6. Abstract

The nuclear transcription factor peroxisome proliferator-activated receptor γ (PPAR γ) is a central regulator of insulin- and glucose metabolism. PPAR γ activation by synthetic ligands, the thiazolidinediones, results in insulin sensitization, thereby preventing and improving the diabetic condition. Angiotensin type 1 receptor (AT₁) antagonists have been shown to reduce the incidence of type 2 diabetes mellitus by an unknown molecular mechanism. We investigated the regulation of PPAR γ - mediated fat cell differentiation by AT₁- antagonists and characterized interactions of these compounds with the transcription factor.

 AT_1 - antagonists enhanced the differentiation of 3T3- L1 and human preadipocytes in a concentration dependent manner. Telmisartan and irbesartan exhibited the most potent impact whereas eprosartan failed to show any effects. An increase in the transcriptional activity of PPAR γ induced by theses compounds was independent of their AT_1 -blocking property and of the presence of the AT_2 - receptor. The induction was achieved by a direct interaction of AT_1 - antagonists with the PPAR γ - ligand binding domain, which correlated with the impact on fat cell differentiation rendering these compounds as partial agonists in comparison with the thiazolidinediones. Studying protein- protein interactions showed a direct binding of AT_1 - antagonists to the PPAR γ - ligand binding domain and a selective recruitment of cofactors. Analysis of gene expression profiles revealed a large overlap of similar regulated genes, but also a subset of differentially regulated genes in regard to fat cell function. Consistent to their PPAR γ - activating efficacy, they increased the insulin dependent and independent glucose uptake in 3T3-L1 adipocytes.

This work identified certain AT_1 - antagonists as partial PPAR γ - agonists. The activation of PPAR γ demonstrates new pleiotropic actions of certain AT_1 - antagonists providing a potential mechanism for their insulin-sensitizing/ anti-diabetic effects. Furthermore, they exhibit a lead structure to develop new PPAR γ - modulators.