
9 Target Schemas and Input/Output Models

We have already shortly described the input/output requirements our system should
fulfill (Sec. 7.2.1). In this chapter we will cover them in more detail, discussing the
problems that arise in this context and how they can be solved.

One specific kind of input are the target schemas that define which kinds of infor-
mation should be extracted from the input texts. They will be treated in the first
section; in the following sections we will discuss which kind of text formats should
be allowed as input and which formats and annotation styles should be supported
for answer keys (expected attribute values). Finally we will turn to the question of
output: how should the results of the extraction process be serialized to allow both
evaluation and further processing?

9.1 Target Schemas

As stated before, information extraction differs from related areas in being schema-
based: it requires a predefined target schema that specifies which kinds of information
should be extracted and how they should be stored. The definitions that a target
schema needs to provide depend on the task or tasks (cf. Sec. 3.1) that should be
handled.

In the case of our system, which is only meant to handle the extraction of explicit
information (fragment extraction—cf. Sec. 7.1.1), target schemas become very simple:
all that is required is a list of attributes that are to be extracted. There is no need
to provide any explicit semantics or characteristics of the attributes to extract, since
the system is trained from a set of annotated training texts and is expected to learn
what it needs to know. Attributes do not need to be explicitly typed, since no value
normalization is performed.

Relationship resolution would be necessary to combine extracted attribute values
into non-trivial tuples and to resolve dependencies between relations. Since this is
another task that is beyond the scope of this work, only two simple cases of relations
are currently allowed: text-as-tuple and single-attribute relations.

Text-as-tuple means that there is only a single relation (with any number of at-
tributes) in the target schema and that each text corresponds to at most one tuple in
this relation, either “naturally” or due to a suitable segmentation step during prepro-
cessing (a document without any information to extract correspond to zero tuples). If
there are several candidate extractions for an attribute found in a text, all except one
will have to be discarded—our approach will handle this by keeping the most probable
candidate, as is usual for statistical approaches. This scenario applies to most standard
IE tasks, among them the Seminar Announcements and the Corporate Acquisitions
corpora that will be used for evaluation.

59



9 Target Schemas and Input/Output Models

Single-attribute relations means that the target schema comprises several rela-
tions, but each of them only has a single attribute, i.e. all attributes are independent
of each other. In this case, there is no need for relationship resolution. This scenario
applies, for example, for the extraction of named entities (NE) and related tasks,
e.g., extraction of biomedical entities—it has been used to train this system as a NE
recognizer for the weakly hierarchical approach (cf. Chapters 14 and 20).

These two scenarios correspond to two different evaluation modes supported by our
system (“one answer per attribute” vs. “one answer per occurrence”)—we will explain
these modes in Section 15.2 at the beginning of the evaluation part. In other, more
complex, cases, relationship resolution will have to be performed as a postprocessing
step after our system has finished its work.

There are no theoretical constraints on the number or the characteristics of at-
tributes that can be defined, but, as stated in the previous chapter, the quality
of extraction results generally depend on the suitability of attributes for automatic
extraction—we can expect problems with attributes whose values are very heteroge-
neous, very vaguely defined or very long. The number of training examples is another
factor that will influence results, since trainable algorithms require a sufficiently large
and representative set of examples to learn reliable characteristics. Hence, attributes
that only occur infrequently should probably not be included in target schemas, unless
the training corpus is very large.

9.2 Formats for Input Texts

9.2.1 Plain Text and Structured Documents Formats

Traditionally, information extraction corpora have been made available in plain text
format, without any markup. However, since the advent of the Web and its “lingua
franca” HTML, extraction from structured documents formats such as HTML has
become more important. While some families of approaches such as wrapper induction
(cf. Sec. 5.3) rely heavily or even primarily on markup information (HTML tags), other
modern approaches (e.g. ELIE, cf. Sec.4.4) continue to ignore this kind of information,
expecting conversion of such documents to plain text format prior to processing.

However, while plain text is the least common denominator of all text formats, it is
too limited for our purposes. Converting structured text formats to plain text throws
away information which might turn out to be useful during the information extraction
process—a concern expressed by the “Structure matters” conjecture (cf. Sec. 8.1). The
same problem might occur if one structured format is converted into another. For
example, HTML, the “lingua franca” of the Web, only contains a very limited set
of generic structuring elements (some kinds of lists, section headers, and emphasized
texts, and not much more). Conversion of richer formats such as DocBook [Wal99] or
LATEX is thus necessarily a lossy process—both comprise a much richer set of structural
predefined elements (e.g. footnotes or appendices); DocBook also contains elements
with a more semantic focus (such as caution, important, note, tip, or warning), while
LATEX allows extending the element set with any self-defined commands.

60



9.2 Formats for Input Texts

Because of this, deciding to use a richer predefined text format instead of plain text
would not fix the basic issue—the richer the chosen format, is harder is becomes to
write adequate converters for it, and in no case it would be able to cover self-defined
commands such as supported by TEX adequately since their semantics is not known
to a converter.

9.2.2 XML as “Universal” Input Format

The preferable alternative is thus to decide on a meta-format that can capture the
syntax of a rich variety of formats instead of trying to unify their semantics. The
obvious choice for a meta-format is XML [XMLa], the generic markup language that
has gained widespread acceptance as a meta-format for any kind of both loosely and
highly structured data.

Many current text formats such as HTML, DocBook [Wal99], TEI P4 1 and the
OpenDocument Format [ODF]2 are already based on XML or its predecessor and
superset SGML. XML-based formats do not need any preprocessing (once they fulfill
the assumption we will discuss below in the last section of this paragraph), while
SGML-based formats can be converted automatically to XML if the used Document
Type Definition (DTD) is known.

Plain text could be trivially converted to XML by wrapping a whole document into
a root element and escaping all characters that require escaping. However, while plain
text does not contain any explicit structural markup, it frequently follows implicit
conventions to express emphasis, lists elements and other structural information (e.g.
in e-mails). Aiming to make this implicit markup available for the information extrac-
tion process requires a more complex heuristic conversion process—we will return to
this point in Section 12.1.

For the purposes of this work we will consider it sufficient to accept plain text,
HTML, and any XML-based formats as input, since other formats can generally be
easily converted into one of these formats.

When extracting from XML documents, we assume that all information to extract
is available in the textual content of the document—we will not try to extract from
the values of XML attributes (XML elements and attribute name/value pairs are
used for building the context representations of the tokens to classify as described in
Sec. 12.2, but all tokens to classify are taken from the textual content of the document.)
This corresponds to the content model of typical XML-based text formats such as
(X)HTML or DocBook, where attribute values are used to store meta-information
about the text or fragments of the text (e.g. formatting details or hyperlinked URLs
attached to a text fragment), but not for storing visible text fragments.

1 A format defined by the Text Encoding Initiative for for use in humanities, social sciences and

linguistics [SM04].
2 Used by OpenOffice <http://www.openoffice.org/> and other text processing applications. Ac-

tually, ODF files are ZIP archives bundling several compressed files, but the actual textual content

of the document (with some style and formatting information) is stored in an XML file within the

archive.

61



9 Target Schemas and Input/Output Models

9.3 Input Formats for Answer Keys

Answer keys contain the “true” (gold-standard) information on the attribute values
that can be found in a text. In the training stage they are used to train the system so
it can learn how to recognize attribute values; during evaluation, the attribute values
proposed by the system are compared with the answer keys to calculate performance
metrics (cf. Chap. 15). During the extraction phase, obviously, they are unavailable
to the information extractor.

The most simple and most robust way of providing answer keys is by storing them
inline within a document. If this is not possible, they can be stored externally in a
separate file or a database, along with information that allows locating them in the
input text. These two options will be discussed in the following subsections.

9.3.1 Support for Inline Annotations

Answer keys are text fragments (strings) from an input text. They can be marked
inline within a text by inserting a marker identifying the begin and another marker
identifying the end of each attribute value. The markers must also reveal the at-
tribute name for each attribute value (at least the begin marker—for end markers
this information is redundant since we assume attribute values to be continuous and
non-overlapping, cf. Sec. 8.3).

The most common way of doing this is by wrapping each answer key within a pair
of XML tags: <att>...</att>, where att is the name of the attribute. This is also
the style of inline annotation we support in our system.

Some older corpora such as the Seminar Announcements corpus (cf. Sec. 17.1) use
such XML-style tags within plain text files.3 Files annotated in such a way cannot be
processed by standard XML parsers since they are not well-formed. We use the XML
repair algorithm described in Chapter 13 to convert such files into regular XML.

9.3.2 Support for External Annotations

Inline annotation of answer keys is not always possible, for example, if an input text
already contains XML markup there is the risk of overlapping conflicts. Also, any inline
annotations contained in a text must be removed prior to preprocessing the text to
ensure that no “forbidden” information about the true attribute values is leaked to
the information extractor during evaluation.

Because of this, we support external annotation of answer keys as an alternative
to inline annotations—any inline annotations are converted to external annotations
prior to (pre)processing. External annotations need to carry four items of information:
the text fragment to extract, the attribute name, a pointer to the text containing the
text fragment, and a pointer to the position of the fragment within the text that

3 Meanwhile, a variant of the Seminar Announcements corpus stored in regular XML files has been

published by the University of Sheffield’s Dot.Kom Project <http://nlp.shef.ac.uk/dot.kom/

resources.html>, but it was not yet available when we started our experiments on that corpus.

62



9.3 Input Formats for Answer Keys

Type: cmu.andrew.official.cmu −news
Topic: CEDA Spring Lecture Series
Dates: 13 −Feb−95
Time: 3:30 PM
PostedBy: Edmund J. Delaney on 9 −Feb−95 at 10:18 from andrew.cmu.edu
Abstract:

CENTER FOR ELECTRONIC DESIGN AUTOMATION SPRING LECTURE SERIES

The Center for Electronic Design Automation, CEDA, in the department of
Electrical and Computer Engineering will offer its first lecture
in its Spring lecture series on February 13, in the Adamson Wing, Baker '

Hall.
The lecture begins at 3:30 p.m followed by a reception in Hamerschlag
Hall, Room 1112. Professors Rob A. Rutenbar and Wojciech Maly
will speak on "The State of the Center for Electronic Design Automation".
Funded in part by the Semiconductor Research Corporation, SEMATECH,
NSF, and by U.S. and international semiconductor companies, CEDA involves
12 faculty and 60 graduate students working on software tools to design,
verify and fabricate next −generation integrated circuits and systems.

Figure 9.1: Sample Input Text

allows anchoring the fragment. We store this information in the following relation
(the underlined attributes form the primary key):

AnswerKeys (Type: string, Text: string, Source: string, FirstTokenRep: integer,
Index: integer)

The first three attributes are straightforward: Type is the name of the attribute,
Text is the text fragment to extract, Source is the file name of the text containing
the answer key. Storing the anchoring information in a reliable way is more tricky.
An intuitive idea would be to count the characters of the document and specify the
index position of the first character of the text fragment to extract. However, if we
count all characters including whitespace, we are bound to run into trouble, since the
amount of whitespace in HTML/XML documents is usually insignificant and likely
to change, e.g., during linguistic preprocessing. Ignoring whitespace and specifying
the index position in regard to printable (non-whitespace) characters only is more
reliable—this is the information stored in the Index attribute.

However, since the index position is still not a way to anchor answer keys that is suf-
ficiently robust to always survive the preprocessing process described in Section 12.1,
we do not use this attribute for locating attribute values, instead treating it as redun-
dant information that is optional (may be NULL). The index position is unreliably
since sometimes a few printable characters are deleted (probably never added) during
preprocessing. For example, the txt2html converter we use for handling plain text doc-
uments will convert lines starting with a stand-alone ‘*’ or ‘-’ character into list item
elements (<li>...</li>), deleting the item marker (‘*’ or ‘-’). Converters from other
documents formats (which have not been used by us but might be configured by users
for our system) might show a similar behavior. Thus we cannot rely on the number

63



9 Target Schemas and Input/Output Models

Type: cmu.andrew.official.cmu −news
Topic: CEDA Spring Lecture Series
Dates: 13 −Feb−95
Time: <stime> 3:30 PM </stime>
PostedBy: Edmund J. Delaney on 9 −Feb−95 at 10:18 from andrew.cmu.edu
Abstract:

CENTER FOR ELECTRONIC DESIGN AUTOMATION SPRING LECTURE SERIES

The Center for Electronic Design Automation, CEDA, in the department of
Electrical and Computer Engineering will offer its first lecture
in its Spring lecture series on February 13, in the <location> Adamson '

Wing, Baker Hall </location> .
The lecture begins at <stime> 3:30 p.m </stime> followed by a reception in '

<location> Hamerschlag
Hall, Room 1112 </location> . <speaker> Professors Rob A. Rutenbar </speaker> '

and <speaker> Wojciech Maly </speaker>
will speak on "The State of the Center for Electronic Design Automation".
Funded in part by the Semiconductor Research Corporation, SEMATECH,
NSF, and by U.S. and international semiconductor companies, CEDA involves
12 faculty and 60 graduate students working on software tools to design,
verify and fabricate next −generation integrated circuits and systems.

Figure 9.2: Sample Text with Inline Annotations

of printable characters up to the start of an answer key to be exactly the same before
and after preprocessing.

Instead we rely on the FirstTokenRep attribute for anchoring the text fragments. The
value of this attribute is determined by tokenizing (cf. Sec. 12.3) both the text fragment
to extract and the input text and indexing the occurrences of the first token of the
text fragment in the text—for example, the FirstTokenRep attribute for a speaker

answer key“Dr. Werner Koepf”will be set to 0 if it starts at the first occurrence (=
“0-th repetition”) of the token “Dr” in the source text, or 1 if it starts at the second
occurrence of this token. This method is reliable as long as attribute values do not
start with an“endangered”token such as“*”or“-”which is very unlikely (in the corpora
we used, this never occurred).

Figure 9.1 shown an example input text—a real example from the Seminar An-
nouncements corpus (cf. Sec. 17.1) which was already shown as example in Sec-
tion 3.4.4 Figure 9.2 shows the same text with the inline annotations that are part of
the original markup where the attribute values to extract are enclosed in XML-style
tags.5 Table 9.1 lists the answer keys for this file as external annotations.

4 For the example given in Sec. 3.4, we omitted the last sentences and modified the headers to fit

e-mail conventions.
5 The original markup for this corpus also contains tags around each paragraph and sentence. They

are not shown since they have not been used by our system nor (to our knowledge) by other systems

evaluated on that corpus.

64



9.4 Serialization of Extracted Attribute Values

Type Text Source FirstTokenRep Index
stime 3:30 PM cmu-news-2450 0 26
location Adamson Wing, Baker Hall cmu-news-2450 0 91
stime 3:30 p.m cmu-news-2450 1 101
location Hamerschlag Hall, Room 1112 cmu-news-2450 0 110
speaker Professors Rob A. Rutenbar cmu-news-2450 0 116
speaker Wojciech Maly cmu-news-2450 0 122

Table 9.1: Example of External Answer Keys

9.4 Serialization of Extracted Attribute Values

The output of the information extractor is a set of proposed attribute values for each
input text. The information we are interested in for each extracted attribute value
is basically the same as for answer keys: the extracted text fragment, the attribute,
and anchoring information pointing to the text containing the text fragment and its
position in the text (the latter information is not strictly necessary for users that only
want to work with the extracted data, but it is essential for evaluating the extractor
and it will be useful for users interested in some background knowledge or doubtful
about the extractions proposed by the system).

Additionally, the probability estimation assigned by the statistical system is of
interest—users might want to filter extracted attribute values whose probability is
below a certain threshold or they might re-check them manually. Thus extracted at-
tribute values are stored in this relation:

Extractions (Type: string, Text: string, Source: string, FirstTokenRep: integer,
Index: integer, Probability: real)

The first five attributes correspond to those of the AnswerKeys relation described
above (Sec. 9.3.2); the Probability attribute stores a number in the [0.0, 1.0] range
giving the probability estimation of the extraction to be correct.

65




