Medizinische Fakultät der Charité – Universitätsmedizin Berlin Campus Benjamin Franklin aus dem Institut für Infektionsmedizin Geschäftsführender Direktor: Prof. Dr. med. Helmut Hahn

Experimentelle Untersuchungen zur Morphologie, Histopathologie und Immunologie der Tungiasis

Inaugural- Dissertation zur Erlangung der medizinischen Doktorwürde der Charité- Universitätsmedizin Berlin Campus Benjamin Franklin

> vorgelegt von Lars- Henrik Witt aus Hamburg

Referent: Prof. Dr. med. Prof.h.c. H. Feldmeier Korreferent: Prof. Dr. med. M. Mielke

Gedruckt mit Genehmigung der Charité - Universitätsmedizin Berlin Campus Benjamin Franklin

Promoviert am: 23.03.2007

Meinen Eltern

Inhaltsverzeichnis

1	A	Abkür	zungsverzeichnis	1
2	F	Einleit	ung	2
	2.1	Hist	orischer Überblick	2
	2.2	Epic	lemiologie: Verbreitung, Einfluss von Umwelt- und Sozialfaktoren	3
	2.3	Biol	logie von T. penetrans	6
	2.4	Nati	ürlicher Krankheitsverlauf und klinische Befunde	8
	2.5	Beh	andlung und Prävention der Tungiasis	. 11
	2.6	Entz	zündungsreaktion der Tungiasis	. 12
	2.7	Ziel	setzung	. 13
	2.8	Met	hodischer Ansatz	. 13
	2.9	Vor	wegzusammenfassung	. 13
3	N	Aateri	al und Methoden	. 15
	3.1	Stuc	liengebiete	. 15
	3.1	.1	Favela Vicente Pinzón II	. 15
	3.1	.2	Fischerdorf Balbino	. 16
	3.2	Ver	suchstiere und Infektionsmodell	. 18
	3.3	Klin	ische Untersuchungen	. 19
	3.4	Hist	opathologische Untersuchungen	. 19
	3.4	.1	Biopsien	. 19
	3.4	.2	Histopathologie	. 20
	3.5	Best	timmung der Infektionsparameter	. 20
	3.5	.1	Serumgewinnung	. 20
	3.5	.2	Bestimmung der Zytokine im Serum	. 21
	3.6	Mor	phologische Beschreibung	. 22
	3.6	.1	Entomologische Methoden	. 22
	3.6	.2	Rasterelektronenmikroskopie	. 23
	3.7	Date	enverwaltung und statistische Auswertung	. 24
	3.8	Ethi	k	. 24
4	F	Ergebr	nisse	. 25
	4.1	Exp	erimentelle Infektion von Wistarratten mit T. penetrans	. 25
	4.1	.1	Käfigmodell	. 25
	4.1	.2	Feldversuch	. 26
	4.2	Nati	ürlicher Krankheitsverlauf	. 28

	4.	2.1	Verteilung und Topographie der Penetrationen	28
	4.	2.2	Beziehung zwischen Klinik, Pathologie und morphologische Beschreibung i	m
	di	irek	ten Vergleich	30
	4.	2.3	Stadieneinteilung analog der Fortaleza- Klassifikation	35
4	4.3		Zytokinkonzentrationen in experimentell mit <i>T.penetrans</i> infizierten Wistarratten	36
	4.	3.1	Zytokinkonzentrationen im Serum während des natürlichen Krankheitsverlaufes	
				36
	4.	3.2	Zytokinkonzentrationen im Serum nach Silikonölapplikation	43
5		Di	skussion	57
	5.1		Experimentelle Tungiasis in einem Rattenmodell	57
	5.2		Natürlicher Krankheitsverlauf bei der Wistarratte; Vergleich mit dem beim Menscher	1.
				59
	5.3		Zytokinantwort bei der Wistarratte	64
6		Zu	sammenfassung	58
7		Lit	teraturverzeichnis	71
8		An	ihang	78
:	8.1	,	Tabellenverzeichnis	78
:	8.2		Abbildungsverzeichnis	79
:	8.3		Lebenslauf 8	84
:	8.4		Publikationsliste	85
:	8.5		Selbstständigkeitserklärung	86
:	8.6		Danksagung	87

1 Abkürzungsverzeichnis

Abb.	Abbildung
BSA	bovine serum albumin (Rinderserumalbumin)
CD	cluster of differentiation (Zelloberflächenantigene)
CINC	cytokine-induced neutrophil chemoattractant
CPD	critical point drying (Kritische- Punkt- Trocknung)
d	Tag(e)
ELISA	Enzyme-linked immunosorbent assay
FK	Fortaleza-Klassifikation
h	Stunde(n)
IFN	Interferon
Ig	Immunglobulin
IL	Interleukin
IQR	interquartile range (Interquartilabstand)
kg	Kilogramm
KG	Körpergewicht
KV	Kilovolt
LM	Lichtmikroskop
MHC	major histocompatibility complex (Haupthistokompatibilitätskomplex)
mRNS	Boten- Ribonukleinsäure
PBS	phosphate buffered saline (Phosphat- gepufferte- Salzlösung)
REM	Rasterelektronenmikroskopie
SD	Standardabweichung
Th- Zellen	T- Helferzellen
TNF	Tumor- Nekrose- Faktor
Tween 20	Polyoxyethylen- sorbitan-monolaunat

8 Anhang

8.1 Tabellenverzeichnis

Tabelle 1: Fortaleza- Klassifikation der humanen Tungiasis mit der Darstellung der klinischen,
histopathologischen und entomologischen Merkmale9
Tabelle 2: Penetrationsraten von T. penetrans bei der Wistarratte im Käfigmodell
Tabelle 3: Beschreibung der Käfigstandorte im Fischerdorf Balbino
Tabelle 4: Penetrationsraten von T. penetrans bei der Wistarratte im Feldversuch
Tabelle 5: Penetrationslokalisationen von T. penetrans bei der Wistarratte
Tabelle 6: Topographische Verteilung der Penetrationslokalisationen von T. penetrans an der
Extremität der Wistarratte
Tabelle 7: Zusammenfassung des klinischen, histopathologischen und entomologischen
Merkmale der Tungiasis bei der Wistarratte
Tabelle 8: Vergleichende Übersicht der Stadieneinteilung und des Zeitverlaufes der Tungiasis
bei der Wistarratte und beim Menschen
Tabelle 9: Die, der Zytokinratio zugrunde liegenden Serumkonzentrationen von TNF-a, IL-10
und CINC (pg/ml) in Wistarratten nach Infektion mit T. penetrans (es ist der Median
dargestellt)
Tabelle 10: Zytokinratio von TNF-α und IL-10, respektive TNF-α und CINC, bei der Tungiasis
der Wistarratte während des natürlichen Krankheitsverlaufes
Tabelle 11: Veränderung der Zytokinkonzentrationen bei unbhandelten, mit T. penetrans
infizierten Wistarratten, im Vergleich zu Wistarratten, die mit Silikonöl behandelt wurden
(es ist jeweils der Median dargestellt)

8.2 Abbildungsverzeichnis

Abb. 1: Verbreitung von T. penetrans: Die hellgrauen Zonen beschreiben Länder mit
sporadischem Auftreten oder unklarer epidemiologischer Situation, in den dunkelgrau
hinterlegten Gebieten ist Tungiasis endemisch (Franck et al. 2003)4
Abb. 2: Schematisches Darstellung von Tunga penetrans (Weibchen, Mes= Metepisternum,
Ms= Metasternum, Mp= Metepimer, SI-IV= Stigmen des Hinterleibes, Co= Coxa, Fe= Femur,
Ti= Tibia, modifiziert nach Linardi 2000)7
Abb. 3: Endemiegebiet Favela Vicente Pinzón II17
Abb. 4: Endemiegebiet Fischerdorf Balbino17
Abb. 5: Exposition von Wistarratten im Fischerdorf Balbino17
Abb. 6: Dokumentation der Läsionen im Endemiegebiet Favela Vicente.Pinzón
Abb. 7: Darstellung der Anzahl der T. penetrans Läsionen bei der Wistarratte in Abhängigkeit
von den Käfigstandorten (die Kreuze stellen den Median dar, die Charakteristika der
Käfigstandorte sind in Tabelle 3 beschrieben)
Abb.8: Zeitverlauf der Serumkonzentration von TNF- α in Wistarratten nach Infektion mit T.
penetrans
Abb.9: Zeitverlauf der Serumkonzentration von IL-1 β in Wistarratten nach Infektion mit <i>T</i> .
penetrans
Abb. 10: Zeitverlauf der Serumkonzentration von IFN-γ in Wistarratten nach Infektion mit T.
penetrans
Abb. 11: Zeitverlauf der Serumkonzentration von CINC in Wistarratten nach Infektion mit T.
penetrans
Abb. 12: Zeitverlauf der Serumkonzentration von IL-4 in Wistarratten nach Infektion mit T.
penetrans
Abb. 13: Zeitverlauf der Serumkonzentration von IL-10 in Wistarratten nach Infektion mit T.
penetrans
Abb. 14: Der Quotient der Serumkonzentrationen von TNF- α und IL-10 respektive von
TNF-α und CINC in Wistarratten nach Infektion mit <i>T. penetrans</i>
Abb. 15 (I, 3h): Ballen unterhalb der zweiten Zehe, Penetration (4x)45
Abb. 16 (I, 3h): Ballen, Penetration im Winkel von ca. 45° zur Hautoberfläche (40x)45
Abb. 17 (I, 3h): Ein aus dem Gewebe entfernter Parasit, mit beginnender Hypertrophie der
kranialen Abdominalsegmente (40x)45
Abb. 18 (I, 6-7 h): Ballen unterhalb der zweiten Zehe, Penetrationswinkel ca. 70° (3x)45

Abb. 19 (I, 7h): Penetrationswinkel 80 bis 90° (40x)45
Abb. 20 (I, 9h): Ballen unterhalb der zweiten Zehe, Penetration in einem Winkel von etwa 90°
(vgl. Abb 15, 6x)45
Abb. 21 (I, 9h): Ballen unterhalb der ersten Zehe, Penetration (Pfeil), im Hintergrund
blutsaugender männlicher Floh (6,7 x)46
Abb. 22 (I, 12h): Distales Ende zweiter Zeh, die Penetration ist abgeschlossen, die kaudalen
Abdominalsegmente überragen die Hautoberfläche (Pfeil, 15x)46
Abb. 23 (II, 18 h): Ballen, Penetration abgeschlossen, deutliches Erythem (2x)46
Abb. 24 (II, 18 h): Schwellung der kranialen Abdominalsegmente (Parasit aus Wirtsgewebe
entfernt, 40x)46
Abb. 25 (II, 1 Tag): Die kaudalen Abdominalsegmente überragen die Hautoberfläche (40x)46
Abb. 26 (IIIa, 2-3 Tage): An der medialen Seite des Ballens befinden sich mehrere Läsionen
(Pfeile), die oberen sind 2 Tage, die unteren 3 Tage alt (2x)46
Abb. 27 (IIIa, 4 Tage): Zweiter Zeh distal, Auscheidung eines Fäzesfadens (Pfeil), Ödem,
Erythem (14x)
Abb. 28 (IIIa, 5 Tage): Ballen, leichtes Erythem und Ödem (vgl. Abb. 15 und Abb. 20, 2x)47
Abb. 29 (IIIa, 7 Tage): Fünfter Zeh distal, Erythem und Ödem, Pulsationsphänomen (s.Tab. 1)
bei neun Uhr (Pfeil, 2x)47
Abb. 30 (IIIb, 9 Tage): Ballen, deutliche Volumenzunahme des Flohs, ausgeprägtes Ödem;
prallelastische Konsistenz, radiäre Streifen (2x)47
Abb. 31 (IIIb, 11 Tage): Ballen, zunehmende Veränderung der Konsistenz, Ausbildung einer
zentrodorsalen Konkavität (4x)47
Abb. 32 (IIIb, 15 und 7 Tage): Ausgeprägtes Ödem beidseits, bei der älteren Läsion (links) zeigt
sich eine Desquamation und Nekrotisierung im Randbereich. Rechts deutliches
Pulsationsphänomen auf vier Uhr (4x)47
Abb. 33 (IVa, 16 Tage): Zunehmende Schwarzfärbung als Zeichen einer Devitalisierung des
Flohes (2x)48
Abb. 34 (IVa, 17 und 20): Rechts die ältere Läsion. Trotz avitaler Parasiten deutliche
Entzündungszeichen, proximal beidseits starke Ödeme und nekrotisches Gewebe48
Abb. 35 (IVb, 22 Tage): abgestorbener Parasit (2x)
Abb. 36 (IVb, 26 Tage): Reste der Flöhe und nekrotische Hautanhangsgebilde, keine
Entzündungszeichen mehr (2x)
Abb. 37 (V, 26 Tage): Läsion im Bereich des distalen Ballens, kein Parasit mehr vorhanden, auf
dem Grund befinden sich noch Eier (4x)48

Abb. 38 (V, 30 Tage): Zirkuläre Vertiefung im Bereich des medialen Ballens (Pfeil, 2x)48
Abb. 39 (I, 3h): Beginn der Größenzunahme der kranialen Abdominalsegmente (120x)49
Abb. 40 (I, 3h): Beginnende Hypertrophie der kranialen Abdominalsegmente (Pfeil, 140x)49
Abb. 41 (I, 7h): Leichte Größenzunahme der Abdominalsegmente drei und vier, die
Intersegmentalhaut vergrößert sich (Pfeil, 120x)
Abb. 42 (I, 8h): Deutliche Volumenzunahme der Abdominalsegmente drei und vier (Pfeil,
120x)
Abb. 43 (I, 12h): Die Abdominalsegmente drei und vier nehmen an Größe zu und weichen
auseinander (Pfeile, 120x, Parasit bei der Präparation gestaucht)49
Abb. 44 (I, 12h): Weitere Größenzunahme der Abdominalsegmente drei und vier (Pfeile, 120x,
die hinteren Segmente sind bei der Präparation luxiert)49
Abb. 45 (I, 18h): Auseinanderweichen und weitere Größenzunahme der Abdominalsegmente
drei und vier (120x)50
Abb. 46 (II, 1Tag): Schwellung der kranialen Abdominalsegmente (120x, Parasit bei der
Präparation medial deformiert)50
Abb. 47 (II, 1Tag): Dorsalansicht des penetrierten Parasiten mit umgebender Epidermis. Der
Abdominalkonus überragt das Stratum corneum (430x)50
Abb. 48 (IIIa, 2Tage): Die Hypertrophiezone der Abdominalsegmente drei und vier überragt die
kranialen Flohanteile (120x)
Abb. 49 (IIIa, 3 Tage): Ausgeprägte Hypertrophie der Abdominalsegmente drei und vier,
Neosom bei der Präparation getaucht
Abb. 50 (IIIa, 3 Tage): Darstellung des Kopfes aus Abb. 49 (270x, Ne=Neosom, Pm= Palpus
maxillaris, Ep= Epipharynx)50
Abb. 51 (IIIa, 4 Tage): Unterhalb der Kralle (Stern) penetrierter Parasit (Pfeil). Der
Abdominalkonus überragt das Stratum corneum (65x)51
Abb. 52 (IIIb, 12 Tage): Aus dem Gewebe entfernter adulter, hypertrophierter Floh. Der Pfeil
zeigt auf den Kopf des Parasiten51
Abb. 53 (IIIb, 19 Tage): Maximal hypertrophierter Floh (30x, dorsal haftet Wirtsgewebe auf der
Flohoberfläche)
Abb. 54 (IIIb, 19 Tage): Die maximal hypertrophierten Abdominalsegmente drei und vier
überragen den Kopf, die thorakalen Segmente sind nach kranial gestaucht (120x, Vergrößerung
aus Abb. 53)51
Abb. 55 (IVa, 21 Tage): Involution51
Abb. 56 (IVb, 24 Tage): Abgestorbener, geschrumpfter Parasit (32x)51

Abb. 57 (I, 12h): Intraepidermal (e) liegt ein Floh (Tp), keine Entzündungszeichen (40x, b=
Basalmembran, Sc= Stratum corneum)
Abb. 58 (II, 2 Tage): Der Parasit (Tp) liegt intraepidermal (e) in der Umgebung Infiltration von
Granulozyten (16x, b= Basalmembran, Sc= Stratum corneum)
Abb. 58a (Ausschnittvergrößerung Abb. 58): Dermales, granulozytäres Infiltrat, die parasitäre
Läsion stellt sich am oberen Bildrand dar (200x, nG= neutrophile Granulozyten)55
Abb. 58b (Ausschnittvergrößerung Abb.58): Am oberen Bildrand stellt sich das
Chitinexoskeleton (c) des Parasiten dar, dermal ist ein granulozytäres Infiltrat zu erkennen
(240x, nG= neutrophile Granulozyten)
Abb. 59 (Ausschnittvergrößerung Abb.58): Granulozytäres Infiltrat (I) im Randbereich der
Läsion (160x, b= Basalmembran)
Abb. 60 (IIIa, 3 Tage): Der Floh (Tp) liegt intraepidermal (e), die Basalmembran ist intakt (16x,
b= Basalmembran, Sc= Stratum corneum)52
Abb. 60a (Ausschnittvergrößerung Abb.60): Dermales, entzündliches Infiltrat, am rechten Bild-
rand befindet sich der intraepidermal liegende Floh (240x, nG= neutrophile Granulozyten)55
Abb. 60b (Ausschnittvergrößerung Abb. 60): Dermales Infiltrat in der unmittelbaren Umgebung
der ektoparasitären Läsion (240x, nG= neutrophile Granulozyten, Mz= Mastzelle)56
Abb. 61 (Ausschnittvergrößerung Abb. 60): An der Grenze zwischen Chitinexoskeleton (c) und
Dermis zeigt sich ein granulozytäres Infiltrat (I, 100x, b= Basalmembran, Sc= Stratum
corneum)
Abb. 62 (IIIa, 5 Tage): Der Parasit (Tp) ist in die Dermis eingedrungen, die Basalmembran (b)
ist in ihrer Kontinuität unterbrochen. In den lateralen Anschnitten ist die Epidermis (e) zu sehen
(16x)
Abb. 63 (Ausschnittvergrößerung Abb. 62): Anschnitt der Mundwerkzeuge des Flohes in den
oberen Schichten der Dermis (100x)53
Abb. 64 (Ausschnittvergrößerung Abb. 62): Granulozytäres Infiltrat (I) und Neovaskularisierung
(g) im Randbereich der Läsion (160x)53
Abb. 65 (IIIa, 7 Tage): Der Flohkörper (Tp) wurde bei der Präparation zerstört, das Infiltrat (I)
reicht bis an den Knochen der Endphalanx (p), ohne diese ganz zu erreichen (16x)53
Abb. 66 (IIIa, 7 Tage): In der unmittelbaren Umgebung des Parasiten (Tp) zeigt sich ein Infiltrat
(I) aus neutrophilen und eosinophilen Granulozyten in der Dermis (100x)53
Abb. 67 (IIIb, 9 Tage): Das Chitinexoskeleton (c) des Flohes und umgebende
Entzündungsreaktion (I), die Epidermis (e) ist durchbrochen (40x, b= Basalmembran, Sc=
Stratum corneum)

Abb. 68 (Vergrößerung der Entzündungsreaktion aus Abb. 67): Anfärbung von neutrophilen und
eosinophilen Granulozyten, Lymphozyten und einer Fremdkörperriesenzelle (Pfeil,
160x)
Abb. 69 (IIIb, 16 Tage): Vollständig erhaltener Parasit (Tp), die Epidermis (e) ist teilweise in
ihrer Kontinuität unterbrochen, es befindet sich ein entzündliches Infiltrat in der Dermis (16x,
b= Basalmembran, Sc= Stratum corneum)54
Abb. 70 (Vergrößerung aus Abb. 69): Übergang vom Chitinexoskeleton (c) zur Dermis (d), die
Epidermis ist vollständig vom Parasiten verdrängt. Das Infiltrat (I) besteht vornehmlich aus
eosinophilen und neutrophilen Granulozyten (100x)54
Abb. 71 (IIIb, 16 Tage): Hypertrophierter Floh (Tp) distal an einer Phalanx. Die Epidermis (e) ist
verdrängt, die Dermis mit Entzündungszellen infiltriert; rechts sieht man den Knochen (p), der
von der Entzündung nicht erreicht wird (16x, b= Basalmembran, Sc= Stratum
corneum)
Abb. 72 (Ausschnittvergrößerung aus Abb. 71): Neben einem entzündlichem Infiltrat zeigt sich
eine beginnende Fibroisierung (f, 160x)54
Abb. 73 (IVb, 28 Tage): Reste des Parasiten (r) epidermal als auch dermal. Die Epidermis (e) ist
hyperkeratotisch (16x)54
Abb.73a (Ausschnittvergrößerung Abb. 73): Epidermale und dermale Reste des Parasiten (r),
dazwischen entzündliches Infiltrat. Die Markierung zeigt den Ausschnitt von Abb. 73b an
(100x)
Abb. 73b (Ausschnittvergrößerung Abb. 73): Dermales Infiltrat, mit vornehmlich lymphozytären
Zellen (240x, Lz= Lymphozyten, nG= neutrophile Granulozyten, Pz= Plasmazellen)56
Abb. 74 (IVb, 28 Tage): Im Bereich der dermalen Flohreste (r) eine Fremdkörperriesenzelle
(Pfeil, 160x)

8.3 Lebenslauf

Mein Lebenslauf wird aus Datenschutzgründen in der elektronischen Version meiner Arbeit nicht mit veröffentlicht.

Publikationsliste

Witt LH, Linardi PM, Meckes O, Schwalfenberg S, Ribeiro RA, Feldmeier H, Heukelbach J Blood- feeding of *Tunga penetrans* males Med Vet Entomol. 2004 Dec; 18 (4): 439-441

Heukelbach J, Bonow I, Witt LH, Feldmeier H, Fischer P High infection rate of Wolbachia endobacteria in the sand flea *Tunga penetrans* from Brazil Acta Trop 2004 Nov- Dec; 92 (3): 225-230

Feldmeier H, Witt LH, Schwalfenberg S, Albuquerque Ribeiro R, Queiroz Cunha F, Harms G, Mehlhorn H, Liesenfeld O, Heukelbach J
Investigations on the biology, epidemiology, pathology, and control of *Tunga penetrans* in Brazil. V .Cytokine concentrations in experimentally infected Wistar rats.
Parasitol Res. 2004 Nov; 94 (5): 371-376

Schwalfenberg S, Witt LH, Kehr JD, Feldmeier H, Heukelbach J Prevention of tungiasis using a biological repellent: a small case series. Ann Trop Med Parasitol. 2004 Jan; 98 (1): 89-94

8.4 Selbstständigkeitserklärung

"Ich, Lars- Henrik Witt, erkläre hiermit an Eides Statt, dass ich die vorgelegte Dissertationsschrift mit dem Thema: Experimentelle Untersuchungen zur Morphologie, Histopathologie und Immunologie der Tungiasis selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt, ohne die (unzulässige) Hilfe Dritter verfasst und auch in Teilen keine Kopien anderer Arbeiten dargestellt habe."

8.5 Danksagung

An dieser Stelle ist es mir ein Anliegen, Herrn Prof. Dr. H. Feldmeier für die Überlassung des Themas und die stets intensive Betreuung herzlich zu danken.

Für die jederzeit gewährte fachliche und organisatorische Unterstützung möchte ich mich ganz besonders bei Dr. Jörg Heukelbach bedanken.

Als Freund und Mitstreiter in Fortaleza vielen Dank an Stefan Schwalfenberg.

Für die Bereitstellung der Laboratorien in Brasilien sei Prof. Ronaldo Ribeiro aus der pharmakologischen Abteilung der Bundesuniversität Ceará (Fortaleza), Prof. Pedro Linardi, Leiter der Entomologie der Bundesuniversität von Minas Gerais (Belo Horizonte) und Prof. Fernando da Cunha aus der Abteilung für Pharmakologie der Universität São Paulo (Ribeirão Preto) gedankt.

Mein herzlicher Dank gilt desweiteren Herrn Prof. Dr. O. Liesenfeld vom Institut für Infektionsmedizin der Medizinischen Fakultät Charité/ Berlin für die Unterstützung bei der Zytokinbestimmung und Durchsicht dieser Arbeit sowie Prof. Dr. E. van Marck (Abteilung für Pathologie des Universitätsklinikums Antwerpen/ Belgien) für die Hilfe bei histopathologischen Auswertung.

Vielen Dank der Firma Eye of science (Reutlingen), insbesondere an Oliver Meckes, für die Bereitstellung der Einrichtung und Einarbeitung in die Technik der Rasterelektronenmikroskopie.

Die Arbeit in Brasilien wurde immer wieder vor neue, insbesondere organisatorische Herausforderungen gestellt, an deren Lösung viele Menschen beteiligt waren:

Por isso, muito obrigado para meus amigos e ajudantes em Fortaleza, Balbino e Ribeirão Preto, em particular Giuliana, Lucia, Valeria, Vanda, Vania e Raphael.

Nicht zuletzt bin ich meinen Eltern und Melli für Ihre Unterstützung dankbar.

Diese Arbeit wurde ermöglicht durch ein Stipendium des DAAD/ CAPES PROBRAL (Deutscher Akademischer Austauschdienst/ Coordenação de Aperfeiçoamento de Pessoal de N'vel Superior: Projetos de Cooperação em Pesquisa entre o Brazil e a Alemanha)