
4 Statistical Approaches

4.1 Probabilistic Semantic Parsing

The SIFT system [Mil98, Mil00] submitted to MUC-7 is one of the earliest statistical
approaches to IE. The system simultaneously handles part-of-speech (POS) tagging
and parsing (syntactic annotations) as well as named entity (NE) recognition and
the finding of relationships (semantic annotations), so the results of each task can
influence the others. Relationships link two attribute values of different types, e.g.
in GTE Corp. of Stamford there is a location-of relation between the company and
the city. The system was trained from the Penn Treebank corpus (1,000,000 words)
for syntactic annotations and a domain-specific annotated corpus (500,000 words) for
semantic annotations.

Tasks are primarily performed at the sentence level. In a final step, coreferences be-
tween attribute values are resolved beyond the sentence level (trained from coreference
annotations of the semantic corpus) and cross-sentence relationships are established.

The domain-specific corpus requires only semantic tagging (attribute values, coref-
erences, relationships), no syntactic annotations. After training the syntax model from
the Penn Treebank, it is applied to the domain-specific corpus to produce parses that
are consistent with the semantic annotations. The result is a single parse tree that
contains both syntactic (e.g. S: sentence, VP: verb phrase) and semantic (e.g. per: per-
son entity, emp-of: employee-of relationship) annotations. The sentence-level model is
then retrained on the resulting joint annotations to produce an integrated model of
syntax and semantics. Named entities are recognized by a Hidden Markov Model.

The statistical model predicts the categories and POS tags of constituents based
on the data from the parse-tree context. The probability of a whole augmented parse
tree is the product of the probabilities of all components. The most likely augmented
parse tree is found by a chart parser that proceeds bottom-up. Dynamic programming
techniques and pruning are used to keep the search space feasible. Maximum likelihood
estimates for all probabilities are obtained from the frequencies in the training corpus,
using Witten-Bell smoothing [Wit91] to compensate data sparseness.

For determining whether a relation exists between two elements in different sen-
tences, the cross-sentence model calculates the probabilities that a relation does or
does not exist and chooses the more probable alternative. These probabilities are cal-
culated on the assumption of feature independence. The considered features comprise
structural features (the distance between the attribute values, whether one of the at-
tribute values was referred to in the first sentence of an article) and content features
(e.g. whether attribute values with similar names—probable coreferences—or with
similar descriptors are related in other contexts).

29

4 Statistical Approaches

The results of the SIFT system were close to those of the best (hand-written)
systems in MUC-7.

4.2 Hidden Markov Models

Hidden Markov Models (HMM) are one of the earliest and most frequently used
techniques in the area of statistical language processing. They have been used in
various ways in the field of information extraction and have lead to several spin-off
techniques such as the MEMMs and CRFs that will be presented in the next section.

The algorithm developed by Scheffer et al. [Sch01, Sch02] employs active learning
(cf. Sec. 3.3) to learn Hidden Markov Models (HMMs) from sparsely (partially) labeled
texts. Their HMM algorithm tags each token (word) in a document with one of a set
of predefined tags, or the special tag none—the tags (to find) are the hidden states of
the Markov Model, while the observed tokens are the visible output of the model. The
state sequence minimizing the per-token error is found using the forward-backward
algorithm.

For training the model, partially labeled documents where some of the tags are un-
specified are sufficient. The remaining unknown tags are estimated using the Baum-
Welch algorithm. Active learning is used to select the most “difficult” untagged tokens
for hand-tagging by the user. The tokens with the lowest difference between the prob-
abilities of the two most probable states are considered most difficult.

The state-transition structure of HMMs is usually chosen manually. Freitag and
McCallum [Fre00b] employ stochastic optimization for this purpose. The algorithm
performs hill-climbing starting from a simple model and splitting states until a (lo-
cally) optimal state-transition structure has been found. The performance of each
model is evaluated on a validation set.

The approach employs a separate HMM for each attribute (e.g. seminar speaker)
in a document. Each model contains two types of states, target states that produce
the tokens to extract and non-target states. As usual, the Baum-Welch algorithm
is used to estimate transition and emission probabilities of each tested model; the
estimates of different models are combined using a weighted average learned through
Estimation-Maximization. For learning a suitable HMM structure, non-target states
are differentiated as either prefix or suffix (preceding or following a target phrase) or
background states (anything else). The most simple HMM fitting this structure has
four states (one of each kind) and considers exactly one prefix + suffix around each
target state.

This model is used as the starting point for hill climbing. Related models are gen-
erated by lengthening a prefix, suffix, or target string (adding a new state of the same
kind that must be traversed before the model can proceed to the next kind of state),
by splitting a prefix/suffix/target string (creating a duplicate where the first and last
states of the duplicated prefix/suffix/target have the same connectivity as in the orig-
inal), or adding a background state. Model variations are evaluated on a hold-out set
or via cross-validation.

30

4.3 Maximum Entropy Markov Models and Conditional Random Fields

Another variation that has been used for IE combines several levels of HMMs in
a Hierarchical HMM (HHMM) [Fin98, Sko03]. Text sequences are modeled at two
different granularity levels in a a two-level HHMM: the top level models phrase seg-
ments (noun, verb, and prepositional phrases) provided by a shallow parser, the lower
level models individual words (including their POS tags) within a phrase. The Viterbi,
Forward, and Backward algorithms are adapted to ensure that the embedded word
model reaches the end state exactly at the end of each phrase and to ensure the typing
of the phrase model.

Context Hierarchical HMMs (CHHMMs) are an extended variant that incorporate
additional sentence structure information in each phrase. The word model is extended
to consider the left and right neighbor of each word, generating a sequence of over-
lapping trigrams. To reduce the number of possible observations, individual features
(words and tags) are combined under the assumption of conditional independence.
Evaluation shows superior results for hierarchical models, especially CHHMMs, com-
pared with flat HMMs [Sko03].

Generally, HMMs offer a simple yet powerful way to model text that has proved
very successful in various areas of language processing. However, the generative nature
of HMMs makes it hard to capture multiple interdependent sources of information.
The approaches described in the following section address this problem by switching
to sequential models that are conditional instead of generative.

4.3 Maximum Entropy Markov Models and Conditional

Random Fields

The Maximum Entropy Markov Models (MEMMs) used by [McC00] are a conditional
alternative to HMMs. MEMMs calculate the conditional probability of a state (tag)
given an observation (token) and the previous state (tag). Thus the two parts of an
HMM—calculating the probability of a state depending on the previous one (transition
function) and calculating the probability of an observation depending on the current
state (observation function)—are collapsed into a single function.

Observations can comprise many features which need not be independent. Features
are binary, e.g. the word “apple”, a lower-case word etc. The actually used features
are selected and weighted by maximum entropy (ME) modeling. Generalized Iterative
Scaling (GIS) is used to train the parameters of the model. The most probable tagging
sequence is found using a variation of Viterbi search adjusted for MEMMs.

A disadvantage of associating observations with state transitions instead of states
is the high number of parameters: |S|2× |O| instead of the |S|2 + |S| × |O| of classical
HMMs (|S| is the number of states, |O| of observations). This increases the risk of
data sparseness.

Tested on a text segmentation task, MEMMs perform significantly better than both
classical HMMs and a stateless maximum entropy model [McC00] .

A weakness of MEMMs is the label bias problem: the probability mass arriving at a
state must be distributed among the successor states, thus outgoing transitions from

31

4 Statistical Approaches

a state compete only against each other, not against other transitions. This results in
a bias in favor of states with fewer outgoing transitions. Conditional Random Fields
(CRFs) [Laf01, McC03b] address this problem by modeling the joint probability of
an entire sequence of labels in a single exponential model instead of modeling the
conditional probabilities of next states in per-state exponential models.

CRFs are undirected graphical models (a.k.a. random fields or Markov networks)
that calculate the conditional of values on designated output variables depending on
other designated input variables.

P (y|x) =
1
Zx

∏
c∈C

Φc(xc, yc)

is the conditional probability of output values y given input values x. Zx =∑
y′

∏
c∈C Φc(xc, yc) is the normalizer (partition function), C is the set of all cliques,

Φc(·) is the potential function for clique c, xc and yc are the sub-sets of the variables
in x and y that participate in clique c.

CRFs have been employed successfully for information extraction [Sut05] as well as
for related tasks such as coreference resolution [McC03a].

4.4 Token Classification

There are multiple approaches that employ standard classification algorithms, mod-
eling information extraction as a token classification task. These systems split a text
into a series of tokens and invoke a trainable classifier to decide for each token whether
or not it is part of an attribute value (e.g. speaker or location of a seminar).

4.4.1 Tagging Strategies

To re-assemble the classified tokens into multi-token attribute values, various tagging
strategies can be used. A popular strategy is to classify each token as the begin of
a value of a certain attribute (B-type, where type is the name of the attribute), as
a continuation of the previously started attribute value, if any (I-type), or as not
belonging to any attribute value (O). This strategy is usually called IOB2 tagging;
there is a variation called IOB1 tagging that uses B-type only when necessary to avoid
ambiguity (i.e. if two values of the same attribute immediately follow each other);
otherwise I-type is used even at the beginning of attribute values.

BIE tagging differs from IOB in using an additional class for the last token of each
attribute value. One class is used for the first token of an attribute value (B-type), one
for inner tokens (I-type) and another one for the last token (E-type). A fourth class
BE-type is used to mark attribute values consisting of a single token (which is thus
both begin and end).

The strategies discussed so far require only a single classification decision for each
token. Another option is to use two separate classifiers, one for finding the begin and
another one for finding the end of attribute values. Begin/End tagging requires n + 1
classes for each of the two classifiers (B-type + O for the first, E-type + O for the

32

4.5 Fragment Classification and Bayesian Networks

second). In this case, there is no distinction between inner and outer (other) tokens.
Complete attribute values are found by combining the most suitable begin/end pairs
of the same attribute, e.g. by taking the length distribution of attribute values into
account.

4.4.2 Classification Algorithms

There are various approaches that employ a classification algorithm with one of the
tagging strategies described above: [Chi02] uses Maximum Entropy (MaxEnt) model-
ing with BIE2 tagging; [Zav03] uses Memory-based Learning (MBL) with the IOB1
strategy.

The ELIE system [Fin04a, Fin04b, Fin06] uses Support Vector Machines (SVMs)
for Begin/End tagging. Highly improved results are reached by augmenting this setup
with a second level (L2) of begin/end classifiers. The L2 end classifier focuses on
finding suitable end tags for matching left-over begin tags from the first-level (L1)
begin classifier, and the L2 begin classifier matches left-over end tags.

While the L1 classifiers are trained on a very high number of tokens, almost all
of which are negative instances (O), the L2 classifiers only consider the near context
of left-over L1 begin/end tags which allows a more focused classification. Hence the
L1 classifiers must be tuned to favor precision over recall to avoid producing lots of
false positives (spurious extractions) from all over text, but the L2 classifiers can be
tuned to favor recall over precision since they only classify a very small subset of all
the tokens. In this way, by adding the second level the recall of the overall system can
be increased without overly hurting the precision.

While token-classifying approaches lack the genuinely sequential nature of HMMs
and conditional models, they have proved very successful, due to their ability to com-
bine rich feature representations of the tokens to classify with powerful classification
algorithms. We will return to this approach in Chapter 10 with a more detailed dis-
cussion of token classification and tagging strategies.

4.5 Fragment Classification and Bayesian Networks

The SNoW-IE system introduced in [Rot01] employs the Winnow (cf. Sec. 11.1) based
SNoW classifier in a two-stage architecture. Among a small number of possible candi-
date fragments identified in the filtering stage, the (presumably) correct text fragment
is determined and extracted in the classifying stage. The two-stage architecture allows
using a rich feature representation in a second step for the small subset of promis-
ing candidates which would be infeasible (or very inefficient) to use for all possible
fragments.

Rich context representations are created by encoding certain relational structures
in propositional representations. In the first phase, only single word tokens and POS
tags and collocations of two adjoint words/tags (bigrams) are used as features. For
words and tags in the left and right context window, the relative position is encoded
in the feature. In second phase, “sparse collocations” of words/tags from left and right

33

4 Statistical Approaches

window and target phrase are also considered. A sparse collocation of n elements
generates an n-gram feature for each subsequence of elements vi . . . vj , 1 ≤ i < j ≤ n.

In the version presented in [Rot01], a different classifier is trained for each attribute
in each phrase—dependencies between different attributes are not considered. When
several classifiers choose identical fragments for extraction, the more confident classi-
fier (higher activation value) wins.

But relations between attribute values can yield important hints for determining
the exact attribute. Thus the approach has been modified to recognize attribute values
and relations between them at the same time [Rot02]. Borders of attribute values and
existence of relations must be given, but their types are established in a joint step, by
maximizing the joint likelihood of all type assignments in a Bayesian network (belief
network), based on original estimates given by SNoW classifiers.

The mathematical model does not allow loops—different relations are assumed to
be independent and attributes are assumed to be independent of relationship types.
Another limitation of this approach is that borders of attribute value must be known
in advance and cannot be changed.

BIEN (Bayesian Information Extraction Network) [Pes03] is an approach based on a
different variant of Bayesian networks: Dynamic Bayesian networks (DBNs) represent
previous decisions to model the order of events (“flow of time”) in a generalization of
Hidden Markov Models. The BIEN system is based on a DBNS that classifies each
token as belonging to one of the target attributes or to the background (hidden variable
Tag). Another hidden variable (Last Target) stores the last recognized target attribute,
reflecting the order in which target information is expressed.

34

