Medizinische Fakultät der Charité - Universitätsmedizin Berlin
Campus Benjamin Franklin
Klinik und Polikliniken für Zahn-, Mund- und Kieferheilkunde
Abteilung Restaurative Zahnheilkunde
Bereich Zahnerhaltungskunde und Parodontologie
Leiter: Prof. Dr. med. dent. A. M. Kielbassa

Mikroradiografische Untersuchungen zum Einfluss unterschiedlicher Elektrolytkonzentrationen von leinsamenbasierter Speichelersatzmittel auf demineralisierten bovinen Schmelz *in vitro*

Inaugural-Dissertation
zur Erlangung der
zahnmedizinischen Doktorwürde
der Charité - Universitätsmedizin Berlin
Campus Benjamin Franklin

vorgelegt von
Zahnärztin Monique Mareike Marschall
aus Berlin

Referent: Prof. Dr. med. dent. A. M. Kielbassa

Koreferent: Prof. Dr. med. dent. K.-R. Jahn

Gedruckt mit Genehmigung der Charité - Universitätsmedizin Berlin Campus Benjamin Franklin

Promoviert am: 22.09.2006

Inhaltsverzeichnis

1	Einleitung	
2	Literaturübersicht	3
2.1	Zusammensetzung des Schmelzes	3
2.1.1	Struktur des Schmelzes	3
2.1.2	Aufbau der Schmelzprismen	3
2.1.3	Retzius-Streifen	4
2.1.4	Imbrikationslinien und Perikymatien	4
2.1.5	Hunter-Schreger-Streifen	4
2.2	Kariesentstehung	5
2.2.1	Schmelzkaries	5
2.2.2	"Strahlenkaries"	6
2.3	Zusammensetzung und Funktion des Speichels	7
2.4	Definition der Xerostomie	9
2.4.1	Entstehung und Ursachen der Xerostomie	9
2.4.2	Problematik der Xerostomie	9
2.5	Therapiemöglichkeiten der Xerostomie	10
2.5.1	Speichelstimulantien	11
2.5.2	Spezielle Prothesen mit einem Speichelreservoir	12
2.5.3	Mundspüllösungen	13
2.6	Speichelersatzmittel zur Therapie der Xerostomie	14
2.6.1	Rheologisches Verhalten von Speichelersatzmitteln	14
2.6.2	Subjektive Verbesserung der Symptomatik durch Speichelersatzmittel	16
2.6.3	Wirkung der Speichelersatzmittel auf die Zahnhartsubstanzen	17
2.6.4	Leinsamen (Linum usitatissimum) als Basis von Speichelersatzmitteln	19
2.7	Kariesprophylaxe mit Fluoriden	20
3	Ziel der Untersuchung	21

4	Material und Methode	22
4.1	Herstellung der Schmelzproben	22
4.2	Bearbeitung der Schmelzproben	23
4.3	Herstellung der Leinsamenlösungen	24
4.4	Messung der Elektrolytkonzentrationen der verwendeten Lösungen	26
4.4.1	Fluoridbestimmung	26
4.4.2	Kalziumbestimmung	26
4.4.3	Phosphatbestimmung	26
4.5	Untersuchung des Sättigungsgrades	26
4.5.1	Berechnung der Sättigungsgrade der angesetzten Speichelersatzmittel	27
4.6	Viskositätsbestimmung	27
4.7	Vorbereitung der Schmelzproben für die Mikroradiografie	28
4.8	Einführung in die transversale Mikroradiografie	29
4.8.1	Herstellung der Mikroradiogramme	30
4.9	Statistische Auswertung	32
5	Ergebnisse	33
5.1	Quantitative Auswertung der Gruppen	33
5.1.1	Mineralverlust	33
5.1.2	Läsionstiefen	35
5.2	Ergebnisse zum Einfluss unterschiedlicher Kalzium- und	
	Phosphatkonzentrationen und dem pH-Wert auf den Mineralverlust und c	die
	Läsionstiefe	37
5.2.1	Der Kalziumeinfluss auf den Mineralverlust	37
5.2.2	Der Kalziumeinfluss auf die Läsionstiefe	38
5.2.3	Der Phosphateinfluss auf den Mineralverlust	39
5.2.4	Der Phosphateinfluss auf die Läsionstiefe	40
5.2.5	Der pH-Werteinfluss auf den Mineralgehalt	41
5.2.6	Der pH-Werteinfluss auf die Läsionstiefe	42
5.3	Ergebnisse der Elektrolytkonzentrationsmessungen	43
5.3.1	Fluorid- und Kalziumkonzentrationen	43
5.3.2	Phosphatkonzentrationen	44
5.4	Die Sättigungsgrade der gemessenen Elektrolytkonzentrationen	45

5.5	Die Sättigungsgrade der theoretisch in den Lösungen enthaltenen		
	Elektrolytkonzentrationen	45	
5.6	Die Ergebnisse der Viskositätsbestimmung	46	
5.7	Qualitative Auswertung	47	
6	Diskussion	49	
6.1	Verwendung von Rinderzähnen und Lagerungsdauer der Proben	49	
6.2	De- bzw. Remineralisationsverhalten der verwendeten Lösungen	50	
6.3	Vergleich der Ergebnisse mit den ermittelten Sättigungsgraden	53	
6.4	Veränderungen der Läsionstiefen	55	
6.5	Verwendung von Leinsamenlösungen als Speichelersatzmittel	55	
7	Schlussfolgerung	58	
8	Zusammenfassung	59	
8.1	Summary	60	
9	Literaturverzeichnis	61	
10	Anhang	71	
Mater	Materialliste		
Dank	Danksagung		
Leber	Lebenslauf		
Erkläı	Erklärung		

Summary

Usually saliva substitutes are used for alleviation of the distressing symptoms of xerostomia. However, many artificial salivas seem to have a demineralizing potential. So far a linseed based product (Salinum[®]) has not been investigated.

The aim of this in vitro study was to determine the effects of various linseed based solutions differing in calcium and phosphate concentrations at two different pH values and Salinum[®] on the mineral loss and the lesions depths of pre-demineralized bovine enamel.

From 33 freshly extracted bovine incisors 130 enamel specimens were prepared. The samples were embedded in epoxy resin and polished under water cooling up to 4000 grit. The surface was partially covered with nail varnish (control of sound enamel). Subsequently, the enamel specimens were stored in a demineralising solution for 14 days at 37 $^{\circ}$ C (pH 5.0). Half of the demineralised areas were covered with nail varnish again. The samples (n = 10) were stored in 13 different solutions for two weeks at 37 $^{\circ}$ C that were renewed every 12 hours.

After exposure the specimens were cut perpendicular to the enamel surface and the sections were ground to a uniform thickness of $100 \, \mu m$. The specimens were studied with a digital image analysing system. A dedicated software (TMR for Windows, version 2.0.27.2) was used to calculate mineral loss and lesion depths.

Salinum[®] induced a significantly greater mineral loss compared to equivalent saturated solutions with respect to apatites. Phosphate concentrations (GLM; p = 0.094) as well as pH (GLM; p = 0.397) did not significantly influence mineral loss and lesion depths. Calcium significantly influenced the mineral gain (GLM; p = 0.003). The solution with a high calcium and phosphate concentration (222 mg/l and 444 mg/l) having a high degree of saturation was capable to remineralize the specimens significantly (p < 0.05; t-test).

Within the limitations of an in vitro study it can be concluded that Salinum[®] should not be recommended for dentate patients. With increasing calcium and phosphate concentrations the remineralizing properties of linseed based saliva substitutes could be enhanced.