interval-GSP, 12, 42, 44, 44–46, 73,

81
instance, 44

m-head of a GSP, 34

with one free variable, 133, 134, 139
GSP, see Geom. Straight-Line Program

GSP over C, see Geometric Straight-
Line Program

GSP over R, see Geometric Straight-
Line Program

homogeneous
homogeneous coordinates, 19, 34
homogeneous polynomial, 123

homotopy, 147
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homotopic paths, 52, 147
homotopy class, 52, 147
null-homotopic path, 114

homotopy method, 12

implicit curve, 12, 58–61
implicit function theorem, 60, 120
inclusion isotonicity, see inclusion mono-

tonicity
inclusion monotonicity, see interval arith-

metic
initial value problem, 60, 61
instance of a GSP, 3, 33, 31–46, 61–66, 133

floating point instance, 97
interval-instance, 44
m-head of an instance, 34

intermediate value theorem, 108
interval

complex interval
circular interval, 164

rectangular interval, 156

real interval, 152

width of a vector of intervals, 170
width of an interval, 170

interval analysis, see interval arithmetic
interval arithmetic, 12, 44–46, 69–103, 151–

174
complex interval arithmetic, 155–169

circular arithmetic, 164, 164–169
minimal circular arithmetic, 167
optimal circular arithmetic, 167
rectangular arithmetic, 156, 156–163
square root, 158, 167

Hermite-Obreschkoff method, 151
inclusion monotonicity, 69, 154, 154,

158, 166, 182
interval dependency, 46, 95, 153
interval extension of a function, 170,

170–172
in circular arithmetic, 96
mean value extension, 96, 171
natural interval extension, 95, 170
order of an interval extension, 95,

96, 170
interval Newton method, 171–174

multivariate, 173

univariate, 172
real interval arithmetic, 152, 152–155
rounded interval arithmetic, 169
Taylor model, 151

interval extension of a function, see inter-
val arithmetic

inteval arithmetic
interval extension of a function

mean value extension, 174

Krawczyk method, 116, 174

lifting of a function, 13, 143
curve-lifting-property, 145
lifting of a path, 141
lifting of homotopic paths, 147
uniqueness, 144

m-critical point, see critical point
m-head

of a GSP, see Geometric Straight-Line
Program

of an instance, see instance
mean value theorem, 79, 171, 172, 174
minimal polynomial, 130, 130, 131, 133–

140
movement of a construction, 4

Newton method, 63, 109, 171
interval Newton method, see interval

arithmetic
nth root, 100

overestimation, 83, 95–96, 103, 153, 155,
157, 165, 167, 169

pole, 112
problem

Reachability Problem, see Reachabil-
ity Problem

Tracing Problem, see Tracing Problem
projective geometry, 19
Puiseux expansion, 123

radicand corollary, 73, 102
radicand lemma, 72, 101
Reachability Problem, 4, 27, 40, 47–55,

139, 140, 147
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complex Reachability Problem, 6, 50
real Reachability Problem, 6

rectangular arithmetic, see interval arith-
metic

reduced polynomial, 121, 128, 131
regular point of a function, 116
regular value, 35

resultant, 125, 119–142
Riemann Sphere, 38, 120, 123, 128
Riemann surface, 129, 142, 148

of an algebraic function, 13, 37, 53,
103, 114, 115, 128, 119–131

of the square root function, 122, 133,
142

sheet of a Riemann surface, 121
robustness, 12, 69, 97–100

self-validated numerics, 151
semi-algebraic set, 47, 49

connected component, 48, 49
singularity, 4, 5, 111–115

catch a singularity, 114
essential singularity, 112
pole, see singularity
removable singularity, 112

square root, 133
geometric computation, 22

square root function, 13, 70, 122, 142, 143
step length, 14, 70, 69–103, 106
stepwise procedure, 14, 70
Straight-Line Program, 33

tangent vector induced by a matrix, 61
Tracing Problem, 4–6, 26, 40, 47–55, 57–

66, 69–103, 105–115, 134, 140, 146
complex Tracing Problem, 5, 6, 50,

69–103
real Tracing Problem, 69–103
Tracing Problem over C, see complex

Tracing Problem
Tracing Problem over R, see real Trac-

ing Problem

Voronoi diagram, 51, 72, 101
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