9 Abbildungsverzeichnis

Abbildung 1 Weltweite Verbreitung der Anopheles-Arten (Kiszewski et al. 2004) 3
Abbildung 2 Schematische Darstellung eines P. falciparum infizierten Erythrozyten mit
der intrazellulären Lokalisation verschiedener Wirkstoff-Targets (Wiesner et al.
2003)12
Abbildung 3 Bekannte Biosynthese-Wege für Isoprenoide (Lange et al. 2001; Wiesner
et al. 2005)14
Abbildung 4 Schematische Darstellung der Entgiftung von Häm (Ginsburg et al. 1998)
16
Abbildung 5 ECV-304 Zellen, Passage 30 (Einfärbung mit Hämatoxylin-Lsg. III nach
Gill) 30
Abbildung 6 HepG2 Zellen, Passage 15 (Einfärbung mit Hämatoxylin-Lsg. III nach
Gill) 30
Abbildung 7 Darstellung der Steigungsgeraden bei konstanter Papainkonzentration (200
ng/100 $\mu L)$ und verschiedenen Substratmengenzugaben von 5 μL (blau), 10 μL
(rosa) und 15 µL (gelb) einer 1,25 mM Z-Phe-Arg-AMC-Lösung39
Abbildung 8 Darstellung der Kurvenverläufe der einzelnen Hopfeninhaltsstoffe I, II, V,
VI, VII und des Papains (200 ng/100 µL) der kinetischen Messung40
Abbildung 9 Blätter und Blüten von <i>Exostema mexicanum</i> 80
Abbildung 10 Strukturformel von $5-O-\beta$ -D-Glucopyranosyl-7,3',4'-trihydroxy-4-
phenylcumarin (1)81
Abbildung 11 Strukturformel von 5- $O-\beta$ -D-Glucopyranosyl-4'-hydroxy-7-methoxy-4-
phenylcumarin (2)82
Abbildung 12 Strukturformel von 5- O - β -D-Galactopyranosyl-4'-hydroxy-7-methoxy-4-
phenylcumarin (3)83
Abbildung 13 Strukturformel von 5-O-\beta-D-Galactopyranosyl-3',4'-dihydroxy-7-
methoxy-4-phenylcumarin (4)84
Abbildung 14 ¹ H NMR Spektrum von 5- <i>O</i> -β-D-Galactopyranosyl-3',4'-dihydroxy-7-
methoxy-4-phenylcumarin (4) (400 MHz, Methanol-d ₄)85
Abbildung 15 Strukturformel von 3'-Hydroxy-4',5,7-trimethoxy-4-phenylcumarin (5) 86

Abbildung 16 Strukturformel von Kämpferol-3- O - α -L-rhamnopyranosyl- $(1 \rightarrow 6$)-[2,4-
diacetyl- α -L-rhamnopyranosyl- $(1\rightarrow 2)$]- $(4$ -cumaroyl- β -D-galactopyranosyl)- β	7-0-α-
L-rhamnopyranosid (6)	87
Abbildung 17 Strukturformel von Kämpferol-3- O - α -L-rhamnopyranosyl-(1 \rightarrow 6)	-[α-L-
rhamnopyranosyl- $(1\rightarrow 2)$]- $(4$ -cumaroyl- β -D-galactopyranosyl)-7- O - α -L-	
rhamnopyranosid (7)	90
Abbildung 18 Strukturformel von Scopoletin (8)	91
Abbildung 19 Strukturformel von Loliolid (9)	92
Abbildung 20 Strukturformel von Salicylsäure (10)	93
Abbildung 21 Stachytarpheta guatemalensis, Verbenaceae	95
Abbildung 22 Strukturformel von Acteosid (11)	96
Abbildung 23 ¹ H NMR Spektrum von Acteosid 11 (400 MHz, Methanol-d ₄)	96
Abbildung 24 Strukturformel von Iso-Acteosid (12)	97
Abbildung 25 Strukturformel von Leucosceptosid (13)	98
Abbildung 26 Strukturformel von Martynosid (14)	99
Abbildung 27 Strukturformel von Jionosid D (15)	100
Abbildung 28 Momordica foetida, Cucurbitaceae	102
Abbildung 29 Strukturformel von 5,7,4'-Trihydroxyflavanon-7- O - β -D-glucopyr	anosid
(16)	104
Abbildung 30 ¹ H NMR Spektrum von 5,7,4'-Trihydroxyflavanon-7-6	<i>D-β-</i> D-
glucopyranosid (16) (400 MHz, Aceton-d ₆)	104
Abbildung 31 Strukturformel von 5,7,3',4'-Tetrahydroxyflavanon-7-6	<i>D-β-</i> D-
glucopyranosid (17)	106
Abbildung 32 ¹ H NMR Spektrum von 5,7,3',4'-Tetrahydroxyflavanon-7-6	D-β-D-
glucopyranosid (17) (400 MHz, Aceton-d6)	107
Abbildung 33 Strukturformel von Kämpferol-7- <i>O</i> -β-D-glucopyranosid (18)	108
Abbildung 34 ¹ H NMR Spektrum von Kämpferol-7- <i>O</i> -β-D-glucopyranosid (18) (400
MHz, Aceton-d ₆)	109
Abbildung 35 Strukturformel von 5,7-Dihydroxychromon-7- <i>O</i> -β-D-glucopyranosi	id (19)
	110
Abbildung 36 ¹ H NMR Spektrum von 5,7-Dihydroxychromon-7- O - β -D-glucopyr	anosid
(19) (400 MHz, Aceton-d ₆)	111

Abbildung 37 Strukturformel von 5,7-Dihyroxychromon (20)	111
Abbildung 38 Effekt des Chloroquins auf den glutathionabhängigen Hemin	abbau
(Steele et al. 2002)	113
Abbildung 39 Übersicht der Hopfenchalkone und Derivate	114
Abbildung 40 Xanthohumol und Licochalkon A	133
Abbildung 41 E-64 aus Aspergillus japonicus	_136
Abbildung 42 Schematische Darstellung der Interaktion zwischen	einem
Peptid-Substrat mit den Bindungstaschen einer Cystein-Pr	otease
(aus Sajid et al. 2002)	137