
16 Text Classification Experiments

16.1 Introduction

In a classification-based approach such as ours, the employed classification algorithm
is of core importance for the system. When used in our information extraction setup
(cf. Chap. 10), the performance of the classifier is only one of several factors influencing
the results. To get a better impression of the performance of the classifier and to to
find out whether it is competitive with other state-of-the-art classifiers, it therefore
makes sense to evaluate the classifier on a less complex task where the results will
depend primarily on the used classification algorithm.

Test classification is a classical test case for classification algorithms where this is the
case. Among the possible application areas of text classification we have chosen spam
filtering as a particularly interesting test case. Spam filtering is a highly competitive
task which has attracted a lot of recent research—if the classifier can compete in this
area, we can reasonable expect it to the competitive in other areas as well. Also, spam
filtering is a task which is usually modeled and evaluated in an incremental training
setup (cf. Sec. 3.3 and the test setups described below), since there is a stream of
e-mail messages which must be filtered in the order in which they arrive and the
classification model should be continuously adapted from the feedback of the user.

We will use this test scenario to check whether our choice of a default classifica-
tion algorithm (Winnow coupled with a feature combination technique, cf. Chap. 11)
appears to be a good one and to find out whether and which feature combination
technique we should use: Is the usage of such techniques helpful? If yes, can we afford
to use the OSB (Sec. 11.2.2) technique which is faster and generates less features then
SBPH (Sec. 11.2.1) or should the latter technique be used to get better results?

Additionally, we will use this test case to optimize parameters for Winnow (the
promotion factor α, the demotion factor β, and the threshold thickness) and the com-
bination techniques (the window size N). We will use the optimized parameter values
for the information extraction experiments that will follow, based on the assumption
that these parameters should be sufficiently stable across different tasks. While we did
some informal tests that make this assumption appear reasonable, we did not formally
test this, so it is possible that the IE results we will report in the following chapters
could be further improved by re-optimizing these parameters—we will leave this as
future work, since parameter optimization tests are not among our goals (as stated in
Sec. 7.4).

109

16 Text Classification Experiments

16.2 Text Classification Setup for Spam Filtering

Spam filtering can be viewed as a classic example of a text classification task with
a strong practical application. While keyword, fingerprint, whitelist/blacklist, and
heuristic–based filters such as SpamAssassin [SpA] have been successfully deployed,
these filters have experienced a decrease in accuracy as spammers introduce specific
countermeasures. The current best-of-breed anti-spam filters are all probabilistic sys-
tems. Most of them are based on Naive Bayes as described by Graham [Gra03] and
implemented in SpamBayes [SpB]; others such as the CRM114 Discriminator can be
modeled by a Markov Random Field [Yer04]. Other approaches such as Maximum
Entropy Modeling [Zha03] lack a property that is important for spam filtering—they
are not incremental, they cannot adapt their classification model in a single pass over
the data.

For our spam filtering experiments, we have tested Winnow in an incremental setup
as a statistical, but non-probabilistic alternative. The feature space considered by
most current spam filters is limited to individual tokens (unigrams) or bigrams. We
overcome this limitation by combining Winnow with one of the feature combination
techniques SBPH or OSB.

For these text-classification experiments, we did not perform language-specific pre-
processing techniques such as word stemming, stop word removal, or case folding,
since other researchers found that such techniques tend to hurt spam-filtering accu-
racy [Gra03, Zha03]. We did compare three types of mail-specific preprocessing.

– Preprocessing via mimedecode, a utility for decoding typical mail encodings
(Base64, Quoted-Printable etc.)

– Preprocessing via Jaakko Hyvatti’s normalizemime [nor] which was specifically
developed for the use with spam filters. This program converts the character set
to UTF-8, decoding Base64, Quoted-Printable and URL encoding and adding
warning tokens in case of encoding errors. It also appends a copy of HTML/XML
message bodies with most tags removed, decodes HTML entities and limits the
size of attached binary files.

– No preprocessing. Use the raw mails including large blocks of Base64 data in
the encoded form.

By default, we used normalizemime for the experiments reported in the next sec-
tion and no preprocessing (just the raw mails) for participation in the TREC Spam
Filtering Challenge (Sec. 16.4).

16.3 Experimental Results on the SpamAssassin Corpus

16.3.1 Testing Procedure

For evaluating the spam filtering performance we have used a standardized spam/non-
spam test corpus from SpamAssassin [SpA]. It consists of 1397 spam messages, 250
hard non-spam and 2500 easy non-spam messages, for a total of 4147 messages. These

110

16.3 Experimental Results on the SpamAssassin Corpus

4147 messages were “shuffled” into ten different standard sequences; results were av-
eraged over these ten runs. We re-used the corpus and the standard sequences from
[Yer04].

Each test run begins with initializing all memory in the learning system to zero.
Then the learning system was presented with each member of a standard sequence, in
the order specified for that standard sequence, and required to classify the message.
After each classification the true class of the message was revealed and the classifier
had the possibility to update its prediction model accordingly prior to classifying the
next message.1 The training system then moved on to the next message in the standard
sequence. The final 500 messages of each standard sequence were the test set used for
final accuracy evaluation; we also report results on an extended test set containing the
last 1000 messages of each run and on all (4147) messages. Systems were permitted
to train on any messages, including those in the test set, after classifying them; at no
time a system ever had the opportunity to learn on a message before predicting the
class of this message. For evaluation we calculated the

error rate E =
number of misclassifications
number of all classifications

;

occasionally we mention the accuracy A = 1− E.
This process was repeated for each of the ten standard sequences. Each complete set

of ten standard sequences (41470 messages) required approximately 25–30 minutes of
processor time on a 1266 MHz Pentium III for OSB5.2 The average number of errors
per test run is given in parenthesis.

16.3.2 Parameter Tuning

We used a slightly different setup for tuning the Winnow parameters since it would
have been unfair to tune the parameters on the test set. The last 500 messages of each
run were reserved as test set for evaluation, while the preceding 1000 messages were
used as development set for determining the best parameter values.

Among the tested parameter settings, best performance was reached with Winnow
using 1.23 as promotion factor, 0.83 as demotion factor, and a threshold thickness of
5%.3 These parameter values turned out to be best for both OSB and SBPH—the
results reported in Tables 16.1 and 16.2 are for OSB.

Promotion 1.35 1.25 1.25 1.23 1.2 1.1
Demotion 0.8 0.8 0.83 0.83 0.83 0.9

Test Set 0.44% (2.2) 0.36% (1.8) 0.44% (2.2) 0.32% (1.6) 0.44% (2.2) 0.48% (2.4)
Devel. Set 0.52% (5.2) 0.51% (5.1) 0.52% (5.2) 0.49% (4.9) 0.51% (5.1) 0.62% (6.2)

All 1.26% (52.4) 1.31% (54.3) 1.33% (55.1) 1.32% (54.7) 1.34% (55.4) 1.50% (62.2)

Table 16.1: Promotion and Demotion Factors

1 In actual usage training will not be quite as incremental since mail is read in batches.
2 For SBPH5 it was about two hours which is as expected since SBPH5 generates four times as many

features as OSB5.
3 In either direction, i.e., θ− = 0.95 θ, θ+ = 1.05 θ.

111

16 Text Classification Experiments

Threshold Thickness 0% 5% 10%
Test Set 0.68% (3.4) 0.32% (1.6) 0.44% (2.2)

Development Set 0.88% (8.8) 0.49% (4.9) 0.56% (5.6)
All 1.77% (73.5) 1.32% (54.7) 1.38% (57.1)

Table 16.2: Threshold Thickness

16.3.3 Feature Store Size and Comparison with SBPH

Table 16.3 compares orthogonal sparse bigrams and SBPH for different sizes of the
feature store. OSB reached best results with 600,000 features (with an error rate of
0.32%), while SBPH peaked at 1,600,000 features (with a slightly higher error rate
of 0.36%). Further increasing the number of features permitted in the store nega-
tively affects accuracy. This indicates that the LRU pruning mechanism is efficient at
discarding irrelevant features that are mostly noise.

OSB
Store Size 400000 500000 600000 700000 800000
Last 500 0.36% (1.8) 0.38% (1.9) 0.32% (1.6) 0.44% (2.2) 0.44% (2.2)
Last 1000 0.37% (3.7) 0.37% (3.7) 0.33% (3.3) 0.37% (3.7) 0.37% (3.7)

All 1.26% (52.3) 1.29% (53.4) 1.24% (51.4) 1.26% (52.2) 1.27% (52.5)

SBPH
Store Size 1400000 1600000 1800000 2097152 (221) 2400000
Last 500 0.38% (1.9) 0.36% (1.8) 0.42% (2.1) 0.44% (2.2) 0.42% (2.1)
Last 1000 0.37% (3.7) 0.34% (3.4) 0.38% (3.8) 0.39% (3.9) 0.38% (3.8)

All 1.35% (55.8) 1.28% (53.1) 1.30% (54) 1.30% (54) 1.31% (54.2)

Table 16.3: Comparison of SBPH and OSB with Different Feature Storage Sizes

16.3.4 Unigram Inclusion

The inclusion of individual tokens (unigrams) in addition to orthogonal sparse bigrams
does not generally increase accuracy, as can be seen in Table 16.4, showing OSB
without unigrams peaking at 0.32% error rate, while adding unigrams pushes the
error rate up to 0.38%.

OSB only OSB + Unigrams
Store Size 600000 600000 750000
Last 500 0.32% (1.6) 0.38% (1.9) 0.42% (2.1)
Last 1000 0.33% (3.3) 0.33% (3.3) 0.36% (3.6)

All 1.24% (51.4) 1.22% (50.6) 1.24% (51.4)

Table 16.4: Utility of Single Tokens (Unigrams)

112

16.3 Experimental Results on the SpamAssassin Corpus

16.3.5 Window Sizes

The results of varying window size as a system parameter are shown in Table 16.5.
Again, we note that the optimal combination for the test set uses a window size of
five tokens (our default setting, yielding a 0.32% error rate), with both shorter and
longer windows producing worse error rates.

Window Size Unigrams 2 (Bigrams) 3 4 5 6 7
Store Size All (ca.55000) 150000 300000 450000 600000 750000 900000
Last 500 0.46% (2.3) 0.48% (2.4) 0.42% (2.1) 0.44% (2.2) 0.32% (1.6) 0.38% (1.9) 0.42% (2.1)
Last 1000 0.50% (5) 0.43% (4.3) 0.39% (3.9) 0.40% (4) 0.33% (3.3) 0.38% (3.8) 0.37% (3.7)

All 1.43% (59.2) 1.23% (51.2) 1.24% (51.4) 1.26% (52.2) 1.24% (51.4) 1.28% (53) 1.22% (50.8)
Store Size All (ca.220000) All (ca.500000) 600000 900000 1050000
Last 500 0.48% (2.4) 0.42% (2.1) 0.42% (2.1) 0.40% (2) 0.46% (2.3)
Last 1000 0.43% (4.3) 0.38% (3.8) 0.38% (3.8) 0.38% (3.8) 0.40% (4)

All 1.24% (51.3) 1.22% (50.6) 1.25% (51.8) 1.27% (52.5) 1.25% (51.7)

Table 16.5: Sliding Window Size

This “U” curve is not unexpected on an information-theoretic basis. English text
has a typical entropy of around 1–1.5 bits per character and around five characters per
word. If we assume that a text contains mainly letters, digits, and some punctuation
symbols, most characters can be represented in six bits, yielding a word content of
30 bits. Therefore, at one bit per character, English text becomes uncorrelated at a
window length of six words or longer, and features obtained at these window lengths
are not significant.

These results also show that using OSB5 is significantly better then using only single
tokens (error rate of 0.46%) or conventional bigrams (0.48%).

16.3.6 Preprocessing

Results with normalizemime were generally better than the other two options, reduc-
ing the error rate by up to 25% (Table 16.6). Accuracy on raw and mimedecoded mails
was roughly comparable.

Preprocessing none mimedecode normalizemime
Last 500 0.42% (2.1) 0.46% (2.3) 0.32% (1.6)
Last 1000 0.37% (3.7) 0.35% (3.5) 0.33% (3.3)

All 1.27% (52.5) 1.26% (52.1) 1.24% (51.4)

Table 16.6: Preprocessing

16.3.7 Comparison with CRM114 and Naive Bayes

The results for CRM114 and Naive Bayes on the last 500 mails are the best results
reported in [Yer04] for incremental (single-pass) training. For a fair comparison, these
tests were all run using the same tokenization schema as CRM114 on raw mails without
preprocessing. The best reported CRM114 weighting model is based on empirically
derived weightings and is a rough approximation of a Markov Random Field. This

113

16 Text Classification Experiments

model reduces to a Naive Bayes Model when the window size is set to 1. To avoid
the different pruning mechanisms (CRM114 uses a random-discard algorithm) from
distorting the comparison, we disabled LRU pruning for Winnow and also reran the
CRM114 tests using all features. Our results (Table 16.7) show a reduction in the error
rate by 75% compared to Naive Bayes and by more than 50% compared to CRM114.

Naive Bayes CRM114 CRM114 Winnow+OSB
Store Size All 1048577 (220 + 1) All All
Last 500 1.84% (9.2) 1.12% (5.6) 1.16% (5.8) 0.46% (2.3)

All 3.44% (142.8) 2.71% (112.5) 2.73% (113.2) 1.30% (53.9)

Table 16.7: Comparison with Naive Bayes and CRM114

16.3.8 Speed of Learning

The learning rate for the Winnow classifier combined with the OSB feature generator
is shown in Fig. 16.1. Note that the rightmost column shows the incremental error
rate on new messages. We can see that the classifier learns very fast—after having
classified 1000 messages, Winnow+OSB achieves error rates below 1% on new mails.

There are some additional issues that are of interest for text classification and spam
filtering, such as suitable schemas for tokenizing text in such a way that provides
specifically interesting features to the classifier. We will not treat these issues here
since are of limited interest in the context of this work—discussions and evaluation
results can be found in [Sie04b].

16.4 TREC Spam Filtering Challenge

With the filter setup described above, we participated in the 2005 Spam Filtering
Task of the renowned Text REtrieval Conference (TREC). The 2005 Spam Filtering
Task was to perform a ham (= non-spam) vs. spam classification on several e-mail
corpora. The task prescribes the same incremental training trained regimen as used
for the experiments reported above: the classifier has to classify each message as it
comes in, returning a “spamminess score”4; after classification, the true class (spam
or ham) of the message is revealed and the classifier can update its prediction model
prior to classifying the next message. Different from the test setup used above, the
TREC spam corpora are ordered by date and are processed in this order. Thus there
is only a single run over each corpus.

Many users of spam filters will consider the cost of misclassifying (and thus losing)
a good (ham) message higher than the cost of misclassifying (and thus having to read)
a spam message. Because of this, the tasks organizers decided to measure error rates

4 A real number with higher numbers indicating higher likelihoods that a message is spam; we re-

turned the probability estimated by the classifier for the message being in the spam class.

114

16.4 TREC Spam Filtering Challenge

Mails Error Rate New Error Rate
(Avg. Errors) (Avg. New Errors)

25 30.80% (7.7) 30.80% (7.7)
50 21.40% (10.7) 12.00% (3)
100 14.00% (14) 6.60% (3.3)
200 9.75% (19.5) 5.50% (5.5)
400 6.38% (25.5) 3.00% (6)
600 4.97% (29.8) 2.15% (4.3)
800 4.09% (32.7) 1.45% (2.9)
1000 3.50% (35) 1.15% (2.3)
1200 3.04% (36.5) 0.75% (1.5)
1600 2.48% (39.7) 0.80% (3.2)
2000 2.12% (42.3) 0.65% (2.6)
2400 1.85% (44.4) 0.53% (2.1)
2800 1.65% (46.2) 0.45% (1.8)
3200 1.51% (48.2) 0.50% (2)
3600 1.38% (49.7) 0.38% (1.5)
4000 1.28% (51.1) 0.35% (1.4)
4147 1.24% (51.4) 0.20% (0.3)

 0

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

E
rr

or
 R

at
e

Number of E-Mail Messages in the Corpus

Error Rate (Average Errors)
New Error Rate (Average New Errors)

Figure 16.1: Learning Curve for the best setting (Winnow1.23,0.83,5%, 600,000 features,
OSB5)

115

16 Text Classification Experiments

for both types of mail separately instead of measuring accuracy: the ham misclassi-
fication rate (hm) is the fraction of all ham messages classified as spam; the spam
misclassification rate (sm) is the fraction of all spam messages classified as ham.

The fact that filters report a “spamminess score” s in addition to a binary spam-
or-ham judgment makes it possible to introduce an adjustable threshold t and to
judge each message as spam iff s > t. The threshold t can be adjusted to reflect user
preferences regarding misclassification costs. Based on s and t, we can compute hm
as a function of sm (the value of hm when t is adjusted to achieve a specific sm),
and vice versa. This function can be graphically represented as a Receiver Operating
Characteristic (ROC) curve (also called recall-fallout curve). The area under this curve
measures the general effectiveness of filters over all values of t. Analogously to hm and
sm, which measure failure instead of success (smaller values are better), the area above
the ROC curve (1−ROCA) has been used as general evaluation metric in the TREC
task.

As an alternative metric that combines hm and sm into a single figure without using
a varying threshold, they task organizers chose the logistic average misclassification
rate

lam = logit−1
(

logit(hm) + logit(sm)
2

)
where logit(x) = log

(
x

1−x

)
. Thus, lam is the geometric mean of the odds (p

1−p , instead
of the probability p) of ham and spam misclassification. A logit scale is used instead
of a linear scale since current spam filters generally reach very good results which are
all very near to 0.0 (when measuring failure) or 1.0 (when measuring success).

The task comprises spam/ham classification over four corpora, one of them pub-
lic (made available to task participants during the task and to the general public
afterwards) and the other three private (only available to the task organizers, due
to privacy concerns). Together, the four corpora contain 318,482 messages—113,129
spam mails and 205,253 ham mails. In addition to reporting results on the individual
corpora, the organizers also published aggregate results combining the results of all
corpora “as if they were one” (i.e., the weighted average) to “provide a composite view
of the performance on all corpora” [Cor05, Sec. 4.2].

44 filters submitted by 12 different groups participated in the task. The aggregate
results of our filter, called crmSPAM2 by the task organizers5, are the best all 44
filters regarding lam (0.62%); regarding ROC (0.115%), they are beaten only by the
filter submitted by the Jozef Stefan Institute (IJS) (in its four configurations, ijs-
SPAM1 . . . ijsSPAM4—cf. [Cor05, Tables 5+6]).

The ROC curve for the best classifiers is shown in Fig. 16.2. It can be seen that
our classifier (crmSPAM2) is somewhat better than the best IJS classifier for the
medium range of the curve, for a ham misclassification rate from ca. 0.07% to ca.
5 This name reflects the fact that for participation we had formed a group with the developers of

the CRM114 Discriminator [CRM] since, after learning of the results reported above (Sec. 16.3),

the CRM114 developers decided to integrate our algorithm into their framework and a C re-

implementation of our Winnow+OSB classifier is now available as an alternative classifier in

CRM114. However, for participation in the TREC task, we used the Java implementation created

for this thesis and described in Chap. 11, not the re-implementation in C.

116

16.5 Concluding Remarks

ROC

50.00

10.00

1.00

0.10

0.01

50.0010.001.000.100.01

%
 S

pa
m

 M
is

cl
as

si
fic

at
io

n
(lo

gi
t s

ca
le

)

% Ham Misclassification (logit scale)

ijsSPAM2.agg
crmSPAM2.agg

lbSPAM2.agg
tamSPAM1.agg
yorSPAM2.agg
kidSPAM1.agg
621SPAM1agg

Figure 16.2: ROC curve for the best filters (Source: [Cor05, Fig. 2])

0.7%; while for the outer ranges of the curve it falls off compared to the IJS classifier
(and to some other classifiers as well). This is probably caused by the fact that the
adjustable threshold t is moved for determining the ROC curve, while the Winnow
training regimen (described in Sec. 11.1) is based on a fixed balanced threshold.

The training regimen is made somewhat more robust due to our using thick threshold
training (cf. Sec. 11.1.1), i.e., training not only errors (assuming a balanced internal
decision threshold) but also “near misses”—messages where the classification was cor-
rect but the scores/probabilities of the two classes are near to each other. This still
works with a shifted external decision threshold, but only as long as the external
threshold remains safely within the “thick threshold” area. For more extreme exter-
nal thresholds, this training regimen is no longer adequate—the training process will
ignore some of the instances that have been misclassified (when applying the shifted
threshold) and thus should have been trained.

Adjusting the internal training threshold together with the external threshold should
thus remove or reduce the falloff that can be seen at the ends of the curve. However,
for the TREC evaluation this was not possible, since all data is based on a single run
of the classifier interpreted with varying external thresholds.

More details on the TREC spam filtering experiments and results can found in the
track overview paper [Cor05] and in the paper describing our contributions [Ass05].

16.5 Concluding Remarks

The results reached for spam filtering indicate that our chosen classification algorithm,
Winnow in combination with the newly introduced OSB feature combination tech-

117

16 Text Classification Experiments

nique, is highly competitive with the best state-of-the-art classifiers. We have found
that OSB is a good choice of a feature combination technique and there is no need
to use the slower SBPH technique instead. Among the tested parameters settings, we
found that setting the promotion factor α to 1.23, the demotion factor β to 0.83, and
the threshold thickness to 5% and using an OSB window size of 5 yielded best results.
As announced above, we will use these parameters settings for the IE experiments in
the following chapters.

Spam filtering as the task of separating texts that contain potentially relevant infor-
mation (text that the user wishes to read = non-spam) from texts that are unwanted
and do not contain relevant information (spam) can also be seen as a part of the text
filtering task which we have identified in Section 3.1 as the first step of a compre-
hensive IE algorithm. Text classification performance is potentially also relevant in
other ways for such a comprehensive IE system: if there are different target schemas
(cf. Sec. 9.1) for different text texts, determining the target schema to use for each
text could be modeled as a multi-class text classification task among the different
text types; the extraction of implicit information such as the topic area of a seminar
is another task that could potentially be handled by text classification (by classify-
ing among a list of predefined values enumerated by the target schema). We have not
tested such scenarios since they are not the focus of our work (which is the classical IE
task of identifying and extracting explicitly stated pieces of information, cf. Sec. 7.1.1)
and due to the lack of adequate test corpora, but we should keep them in mind so as
not to under-estimate the role of text classification.

118

