
CHAPTER 1

Fundamentals

This section provides definitions, tools and theory which are relevant for the under-
standing of the analysis presented in subsequent sections. The first section introduces ra-
diative transfer in the atmosphere and defines parameters required for the Monte Carlo
simulations. The measurements and simulations are analysed using power spectra (section
1.2). Previous studies applied this method to radiance measurements and formed the term
cloud radiative smoothing, recalled in the last section.

1.1. Radiative transfer and inherent optical properties

The propagation of light through the atmosphere is altered by several atmospheric
constituents. Clouds have the most dominant effect on radiative transfer. Their effect de-
pends on many aspects, among them are cloud coverage, macrophysical and microphysical
parameters (e.g. cloud thickness and effective radius) as well as thermodynamic charac-
teristics (e.g. phase of cloud particles). Furthermore, aerosols of various type influence
radiative transfer in the atmosphere. Like clouds, their spatial distribution and external and
internal mixtures are strongly variable. In contrast, the majority of air molecules exhibits
a low horizontal variability. However, there are certainly some air molecules which have a
significant lateral dependence, e.g. water vapour on a regional to global scale or aerosols
during some specific events like sand storms. All constituents exhibit relatively strong ver-
tical variations. This is not only due to pressure and temperature effects but also arises from
natural fluctuations.

All these atmospheric constituents interact with solar radiation, either through absorp-
tion or scattering. Absorption occurs, if at least one of the energy levels of the particle is
suitable for the incident photons energy. The energy is absorbed and remains within the
particle. Scattering occurs, if the interaction of particles and photons changes the original
direction of the photon. If the size of the particle is small compared to the wavelength of
the incident radiation, the particle operates as a Hertz´scher dipole. This form of scattering
is named after Lord Rayleigh, and the spectral scattering intensity is proportional to the
inverse fourth power of the wavelength, λ−4. If the particle size exceeds the wavelength
of the incoming radiation, the spectral dependence of the scattering intensity is negligible
and the forward scattering is far more pronounced than for Rayleigh scattering. The re-
sults were achieved by Mie (1908), and his approach was similar as the one for Rayleigh
scattering. But in this case the interference of several dipoles is considered.

All optical relevant atmospheric constituents need to be characterised through their
inherent optical properties. The latter means that they depend on the properties of the
medium only and not on the ambient light field. The efficiency of absorption and scatter-
ing in terms of light attenuation are characterised by the volume absorption and scattering
coefficients σa and σb, respectively. The sum of both coefficients gives the volume extinc-
tion coefficient σext = σa + σb. All three parameters have units of inverse length. The
optical thickness τ is defined as the integral of σext over height. The ratio of σb to σext, the
single scattering albedo ω0, is a measure for the relative scattering strength of the medium.
The single scattering albedo can be interpreted as a probability of photon survival which
becomes obvious in section 4.1.

In order to follow a packet of photons, its new propagation direction after each scatter-
ing event needs to be predicted. This is done with the help of the volume scattering function
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βvol. The integral of βvol over the scattering angle gives the scattering coefficient:

σb = 2π

∫ π

0

βvol(ψ)sinψdψ. (1.1)

This implies the assumption of symmetric scattering properties with respect to the azimuth
of scattering (ψ: scattering angle). Using this relation, the angular dependence of the
volume scattering function can be separated from its scattering intensity by normalising
βvol on σb. This gives the phase function:

β̃(ψ) =
βvol(ψ)

σb
. (1.2)

From equations 1.1 and 1.2 follows the normalisation condition of the phase function:

2π

∫ π

0

β̃(ψ)sinψdψ = 1. (1.3)

If warm clouds are considered, and not ice or various aerosol particles, β̃ depends on the
cloud droplet number distribution n(r) and the wavelength. Using Mie theory (Mie, 1908)
β̃ can be determined at a certain wavelength and for each radius of a given distribution.
The final phase function is calculated by averaging each β̃ weighted by its frequency of
occurrence. The effective radius reff

reff =

∫

r3n (r) dr
∫

r2n (r) dr
(1.4)

is frequently used to characterise a cloud droplet number distribution.
It was mentioned previously in this section that scattering may emphasise the forward

scattering direction. This reaction can be characterised by the asymmetry factor which is
the average over all scattering directions of the cosine of ψ. It is close to one, if the forward
scattering is pronounced, and zero, if the phase function is symmetric about ψ=90◦. Mul-
tiple scattering significantly increases the photon path which in turn increases the amount
of absorbed photons. Radiative transfer, especially absorption aspects, are complicated by
multiple scattering between cloud parcels, between cloud and surface, and between differ-
ent cloud layers.

Another process is inelastic scattering by air molecules. After the absorption of pho-
tons and the excitation of virtual energy levels, the molecules return to a state of higher
(lower) energy than they had before excitation. The re-emitted photon is characterised by a
smaller (higher) wavelength than the absorbed photon. This process can be effective in the
UV and is neglected in this work.

1.2. Power spectrum analysis

A frequently used method to characterise geophysical data sets is the (spatial) power
spectrum analysis. Among these data sets are spatial high-resolution observations of nadir
radiances reflected by cloud decks. Recent studies focused on satellite measurements and
radiative transfer simulations of the nadir radiance (e.g. Boers et al., 1988; Cahalan and
Snider, 1989; Fischer et al., 1991; Oreopoulos et al., 2000), while this work concentrates
on airborne remote sensing observations and radiative transfer simulations.

Prior to the power spectrum analysis the radiance data is preprocessed to minimise
artificial effects that may arise if the analysis is applied to the original data set. One of
these impacts can arise from a linear trend in the data set. The linear trend can result in a
significant increase of the power spectrum at large wave numbers. The mean linear trend
is subtracted to deal with the problem. A second reason for artefacts can be that the start
and end value of the data set are not similar. In this case windowing is applied to the data
set which means that the set is shortened appropriately. Figure 1.1 shows an example of
windowing and is based on nadir radiances at 620 nm measured with an airborne imager
on 06 September 2001 (see sections 2.1.1 and 2.2). Approximately 100 values are omitted
in this case.
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FIGURE 1.1. Nadir radiance at 620 nm versus element number. The
dashed vertical line indicates the element number where, starting from
largest element numbers, the first value is within ±2.5% of the value
with element number 0 (marked with a horizontal dashed line). The data
was recorded with casi on 06 September 2001, and the figure is redrawn
from Schröder et al. (2004).

The power spectrum, E(k), is calculated by the absolute square of the Fourier trans-
formed radiances. The imaginary part of the transformed data is not omitted. If the follow-
ing behaviour is given:

E(k) ∼ k−β (1.5)

the radiance is considered to be scale-invariant, where k is the wave number, r = 1/k the
corresponding scale and β the slope. The discrete nature of the radiance measurements
give reason to some special features if the Fourier transformation is applied: If the radiance
data set consists of N data points, than the Fourier transformation provides useful data
only at wave numbers within the interval

[

1
N∆r ,

1
2∆r

]

, with ∆r being the smallest scale
and kNyquist = 1

2∆r being the Nyquist wave number. Due to the symmetry of the Fourier
transformation, all wave numbers larger than kNyquist are redundant and are not shown in
the following. Another aspect is the aliasing effect. If the sampling rate is not high enough,
i.e. the signal contains frequencies larger than half of the sampling rate, components of the
signal at high frequencies are mirrored at fNyquist (fNyquist: Nyquist frequency) and con-
tribute to components at lower frequencies. Here it is assumed that the sampling rate is high
enough to avoid aliasing. Finally, the finiteness of the data set is interpreted as the convo-
lution of the data set and a rectangular function by the discrete Fourier transformation. The
effect of the discrete jump at the start and end of the data set on the transformation can be
reduced by applying special filters. The most common ones are the Hanning or Hamming
filters which cause the modified data set to be continuous at its end. The application of the
filters is named apodisation and is not carried out here because it is not possible to maintain
similar qualities of the apodisation for different data sets.

The binning procedure introduced by Davis et al. (1996), where more details on power
spectrum analysis are given, is adapted. Here, the binning is conducted in factors of two
in k (octave binning): 2m with m ε [0, 1, ..., log2Ntot − 2]. Ntot is the total number of
energy values and log2Ntot the largest integer power of two less than Ntot. A sequence of
wave number bins with increasing wave number is created, and the corresponding energy
is averaged over the appropriate wave numbers. The binning reduces the noise level and
ensures that all scales contribute equally, i.e. it avoids that the accumulation of energy
values at small scales of the interpolation range dominates the least square fit (see next
paragraph), if the non-binned, original power values are used.
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If the power spectrum analysis is applied to nadir radiance measurements, typically two
ranges of scale invariance can be observed. One is found at large scales between ∼0.5 and
∼20 km and one at small scales between ∼0.025 and ∼0.3 km. Each of the scale regions
is interpolated by a least square fit. A small region around the scale break is excluded from
the interpolations. If bins at large scales deviate significantly from the overall large scale
invariance, they are also omitted from interpolation. The scale break is determined by the
interception of the linear approximations at large and small scales. Figure 5.11 shows two
examples of the application of the power spectrum analysis. The dots present the original
power spectrum, the squares the binned spectrum and the solid line the outcome of the
linear regression.

The scale breaks as well as the small and large scale slopes are affected by linear
interpolation errors. The impact of these uncertainties on the parameter determination is
estimated by subsetting each bin which was defined during the binning procedure and are
used for linear regression. Instead of using the complete original set of energies, half of
the total amount of values in each bin is randomly chosen. This random process produces
a set of slopes and scale breaks. The standard deviation of these values is used as an
uncertainty measure for the scale break and the large and small scale slope. In addition,
these uncertainties are averaged over regions of constant reflectivity and therefore change
by a factor of N−1/2, with N being the number of channels used for averaging.

The slope β is a measure for the degree of stationarity. A signal is considered stationary
if its ensemble average does not depend on the location. If ergodicity is assumed, the
spatial and the ensemble average are equivalent, and the small scale average of the signal is
representative for the whole data set. If β is smaller than one than the signal is stationary,
if it lies between one and three, the signal has stationary increments. Usually, the large
scale slope related to observed nadir radiances follows the 5/3 power law found in isotropic
turbulence while the small scale slope is generally slightly smaller than three.

An independent verification of the power spectrum analysis is recommended. An op-
portunity for the verification offers the structure function analysis which is introduced by
Marshak et al. (1997) in great detail. If the data set is scale invariant and has stationary
increments, then the scale dependent differences are not a function of the location x. It
follows:

〈|∆L(r;x)|
q
〉 = 〈|∆L(r)|

q
〉 = 〈|L(x+ r) − L(x)|

q
〉 ∼ rζ(q) (1.6)

with L(r;x) denoting the data set and q being the q-th moment. The outer brackets indi-
cate that ensemble averages should be conducted. Usually, local averages are determined
which implicitly assumes ergodicity. Under the previously made assumptions the Wiener-
Khinchine theorem can be interpreted as follows (Davis et al., 1994):

1 < β = ζ(q = 2) + 1 < 3. (1.7)

This equation is used to verify the power spectrum analysis in scale-invariant regions if
stationary increments are given.

The power spectrum analysis may not be the appropriate tool to characterise observa-
tional data in a unique way. If, e.g., white noise and δ-functions are subject of the analysis,
both result in scale invariant behaviour with β = 0. The ambivalence is not found in struc-
ture function analysis. However, the investigation of cloud radiative smoothing is carried
out with power spectrum analysis (section 5).

1.3. Plane-parallel bias and horizontal photon transport

A few general aspects and consequences of 1d, 2d, and 3d radiative transfer are dis-
cussed here. Three main types of radiative transfer models and corresponding assumptions
are widely applied: the plane-parallel model, the independent pixel approximation and 3d
Monte Carlo simulations. The plane-parallel model allows vertical layering but is restricted
to horizontally homogeneous layers. If the dependence of nadir reflectances on optical
thickness is considered this may lead to significant uncertainties. In general, the following
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FIGURE 1.2. Sketch to illustrate the plane-parallel bias. The function
f(x) reflects a similar course than the dependence of the reflectance on
optical thickness. The non-linear behaviour of the relation results in dif-
ferent reflectances if averaging in x or f(x) is considered.

relation is valid: R(τ̄) ≥ R(τ), and the discrepancy can reach 17% (Cahalan et al., 1994).
This phenomenon is explained in Figure 1.2. The figure shows a sketch of a function which
dependence on x is generally comparable to the optical thickness-reflectance relation. The
curvature of the graph is the reason that f(x̄) is always equal or larger than f(x). Identity
is given for an infinitesimally small range of x. In reality not only the functional context
but also the lateral distribution of the pair of variables effects the bias.

The plane-parallel bias can be avoided, if the independent pixel approximation (IPA)
is utilised. In the frame of this method the horizontal variability of e.g. the optical thick-
ness is approximated by an appropriate number of grids. On each grid the plane-parallel
model is applied. The IPA does not allow photons to travel horizontally between different
boxes. This can lead to significant deviations from precise 3d radiative transfer simula-
tions: Cahalan and Snider (1989) first observed a scale break in power spectra derived
from Landsat data and were able to explain this by horizontal photon transport. The spec-
tral behaviour of horizontal photon transport on reflected and transmitted solar radiation
has been investigated intensively by Marshak et al. (1995a) and Davis et al. (1996, 1997a).
The semi-heuristic relation for the transmission case, which states that the scale break is
proportional to the geometrical thickness of the cloud, was verified by von Savigny et al.
(1999) who used zenith radiance observations for this purpose.

Assuming plane-parallel layering and conservative scattering Davis et al. (1997a) car-
ried out a simple radiative transfer experiment to quantify horizontal photon transport. By
injecting photons in the centre of a model cloud they determined the photons horizontal
displacement vector, i.e. the horizontal distance between the point of injection and escape.
With regard to the reflection case, they found an expression which relates the radiative
smoothing scale η to cloud properties:

η ∼ H/
√

(1 − g) 〈τ〉. (1.8)

H is the cloud thickness, g the asymmetry factor and 〈τ〉 the mean optical thickness. In
a conservative medium horizontal photon transport causes high frequencies, which appear
in the optically relevant cloud properties (e.g. the optical thickness), to be smoothed out in
the observed nadir radiance. This effect is illustrated in Figure 1.3. In this way, the high
frequencies of the optical thickness distribution do not contribute to the power spectrum at
high frequencies. It explains the occurrence of the scale break and the increased small scale
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FIGURE 1.3. Mean free normalised reflectance and optical thickness
versus distance. The figure shows fragments of the cloud field and simu-
lated reflectance from section 5.2.

slope and has been denoted as cloud radiative smoothing. Since cloud radiative smooth-
ing is due to horizontal photon transport, the scale break cannot be reproduced with IPA
simulations. 200-500 m is a typical variability of observed scale breaks for stratocumulus
clouds.


