
Part II

Analysis





7 Aims and Requirements

After having covered extensively the current state of the art in the field of information
extraction, we are now ready to formulate the specific aims of our own work. We
will return to each of the aspects discussed in the previous chapter, with the goal of
identifying aims and requirements for our own work. Our general guiding principle is to
identify and preserve the best and most promising techniques from current approaches
while, at the same time, exploring issues and investigating problems that so far have
been neglected.

7.1 Aims of Our Approach

7.1.1 Primary Task to Handle

In Section 3.1 we have seen that a comprehensive algorithm for populating a database
with information extracted from text documents will generally comprise various steps,
but that one only of these steps—the extraction of explicit information (fragment
extraction)—is required in all cases. And in Section 6.1 we have seen that most current
IE systems handle only this one step, while those few that also handle relationship
recognition often do so in a very limited way (resolving only relationships within
a single sentence) or else use rule-based recognition mechanisms which appear to be
somewhat ad-hoc and not necessarily suitable for other corpora. The SNoW-IE variant
presented in [Rot02] (cf. Sec. 4.5) handles relationship recognition in a more principled
fashion, but it, in turn, does not really handle the fragment extraction task, requiring
the extracted text fragments to be already given.

There appears to a be clear tendency to concentrate efforts on a single step, and
this might well be justified to avoid the loss of focus, considering that addressing all
the steps outlined in Section 3.1 would be far too ambitious for a single work. Since
the extraction of explicit information (fragment extraction) is certainly the core task
for any information extraction system, we too will focus our work on this step, but
with the understanding that is only one (though a very important one) step within
the context of a more comprehensive solution that remains to be created.

7.1.2 Types of Texts to Handle

In Section 6.2 we have introduced the distinction between free texts, semi-structured
texts, and structured texts. Structured texts are generally generated by computers,
while both free and semi-structured texts are written by humans. This implies that it
makes sense to use different algorithms for structured texts than for the other kinds
of texts; the success of wrapper induction (Sec. 5.3) approaches on structured texts
(but not on other texts) confirms this.

49



7 Aims and Requirements

The area of structured text processing is already well researched and there is little
point in writing yet another wrapper induction–like approach. Hence we will focus
on human-written free texts and semi-structured texts instead of computer-generated
structured texts.

However, our system should be suitable for both free and semi-structured texts,
since both these kinds of human-written texts are important. There is an increasing
amount of quickly written semi-structured texts where correct grammar and style are
less of an issue, due to the success of text-based communication forms such as e-mail,
newsgroups, Web forums and the like; but more formal free texts written for news-
papers, press associations, governmental agencies etc. continue to remain important
sources of information.

Our system should by a general-purpose information extraction system, it should
not be tailored for a specific text type or domain (e.g. by containing domain-specific
heuristics).

7.1.3 Features to Consider

In the last chapter (Sec. 6.3) we have seen that current IE systems use various kinds
of features, typically based on tokens and word shapes, linguistic preprocessing, and
semantic resources such as gazetteers. Since all of these features appear to be useful
at least in some cases (otherwise they would not be used), our system should also
be able to use them; but we will evaluate the effect of including or excluding various
groups of features, so as not to blindly add features without knowing whether they
make sense (cf. Sec. 18.1). Our system should be able to use semantic features (as
provided by gazetteers and similar sources), but it should not require them, since
semantic resources are typically domain-specific, while our system should be usable
for any domains without requiring substantial preparatory effort such as providing
suitable sources.

Structural information (e.g. HTML or XML tags) so far has only been used by a few
approaches, and typically only by wrapper induction–style approaches such as Stalker
which do not consider linguistic features and are mainly suited for structured texts.
However, the “Structure matters” conjecture mentioned in the Introduction (which
we will detail in the next chapter) suggests that structural information might be of
relevance even for semi-structured and free texts where the usage of linguistic features
is generally considered advisable. Hence we will find a way to combine these various
sources of information in rich feature representations (cf. Chap. 12). We will also test
whether the “Structure matters” conjecture actually holds for our evaluation corpora
(cf. Sec. 18.1).

As another so far largely unexploited source of information, we will investigate
approaches of integrating hierarchical structures of data such as inheritance hierarchies
between attributes (cf. Chapters 14 and 20).

50



7.2 Further Requirements

7.1.4 Tagging Requirements and Learning Characteristics

In Section 6.4 we have seen that most current IE approaches require a fully annotated
set of training texts, while some support active learning to reduce the training burden.
Active learning reduces the amount of training that a human user has to do, but it
still requires a predefined (if unannotated) training set of a sufficiently large size.

However, according to the “Systems will be used” assumption we already voiced in
the Introduction (and will explain in more detail in the next chapter), the reliance on
a predefined fixed-size training set can be a hurdle for many real-life applications: it
prevents the system from being used unless a sufficiently large set of training texts has
been assembled, and it makes it harder to adapt the system to changes in the corpus.

To address these issues, our system will support incremental learning (cf. Sec. 3.3)
as an alternative to batch training over fully annotated training corpora. Like active
learning, incremental learning reduces the training burden, but additionally it makes
it possible to start using the system without a predefined training corpus and it
allows allowing successive refinement of an existing extraction model by dynamically
adapting it to new training data—the effects of these advantages will be evaluated in
Section 18.2. Also, for the user providing the training data incremental learning might
been more agreeable than active learning since (s)he stays in control, while in the case
of active learning it is the system that decides which documents the user should deal
with instead of the other way round.

7.2 Further Requirements

7.2.1 Input/Output Requirements

If we want to be able to handle document structure information, as stated above
(Sec. 7.1.3), we cannot just limit our system to handling plain text input as most
IE systems do, since in plain text format almost all structural information is lost.1

Hence our system should also be able to process structured document formats. But
there are many such formats, and obviously it would be impossible to support all of
them; on the other hand, requiring conversion to one specific structured format would
often result in the loss of some structural information which cannot be expressed in
the target format.

This problem can be avoided by fixing not a specific structured text format but a
“meta-format” that can be used to express almost any structured format. The obvious
choice of a meta-format is XML since this generic markup language has already gained
widespread acceptance as a meta-format. Accordingly, our system should be able to
handle input texts in any XML-based formats in addition to plain text input. Using
a meta-format instead of a specific format (such as HTML) means that the meaning
(semantics) of structural elements is not known in advance, so our system must be
able to learn the meaning of elements in so far as they are relevant—how to solve this
problem will be treated in Sec. 12.2.

1 At least explicit structural information, implicit structural information is another matter—a point

we will return to in Sec. 12.1.

51



7 Aims and Requirements

In case of plain text input, answer keys (user-provided annotations of the expected
attribute values for training or for evaluating the system) can be stored inline within
the text. This makes it easy to provide answer keys without the need for specific
annotations tools, but this is a somewhat brittle solution and it might not work in
case of XML input without interference with the document markup. Hence our system
should be able process both answer keys provided externally in a database/relational
style (for maximum flexibility) as well as inline (for easier use).

While the ultimate goal of schema-based extraction is to store the extracted infor-
mation in a database that can be queried, just storing the extracted attribute values is
not enough. To allow judging the reliability of extracted attribute values, the system
should also provide a measure of certainty of its results (a probability estimation of
a prediction being correct)—this makes it possible, for example, to only query ex-
tracted information whose estimated reliability is beyond a user-defined threshold, or
to manually review and correct extractions below a threshold. Both for such manual
reviewing and for automatic evaluation is also necessary to provide meta-data that
allows anchoring each extracted attribute value in the text it was extracted from.

These issues regarding input and output will be treated in Chapter 9 in more detail.

7.2.2 Architectural Requirements

Current IE system tend to be very tightly coupled and lack a modular architecture,
making it hard to exchange parts of an approach or to modify the preprocessing
components. Conversely, our system should be designed in a generic way, using a
modular architecture that allows modifying and exchanging the various components
independently of each other.

The architecture and development API of the system should be clean and well-
documented, and the software should be portable to different systems (portability
should not be hard to realize, as we will use Java as implementation language).

7.2.3 Evaluation Requirements

Our work will include a detailed evaluation of our approach. For evaluation, we will use
two of the most frequently used standard IE corpora. The two corpora should represent
very different aspects of the typical range of texts our approach is meant to handle,
one representing semi-structured, informal texts that are typical for e-mail messages
and similar day-to-day communications, and the other representing “classical”, fully
grammatical free texts as can be found in formal sources such as newspapers.

As mentioned above, we will also perform an ablation study to measure the effects
of various groups of features on the results (Sec. 18.1) and we will evaluate whether
extended feature sets considering type hierarchies can improve results (Chap. 20). We
will also investigate the utility of incremental training for reducing the human training
effort (Sec. 18.2).

Regarding the architectural modularity (cf. Sec. 7.2.2 above), we will also perform
a systematic analysis of switching one core component (Chap. 19). Finally we will

52



7.3 Chosen Approach

analyze the mistakes made by our system to gain a better insight into weaknesses of
our system and general difficulties of information extraction (Chap. 21).

7.3 Chosen Approach

After discussing these aims and requirements we would like to fulfill, we are now ready
to chose the kind of approach to pursue in our work.

The first question is whether it should be statistical, rule-based, or knowledge-based.
Knowledge-based approaches are really out of the questions since we stated already (in
Sec. 7.1.3) that our system should allow, but not require the usage of domain-specific
semantic information, while for knowledge-based approaches they are the primary
source of information.

Various of the aims we have defined suggest choosing a statistical approach instead
of a rule-based one. Especially, incremental training would be hard to reconcile with
a rule-learning approach since extraction rules are generally constructed from a whole
set of training texts and cannot be updated afterwards without a full retraining. Also,
probability estimation is usually at the core of statistical systems, while most rule-
based approaches do not provide a measure of certainty that would allow estimating
the reliability of proposed extractions.

Moreover, statistical systems tend to be more robust regarding noise and irregu-
larities in the input, making them specifically suitable for an approach that is meant
to handle semi-structured in additional to free texts (cf. Sec. 7.1.2). Such informal
or quickly written texts often lack both linguistic exactness and structural regularity,
making it hard for rule-based approaches to learn reliable rules.

A further point that makes us opt for a statistical approach is that the best cur-
rent statistical IE systems tend to outperform rule-based approaches, as will become
apparent during evaluation when we compare our results with those reached by the
best other approaches (Chap. 17).

More specifically, we will derive our approach from the family of token-classification
approaches (Sec. 4.4) because of the high flexibility it offers. An advantage of token-
classification approaches is their being able to handle any feature sets, without gener-
ally requiring that features be independent of each other (a requirement that would
be very unrealistic in many cases). This makes this family of approaches specifically
suitable for use with rich feature sets (cf. Sec. 7.1.3).

Token classification is also a good basis for architectural modularity, as postulated
above (Sec. 7.2.2). We will design and implement our system in a way that makes
it easy to replace or modify the various core components (classification algorithm,
tagging strategies, context representations) independently of one another.

Token-classification approaches are very competitive with other (both statistical
and rule-based) approaches, as shown by the fact that both ELIE and our own tend
to be among the (if not to be the) best systems on each evaluated corpus (cf. Chap. 17
and [Fin06]).

53



7 Aims and Requirements

7.4 Non-Goals

To make the scope of this work clearer, it is also helpful to point out which related
areas and tasks will not be covered in this thesis:

We are not working on methods for creating or improving target schemas. For the
purpose of this work, target schemas are assumed to be given (cf. Sec. 9.1 for more
on the target schemas we will be using). While usually target schemas are created
manually (since human users tend to know best what is of interest to them), automatic
or semi-automatic procedures for designing or refining them are possible too, but they
will not be treated in this work.

This thesis is focused on supervised learning, since information extraction is gener-
ally modeled as a supervised learning task (as already stated in Sec. 3.1). Hence, our
system will require training data (sample texts annotated with answer keys) provided
by human users used as target function. We will not consider unsupervised methods
that try to work without training data, nor mining algorithms that try to discover
potentially relevant facts without an explicit target schemas.

We consider this human-provided training data as a “gold standard” that is not
to be judged, so we will not perform any kind of “meta-analysis” of the extracted
attribute values, such as trying to discover whether facts expressed in a text are true
or reliable, or whether texts are trustworthy or objective.

We are not trying to create a complete system for populating databases from textual
documents as described in Chap. 3—our system is only meant to be usable as one
core step of such a system (cf. Sec. 7.1.1). How the remaining steps could be addressed
and integrated with our system will be discussed in the “Future Work” section of this
thesis (Sec. 22.3).

Also, while Part IV contains evaluations of some of the core parameters, in general
we have refrained from performing extensive parameter variation tests. Determining
optimum parameter values is mainly relevant when tuning for a specific task—we are
leaving this for future work, performing parameter evaluations only where new insights
can be expected from doing them.

Now we have formulated the aims as well as the scope of our own work, but there
remain some issues which we should address before we are ready to introduce and
discuss the chosen approach in detail (which will happen in Part III). The need for a
more detailed coverage of target schemas and input/output formats has already been
pointed out above. Prior to doing so in Chapter 9, it is useful the recapitulate and
detail the novel assumptions and conjectures we have made for our algorithm as well
as the general assumptions that underlie all IE approaches but are seldom spelled out
explicitly. That will be the goal of the next chapter.

54


