CHAPTER 4

Three-dimensional radiative transfer simulations

Several approaches have been invented to solve the RT equation. The solution methods
may be divided into two groups. The first group is based on an analytical transformation
of the RT equation into a form which allows the solutions of the transformed equation.
Among those methods are: 1) the matrix operator method (Plass et al., 1973; Fell and
Fischer, 2001; Schrdder et al., 2003), 2) discrete ordinates (Stamnes et al., 1988), and 3)
invariant embedding (Mobley, 1994). In all cases, the vertical variability of atmospheric pa-
rameters relevant for RT need to be approximated by a certain amount of layers. The layers
are assumed to be homogeneous in horizontal directions. Probably the only exception is
an extended discrete ordinate method from Evans (1998) (SHDOM), which is applicable
two 3d input fields and numerically effective. The second group is called Monte Carlo
methods. Monte Carlo methods are the most general technique for a numerical solution
of the radiative transfer equation. Especially, they are applicable to 3d RT problems with
arbitrary optical properties and without any assumptions or simplifications. Even though
the Monte Carlo method is time consuming for optical thick and spatially large fields, the
3d RT simulations in this work are conducted by this method.

The Monte Carlo model used in this work is based on a model described by Petty
(1994). It relies on classical Monte Carlo methods and was extended by the author to ac-
count for local estimates. The next section introduces these two Monte Carlo methods. Af-
terwards statistical aspects of the random nature of Monte Carlo methods and their impact
on the accuracy of nadir reflectances is evaluated. Finally, the last part gives the validation
of the model.

4.1. Classical Monte Carlo methods and local estimates

The Monte Carlo method used for this study is a forward tracing model. In such
a model the photons are inserted at the top of the atmosphere and traced until they are
absorbed or hit a boundary without being reflected. The propagation of each photon is
governed by a set of probability functions. These functions depend upon the physical pro-
cesses and the type of particle which causes the process. They control the distance each
photons travels to the next interaction, the outcome of the interaction (either scattering or
absorption) and the new direction of propagation. According to the scientific demands and
the required accuracies the model domain is divided into grid boxes, each characterised by
specific probability functions and optical parameters. The first half of this section concen-
trates on the explanation of the Monte Carlo method and the derivation of the probability
functions and optical parameters required to run such a model. The outline is oriented at
Mobley (1994). The second half introduces a variance reduction techniques, the so called
local estimates.

After the photon was inserted into the model domain and after each scattering event, it
is assigned an optical path length 7~ which describes the optical length it travels before the
next scattering event occurs and a new 7 is assigned. The probability p of the photon being
absorbed or scattered between 7 and 7+-d is given by Lambeer’s Law, pdT = exp(—7)dr.
Integrating this from zero to infinity equals one and therefore confirms the requirements for
a probability density function. The probability P that the photon is absorbed or scattered
between 7 = 0 and 7 is determined by the cumulative distribution function, P = 1 —
exp(—7). The aim is to use a randomly drawn R to calculate a value for 7. R is a random
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number equally distributed between zero and one. Its probability density function is one for
values within the interval [0,1] and zero elsewhere. In order to apply such an approach the
probability that R, lies in the interval R, + d R, need to be identical to the probability that
7 is within 7 4+ dr. In consequence, both cumulative frequency distributions are identical
and one gets: R, = 1 —exp(—7). It follows with 1 — R, being equally distributed between
zero and one:

T=—InR,. (4.1)
If the random number R is given, the optical path length of the photon between two
interactions, either absorption or scattering, can be determined. By the subdivision of the
model domain in grid boxes each box has to be assigned the volume extinction coefficient.
The optical path of the photon is then accumulated during its propagation through the model
domain until its optical path becomes larger than 7. If the accumulated path is larger than ~
and if the photon has not reached the upper or lower boundary, a scattering or an absorption
event occurs. Then, a new 7 is calculated using Eq. 4.1. In this model periodic boundary
layers are applied.

In case of a scattering event the new propagation direction needs to be determined.
Each photon is characterised by its location and flight direction. The probability of the
photon being scattered in a new direction is given by the product of the phase function /3
and the solid angle centred around the new direction. /3 generally depends on the zenith
and azimuth angle (6 and ¢, respectively), both defining the new direction of the photon
in a coordinate system centred on the direction of the incident photon. It can be assumed
that 6 and ¢ are independent variables, since in the atmosphere the phase function typically
depends on # only. Therefore, 6 is interpreted as the scattering angle ¢, and the probability
of the photon being scattered in the new direction can be interpreted as a product of the
probability density functions for the scattering and azimuth angle, p,, and p4, respectively:

B(W; ¢)singpdypdg = pydippsds. (4.2)
Since the azimuth angle is uniformly distributed in the interval [0, 27], one gets that p.; is
equal to 27 Gsiney. Similar to the previous procedure, the cumulative distribution function
is determined and can be related to a new random number R, being equally distributed
between 0 and 1 (recall the normalisation of the phase function in equation 1.3):

P
Ry =2m / B(1p)sintpdip. (4.3)
0

The inverse cumulative distribution function needs to be provided at each grid box. This
function directly relates the random number R, to the scattering angle . An exemplary
phase function and its inverse cumulative phase function is shown in Figure 4.1. Note,
how the strongly peaked forward scattering part of the phase function is transformed into a
very slow increase of the inverse cumulative phase function. The consequence is that for a
large amount of different R, the related scattering angle is almost constant and in forward
direction. The phase function and its inverse cumulative are calculated for 100,000 discrete,
equidistant values of .
If a similar approach is applied to the azimuth angle ¢ it yields:

¢ = 2mRy (4.4)

with Ry being a third random number equally distributed between 0 and 1. If both angles
are known the new flight direction of the photon can be calculated.

The knowledge of the path of all photons through the medium opens a direct way to
calculate photon path length statistics: The determination of the geometrical path [ between
two scattering events, 7/o..+, and a successive summation of these paths for each photon
provide the probability density function of the photon path lengths, P(1). P(l)dl gives the
probability that the photon has travelled a geometrical path between [ + di. The integral
over P(1)dl must equal unity. Due to numerical constrains the geometrical path is divided
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FIGURE 4.1. Phase function versus scattering angle (left panel) and the
corresponding inverse cumulative phase function as a function of random
number (right panel). This example is based on drop size distributions
given by Deirmandjian (1969) and Mie calculations.
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FIGURE 4.2. Probability density function of photon path length versus
geometrical path. P(l) is determined at an exemplary grid box of the
computations presented in section 5.3.

in 1000 bins with increments depending on the sun zenith angle 6, e.g. 0.04 km for ,=0°.
An exemplary P(1) is presented in Figure 4.2. The artificial cloud, which forms the basis
for the determination of the given result, is described in section 5.3. The cloud top is at 1
km and the surface albedo is set to 0.4. Most of the photons are scattered at the top of the
cloud which explains the peak of P(l) at small photon paths. The location of the maximum
is slightly larger than the mean free photon path, 1/7=0.1 km. The second maximum is
due to reflection of photons at the surface. Its theoretical position can be determined by
(14 1/cos (Ay)) * cloud top height = 2.3 km (g = 38.6° is the sun zenith angle).

Each time the photon encounters a scattering or an absorption event, it has to be de-
cided which of both events actually occurs. In case of absorption, the photon will never
reach the detector. This is computationally inefficient and can be avoided by a new inter-
pretation of the inserted photons: Each photon is not considered as a single photon but as
a packet of photons which is assigned to a weight w = 1 before it is inserted. Every time
a scattering event occurs, the weight of the photon is multiplied with the single scattering
albedo wy. The multiplication can be interpreted as follows: The fraction 1 — wq of the
photon packet is absorbed and wq will be scattered in a new direction. A photon packet is
traced until its weight drops below 10~7.

Despite the above mentioned effort the majority of photons are still ineffective because
they don not intercept with a detector of specific field of view. The photons are detected
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dependent on their flight direction given by the zenith and the azimuth angle (6 and ¢, re-
spectively). In all subsequent computations, these two angles are binned in boxes of 2°x6°,
the former corresponding to the zenith and the latter to the azimuth angle. All photons
not leaving the upper boundary within the field of view of the detector don not contribute
to the signal. Having in mind the random nature of the Monte Carlo method, it follows,
that a very large amount of photons is required to reduce the noise level significantly. The
original version of the model utilised in this work was a backward tracing model developed
by Petty (1994). It was converted to a forward tracing model and adapted to solar radiative
transfer by Ralf Bennartz. Henceforth, the model is named classical Monte Carlo model.

To reduce the noise level variance reduction techniques can be applied. Among them
is the so called local estimate method (Marchuk et al., 1980). The underlying idea of
the local estimate method is that every scattering contributes to the signal measured at a
specific detector position. If the scattering angle v is defined as the angle between incident
direction and the direction to the detector, the probability of the photon being scattered in
the direction of the detector can be calculated by simply multiplying the photon weight and
the phase function value at «. In this case, the product need to be transmitted from the
scattering event to the detector which can be done by an exponential decay given the direct
path and the volume extinction of each box along the path. In this way, the contribution of
every scattering event into the detector is accumulated. The last step is the normalisation
of the signal on the amount of inserted photons. Thus, the radiance L at a specific location
(z;y) at the top of the atmosphere can be determined as follows:

La:y) =1/Nn 3 (Bw»wj (H exp (. <j>>)> @s)

with ¢ being an index of the traversed boxes, 7; the corresponding optical path length, j an
index of the scattering events and IV,,;, the amount of photons inserted in (x; y). In particu-
lar, reflection at the surface is considered as a scattering event with a scattering probability
of cosf, /m (#.: angle between direction of propagation and z-axis). This approach to cal-
culate RT is named local estimate model in the following and was implemented by the
author.

The Monte Carlo simulations yield the reflectance, defined as follows:

nwL(x;y;0; d)

R(x;y;0;0) = Form

(4.6)

with Fy being the incident solar irradiance and 1 the cosine of the sun zenith angle.

An advantage of the local estimate model is that it offers a simple approach to derive
a (multiple-scattering) weighting function. The weighting function provides the user with
information of the origin of the radiation, e.g. most of the signal comes from layers close
to cloud top while lower layers contribute less. Each layer can be assigned a weight which
gives the relative contribution of this layer to the integrated radiation, R = > weight (z).
In order to determine the weighting function, L(z; y) is summed for each scattering event in
every grid box. In other words: Eq. 4.5 is considered to be height dependent. The current
version of the local estimate model allows the determination of the weighting function
for nadir viewing and single columns only. An example is given in Figure 6.4b. Other
approaches to retrieve the weighting function were introduced by Platnick (2000).

In summary, the inverse cumulative phase function, the volume extinction coefficient,
and the single scattering albedo need to be provided at every grid box of the model domain
as input for the classical Monte Carlo model. In addition, the local estimate model requires
the normalised phase function (equation 1.3) and RT calculations in double precision (see
section 4.5).
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FIGURE 4.3. Standard deviation (left panel) and uncertainty (right
panel) versus photon number. The results are extrapolated to a photon
number of 107 (dashed lines).

4.2. The equivalence theorem

The equivalence theorem provides a powerful and widely applicable approach to cal-
culate spectral high-resolution reflectances and was introduced by Irvine (1964). It directly
relates the reflectances simulated in non-absorbing spectral ranges to reflectances within
absorption lines.

The equivalence theorem can be written as follows:

R(wo # 1;A) = R(wp = 1) /0'00 P(lexp (—oq (V) 1) dl, 4.7)

if the geometry and the scattering properties of the medium as well as detector position and
illumination do not change. From the classical Monte Carlo model one gets the photon
statistics and the nadir reflectance in a window channel, P(l) and R(wo = 1), respectively.
The spectral high-resolution volume extinction coefficient of gas absorption, o, (A), can
be calculated with the modified k-distribution presented by Bennartz and Fischer (1999).
The spectral resolution should be high enough to allow monochromatic calculations.

The equivalence theorem is independent of any assumptions and can deal with media
of arbitrary geometry. One single RT calculation is required to derive the photon statistics
and reflectance, and the entire, highly resolved reflection spectrum is received from this
single simulation. The utility and a verification of the equivalence theorem is given in
Stephens and Heidinger (2000).

4.3. Uncertainty estimation of the classical Monte Carlo model

The photon trajectory through the model domain is determined with the help of three
independent, randomly chosen parameters. The random nature of the classical Monte
Carlo model and the loss of the majority of photons which don not reach the detector,
introduce noise to the simulated reflectance. In the literature a wide range of photon num-
bers (from 10° to 8x10®) are used to calculate the reflectance with Monte Carlo methods.
Here, the statistical significance of the reflectance simulated with the classical Monte Carlo
model and an appropriate photon number for these simulations will be discussed.

To test the statistical significance Monte Carlo simulations were conducted using
highly inhomogeneous cloud fields, as they were discussed in sections 3.1 and 3.4. The
parameters discussed in section 5.1 were chosen but for a reduced model domain size of
32x32 pixels and for a sun at zenith. Ten simulations were performed with 10¢ photons,
and interim results are saved every 10,000 photons. For each interim result the standard de-
viation o and the mean (R) are determined. The uncertainty of the classical Monte Carlo
model is deduced by the ratio of these two values: o/ (R).

Figure 4.3 shows the results of the analysis: standard deviation and uncertainty versus
number of photons. The dashed line gives the extrapolation to 107 photons. The slope of
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the standard deviation is proportional to Np_hl/ % which exactly meets theoretical expecta-
tions: Assuming that the photon path can be considered as a Bernoulli trial, the standard
deviation of the reflectance is expected to be proportional to Np_hl/ 2 (Spanier and Gelbard,
1969). This plus the smooth appearance of the slope makes the interpolation to 107 pho-
tons reliable. At 107 photons the uncertainty of the classical Monte Carlo model reaches
1%. If not averages but local values are considered, the uncertainty of the reflectance varies
between 0.4% and 2%. Furthermore, the uncertainty depends on the viewing geometry, i.e.
the zenith angle of the sun and of the observer. The uncertainty related to viewing direction
reaches maximum 1%, if the signals are azimuthally averaged, and 13%, if averaging is not
carried out. Over large ranges of viewing direction the uncertainty is almost constant and
significantly smaller. The dependence on sun zenith angle is discussed in detail in Barker
and Davies (1992) and found to be significant.

The presented uncertainty analysis is not of general validity. In addition to a depen-
dence on sun zenith angle, the uncertainty will depend on the considered (broken) cloud
field and especially on the mean optical thickness and surface albedo. E.g., if it can be
assumed that these parameters do not effect the standard deviation, the increase in mean
reflectance for increasing optical thickness or surface albedo will decrease the uncertainty.
However, this discussion sensitises the question for an appropriate amount of photon num-
bers. If simulations are performed conducting the classical Monte Carlo model, 107 pho-
tons are used.

The local estimate model is not subjected to such uncertainty estimations although it
has a random nature. In general, it is far more effective than the classical Monte Carlo
model: It has predefined detector fields so that every scattering event contributes to the
reflectance, so no photon is lost. The efficiency decreases, if the mean optical thickness
increases because the contributions of the scattering events are more subsided, see Eq. 4.5.
Another aspect affecting the accuracy of the local estimate model is the strength of the
forward peak of the phase function. If the randomly defined scattering angle happens to be
in the forward direction, one large single contribution is added to the interim result of the
reflectance. Since this event is rare and all other contributions are significantly smaller, a
large amount of scattering events is needed to reduce the uncertainty. The local estimate
model will be validated in section 4.5. Every time the local estimate model is used, an
uncertainty discussion is given.

4.4. Representativity of a single cloud realisation

Not only the Monte Carlo methods are based on stochastic processes but also the cloud
generators discussed in the previous sections. The question arises, if different cloud re-
alisations yield statistically identical reflectance fields. The following investigations are
conducted with the classical Monte Carlo model and based on clouds described in section
4.3.

Ten cloud fields are generated, and each of the fields is based on a different set of
random variables. The resulting fields are characterised by identical average optical thick-
nesses and corresponding standard deviations but by different configurations. The number
of photons per horizontal box is 107, to achieve an accuracy of approximately 1%. Utilising
all ten simulations the difference among each other is calculated by the ratio of the standard
deviation and the average reflectance. The result reveals a difference of 0.5%. Therefore,
a single cloud realisation can be considered as statistical significant as it is significantly
smaller than the uncertainty of the model.

4.5. Validation of the local estimate model

To investigate the accuracy and applicability of the local estimate model, the Intercom-
parsion of 3d Radiation Codes (I3RC) is consulted. A wide variety of RT codes is applied
to a well defined set of input fields, which present the earth-atmosphere system by various
degrees of complexity. A few radiometric parameters and their statistical characteristics
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TaBLE4.1. Overview of experiments used for the validation of the local
estimate model.

| Phase | Case | Experiments | Abbreviations |
1 1d 1-4 plcl el-4
1 2d 3,6-8 plc2_e3,6-8
2 cumulus (Cu), 3d 1-2,6-7 p2cu_el-2,6-7
2 stratocumulus (Sc), 3d 7 p2sc_e7

form the basis of the intercomparison. The main aim is to achieve an improvement of cli-
mate models and remote sensing. The I3RC provides an excellent opportunity to identify
errors and limits and therefore helps to debug the model. More details on I3RC can be
found on the following web-page: http://i3rc.gsfc.nasa.gov.

The intercomparison is structured in three phases. Phase 1 aims at the identification
of errors and limits as well as debugging. Phase 2 focuses on timing comparisons. Phase
3 extends the computations, guides improvements and shares the state-of-the art RT code
with public users.

Here, the I3RC is used to validate and debug the local estimate model. The large
amount of available validation experiments is reduced to focus on output values relevant for
the studies presented in this work. The remaining experiments cover all relevant situations
to allow a successful validation. An overview of the considered experiments is given in
Table 4.1.

In total 13 validation experiments are carried out. Each of it considers periodic bound-
ary conditions, monochromatic computations, and neglects emission. The phasel casel
experiments utilise a 1d, academical step function: 16 pixels with an optical thickness of 2
are adjacent to 16 pixels of an optical thickness of 18. The size of each pixel is 0.5/32 km
times 0.25 km. The experiments are set up by a variation of 6, and wy:

1) 90=0°, LUQ=1

2) 0,=60°, wo=1

3) 6,=0°, w,=0.99
4) 05=60°, wy=0.99

During phasel case 2, a 2d cloud field derived from cloud radar and microwave ra-
diometer stationed at the ARM CART site are supplied. The cloud field comprises of 640
pixels along the x-axis and 54 pixels in the vertical with resolutions of 0.05 and 0.045
km, respectively. Two different phase functions are considered: the Henyey-Greenstein
function B¢ with g=0.85 and the phase function after Deirmandjian (1969), 8¢1. The
conducted experiments are (A: surface albedo):

0, 8 = Bua
6) 6,=0°, wo=1, A=0, § = fc1
7) 6=60°, wo=1, A=0, 3 = B¢
8) 0,=60°, wo=1, A=0.4, 3 = B¢

3) 0p=0°, wp=0.99, A=0,

Phase2 of the validation process considers 3d cloud fields and partly molecule and
aerosol extinction. It is separated into computations on the basis of a 3d stratocumulus
(Sc) and cumulus (Cu) cloud field, both simulated with an LES model. The domain of Sc
consists of 64x64x34 pixels with a horizontal and vertical resolution of 0.055 and 0.025
km, respectively. The Cu extends over 100x100x62 pixels with respective resolutions of
0.0667 and 0.04 km. The input fields of o.,; and wq are provided on the web-page while
the provided phase functions are related to a specific radius. The provided data sets cover a
maximum height of 30 km which needs to be resolved by equidistant box sizes of thickness
0.025 or 0.04 km. In order to reduce computational efforts, the maximum domain height
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TABLE 4.2. Summary of the outcome of the validation experiments.
The mean (R), the standard deviation o, and the skewness vp of re-
flectance R as computed by the local estimate model and MYSTIC are
confronted with each other.

Experiment | (R) (R) OR OR YR YR
MYSTIC MYSTIC MYSTIC
plcl el 0.2555 | 0.2568 | 0.1698 | 0.1690 0.0963 0.0922
plcl e2 |0.4050 | 0.4069 |0.2987 | 0.2972 | 0.1396 | 0.1355
plcl e3 0.2003 | 0.2015 | 0.1296 | 0.1292 0.0911 0.0879
plcl e4 |0.3216 | 0.3230 |0.2369 | 0.2355 | 0.1551 | 0.1526
plc2_e3 0.3916 | 0.3923 | 0.0727 | 0.0740 |-0.3574 | -0.3124
plc2 e6 |0.6974 | 0.6645 |0.1685| 0.1699 | 0.1579 | 0.1656
plc2 e7 |05259 | 05271 |0.1367 | 0.1378 | 0.3971 | 0.4499
plc2_e8 0.6004 | 0.6019 | 0.1079| 0.1073 0.5318 0.5597
p2cu_el |0.2979| 02959 |0.1541 | 0.1511 | 2.0311 | 2.0641
p2cu_e2 0.2373 | 0.2374 | 0.1964 | 0.1971 2.3966 2.4049
p2cu_e6 |0.2899 | 0.2860 | 0.1450 | 0.1365 | 2.0205 | 2.1187
p2cu_e7 0.2419 | 0.2448 | 0.1699 | 0.1662 2.8073 2.7798
p2sc_e7 | 0.3578 | 0.3598 |0.1355| 0.1240 | 0.1511 | 0.1695

is made smaller: o..; and o, above 1.815 km (Sc) and 2.4 km (Cu), the level of maximum
cloud top, were scaled to a single layer of 0.025 km (Sc) and 0.04 km (Cu) thickness by
dividing the integral over height by the single layer thickness. wq is calculated by their
ratio. It is left to the user to calculate appropriate phase functions at every grid box. To
avoid a maximum total amount of 6.2x10° phase functions, the domain was divided into
four major regions: 1) boxes below cloud base, 2) cloudy boxes, 3) cloud free boxes (above
cloud base and cloud free columns) and 4) boxes above maximum cloud top. /3 is calculated
according to:

3= Z% (4.8)

First, the local phase function is determined using Eq. 4.8 with 7 being an index referring to
the scattering types (molecules, aerosols, or cloud droplets) and o}, being the corresponding
total volume scattering coefficient. Then, spatial averaging is carried out using the same
equation but with ¢ being an index of the boxes belonging to the four categories defined
above. Four experiments of phase2 were utilised: experiments 1 and 2, each without atmo-
sphere, and experiments 6 and 7, each including atmosphere, and experiments 1 and 6 as
well as 2 and 7 with 0,=0° and 60°, respectively. A=0.2 in all experiments.

In all cases the validated parameter is the nadir reflectance. The validation is car-
ried out in terms of the first three moments of R: mean (R), standard deviation o, and
skewness vg. Table 4.2 summarises the outcome of the validation experiments. The first
column specifies the experiment, see Table 4.1 for an explanation of the abbreviations.
The next six columns are divided in pairs, one pair for each moment: In each pair the
first value corresponds to the local estimate model and the second to MYSTIC. MYS-
TIC is a Monte Carlo model and part of the model package libRadtran, available online
at http://www.libradtran.org. The performance of MYSTIC within I3RC is documented in
Mayer (1999), Mayer (2000) and on the I3RC homepage.

All moments are in excellent agreement with the results received by MYSTIC and are
well within the range defined by all models which participated in I3RC. There are only two
exceptions: (R) for p2cu_e7 and p2sc_e7. Here, the values of MYSTIC define the lower
boundary of results presented on the I3RC homepage. However, the difference is only
1.2% and 0.6%, respectively. The simulated nadir reflectance fields corresponding to the
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FIGURE 4.4. Nadir reflectance as computed by the local estimate model
(Fig. a) and MYSTIC (Fig. b). The range of the colour bar is kept fixed
in both figures. The simulation is based on experiment p2cu_e7.

experiment of largest relative discrepancy, p2cu_e7, are shown in Figure 4.4: Figure 4.4a
for the local estimate model with 2.5x10° photons) in total and Figure 4.4b for MYSTIC.
The colour bar covers a constant range in both cases and is oriented at the reflectance range
of the local estimate model. The minimum reflectances of both simulations agree very well
but the maximum reflectance of MYSTIC is 1.23 and not 1.27.

Looking at R over surfaces the values of MYSTIC are characterised by a much
stronger variability, almost patchy-like in appearance. The reason is a significantly higher
noise level. If averages of R for values smaller than 0.25 are considered, a difference of a
few percent is found and may give reason for the discrepancy.

During the validation experiment, bugs were removed and significant improvements
were carried out: 1) The cumulative phase function needs to be provided in discrete steps.
Having its strong maximum at back scatter directions in mind (see Figure 4.1b), the large
amount of discrete bins, 10°, becomes reasonable. 2) At each scattering event, the contri-
bution to the local reflectance is calculated by an exponential decrease of the scattered light
(see Eqg. 4.5). This requires double precision to achieve a satisfactory accuracy. 3) The re-
flection at the surface must be considered as a scattering event with a scattering probability
of cosf/m with 6 being the angle of incidence.

To summarise, a successful validation was carried out. The I3RC has turned out to be
an excellent platform to identify bugs and validate RT models.



