11 Classification Algorithm and Feature
Combination Techniques

An advantage of token-classification approaches is that they are not coupled to one
specific statistical method. Any classification algorithm that can return a probability
distribution over the active classes can be used as the core of such approaches. In our
case, the modular design of our system makes it easy to replace the classifier (it is not
even necessary to recompile the rest of the system).

So when we have to decide on a classification algorithm to be used in our system,
this only concerns the choice of a default classifier; any other classifiers can still be
integrated as alternatives. Since one of our goals to to allow incremental training to
reduce the human training effort, it makes sense to chose an online learning algorithm
as default classifier. Online algorithms learn by processing each of the training exam-
ples in the order they come in; they do not need access to the whole training corpus
at once (as many other algorithms do, for example for feature selection).

The online learning algorithm we will use as default classifier is Winnow. Winnow
is specifically suitable if the overall number of features is very high, since it is a
simple and fast algorithm that can be (and, in our case, is) implemented using a
sparse architecture where the time required for training or classification depends only
on the number of features that are active (present) in the current example, while the
overall number of features known to the classifier is irrelevant. In spite of being simple,
Winnow still gets very competitive results (as we will see in the evaluation part, cf.
esp. Chap. 16), especially when used with one of the feature combination techniques
we will introduce in Section 11.2.

11.1 The Winnow Classification Algorithm

The Winnow algorithm introduced by [Lit88] is a statistical, but not a probabilistic al-
gorithm, i.e. it does not directly calculate probabilities for classes. Instead it calculates
a score for each class.

Our variant of Winnow is suitable for both binary (two-class) and multi-class
(three or more classes) classification. It keeps an n-dimensional weight vector w® =
(w§,ws, ..., wg) for each class ¢, where wf is the weight of the ith feature. The al-
gorithm returns 1 for a class iff the summed weights of all active features (called the
score Q) surpass a predefined threshold 6:

Q:iwj> 6.
j=1

73

11 Classification Algorithm and Feature Combination Techniques

Otherwise (2 < 6) the algorithm returns 0. n, < n is the number of active (present)
features in the instance to classify.

The goal of the algorithm is to learn a linear separator over the feature space that
returns 1 for the true class of each instance and 0 for all other classes on this instance.
The initial weight of each feature is 1.0. The weights of a class are updated whenever
the value returned for this class is wrong. If 0 is returned instead of 1, the weights
of all active features are increased by multiplying them with a promotion factor «,
a>1:

Cc C
wj<—a><wj.

If 1 is returned instead of 0, the active weights are multiplied with a demotion factor
8,0< B <1
wj « B x wj.

The classification tasks we need to address in our approach do not yield feature
vectors of a fixed size. In text classification, the number of features depends on the
length of the text, so it can vary enormously from instance to instance. Similarly,
the size of the context representations we generate as feature vectors for information
extraction (cf. Sec. 12.2) varies depending on the position of a token in the current
document and the size of surrounding elements such as the sentence it is in. Thus
instead of using a fixed threshold we set the threshold to the number n, of features
that are active in the given instance: § = n,. Thus initial scores are equal to 6 since
the initial weight of each feature is 1.0.

In multi-label classification, where an instance can belong to several classes at once,
the algorithm would predict all classes whose score is higher than the threshold. But
for our purposes, there is exactly one correct class for each instance, thus we employ
a winner-takes-all approach where the class with the highest score is predicted.

This means that there are situations where the algorithm will be trained even though

L are at the

it did not make a mistake. This happens whenever the scores of both classes
same side of the threshold and the score of the true class is higher than the other one—
in this case the prediction of Winnow will be correct but it will still promote/demote
the weights of the class that was at the wrong side of the threshold.

Analogously to SNoW (cf. [Car04, p. 20]), we convert the scores returned by a

Winnow instance into confidence (probability) estimates using the function

((2=0)/6

Q°,0) = ; ,
p()) Eclec e(Qc —0)/0

where Omega® is the score for class ¢ (from the set of all classes C') and 6 is the
threshold as explained above (the denominator is the normalization factor).

The complexity of processing an instance depends only on the number of active
features ng, not on the number of all features n;. We use a sparse architecture where
features are allocated whenever the need to promote/demote them arises for the first
time. In sparse Winnow, the number of instances required to learn a linear separator (if

1 . . .
of two or more classes in tasks involving more than two classes

74

11.1 The Winnow Classification Algorithm

exists) depends linearly on the number of relevant features n, and only logarithmically
on the number of active features, i.e. it scales with O(n, logn,) (cf. [Mun99, Sec. 2]).

Winnow is a non-parametric approach; it does not assume a particular probabilistic
model underlying the training data, nor does it require features to be independent of
each other.

11.1.1 Thick Threshold

In our implementation of Winnow, we use a thick threshold for learning (cf. [Dag97,
Sec. 4.2]). Instances are trained even if the classification was correct if the determined
score was near the threshold. Two additional thresholds 8 and 0~ with 6~ < § < 67
are defined and each instance whose score falls in the range [0~,0"] is considered a
mistake. In this way, a large margin classifier will be trained that is more robust when
classifying borderline instances.

11.1.2 Classification between Multiple Classes

While our Winnow variant supports multi-class classification, initial experiments indi-
cated that is advantageous to use multiple binary classifiers in a “one-against-the-rest”
setup. We train a separate classifier for each of the classes defined by the employed
tagging strategy (cf. Sec. 10.2), except for the background class (the O class according
to the used naming schemas). The context representations of all tokens of a non-
background class are trained as positive instances for the corresponding classifier and
as negative instances for all other classifiers; the context representations of background
tokens are trained as negative instances for all classifiers.

In the application stage, we compare the predictions of the separate classifiers. If
several classifiers predict their positive class, the most confident classifiers wins. If
none of the positive classes is chosen, the background class (O) wins.

11.1.3 Incremental Training and Batch Training

An advantage of Winnow is its supporting incremental (online) training as well as
batch (iterative) training. The advantages of incremental training have already been
discussed (Sec. 3.3). Typical trainable IE systems require to be batch-trained from a
set of annotated training texts. The resulting statistical model can be used to propose
extractions from other (similar) texts, but it cannot be changed without being rebuilt
from scratch. However, for many “real-life” applications, automatic extractions will
be checked and corrected by a human revisor, as automatically extracted data will
always contain errors and gaps that can be detected by human judgment only. This
correction process continually provides additional training data, but batch-trainable
algorithms are not very suited to integrate new data, since full retraining is required
which will take increasingly longer times.

On the other hand, batch training generally leads to superior results on static cor-
pora where training and testing documents are randomly drawn from the same set.

75

11 Classification Algorithm and Feature Combination Techniques

Being an online algorithm, Winnow naturally supports incremental training. Batch-
training Winnow is possible by repeating this online training process several times.
For batch training, we repeatedly train the classification model on the whole training
set until one of the following conditions is true:

1. Classification accuracy on the training set did not increase compared to the last

iteration;

2. Classification accuracy on the training set is already perfect (0 errors); or

3. The algorithm has been trained for 15 iterations.

The last condition (which is configurable) is to avoid overtraining. In our experi-
ments, it generally was irrelevant, since the batch training process tended to stop after
about 7-12 iterations due to condition 1.

11.1.4 Feature Pruning

The feature combination methods discussed in the next section generate enormous
numbers of features. To keep the feature space tractable, features are stored in an
LRU (least recently used) cache. The feature store is limited to a configurable number
of elements; whenever it is full, the least recently seen feature is deleted. When a
deleted feature is encountered again, it will be considered as a new feature whose
weights are still at their default values.

11.2 Feature Combination Techniques

11.2.1 Sparse Binary Polynomial Hashing (SBPH)

Sparse binary polynomial hashing (SBPH) is a feature combination technique intro-
duced by the CRM11/ Discriminator [CRM, Yer03]. Instead of an unordered feature
set, SBPH required a ordered list of input features. These list of input features can be
the words from a tokenized text (e.g. for text classification), or the context representa-
tions described in Section 12.2, or any other suitable list of features. SBPH y generates
joined features that combine two or more input features within a context window of a
specific length N (5 by default). These joined features combine the considered input
features as well as their relative positions.

The idea behind this technique is the same the motivates the occasional use of
bigrams and trigrams in text classification: combinations of adjacent features often
transport more information than available from the mere features alone. For example,
while it might be accidental if two texts contain the three features new, york and
city (one of the might talk about New York City, the other about a new city hall in
York, England), the trigram new york city indicates that both mention indeed the same
entity. SBPH extends the idea of n-grams by also allowing “n-grams” with placeholders
between features (sparse n-grams).

To generate such features, SBPH y slides a window of length N over the list of input
features. For each window position, all of the possible in-order combinations of the NV
input features that contain at least the newest (right-most) element of the window are

76

11.2 Feature Combination Techniques

generated. For a window of length N, this generates 2V ~! features. Each of these joint
features can be mapped to one of the odd binary numbers from 1 to 2 — 1 where
original features at “1” positions are visible while original features at “0” positions are
hidden and marked as skipped.

For the sliding window containing five input features, fi,..., fs, SBPH5 produces

16 (2*) combined features (all containing f5), as shown in Table 11.1.

I5

Ja I5

f3 <skip> f5

f3 fa I5

fo <skip> <skip> f5
f2 <skip> fa Is
f2 f3 <skip> fs

f2 f3 Ja f5
1 <skip> <skip> <skip> f5
1 <skip> <skip> fa f5
1 <skip> f3 <skip> fs5
1 <skip> I3 Ja I5
fi fo <skip> <skip> f5
1 fo <skip> Ja I5
1 fo I3 <skip> f5
J1 f2 /3 Ja f5

Table 11.1: SBPHj5 Feature Combinations Containing f5

It should be noted that the features generated by SBPH are not linearly independent
and that even a compact representation of the feature stream generated by SBPH may
be significantly longer than the original feature list.

11.2.2 Orthogonal Sparse Bigrams (OSB)

Since the expressivity of SBPH is sufficient for many applications, we now consider
if it is possible to use a smaller feature set and thereby increase speed and decrease
memory requirements. For this, we consider only pairs of features within the window—
to avoid repetitions, we require the newest member of the window to be one of the
two features in the pair. The idea behind this approach is to gain speed by working
only with an orthogonal feature set inside the window, rather that the prolific and
probably redundant features generated by SBPH.

Instead of all odd numbers, only those with two bits “1” in their binary representa-
tions are used as patterns for feature generation: 2" +1, for n = 1 to N — 1. With this
restriction, only N — 1 combinations with exactly two input features are produced.
We call the resulting feature combinations orthogonal sparse bigrams (OSB)—sparse”
because most combinations have skipped input features; only the first one is a conven-
tional bigram. This feature combination techniques has been originally introduced by

77

11 Classification Algorithm and Feature Combination Techniques

Fidelis Assis, Shalendra Chhabra, William S. Yerazunis, and the author of this thesis
in [Sie04b].
For the sliding window containing five input features, fi,..., fs, OSBs produces
four combined features (all containing f5):
fa [
f3 <skip> f5
fa <skip> <skip> f5
i <skip> <skip> <skip> f5

Table 11.2 shows an example of the features generated by SBPHs and OSB3 side
by side. Because of the reduced number of combined features, N — 1 in OSBy versus
2N=1 in SBPHy, classification with OSB is considerably faster than with SBPH. For
the window sizes of 5 we use by default, OSB generates 4 (5 — 1) combined features,
while SBPH generates 16 (2°~1) combined features for each input feature. Since both
training and classification times with Winnow are linear to the number of features,
training and application with OSB takes only 25% of the time required with SBPH
(while still reaching comparable or even superior results, as we will see in Chap. 16).

Number SBPH OSB

1 (1) today?

3 (11) lucky today? lucky today?
5 (101) feel <skip> today? feel <skip> today?
7 (111) feel lucky today?

9 (1001) you <skip> <skip> today? you <skip> <skip> today?
11 (1011) you <skip> lucky today?

13 (1101) you feel <skip> today?

15 (1111) you feel lucky today?

17 (10001) | Do <skip> <skip> <skip> today? | Do <skip> <skip> <skip> today?
19 (10011) | Do <skip> <skip> lucky today?

21 (10101) | Do <skip> feel <skip> today?

23 (10111) | Do <skip> feel lucky today?

25 (11001) | Do you <skip> <skip> today?

27 (11011) | Do you <skip> lucky today?

29 (11101) | Do you feel <skip> today?

31 (11111) | Do you feel lucky today?

Table 11.2: Features Generated by SBPH and OSB

Note that the orthogonal sparse bigrams form an almost complete basis set for
the SBPH features—by “ORing” features in the OSB set, any feature in the SBPH
feature set can be obtained, except for the unigram (f5, the stand-alone input feature).
However, there is no such redundancy in the OSB feature set; it is not possible to
obtain any OSB feature by adding, ORing, or subtracting any other pairs of other
OSB features; all of the OSB features are unique and not redundant.

Since the first SBPH term, the unigram f5, cannot be obtained by ORing OSB
features it seems reasonable to add it as an extra feature. However the experiments
reported in Section 16.3.4 show that adding unigrams does not increase accuracy; in
fact, it sometimes decreases accuracy.

78

11.3 Alternative Classification Algorithms and Implementations

11.3 Alternative Classification Algorithms and
Implementations

As stated above, our system is agnostic to the actually used classification algorithm.
Any trainable classifier can be plugged in as an alternative to Winnow, as long as
a suitable interface/adapter exists and it is able to handle the large feature vectors
representing the context of tokens (cf. Sec. 12.2—of course, the generated context
representations are also pluggable and could be adapted for other classifiers if wished).

We decided on Winnow as the default classification algorithm because it is a fast
linear-time classifier that can be trained incrementally and easily supports very large
feature vectors. While Winnow is a linear separator, it is suitable for the feature
combination techniques discussed above in Sec. 11.2 for enriching the feature space.

There are other Winnow implementations publicly available, but since none of them
suited all our needs, we had to write our own. The MALLET [McC02] implementa-
tion is not used because it is neither sparse nor incremental and cannot prune fea-
tures; WEKA [Wit99] can handle only two classes, is not sparse and cannot prune;
SNoW [Car04] implements only simple pruning strategies (pruning features with low-
est weight) and offers little support for incremental training (the prediction model is
serialized and deserialized for each batch of training data).

Cohen and Singer [Coh99] use a Winnow-like multiplicative weight update algorithm
called “sleeping experts” with a feature combination technique called “sparse phrases”
which seems to be essentially equivalent to SBPH. Bigrams and n-grams are a classical
technique; SBPH has been introduced in [Yer03] and “sparse phrases” in [Coh99]. In
[Sie04b], we have introduced orthogonal sparse bigrams as a minimalistic alternative
that has been new, to the best of our knowledge.

An LRU mechanism for feature set pruning has already been employed by the author
in [Sie02]. We suppose that others have done the same since the idea seems to suggest
itself; but currently we are not aware of such usage.

Similar to the exchangeable classifier, the usage of feature combination techniques
is optional and pluggable. By default, we have used OSB3, but it is possible to disable
this or to replace it by SBPH or any other feature filter. It is also possible to chain
several feature filters so one of them works on the output of the previous one.

79

