
Part III

Algorithms and Models





10 Modeling Information Extraction as a

Classification Task

10.1 Idea and Concept

One of the core statistical techniques is classification. A classifier operates over a set of
classes (class labels) C; classifiers are trained from a list of tuples (F, c), where each F

is a feature vector representing an instance of class c ∈ C. For application, a classifier
must be able to map any (known or unknown) feature vector F to a class c ∈ C which
is the most likely class for this feature vector (as estimated by the classifier).

We can model information extraction as a classification task if we break down the
task of extracting information from a text into a series of decisions that a classifier can
handle; and the task of training an information extractor from an annotated training
text into a series of operations for training the classifier.

For understanding how to do this, we regard a text as a sequence of tokens. For the
purposes of information extraction, each token might be part of an attribute value;
two or more sequential tokens might be part of the same attribute value. (This means
we assume that no overlapping or non-continuous attribute values occur, as already
stated in Chap. 8). This can be expressed by a sequence of states which is as long as
the sequence of tokens. Each state is a 3-tuple (attribute, begin?, end?) that describes
whether the corresponding token is part of a attribute value and whether the value
begins and/or ends with this token (attribute is set to a null value iff the token is not
part of an attribute value; begin? and end? are boolean values).

Modeled this way, the goal of IE is to determine the most likely state sequence for
a given token sequence (text); IE systems are trained from token sequences where the
corresponding state sequence is already known and can be used for training (annotated
training texts).

Now we can model IE as sequence of classification tasks where the goal of each
classification task is to determine the most likely state for a token. But classifiers
work on feature vectors F and class labels c. Hence, for being able to use a classifier
for this purpose, we need a way to convert states into class labels (for training the
classifier) and vice versa (for applying the classifier and interpreting the results), and
to convert tokens into feature vectors.

Converting states into class labels and vice versa is not difficult, but there are
different ways to do it. While these different ways are generally equivalent in expressive
power (as long as they can express all legal state sequences), they will result in different
label sequences corresponding to the same state sequence. Since the classifier needs to
learn and predict label sequences without having any information about the underlying
state sequence, differences in the generated label sequences might affect the accuracy

69



10 Modeling Information Extraction as a Classification Task

of classifier predictions and hence the extraction quality reached by the resulting IE
system. We refer to the different ways of converting between states and labels as
tagging strategies (or labeling strategies); they will be covered in the next section.

Conversion of tokens to feature vectors for the classifier is another issue that needs
to be handled. Obviously, a very trivial way of doing this would be to convert each
token into single-element feature vector that just contains the token itself as only
element. But this would provide almost no useful information to the classifier, since
no information about the textual context surrounding the token would be available for
classification, and neither would any linguistic, semantic or morphological information
about the token itself be available. Clearly, classifiers will have an advantage if they
can work on richer feature vectors that do provide at least some additional information
about a token and the context in which it occurs. We refer to such feature vectors as
context representations and will cover them in detail in Chapter 12, after covering the
third essential ingredient, which is the used classifier (classification algorithm) itself.

To resume, approaches modeling information extraction as a classification task re-
quire three components:

1. A tagging strategy that is used for translating the sequence of states describing
the attribute values to extract into a series of token labels, and vice versa. The
relevant tagging strategies will be presented below (Sec. 10.2).

2. A classification algorithm (classifier) that predicts a label for each token during
the application phase. The classifier must be trainable so it can learn the token
labels in the training phase. The algorithm we use by default will be introduced
in Chap. 11.

3. A feature extractor that converts the context of each token into a feature vec-
tor for the classification algorithm. The context representations we provide by
default will be explained and motivated in Chap. 12.

In our approach, each of these components is independent from the others and from
the rest of the system. Each component can be modified or replaced, leaving the rest
of the setup unchanged.

Other systems pursuing similar approaches have been discussed in Sec. 4.4. These
previous classification-based IE approach have combined a specific tagging strategy
with a specific classification algorithm and specific other parameter settings, making
it hard to detect how each of these choices influences the results. To allow systematic
research into each of these choices, we have designed our system in such a way that
it allows utilizing any tagging strategy with any classification algorithm (provided
that a suitable implementation or adapter exists). This makes it possible to compare
strategies or algorithms in an identical setting.

10.2 Tagging Strategies

Tagging strategies (or labeling strategies) are necessary for translating between se-
quence of states si describing the attribute values to extract and sequences of class

70



10.2 Tagging Strategies

labels ci for a classifier to handle. Each strategy need to define a translation oper-
ation ci ← label(si) which converts a state into a label and a translation operation
si ← state(ci) which converts a state into a label. The former operation is needed for
training the classifier from an annotated text (where states are known), the latter is
used for extracting information from an un-annotated text by invoking the classifier
for each token and converting the resulting label sequences into state sequences.

We assume that tagging strategies are stateful, so the result of a translation opera-
tion from or to a state si might depend on the preceding state si−1. It does not matter
if tagging strategies are unable to determine the value of the end? field of a state si

correctly since this value can be be reconstructed by comparing si and the following
state si+1.

The most trivial (Triv) strategy would be to use a single class for each of the
attributes and an additional class “O” class for all other tokens. However, this does
not work correctly if two values of the same attribute immediately follow each other,
e.g., if the names of two speakers are separated by a linebreak only. In such a case,
both names would be collapsed into a single attribute value, since the trivial strategy
lacks a way to mark the begin of the second attribute value, meaning that its state

translation operation is unable to correctly determine the value of the begin? field in
such cases.

For this reason (as well as for improved classification accuracy), various more com-
plex strategies are employed that use distinct classes to mark the first and/or last
token of an attribute value. The two variations of IOB tagging are probably most
common: the variant usually called IOB2 classifies each token as the begin of a value
of a certain attribute (B-type, where type is the name of the attribute), as a continu-
ation of the previously started attribute value, if any (I-type), or as not belonging to
any attribute value (O)1. The IOB1 strategy differs from IOB2 in using B-type only
if necessary to avoid ambiguity (i.e., if two values of the same attribute immediately
follow each other); otherwise I-type is used even at the beginning of attribute values.
While the Triv strategy uses only n + 1 classes for n attributes, IOB tagging requires
2n + 1 classes.

BIE tagging differs from IOB in using an additional class for the last token of each
attribute value. One class is used for the first token of an attribute value (B-type), one
for inner tokens (I-type) and another one for the last token (E-type). A fourth class
BE-type is used to mark attribute values consisting of a single token (which is thus
both begin and end). Thus BIE requires 4n + 1 classes.

A disadvantage of the BIE strategy is the high number of classes it uses (twice
as many as IOB1|2 ). This can be addressed by introducing a new strategy, BIA (or
Begin/After tagging). Instead of using a separate class for the last token of an attribute
value, BIA marks the first token after an attribute value as A-type (unless it is the
begin of a new attribute value). Begin (B-type) and continuation (I-type) of attribute
values are marked in the same way as by IOB2. BIA requires 3n + 1 classes, n less
than BIE since no special treatment of single-token attribute values is necessary.

1 Note that the actual names used to identify classes do not matter and can deviate from those used

in the explanation; what matters is the chosen partitioning of tokens into classes.

71



10 Modeling Information Extraction as a Classification Task

Strategy Triv IOB2 IOB1 BIE BIA BE
Special class for first token – + (+)a + + +
Special class for last token – – – + – +

Special class for token after last – – – – + –
Number of classes n + 1 2n + 1 2n + 1 4n + 1 3n + 1 2× (n + 1)

Number of classifiers 1 1 1 1 1 2

a Only if required for disambiguation

Table 10.1: Properties of Tagging Strategies

Text Our meeting with Mr. Irfan Ali
Triv O O O speaker speaker speaker
IOB2 O O O B-speaker I-speaker I-speaker
IOB1 O O O I-speaker I-speaker I-speaker
BIE O O O B-speaker I-speaker E-speaker
BIA O O O B-speaker I-speaker I-speaker
BE O/O O/O O/O B-speaker/O O/O O/E-speaker

Text will be at 1:30 pm in . . .
Triv O O O stime stime O
IOB2 O O O B-stime I-stime O
IOB1 O O O I-stime I-stime O
BIE O O O B-stime E-stime O
BIA A-speaker O O B-stime I-stime A-stime
BE O/O O/O O B-stime/O O/E-stime O/O

Table 10.2: Labeling Example

The strategies discussed so far require only a single classification decision for each
token (though often multiple binary classifiers are used concurrently instead of a single
multi-class classifier to improve classification accuracy). Another option is to use two
separate classifiers, one for finding the begin and another one for finding the end of
attribute values. Begin/End (BE ) tagging requires n + 1 classes for each of the two
classifiers (B-type + O for the first, E-type + O for the second). In this case, there is
no distinction between inner and outer (other) tokens. Complete attribute values are
found by combining the most suitable begin/end pairs of the same attribute, typically
by taking the length distribution of attribute values into account.

Table 10.1 lists the properties of all strategies side by side. Table 10.2 shows the
labels generated by each strategy for an example text fragment.

Which tagging strategies should be appropriate for which situations will be discussed
in Chap. 19 after evaluating the various strategies.

72


