
13 Merging Conflicting and Incomplete XML

Markup

13.1 Introduction and Motivation

As explained in the preceding chapter, in the preprocessing stage documents are aug-
mented with linguistic annotations such as part-of-speech (POS) tags and sentence
“chunks” (verb groups, noun phrases and prepositional phrases etc.). Such annotations
can be conveniently stored in XML format. In case of plain text input there is no prob-
lem, but if the input already is XML the issue of nesting arises. XML documents can
only contain a single tree structure of elements—each elements must fit completely
into an embedding element (its parent), overlapping elements are not allowed. How-
ever, since we want to use both the physical markup information of a document1 and
its linguistic structure, we have two independent (to a degree) tree structures for the
same documents, and nesting conflicts between elements of the two structures are
certain to occur at least occasionally.

Tools for linguistic preprocessing are generally targeted at plain text input; they will
either prohibit or ignore document markup. The TreeTagger we use as POS tagger
and shallow parser for our own system (cf. Sec. 12.1) generally expects plain text as
input which will be converted into a well-formed XML document annotated with lin-
guistic markup. It offers very limited support for XML input by ignoring any existing
markup, simply copying it to the output. In this case, however, the resulting output
will typically contain nesting errors and thus no longer be well-formed.

Neither TreeTagger nor, to our knowledge, any other shallow parsers are able to
correctly interweave the linguistic structure recognized by parsing with pre-existing
document markup—indeed, this is a non-trivial problem with will be unsolvable if
there are conflicts between the markup structure and the linguistic structure, un-
less suitable conflict resolution strategies have been defined. The repair algorithm
described in this chapter has been developed with the goal of resolving such conflicts
and merging such potentially conflicting tree structures into a single tree.

As mentioned in the previous chapter, the algorithm is also used for completing
the sentence splitting process initialized by TreeTagger, by complementing the end-
of-sentence markers (end tags) inserted by TreeTagger with corresponding begin-of-
sentence markers (start tags).

To address these related problems we decided to develop an algorithm that can
repair nesting errors and most other kinds of well-formedness violations in XML-like

1 Which is explicitly given if input documents are in XML or (X)HTML format or else added to plain

text documents by a heuristic recognition process (txt2html, cf. Sec. 12.1).

89

13 Merging Conflicting and Incomplete XML Markup

input. We use the term XML-like input to denote a document that is meant to be
XML, even if it is not (due to well-formedness violations).

Previous approaches to information extraction have not used more than a single
source of structured information, utilizing either linguistic information (most ap-
proaches aimed at “free-text” extraction) or markup information (wrapper induction
approaches, cf. Sec. 5.3), but not both. This is probably the reason why this problem
of merging structure information from potentially conflicting sources has not been
addressed before (to our knowledge).

In the next section we analyze the types of errors that can occur in XML-like input.
We then explain the configuration options and heuristics used by our repair algorithm,
prior to presenting the algorithm itself. After examining limitations of the algorithm,
we outline further application scenarios and discuss related work.

13.2 Types of Errors in XML-like Input

We distinguish several types of errors that can occur in XML-like input, preventing it
from being well-formed.
Character-level errors: Errors at the character level, e.g., un-escaped “<” or “&” in

textual content or unquoted attribute values.
ERROR POSSIBLE FIX

<emphasis type=strong> <emphasis type="strong">

Procter & Gamble Procter & Gamble

a < b a < b

</emphasis> </emphasis>

Simple nesting errors: Errors that can be fixed by swapping two tags.
ERROR POSSIBLE FIX

<paragraph> <paragraph>

<sentence> <sentence>

... ...

</paragraph> </sentence>

</sentence> </paragraph>

Hard nesting errors: Errors that can only be resolved by splitting an element.
ERROR POSSIBLE FIX

<paragraph> <paragraph>

... ...

<sentence> <sentence>

... ...

</sentence>

</paragraph> </paragraph>

<paragraph> <paragraph>

<sentence>

... ...

</sentence> </sentence>

90

13.3 Configurable Settings and Heuristics for Repair

</paragraph> </paragraph>

Widowed tags: “Widows” are singleton start or end tags whose corresponding end /
start tag is missing.

ERROR POSSIBLE FIX

<paragraph> <paragraph>

<sentence> <sentence>

... ...

</sentence>

</paragraph> </paragraph>

Missing root element: A missing root element affects the global structure of a doc-
ument. We know that the root element is missing if there are several elements
and/or textual content or CDATA sections at the outmost level of the document.

ERROR POSSIBLE FIX

<document>

<paragraph> <paragraph>

... ...

</paragraph> </paragraph>

<paragraph> <paragraph>

... ...

</paragraph> </paragraph>

Text. Text.

</document>

There are some other types of possible errors, e.g., concerning the uniqueness of
attributes (duplicate attributes within a start or empty tag are prohibited) or the
declaration of entities. Such errors are not addressed by our algorithm for two reasons:
first, they are not relevant for our own work since they do not occur in the preprocessed
documents we need to handle; and second, they require user intervention to be resolved
in a generally useful way (only a human user can decide which of the values of a
duplicate attribute is the correct or most important one; or whether an unknown
entity reference is a misspelling of some other entity or else whether and how it should
be defined).

13.3 Configurable Settings and Heuristics for Repair

13.3.1 Missing Root Element

The last type of error (missing root) can only be fixed if a user specified a qualified
name to use when a root element must be created (document in the example given
above). If none is given and this type of error is detected, the algorithm gives up and
declares the document as irreparable.

91

13 Merging Conflicting and Incomplete XML Markup

13.3.2 Widowed Start Tags

There are two options to process widowed start tags whose corresponding end tag is
missing:

1. Either the missing end tag is created and inserted at a suitable position, e.g.,
immediately before the end tag of the embedding element.

2. Or the widowed tag is converted into an empty tag (this is equivalent to inserting
a corresponding end tag immediately after the widowed tag).

ERROR FIRST OPTION SECOND OPTION

<paragraph> <paragraph> <paragraph>

<sentence> <sentence> <sentence/>

...

</sentence>

</paragraph> </paragraph> </paragraph>

To determine which option to use, a set of emptiable tags for which the second
option should be used can be specified. The first option is used for widowed tags of all
other types; in this case the missing end tag is inserted at the latest possible position
(immediately before the embedding end tag). By default, we do not use any emptiable
tags.

13.3.3 Placement of Missing Start Tags

A simple heuristic for the placement of missing start tags is to place them immedi-
ately after the start tag of the embedding element (analogously to missing end tags).
However if an element contains several widowed end tags of the same type (qualified
name), the created start tags appear consecutively, resulting in a potentially deep
nesting of same-type elements.

This might be appropriate in some cases, but more often same-type elements are
arranged in succession within a common embedding element instead of being nested.
Thus our heuristic is to place the first missing start tag of a type after the start tag
of the embedding element, but to place any further start tags of the same type after
the last end tag of this type.

ERROR SIMPLE HEURISTIC OUR HEURISTIC

<paragraph> <paragraph> <paragraph>

<sentence> <sentence>

<sentence>

...

</sentence> </sentence> </sentence>

<sentence>

...

</sentence> </sentence> </sentence>

</paragraph> </paragraph> </paragraph>

92

13.4 Algorithm Description

To realize this heuristic, we use the concept of entative start tags. A tentative start
tag is created after an end tag whose start tag was either missing or itself tentative,
if the next tag of the same type is also an end tag (which indicates that another start
tag is missing).

13.3.4 Configuration of Character-level Errors

For some kinds of character-level errors there are different possibilities of resolving
them, depending on user preferences. They will be treated in Section 13.4.2.

13.4 Algorithm Description

The goal of the algorithm is to modify a document just as much as necessary to turn
it into a well-formed XML document, but not more. Hence, all changes should be as
non-intrusive as possible. This is the general design principle that underlies all the
steps of the algorithm and motives the order in which they are executed.

To reach this goal, the algorithm proceeds in two passes. In the first pass, the input
document is tokenized and character-level errors are fixed. All other kinds of errors
are resolved in the second pass. The first pass also prepares suitable data structures
to allow efficient repair in the second pass (data structures are marked by small

capitals in the following text).

13.4.1 First Pass

In the first pass, the XML-like input is tokenized into a sequence of constituents. XML
documents can contain ten types of constituents:

1. XML declaration
2. Document type declaration
3. Processing instructions (PIs)
4. Start tags
5. End tags
6. Empty tags
7. Outer whitespace, i.e., whitespace preceding or following a tag or other markup
8. Textual content
9. CDATA sections

10. Comments
If there is text that does not fit any constituent type, the algorithm tries to fix this

error at the character level, as described in Section 13.4.2. Tokenization is done via
complex regular expressions, similar to the shallow XML parser described in [Cam98].

Constituents are either markup (declarations, PIs, tags, comments) or text (tex-
tual content, CDATA sections). Each markup constituent is assigned a markup series
number—a markup series is a series of markup and outer whitespace not interrupted
by non-whitespace text. The concept of markup series is used to distinguish between

93

13 Merging Conflicting and Incomplete XML Markup

simple and hard nesting errors. Simple nesting errors can be resolved by moving tags
within the same markup series.

In addition to a (doubly linked) list of all constituents, a data structure containing
all unprocessed tags is built which initially contains all start and end tags (but no
empty tags).

13.4.2 Repairs at the Character Level

These repairs are performed prior to the the detection of nesting errors to allow a
correct tokenization.
Escape illegal ampersands: Any “&” characters occurring in textual content or at-

tribute values (of start and empty tags) that do not start an entity reference or
a decimal or hexadecimal character reference are escaped. The algorithm does
not use a DTD, so it does not know whether or not entity references such as
— are declared and thus legal. By default all possible entity references
are accepted but the algorithm can also be configured to allow only character
references and the five predefined entity references (& < > '

"), while any other “&” characters are escaped even if starting a potential
entity reference.

Fix unquoted attribute values: Attribute values whose start and/or end quotes are
missing (name=value) or do not match each other (name="value’) are recog-
nized and fixed (by enclosing them in full quotes and escaping any full quotes
within the value). Unquoted values can contain any characters except “<”, “>”,
and “=”, they can even contain whitespace.

Optionally delete “pseudo-tags”: We use the term “pseudo-tag” for character se-
quences that look similar to XML tags but are none. More formally, “pseudo-
tags” start with a “<” character followed by any printable character, end with a
“>” character, do not contain any embedded “<” or “>” and are not valid tags
according to the XML 1.0 [XMLa] or 1.1 [XMLb] Specification. For example,
<0.05.12.91> would be a“pseudo-tag”. Optionally (off by default)“pseudo-tags”
are deleted. Otherwise they are processed in the next step, i.e., the starting “<”
character is escaped.

Escape illegal characters: Any remaining illegal characters (typically un-escaped“<”
characters) are escaped.

Optionally delete restricted control characters: Optionally restricted characters
(control characters in the ranges [0x1–0x8], [0xB–0xC], [0xE–0x1F]) are deleted.
These characters are prohibited in XML 1.0 and discouraged in XML 1.1. This
step is configurable and off by default.

13.4.3 Second Pass

A start tag is said to have a corresponding end tag if and only if the unprocessed

tags data structure contains an end tag of the same type (qualified name), not pre-
ceded by a start tag of the same type.

94

13.4 Algorithm Description

A start tag is said to be missing its end tag iff the next unprocessed appearance
is not an end tag and the number of unprocessed start tags of this type is equal
to or greater than the number of unprocessed end tags of this type.

The second pass traverses the list of constituents created in the first pass. Each
encountered start tag is moved from unprocessed tags to a stack of open tags.

When an end tag is encountered, the algorithm iterates the following loop until the
end tag has been processed (a match has been found):

1. Check match: If the end tag and the last open tag have the same qualified
name, they match each other. The start tag is popped from open tags. When
the matching start tag is a tentative tag and the next tag of this type is another
end tag, we create a new tentative start tag of the same type and insert it after
the matched end tag. Exit loop (done).

2. Move tentative tag: If the last open tag is tentative, it is moved after the
current end tag (removing it from open tags and re-adding it to unprocessed

tags). Go to step 1 (try to match preceding open tag).
3. Find matching end tag: If a corresponding end tag exists for the last open

tag within the current markup series, it is moved before the current end tag.
This is done only if a non-tentative start tag exists for the current end tag,
otherwise we will go to the next step (move or insert start tag for current end
tag) to avoid unnecessary tag movements. Start tag and matching end tag are
popped from open tags and unprocessed tags. Go to step 1 (try to match
preceding open tag).
This step fixes a simple nesting error.

4. Find matching start tag: If open tags contains a non-root tag matching
the current end tag (either within the markup series of the last open tag or a
tentative appearance anywhere), it is moved after the last open tag. The found
start tag is popped from open tags. Exit loop (done).
This step fixes a widowed tag (if the found tag is tentative) or a simple nesting
error (otherwise).

5. Insert missing start tag: If open tags does not contain a start tag with the
same type (qualified name) as the current end tag, we know that the start tag
is missing and needs to be supplied. Thus a start tag of the same type (and
without any attributes) is created and inserted after the last open tag.
If the next appearance of this type is also an end tag, another start tag is
missing—to provide it we create a tentative start tag and insert it after the
processed end tag. Exit loop (done).
This step fixes a widowed tag.

6. Move premature start tag: If the last open tag is within the current markup
series and not missing its end tag, it is moved after the current end tag (moving
it from open tags to unprocessed tags). Go to step 1.
This step fixes a simple nesting error.

7. Complete start tag: If the last open tag is missing its end tag, it is convert
into an empty tag (preserving any attributes) if it is emptiable; otherwise a

95

13 Merging Conflicting and Incomplete XML Markup

matching (same-type) end tag is created and inserted before the current end
tag. Pop start tag from open tags and go to step 1.
This step fixes a widowed tag.

8. Split element: If none of the above conditions triggers, we know that the last
open tag and the current end tag overlap. The only way to fix this is by splitting
either of them in two parts. In the current implementation it is always the start
tag (the last open tag) that is split. We split the last open tag by creating two
new tags: (1) a matching (same-type) end tag that is inserted before the current
end tag; (2) a copy of the start tag (including all attributes) that is inserted
after the current end tag. Pop start tag from open tags and go to step 1.
This step fixes a hard nesting error.

At the end of the document, end tags are created and added for remaining open

tags, if any. They are inserted after the last root content (content that is only allowed
within a single root element: tags, text except outer whitespace, CDATA sections),
but before any trailing non-root content (outer whitespace, comments, PIs). This fixes
widowed tags.

If the root element is missing, i.e., not all root content is enclosed within a single
element and this cannot be fixed by moving tags within markup series, a root element
of the configured type can be created. If the algorithm is not configured to create
a root element (default), processing will stop with an exception in this case. The
inserted root element will cover as little content as possible, i.e., all root content, but
no preceding or following non-root content. This fixes a missing root element.

13.4.4 Serialization

After the two passes, any well-formedness violations that can be detected by our algo-
rithm have been fixed. The repaired list of constituents is serialized into a document
that in most cases will be well-formed XML (unless it contains errors that are not
addressed by our algorithm, e.g. duplicate attributes).

13.5 Limitations

While the heuristics of the algorithm are designed to cover typical problems in a
reasonable way, there are some situations where the results will not be what a user
might expect.

The heuristics for placing missing start or end tags cannot handle all cases ad-
equately, especially they do not consider possible relationships between elements of
different types. For example, in HTML [HTM], the th and td elements are alternatives:
a th element should end at the start of a td element, and vice versa.

Since the algorithm does not consider DTDs or Schemas, it cannot take such rela-
tionships into account. Requiring a DTD or Schema would conflict with the purposes
of our information extraction system, since we want to be able to process any XML-
based text files regardless of the exact format (cf. the input requirements defined in

96

13.6 Application in Our Approach

Section 7.2.1), so the documents to process might not correspond to a DTD or the
corresponding DTD might be unknown.

In case of hard nesting errors, one of the two overlapping elements must be split,
but there is no perfect way to decide which one. Currently the algorithm uses a very
simple heuristic: it always splits the element that starts and ends later (the second
element). In some cases, a user might want to split the first element instead, but there
is no way to detect this automatically.

Some combinations of errors can mislead the algorithm. If a widowed start tag is
followed by a widowed end tag of the same type, the algorithm will assume that the
end tag complements the start tag to form a single element. It will accordingly resolve
any hard nesting errors between this presumed element and other elements, even if
this means splitting an element multiple times.

Another kind of limitation results from the shallow treatment of attributes. When
an element is split, any attributes are copied to the newly created start tag. In case of
ID attributes this violates the ID validity constraint, since the ID value will no longer
be unique. To complement a widowed end tag, a start tag without any attributes
is created. This will cause a validity error if there are required attributes for this
element type. These types of errors could only be addressed by accessing a DTD or
XML Schema, if at all.

13.6 Application in Our Approach

In addition to unifying the original structural markup with the linguistic annotations
added during preprocessing into a joint tree structure (cf. Sec. 13.1), we employ the
algorithm for two other purposes:
Sentence tagging: For our linguistic preprocessing, we need to insert elements enclos-

ing whole sentences for augmenting the within-sentence level linguistic annota-
tions provided by the tagger mentioned above. As described above, the tagger
provides information that allows locating the end of sentences, but it cannot
detect the beginning. Thus we insert widowed end tags marking the end of sen-
tences and let the algorithm insert the corresponding start tag based on the
heuristic explained in Section 13.3.3.

Conversion of legacy documents: One of our IE test corpora is the RISE Seminar
Announcements corpus ([RISb], cf. Sec. 17.1). This corpus has been published in
a format that is similar to but not exactly SGML (nor does it claim to be). This
format uses start and end tags to inline-annotate answer keys (cf. Sec. 9.3.1);
but there is no root tag, characters such as “&”and“<”are not escaped, and the
published documents contain lots of nesting errors (mainly of the simple kind).
Our algorithm converts such documents into XML so they can be processed by
any XML parser, allowing correct recognition of the annotated answer keys.2

2 Meanwhile, an XML version of the Seminar Announcements has been published by the University

of Sheffield’s Dot.Kom Project <http://nlp.shef.ac.uk/dot.kom/resources.html>, but it was

not yet available when we started our experiments on that corpus.

97

13 Merging Conflicting and Incomplete XML Markup

13.7 Related Work

Since the problem of merging conflicting and incomplete XML markup is quite distinct
from the issues normally covered in the field of IE, we discuss the related work in the
context of this chapter (instead of in Part I, which is dedicated to related IE approaches
and the field of information extraction in general).

The shallow, regular expression–based REX [Cam98] parser has been a major source
of inspiration for the tokenization performed in the first pass of the algorithm (though
the regular expressions used here have been developed largely independently, partially
due to the better Unicode support in Java and to address XML 1.1 [XMLb]).

There are some programs that fix SGML/XML documents corresponding to certain
DTDs. For example, HTML Tidy [Tid] corrects errors in HTML documents, includ-
ing nesting errors and missing end tags. Knowledge of used DTDs is built into such
programs; they cannot be used for fixing documents conforming to other DTDs or
XML Schemas.

There are algorithms for merging different versions of XML documents following a
diff and patch model, e.g. [Koh03]. An overview of algorithms for detecting changes in
XML documents in given in [Cob02]. The 3DM system presented in [Lin01] performs
a 3-way merge. Given the base form of a document and two variants created by
independently editing the base form, a new version is created that unifies the changes
performed in both variants. A similar approach is implemented in [Kom03].

For the problem at hand, such approaches would not be usable because they assume
that (a) the different versions are correct XML and (b) all changes from the edited
versions should be integrated. Thus it is not possible to impose new tree structure
elements without being aware of the existing structure.

98

