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“A journey of a thousand miles begins with a single step” 

Lao Tzu 
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Abbreviations 

ACOX3   Acyl-CoA oxidase 3 

AMPK    5'-prime-AMP-activated protein kinase 

ANP    Atrial natriuretic peptide 

B2M    Beta-2-microglobulin 

BMAL1 (ARNTL)  Aryl hydrocarbon receptor nuclear translocator-like 

BMI    Body mass index 

BNP    B-type natriuretic peptide 

CCKAR   Cholecystokinin A receptor 

CCN    Cyr61/CTGF/NOV protein family 

CCR7    C-C chemokine receptor type 7 

cGMP    Cyclic guanosine monophosphate 

CID    Clinical investigation day 

CLOCK    Clock circadian regulator 

CNP    C-type natriuretic peptide 

COX2    Cyclooxygenase 2 

CPT1A    Carnitine palmitoyltransferase 1A 

CREB1   cAMP responsive element binding protein 1 

CRY     Cryptochrome circadian clock 

EC    Hyperinsulinemic-euglycemic clamp 

FASN     Fatty acid synthase 

FXR    Farnesoid X receptor;  

GAPDH   Glyceraldehyde-3-phosphate dehydrogenase 

GIPR    Glucose-dependent insulinotropic polypeptide receptor 

GLP1R   Glucagon-like peptide-1 receptor 

GPR41 (FFAR3)  G protein-coupled receptor 41 

GPR43 (FFAR2)  G protein-coupled receptor 43 

HC    Hyperinsulinemic-hyperglycemic clamp 
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HFD    High fat diet 

HIC    Hepatic insulin clearance 

HPRT1   Hypoxanthine phosphoribosyltransferase 1 

IDE    Insulin degrading enzyme 

IDH3A    Isocitrate dehydrogenase 3 alpha 

IL1B    Interleukin 1, beta 

ISI    Insulin sensitivity index 

ISR    Insulin secretion rate 

LPS    Lipopolysaccharide 

MeSyBePo   Metabolic Syndrome Berlin Potsdam study 

MR-proANP   Midregional proANP 

NAMPT   Nicotinamide phosphoribosyltransferase 

NFKBIA   Nuclear factor of kappa light polypeptide gene enhancer in  

B-cells inhibitor, alpha 

NOV    Nephroblastoma overexpressed protein 

NP    Natriuretic peptide 

NPR    Natriuretic peptide receptor 

NR1D1 (RevErbα)  Nuclear receptor subfamily 1, group D, member 1 

NTSR1   Neurotensin receptor 1 

NUGAT   Nutrigenomic Analysis in Twins 

OGTT    Oral glucose tolerance test 

PBMC    Peripheral blood mononuclear cells 

PER    Period circadian clock 

PPAR    Peroxisome proliferator-activated receptor 

PPIB    Peptidylprolyl isomerase B (cyclophilin B) 

qRT-PCR   Quantitative real-time PCR 

ROR    Retinoic acid-related orphan receptor 

RPLP0    Ribosomal protein large protein 0 
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SAT    Subcutaneous adipose tissue 

SCN    Suprachiasmatic nucleus 

SIRT1    Sirtuin 1 

SREBP-1   Sterol regulatory element binding transcription factor 1 

SRF    Serum response factor 

T2DM    Type 2 diabetes 

TEF    Thyrotrophic embryonic factor 

TGR5 (GPBAR1)  G protein-coupled bile acid receptor 1 

VAT    Visceral adipose tissue 

VIPR1    Vasoactive intestinal peptide receptor 1 

VIPR2    Vasoactive intestinal peptide receptor 2 

WISP1 (CCN4)  WNT-inducible signaling pathway protein-1 

WNT    Wingless-type signaling pathway 
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1. Introduction 

Obesity is an epidemic and still growing health problem of ”Western lifestyle” countries 

including Germany [1]. Obesity is associated with numerous metabolic disturbances 

including non-alcoholic fatty liver disease, metabolic syndrome, type 2 diabetes (T2DM), as 

well as cardiovascular disease and cancer and therefore results in substantially increased 

all-cause mortality [2]. Genetic predisposition, sedentary lifestyle and hypercaloric diet are 

main factors leading to the progression of obesity and accompanying metabolic diseases [3]. 

Despite epidemic proportions worldwide, enormous health care costs and thousands 

of scientific studies addressing aetiology of metabolic disturbances, many important 

pathophysiological mechanisms of metabolic regulation and response to nutritional changes 

remain unclear. A better understanding of molecular mechanisms will provide a key to 

developing targeted strategies of prevention and treatment of metabolic diseases. The 

present work describes several new cardiovascular, inflammatory and circadian mechanisms 

contributing to the human metabolic regulation in health and disease. 

 

1.1. Metabolic syndrome and alterations of hepatic insulin clearance 

“Insulin resistance” syndrome or “metabolic syndrome” represents a complex of metabolic 

and physiological disturbances such as dyslipidemia, insulin resistance, hyperinsulinemia, 

hyperglycemia, and high blood pressure and is associated with elevated risk of T2DM and 

cardiovascular diseases (Table 1) [4-6]. Moreover, some authors suggest to include 

microalbuminuria, hyperuricemia, inflammatory markers, abnormalities of hemostatic system 

[7], and elevated levels of liver enzymes [8] to the cluster of metabolic syndrome 

components. Reaven et al. [4] described the hyperinsulinemia as a predominant sign of 

metabolic syndrome developing as a compensative response to the insulin resistance. Two 

main processes, an increase of insulin secretion and a decrease of hepatic insulin clearance 

(HIC), contribute to the pathophysiology of hyperinsulinemia in the insulin-resistant state [9, 

10]. 
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Table 1. Criteria for clinical diagnosis of the metabolic syndrome [6] 
 

Measure Categorical cut points 

Elevated waist circumference 

Population- and country-specific 
definitions 

(≥94 cm in males; 
≥80 cm in females for Europids) 

Elevated triglycerides 
(drug treatment for elevated triglycerides is an alternate indicator)  

≥150 mg/dL (1.7 mmol/L) 

Reduced HDL-C 
(drug treatment for reduced HDL-C is an alternate indicator)  

<40 mg/dL (1.0 mmol/L) in males; 
<50 mg/dL (1.3 mmol/L) in females 

Elevated blood pressure 
(antihypertensive drug treatment in a patient with a history of 
hypertension is an alternate indicator) 

Systolic ≥130 and/or  
diastolic ≥85 mm Hg 

Elevated fasting glucose 
(drug treatment of elevated glucose is an alternate indicator)  

≥100 mg/dL 

 

Diminished HIC was described in insulin-resistant subjects [11], children with 

increased body weight [12], individuals with hypertension [10], elevated risk of T2DM [13] 

and non-alcoholic fatty liver disease [14]. We and others showed that genetic polymorphisms 

[15], hyperglycemia [16], and increased free fatty acids [17] may facilitate HIC dysregulation. 

Nevertheless, mechanisms contributing to this phenomenon are not entirely understood. 

Surprisingly, relationships between HIC and components of the metabolic syndrome 

were investigated previously only in few studies [8, 11]. We examined systematically how 

HIC is associated with various components of metabolic syndrome and proved the 

hypothesis whether HIC predicts the risk of metabolic syndrome [18]. 

 

1.2. Natriuretic peptides in obesity 

Numerous epidemiological studies clearly characterized the central obesity and metabolic 

syndrome as independent risk factors for cardiovascular disease [19] and heart failure [20]. 

Nevertheless, exact mechanisms underlying this phenomenon still need to be clarified.  

Natriuretic peptides (NPs), i.e. atrial natriuretic peptide (ANP), brain natriuretic 

peptide (BNP) and C-type natriuretic peptide (CNP), are important regulators of the 

cardiovascular homeostasis and also demonstrate growth-regulating properties [21]. ANP 

and BNP are produced by the cardiomyocytes of cardiac atria and ventricles, respectively, 
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whereas CNP is secreted predominantly in the brain and additionally in chondrocytes, 

vascular endothelial cells and in other tissues [21, 22]. ANP and BNP directly regulate blood 

pressure and body fluid homeostasis [21, 22]. Three NP receptors are known – natriuretic 

peptide receptor A (NPRA), natriuretic peptide receptor B (NPRB), and natriuretic peptide 

receptor C (NPRC). NPRA and NPRB represent membrane-bound guanylyl cyclase 

receptors which activation leads to the intracellular increase of cyclic guanosine 

monophosphate (cGMP) and alteration of the activity of cGMP-dependent protein kinases 

and ion channels (Figure 1) [21, 22]. NPRA shows an affinity to ANP and to a lesser degree 

to BNP, while CNP is a ligand for NPRB. NPRC binds all three natriuretic peptides (ligand 

affinity ANP>BNP>CNP) [22, 23]. This receptor demonstrates no guanylyl cyclase activity but 

provides the receptor-mediated internalization and degradation and in this way regulates 

tissue concentration of NPs (Figure 1) [22, 23].  

 

 

Figure 1. Natriuretic peptide receptors and their ligands. 
Natriuretic peptides are ligands for three receptors, NPRA, NPRB, and NPRC. NPRA and NPRB are 
characterized by the membrane-bound guanylyl cyclase activity and consist of an extracellular ligand 
binding domain, hydrophobic transmembrane region, and intracellular kinase homology, dimerization, 
and carboxyl-terminal guanylyl cyclase domains. NPRC has approximately 30% identity to NPRA and 
NPRB in the extracellular ligand-binding domain but contains only 37 intracellular amino acids [22]. 
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Beside of their renal and cardiovascular actions, NPs have a range of metabolic 

functions including activation of lipolysis, lipid oxidation, and mitochondrial respiration [24]. 

These effects induce browning of white adipose tissue, increase muscular oxidative capacity, 

and are protective against diet-induced obesity and insulin resistance [24].  

High blood levels of NPs are known to be cardiovascular risk markers [25]. In 

subjects with hypertension and particularly heart failure or myocardial ischemia, ANP and 

BNP rise dramatically because the organism tries to compensate corresponding dysfunction 

[21, 22]. In opposite, the NP decrease referred to as “natriuretic handicap” was found in 

obesity [26-28]. This is counterintuitive because in obesity characterized by salt retention and 

higher cardiac output, increased NP levels would be expected. The unexpected NP 

suppression in obesity may be explained by an increased expression of NPRC in adipose 

tissue which leads to the elevated NP clearance in obese subjects [28]. A decrease of 

cardiovascular protective hormones may increase a long-term risk of cardiovascular disease 

such as occurs for ANP in the metabolic syndrome [29]. 

Central obesity is usually characterized by the increased insulin levels resulted from 

insulin resistance [4]. In recently published observation in rodents, insulin is supposed to be 

a major regulator of the NPRs expression in the organism [30]. We elucidated this 

pathophysiological mechanism in humans investigating the NPR expression in the adipose 

tissue and their regulation by insulin [29]. 

 

1.3. Adipose tissue inflammation 

Immune system plays an important role in the pathogenesis of obesity-associated diseases 

[31]. Indeed, the chronic low-grade systemic inflammation was described in obesity and 

T2DM which is characterized by the macrophage infiltration of adipose tissue and contributes 

to the development of insulin resistance [32, 33]. Interactions between adipocytes, 

macrophages and endothelial cells lead to the deterioration of the inflammation and to the 

elevated secretion of proinflammatory cytokines, chemokines, adipokines and angiogenic 

factors [32]. 



11 
 

Macrophage infiltration results from activation of circulating monocytes, their 

transmigration into adipose tissue and differentiation into macrophages [31]. Two polarized 

subtypes of adipose tissue macrophages are described - classically activated 

“proinflammatory” M1 and alternatively activated “antiinflammatory” M2 [33] (Figure 2) which 

demonstrate differences in their phenotype, metabolism and morphology, and play various 

roles in the immune response [33, 34]. M1 cells are characterized by the IL-12high, IL-23high, 

IL-10low phenotype, produce proinflammatory cytokines, reactive oxygen and nitrogen 

intermediates, participate in polarized T helper type 1 responses, and contribute to the 

parasite and tumor resistance. M2 cells have various subtypes demonstrating the IL-12low, IL-

23low, IL-10high phenotype, produce antiinflammatory cytokines, participate in polarized T 

helper type 2 reactions, promote tissue repair and remodelling, and have immunoregulatory  

 

 

Figure 2. Macrophage infiltration into adipose tissue in obesity. 
(A) In a lean state, most resident macrophages in adipose tissue represent M2 macrophages which 
promote insulin sensitivity particularly by IL-10 secretion. (B) In the obese state, large hypertrophic 
adipocytes secret MCP-1 to the circulation that recruits circulating monocytes to adipose tissue. 
Infiltrated monocytes differentiate into classically activated M1 macrophages secreting 
proinflammatory cytokines such as TNFα, IL-6, and MCP-1, which facilitate the low-grade 
inflammation in adipose tissue and a decrease of adiponectin. Secreted cytokines act as insulin 
resistance-inducing adipokines and contribute to the development of insulin resistance in skeletal 
muscle and liver. Figure adapted from [35]. 
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functions [34]. M1 and M2 cells express different patterns of chemokine and cytokine 

receptors [36]. Interestingly, obesity shifts M1/M2 ratio in adipose tissue to M1 subtype [37] 

(Figure 2). However, mechanisms of the low-grade inflammation are not fully understood. 

In particular, numerous nutrition-associated factors such as food components, 

metabolites, and gastrointestinal neuropeptides and hormones may influence immune cell 

functions [38-41] and in this way contribute to the pathogenesis of low-grade inflammation 

[42]. In our recent study, we characterized in detail the expression of twelve receptors of 

such nutrition-associated factors in human blood monocytes and monocyte-derived 

macrophages [42]. 

A novel interesting player in the pathogenesis of the adipose tissue inflammation is a 

Wingless-type (WNT) signaling pathway contributing to the regulation of adipogenesis and 

macrophage infiltration in obese mice [43, 44]. WNT proteins are secreted glycoproteins with 

autocrine and paracrine action contributing to the regulation of cell proliferation and death, 

cell migration and embryonic development [45, 46]. One of the targets of the canonical WNT 

pathway, WNT-inducible signaling pathway protein-1 (WISP1, also known as CCN4), 

belongs to the Cyr61/CTGF/NOV (CCN) family of extracellular matrix proteins [47]. Several 

CCN family members, e.g. WISP2 and nephroblastoma overexpressed protein (NOV), 

contribute to the pathogenesis of obesity [43, 48-50], but nothing is known about the role of 

WISP1 in obesity. WISP1 expression was found in heart, pancreas, lung, kidney, small 

intestine, ovaries, spleen and brain. WISP1 regulates skeletal growth, bone repair [51], 

mesenchymal proliferation, osteoblastic and chondrogenic differentiation [52]. Anti-apoptotic 

effects of WISP1 through PI3K and Akt pathways were described in some tissues [53]. 

WISP1 is overexpressed in different types of cancer including invasive of 

cholangiocarcinoma [54]. Thus, WISP1 is an important regulator of apoptosis and autophagy 

in healthy state and in acute or chronic degenerative diseases [53]. Our research 

characterized WISP1 as a novel adipokine linking obesity to inflammation and insulin 

resistance in humans [55]. 
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1.4. Day-time-dependent regulation of human metabolism 

Circadian clock described in most of living organisms synchronizes energy intake and 

expenditure with the day/night cycle and controls major components of energy homeostasis 

[56]. The master clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus 

adjusts subordinate clocks in peripheral tissues and organs via nervous and humoral 

mechanisms [56, 57] (Figure 3).  

Two interlocked feedback loops are major parts of the molecular clock – (1) the main 

loop enclosing genes PER and CRY which are up-regulated by transcription factors CLOCK 

and BMAL1 and down-regulated by PER and CRY proteins and (2) an additional loop 

including BMAL1 and CLOCK activators ROR/RORγ and repressors REV-ERBα/REV-

ERBβ [56]. This machinery orchestrates functions of numerous tissue-specific genes 

including clock-controlled transcription factors [56, 57]. A lot of components of carbohydrate 

and lipid homeostasis, detoxification pathways, and immune reactions (in total, 5-25% of the 

transcriptome and metabolome) are under the circadian control [58-60]. 

Both human studies in shift workers and animal models with genetic knockout of clock 

components elucidated the importance of circadian clocks in the regulation of metabolism 

[61-63]. Conversely, clock system is itself regulated by metabolic signals modulating 

circadian gene expression and behavior. Rodent studies showed that beside of light, food 

quantity and feeding time are dominant external stimuli entraining peripheral clocks [64, 65] 

(Figure 3). In particular, a calorically dense high-fat diet (HFD) induces alterations of 

behavioral and molecular circadian rhythms in mice [60, 64, 66]. Many metabolic 

disturbances like obesity, T2DM, metabolic syndrome and cardiovascular disease are 

associated with alteration of clock oscillations [67-69]. In human adipose tissue, diurnal 

rhythms of gene expression are acutely changed by food intake or fasting [59]. As shown in 

mice, insulin represents one of major humoral signals contributing to the feeding-induced 

circadian entrainment in liver and adipose tissue [70]. However, little is known about the 

effect of food composition on circadian mechanisms in humans and its role in metabolic 

regulation. 
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Figure 3. Mammalian central and peripheral clocks. 
Circadian clock in mammals includes master clock in SCN of hypothalamus and peripheral clock. SCN 
rhythms are entrained by light which is absorbed through the retina and is transmitted to the SCN. The 
master clock then adjusts rhythms of peripheral oscillators via humoral factors or autonomic 
innervation. As a result, many physiological processes including food absorption, hormone secretion, 
fat accumulation and inflammation exhibit circadian oscillations. Caloric restriction and feeding time 
can also entrain circadian rhythms affecting peripheral clocks or the central clock in the SCN. Figure 
adapted from [57]. 
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1.5. Objectives 

Main objectives of selected research work were: 

1) to examine the relationship between hepatic insulin clearance (HIC) and different 

components of metabolic syndrome and to test the hypothesis that HIC may predict the risk 

of metabolic syndrome; 

2) to investigate whether insulin may acutely regulate the expression of natriuretic peptide 

(NP) receptors in the adipose tissue and in this way affect NP levels; 

3) to characterize the expression of receptors to nutrition-associated factors (nutrient 

components, neuropeptides involved in the control of gastrointestinal functions, and 

gastrointestinal hormones) in human peripheral blood monocytes and monocyte-derived 

macrophages and to elucidate their functional significance in the regulation of the adipose 

tissue inflammation; 

4) to elucidate a role of CCN family member WISP1 as a novel adipokine related to insulin 

resistance and adipose tissue inflammation and to clarify its functions in human adipocytes 

and macrophages; 

5) to study whether isocaloric changes of food composition may entrain central and 

peripheral clock in humans and in this way contribute to the metabolic and inflammatory 

regulation. 

  



16 
 

2. Results of selected original papers 

2.1. Hepatic insulin clearance is closely related to metabolic syndrome components 

Original paper 1 

Pivovarova O*, Bernigau W*, Bobbert T, Isken F, Möhlig M, Spranger J, Weickert MO, 
Osterhoff M, Pfeiffer AF, Rudovich N. Hepatic insulin clearance is closely related to 
metabolic syndrome components. Diabetes Care. 2013 Nov; 36(11):3779-85. 

* shared first authorship 

http://dx.doi.org/10.2337/dc12-1203 

 

Insulin clearance is decreased in T2DM but mechanisms of this effect are unknown [10, 12-

14]. Individuals with metabolic syndrome demonstrate hyperinsulinemia and an increased 

T2DM risk. In our study, we examined how HIC is associated with various components of 

metabolic syndrome and proved the hypothesis whether HIC predict the risk of metabolic 

syndrome [18]. For this, we studied nondiabetic individuals from the Metabolic Syndrome 

Berlin Brandenburg (MeSyBePo) study (800 subjects at the baseline and 189 subjects from 

the MeSyBePo recall study). An oral glucose tolerance test (OGTT) was performed in all 

study subjects and insulin secretion (insulin secretion rate [ISR]) was assessed using the 

two-compartment model of C-peptide kinetics [71]. The Harmonizing Criteria of the Metabolic 

Syndrome were used for the discrimination of metabolic syndrome [6]. Two indices of HIC 

were calculated - HICC-peptide (AUCC-peptide 0–120 min/AUCinsulin 0–120 min) and HICISR (AUCISR 0–120 

min/AUCinsulin 0–120 min) [13] where AUC is an incremental area under the curve.  

At baseline, both HIC indices were lower in subjects with metabolic syndrome (P < 

0.001) [18]. We found inverse relationships of HIC indices with waist circumference, 

triglycerides, diastolic blood pressure, fasting glucose, and insulin secretion index assessed 

in OGTT [72], and positive HIC correlation with OGTT-derived insulin sensitivity index (Gutt 

ISI0,120) [73]. At the follow-up after 5.1 ± 0.9 years, 47 new cases of metabolic syndrome and 

33 new cases of impaired glucose metabolism were detected. We also observed a trend 

towards an association of both HIC indices with elevated risk of metabolic syndrome (odds 

ratio 1.13 [95% CI 0.97–1.31], P = 0.12 and 1.38 [0.88–2.17], P = 0.16 for HICC-peptide and 

http://dx.doi.org/10.2337/dc12-1203
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HICISR, respectively) and impaired glucose metabolism (odds ratio 1.12 [0.92–1.36], P = 0.26 

and 1.31 [0.74–2.33], P = 0.36 for HICC-peptide and HICISR, respectively) [18]. 

We concluded that HIC is associated with various components of metabolic 

syndrome, markers of insulin sensitivity and insulin secretion, and risk of metabolic syndrome 

[18]. Thus, HIC decrease may be a novel pathophysiological mechanism of the metabolic 

syndrome. 
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2.2. Insulin up-regulates natriuretic peptide clearance receptor expression in the 

subcutaneous fat depot in obese subjects 

Original paper 2 

Pivovarova O, Gögebakan Ö, Klöting N, Ernst A, Weickert MO, Haddad I, Nikiforova VJ, 
Bergmann A, Kruse M, Seltmann A, Blüher M, Pfeiffer AFH, Rudovich. N. Insulin up-
regulates natriuretic peptide clearance receptor expression in the subcutaneous fat depot in 
obese subjects: a missing link between CVD risk and obesity? J Clin Endocrinol Metab. 
2012; 97(5):E731-9. 

http://dx.doi.org/10.1210/jc.2011-2839 

 

Natriuretic peptide levels are decreased in obesity [26-28]. Central obesity is typically 

accompanied by a hyperinsulinemia induced by insulin resistance and resulting in a range of 

metabolic disturbances [4]. Here, we hypothesized that insulin may acutely regulate 

expression of NPRs in human adipose tissue [29]. To investigate this, we firstly measured 

mRNA levels of NPRA, NPRB and NPRC genes in paired samples of visceral (VAT) and 

subcutaneous (SAT) adipose tissue from 157 subjects (108 with T2DM) using quantitative 

real-time PCR (qRT-PCR). Expression of NPRA and NPRC was higher in VAT than in SAT 

(p<0.01). NPRC mRNA expression in VAT and SAT showed a strong correlation with fasting 

insulin levels (r=0.65, p=0.04X10-3 and r=0.54, p=0.002, respectively). NPRB expression was 

lower in VAT than in SAT in subjects with T2DM and was lower compared with nondiabetic 

subjects [29]. 

Furthermore, the acute effect of insulin on NPR expression in SAT was studied in 

euglycemic-hyperinsulinemic and hyperglycemic-hyperinsulinemic clamp experiments in non-

diabetic male subjects with moderate obesity (n=14) [29]. In the hyperinsulinemic-euglycemic 

clamp experiments, effects of high insulin concentrations in the presence of normal glucose 

concentration were studied, and in hyperinsulinemic-hyperglycemic clamp experiments, 

simultaneous effects of high insulin and high glucose concentrations were analyzed. NPRC 

mRNA expression was increased in both euglycemic- and hyperglycemic-hyperinsulinemic 

clamps (74.7%, P = 0.038; and 26.2%, P = 0.048, respectively). We additionally analyzed 

http://www.ncbi.nlm.nih.gov/pubmed?term=Insulin%20up-regulates%20natriuretic%20peptide%20clearance%20receptor%20expression%20in%20the%20subcutaneous%20fat%20depot%20in%20obese%20subjects%3A%20a%20missing%20link%20between%20CVD%20risk%20and%20obesity%3F
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plasma levels of MR-proANP, a stable N-terminal fragment of proANP [74]. In both clamp 

experiments, a significant reduction of MR-proANP by about 20% from basal values was 

observed. Similar results were received in the other cohort of the normotensive subjects with 

normal glucose tolerance underwent the hyperinsulinemic-euglycemic clamp (n=25) [29]. In 

this cohort, we observed correlations of fasting MR-proANP levels with age, diastolic blood 

pressure, and insulin sensitivity index (r = 0.539, P = 0.005; r = −0.396, P = 0.049; and r = 

0.410, P = 0.042, respectively).  

To address interactions between adipocytes and infiltrating macrophages in adipose 

tissue [75], we additionally conducted experiments in the culture of primary human 

macrophages and blood monocytes as macrophage precursor cells and examined the 

influence of insulin and glucose on the NPR expression. All three types of NPR were 

expressed in macrophages but only NPRB and NPRC expression was found in monocytes. 

Simultaneous insulin and glucose treatment increased NPRC expression in monocytes 

(70.2%, p=0.01), but not in mature macrophages [29]. 

We concluded that insulin can acutely increase NPRC expression in SAT 

independently of circulating glucose concentrations. Thus, an insulin-induced suppression of 

circulating NP via up-regulation of NPRC expression may be a novel link between 

hyperinsulinemia and obesity [29]. 



40 
 

2.3. Novel regulators of adipose tissue inflammation 

Obesity, T2DM, and associated metabolic diseases are characterized by the low-grade 

systemic inflammation which involves interplay of nutrition and monocyte/macrophage 

functions [31, 35]. Monocytes play a pivotal role in immune functions and metabolic 

regulation [75, 76]. They are able to respond to nutrient-related hormonal stimuli such as free 

fatty acids [77] and present macrophage precursor cells. Therefore, human primary blood 

monocytes and monocyte-derived macrophages were used in following two studies as an 

exciting model for the investigation of molecular mechanisms of the low-grade inflammation 

in adipose tissue. 

 

Original paper 3 

Pivovarova O, Hornemann S, Weimer S, Lu Y, Murahovschi V, Zhuk S, Seltmann A, 

Malashicheva A, Kostareva A, Kruse M, Busjahn A, Rudovich N, Pfeiffer AFH. Regulation of 
nutrition-associated receptors in blood monocytes of normal weight and obese humans. 
Peptides. 2015 Mar;65:12-19. 

http://dx.doi.org/10.1016/j.peptides.2014.11.009 

 

In this study [42], we suggested that some nutrition-associated factors may influence immune 

cell functions and in this way contribute to the pathogenesis of metabolic diseases. We 

therefore measured the mRNA expression of twelve nutrition-associated receptors in 

peripheral blood mononuclear cells (PBMC), isolated monocytes and monocyte-derived 

macrophages using qRT-PCR. The mRNA expression of receptors for short chain fatty acids 

(GPR41, GPR43), bile acids (TGR5), incretins (GIPR, GLP1R), cholecystokinin (CCKAR), 

neuropeptides VIP and PACAP (VIPR1, VIPR2), and neurotensin (NTSR1) was detected in 

PBMC and monocytes, while GPR41, GPR43, GIPR, TGR5, and VIPR1 were found in 

macrophages [42].  

We also compared receptor expression patterns in two polarized subtypes of 

monocyte-derived macrophages, GM and M macrophages, which demonstrate 

characteristics similar to M1 and M2 adipose tissue macrophages, respectively [78-80]. We 
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found higher GPR43 and lower TGR5 and VIPR1 expression in M macrophages compared 

with GM macrophages. During the in vitro differentiation, expression levels of all studied 

receptors decreased dramatically compared to the monocyte expression already at day 1 of 

differentiation in both macrophage subtypes [42]. After the lipopolysaccharide (LPS) 

treatment, we found an up-regulation of GIPR, GPR41, GPR43, and VIPR1 in monocytes 

and/or macrophages [42]. In most experiments, these effects were observed already by the 

lowest LPS concentration employed (1 ng/ml). 

Furthermore, we analysed receptor expression in monocytes of thirty non obese 

individuals with normal glucose tolerance. Receptor expression in monocytes correlated with 

a range of metabolic and inflammatory markers such as body fat content, fasting glucose, 

total cholesterol, leucocyte count, and serum IL6 levels (p<0.05) [42]. The dietary switch from 

the high-carbohydrate low-fat diet to the low-carbohydrate high-fat isocaloric diet induced the 

increase of GPR43 and VIPR1 expression in monocytes by 28% (p=0.030) and 12% 

(p=0.041), respectively. However, no significant differences of receptor expression between 

normal weight and moderately obese subjects were found (n=16) [42].  

In conclusion, our study characterized for the first time expression patterns of 

nutrition-associated receptors in primary human monocytes and macrophages and 

elucidated possible links between metabolic responses and immune functions in 

pathogenesis of the adipose tissue inflammation. 
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Original paper 4 

Murahovschi V*, Pivovarova O*, Ilkavets I, Dmitrieva RM, Döcke S, Keyhani-Nejad F, 
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WISP1, a target gene of the WNT signaling pathway, is a member of the CCN family of 

secreted extracellular matrix-associated proteins [47]. Other CCN family members are shown 

to be closely linked to adipogenesis [43, 48, 50], but no data existed about the role of 

WISP1/CCN4 in the pathogenesis of obesity and associated diseases. In our study, we 

validated WISP1 as a novel adipokine [55].  

We found that WISP1 mRNA expression and WISP1 protein secretion in the culture 

medium were up-regulated during the ex vivo differentiation of human adipocytes from 

mesenchymal stem cells [55]. Further, we investigated the WISP1 mRNA expression in 

human paired SAT and VAT samples from lean and overweight subjects with normal glucose 

tolerance (n=75). WISP1 was highly expressed in VAT and moderately expressed in SAT. 

We observed negative correlations of WISP1 mRNA levels with insulin sensitivity and blood 

adiponectin levels and positive correlations with fasting insulin, macrophage infiltration in 

SAT and VAT and visceral fat content  (p<0.05) [55]. 

In the macrophage culture, but not in adipocytes, we found that WISP1 induces the 

dose-dependent increase of IL6, TNFA, IL1B, and IL10 mRNA expression and secretion in 

the culture medium [55]. Furthermore, the WISP1 treatment (500 ng/ml for 24h) increased 

the expression of M1 markers CCR7 and COX2 and suppressed the expression of 

antiinflammatory M2 markers which suggests the modulation of the macrophage polarization 

towards proinflammatory M1 phenotype [55].  

After the weight loss (at least 8% after 8 weeks of the hypocaloric diet), WISP1 

mRNA expression in SAT (n=49) decreased in whole cohort, and circulating WISP1 levels 

http://dx.doi.org/10.2337/db14-0444
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were reduced only in female participants, but not in males [55]. In mice, WISP1 expression 

was up-regulated in the epididymal fat tissue, liver and muscle after 6 weeks of HFD (n=7). In 

patients with nonalcoholic fatty liver disease, no associations between disease activity score, 

liver fat content, and hepatic WISP1 mRNA expression were found (n=47) [55].  

Insulin (100nM for 4 h) increased WISP1 expression in human adipocytes in vitro. 

However, no acute insulin effect on WISP1 expression in SAT were found in overweight 

subjects in hyperinsulinemic clamp experiments (n=14) [55].  

Our data suggest that WISP1 may contribute to the link between obesity, 

inflammation and insulin resistance and could be a perspective molecular target for obesity 

treatment. 
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2.4. Changes of dietary fat and carbohydrate content alter central and peripheral clock 

in humans 
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The circadian clock coordinates numerous metabolic processes to adapt physiological 

responses to light-dark and feeding regimens and is itself regulated by metabolic cues. 

However, it is unknown whether alterations of food composition influence circadian rhythms 

in humans. 

We examined whether an isocaloric change of the food composition affects central 

and peripheral circadian clock in humans [81]. For this, we performed detailed analysis of 

diurnal oscillations of salivary cortisol and of the gene expression in human blood monocytes 

as a minimally invasive method of monitoring human clock. Because monocyte samples 

were available only at three time points during the investigation day (at 8.00 am, 11.15 am, 

and 3.45 pm), we established the mathematical method of the prediction of the 24h diurnal 

rhythms based only on the three-point-sampling. We fitted data of all donors together to the 

sinus models, allowing the estimation of averaged values for mesor, amplitude and peak time 

[81]. Moreover, we additionally evaluated our method using bootstrapping and simulation 

approaches and the comparison with frequently sampled microarray data set [82]. Using the 

procedure of diurnal rhythm prediction by three-time-point data, we described diurnal 

oscillations of core clock genes and metabolic and inflammatory genes in monocytes of 

twenty-nine non obese healthy individuals before and after the switching from high-

carbohydrate low-fat to low-carbohydrate high-fat isocaloric diet [81]. 
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Salivary cortisol rhythm used for the assessment of the central clock function showed a 

phase delay and an amplitude increase one and six weeks after the dietary switch. The 

change of the food composition also affected diurnal oscillations of peripheral clock genes 

(PER1, PER2, PER3 and TEF) and inflammatory genes (CD14, CD180, NFKBIA, and IL1B) 

in blood monocytes [81]. Particularly, we found that the mesor and amplitude of PER1, 

PER2, and PER3 oscillations increase after the dietary switch without any shifts of 

acrophase. The dietary switch also affected the expression of non-oscillating fat oxidation 

genes ACOX3 (acyl-CoA oxidase 3) and IDH3A (isocitrate dehydrogenase 3 alpha) and 

energy metabolism gene SIRT1 [81]. Clock gene expression in monocytes, but not salivary 

cortisol levels, tightly correlated with blood lipid levels (total and LDL cholesterol, and 

triglycerides) and with expression of metabolic and inflammatory genes [81].  

We concluded that isocaloric changes of the dietary fat and carbohydrate content 

modulate the function of the central and peripheral circadian clocks in humans [81]. 
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3. Discussion 

3.1. Role of decreased insulin clearance in the pathophysiology of metabolic 

syndrome 

Decreased HIC is found in T2DM, metabolic syndrome and associated diseases and can be 

considered as an early phenotypical marker of insulin metabolism disturbances [10, 12-14]. 

In our study [18], we found an association of two HIC indices derived in OGTT with different 

components of metabolic syndrome, insulin secretion and insulin sensitivity markers, and a 

trend towards possible association of HIC with an increased risk of metabolic syndrome. In 

obesity, a first step in the development of insulin resistance is obviously the disturbance of 

hepatic insulin metabolism [83]. In opposite, HIC increases upon the weight loss in both 

humans [83] and animals [84]. In our study, we found lower HIC in glucose tolerant subjects 

with metabolic syndrome compared with subjects without metabolic syndrome [18]. This 

points out that the alteration of insulin clearance may precede the manifestation of glucose 

metabolism disturbances. In our hyperinsulinemic-euglycemic clamp experiments published 

previously [15], we showed a strong correlation of the OGTT-derived HIC with metabolic 

insulin clearance. Therefore, HIC assessment may be useful for the early recognition of 

subjects with high risk of metabolic syndrome showing no other signs of impaired glucose 

metabolism. 

Decreased HIC may enhance insulin resistance due to the long-term increase of 

blood insulin concentrations in fasting and postprandial state [17, 85, 86]. Our finding that 

insulin secretion negatively correlates with HIC is in accordance with previously published 

data [87, 88] and may be a physiological mechanism of the HIC regulation by insulin 

secretion. In metabolic syndrome, decreased HIC rather represents an additional element of 

insulin metabolism disturbance dependent on alterations of insulin secretion, but not the 

compensatory response to the decreased insulin sensitivity. The HIC decrease may also be 

involved in the effects diets stimulating insulin secretion (e.g. diets with a high glycemic index 

or high consumption of soft drinks) [89]. Nevertheless, we cannot exclude that HIC is not one 
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of determinant components of metabolic syndrome and only cluster with metabolic syndrome 

[18]. 

Changes of insulin degradation in humans obviously have complex underlying 

mechanisms which are not elucidated in detail [85]. ~75% insulin is removed from blood 

during the first passage through the portal vein, therefore, liver thought to be the main organ 

contributing to the insulin clearance [85, 88]. The major enzyme responsible for insulin 

degradation is the insulin-degrading enzyme (IDE) [85]. Insulin clearance is a highly heritable 

trait [11], and genetic variations within IDE locus are associated with elevated T2DM risk and 

diminished HIC in subjects without diabetes [15]. We showed previously that hyperglycemia 

inhibits the insulin-induced activation of the IDE in HepG2 hepatoma cells [16] and this may 

by a mechanism of the decrease of IDE activity in T2DM [85]. 

The tight correlation of HIC with HDL cholesterol, a marker of liver fat metabolism, 

was found [18]. Kotronen et al. observed the negative HIC correlation with fat content and 

glucose production in liver of subjects with and without diabetes [14]. To summarize, 

decreased HIC is probably the earliest marker of hepatic insulin resistance and is directly 

linked to insulin effects on glucose and lipid metabolism in the liver. Thus, HIC decrease may 

be a novel mechanism of the metabolic syndrome pathophysiology and could be additionally 

applied for early identification of subjects with high risk of metabolic syndrome [18]. 

 

3.2. Natriuretic peptides as a link between cardiovascular and metabolic functions 

NPs play an important role in cardiovascular homeostasis and contribute to the regulation of 

metabolic functions [24]. Central obesity associated with insulin resistance is characterized 

by decreased circulating levels of NP or "natriuretic handicap" [26-28]. Our study 

demonstrated that insulin acutely increases expression of NPRC in human SAT 

independently of blood glucose levels [29]. Expression of NPR in fat depots was studied 

previously in animals, but not in humans [30]. In primates but not in rodents, the NPRA to 

NPRC expression ratio in adipose tissue affect the ANP stimulated lipolysis [22]. High-fat diet 

associated with hyperinsulinemia induces the increase of the expression of all three NPR 
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types in the white and brown adipose tissue of mice and rats [90, 91]. Obese subjects with 

hypertension exhibit elevated levels of NPRC expression in SAT as shown in the first human 

observation [28]. Oppositely, moderate weight loss in humans induces the decrease of the 

NPRA expression in SAT [92]. Furthermore, insulin-deficient mice showed the strong 

reduction of the NPRC expression [30]. In human VAT, NPRA and NPRC expression levels 

are higher than in SAT suggesting that VAT is the target organ for NP effects. Interestingly, 

inhibitory effect of ANP on the proliferation of visceral adipocytes in vitro was found [93]. 

Mice models with increased ANP half-life [23] or elevated levels of the other NPRA ligand, 

BNP [90], demonstrate a lean phenotype. Notably, ANP induces lipolysis in SAT via the 

pathway which is not directly affected by insulin coapplication [94]. Obviously, ANP acts as a 

physiological antagonist of insulin action in the adipose tissue [29]. 

The phenomenon of “natriuretic handicap” in obesity was hypothesized by Dessì-

Fulgheri et al. [28] who observed the inverse relationship between ANP levels in circulation 

and elevated NPRC expression in adipose tissue of hypertensive obese patients. In subjects 

without manifest cardiovascular disease, the decline of cardioprotective hormones ANP and 

BNP in circulation may elevate a long-term risk of cardiovascular disease similarly to the 

metabolic syndrome and central obesity [19-21]. In our study, we found the strong correlation 

of the NPRC expression in VAT and SAT with fasting insulin levels, which was independent 

of other anthropometric parameters or glycemic control, pointing out that insulin may directly 

regulate NPRC expression in adipose tissue [29]. In our clamp experiments performed in 

obese subjects, an acute insulin infusion increased NPRC expression in SAT independent of 

glucose concentration which supports this hypothesis [29]. Nakatsuji et al. showed in vitro 

that insulin can increase NPRC expression due to the activation of the phosphatidylinositol 

phosphate-3 kinase pathway [30], and the same pathway is involved in the inhibition of 

adipocyte lipolysis. The NPRC up-regulation by insulin could accelerate the ANP removal 

from circulation which contributes to the opposed effects of ANP and insulin in the regulation 

of lipolysis [95]. In a like manner, the sodium-retaining actions of insulin counteracts with 

natriuretc effect of ANP in hyperinsulinemic state [94].  
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Our additional experiments in the culture of primary human monocytes and 

macrophages revealed that simultaneous insulin and glucose treatment increases the NPRC 

expression in monocytes, but not in mature macrophages [29]. Hence, the NPRC increase in 

SAT observed in our in vivo experiments arises most likely from adipocytes or adipocyte-

macrophage interactions but not from adipose tissue macrophages alone [29]. 

To conclude, acute insulin stimulation increases the NPRC expression in SAT and 

down-regulates MR-proANP levels in circulation independent of blood glucose 

concentrations. Therefore, circulating levels of NPs in obesity may be suppressed by insulin 

via increase of NPRC expression. Thus, our study revealed a novel direct link between 

hyperinsulinemia and cardiovascular components of the metabolic syndrome [29]. 

 

3.3. Nutrition-dependent mechanisms of adipose tissue inflammation 

Mechanisms of the low-grade inflammation in adipose tissue associated with several 

metabolic diseases are not fully understood. In our study [42], we hypothesized that some 

nutrition-associated factors may influence immune cell functions in humans.  

We demonstrated the mRNA expression of receptors for short chain fatty acids, bile 

acids, incretins, cholecystokinin, neuropeptides VIP and PACAP, and neurotensin in PBMC 

and monocytes [42]. Moreover, we provided the first evidence that GIPR, GPR41, and 

GPR43 mRNA are expressed in primary human macrophages. Thus, we extended the 

expression profiling of these receptors previously described in other types of human immune 

cells or rodent macrophages [96-98]. In humans, short chain fatty acid receptors GPR41 and 

GPR43 were shown to be expressed in PBMC, dendritic cells, lymphocytes, monocytes, and 

neutrophiles [99-101]. GIPR mRNA was described previously only in the human U937 

monocyte cell line [102]. In opposite to literature data, we detected no FXR mRNA in any of 

studied cell types [103, 104]. 

Interestingly, during the macrophage differentiation, the mRNA expression of all 

studied receptors was dramatically down-regulated and was very low in mature 
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macrophages [42]. This may point to a more important role of these receptors in circulating 

monocytes rather than in mature cells.  

To mimic the systemic inflammation state, we also studied receptor expression in 

monocytes and macrophages after the 24h LPS treatment [42]. Bacterial endotoxin LPS is 

an effective activator of an immune response, macrophage migration and maturation in vitro 

and in vivo [105, 106]. In human serum, bacterial endotoxin activity is associated with the 

components of the metabolic syndrome - dyslipidemia, insulin resistance, obesity, and 

chronic inflammation [107]. An increase of plasma endotoxin concentration was recently 

showed in the postprandial state in humans [108]. 

In our study, the LPS treatment in monocytes and macrophages induced an increase 

of GIPR, GPR41, GPR43, and VIPR1 expression observed mainly already by the lowest LPS 

concentration employed [42]. Therefore, a potential physiological role of these receptors in 

monocytes and in tissue resident macrophages during systemic inflammation can be 

assumed. Particularly, the up-regulation of GPR41 and GPR43 by LPS may enhance the 

antiinflammatory effects of short chain fatty acids [99] in the postprandial state, representing 

an unknown compensatory self-regulating mechanism. 

Furthermore, we observed a range of relationships of receptor expression in 

monocytes with metabolic and inflammatory markers. In particular, the GPR43 expression 

was associated with body fat content and serum IL6 level [42]. GPR43 is activated by short-

chain fatty acids which are produced by microbial fermentation of dietary fiber in the gut. 

GPR43 is involved in the regulation of host energy homeostasis in the gastrointestinal tract 

and adipose tissues [109] and in the regulation of inflammatory reactions by short chain fatty 

acids [99, 110]. In our study, we provided the evidence that the isocaloric change of food 

composition can change the GPR43 expression in blood monocytes and in this way may 

affect the inflammatory reactions [42]. 

We also found the correlation of the VIPR1 expression with fasting glucose, total and 

LDL cholesterol and an increase of VIPR1 mRNA levels after the switch to the isocaloric 

HFD [42]. VIPR1 agonists showed antihyperglycemic, antioxidant and antiinflammatory 
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effects in streptozotocin-induced diabetic mice [111] and prevented elevations in body 

weight, plasma glucose, cholesterol and triglycerides in the model of HFD-induced obesity 

[112]. Interestingly, VIPR1 expression in monocytes was increased 6h and 24 h after the 

LPS injection in humans [113]. Therefore, the dietary-induced VIPR1 increase found in our 

study could be associated with low-grade endotoxemia induced by the consumption of high-

fat meals [108]. 

In conclusion, our data suggest that nutrition-associated receptors and corresponding 

signaling pathways may play an important role in the regulation of low-grade systemic 

inflammation [42]. Further experiments are needed to elucidate the functional significance of 

these receptors in monocytes and macrophages in humans and their contribution to the 

pathophysiology of metabolic diseases. 

 

In the other study [55], we characterized for the first time WISP1, a CCN family member, as a 

novel adipokine which may be involved in the regulation of adipose tissue inflammation via 

the stimulation of cytokine response in macrophages.  

We found that WISP1 mRNA expression and WISP1 protein secretion are up-

regulated during the human adipocyte differentiation [55]. In opposite to WISP2, another 

CCN family member [49], WISP1 expression in VAT is higher than in SAT. Based on the 

found WISP1 correlations with insulin sensitivity, adiponectin levels and visceral fat content, 

WISP1 could be a used as a marker of insulin resistance and visceral fat accumulation [55]. 

Additionally, a positive correlation of WISP1 expression with macrophage number in both 

SAT and VAT was observed [55].  

Moreover, WISP1 treatment induced a dose-dependent increase of proinflammatory 

cytokine production in human differentiated macrophages, but not in in adipocytes [55]. 

Interestingly, macrophage polarization was shifted by WISP1 stimulation towards 

proinflammatory M1 phenotype [55]. In murine RAW 264.7 macrophages, WISP1 induced a 

dose-dependent increase of the mRNA expression of extracellular matrix degrading enzyme 

[114]. We hypothesize that WISP1 secreted by adipocytes may hereby regulate function and 
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migration of macrophages in adipose tissue. In consideration of the association with insulin 

sensitivity, WISP1 may be characterized as an adipokine involved in the control of 

macrophage function [55]. 

After the weight loss, WISP1 mRNA expression in SAT and circulating WISP1 levels 

were reduced in female subjects [55]. Hepatic WISP1 expression was not up-regulated in the 

subjects with nonalcoholic fatty liver disease [55]. Furthermore, no correlation links between 

hepatic WISP1 expression and biochemical and anthropometrical obesity markers were 

found pointing out that WISP1 apparently does not contribute to the fat accumulation in liver 

[55]. Obviously, alterations of circulating WISP1 levels induced by the weight loss originate 

from adipose tissue rather than from the liver or other organs. Interestingly, an association of 

NOV, another CCN family member, with obesity was described, and its plasma levels were 

reduced by the weight loss after the bariatric surgery [48]. The weight loss induced decrease 

of CCN proteins in circulation may be explained by down-regulation of the WNT signalling 

pathway in muscle and adipose tissue. Further, WISP1 up-regulation is associated with 

different cancer types [115]. Central obesity and metabolic syndrome are independent risk 

factors for cancer [20], and therefore WISP1 could be also used as a marker of cancer risk in 

obesity, but this speculation needs further investigation.  

Insulin controls numerous aspects of adipocyte differentiation and function [116]. 

Experiments in murine preadipocytes showed that insulin and WNT signalling pathways can 

interact at multiple levels [117]. The PI3K/Akt pathway mediates both antiapoptotic and 

proliferative WISP1 effects [53], therefore we hypothesized that WISP1 affects insulin 

pathway. However, we did not found WISP1 effects on the insulin signaling in vitro; 

conversely, activation of insulin signalling augmented WISP1 expression in human 

adipocytes [55]. Nevertheless, in vivo, WISP1 expression in SAT was not affected by short 

hyperinsulinemia during clamp experiments [55]. Possibly, chronic insulin exposure is 

needed to induce significant changes of the WISP1 expression in vivo. 

To conclude, our study characterized WISP1 as a novel adipokine with high 

expression in VAT from obese humans which is associated with insulin resistance and 
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adipose tissue inflammation. WISP1 expression in adipose tissue and circulating WISP1 

levels are regulated by weight changes. We therefore suggest that WISP1 represents a 

novel link between inflammation and obesity and could be a perspective molecular target for 

obesity treatment [55]. 

 

3.4. Circadian mechanisms in human metabolic responses to food intake 

Effects of food and feeding regimens on circadian clock are intensively studied in rodents, 

but not in humans. In our study [81], we performed analysis of diurnal oscillations of salivary 

cortisol and of the gene expression in blood monocytes and their response to the change of 

food composition in humans.  

For this, we used the procedure of diurnal rhythm prediction by three-time-point data 

[81] similarly to approaches described in recently published human chronobiological studies 

[63, 118]. Bootstrapping and simulation approaches used for additional evaluation of our 

method confirmed that the procedure allows analysing rhythmic parameters of clock 

oscillations with a reasonable accuracy and a good amplitude-to-noise ratio. Our method can 

be used for studying human circadian clock in outpatient departments and other conditions 

when the 24h frequent blood sampling is technically not feasible. 

Using this method we showed for the first time that the alteration of the dietary fat and 

carbohydrate content affects central and peripheral circadian clock in humans [81]. In 

animals, circadian rhythms of clock genes and metabolic genes and eating behaviour are 

showed to be changed upon the feeding with a hypercaloric HFD [60, 64, 66, 119]. Notably, 

important clock components, genes Period and TEF, were affected by dietary switch in our 

study which confirms their implication in the metabolic regulation described previously in 

mice [120, 121]. Per2-/- mice developed significant obesity on a hypercaloric HFD [62]. In 

human adipose tissue, Period expression levels correlate with waist circumference, blood 

cholesterol levels [122], expression of metabolic genes and cytokines [59], and this is in 

agreement with our findings in human monocytes.  
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In our study, we also demonstrated diurnal oscillations of key fat metabolism genes in 

human monocytes. In the afternoon, the expression of fatty acid synthase (FASN), the key 

enzyme of fatty acid biosynthesis, was up-regulated and the expression of carnitine palmitoyl 

transferase 1 (CPT1A), the rate limiting enzyme of mitochondrial fat oxidation, was 

decreased [81]. Obviously, these changes of gene expression reflect diurnal variations of the 

fat oxidation and fat synthesis previously characterized in rodents and probably also existing 

in humans [123]. Other components of fat metabolism, e.g. intestinal lipid transport, de novo 

lipid synthesis and adipokine secretion, are also regulated by circadian clock [124-126]. 

Moreover, expression levels of non-oscillating fat metabolism genes were also altered by the 

dietary switch. We found down-regulation of the ACOX3 expression and up-regulation of 

IDH3A expression involved in peroxisomal and mitochondrial fatty acid oxidation, 

respectively. Numerous connections of clock genes with fat oxidation genes IDH3A and 

CPT1A were additionally confirmed in our network analysis.  

Further, in human monocytes, we observed diurnal variations of genes involved in the 

LPS-triggered response (CD14, CD180, NFKBIA, and IL1B) which were showed previously 

in murine macrophages [58]. Both immune cell number and function including cytokine 

expression, phagocytosis and lytic activity, are under the clock control [58, 127] and are 

affected by circadian disruption [128]. Indeed, we observed remarkable relationships of clock 

genes with cytokines in the correlation analysis. Moreover, we showed that the change of the 

food composition alters diurnal oscillations of inflammatory genes in monocytes [81]. Even in 

healthy subjects, fatty meal consumption is known to induce the postprandial low-grade 

inflammatory response [108]. This can lead to the dysregulation of peripheral circadian 

rhythms, because systemic inflammation can reset the peripheral circadian clock [129, 130]. 

However, whether dietary switch to HFD firstly affect clock functions and in this way indirectly 

change metabolic and inflammatory pathways in monocytes, or vice versa, is not clarified.  

Murine metabolome and transcriptome studies demonstrated that the HFD consumption 

lead to the profound reorganisation of metabolic pathways including the disruption of normal 

circadian cycles and genesis of de novo oscillating transcripts [60]. This reprogramming is 
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mediated by the impairment of CLOCK:BMAL1 chromatin recruitment and cyclic activation of 

surrogate pathways via transcription factors PPARɣ, SREBP-1, CREB1, and SRF [60]. 

Changes of the activity of NAMPT/SIRT1 pathway, PPARα/PPARγ [131, 132], AMPK, and 

redox state [133-135] are also involved in disruption circadian rhythmicity by HFD. 

In conclusion, we demonstrated that the dietary fat and carbohydrate content alters 

diurnal rhythms of central and peripheral clock and inflammatory genes in humans. Our data 

confirm the tight relationship between molecular clock and metabolic and inflammatory 

pathways involved in adaptation of energy metabolism to changes of food composition [81]. 

Further studies are needed to investigate exact mechanisms of the effects of food 

composition and the role of clock genes in metabolic and immune responses to nutritional 

signals in humans. 
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4. Summary 

Many important pathophysiological aspects of metabolic disturbances remain poorly 

understood. The present work elucidated following mechanisms of metabolic regulation in 

humans: 

1) Hepatic insulin clearance is associated with several components of metabolic syndrome 

and markers of insulin secretion and insulin sensitivity. Decreased insulin clearance may be 

a novel mechanism of the metabolic syndrome pathophysiology and could be additionally 

applied for early identification of subjects with high risk of metabolic syndrome. 

2) Insulin increases expression of natriuretic peptide clearance receptor (NPRC) in 

subcutaneous adipose tissue and decreases circulating levels of MR-proANP independently 

of circulating glucose concentrations. Thus, insulin may reduce natriuretic peptide levels in 

circulation via up-regulation of NPRC expression providing a new link between 

hyperinsulinemia and obesity. 

3) Novel mechanisms contributing to the progression of the adipose tissue inflammation were 

characterized. Firstly, human monocytes and macrophages were found to express a panel of 

nutrition-associated receptors suggesting that an activation of corresponding signaling may 

regulate the low-grade inflammation in adipose tissue. Secondly, WISP1 was validated as a 

novel human adipokine which is released by adipocytes and stimulates cytokine responses 

in macrophages.  

4) Dietary fat and carbohydrate content alters diurnal rhythms of central and peripheral clock 

in humans. The tight crosstalk between clock genes and metabolic and inflammatory 

pathways demonstrated for the first time the important role of molecular clock in metabolic 

adaptations to food composition changes in humans. 
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