12 Preprocessing and Context Representation

12.1 Preprocessing

Regarded naively, an input text feed to an IE system might appear to be flat data
without visible structure; just a sequence of characters. This is a wrong impression—
there is structure in any text. At a low level, text can be considered as a sequence of
tokens (words, numbers, punctuation). In natural language texts, tokens are arranged
in sentences. Several sentences are grouped in paragraphs, which are grouped in sec-
tions (which in turn might be grouped in higher-order sections). In structured text
formats the higher-level structure (usually down to the paragraph level) is explicitly
coded, but the lower-level structure (sentences; sentence constituents such as verb
groups or noun phrases; tokens) must usually be induced.

As explained in Section 9.2, we have decided to utilize XML as a generic input
format that allows expressing any structural information about a text, as long as the
resulting structure is a tree. (Overlapping markup is not possible since it would result
in the text structure being a general graph instead of a tree.)

Any XML-annotated documents can be handled without requiring conversion—our
algorithms are agnostic about the semantics of the used tag set, since they only use
structural information, leaving it to the classifier to learn and recognize any implied
semantics that are relevant for classification. We also accept HTML input, using JTidy
[JTi] to clean up any markup errors and inconsistencies and to ensure a valid XML
structure.

In case of plain text input (such as the Seminar Announcements and Corporate
Acquisitions corpora used for evaluation, cf. Chap. 17), we invoke the tzt2html [txt]
converter to convert the input into XHTML. This converter relies to heuristics to
recognize and explicitly represent (in HTML tags) structural and formatting informa-
tion (blocks of emphasized text, lists, headers etc.) that is frequently implicit in plain
(ASCII) texts and that would be lost if we just processed the text as an unstructured
series of tokens.

Any other document formats can be processed by integrating a suitable converter
into the system or by converting them to XML or HTML prior to processing.

In a further preprocessing step, the text is augmented with explicit linguistic infor-
mation. We use the well-known TreeTagger [Tre] to:

— Divide a text into sentences.! TreeTagger has not been originally designed as a
sentence splitter—it does not mark the beginning and ending of sentence, but

¢

only the ending (by POS-tagging punctuation characters such as ‘.’ ‘7", ‘I as

end-of-sentence marker if they are used that way). Normally, sentences can be

! By adding sent (sentence) elements to the XML tree.
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Figure 12.1: Partial DOM Tree of a Simple HTML Document with Linguistic Anno-
tations

assumed to extend from one end-of-sentence marker (or from the begin of the
text in case of the very first sentence) to the next one. However, sometimes there
are intervening text fragments that are not part of any full sentence, e.g. section
headings. This makes the placement of the begin-of-sentence marker somewhat
less straightforward—we use the XML repair algorithm that will be described in
the next chapter to insert the begin-of-sentence tags in the most likely position.

— Split sentences into “chunks” such as verb groups, noun phrases and prepositional
phrases.?

— Tokenize the input into a sequence of parts-of-speech (words, numbers and punc-

tuation) and determine their syntactic categories and normalized base forms.?

For German texts, we additionally use SPPC* to split compounds into segments.’

The output of the preprocessing tools is converted to the XML markup mentioned
in the footnotes and merged with the explicit markup of the source document. The
schema describing the linguistic markup is given in Appendix A; the merging algorithm
will be described in the following chapter. After preprocessing, a text is represented as
a DOM (Document Object Model) tree. The structure of the DOM tree for a simple
HTML document (containing a section heading and several paragraphs) is shown in
Fig. 12.1.

Figure 12.2 shows a preprocessed file from the Seminar Announcements corpus—
the same file that was used as example in Sec. 3.4 and in Chap. 9. XML elements

2By adding const (sentence constituent) elements with a type attribute that identifies the type of
the constituent.

3 By adding pos (part-of-speech) elements with type and normal attributes.

* A successor of the SMES system described in [Neu02].

5 The list of segments is stored in the segments attribute of pos tags that are compounds; the base
forms of all segments are stored in the normalSegments attribute and the baseSegment attribute
contains the base form of the main segment.
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—<html>
+ <head></head>
—<body>
+ <d|></d|>
+ <p></p>
-<p>
+ <sent></sent>
- <sent>
— <const type="NC">
<postype="DT" normal="the">The<pos>
<postype="NN" normal="lecture'>lecture<pos>
</const>
— <const type="VC">
<postype="VVZ" normal="begin">begins<pos>
</const>
— <const type="PC">
<postype="IN" normal="at">at<fpos>
— <const type="NC">
<postype="CD" normal="@card@*3:30<pos>
<postype="RB" normal="p.m">p.m<pos>
<postype="VVN" normal="follow" >followed<fpos>
</const>
</const>
— <const type="PC">
<postype="IN" normal="by">by</pos>
— <const type="NC">
<postype="DT" normal="a">a<pos>
<postype="NN" normal="reception>receptiongpos>
</const>
</const>
— <const type="PC">
<postype="IN" normal="in">in</pos>
—<const type="NC">
<postype="NP">Hamerschlaggos>
<postype="NP" normal="Hall" >Hall</pos>
</const>
</const>
<postype="," normal=","></pos>
— <const type="NC">
<postype="NP" normal="Room">Room<pos>
<postype="CD" normal="@card@*>1112<pos>
</const>
<postype="SENT" normal=".">.</pos>
</sent>
+ <sent></sent>
+ <sent></sent>
</p>
</body>
</html>

Figure 12.2: Processed File from the Seminar Announcements Corpus
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Figure 12.3: Inverted Subtree of the Elements Considered for a Context Representa-

tion

marked with ‘4’ have been collapsed to keep the sample reasonably short.

12.2 Tree-based Context Representation

Typically, the context window considered by IE algorithms comprises either the near-
est tokens/words (e.g. [Cir01]) or some predefined syntactic elements of the current
sentence (e.g. [Sod95]). The hierarchical tree structure obtained by our preprocessing
approach allows a more flexible context model: the context of a node contains the
nearest nodes around it. The context we consider for each token includes features
about:

— The token itself and the POS (part-of-speech) element it is in.

— Up to four preceding and four following siblings® of the POS element (neighbor-
ing parts-of-speech, but only those within the same sentence chunk).

— Up to four ancestors of the element (typically the embedding chunk, sentence,
paragraph or related unit, etc.)

— Preceding and following siblings of each included ancestor—the number of in-
cluded siblings is decremented for each higher level of ancestors (three for the
direct parent, i.e. three preceding and three following chunks; two for the “grand-
parent”, i.e. sentence; etc.)

The information included in our context representations thus consists in a subtree
of the full DOM tree, starting from a leaf node (containing the token to classify) and
extending from there to the four nearest ancestors and their siblings. Context repre-
sentations are thus based on inverted subtrees of the whole document tree. Figure 12.3

5 We use the terms preceding sibling, following sibling, parent, and ancestor as defined by the XPath
standard [XPa].
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12.2 Tree-based Context Representation

continues the example from Fig. 12.1, highlighting the elements to be included in the
context representation for the leaf node at the bottom.

In addition to this DOM tree—based context, we add information on the last four
attribute values found in the current document, similar to the lastTarget variable
used in [Pes03]. This allows the classifier to learn about positional relations among
attributes to extract (for example, the END TIME of a seminar announcement will
usually follow the START TIME, and the LOCATION of the seminar will often follow
both).

In the application phase, this information about preceding attribute values will be
somewhat noisy since the true attribute values (answer keys) are not known, and
the predicted attribute values might be erroneous; on the other hand, other context
information such as linguistic annotations will also contain occasional noise and errors.
As part of the evaluation phase of our work, we will perform an ablation study to
investigate the influence of the various source of information that form the context
representations, determining whether and how useful they actually are (in spite of
noise).

In the DOM tree creating during preprocessing, all leaf nodes are POS elements,
each representing a single word or another part-of-speech. Each POS element contains
a text fragment for which we include several features:

— The text fragment, both in original capitalization and converted to lower-case;

— Prefixes and suffixes from length 1 to 4, converted to lower-case;”

— The length of the fragment;

— The word shape the fragment (one of lowercase, capitalized, all-caps, digits,

digits+dots, digits+colons, alphanumerical, punctuation, mized etc.)

Additionally, the semantic class(es) the fragment belongs to are listed, if any. For
this purpose, a configurable list of dictionaries and gazetteers are checked. Currently
we use the following semantic sources:

— An English dictionary;?

— Name lists from US census;!°

— Address suffix identifiers from US Postal Service;!!

— A small list of titles from Wikipedia.'?

Since all textual content of preprocessed documents is wrapped inside POS elements,
all other elements are inner nodes which contain child elements instead of directly
containing text. For chunk elements, we include the normalized form of the right-
most POS that is not part of a sub-chunk as head word.!® For elements containing

" Prefixes and suffixes that would contain the whole fragment are omitted.

8 Both the exact value and the rounded square root as a less sparse representation.

Yhttp://packages.debian.org/testing/text/wamerican

0 http://www.census . gov/genealogy/names/

" http://www.usps. com/ncsc/lookups/abbreviations . html

2 http://en.wikipedia.org/wiki/Title

3 This is a somewhat language-specific heuristic aimed at languages such as English and German,
where articles and adjectives are usually placed to the left of a noun. It should be modified for
languages such as Spanish, where attributes frequently follow the noun they modify.
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chunks (such as sentence), the head words of the left-most and the right-most chunk
are included.

For other elements, the name of the element is added to the feature set. Any XML
attribute name/value pairs of the included elements are also added.'* The position of
each element relative to the token to represent is encoded in the generated features;
for the represented POS element and its ancestors, we also store the position of the
element within its parent.

This results in a fairly high number of features representing the context of each
token. The features are arranged in an ordered list to allow recombination via feature
combination techniques such as OSB (cf. Sec. 11.2); the resulting feature vector is
provided as input to the classifier.

12.3 Tokenization

Since we model information extraction as a token classification task (cf. Chap. 10),
tokenization is especially important for our approach. Only complete tokens can be
extracted—an attribute value can comprise one or multiple whole tokens, but it cannot
comprise partial tokens. Hence, attribute values whose borders do not correspond
to token borders are impossible to extract correctly. Tokenization should be precise
enough to avoid introducing such inevitable errors.

On the other hand, increasing the number of tokens by choosing a more specific
tokenization schema increases both the risk of errors and the runtime of the algorithm
(which with our default classifier Winnow+OSB is linear to the number of tokens, cf.
Chap. 11). Therefore we should not increase the number of tokens unnecessarily.

An initial tokenization is already performed during linguistic preprocessing. As ex-
plained above (Sec. 12.1), the linguistic preprocessor will split a text into a series of
part-of-speech (POS) tokens. This takes care of most tokenization issues, including
the separation of most punctuation symbols from preceding words. However, some of
the expressions regarded as single POS elements by the preprocessor are not yet suf-
ficiently granular for information extraction. For example, the expression “12:00-1:30"
is considered a single POS element by TreeTagger, but it contains both the START
TIME (“12:00”) and the END TIME (“1:30”) of a seminar announcement (cf. Sec. 17.1).
To be able to extract (or to train) either attribute value, we need a more fine-grained
tokenization.

For this purpose we use a regular expression—based tokenizer that uses a configurable
list of regular expression patterns for tokenization. By default, four patterns are used,
one for matching alphanumerical sequences (normal words and numbers), one for
matching monetary amounts, another one for punctuation characters (commas, dots,
quotation marks etc.) and the last one for any other printable characters (such as
mathematical symbols). The exact patterns used are given in Table 12.1—they are
chosen in a way that allows exactly matching and extracting all attribute values that

14 XML attributes specify the type of parts-of-speech and chunks as well as the normalized form of
parts-of-speech, as stated above (Sec. 12.1); other XML attributes might be present in the original
or converted XML representation of a document.
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12.3 Tokenization

Alphanumeric, can contain one of ”.,:” between digits:

(P \p{NIL.\, : I\p{NF| \p{LI\p{MF\p{N}])+

Currency symbols, can be followed by numbers (incl. inner ”.,;”):
\p{ScH+(7:\p{N}[.\, : I\p{N} | \p{N})*

Single punctuation sign, possibly repeated:

Ap{P}H)\1x

Other Symbols (non-currency):

(\p{SmI\p{Sk}\p{So}]+

Table 12.1: Regular Expressions Used for Tokenization

do occur in the evaluation corpora (Sec. 17.1) and all that are likely to occur in other
corpora,'® but that does not generate more tokens that necessary for this purpose.

The first pattern matches most tokens—it allows any alphanumeric sequences, i.e.,
sequences containing letters and digits but no other characters. Additionally, it allows
the punctuation characters .,: (dot, comma, colon), but only if they are surrounded
by digits. These characters are typical within numeric expressions such as “1.25" or
“1,000,000" and time expressions such as “12:00pm” and should not cause such expres-
sions to be split.

The second pattern matches currency symbols and currency amounts, such as “$9.99”
or “€50,000". The third one matches a single punctuation character or several repe-
titions of the same punctuation character (e.g. “..."). It will not match sequences of
different punctuation characters (which are quite rare, anyway) as a single token, since
some token borders might occur between different punctuation characters. For exam-
ple, in the sentence “The speaker, Guy L. Steele, Jr., will talk about...” the SPEAKER
attribute value to extract is “Guy L. Steele, Jr.”, including the dot after “Jr" but
excluding the subsequent comma.

The fourth and last pattern matches sequences of any other symbols, e.g. mathe-
matical symbols that might occur in scientific texts.

1580 far, our system has been used for two or three additional corpora containing German or English
texts, and the tokenization turned out to be appropriate for all of them without needing adjustments.
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